CN104165814B - Vickers indentation based material elastoplasticity instrumented indentation test method - Google Patents
Vickers indentation based material elastoplasticity instrumented indentation test method Download PDFInfo
- Publication number
- CN104165814B CN104165814B CN201410348309.XA CN201410348309A CN104165814B CN 104165814 B CN104165814 B CN 104165814B CN 201410348309 A CN201410348309 A CN 201410348309A CN 104165814 B CN104165814 B CN 104165814B
- Authority
- CN
- China
- Prior art keywords
- vickers
- indentation
- ratio
- value
- diamond
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本发明公开了一种基于Vickers压痕的金属材料弹塑性参数仪器化压入测试方法,该方法利用Vickers压头仪器化压入金属材料所得载荷‑位移曲线及Vickers压痕确定金属材料的应变硬化指数n、弹性模量E、条件屈服强度σ0.2及强度极限σb。与使用两个或两个以上不同锥顶角的棱锥压头仪器化压入测试方法相比,该方法仅使用单一Vickers压头对金属材料实施仪器化压入测试并辅以Vickers压痕几何参数测试即可确定金属材料的应变硬化指数n、弹性模量E、条件屈服强度σ0.2及强度极限σb,避免了测试前需要单独设计加工不同于标准凌锥压头锥顶角的非标准棱锥压头问题,以及测试过程中需要更换压头及由此导致的需要对仪器柔度进行重新标定的问题,提高了测试效率。
The invention discloses an instrumented indentation test method for elastic-plastic parameters of metal materials based on Vickers indentation. The method uses a Vickers indenter to instrumentally indent the metal material to obtain a load-displacement curve and Vickers indentation to determine the strain hardening of the metal material. Index n, elastic modulus E, conditional yield strength σ 0.2 and strength limit σ b . Compared with the instrumented indentation test method using two or more pyramidal indenters with different cone vertex angles, this method only uses a single Vickers indenter to perform instrumented indentation tests on metal materials and supplemented by Vickers indentation geometric parameters The test can determine the strain hardening exponent n, elastic modulus E, conditional yield strength σ 0.2 and strength limit σ b of the metal material, avoiding the need to separately design and process non-standard pyramids with different cone apex angles than the standard cone indenter before the test The problem of the indenter, as well as the need to replace the indenter during the test and the resulting problem of recalibration of the instrument compliance, improves the test efficiency.
Description
技术领域technical field
本发明属于材料力学性能测试领域。具体涉及一种利用仪器化压入仪和Vickers压头测试金属材料应变硬化指数、弹性模量、条件屈服强度σ0.2及强度极限σb的方法。The invention belongs to the field of testing mechanical properties of materials. Specifically, it relates to a method for testing strain hardening exponent, elastic modulus, conditional yield strength σ 0.2 and strength limit σ b of metal materials by using an instrumented indenter and a Vickers indenter.
背景技术Background technique
仪器化压入测试技术通过实时同步测量作用于金刚石压头上的压入载荷与金刚石压头压入被测材料表面的压入深度获得压入载荷-位移曲线,根据仪器化压入响应与被测材料力学性能参数间的无量纲函数关系式,可识别被测材料的诸多力学性能参数。The instrumented indentation test technology obtains the indentation load-displacement curve by synchronously measuring the indentation load acting on the diamond indenter and the indentation depth of the diamond indenter into the surface of the tested material in real time. The dimensionless functional relationship between the mechanical property parameters of the measured material can identify many mechanical property parameters of the measured material.
材料弹性模量的仪器化压入测试主要有W.C.Oliver和G.M.Pharr提出的“Oliver-Pharr方法”或“斜率方法”和马德军提出的“马德军方法”或“纯能量方法”。“斜率方法”的理论基础为小变形弹性理论,由于未考虑被测材料在压头作用下的塑性行为和几何大变形,使得“斜率方法”在应用于低应变硬化指数的被测材料时,测试结果严重偏离弹性模量真值。“纯能量方法”考虑了材料、几何和接触边界条件的非线性,其弹性模量的测试精度因此高于“斜率方法”。尽管如此,“纯能量方法”依然存在一定的理论测试误差,该误差源于被测材料的应变硬化指数未知,因此设法识别被测试材料的应变硬化指数是提高材料弹性模量仪器化压入测试精度的唯一有效途径。The instrumented indentation test of the elastic modulus of materials mainly includes the "Oliver-Pharr method" or "slope method" proposed by W.C.Oliver and G.M.Pharr and the "Ma Dejun method" or "pure energy method" proposed by Ma Dejun. The theoretical basis of the "slope method" is the theory of small deformation elasticity. Since the plastic behavior and large geometric deformation of the measured material under the action of the indenter are not considered, the "slope method" is applied to the measured material with a low strain hardening index. The test results seriously deviate from the true value of elastic modulus. The "pure energy method" takes into account the nonlinearity of material, geometry and contact boundary conditions, so the test accuracy of its elastic modulus is higher than that of the "slope method". Nevertheless, the "pure energy method" still has a certain theoretical test error, which is due to the unknown strain hardening exponent of the tested material, so trying to identify the strain hardening exponent of the tested material is the key to improving the elastic modulus of the material. The only valid way to achieve precision.
材料应变硬化指数与屈服强度的仪器化压入测试目前存在基于球形压头的单一球压头压入法和基于不同锥顶角的多个锥压头压入法,其中应用单一球压头压入法遇到的困难是制造半径为几个或几十微米的球形压头其几何加工精度难以满足测试要求,因此,基于球形压头的材料应变硬化指数与屈服强度的仪器化压入测试方法在实际应用或工程化方面难有作为。应用多个锥压头压入法不存在压头制造方面的问题,但测试过程需要更换不同锥顶角的棱锥压头,同时需要对仪器柔度进行重新标定,而精确标定仪器柔度既耗时又困难,因此应用多锥压头压入法进行测试其效率较低。The instrumented indentation test of material strain hardening index and yield strength currently has a single ball indenter indentation method based on a spherical indenter and a multiple cone indenter indentation method based on different cone apex angles. The difficulty encountered in the indentation method is that the geometrical machining accuracy of spherical indenters with a radius of several or tens of microns is difficult to meet the test requirements. Therefore, the instrumented indentation test method based on the strain hardening exponent and yield strength of materials based on spherical indenters It is difficult to make a difference in practical application or engineering. The application of multiple cone indenter indentation method does not have the problem of indenter manufacturing, but the test process requires the replacement of pyramidal indenters with different cone apex angles, and the flexibility of the instrument needs to be re-calibrated. It is difficult and time-consuming, so it is less efficient to use the multi-cone indenter indentation method for testing.
针对目前金属材料弹塑性参数仪器化压入测试中存在的问题,本发明提出了一种基于Vickers压痕的金属材料应变硬化指数、弹性模量、条件屈服强度σ0.2及强度极限σb的仪器化压入测试方法。Aiming at the problems existing in the instrumented indentation test of elastic-plastic parameters of metal materials at present, the present invention proposes an instrument based on Vickers indentation for metal material strain hardening exponent, modulus of elasticity, conditional yield strength σ 0.2 and strength limit σ b Press-in test method.
