CA3201145A1 - C-myc antisense oligonucleotides and methods for using the same to treat cell-proliferative disorders - Google Patents
C-myc antisense oligonucleotides and methods for using the same to treat cell-proliferative disordersInfo
- Publication number
- CA3201145A1 CA3201145A1 CA3201145A CA3201145A CA3201145A1 CA 3201145 A1 CA3201145 A1 CA 3201145A1 CA 3201145 A CA3201145 A CA 3201145A CA 3201145 A CA3201145 A CA 3201145A CA 3201145 A1 CA3201145 A1 CA 3201145A1
- Authority
- CA
- Canada
- Prior art keywords
- oligonucleotide
- seq
- myc
- cell
- linkages
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000074 antisense oligonucleotide Substances 0.000 title abstract description 119
- 238000012230 antisense oligonucleotides Methods 0.000 title abstract description 119
- 108020000948 Antisense Oligonucleotides Proteins 0.000 title abstract description 65
- 238000000034 method Methods 0.000 title abstract description 56
- 230000002062 proliferating effect Effects 0.000 claims abstract description 75
- 230000014509 gene expression Effects 0.000 claims abstract description 67
- 108010087705 Proto-Oncogene Proteins c-myc Proteins 0.000 claims abstract description 49
- 230000007423 decrease Effects 0.000 claims abstract description 49
- 102000009092 Proto-Oncogene Proteins c-myc Human genes 0.000 claims abstract description 48
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 claims abstract description 35
- 108091034117 Oligonucleotide Proteins 0.000 claims description 508
- 210000004027 cell Anatomy 0.000 claims description 243
- 108020004999 messenger RNA Proteins 0.000 claims description 127
- 206010028980 Neoplasm Diseases 0.000 claims description 123
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 claims description 96
- 125000003729 nucleotide group Chemical group 0.000 claims description 94
- 239000002773 nucleotide Substances 0.000 claims description 93
- 108700024542 myc Genes Proteins 0.000 claims description 76
- 201000011510 cancer Diseases 0.000 claims description 65
- 230000000295 complement effect Effects 0.000 claims description 55
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 46
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical group C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims description 42
- 238000013519 translation Methods 0.000 claims description 36
- 230000015556 catabolic process Effects 0.000 claims description 35
- 238000006731 degradation reaction Methods 0.000 claims description 35
- 230000001404 mediated effect Effects 0.000 claims description 32
- 230000010261 cell growth Effects 0.000 claims description 31
- 239000008194 pharmaceutical composition Substances 0.000 claims description 30
- 229910019142 PO4 Inorganic materials 0.000 claims description 26
- 239000010452 phosphate Substances 0.000 claims description 26
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 25
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 claims description 25
- 150000002632 lipids Chemical group 0.000 claims description 22
- 238000011282 treatment Methods 0.000 claims description 22
- 235000012000 cholesterol Nutrition 0.000 claims description 21
- 102100034343 Integrase Human genes 0.000 claims description 20
- 101710203526 Integrase Proteins 0.000 claims description 20
- 208000014018 liver neoplasm Diseases 0.000 claims description 20
- 239000002777 nucleoside Substances 0.000 claims description 20
- 150000003833 nucleoside derivatives Chemical class 0.000 claims description 16
- 201000007270 liver cancer Diseases 0.000 claims description 15
- 208000024891 symptom Diseases 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 11
- 230000002265 prevention Effects 0.000 claims description 10
- 230000035755 proliferation Effects 0.000 claims description 9
- 239000003937 drug carrier Substances 0.000 claims description 8
- 210000003719 b-lymphocyte Anatomy 0.000 claims description 4
- 230000004663 cell proliferation Effects 0.000 abstract description 17
- 238000000338 in vitro Methods 0.000 abstract description 14
- 238000001727 in vivo Methods 0.000 abstract description 8
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 143
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 143
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 143
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 52
- 230000000692 anti-sense effect Effects 0.000 description 45
- 239000000203 mixture Substances 0.000 description 36
- 108090000623 proteins and genes Proteins 0.000 description 32
- 208000035475 disorder Diseases 0.000 description 29
- 150000001875 compounds Chemical class 0.000 description 27
- -1 fatty acid esters Chemical class 0.000 description 27
- ABZLKHKQJHEPAX-UHFFFAOYSA-N tetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C([O-])=O ABZLKHKQJHEPAX-UHFFFAOYSA-N 0.000 description 27
- 102000004169 proteins and genes Human genes 0.000 description 24
- 230000000694 effects Effects 0.000 description 22
- 206010035226 Plasma cell myeloma Diseases 0.000 description 21
- 125000003473 lipid group Chemical group 0.000 description 21
- 238000012986 modification Methods 0.000 description 21
- 241000699670 Mus sp. Species 0.000 description 20
- 230000004048 modification Effects 0.000 description 20
- 235000014113 dietary fatty acids Nutrition 0.000 description 18
- 229930195729 fatty acid Natural products 0.000 description 18
- 239000000194 fatty acid Substances 0.000 description 18
- 230000014621 translational initiation Effects 0.000 description 18
- 241001465754 Metazoa Species 0.000 description 17
- 208000034578 Multiple myelomas Diseases 0.000 description 17
- 150000004665 fatty acids Chemical class 0.000 description 17
- 239000000546 pharmaceutical excipient Substances 0.000 description 16
- 230000003247 decreasing effect Effects 0.000 description 15
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 14
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 14
- 201000010099 disease Diseases 0.000 description 14
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 14
- 201000002528 pancreatic cancer Diseases 0.000 description 14
- 208000008443 pancreatic carcinoma Diseases 0.000 description 14
- 235000000346 sugar Nutrition 0.000 description 14
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 13
- 230000001965 increasing effect Effects 0.000 description 12
- 206010025323 Lymphomas Diseases 0.000 description 11
- 108020004414 DNA Proteins 0.000 description 10
- 208000006265 Renal cell carcinoma Diseases 0.000 description 10
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 10
- 125000005647 linker group Chemical group 0.000 description 10
- 210000004185 liver Anatomy 0.000 description 10
- 108091028690 C-myc mRNA Proteins 0.000 description 9
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 9
- 239000007850 fluorescent dye Substances 0.000 description 9
- 201000003444 follicular lymphoma Diseases 0.000 description 9
- 230000012010 growth Effects 0.000 description 9
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 9
- 239000003981 vehicle Substances 0.000 description 9
- 238000001262 western blot Methods 0.000 description 9
- FKEJUADLULRZHN-UEYSZJFGSA-N 1-[(2r,4r,5r)-4-amino-3,3,4-trihydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidine-2,4-dione Chemical compound OC1(O)[C@](N)(O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 FKEJUADLULRZHN-UEYSZJFGSA-N 0.000 description 8
- 206010009944 Colon cancer Diseases 0.000 description 8
- 108700024394 Exon Proteins 0.000 description 8
- 230000006907 apoptotic process Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 8
- 150000002430 hydrocarbons Chemical class 0.000 description 8
- 208000032839 leukemia Diseases 0.000 description 8
- 229940063673 spermidine Drugs 0.000 description 8
- 230000001225 therapeutic effect Effects 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 7
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 239000004480 active ingredient Substances 0.000 description 7
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 229930195733 hydrocarbon Natural products 0.000 description 7
- 230000005764 inhibitory process Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 102000039446 nucleic acids Human genes 0.000 description 7
- 108020004707 nucleic acids Proteins 0.000 description 7
- 150000007523 nucleic acids Chemical class 0.000 description 7
- 230000001988 toxicity Effects 0.000 description 7
- 231100000419 toxicity Toxicity 0.000 description 7
- 238000011830 transgenic mouse model Methods 0.000 description 7
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 7
- 229940045145 uridine Drugs 0.000 description 7
- 241000699660 Mus musculus Species 0.000 description 6
- 206010033128 Ovarian cancer Diseases 0.000 description 6
- 206010061535 Ovarian neoplasm Diseases 0.000 description 6
- 235000021314 Palmitic acid Nutrition 0.000 description 6
- 206010039491 Sarcoma Diseases 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 206010017758 gastric cancer Diseases 0.000 description 6
- 238000003364 immunohistochemistry Methods 0.000 description 6
- 239000003112 inhibitor Substances 0.000 description 6
- 230000002401 inhibitory effect Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 201000005202 lung cancer Diseases 0.000 description 6
- 208000020816 lung neoplasm Diseases 0.000 description 6
- 239000003068 molecular probe Substances 0.000 description 6
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000003826 tablet Substances 0.000 description 6
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 6
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 5
- 206010003571 Astrocytoma Diseases 0.000 description 5
- 206010006187 Breast cancer Diseases 0.000 description 5
- 208000026310 Breast neoplasm Diseases 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 201000009030 Carcinoma Diseases 0.000 description 5
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 5
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 5
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- 208000007452 Plasmacytoma Diseases 0.000 description 5
- 206010041067 Small cell lung cancer Diseases 0.000 description 5
- 208000005718 Stomach Neoplasms Diseases 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 239000002246 antineoplastic agent Substances 0.000 description 5
- 230000010094 cellular senescence Effects 0.000 description 5
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 5
- 229940104302 cytosine Drugs 0.000 description 5
- 239000002552 dosage form Substances 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 5
- 125000003835 nucleoside group Chemical group 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 201000011549 stomach cancer Diseases 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 230000002194 synthesizing effect Effects 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 229940035893 uracil Drugs 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- PEHVGBZKEYRQSX-UHFFFAOYSA-N 7-deaza-adenine Chemical compound NC1=NC=NC2=C1C=CN2 PEHVGBZKEYRQSX-UHFFFAOYSA-N 0.000 description 4
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 4
- 229930024421 Adenine Natural products 0.000 description 4
- 208000012526 B-cell neoplasm Diseases 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 4
- 206010018338 Glioma Diseases 0.000 description 4
- 206010019695 Hepatic neoplasm Diseases 0.000 description 4
- 208000017604 Hodgkin disease Diseases 0.000 description 4
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 4
- 102000029749 Microtubule Human genes 0.000 description 4
- 108091022875 Microtubule Proteins 0.000 description 4
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 4
- 229960000643 adenine Drugs 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 125000000304 alkynyl group Chemical group 0.000 description 4
- 229940053200 antiepileptics fatty acid derivative Drugs 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 208000005017 glioblastoma Diseases 0.000 description 4
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 4
- 210000003494 hepatocyte Anatomy 0.000 description 4
- XMHIUKTWLZUKEX-UHFFFAOYSA-N hexacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O XMHIUKTWLZUKEX-UHFFFAOYSA-N 0.000 description 4
- 230000000977 initiatory effect Effects 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 210000004698 lymphocyte Anatomy 0.000 description 4
- 208000019420 lymphoid neoplasm Diseases 0.000 description 4
- 238000002595 magnetic resonance imaging Methods 0.000 description 4
- 201000001441 melanoma Diseases 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 210000004688 microtubule Anatomy 0.000 description 4
- 201000005962 mycosis fungoides Diseases 0.000 description 4
- 201000000050 myeloid neoplasm Diseases 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 4
- 230000002018 overexpression Effects 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000006187 pill Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 208000000587 small cell lung carcinoma Diseases 0.000 description 4
- 206010041823 squamous cell carcinoma Diseases 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 4
- 230000003442 weekly effect Effects 0.000 description 4
- SGKRLCUYIXIAHR-AKNGSSGZSA-N (4s,4ar,5s,5ar,6r,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1=CC=C2[C@H](C)[C@@H]([C@H](O)[C@@H]3[C@](C(O)=C(C(N)=O)C(=O)[C@H]3N(C)C)(O)C3=O)C3=C(O)C2=C1O SGKRLCUYIXIAHR-AKNGSSGZSA-N 0.000 description 3
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 3
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 3
- 206010073478 Anaplastic large-cell lymphoma Diseases 0.000 description 3
- 206010004146 Basal cell carcinoma Diseases 0.000 description 3
- 241000212384 Bifora Species 0.000 description 3
- 206010005003 Bladder cancer Diseases 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 102000003952 Caspase 3 Human genes 0.000 description 3
- 108090000397 Caspase 3 Proteins 0.000 description 3
- 206010007953 Central nervous system lymphoma Diseases 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 206010014967 Ependymoma Diseases 0.000 description 3
- 208000032612 Glial tumor Diseases 0.000 description 3
- 102100034051 Heat shock protein HSP 90-alpha Human genes 0.000 description 3
- 208000032004 Large-Cell Anaplastic Lymphoma Diseases 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 208000000172 Medulloblastoma Diseases 0.000 description 3
- 229930012538 Paclitaxel Natural products 0.000 description 3
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 3
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 description 3
- 210000001744 T-lymphocyte Anatomy 0.000 description 3
- 229940123237 Taxane Drugs 0.000 description 3
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 3
- 229940122803 Vinca alkaloid Drugs 0.000 description 3
- 208000009956 adenocarcinoma Diseases 0.000 description 3
- 208000037844 advanced solid tumor Diseases 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 3
- 229930013930 alkaloid Natural products 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 229940100198 alkylating agent Drugs 0.000 description 3
- 239000002168 alkylating agent Substances 0.000 description 3
- AEMFNILZOJDQLW-QAGGRKNESA-N androst-4-ene-3,17-dione Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 AEMFNILZOJDQLW-QAGGRKNESA-N 0.000 description 3
- 229960005471 androstenedione Drugs 0.000 description 3
- AEMFNILZOJDQLW-UHFFFAOYSA-N androstenedione Natural products O=C1CCC2(C)C3CCC(C)(C(CC4)=O)C4C3CCC2=C1 AEMFNILZOJDQLW-UHFFFAOYSA-N 0.000 description 3
- 230000000340 anti-metabolite Effects 0.000 description 3
- 230000000118 anti-neoplastic effect Effects 0.000 description 3
- 229940100197 antimetabolite Drugs 0.000 description 3
- 239000002256 antimetabolite Substances 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 208000035269 cancer or benign tumor Diseases 0.000 description 3
- 230000022131 cell cycle Effects 0.000 description 3
- 230000024245 cell differentiation Effects 0.000 description 3
- 230000032823 cell division Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000002490 cerebral effect Effects 0.000 description 3
- 230000021615 conjugation Effects 0.000 description 3
- 201000007241 cutaneous T cell lymphoma Diseases 0.000 description 3
- 238000000326 densiometry Methods 0.000 description 3
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 3
- 229960003722 doxycycline Drugs 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 239000003925 fat Substances 0.000 description 3
- 235000019197 fats Nutrition 0.000 description 3
- 150000002193 fatty amides Chemical class 0.000 description 3
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 3
- 230000030279 gene silencing Effects 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- YLMAHDNUQAMNNX-UHFFFAOYSA-N imatinib methanesulfonate Chemical compound CS(O)(=O)=O.C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 YLMAHDNUQAMNNX-UHFFFAOYSA-N 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 239000007928 intraperitoneal injection Substances 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 208000037819 metastatic cancer Diseases 0.000 description 3
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 238000010172 mouse model Methods 0.000 description 3
- 230000002611 ovarian Effects 0.000 description 3
- 229960001592 paclitaxel Drugs 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 3
- 150000004713 phosphodiesters Chemical class 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 208000016800 primary central nervous system lymphoma Diseases 0.000 description 3
- 208000025638 primary cutaneous T-cell non-Hodgkin lymphoma Diseases 0.000 description 3
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 235000003441 saturated fatty acids Nutrition 0.000 description 3
- 150000004671 saturated fatty acids Chemical class 0.000 description 3
- 229930195734 saturated hydrocarbon Natural products 0.000 description 3
- 230000009758 senescence Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229940063675 spermine Drugs 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 210000002784 stomach Anatomy 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 235000020357 syrup Nutrition 0.000 description 3
- 239000006188 syrup Substances 0.000 description 3
- 229940113082 thymine Drugs 0.000 description 3
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 3
- 230000009261 transgenic effect Effects 0.000 description 3
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 3
- FZWGECJQACGGTI-UHFFFAOYSA-N 2-amino-7-methyl-1,7-dihydro-6H-purin-6-one Chemical compound NC1=NC(O)=C2N(C)C=NC2=N1 FZWGECJQACGGTI-UHFFFAOYSA-N 0.000 description 2
- ICSNLGPSRYBMBD-UHFFFAOYSA-N 2-aminopyridine Chemical compound NC1=CC=CC=N1 ICSNLGPSRYBMBD-UHFFFAOYSA-N 0.000 description 2
- 125000004042 4-aminobutyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])N([H])[H] 0.000 description 2
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 2
- RYVNIFSIEDRLSJ-UHFFFAOYSA-N 5-(hydroxymethyl)cytosine Chemical compound NC=1NC(=O)N=CC=1CO RYVNIFSIEDRLSJ-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 208000002008 AIDS-Related Lymphoma Diseases 0.000 description 2
- 206010000830 Acute leukaemia Diseases 0.000 description 2
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 2
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 2
- 206010001413 Adult T-cell lymphoma/leukaemia Diseases 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 235000021357 Behenic acid Nutrition 0.000 description 2
- 102100026189 Beta-galactosidase Human genes 0.000 description 2
- 206010004593 Bile duct cancer Diseases 0.000 description 2
- 208000003174 Brain Neoplasms Diseases 0.000 description 2
- 208000011691 Burkitt lymphomas Diseases 0.000 description 2
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 2
- 206010007279 Carcinoid tumour of the gastrointestinal tract Diseases 0.000 description 2
- 206010008342 Cervix carcinoma Diseases 0.000 description 2
- 208000009798 Craniopharyngioma Diseases 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- 230000004543 DNA replication Effects 0.000 description 2
- 239000006145 Eagle's minimal essential medium Substances 0.000 description 2
- DNVPQKQSNYMLRS-NXVQYWJNSA-N Ergosterol Natural products CC(C)[C@@H](C)C=C[C@H](C)[C@H]1CC[C@H]2C3=CC=C4C[C@@H](O)CC[C@]4(C)[C@@H]3CC[C@]12C DNVPQKQSNYMLRS-NXVQYWJNSA-N 0.000 description 2
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 2
- 108700039887 Essential Genes Proteins 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 108091027305 Heteroduplex Proteins 0.000 description 2
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 2
- 101001016865 Homo sapiens Heat shock protein HSP 90-alpha Proteins 0.000 description 2
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 208000006404 Large Granular Lymphocytic Leukemia Diseases 0.000 description 2
- 206010023825 Laryngeal cancer Diseases 0.000 description 2
- 235000021353 Lignoceric acid Nutrition 0.000 description 2
- CQXMAMUUWHYSIY-UHFFFAOYSA-N Lignoceric acid Natural products CCCCCCCCCCCCCCCCCCCCCCCC(=O)OCCC1=CC=C(O)C=C1 CQXMAMUUWHYSIY-UHFFFAOYSA-N 0.000 description 2
- 206010025312 Lymphoma AIDS related Diseases 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 206010027406 Mesothelioma Diseases 0.000 description 2