发明内容Contents of the invention
本发明的目的是提供一种基于Vickers压痕的金属材料弹塑性参数仪器化压入测试方法,利用该方法可以确定金属材料的弹塑性参数包括应变硬化指数、弹性模量、条件屈服强度σ0.2及强度极限σb。与使用两个或两个以上不同锥顶角的棱锥压头仪器化压入测试方法相比,该方法仅使用单一Vickers压头对金属材料实施仪器化压入测试并辅以Vickers压痕几何参数测试即可确定金属材料的应变硬化指数n、弹性模量E、条件屈服强度σ0.2及强度极限σb,避免了测试前需要单独设计加工不同于标准凌锥压头锥顶角的非标准棱锥压头问题,以及测试过程中需要更换压头及由此导致的需要对仪器柔度进行重新标定的问题,提高了测试效率。The object of the present invention is to provide a kind of metal material elastoplastic parameter instrumentation indentation test method based on Vickers indentation, utilize this method to determine the elastoplastic parameter of metal material including strain hardening exponent, modulus of elasticity, conditional yield strength σ 0.2 and the strength limit σ b . Compared with the instrumented indentation test method using two or more pyramidal indenters with different cone vertex angles, this method only uses a single Vickers indenter to perform instrumented indentation tests on metal materials and supplemented by Vickers indentation geometric parameters The test can determine the strain hardening exponent n, elastic modulus E, conditional yield strength σ 0.2 and strength limit σ b of the metal material, avoiding the need to separately design and process non-standard pyramids with different cone apex angles than the standard cone indenter before the test The problem of the indenter, as well as the need to replace the indenter during the test and the resulting problem of recalibration of the instrument compliance, improves the test efficiency.
为了实现上述目的,本发明采用如下的技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种基于Vickers压痕的金属材料弹塑性参数仪器化压入测试方法,该方法利用单一Vickers压头仪器化压入金属材料所得载荷-位移曲线及压痕确定金属材料的应变硬化指数、弹性模量、条件屈服强度σ0.2及强度极限σb;首先,利用Vickers压痕中边距与名义中边距之比和仪器化压入比功确定金属材料的应变硬化指数;其次,利用仪器化压入比功、仪器化压入名义硬度及测试所得应变硬化指数确定金属材料的弹性模量;最后,利用仪器化压入比功、仪器化压入名义硬度及测试所得弹性模量和应变硬化指数确定金属材料的条件屈服强度σ0.2与强度极限σb。具体包括以下步骤:An instrumented indentation test method for elastoplastic parameters of metal materials based on Vickers indentation. The method uses a single Vickers indenter to indent the metal material with the load-displacement curve and indentation to determine the strain hardening index and elastic modulus of the metal material. yield strength σ 0.2 and strength limit σ b ; firstly, the ratio of the median distance to the nominal median distance of the Vickers indentation and the instrumented indentation specific work were used to determine the strain hardening exponent of the metal material; secondly, the instrumented indentation Determine the elastic modulus of the metal material by using the specific work of indentation, the nominal hardness of instrumented indentation, and the strain hardening index obtained from the test; finally, the elastic modulus and strain hardening index of the metal material are determined by using the specific work of indentation, the nominal hardness of instrumented indentation, and the measured strain hardening index Determine the conditional yield strength σ 0.2 and strength limit σ b of metallic materials. Specifically include the following steps:
1)利用仪器化压入仪和金刚石Vickers压头对被测材料实施某一最大压入载荷为Pm的仪器化压入测试,获得压入载荷-位移曲线,同时利用该曲线确定金刚石Vickers压头的最大压入深度hm、名义硬度Hn=Pm/A(hm),其中,A(hm)为对应最大压入深度时的金刚石Vickers压头横截面积,当不考虑金刚石Vickers压头尖端钝化时而考虑金刚石Vickers压头尖端钝化时,则A(hm)应由金刚石Vickers压头的面积函数A(h)来确定,即 1) Use an instrumented indenter and a diamond Vickers indenter to implement an instrumented indentation test with a maximum indentation load of P m on the material to be tested to obtain an indentation load-displacement curve, and use this curve to determine the diamond Vickers indentation. The maximum indentation depth h m of the head, the nominal hardness H n =P m /A(h m ), where A(h m ) is the cross-sectional area of the diamond Vickers indenter corresponding to the maximum indentation depth, when the diamond is not considered When the Vickers indenter tip is blunted When considering the passivation of the tip of the diamond Vickers indenter, A(h m ) should be determined by the area function A(h) of the diamond Vickers indenter, that is
2)通过分别积分载荷-位移曲线关系中的加载曲线和卸载曲线计算压入加载功Wt、卸载功We,并在此基础上计算压入比功We/Wt;2) Calculate the indentation loading work W t and unloading work W e by integrating the loading curve and unloading curve in the load-displacement curve relationship respectively, and calculate the indentation specific work W e /W t on this basis;
3)借助显微镜分别量取Vickers压痕中心至四个压痕边界的距离:d1、d2、d3和d4,并确定中边距d=(d1+d2+d3+d4)/4及其与名义中边距dn=hmtan68°之比d/dn;3) Measure the distances from the center of the Vickers indentation to the boundaries of the four indentations: d 1 , d 2 , d 3 and d 4 , and determine the middle distance d=(d 1 +d 2 +d 3 +d 4 )/4 and its ratio d/d n to the nominal median distance d n =h m tan68°;
4)根据4个不同硬化指数(n1=0,n2=0.15,n3=0.30,n4=0.45)下的仪器化压入比功We/Wt与d/dn的关系(多项式系数 aij(i=1,...,4;j=0,1,2)的取值列于表1)分别确定i取1、2、3、4时的相应(d/dn)i值,然后根据拉格朗日插值公式确定n′:4) According to the relationship between instrumented indentation specific work W e /W t and d/d n under four different hardening indices (n 1 =0, n 2 =0.15, n 3 =0.30, n 4 =0.45) (the values of polynomial coefficients a ij (i=1,...,4; j=0,1,2) are listed in Table 1) determine respectively when i gets 1,2,3,4 corresponding (d/d n ) the value of i , and then determine n′ according to the Lagrangian interpolation formula:
进一步根据非负原则确定被测试材料的应变硬化指数n:Further determine the strain hardening exponent n of the tested material according to the non-negative principle:
n=max{n′,0}n=max{n',0}
表1.多项式系数aij(i=1,...,4;j=0,1,2)的取值Table 1. Values of polynomial coefficients a ij (i=1,...,4; j=0,1,2)
5)根据4个不同硬化指数ni(i=1,2,3,4)下的仪器化压入比功We/Wt与比值Hn/Ec的关系(多项式系数bij(i=1,...,4;j=0,...,6)的取值列于表2)分别确定i取1、2、3、4时的相应(Hn/Ec)i值,然后利用拉格朗日插值公式确定Hn/Ec:5) According to the relationship between the instrumented indentation specific work W e /W t and the ratio H n /E c under four different hardening exponents n i (i=1, 2, 3, 4) (the value of polynomial coefficient b ij (i=1, ..., 4; j=0, ..., 6) is listed in table 2) determine respectively when i gets 1,2,3,4 corresponding (H n /E c ) i value, and then use the Lagrange interpolation formula to determine H n /E c :
进一步根据仪器化压入名义硬度Hn及比值Hn/Ec确定被测试材料与金刚石Vickers压头的联合弹性模量Ec:Further determine the combined elastic modulus E c of the tested material and the diamond Vickers indenter according to the instrumented indentation nominal hardness H n and the ratio H n /E c :
Ec=Hn/(Hn/Ec)E c =H n /(H n /E c )
及被测试材料的弹性模量E:And the elastic modulus E of the tested material:
其中,金刚石Vickers压头的弹性模量Ei=1141GPa,泊松比vi=0.07,被测试材料的泊松比v可根据材料手册确定;Among them, the elastic modulus E i of the diamond Vickers indenter = 1141GPa, Poisson's ratio v i = 0.07, and the Poisson's ratio v of the tested material can be determined according to the material manual;
表2.多项式系数bij(i=1,...,4;.j=0,...,6)的取值Table 2. Values of polynomial coefficients b ij (i=1,...,4;.j=0,...,6)
6)根据4个不同硬化指数ni(i=1,2,3,4)及3个不同被测试材料与金 刚石压头平面应变弹性模量之比ηj(j=1,2,3)(η1=0.0671,η2=0.1917,η3=0.3834)下的仪器化压入比功We/Wt与屈服强度同名义硬度的比值关系(多项式系数cijk(i=1,...,4;j=1,2,3;k=0,...,6)的取值列于表3)分别确定i取1、2、3、4,j取1、2、3时的相应(σy/Hn)ij(i=1,...,4;j=1,2,3)值,然后根据 及ηj(j=1,2,3)值由拉格朗日插值公式确定σy/Hn:6) According to 4 different hardening exponents n i (i=1, 2, 3, 4) and 3 different ratios of the tested material to the plane strain modulus of elasticity of the diamond indenter η j (j=1, 2, 3) (η 1 = 0.0671, η 2 = 0.1917, η 3 = 0.3834) The ratio relationship between the instrumented indentation specific work W e /W t and the yield strength to the nominal hardness (the value of polynomial coefficient c ijk (i=1,...,4; j=1,2,3; k=0,...,6) is listed in table 3) determine respectively that i gets 1,2, 3, 4, j take the corresponding (σ y /H n ) ij (i=1,...,4; j=1, 2, 3) value when 1, 2, 3, and then according to and η j (j=1, 2, 3) are determined by the Lagrangian interpolation formula σ y /H n :
进一步根据仪器化压入名义硬度Hn及比值σy/Hn确定被测试材料的屈服强度σy:Further determine the yield strength σ y of the tested material according to the instrumented indentation nominal hardness H n and the ratio σ y /H n :
σy=Hn(σy/Hn)σ y =H n (σ y /H n )
及由关系式σ0.2=σy 1-n[σ0.2+0.002E]n确定被测试材料的条件屈服强度σ0.2;And determine the conditional yield strength σ 0.2 of the tested material by the relational formula σ 0.2 =σ y 1-n [σ 0.2 +0.002E] n ;
表3.多项式系数cijk(i=1,...,4;j=1,2,3;k=0,...,6)的取值Table 3. Values of polynomial coefficients c ijk (i=1,...,4; j=1,2,3; k=0,...,6)
7)计算εy=σy/E,并由关系式确定εb,最后确定被测试材料的强度极限σb:7) Calculate ε y = σ y /E, and use the relation Determine ε b , and finally determine the strength limit σ b of the tested material:
其中,步骤5)中,如果被测材料的泊松比不能由材料手册确定,则取值为0.3。Wherein, in step 5), if the Poisson's ratio of the tested material cannot be determined by the material manual, the value is 0.3.
与使用两个或两个以上不同锥顶角的棱锥压头仪器化压入测试方法 相比,本发明仅使用单一Vickers压头对金属材料实施仪器化压入测试并辅以Vickers压痕几何参数测试即可确定金属材料的应变硬化指数n、弹性模量E、条件屈服强度σ0.2及强度极限σb,避免了测试前需要单独设计加工不同于标准凌锥压头锥顶角的非标准棱锥压头问题,以及测试过程中需要更换压头及由此导致的需要对仪器柔度进行重新标定的问题,提高了测试效率。Compared with the instrumented indentation test method using two or more pyramidal indenters with different cone apex angles, the present invention only uses a single Vickers indenter to implement instrumented indentation tests on metal materials, supplemented by Vickers indentation geometric parameters The test can determine the strain hardening exponent n, elastic modulus E, conditional yield strength σ 0.2 and strength limit σ b of the metal material, avoiding the need to separately design and process non-standard pyramids with different cone apex angles than the standard cone indenter before the test The problem of the indenter, as well as the need to replace the indenter during the test and the resulting problem of recalibration of the instrument compliance, improves the test efficiency.
附图说明:Description of drawings:
图1a是鼓凸情况下的Vickers压痕示意图;Figure 1a is a schematic diagram of the Vickers indentation in the case of bulging;
图1b是沉陷情况下的Vickers压痕示意图;Figure 1b is a schematic diagram of the Vickers indentation under subsidence;
图2是Vickers压头示意图;Fig. 2 is a schematic diagram of Vickers indenter;
图3是仪器化压入加、卸载曲线及加、卸载功示意图;Figure 3 is a schematic diagram of instrumented press-in loading and unloading curves and loading and unloading work;
图4a是对应n=0,η分别取0.0671、0.1917和0.3834三个数值的Hn/Er-We/Wt关系图;Fig. 4a is corresponding to n=0, and n takes 0.0671 , 0.1917 and 0.3834 three numerical values respectively Hn /Er-We/Wt relationship diagram;
图4b是对应n=0.15,η分别取0.0671、0.1917和0.3834三个数值的Hn/Er-We/Wt关系图;Fig. 4b is the Hn /Er-We/Wt relationship diagram corresponding to n =0.15, and n takes 0.0671 , 0.1917 and 0.3834 three numerical values respectively;
图4c是对应n=0.30,η分别取0.0671、0.1917和0.3834三个数值的Hn/Er-We/Wt关系图;Fig. 4c is corresponding to n=0.30, and n takes 0.0671 , 0.1917 and 0.3834 three numerical values respectively Hn /Er-We/Wt relationship diagram;
图4d是对应n=0.45,η分别取0.0671、0.1917和0.3834三个数值的Hn/Er-We/Wt关系图;Fig. 4d is corresponding to n=0.45, and n takes 0.0671, 0.1917 and 0.3834 three numerical values respectively H n /E r -W e /W t relationship diagram;
图5a是对应n=0,η分别取0.0671、0.1917和0.3834三个数值的Hn/Ec-We/Wt关系图;Fig. 5 a is corresponding to n=0, and n takes 0.0671 , 0.1917 and 0.3834 three numerical values respectively Hn / Ec -We/Wt relationship diagram;
图5b是对应n=0.15,η分别取0.0671、0.1917和0.3834三个数值的Hn/Ec-We/Wt关系图;Fig. 5b is the Hn / Ec -We/Wt relationship diagram corresponding to n =0.15, and n takes three values of 0.0671 , 0.1917 and 0.3834 respectively;
图5c是对应n=0.30,η分别取0.0671、0.1917和0.3834三个数值的Hn/Ec-We/Wt关系图;Fig. 5c is corresponding to n=0.30, and n takes 0.0671 , 0.1917 and 0.3834 three numerical values respectively Hn / Ec -We/Wt relation diagram;
图5d是对应n=0.45,η分别取0.0671、0.1917和0.3834三个数值的Hn/Ec-We/Wt关系图;Fig. 5d is corresponding to n=0.45, and η takes 0.0671 , 0.1917 and 0.3834 three numerical values respectively Hn / Ec -We/Wt relationship diagram;
图6是式(16)所代表的n分别取0、0.15、0.30和0.45时的Hn/Ec-We/Wt关系图;Fig. 6 is the H n /E c -W e /W t relationship diagram when n represented by formula (16) is 0, 0.15, 0.30 and 0.45 respectively;
图7是对应不同n和η的d/dn-We/Wt关系图;Fig. 7 is the d/d n- W e /W t relationship diagram corresponding to different n and η;
图8a是对应η=0.0671,n分别取0、0.15、0.30和0.45四个数值的σy/Hn-We/Wt关系图;Fig. 8a is corresponding to η=0.0671, and n respectively takes 0, 0.15, 0.30 and 0.45 four values σ y /H n -W e /W t relationship diagram;
图8b是对应η=0.1917,n分别取0、0.15、0.30和0.45四个数值的σy/Hn-We/Wt关系图;Fig. 8b is corresponding to η=0.1917, and n respectively takes 0, 0.15, 0.30 and 0.45 four numerical values σ y /H n -W e /W t relationship diagram;
图8c是对应η=0.3834,n分别取0、0.15、0.30和0.45四个数值的σy/Hn-We/Wt关系图;Fig. 8c is corresponding to η=0.3834, and n respectively takes 0, 0.15, 0.30 and 0.45 four numerical values σ y /H n -W e /W t relation diagram;
图9是6061铝合金的仪器化压入载荷-位移曲线;Fig. 9 is the instrumented indentation load-displacement curve of 6061 aluminum alloy;
图10是S45C碳钢的仪器化压入载荷-位移曲线;Figure 10 is the instrumented indentation load-displacement curve of S45C carbon steel;
图11是SS316不锈钢的仪器化压入载荷-位移曲线;Figure 11 is the instrumented indentation load-displacement curve of SS316 stainless steel;
图12是黄铜的仪器化压入载荷-位移曲线;Figure 12 is the instrumented indentation load-displacement curve of brass;
图13是分别采用仪器化压入测试和标准单轴拉伸测试所得6061铝合金的真实应力-应变关系的比较;Figure 13 is a comparison of the true stress-strain relationship of 6061 aluminum alloy obtained by instrumented indentation test and standard uniaxial tensile test;
图14是分别采用仪器化压入测试和标准单轴拉伸测试所得S45C碳钢的真实应力-应变关系的比较;Figure 14 is a comparison of the true stress-strain relationship of S45C carbon steel obtained by instrumented indentation test and standard uniaxial tensile test;
图15是分别采用仪器化压入测试和标准单轴拉伸测试所得SS316不锈钢的真实应力-应变关系的比较;Figure 15 is a comparison of the true stress-strain relationship of SS316 stainless steel obtained by instrumented indentation test and standard uniaxial tensile test;
图16是分别采用仪器化压入测试和标准单轴拉伸测试所得黄铜的真实应力-应变关系的比较。Figure 16 is a comparison of the true stress-strain relationship of brass obtained by instrumented indentation testing and standard uniaxial tensile testing, respectively.