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 2
- 208000003445 Mouth Neoplasms Diseases 0.000 description 2
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 2
- 206010029260 Neuroblastoma Diseases 0.000 description 2
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 2
- 208000007641 Pinealoma Diseases 0.000 description 2
- 244000236480 Podophyllum peltatum Species 0.000 description 2
- 235000008562 Podophyllum peltatum Nutrition 0.000 description 2
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 2
- 208000033759 Prolymphocytic T-Cell Leukemia Diseases 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- 201000000582 Retinoblastoma Diseases 0.000 description 2
- 108010083644 Ribonucleases Proteins 0.000 description 2
- 102000006382 Ribonucleases Human genes 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 229930182558 Sterol Natural products 0.000 description 2
- 208000025317 T-cell and NK-cell neoplasm Diseases 0.000 description 2
- 206010042971 T-cell lymphoma Diseases 0.000 description 2
- 208000026651 T-cell prolymphocytic leukemia Diseases 0.000 description 2
- 208000024313 Testicular Neoplasms Diseases 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- 239000004098 Tetracycline Substances 0.000 description 2
- 101710183280 Topoisomerase Proteins 0.000 description 2
- 108090000704 Tubulin Proteins 0.000 description 2
- 102000004243 Tubulin Human genes 0.000 description 2
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 2
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 2
- 208000008383 Wilms tumor Diseases 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 206010002449 angioimmunoblastic T-cell lymphoma Diseases 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 229940034982 antineoplastic agent Drugs 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229940116226 behenic acid Drugs 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 208000002458 carcinoid tumor Diseases 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000004700 cellular uptake Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 201000010881 cervical cancer Diseases 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 208000024207 chronic leukemia Diseases 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 208000029742 colonic neoplasm Diseases 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 229960003668 docetaxel Drugs 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 230000008482 dysregulation Effects 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012055 enteric layer Substances 0.000 description 2
- 201000004101 esophageal cancer Diseases 0.000 description 2
- FARYTWBWLZAXNK-WAYWQWQTSA-N ethyl (z)-3-(methylamino)but-2-enoate Chemical compound CCOC(=O)\C=C(\C)NC FARYTWBWLZAXNK-WAYWQWQTSA-N 0.000 description 2
- 229960005420 etoposide Drugs 0.000 description 2
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 2
- 150000002191 fatty alcohols Chemical class 0.000 description 2
- 238000009093 first-line therapy Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 125000001475 halogen functional group Chemical group 0.000 description 2
- 201000010536 head and neck cancer Diseases 0.000 description 2
- 208000014829 head and neck neoplasm Diseases 0.000 description 2
- 201000002222 hemangioblastoma Diseases 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 208000037393 large granular lymphocyte leukemia Diseases 0.000 description 2
- 206010023841 laryngeal neoplasm Diseases 0.000 description 2
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 description 2
- 210000005229 liver cell Anatomy 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 208000021039 metastatic melanoma Diseases 0.000 description 2
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 235000021281 monounsaturated fatty acids Nutrition 0.000 description 2
- 210000000822 natural killer cell Anatomy 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- 230000008481 normal tissue growth Effects 0.000 description 2
- 229960002446 octanoic acid Drugs 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 201000008968 osteosarcoma Diseases 0.000 description 2
- 201000008129 pancreatic ductal adenocarcinoma Diseases 0.000 description 2
- 201000002530 pancreatic endocrine carcinoma Diseases 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229940124531 pharmaceutical excipient Drugs 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 2
- 208000017805 post-transplant lymphoproliferative disease Diseases 0.000 description 2
- 229960000249 pregnenolone Drugs 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229960003387 progesterone Drugs 0.000 description 2
- 239000000186 progesterone Substances 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical group CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 150000003212 purines Chemical class 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000009094 second-line therapy Methods 0.000 description 2
- 238000003196 serial analysis of gene expression Methods 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 235000010356 sorbitol Nutrition 0.000 description 2
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 150000003432 sterols Chemical class 0.000 description 2
- 235000003702 sterols Nutrition 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 201000008205 supratentorial primitive neuroectodermal tumor Diseases 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 229960001278 teniposide Drugs 0.000 description 2
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 2
- 201000003120 testicular cancer Diseases 0.000 description 2
- 229960002180 tetracycline Drugs 0.000 description 2
- 229930101283 tetracycline Natural products 0.000 description 2
- 235000019364 tetracycline Nutrition 0.000 description 2
- 150000003522 tetracyclines Chemical class 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 238000009095 third-line therapy Methods 0.000 description 2
- 208000008732 thymoma Diseases 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- IIYFAKIEWZDVMP-UHFFFAOYSA-N tridecane Chemical compound CCCCCCCCCCCCC IIYFAKIEWZDVMP-UHFFFAOYSA-N 0.000 description 2
- 239000003656 tris buffered saline Substances 0.000 description 2
- 230000004565 tumor cell growth Effects 0.000 description 2
- RSJKGSCJYJTIGS-UHFFFAOYSA-N undecane Chemical compound CCCCCCCCCCC RSJKGSCJYJTIGS-UHFFFAOYSA-N 0.000 description 2
- 201000005112 urinary bladder cancer Diseases 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- DNXHEGUUPJUMQT-UHFFFAOYSA-N (+)-estrone Natural products OC1=CC=C2C3CCC(C)(C(CC4)=O)C4C3CCC2=C1 DNXHEGUUPJUMQT-UHFFFAOYSA-N 0.000 description 1
- OILXMJHPFNGGTO-UHFFFAOYSA-N (22E)-(24xi)-24-methylcholesta-5,22-dien-3beta-ol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(C)C(C)C)C1(C)CC2 OILXMJHPFNGGTO-UHFFFAOYSA-N 0.000 description 1
- RQOCXCFLRBRBCS-UHFFFAOYSA-N (22E)-cholesta-5,7,22-trien-3beta-ol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CCC(C)C)CCC33)C)C3=CC=C21 RQOCXCFLRBRBCS-UHFFFAOYSA-N 0.000 description 1
- AODPIQQILQLWGS-UHFFFAOYSA-N (3alpa,5beta,11beta,17alphaOH)-form-3,11,17,21-Tetrahydroxypregnan-20-one, Natural products C1C(O)CCC2(C)C3C(O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC21 AODPIQQILQLWGS-UHFFFAOYSA-N 0.000 description 1
- SYGWGHVTLUBCEM-UHFFFAOYSA-N (3alpha,5alpha,17alphaOH)-3,17,21-Trihydroxypregnane-11,20-dione Natural products C1C(O)CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC21 SYGWGHVTLUBCEM-UHFFFAOYSA-N 0.000 description 1
- BHQCQFFYRZLCQQ-UHFFFAOYSA-N (3alpha,5alpha,7alpha,12alpha)-3,7,12-trihydroxy-cholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 BHQCQFFYRZLCQQ-UHFFFAOYSA-N 0.000 description 1
- SGKRLCUYIXIAHR-NLJUDYQYSA-N (4r,4ar,5s,5ar,6r,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1=CC=C2[C@H](C)[C@@H]([C@H](O)[C@@H]3[C@](C(O)=C(C(N)=O)C(=O)[C@@H]3N(C)C)(O)C3=O)C3=C(O)C2=C1O SGKRLCUYIXIAHR-NLJUDYQYSA-N 0.000 description 1
- 108091064702 1 family Proteins 0.000 description 1
- PTFYZDMJTFMPQW-UHFFFAOYSA-N 1,10-dihydropyrimido[5,4-b][1,4]benzoxazin-2-one Chemical compound O1C2=CC=CC=C2N=C2C1=CNC(=O)N2 PTFYZDMJTFMPQW-UHFFFAOYSA-N 0.000 description 1
- FYADHXFMURLYQI-UHFFFAOYSA-N 1,2,4-triazine Chemical class C1=CN=NC=N1 FYADHXFMURLYQI-UHFFFAOYSA-N 0.000 description 1
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- MQDLKAADJTYKRH-UHFFFAOYSA-N 1-aminopropane-1,2,3-triol Chemical compound NC(O)C(O)CO MQDLKAADJTYKRH-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- TZMSYXZUNZXBOL-UHFFFAOYSA-N 10H-phenoxazine Chemical compound C1=CC=C2NC3=CC=CC=C3OC2=C1 TZMSYXZUNZXBOL-UHFFFAOYSA-N 0.000 description 1
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 description 1
- ZESRJSPZRDMNHY-YFWFAHHUSA-N 11-deoxycorticosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 ZESRJSPZRDMNHY-YFWFAHHUSA-N 0.000 description 1
- WHBHBVVOGNECLV-OBQKJFGGSA-N 11-deoxycortisol Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 WHBHBVVOGNECLV-OBQKJFGGSA-N 0.000 description 1
- NVKAWKQGWWIWPM-ABEVXSGRSA-N 17-β-hydroxy-5-α-Androstan-3-one Chemical compound C1C(=O)CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@H]21 NVKAWKQGWWIWPM-ABEVXSGRSA-N 0.000 description 1
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 1
- HFSXHZZDNDGLQN-ZVIOFETBSA-N 18-hydroxycorticosterone Chemical compound C([C@]1(CO)[C@@H](C(=O)CO)CC[C@H]1[C@@H]1CC2)[C@H](O)[C@@H]1[C@]1(C)C2=CC(=O)CC1 HFSXHZZDNDGLQN-ZVIOFETBSA-N 0.000 description 1
- UHUHBFMZVCOEOV-UHFFFAOYSA-N 1h-imidazo[4,5-c]pyridin-4-amine Chemical compound NC1=NC=CC2=C1N=CN2 UHUHBFMZVCOEOV-UHFFFAOYSA-N 0.000 description 1
- IPYJWACEFWLBMV-UHFFFAOYSA-N 2-(1h-indol-3-ylmethyl)-1,3-thiazolidine-4-carboxylic acid Chemical compound N1C(C(=O)O)CSC1CC1=CNC2=CC=CC=C12 IPYJWACEFWLBMV-UHFFFAOYSA-N 0.000 description 1
- QSHACTSJHMKXTE-UHFFFAOYSA-N 2-(2-aminopropyl)-7h-purin-6-amine Chemical compound CC(N)CC1=NC(N)=C2NC=NC2=N1 QSHACTSJHMKXTE-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical group CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- JRYMOPZHXMVHTA-DAGMQNCNSA-N 2-amino-7-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1h-pyrrolo[2,3-d]pyrimidin-4-one Chemical compound C1=CC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O JRYMOPZHXMVHTA-DAGMQNCNSA-N 0.000 description 1
- ASJSAQIRZKANQN-UHFFFAOYSA-N 2-deoxypentose Chemical compound OCC(O)C(O)CC=O ASJSAQIRZKANQN-UHFFFAOYSA-N 0.000 description 1
- WKMPTBDYDNUJLF-UHFFFAOYSA-N 2-fluoroadenine Chemical compound NC1=NC(F)=NC2=C1N=CN2 WKMPTBDYDNUJLF-UHFFFAOYSA-N 0.000 description 1
- AUVALWUPUHHNQV-UHFFFAOYSA-N 2-hydroxy-3-propylbenzoic acid Chemical class CCCC1=CC=CC(C(O)=O)=C1O AUVALWUPUHHNQV-UHFFFAOYSA-N 0.000 description 1