具体实施方式detailed description
以下通过结合附图对本发明的方法进行详细说明,但这些实施例仅仅是例示的目的,并不旨在对本发明的范围进行任何限定。本申请提出了一种基于Vickers压痕的金属材料弹塑性参数仪器化压入测试方法,该方法利用单一Vickers压头仪器化压入金属材料所得载荷-位移曲线及压痕确定金属材料的应变硬化指数、弹性模量、条件屈服强度σ0.2及强度极限σb;首先,利用Vickers压痕中边距与名义中边距之比和仪器化压入比功确定金属材料的应变硬化指数;其次,利用仪器化压入比功、仪器化压入名义硬度及测试所得应变硬化指数确定金属材料的弹性模量;最后,利用仪器化压入比功、仪器化压入名义硬度及测试所得弹性模量和应变硬化指数确定金属材料的条件屈服强度σ0.2与强度极限σb。具体包括以下步骤:The method of the present invention will be described in detail below in conjunction with the accompanying drawings, but these embodiments are for illustrative purposes only, and are not intended to limit the scope of the present invention. This application proposes an instrumented indentation test method for elastoplastic parameters of metal materials based on Vickers indentation. The method uses a single Vickers indenter to indent the metal material to obtain the load-displacement curve and indentation to determine the strain hardening of the metal material. exponent, elastic modulus, conditional yield strength σ 0.2 and strength limit σ b ; firstly, use the ratio of the Vickers indentation mid-edge to the nominal mid-edge and the instrumented indentation specific work to determine the strain hardening exponent of the metal material; secondly, Determine the elastic modulus of the metal material by using the instrumented indentation specific work, the instrumented indentation nominal hardness and the strain hardening index obtained from the test; finally, use the instrumented indentation specific work, the instrumented indentation nominal hardness and the measured elastic modulus and the strain hardening exponent determine the conditional yield strength σ 0.2 and the strength limit σ b of metallic materials. Specifically include the following steps:
1)利用仪器化压入仪和金刚石Vickers压头对被测材料实施某一最大压入载荷为Pm的仪器化压入测试,获得压入载荷-位移曲线,同时利用该曲线确定金刚石Vickers压头的最大压入深度hm、名义硬度Hn=Pm/A(hm),其中,A(hm)为对应最大压入深度时的金刚石Vickers压头横截面积,当不考虑金刚石Vickers压头尖端钝化时而考虑金刚石Vickers压头尖端钝化时,则A(hm)应由金刚石Vickers压头的面 积函数A(h)来确定,即 1) Use an instrumented indenter and a diamond Vickers indenter to implement an instrumented indentation test with a maximum indentation load of P m on the material to be tested to obtain an indentation load-displacement curve, and use this curve to determine the diamond Vickers indentation. The maximum indentation depth h m of the head, the nominal hardness H n =P m /A(h m ), where A(h m ) is the cross-sectional area of the diamond Vickers indenter corresponding to the maximum indentation depth, when the diamond is not considered When the Vickers indenter tip is blunted When considering the passivation of the tip of the diamond Vickers indenter, A(h m ) should be determined by the area function A(h) of the diamond Vickers indenter, that is
2)通过分别积分载荷-位移曲线关系中的加载曲线和卸载曲线计算压入加载功Wt、卸载功We,并在此基础上计算压入比功We/Wt;2) Calculate the indentation loading work W t and unloading work W e by integrating the loading curve and unloading curve in the load-displacement curve relationship respectively, and calculate the indentation specific work W e /W t on this basis;
3)借助显微镜分别量取Vickers压痕中心至四个压痕边界的距离:d1、d2、d3和d4,并确定中边距d=(d1+d2+d3+d4)/4及其与名义中边距dn=hmtan68°之比d/dn;3) Measure the distances from the center of the Vickers indentation to the boundaries of the four indentations: d 1 , d 2 , d 3 and d 4 , and determine the middle distance d=(d 1 +d 2 +d 3 +d 4 )/4 and its ratio d/d n to the nominal median distance d n =h m tan68°;
4)根据4个不同硬化指数(n1=0,n2=0.15,n3=0.30,n4=0.45)下的仪器化压入比功We/Wt与d/dn的关系(多项式系数aij(i=1,...,4;j=0,1,2)的取值列于表1)分别确定i取1、2、3、4时的相应(d/dn)i值,然后根据拉格朗日插值公式确定n′:4) According to the relationship between instrumented indentation specific work W e /W t and d/d n under four different hardening indices (n 1 =0, n 2 =0.15, n 3 =0.30, n 4 =0.45) (the values of polynomial coefficients a ij (i=1,...,4; j=0,1,2) are listed in Table 1) determine respectively when i gets 1,2,3,4 corresponding (d/d n ) the value of i , and then determine n′ according to the Lagrangian interpolation formula:
进一步根据非负原则确定被测试材料的应变硬化指数n:Further determine the strain hardening exponent n of the tested material according to the non-negative principle:
n=max{n′,0}n=max{n',0}
表1.多项式系数aij(i=1,...,4;j=0,1,2)的取值Table 1. Values of polynomial coefficients a ij (i=1,...,4; j=0,1,2)
5)根据4个不同硬化指数ni(i=1,2,3,4)下的仪器化压入比功We/Wt与比值Hn/Ec的关系(多项式系数bij(i=1,...,4;j=0,...,6)的取值列于表2)分别确定i取1、2、3、4时的相应(Hn/Ec)i值,然后利用拉格朗日插值公式确定Hn/Ec:5) According to the relationship between the instrumented indentation specific work W e /W t and the ratio H n /E c under four different hardening exponents n i (i=1, 2, 3, 4) (the value of polynomial coefficient b ij (i=1, ..., 4; j=0, ..., 6) is listed in table 2) determine respectively when i gets 1,2,3,4 corresponding (H n /E c ) i value, and then use the Lagrange interpolation formula to determine H n /E c :
进一步根据仪器化压入名义硬度Hn及比值Hn/Ec确定被测试材料与金刚石Vickers压头的联合弹性模量Ec:Further determine the combined elastic modulus E c of the tested material and the diamond Vickers indenter according to the instrumented indentation nominal hardness H n and the ratio H n /E c :
Ec=Hn/(Hn/Ec)E c =H n /(H n /E c )
及被测试材料的弹性模量E:And the elastic modulus E of the tested material:
其中,金刚石Vickers压头的弹性模量Ei=1141GPa,泊松比vi=0.07,被测试材料的泊松比v可根据材料手册确定;Among them, the elastic modulus E i of the diamond Vickers indenter = 1141GPa, Poisson's ratio v i = 0.07, and the Poisson's ratio v of the tested material can be determined according to the material manual;
表2.多项式系数bij(i=1,...,4;j=0,...,6)的取值Table 2. Values of polynomial coefficients b ij (i=1,...,4; j=0,...,6)
6)根据4个不同硬化指数ni(i=1,2,3,4)及3个不同被测试材料与金刚石压头平面应变弹性模量之比ηj(j=1,2,3)(η1=0.0671,η2=0.1917,η3=0.3834)下的仪器化压入比功We/Wt与屈服强度同名义硬度的比值关系(多项式系数cijk(i=1,...,4;j=1,2,3;k=0,...,6)的取值列于表3)分别确定i取1、2、3、4,j取1、2、3时的相应(σy/Hn)ij(i=1,...,4;j=1,2,3)值,然后根据 及ηj(j=1,2,3)值由拉格朗日插值公式确定σy/Hn:6) According to 4 different hardening exponents n i (i=1, 2, 3, 4) and 3 different ratios of the tested material to the plane strain modulus of elasticity of the diamond indenter η j (j=1, 2, 3) (η 1 = 0.0671, η 2 = 0.1917, η 3 = 0.3834) The ratio relationship between the instrumented indentation specific work W e /W t and the yield strength to the nominal hardness (the value of polynomial coefficient c ijk (i=1,...,4; j=1,2,3; k=0,...,6) is listed in table 3) determine respectively that i gets 1,2, 3, 4, j take the corresponding (σ y /H n ) ij (i=1,...,4; j=1, 2, 3) value when 1, 2, 3, and then according to and η j (j=1, 2, 3) are determined by the Lagrangian interpolation formula σ y /H n :
进一步根据仪器化压入名义硬度Hn及比值σy/Hn确定被测试材料的屈服强度σy:Further determine the yield strength σ y of the tested material according to the instrumented indentation nominal hardness H n and the ratio σ y /H n :
σy=Hn(σy/Hn)σ y =H n (σ y /H n )
及由关系式σ0.2=σy 1-n[σ0.2+0.002E]n确定被测试材料的条件屈服强度σ0.2;And determine the conditional yield strength σ 0.2 of the tested material by the relational formula σ 0.2 =σ y 1-n [σ 0.2 +0.002E] n ;
表3.多项式系数cijk(i=1,...,4;j=1,2,3;k=0,...,6)的取值Table 3. Values of polynomial coefficients c ijk (i=1,...,4; j=1,2,3; k=0,...,6)
7)计算εy=σy/E,并由关系式确定εb,最后确定被测试材料的强度极限σb:7) Calculate ε y = σ y /E, and use the relation Determine ε b , and finally determine the strength limit σ b of the tested material:
以下详细说明本发明的形成过程。Vickers压痕示意图如附图1a和附图1b所示,定义Vickers压痕中边距d为Vickers压痕中心至四个压痕边界距离d1、d2、d3和d4的平均值,即d=(d1+d2+d3+d4)/4。金刚石Vickers压头示意图如附图2所示,根据最大压入深度hm定义Vickers名义压痕中边距dn=hmtan68°。仪器化压入载荷-位移曲线示意图如附图3所示,纵轴表示压入载荷P,横轴表示压入深度h,加载曲线为1,卸载曲线为2,加载功Wt区域为3,卸载功We区域为4。仪器化压入所设定的最大压入载荷为Pm,与之相对应的最大压入深度为hm。用A(hm)表示金刚石Vickers压头在最大压入深度hm位置处的金刚石Vickers压头横截面积,则名义硬度Hn被定义为最大压入载荷Pm与金刚石Vickers压头横截面积A(hm)之比,即Hn=Pm/A(hm)。进一步定义仪器化压入加载功Wt和卸载功We分别为实施仪器化压入时金刚石Vickers压头在加载阶段和卸载阶段所做的功,其值分别等于加载曲线和卸载曲线与仪器化压入载荷-位移曲线横坐标所围面积。仪器化压入比功We/Wt为卸载功We与加载功Wt的比值。The formation process of the present invention will be described in detail below. The schematic diagram of the Vickers indentation is shown in Figure 1a and Figure 1b. The margin d in the Vickers indentation is defined as the average of the distances d 1 , d 2 , d 3 and d 4 from the center of the Vickers indentation to the boundaries of the four indentations. That is, d=(d 1 +d 2 +d 3 +d 4 )/4. The schematic diagram of the diamond Vickers indenter is shown in Figure 2. According to the maximum indentation depth h m , the middle distance of the Vickers nominal indentation is defined d n =h m tan68°. The schematic diagram of the instrumented indentation load-displacement curve is shown in Figure 3. The vertical axis represents the indentation load P, and the horizontal axis represents the indentation depth h. The loading curve is 1, the unloading curve is 2, and the loading work W t area is 3. The unloading work area is 4. The maximum indentation load set by instrumented indentation is P m , and the corresponding maximum indentation depth is h m . Use A(h m ) to represent the cross-sectional area of the diamond Vickers indenter at the position of the maximum indentation depth h m , then the nominal hardness H n is defined as the maximum indentation load P m and the cross-sectional area of the diamond Vickers indenter The ratio of the area A(h m ), that is, H n =P m /A(h m ). Further define instrumented indentation loading work W t and unloading work W e to be the work done by the diamond Vickers indenter in the loading stage and unloading stage when implementing instrumented indentation, and their values are respectively equal to the loading curve and unloading curve and instrumentation The area enclosed by the abscissa of the indentation load-displacement curve. Instrumented indentation specific work W e /W t is the ratio of unloading work W e to loading work W t .