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- SMADWRYCYBUIKH-UHFFFAOYSA-N 2-methyl-7h-purin-6-amine Chemical compound CC1=NC(N)=C2NC=NC2=N1 SMADWRYCYBUIKH-UHFFFAOYSA-N 0.000 description 1
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 1
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- ZLAQATDNGLKIEV-UHFFFAOYSA-N 5-methyl-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CC1=CNC(=S)NC1=O ZLAQATDNGLKIEV-UHFFFAOYSA-N 0.000 description 1
- UJBCLAXPPIDQEE-UHFFFAOYSA-N 5-prop-1-ynyl-1h-pyrimidine-2,4-dione Chemical compound CC#CC1=CNC(=O)NC1=O UJBCLAXPPIDQEE-UHFFFAOYSA-N 0.000 description 1
- KXBCLNRMQPRVTP-UHFFFAOYSA-N 6-amino-1,5-dihydroimidazo[4,5-c]pyridin-4-one Chemical compound O=C1NC(N)=CC2=C1N=CN2 KXBCLNRMQPRVTP-UHFFFAOYSA-N 0.000 description 1
- DCPSTSVLRXOYGS-UHFFFAOYSA-N 6-amino-1h-pyrimidine-2-thione Chemical compound NC1=CC=NC(S)=N1 DCPSTSVLRXOYGS-UHFFFAOYSA-N 0.000 description 1
- QNNARSZPGNJZIX-UHFFFAOYSA-N 6-amino-5-prop-1-ynyl-1h-pyrimidin-2-one Chemical compound CC#CC1=CNC(=O)N=C1N QNNARSZPGNJZIX-UHFFFAOYSA-N 0.000 description 1
- NJBMMMJOXRZENQ-UHFFFAOYSA-N 6H-pyrrolo[2,3-f]quinoline Chemical compound c1cc2ccc3[nH]cccc3c2n1 NJBMMMJOXRZENQ-UHFFFAOYSA-N 0.000 description 1
- OQMZNAMGEHIHNN-UHFFFAOYSA-N 7-Dehydrostigmasterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CC(CC)C(C)C)CCC33)C)C3=CC=C21 OQMZNAMGEHIHNN-UHFFFAOYSA-N 0.000 description 1
- LOSIULRWFAEMFL-UHFFFAOYSA-N 7-deazaguanine Chemical compound O=C1NC(N)=NC2=C1CC=N2 LOSIULRWFAEMFL-UHFFFAOYSA-N 0.000 description 1
- HRYKDUPGBWLLHO-UHFFFAOYSA-N 8-azaadenine Chemical compound NC1=NC=NC2=NNN=C12 HRYKDUPGBWLLHO-UHFFFAOYSA-N 0.000 description 1
- LPXQRXLUHJKZIE-UHFFFAOYSA-N 8-azaguanine Chemical compound NC1=NC(O)=C2NN=NC2=N1 LPXQRXLUHJKZIE-UHFFFAOYSA-N 0.000 description 1
- 229960005508 8-azaguanine Drugs 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 235000006491 Acacia senegal Nutrition 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 206010052747 Adenocarcinoma pancreas Diseases 0.000 description 1
- PQSUYGKTWSAVDQ-ZVIOFETBSA-N Aldosterone Chemical compound C([C@@]1([C@@H](C(=O)CO)CC[C@H]1[C@@H]1CC2)C=O)[C@H](O)[C@@H]1[C@]1(C)C2=CC(=O)CC1 PQSUYGKTWSAVDQ-ZVIOFETBSA-N 0.000 description 1
- PQSUYGKTWSAVDQ-UHFFFAOYSA-N Aldosterone Natural products C1CC2C3CCC(C(=O)CO)C3(C=O)CC(O)C2C2(C)C1=CC(=O)CC2 PQSUYGKTWSAVDQ-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 206010061424 Anal cancer Diseases 0.000 description 1
- QADHLRWLCPCEKT-UHFFFAOYSA-N Androstenediol Natural products C1C(O)CCC2(C)C3CCC(C)(C(CC4)O)C4C3CC=C21 QADHLRWLCPCEKT-UHFFFAOYSA-N 0.000 description 1
- 201000003076 Angiosarcoma Diseases 0.000 description 1
- 208000007860 Anus Neoplasms Diseases 0.000 description 1
- 206010073360 Appendix cancer Diseases 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 206010060971 Astrocytoma malignant Diseases 0.000 description 1
- 208000036170 B-Cell Marginal Zone Lymphoma Diseases 0.000 description 1
- 208000025324 B-cell acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 208000003950 B-cell lymphoma Diseases 0.000 description 1
- 206010003908 B-cell small lymphocytic lymphoma Diseases 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 206010005949 Bone cancer Diseases 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- 206010006143 Brain stem glioma Diseases 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 206010007275 Carcinoid tumour Diseases 0.000 description 1
- 239000004380 Cholic acid Substances 0.000 description 1
- 208000005243 Chondrosarcoma Diseases 0.000 description 1
- 201000009047 Chordoma Diseases 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- 208000030808 Clear cell renal carcinoma Diseases 0.000 description 1
- OMFXVFTZEKFJBZ-UHFFFAOYSA-N Corticosterone Natural products O=C1CCC2(C)C3C(O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 OMFXVFTZEKFJBZ-UHFFFAOYSA-N 0.000 description 1
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 description 1
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- FMGSKLZLMKYGDP-UHFFFAOYSA-N Dehydroepiandrosterone Natural products C1C(O)CCC2(C)C3CCC(C)(C(CC4)=O)C4C3CC=C21 FMGSKLZLMKYGDP-UHFFFAOYSA-N 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 208000021994 Diffuse astrocytoma Diseases 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 201000009051 Embryonal Carcinoma Diseases 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 208000002460 Enteropathy-Associated T-Cell Lymphoma Diseases 0.000 description 1
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 1
- 208000031637 Erythroblastic Acute Leukemia Diseases 0.000 description 1
- 208000036566 Erythroleukaemia Diseases 0.000 description 1
- DNXHEGUUPJUMQT-CBZIJGRNSA-N Estrone Chemical compound OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 DNXHEGUUPJUMQT-CBZIJGRNSA-N 0.000 description 1
- 208000006168 Ewing Sarcoma Diseases 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 206010017533 Fungal infection Diseases 0.000 description 1
- 230000010190 G1 phase Effects 0.000 description 1
- 208000022072 Gallbladder Neoplasms Diseases 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 208000021309 Germ cell tumor Diseases 0.000 description 1
- 208000008999 Giant Cell Carcinoma Diseases 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 101710113864 Heat shock protein 90 Proteins 0.000 description 1
- 208000001258 Hemangiosarcoma Diseases 0.000 description 1
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 1
- 208000017605 Hodgkin disease nodular sclerosis Diseases 0.000 description 1
- 238000010867 Hoechst staining Methods 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101001030211 Homo sapiens Myc proto-oncogene protein Proteins 0.000 description 1
- 101000577696 Homo sapiens Proline-rich transmembrane protein 2 Proteins 0.000 description 1
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 description 1
- 206010021042 Hypopharyngeal cancer Diseases 0.000 description 1
- 206010056305 Hypopharyngeal neoplasm Diseases 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 206010061252 Intraocular melanoma Diseases 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 208000018142 Leiomyosarcoma Diseases 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 206010024305 Leukaemia monocytic Diseases 0.000 description 1
- 206010061523 Lip and/or oral cavity cancer Diseases 0.000 description 1
- SMEROWZSTRWXGI-UHFFFAOYSA-N Lithocholsaeure Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)CC2 SMEROWZSTRWXGI-UHFFFAOYSA-N 0.000 description 1
- 206010049459 Lymphangioleiomyomatosis Diseases 0.000 description 1
- 208000006644 Malignant Fibrous Histiocytoma Diseases 0.000 description 1
- 208000030070 Malignant epithelial tumor of ovary Diseases 0.000 description 1
- 206010073059 Malignant neoplasm of unknown primary site Diseases 0.000 description 1
- 208000032271 Malignant tumor of penis Diseases 0.000 description 1
- 208000007054 Medullary Carcinoma Diseases 0.000 description 1
- 208000006395 Meigs Syndrome Diseases 0.000 description 1
- 206010027139 Meigs' syndrome Diseases 0.000 description 1
- 208000002030 Merkel cell carcinoma Diseases 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- 201000007224 Myeloproliferative neoplasm Diseases 0.000 description 1
- 208000001894 Nasopharyngeal Neoplasms Diseases 0.000 description 1
- 206010061306 Nasopharyngeal cancer Diseases 0.000 description 1
- 208000034176 Neoplasms, Germ Cell and Embryonal Diseases 0.000 description 1
- 206010029266 Neuroendocrine carcinoma of the skin Diseases 0.000 description 1
- 208000009905 Neurofibromatoses Diseases 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 201000010133 Oligodendroglioma Diseases 0.000 description 1
- 206010031096 Oropharyngeal cancer Diseases 0.000 description 1
- 206010057444 Oropharyngeal neoplasm Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 208000007571 Ovarian Epithelial Carcinoma Diseases 0.000 description 1
- 206010061328 Ovarian epithelial cancer Diseases 0.000 description 1
- 206010033268 Ovarian low malignant potential tumour Diseases 0.000 description 1
- 208000000821 Parathyroid Neoplasms Diseases 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 208000002471 Penile Neoplasms Diseases 0.000 description 1
- 206010034299 Penile cancer Diseases 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 206010048734 Phakomatosis Diseases 0.000 description 1
- 208000009565 Pharyngeal Neoplasms Diseases 0.000 description 1
- 206010034811 Pharyngeal cancer Diseases 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 201000007286 Pilocytic astrocytoma Diseases 0.000 description 1
- 206010050487 Pinealoblastoma Diseases 0.000 description 1
- 208000007913 Pituitary Neoplasms Diseases 0.000 description 1
- 201000008199 Pleuropulmonary blastoma Diseases 0.000 description 1
- CZWCKYRVOZZJNM-UHFFFAOYSA-N Prasterone sodium sulfate Natural products C1C(OS(O)(=O)=O)CCC2(C)C3CCC(C)(C(CC4)=O)C4C3CC=C21 CZWCKYRVOZZJNM-UHFFFAOYSA-N 0.000 description 1
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 208000032758 Precursor T-lymphoblastic lymphoma/leukaemia Diseases 0.000 description 1
- 102100028840 Proline-rich transmembrane protein 2 Human genes 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 238000003559 RNA-seq method Methods 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 108091027981 Response element Proteins 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 230000018199 S phase Effects 0.000 description 1
- 208000004337 Salivary Gland Neoplasms Diseases 0.000 description 1
- 206010061934 Salivary gland cancer Diseases 0.000 description 1
- 101100225046 Schizosaccharomyces pombe (strain 972 / ATCC 24843) ecl2 gene Proteins 0.000 description 1
- 201000010208 Seminoma Diseases 0.000 description 1
- 208000009359 Sezary Syndrome Diseases 0.000 description 1
- 208000021388 Sezary disease Diseases 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 208000004346 Smoldering Multiple Myeloma Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 208000013128 Squamous cell carcinoma of pancreas Diseases 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 101100054666 Streptomyces halstedii sch3 gene Proteins 0.000 description 1
- 208000010502 Subcutaneous panniculitis-like T-cell lymphoma Diseases 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 208000029052 T-cell acute lymphoblastic leukemia Diseases 0.000 description 1
- 206010042970 T-cell chronic lymphocytic leukaemia Diseases 0.000 description 1
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 241000015728 Taxus canadensis Species 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- 206010043515 Throat cancer Diseases 0.000 description 1
- 201000009365 Thymic carcinoma Diseases 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 208000026911 Tuberous sclerosis complex Diseases 0.000 description 1
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 description 1
- 208000015778 Undifferentiated pleomorphic sarcoma Diseases 0.000 description 1
- 208000023915 Ureteral Neoplasms Diseases 0.000 description 1
- 206010046392 Ureteric cancer Diseases 0.000 description 1
- 206010046431 Urethral cancer Diseases 0.000 description 1
- 206010046458 Urethral neoplasms Diseases 0.000 description 1
- SYGWGHVTLUBCEM-ZIZPXRJBSA-N Urocortisone Chemical compound C1[C@H](O)CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CC[C@@H]21 SYGWGHVTLUBCEM-ZIZPXRJBSA-N 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- 201000005969 Uveal melanoma Diseases 0.000 description 1
- 208000014070 Vestibular schwannoma Diseases 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 206010047741 Vulval cancer Diseases 0.000 description 1
- 208000004354 Vulvar Neoplasms Diseases 0.000 description 1
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 1
- AMWRMNZJUUZXJU-JDTILAPWSA-N [(3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] carbamate Chemical compound C1C=C2C[C@@H](OC(N)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 AMWRMNZJUUZXJU-JDTILAPWSA-N 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 229940081735 acetylcellulose Drugs 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 238000000184 acid digestion Methods 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 208000004064 acoustic neuroma Diseases 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 208000021841 acute erythroid leukemia Diseases 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001299 aldehydes Chemical group 0.000 description 1
- 229960002478 aldosterone Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 125000005083 alkoxyalkoxy group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000005600 alkyl phosphonate group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000005122 aminoalkylamino group Chemical group 0.000 description 1
- XCPGHVQEEXUHNC-UHFFFAOYSA-N amsacrine Chemical compound COC1=CC(NS(C)(=O)=O)=CC=C1NC1=C(C=CC=C2)C2=NC2=CC=CC=C12 XCPGHVQEEXUHNC-UHFFFAOYSA-N 0.000 description 1
- 229960001220 amsacrine Drugs 0.000 description 1
- 230000031016 anaphase Effects 0.000 description 1
- QADHLRWLCPCEKT-LOVVWNRFSA-N androst-5-ene-3beta,17beta-diol Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC=C21 QADHLRWLCPCEKT-LOVVWNRFSA-N 0.000 description 1
- 229960003473 androstanolone Drugs 0.000 description 1
- 229950009148 androstenediol Drugs 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 229940045799 anthracyclines and related substance Drugs 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 201000011165 anus cancer Diseases 0.000 description 1
- 208000021780 appendiceal neoplasm Diseases 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 1
- 229960002170 azathioprine Drugs 0.000 description 1
- 230000037429 base substitution Effects 0.000 description 1
- 238000002869 basic local alignment search tool Methods 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 201000007180 bile duct carcinoma Diseases 0.000 description 1
- 208000026900 bile duct neoplasm Diseases 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 208000012172 borderline epithelial tumor of ovary Diseases 0.000 description 1
- GXJABQQUPOEUTA-RDJZCZTQSA-N bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 description 1
- 229960001467 bortezomib Drugs 0.000 description 1
- 208000003362 bronchogenic carcinoma Diseases 0.000 description 1
- 201000002143 bronchus adenoma Diseases 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000000337 buffer salt Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 229960003340 calcium silicate Drugs 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 239000012830 cancer therapeutic Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229960004424 carbon dioxide Drugs 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 201000007335 cerebellar astrocytoma Diseases 0.000 description 1
- 208000030239 cerebral astrocytoma Diseases 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000000973 chemotherapeutic effect Effects 0.000 description 1
- RUDATBOHQWOJDD-BSWAIDMHSA-N chenodeoxycholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 RUDATBOHQWOJDD-BSWAIDMHSA-N 0.000 description 1
- 229960001091 chenodeoxycholic acid Drugs 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- 208000006990 cholangiocarcinoma Diseases 0.000 description 1
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 1
- 235000019416 cholic acid Nutrition 0.000 description 1
- 229960002471 cholic acid Drugs 0.000 description 1
- 201000010240 chromophobe renal cell carcinoma Diseases 0.000 description 1
- 210000004081 cilia Anatomy 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 206010073251 clear cell renal cell carcinoma Diseases 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 201000010276 collecting duct carcinoma Diseases 0.000 description 1
- 201000010897 colon adenocarcinoma Diseases 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- OMFXVFTZEKFJBZ-HJTSIMOOSA-N corticosterone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@H](CC4)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OMFXVFTZEKFJBZ-HJTSIMOOSA-N 0.000 description 1
- 229960004544 cortisone Drugs 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 208000017763 cutaneous neuroendocrine carcinoma Diseases 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 208000002445 cystadenocarcinoma Diseases 0.000 description 1
- 230000002380 cytological effect Effects 0.000 description 1
- 239000000824 cytostatic agent Substances 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- ZESRJSPZRDMNHY-UHFFFAOYSA-N de-oxy corticosterone Natural products O=C1CCC2(C)C3CCC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 ZESRJSPZRDMNHY-UHFFFAOYSA-N 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000009110 definitive therapy Methods 0.000 description 1
- FMGSKLZLMKYGDP-USOAJAOKSA-N dehydroepiandrosterone Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC=C21 FMGSKLZLMKYGDP-USOAJAOKSA-N 0.000 description 1
- CZWCKYRVOZZJNM-USOAJAOKSA-N dehydroepiandrosterone sulfate Chemical compound C1[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC=C21 CZWCKYRVOZZJNM-USOAJAOKSA-N 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 1
- 229960003964 deoxycholic acid Drugs 0.000 description 1
- 229940119740 deoxycorticosterone Drugs 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229940042935 dichlorodifluoromethane Drugs 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 206010012818 diffuse large B-cell lymphoma Diseases 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 239000008157 edible vegetable oil Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 208000037902 enteropathy Diseases 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- YJGVMLPVUAXIQN-UHFFFAOYSA-N epipodophyllotoxin Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YJGVMLPVUAXIQN-UHFFFAOYSA-N 0.000 description 1
- 229960001904 epirubicin Drugs 0.000 description 1
- 208000037828 epithelial carcinoma Diseases 0.000 description 1
- DNVPQKQSNYMLRS-SOWFXMKYSA-N ergosterol Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H](CC[C@]3([C@H]([C@H](C)/C=C/[C@@H](C)C(C)C)CC[C@H]33)C)C3=CC=C21 DNVPQKQSNYMLRS-SOWFXMKYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229960005309 estradiol Drugs 0.000 description 1
- 229930182833 estradiol Natural products 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 229960003399 estrone Drugs 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 229960000752 etoposide phosphate Drugs 0.000 description 1
- LIQODXNTTZAGID-OCBXBXKTSA-N etoposide phosphate Chemical compound COC1=C(OP(O)(O)=O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 LIQODXNTTZAGID-OCBXBXKTSA-N 0.000 description 1
- 108010032819 exoribonuclease II Proteins 0.000 description 1
- 239000011536 extraction buffer Substances 0.000 description 1
- 201000006569 extramedullary plasmacytoma Diseases 0.000 description 1
- 208000024519 eye neoplasm Diseases 0.000 description 1
- 150000002192 fatty aldehydes Chemical class 0.000 description 1
- 201000001169 fibrillary astrocytoma Diseases 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012054 flavored emulsion Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000020375 flavoured syrup Nutrition 0.000 description 1
- 230000003325 follicular Effects 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 208000024386 fungal infectious disease Diseases 0.000 description 1
- 201000010175 gallbladder cancer Diseases 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 201000011243 gastrointestinal stromal tumor Diseases 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 229940014259 gelatin Drugs 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 201000007116 gestational trophoblastic neoplasm Diseases 0.000 description 1
- 229940080856 gleevec Drugs 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 1
- 201000005787 hematologic cancer Diseases 0.000 description 1
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 1
- 208000021173 high grade B-cell lymphoma Diseases 0.000 description 1
- 208000029824 high grade glioma Diseases 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 108091008147 housekeeping proteins Proteins 0.000 description 1
- 102000053563 human MYC Human genes 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 201000006866 hypopharynx cancer Diseases 0.000 description 1
- 230000002267 hypothalamic effect Effects 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 1
- 229960003685 imatinib mesylate Drugs 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 230000001861 immunosuppressant effect Effects 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 208000015266 indolent plasma cell myeloma Diseases 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 208000028774 intestinal disease Diseases 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 201000008893 intraocular retinoblastoma Diseases 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 201000007785 kidney angiomyolipoma Diseases 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 210000000244 kidney pelvis Anatomy 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 206010024627 liposarcoma Diseases 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- SMEROWZSTRWXGI-HVATVPOCSA-N lithocholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 SMEROWZSTRWXGI-HVATVPOCSA-N 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- DNVPQKQSNYMLRS-YAPGYIAOSA-N lumisterol Chemical compound C1[C@@H](O)CC[C@@]2(C)[C@H](CC[C@@]3([C@@H]([C@H](C)/C=C/[C@H](C)C(C)C)CC[C@H]33)C)C3=CC=C21 DNVPQKQSNYMLRS-YAPGYIAOSA-N 0.000 description 1