将金刚石Vickers压头视为弹性体,其弹性模量与泊松比分别用Ei和vi表示;被测材料视为弹塑性体,其单轴真实应力-应变关系由线弹性和Hollomon幂硬化函数组成,同时其弹性模量与泊松比分别用E和v表示,屈服强度与应变硬化指数分别用σy和n表示。基于上述设定及忽略金刚石Vickers压头与被测试材料间的摩擦,则仪器化压入名义硬度Hn、仪器化压入比功We/Wt及Vickers压痕中边距与名义中边距的比值d/dn可以分别表示为被测材料的屈服强度σy、应变硬化指数n、弹性模量E、泊松比v与金刚石Vickers压头的弹性模量Ei、泊松比vi以及最大压入深度hm的函数:The diamond Vickers indenter is regarded as an elastic body, and its elastic modulus and Poisson's ratio are represented by E i and vi i respectively; the measured material is regarded as an elastoplastic body, and its uniaxial true stress-strain relationship is expressed by linear elasticity and Hollomon power The hardening function is composed, and its elastic modulus and Poisson's ratio are represented by E and v, respectively, and the yield strength and strain hardening exponent are represented by σy and n, respectively. Based on the above settings and ignoring the friction between the diamond Vickers indenter and the tested material, the instrumented indentation nominal hardness H n , the instrumented indentation specific energy W e /W t and the distance between the center edge and the nominal center edge of the Vickers indentation The ratio of distance d/d n can be expressed as the yield strength σ y , strain hardening exponent n, elastic modulus E, Poisson’s ratio v of the tested material and the elastic modulus E i , Poisson’s ratio v of the diamond Vickers indenter i and the function of the maximum pressing depth h m :
其中E/(1-v2)和分别为被测材料和金刚石Vickers压头的平面应变弹性模量。利用折合弹性模量及平面应变弹性模量之比可以将被测材料和金刚石Vickers压头的平面应变弹性模量分别表示为:where E/(1-v 2 ) and are the plane strain elastic moduli of the tested material and the diamond Vickers indenter, respectively. Using the reduced modulus of elasticity and the ratio of the plane strain modulus of elasticity The plane strain elastic modulus of the tested material and the diamond Vickers indenter can be expressed as:
E/(1-v2)=(η+1)Er (4)E/(1-v 2 )=(η+1)E r (4)
于是,式(1)、(2)和(3)可以被改写为:Then, equations (1), (2) and (3) can be rewritten as:
Hn=ΓH2(σy,n,Er,η,hm) (6)H n =Γ H2 (σ y , n, E r , η, h m ) (6)
We/Wt=ΓW2(σy,n,Er,η,hm) (7)W e /W t =Γ W2 (σ y , n, E r , η, h m ) (7)
d/dn=ΓD2(σy,n,Er,η,hm) (8)d/d n =Γ D2 (σ y , n, E r , η, h m ) (8)
应用量纲∏定理,式(6)、(7)和(8)可简化为:Applying the dimension ∏ theorem, equations (6), (7) and (8) can be simplified as:
Hn/Er=ΓH3(σy/Er,n,η) (9)H n /E r =Γ H3 (σ y /E r , n, η) (9)
We/Wt=ΓW3(σy/Er,n,η) (10)W e /W t =Γ W3 (σ y /E r , n, η) (10)
d/dn=ΓD3(σy/Er,n,η) (11)d/d n =Γ D3 (σ y /E r , n, η) (11)
由式(10)可得:From formula (10) can get:
将式(12)代入式(9)和式(11)得:Substitute formula (12) into formula (9) and formula (11) to get:
Hn/Er=ΓH4(We/Wt,n,η) (13)H n /E r =Γ H4 (W e /W t , n, η) (13)
d/dn=ΓD4(We/Wt,n,η) (14)d/d n =Γ D4 (W e /W t , n, η) (14)
由式(12)和式(13)可得:From formula (12) and formula (13) can get:
σy/Hn=Γ5(We/Wt,n,η) (15)σ y /H n =Γ 5 (W e /W t , n, η) (15)
通过有限元数值模拟可获得式(13)、式(14)和式(15)的显式解。模拟中金刚石Vickers压头的弹性模量取值为Ei=1141GPa,泊松比取值为vi=0.07。被测材料弹性模量E的取值分别设为70GPa、200GPa和400GPa;屈服强度σy的取值范围为0.7~160000MPa;应变硬化指数n的取值为0、0.15、0.3和0.45;泊松比v取固定值0.3。被测材料与金刚石Vickers压头的平面应变弹性模量之比η分别为0.0671、0.1917和0.3834;被测材料与金刚石Vickers压头间的接触摩擦系数取值为零。The explicit solutions of formula (13), formula (14) and formula (15) can be obtained by finite element numerical simulation. In the simulation, the elastic modulus of the diamond Vickers indenter is E i =1141GPa, and the Poisson's ratio is v i =0.07. The elastic modulus E of the tested material is set to 70GPa, 200GPa and 400GPa respectively; the yield strength σ y ranges from 0.7 to 160000MPa; the strain hardening exponent n takes 0, 0.15, 0.3 and 0.45; Poisson The ratio v takes a fixed value of 0.3. The ratio η of the plane strain elastic modulus of the tested material to the diamond Vickers indenter is 0.0671, 0.1917 and 0.3834 respectively; the contact friction coefficient between the tested material and the diamond Vickers indenter is zero.
附图4a、附图4b、附图4c和附图4d为对应不同n和η的Hn/Er-We/Wt关系图,从图中可以看出,对于确定的应变硬化指数n,η对Hn/Er-We/Wt 关系有一定的影响,这表明折合弹性模量Er不能准确反映被测材料和金刚石Vickers压头之间的综合弹性效应。为此,定义联合弹性模量
其中,i=1,...,4分别对应应变硬化指数n的4个不同取值:0,0.15,0.3,0.45;系数bij(j=0,...,6)的取值见表2。式(16)所代表的n分别取0、0.15、0.30和0.45时的Hn/Ec-We/Wt关系如附图6所示。Among them, i=1,...,4 correspond to 4 different values of strain hardening exponent n: 0, 0.15, 0.3, 0.45; the value of coefficient b ij (j=0,...,6) see Table 2. The relationship of H n /E c -W e /W t when n represented by formula (16) is 0, 0.15, 0.30 and 0.45 is shown in Fig. 6 .
表2.系数bij(i=1,...,4;j=0,...,6)的取值Table 2. Values of coefficient b ij (i=1,...,4; j=0,...,6)
附图7为对应不同n和η的d/dn-We/Wt关系图,从图中可以看出,对于确定的应变硬化指数n,η对d/dn-We/Wt关系的影响可以忽略。因此,可以利用多项式函数对应变硬化指数n的4个不同取值情况下的d/dn-We/Wt关系进行曲线拟合,结果表示为:Accompanying drawing 7 is the d/d n- W e /W t relationship diagram corresponding to different n and η, as can be seen from the figure, for the determined strain hardening exponent n, η is to d/d n- W e /W t The relationship effect can be ignored. Therefore, the polynomial function can be used to perform curve fitting on the d/d n -W e /W t relationship under four different values of the strain hardening exponent n, and the result is expressed as:
其中,i=1,...,4分别对应应变硬化指数n的4个不同取值:0,0.15,0.3,0.45;系数aij(j=0,1,2)的取值见表1。Among them, i=1,...,4 correspond to four different values of strain hardening exponent n: 0, 0.15, 0.3, 0.45; the values of coefficient a ij (j=0, 1, 2) are shown in Table 1 .
表1.系数aij(i=1,...,4;j=0,1,2)的取值Table 1. Values of coefficient a ij (i=1,...,4; j=0,1,2)
附图8a、附图8b和附图8c为对应不同n和η的σy/Hn-We/Wt关系图。利用多项式函数对σy/Hn-We/Wt关系进行拟合,结果可表示为:Accompanying drawing 8a, accompanying drawing 8b and accompanying drawing 8c are σ y /H n -W e /W t relationship diagram corresponding to different n and η. The polynomial function is used to fit the relationship of σ y /H n -W e /W t , and the result can be expressed as:
其中,i=1,...,4对应n的取值为0,0.15,0.3,0.45;j=1,2,3对应η的取值为0.0671,0.1917,0.3834;系数cijk(k=0,...,6)的取值见表3。Wherein, i=1,..., the value of 4 corresponding n is 0,0.15,0.3,0.45; The value of j=1,2,3 corresponding n is 0.0671,0.1917,0.3834; Coefficient c ijk (k= 0,...,6) see Table 3 for the values.
表3.系数cijk(i=1,...,4;j=1,2,3;k=0,...,6)的取值Table 3. Values of coefficient c ijk (i=1,...,4; j=1,2,3; k=0,...,6)
应用实施例application example
选择6061铝合金、S45C碳钢、SS316不锈钢和黄铜进行仪器化压入实验。根据发明人所提实验步骤,应用自行研制且已获得国家发明专利授权的高精度仪器化压入仪[马德军,宋仲康,郭俊宏,陈伟.一种高精度压入仪及金刚石压头压入试样深度的计算方法.专利号:ZL201110118464.9]和金刚石Vickers压头对6061铝合金、S45C碳钢、SS316不锈钢和黄铜不同区域重复进行5次仪器化压入实验。图9、图10、图11和图12分别为6061铝合金、S45C碳钢、SS316不锈钢和黄铜的仪器化压入载荷-位移曲线。应用光学显微镜可分别观测6061铝合金、S45C碳钢、SS316不锈钢以及黄铜的Vickers压痕中边距。6061 aluminum alloy, S45C carbon steel, SS316 stainless steel and brass were selected for instrumented indentation experiments. According to the experimental procedure proposed by the inventor, the high-precision instrumented indenter developed by the inventor and has been authorized by the national invention patent [Ma Dejun, Song Zhongkang, Guo Junhong, Chen Wei. A high-precision indenter and diamond indenter indenter Calculation method of sample depth. Patent No.: ZL201110118464.9] and diamond Vickers indenter were used to repeat 5 times of instrumented indentation experiments on different areas of 6061 aluminum alloy, S45C carbon steel, SS316 stainless steel and brass. Figure 9, Figure 10, Figure 11 and Figure 12 are the instrumented indentation load-displacement curves of 6061 aluminum alloy, S45C carbon steel, SS316 stainless steel and brass, respectively. The optical microscope can be used to observe the distance between the Vickers indentation of 6061 aluminum alloy, S45C carbon steel, SS316 stainless steel and brass.