- 201000005249 lung adenocarcinoma Diseases 0.000 description 1
- 201000005296 lung carcinoma Diseases 0.000 description 1
- 201000000014 lung giant cell carcinoma Diseases 0.000 description 1
- 208000012804 lymphangiosarcoma Diseases 0.000 description 1
- 230000000527 lymphocytic effect Effects 0.000 description 1
- 201000000564 macroglobulinemia Diseases 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 208000030883 malignant astrocytoma Diseases 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 201000011614 malignant glioma Diseases 0.000 description 1
- 208000020984 malignant renal pelvis neoplasm Diseases 0.000 description 1
- 208000026045 malignant tumor of parathyroid gland Diseases 0.000 description 1
- 201000007924 marginal zone B-cell lymphoma Diseases 0.000 description 1
- 208000021937 marginal zone lymphoma Diseases 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229960004961 mechlorethamine Drugs 0.000 description 1
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 1
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 1
- 229960001924 melphalan Drugs 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 206010027191 meningioma Diseases 0.000 description 1
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 1
- 229960001428 mercaptopurine Drugs 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 208000037970 metastatic squamous neck cancer Diseases 0.000 description 1
- HPZMWTNATZPBIH-UHFFFAOYSA-N methyl adenine Natural products CN1C=NC2=NC=NC2=C1N HPZMWTNATZPBIH-UHFFFAOYSA-N 0.000 description 1
- GTCAXTIRRLKXRU-UHFFFAOYSA-N methyl carbamate Chemical compound COC(N)=O GTCAXTIRRLKXRU-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 201000006894 monocytic leukemia Diseases 0.000 description 1
- 206010051747 multiple endocrine neoplasia Diseases 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 208000017869 myelodysplastic/myeloproliferative disease Diseases 0.000 description 1
- 206010028537 myelofibrosis Diseases 0.000 description 1
- 208000001611 myxosarcoma Diseases 0.000 description 1
- 208000018795 nasal cavity and paranasal sinus carcinoma Diseases 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 208000025189 neoplasm of testis Diseases 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 230000010309 neoplastic transformation Effects 0.000 description 1
- 201000002120 neuroendocrine carcinoma Diseases 0.000 description 1
- 201000004931 neurofibromatosis Diseases 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 208000015270 non-secretory plasma cell myeloma Diseases 0.000 description 1
- 239000002687 nonaqueous vehicle Substances 0.000 description 1
- 201000011330 nonpapillary renal cell carcinoma Diseases 0.000 description 1
- 230000006849 nucleocytoplasmic transport Effects 0.000 description 1
- 230000001293 nucleolytic effect Effects 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 210000004287 null lymphocyte Anatomy 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 201000008106 ocular cancer Diseases 0.000 description 1
- 201000002575 ocular melanoma Diseases 0.000 description 1
- 239000012053 oil suspension Substances 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- 201000006958 oropharynx cancer Diseases 0.000 description 1
- 201000007426 ovarian cystadenocarcinoma Diseases 0.000 description 1
- 229960001756 oxaliplatin Drugs 0.000 description 1
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 201000002094 pancreatic adenocarcinoma Diseases 0.000 description 1
- 201000011144 pancreatic adenosquamous carcinoma Diseases 0.000 description 1
- 201000006691 pancreatic squamous cell carcinoma Diseases 0.000 description 1
- 208000004019 papillary adenocarcinoma Diseases 0.000 description 1
- 201000010198 papillary carcinoma Diseases 0.000 description 1
- 201000010279 papillary renal cell carcinoma Diseases 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 238000009520 phase I clinical trial Methods 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- 150000002991 phenoxazines Chemical class 0.000 description 1
- 208000028591 pheochromocytoma Diseases 0.000 description 1
- 150000008298 phosphoramidates Chemical class 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 208000024724 pineal body neoplasm Diseases 0.000 description 1
- 201000004123 pineal gland cancer Diseases 0.000 description 1
- 201000003113 pineoblastoma Diseases 0.000 description 1
- 208000010916 pituitary tumor Diseases 0.000 description 1
- 229960001237 podophyllotoxin Drugs 0.000 description 1
- YJGVMLPVUAXIQN-XVVDYKMHSA-N podophyllotoxin Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H]3[C@@H]2C(OC3)=O)=C1 YJGVMLPVUAXIQN-XVVDYKMHSA-N 0.000 description 1
- YVCVYCSAAZQOJI-UHFFFAOYSA-N podophyllotoxin Natural products COC1=C(O)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YVCVYCSAAZQOJI-UHFFFAOYSA-N 0.000 description 1
- 150000004291 polyenes Chemical class 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 229960002847 prasterone Drugs 0.000 description 1
- 229950009829 prasterone sulfate Drugs 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- 210000004986 primary T-cell Anatomy 0.000 description 1
- 208000003476 primary myelofibrosis Diseases 0.000 description 1
- 210000001948 pro-b lymphocyte Anatomy 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical class CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- IGFXRKMLLMBKSA-UHFFFAOYSA-N purine Chemical compound N1=C[N]C2=NC=NC2=C1 IGFXRKMLLMBKSA-UHFFFAOYSA-N 0.000 description 1
- UBQKCCHYAOITMY-UHFFFAOYSA-N pyridin-2-ol Chemical compound OC1=CC=CC=N1 UBQKCCHYAOITMY-UHFFFAOYSA-N 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- RXTQGIIIYVEHBN-UHFFFAOYSA-N pyrimido[4,5-b]indol-2-one Chemical compound C1=CC=CC2=NC3=NC(=O)N=CC3=C21 RXTQGIIIYVEHBN-UHFFFAOYSA-N 0.000 description 1
- SRBUGYKMBLUTIS-UHFFFAOYSA-N pyrrolo[2,3-d]pyrimidin-2-one Chemical compound O=C1N=CC2=CC=NC2=N1 SRBUGYKMBLUTIS-UHFFFAOYSA-N 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000010833 quantitative mass spectrometry Methods 0.000 description 1
- 238000003762 quantitative reverse transcription PCR Methods 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 206010038038 rectal cancer Diseases 0.000 description 1
- 201000001275 rectum cancer Diseases 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 201000007444 renal pelvis carcinoma Diseases 0.000 description 1
- 125000006853 reporter group Chemical group 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 125000000548 ribosyl group Chemical group C1([C@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 201000008407 sebaceous adenocarcinoma Diseases 0.000 description 1
- 239000012056 semi-solid material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 201000002314 small intestine cancer Diseases 0.000 description 1
- 208000010721 smoldering plasma cell myeloma Diseases 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 206010062113 splenic marginal zone lymphoma Diseases 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 208000017572 squamous cell neoplasm Diseases 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000012058 sterile packaged powder Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 201000010965 sweat gland carcinoma Diseases 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- AODPIQQILQLWGS-GXBDJPPSSA-N tetrahydrocortisol Chemical compound C1[C@H](O)CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CC[C@@H]21 AODPIQQILQLWGS-GXBDJPPSSA-N 0.000 description 1
- 230000002992 thymic effect Effects 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 230000008467 tissue growth Effects 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 206010044412 transitional cell carcinoma Diseases 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- 150000005671 trienes Chemical class 0.000 description 1
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 208000009999 tuberous sclerosis Diseases 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000005740 tumor formation Effects 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 1
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 1
- 201000011294 ureter cancer Diseases 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 206010046885 vaginal cancer Diseases 0.000 description 1
- 208000013139 vaginal neoplasm Diseases 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 229960004355 vindesine Drugs 0.000 description 1
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 1
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- 210000000239 visual pathway Anatomy 0.000 description 1
- 230000004400 visual pathway Effects 0.000 description 1
- 201000005102 vulva cancer Diseases 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1135—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against oncogenes or tumor suppressor genes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/7125—Nucleic acids or oligonucleotides having modified internucleoside linkage, i.e. other than 3'-5' phosphodiesters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/11—Antisense
- C12N2310/111—Antisense spanning the whole gene, or a large part of it
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/314—Phosphoramidates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/315—Phosphorothioates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/34—Spatial arrangement of the modifications
- C12N2310/345—Spatial arrangement of the modifications having at least two different backbone modifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/35—Nature of the modification
- C12N2310/351—Conjugate
- C12N2310/3515—Lipophilic moiety, e.g. cholesterol
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/35—Nature of the modification
- C12N2310/351—Conjugate
- C12N2310/3517—Marker; Tag
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Biotechnology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Oncology (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Provided herein are antisense oligonucleotides that can effectively prevent or decrease c-myc protein expression as well as decrease overall rates of cell proliferation in in vitro and mammalian in vivo models of cell proliferative disorders as well as methods for using the same. The antisense oligonucleotides comprise at least one phosphoramidate (NP)-modified or thiophosphoramidate (NPS)-modified intersubunit linkage.
Description
C-MYC ANTISENSE OLIGONUCLEOTIDES AND METHODS FOR USING THE
SAME TO TREAT CELL-PROLIFERATIVE DISORDERS
FIELD OF THE INVENTION
SAME TO TREAT CELL-PROLIFERATIVE DISORDERS
FIELD OF THE INVENTION
[0002] This invention relates to antisense c-myc oligonucleotides having specific intemucleoside subunit linkages and methods for using the same for the treatment of cancer and other cell proliferative disorders.
BACKGROUND
100031 Cancer is a leading cause of death worldwide. Despite significant advances in the field of chemotherapy, many of the most prevalent forms of cancer still resist chemotherapeutic intervention. Over the past several years, antisense oligodeoxynucleotides (ODNs) have been proposed as therapeutic molecules for the treatment of cancer. Several antisense ODNs targeting a variety of molecules have been shown to have antiproliferative effects against neoplastic cells in vitro and in vivo (Gewirtz, 2000, J. Clin. Oncol. 18:1809-1811), and several have demonstrated anti-tumor activity and limited toxicity in Phase I clinical trials (Smith and Wickstrom, 2000, Methods Enzymol. 314:537-580). However, use of antisense ODNs for inhibition of gene expression raises several problems, including possible degradation by nucleolytic enzymes and the difficulty antisense ODNs have in crossing biological membranes and entering cells.
100041 The c-myc protein is a member of the helix-loop-helix/leucine zipper (HLH/LZ)1 family of transcription factors that forms heterodimers with Max (Ayer &
Eisenman, Genes Devel. 7:2110-2119, 1993). In general, trans-activating Myc:Max heterodimers are found in proliferating cells, while trans-repressing Mad:Max heterodimers are found in differentiated Date regue/Date received 2023-05-26 cells. C-myc protein level influences cell proliferation, differentiation, and neoplastic transformation, presumably by affecting the balance between Myc:Max and Mad:Max heterodimers (Spencer & Groudine, Adv. Cancer. Res. 56:1-48, 1991).
[0005] When c-myc protein is overexpressed or is induced at inappropriate times, this balance is perturbed, and cell proliferation and differentiation are disrupted. For example, c-myc overexpression prevents or delays cell differentiation (Coppola & Cole, Nature 320:760-763, 1986). It also blocks serum-starved cells from entering the Ga phase of the cell cycle and instead induces them to undergo apoptosis. Overexpression of c-myc has also been implicated in tumor formation in experimental animals and in human patients with Burkitt's lymphoma (Klein, Genes, Chromosomes, Cancer 1:3-8, 1989). These and other deleterious consequences of aberrant c-myc expression highlight the importance of proper c-myc gene regulation and how unregulated expression of this gene can result in cell proliferative disorders.
[0006] Given the specificity of antisense ODNs toward their mRNA targets and the role played by c-myc overexpression in cancer, what is needed, therefore, is an antisense ODN
therapeutic capable of decreasing or eliminating c-myc protein expression in proliferating cells expressing c-myc mRNA and protein.
[0007] Throughout this specification, various patents, patent applications and other types of publications (e.g., journal articles) are referenced.
SUMMARY OF THE INVENTION
[0008] The invention provided herein discloses, inter alia, compositions and methods for the fabrication and use of c-myc antisense oligonucleotides for the treatment of cell proliferative disorders.
[0009] Accordingly, in one aspect, provided herein are oligonucleotides comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein at least one of the intersubunit linkages is a thiophosphoramidate linkage, wherein the oligonucleotide is about 6 to about 30 nucleotides, or about 6 to about 20 nucleotides in length, and wherein the oligonucleotide Date recue/Date received 2023-05-26 prevents translation of the mRNA by steric hindrance. In some embodiments, about 20% to about 90% of the intersubunit linkages are thiophosphoramidate linkages. In some embodiments, 100% of the intersubunit linkages arc thiophosphoramidate linkages.
[0010] In other aspects, provided herein are oligonucleotides comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein the oligonucleotide comprises alternating thiophosphoramidate or phosphoramidate and thiophosphate or phosphate intersubunit linkages, wherein the oligonucleotide is about 6 to about 30 nucleotides, or about 6 to about 20 nucleotides in length, and wherein the oligonucleotide is a substrate for RNase-H-mediated degradation of the mRNA from a c-myc gene or wherein the oligonucleotide prevents translation of the mRNA by steric hindrance. In some embodiments, the oligonucleotide comprises alternating thiophosphoramidate and thiophosphate linkages. In some embodiments, the oligonucleotide comprises alternating thiophosphoramidate and phosphate linkages. In some embodiments, the oligonucleotide comprises alternating phosphoramidate and thiophosphate linkages. In some embodiments, the oligonucleotide comprises alternating phosphoramidate and phosphate linkages. In some embodiments, the oligonucleotide comprises at least about 45% to 55% thiophosphoramidate linkages. In some embodiments of any of the embodiments herein, the oligonucleotide comprises at least about 45% to 55% phosphoramidate linkages. In some embodiments of any of the embodiments herein, contacting the oligonucleotide with a proliferating cell decreases relative c-myc protein expression in the cell by at least about 50% in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments of any of the embodiments herein, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than 50% in comparison to cells that have not been contacted with the oligonucleotide.
[0011] In other aspects, provided herein are oligonucleotides comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein the oligonucleotide comprises two or more contiguous thiophosphoramidate linkages located on both the 5' and 3' ends of the oligonucleotide, wherein the oligonucleotide is about 6 to about 30 nucleotides, or about 6 to about 20 nucleotides in length, and wherein the oligonucleotide is a substrate for RNase-H-
BACKGROUND
100031 Cancer is a leading cause of death worldwide. Despite significant advances in the field of chemotherapy, many of the most prevalent forms of cancer still resist chemotherapeutic intervention. Over the past several years, antisense oligodeoxynucleotides (ODNs) have been proposed as therapeutic molecules for the treatment of cancer. Several antisense ODNs targeting a variety of molecules have been shown to have antiproliferative effects against neoplastic cells in vitro and in vivo (Gewirtz, 2000, J. Clin. Oncol. 18:1809-1811), and several have demonstrated anti-tumor activity and limited toxicity in Phase I clinical trials (Smith and Wickstrom, 2000, Methods Enzymol. 314:537-580). However, use of antisense ODNs for inhibition of gene expression raises several problems, including possible degradation by nucleolytic enzymes and the difficulty antisense ODNs have in crossing biological membranes and entering cells.
100041 The c-myc protein is a member of the helix-loop-helix/leucine zipper (HLH/LZ)1 family of transcription factors that forms heterodimers with Max (Ayer &
Eisenman, Genes Devel. 7:2110-2119, 1993). In general, trans-activating Myc:Max heterodimers are found in proliferating cells, while trans-repressing Mad:Max heterodimers are found in differentiated Date regue/Date received 2023-05-26 cells. C-myc protein level influences cell proliferation, differentiation, and neoplastic transformation, presumably by affecting the balance between Myc:Max and Mad:Max heterodimers (Spencer & Groudine, Adv. Cancer. Res. 56:1-48, 1991).
[0005] When c-myc protein is overexpressed or is induced at inappropriate times, this balance is perturbed, and cell proliferation and differentiation are disrupted. For example, c-myc overexpression prevents or delays cell differentiation (Coppola & Cole, Nature 320:760-763, 1986). It also blocks serum-starved cells from entering the Ga phase of the cell cycle and instead induces them to undergo apoptosis. Overexpression of c-myc has also been implicated in tumor formation in experimental animals and in human patients with Burkitt's lymphoma (Klein, Genes, Chromosomes, Cancer 1:3-8, 1989). These and other deleterious consequences of aberrant c-myc expression highlight the importance of proper c-myc gene regulation and how unregulated expression of this gene can result in cell proliferative disorders.
[0006] Given the specificity of antisense ODNs toward their mRNA targets and the role played by c-myc overexpression in cancer, what is needed, therefore, is an antisense ODN
therapeutic capable of decreasing or eliminating c-myc protein expression in proliferating cells expressing c-myc mRNA and protein.
[0007] Throughout this specification, various patents, patent applications and other types of publications (e.g., journal articles) are referenced.