根据仪器化压入载荷-位移曲线及Vickers压痕,可以分别确定被测材料的仪器化压入名义硬度Hn、仪器化压入比功We/Wt及Vickers压痕中边距与名义中边距的比值d/dn,结果如表4,在此基础上应用发明人所提方法便可确定被测试材料的应变硬化指数n、弹性模量E、条件屈服强度σ0.2 及强度极限σb。为了与标准单轴拉伸试验结果进行比较,将仪器化压入实验所用6061铝合金、S45C碳钢、SS316不锈钢和黄铜的相同材料分别制成标准单轴拉伸试样,并对其分别实施2次标准单轴拉伸试验,以2次试验的平均值作为材料单轴拉伸试验的测试结果,则由标准单轴拉伸试验测定的6061铝合金的弹性模量、应变硬化指数、条件屈服强度及强度极限分别为E单轴=71GPa、n单轴=0.052、σ0.2单轴=299.37MPa及σb单轴=366.25MPa;由标准单轴拉伸试验测定的S45C碳钢的弹性模量、应变硬化指数、条件屈服强度及强度极限分别为E单轴=201GPa、n单轴=0.176、σ0.2单轴=431.08MPa及σb单轴=612.84MPa;由标准单轴拉伸试验测定的SS316不锈钢的弹性模量、应变硬化指数、条件屈服强度及强度极限分别为E单轴=184GPa、n单轴=0.134、σ0.2单轴=610.11MPa及σb单轴=827.51MPa;由标准单轴拉伸试验测定的黄铜的弹性模量、应变硬化指数、条件屈服强度及强度极限分别为E单轴=83GPa、n单轴=0.125、σ0.2单轴=346.67MPa及σb单轴=421.23MPa。将6061铝合金、S45C碳钢、SS316不锈钢和黄铜的弹性模量、应变硬化指数、条件屈服强度和强度极限的仪器化压入测试结果与单轴拉伸试验结果进行比较,可以确定仪器化压入测试结果的测试误差:EErr=(E-E单轴)/E单轴、Δn=n-n单轴、σ0.2Err=(σ0.2-σ0.2单轴)/σ0.2单轴及σbErr=(σb-σb单轴)/σb单轴,结果见表4。从表中可以看出,6061铝合金、S45C碳钢、SS316不锈钢和黄铜的弹性模量相对测试误差分别为4.40%、1.73%、-0.34%和11%,应变硬化指数的绝对测试误差分别为0.008、0.001、0.013和-0.010,条件屈服强度σ0.2的相对测试误差分别为10.04%、-5.37%、8.65%和1.26%,强度极限σb的相对测试误差分别为-2.61%、9.45%、11.95%和5.05%。进一步根据仪器化压入实验测得的6061铝合金、S45C碳钢、SS316不锈钢和黄铜的应变硬化指数n、弹性模量E和条件屈服强度σ0.2的平均值可以绘制其真实应力-应变关系,该关系与标准单轴拉伸试验测得的真实应力-应变关系的比较如附图13、图14、图15和图16所示,在附图13、图14、图15和图16中,横轴为真实应变ε,纵轴为真实应力σ,虚线为仪器化压入测试结果,粗实线为单轴拉伸试验一,细实线为单轴拉伸试验二。从图中可以看出两者具有较好的一致性。纵观以上实验结果表明,发明人所提基于Vickers压痕的金属材料弹塑性参数仪器化压入测试方法是可行和非常有效的。According to the instrumented indentation load-displacement curve and the Vickers indentation, the instrumented indentation nominal hardness H n , the instrumented indentation specific energy W e /W t , and the margin and nominal value of the Vickers indentation can be determined respectively. The ratio d/d n of the middle edge distance, the results are shown in Table 4. On this basis, the method proposed by the inventor can be used to determine the strain hardening exponent n, elastic modulus E, conditional yield strength σ 0.2 and strength limit of the tested material σ b . In order to compare with the results of the standard uniaxial tensile test, the same materials used in the instrumented indentation test were made of 6061 aluminum alloy, S45C carbon steel, SS316 stainless steel and brass to make standard uniaxial tensile test specimens, and respectively Implement 2 standard uniaxial tensile tests, and use the average value of the 2 tests as the test result of the material uniaxial tensile test, then the modulus of elasticity, strain hardening exponent, The conditional yield strength and strength limit are E uniaxial = 71GPa, n uniaxial = 0.052, σ 0.2 uniaxial = 299.37MPa and σ b uniaxial = 366.25MPa; the elasticity of S45C carbon steel measured by standard uniaxial tensile test Modulus, strain hardening exponent, conditional yield strength and strength limit are E uniaxial = 201GPa, n uniaxial = 0.176, σ 0.2 uniaxial = 431.08MPa and σ b uniaxial = 612.84MPa; by standard uniaxial tensile test The measured elastic modulus, strain hardening index, conditional yield strength and strength limit of SS316 stainless steel are E uniaxial = 184GPa, n uniaxial = 0.134, σ 0.2 uniaxial = 610.11MPa and σ b uniaxial = 827.51MPa; The elastic modulus, strain hardening index, conditional yield strength and strength limit of brass measured by the standard uniaxial tensile test are E uniaxial = 83GPa, n uniaxial = 0.125, σ 0.2 uniaxial = 346.67MPa and σ b uniaxial Shaft = 421.23 MPa. Comparison of instrumented indentation test results with uniaxial tensile test results for elastic modulus, strain hardening exponent, conditional yield strength, and strength limit of 6061 aluminum alloy, S45C carbon steel, SS316 stainless steel, and brass allows determination of instrumented The test error of the press-in test result: E Err = (EE uniaxial ) / E uniaxial , Δn = nn uniaxial , σ 0.2Err = (σ 0.2 -σ 0.2 uniaxial ) / σ 0.2 uniaxial and σ bErr = ( σ b -σ b uniaxial )/σ b uniaxial , the results are shown in Table 4. It can be seen from the table that the relative test errors of elastic modulus of 6061 aluminum alloy, S45C carbon steel, SS316 stainless steel and brass are 4.40%, 1.73%, -0.34% and 11%, respectively, and the absolute test errors of strain hardening exponent are respectively are 0.008, 0.001, 0.013 and -0.010, the relative test errors of the conditional yield strength σ 0.2 are 10.04%, -5.37%, 8.65% and 1.26% respectively, and the relative test errors of the strength limit σ b are -2.61% and 9.45% respectively , 11.95% and 5.05%. Further, the true stress-strain relationship can be plotted based on the average values of strain hardening exponent n, elastic modulus E and conditional yield strength σ 0.2 of 6061 aluminum alloy, S45C carbon steel, SS316 stainless steel and brass measured by instrumented indentation experiments , the comparison of this relationship with the true stress-strain relationship measured by the standard uniaxial tensile test is shown in Figure 13, Figure 14, Figure 15 and Figure 16, and in Figure 13, Figure 14, Figure 15 and Figure 16 , the horizontal axis is the true strain ε, the vertical axis is the true stress σ, the dashed line is the result of the instrumented indentation test, the thick solid line is the uniaxial tensile test 1, and the thin solid line is the uniaxial tensile test 2. It can be seen from the figure that the two have good consistency. A review of the above experimental results shows that the Vickers indentation-based instrumented indentation test method for elastic-plastic parameters of metal materials proposed by the inventor is feasible and very effective.
表4.6061铝合金、S45C碳钢、SS316不锈钢和黄铜弹塑性参数仪器化压入测试结果与测试误差Table 4. Instrumented indentation test results and test errors of elastic-plastic parameters of 6061 aluminum alloy, S45C carbon steel, SS316 stainless steel and brass
尽管上文对本发明的具体实施方式给予了详细描述和说明,但是应该指明的是,我们可以依据本发明的构想对上述实施方式进行各种等效改变和修改,其所产生的功能作用仍未超出说明书及附图所涵盖的精神时,均应在本发明的保护范围之内。Although the specific embodiments of the present invention have been described and illustrated in detail above, it should be pointed out that we can make various equivalent changes and modifications to the above-mentioned embodiments according to the concept of the present invention, and the functional effects produced by it are still the same. Anything beyond the spirit covered by the specification and drawings shall be within the protection scope of the present invention.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410348309.XA CN104165814B (en) | 2014-07-23 | 2014-07-23 | Vickers indentation based material elastoplasticity instrumented indentation test method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410348309.XA CN104165814B (en) | 2014-07-23 | 2014-07-23 | Vickers indentation based material elastoplasticity instrumented indentation test method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN104165814A CN104165814A (en) | 2014-11-26 |
| CN104165814B true CN104165814B (en) | 2017-02-01 |
Family
ID=51909729
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410348309.XA Expired - Fee Related CN104165814B (en) | 2014-07-23 | 2014-07-23 | Vickers indentation based material elastoplasticity instrumented indentation test method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN104165814B (en) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105784523A (en) * | 2016-03-14 | 2016-07-20 | 沈阳航空航天大学 | Device and method for testing real hardness value of material based on indentation test |
| CN107314938B (en) * | 2017-07-03 | 2019-08-02 | 上海交通大学 | The implementation method of nugget region material plastic inverting identification |
| CN108414379B (en) * | 2018-03-16 | 2020-05-15 | 太原理工大学 | Method for extracting metal elastoplasticity parameters through in-situ press-in test |
| CN109001064A (en) * | 2018-08-23 | 2018-12-14 | 江苏亨通光导新材料有限公司 | A kind of method of quantitative measurment and evaluation preform polishing effect |
| CN110926982B (en) * | 2019-12-19 | 2022-02-11 | 湘潭大学 | Method for approximately obtaining metal elastic-plastic parameters based on Vickers indenter indentation method |
| CN112858061B (en) * | 2021-01-18 | 2023-05-02 | 天津大学 | Method for representing mechanical properties of material micro-region multiphase tissue based on instrumented indentation test |
| CN112924278B (en) * | 2021-01-27 | 2022-09-27 | 中国科学院近代物理研究所 | A small punch test device and method for high-energy heavy ion irradiation of samples |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101038247A (en) * | 2007-04-06 | 2007-09-19 | 西安交通大学 | Method for measuring material mechanical performance with double-cone pressure head |
| CN101710046A (en) * | 2009-12-02 | 2010-05-19 | 马德军 | Method for testing Young modulus of material through instrumented micron indentation |
| CN101776551A (en) * | 2010-02-09 | 2010-07-14 | 马德军 | Method for testing uniaxial strength mean value of material through instrumented microindentation |
| CN103411833A (en) * | 2013-08-21 | 2013-11-27 | 中国人民解放军装甲兵工程学院 | Instrumentation indentation test method for elastic-plastic parameters of material based on single Vickers pressure head |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100491295B1 (en) * | 2004-11-09 | 2005-05-24 | (주)프론틱스 | Evaluating method of the fracture toughness using the continuous indentation method |
-
2014
- 2014-07-23 CN CN201410348309.XA patent/CN104165814B/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101038247A (en) * | 2007-04-06 | 2007-09-19 | 西安交通大学 | Method for measuring material mechanical performance with double-cone pressure head |
| CN101710046A (en) * | 2009-12-02 | 2010-05-19 | 马德军 | Method for testing Young modulus of material through instrumented micron indentation |
| CN101776551A (en) * | 2010-02-09 | 2010-07-14 | 马德军 | Method for testing uniaxial strength mean value of material through instrumented microindentation |
| CN103411833A (en) * | 2013-08-21 | 2013-11-27 | 中国人民解放军装甲兵工程学院 | Instrumentation indentation test method for elastic-plastic parameters of material based on single Vickers pressure head |
| CN103630452A (en) * | 2013-08-21 | 2014-03-12 | 中国人民解放军装甲兵工程学院 | Single Vickers pressure head-based method for instrumented press-in test of material elastic-plasticity parameters |
Non-Patent Citations (3)
| Title |
|---|
| 基于仪器化压入技术的结构陶瓷材料断裂韧性测试;宋仲康 等;《装甲兵工程学院学报》;20120430;第26卷(第2期);第85-88页 * |
| 基于仪器化压入测试方法的材料强度极限的测定;郭俊宏 等;《机械工程师》;20091231(第12期);第35-38页 * |
| 基于压入比功的金属材料塑性参数仪器化压入识别方法;陈伟 等;《塑性工程学报》;20140630;第21卷(第3期);第89-97页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN104165814A (en) | 2014-11-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104165814B (en) | Vickers indentation based material elastoplasticity instrumented indentation test method | |
| CN103630452B (en) | Based on the material elastic-plastic mechanical parameter instrumentation press-in method of testing of single Vickers pressure head | |
| US20210310917A1 (en) | Inversion identification method of crystal plasticity material parameters based on nanoindentation experiments | |
| CN102455263B (en) | Method for obtaining mechanical property of metal material based on load-depth curve | |
| KR101707492B1 (en) | Evaluating Method Of The Fracture Toughness Using Instrumented indentation testing | |
| CN105784481B (en) | The method that the compression of disk sample obtains material simple stress-strain stress relation | |
| CN105675420B (en) | Spheroidal indentation prediction material simple stress-strain stress relation assay method | |
| CN104237037B (en) | Material elastoplasticity parameter instrumented indentation testing method based on Berkovich indentation | |
| CN102539315B (en) | A Fast and Accurate Method for Determining Friction Coefficient in Metal Plastic Forming Process | |
| CN108387470A (en) | Method for measuring residual stress and elastic-plastic mechanical property of metal material by continuous indentation method | |
| CN109299568A (en) | Inverse method of constitutive model of welded joints based on nanoindentation test | |
| CN104655505B (en) | Instrumented-ball-pressing-technology-based residual stress detection method | |
| CN108844824B (en) | A method for the determination of residual stress in known materials based on a conical indenter | |
| CN103091185A (en) | Process for characterizing elastoplasticity of metal material through indentation method | |
| CN104122154B (en) | Method for testing ceramic material fracture toughness by means of instrumented Vickers indentation | |
| CN104198313A (en) | Residual stress detection method based on instrumented indentation technology | |
| CN109900554A (en) | A method of fracture toughness is calculated using indentation method | |
| CN106644711A (en) | Test method for uniaxial constitutive relation of ductile material | |
| CN107631949B (en) | Single-cone press-in-based plate anisotropic plastic parameter identification method | |
| CN109446658B (en) | Method for determining titanium alloy conical indentation constraint factor and representative strain | |
| CN110018072A (en) | Elastic material Parameters of constitutive model taper is pressed into measuring method | |
| CN104122152A (en) | Method for determining Vickers hardness of materials based on Vickers instrumented indentation O-P hardness | |
| CN102759505A (en) | Auxiliary device for medium plate material compression test and measuring method for flowing stress curve | |
| JP2015047605A (en) | Evaluation method and prediction method of bending inner crack | |
| Park et al. | Spring-back prediction of MS1470 steel sheets based on a non-linear kinematic hardening model |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170201 Termination date: 20190723 |