SUMMARY OF THE INVENTION
[0008] The invention provided herein discloses, inter alia, compositions and methods for the fabrication and use of c-myc antisense oligonucleotides for the treatment of cell proliferative disorders.
[0009] Accordingly, in one aspect, provided herein are oligonucleotides comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein at least one of the intersubunit linkages is a thiophosphoramidate linkage, wherein the oligonucleotide is about 6 to about 30 nucleotides, or about 6 to about 20 nucleotides in length, and wherein the oligonucleotide Date recue/Date received 2023-05-26 prevents translation of the mRNA by steric hindrance. In some embodiments, about 20% to about 90% of the intersubunit linkages are thiophosphoramidate linkages. In some embodiments, 100% of the intersubunit linkages arc thiophosphoramidate linkages.
[0010] In other aspects, provided herein are oligonucleotides comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein the oligonucleotide comprises alternating thiophosphoramidate or phosphoramidate and thiophosphate or phosphate intersubunit linkages, wherein the oligonucleotide is about 6 to about 30 nucleotides, or about 6 to about 20 nucleotides in length, and wherein the oligonucleotide is a substrate for RNase-H-mediated degradation of the mRNA from a c-myc gene or wherein the oligonucleotide prevents translation of the mRNA by steric hindrance. In some embodiments, the oligonucleotide comprises alternating thiophosphoramidate and thiophosphate linkages. In some embodiments, the oligonucleotide comprises alternating thiophosphoramidate and phosphate linkages. In some embodiments, the oligonucleotide comprises alternating phosphoramidate and thiophosphate linkages. In some embodiments, the oligonucleotide comprises alternating phosphoramidate and phosphate linkages. In some embodiments, the oligonucleotide comprises at least about 45% to 55% thiophosphoramidate linkages. In some embodiments of any of the embodiments herein, the oligonucleotide comprises at least about 45% to 55% phosphoramidate linkages. In some embodiments of any of the embodiments herein, contacting the oligonucleotide with a proliferating cell decreases relative c-myc protein expression in the cell by at least about 50% in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments of any of the embodiments herein, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than 50% in comparison to cells that have not been contacted with the oligonucleotide.
[0011] In other aspects, provided herein are oligonucleotides comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein the oligonucleotide comprises two or more contiguous thiophosphoramidate linkages located on both the 5' and 3' ends of the oligonucleotide, wherein the oligonucleotide is about 6 to about 30 nucleotides, or about 6 to about 20 nucleotides in length, and wherein the oligonucleotide is a substrate for RNase-H-
3 Date regue/Date received 2023-05-26 mediated degradation of the mRNA from a c-myc gene. In some embodiments, the oligonucleotide further comprises two or more contiguous thiophosphate or phosphate linkages located in between the two or more contiguous thiophosphoramidate linkages located on both the 5' and 3' ends of the oligonucleotide. In some embodiments, the oligonucleotide comprises four contiguous thiophosphoramidate linkages located on the 5' end of the oligonucleotide, five contiguous thiophosphoramidate linkages located on the 3' end of the oligonucicotide, and six contiguous thiophosphate or phosphate linkages located between the four contiguous thiophosphoramidate linkages located on the 5' end of the oligonucleotide and the five contiguous thiophosphoramidate linkages located on the 3' end of the oligonucleotide. In some embodiments of any of the embodiments herein, contacting the oligonucleotide with a proliferating cell decreases relative c-myc protein expression in the cell by at least about 50% in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments of any of the embodiments herein, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than 50% in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments of any of the embodiments herein, the oligonucleotide is at least 95% complementary to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence ACGTTGAGGGGCAT (SEQ ID NO:15). In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence TCGTCGCGGGAGGCTG (SEQ ID NO:16). In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence AACGTTGAGGGGCAT (SEQ ID
NO:1), UAACGTTGAGGGGCA (SEQ ID NO:2), TAACGTTGAGGGGCAT (SEQ ID NO:3), or T1TCATTGTTITCCA (SEQ ID NO:4), CTCGTCGTI'l CCGCAACAAG (SEQ ID NO:6), ACGTTGAGGGGCATCGTCGC (SEQ ID NO:7), AACGTTGAGGGGCATCGTCG (SEQ ID
NO:8), CTGCTGTCUITGAGAGGGTA (SEQ Ill NO:9), GGCATCGTCGCGGGAGGCTGCTGGAGCG (SEQ ID NO:10), GGCATCGTCGCGGGAGGCTG (SEQ ID NO:11), TCGTCGCGGGAGGCTGCTGG (SEQ
Ill NO:12), CCGCCCGCTCGCTCCCTCTG (SEQ Ill NO:13), or GTTCTCCTCCTCGTCGCAGT (SEQ ID NO:14).
[0012] In other aspects, provided herein arc oligonucleotides comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the
NO:1), UAACGTTGAGGGGCA (SEQ ID NO:2), TAACGTTGAGGGGCAT (SEQ ID NO:3), or T1TCATTGTTITCCA (SEQ ID NO:4), CTCGTCGTI'l CCGCAACAAG (SEQ ID NO:6), ACGTTGAGGGGCATCGTCGC (SEQ ID NO:7), AACGTTGAGGGGCATCGTCG (SEQ ID
NO:8), CTGCTGTCUITGAGAGGGTA (SEQ Ill NO:9), GGCATCGTCGCGGGAGGCTGCTGGAGCG (SEQ ID NO:10), GGCATCGTCGCGGGAGGCTG (SEQ ID NO:11), TCGTCGCGGGAGGCTGCTGG (SEQ
Ill NO:12), CCGCCCGCTCGCTCCCTCTG (SEQ Ill NO:13), or GTTCTCCTCCTCGTCGCAGT (SEQ ID NO:14).
[0012] In other aspects, provided herein arc oligonucleotides comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the
4 Date regue/Date received 2023-05-26 oligonucleotide are joined by intersubunit linkages, wherein the oligonucleotide comprises two or more contiguous thiophosphoramidate linkages located on both the 5' and 3' ends of the oligonucleotide, wherein the oligonucleotidc is about 6 to about 30 nucleotides, or about 6 to about 20 nucleotides in length, and wherein the oligonucleotide is a substrate for RNase-H-mediated degradation of the mRNA from a c-myc gene and/or prevents translation of the mRNA
by steric hindrance. In some embodiments, the oligonucleotide further comprises two or more contiguous thiophosphate or phosphate linkages located in between the two or more contiguous thiophosphoramidate linkages located on both the 5' and 3' ends of the oligonucleotide. In some embodiments, the oligonucleotide comprises live contiguous thiophosphoramidate linkages located on the 5' end of the oligonucleotide, four contiguous thiophosphoramidate linkages located on the 3' end of the oligonucleotide, and six contiguous thiophosphate or phosphate linkages located between the five contiguous thiophosphoramidate linkages located on the 5' end of the oligonucleotide and the four contiguous thiophosphoramidate linkages located on the 3' end of the oligonucleotide. In some embodiments of any of the embodiments herein, the oligonucleotide is at least 95% complementary to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence ACGTI'GAGGGGCAT (SEQ ID NO:15). In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence TCGTCGCGGGAGGCTG (SEQ ID NO:16). In sonic embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence AACGTTGAGGGGCAT (SEQ Ill N0:1), UAACGTTGAGGGGCA (SEQ ID NO:2), TAACGTTGAGGGGCAT (SEQ ID NO:3), or TTTCATTGTTTTCCA (SEQ ID NO:4), CTCGTCGTTTCCGCAACAAG (SEQ ID NO:6), ACGTTGAGGGGCATCGTCGC (SEQ ID NO:7), AACGTTGAGGGGCATCGTCG (SEQ ID
NO:8), CTGCTGTCGTTGAGAGGGTA (SEQ ID NO:9), GGCATCGTCGCGGGAGGCTGCTGGAGCG (SEQ ID NO:10), GGCATCGTCGCGGGAGGCTG (SEQ Ill NO:11), TCGTCGCGGGAGGCTGCTGG (SEQ
ID NO:12), CCGCCCGCTCGCTCCCTCTG (SEQ ID NO:13), or GTTCTCCTCCTCGTCGCAGT (SEQ ID NO:14)..
[0013] In other aspects, provided herein are oligonucleotides comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein the oligonucleotide is a substrate for RNase-H-mediated degradation of the mRNA from a c-myc gene, and wherein the Date regue/Date received 2023-05-26 oligonucleotide comprises at least two contiguous phosphoramidate intersubunit linkages located on the 5' end of the oligonucleotide; wherein the oligonucleotide comprises at least two contiguous phosphoramidatc intersubunit linkages located on the 3' end of the oligonucleotide;
wherein the oligonucleotide comprises 2-11 contiguous thiophosphate or phosphate linkages located in between said at least two contiguous phosphoramidate linkages located on the 5' end and said at least two contiguous phosphoramidate linkages located on the 3' end of the oligonucleotide; and wherein the oligonucleotide comprises the sequence AACOTTGAGOGGCAT (SEQ ID NO:1). In some embodiments, contacting the oligonucleotide with a proliferating cell decreases relative c-myc protein expression in the cell by at least about 50% in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, contacting any of the oligonucleoti des disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than 50% in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments of any of the embodiments herein, the oligonucleotide further comprises one or more lipid or cholesterol moieties. In some embodiments of any of the embodiments herein, the one or more lipid or cholesterol moieties are connected to the oligonucleotide via a linker. In some embodiments, the one or more lipid or cholesterol moieties is/are located on the 5' end of the oligonucleotide, the 3' end of the oligonucleotide, or both the
by steric hindrance. In some embodiments, the oligonucleotide further comprises two or more contiguous thiophosphate or phosphate linkages located in between the two or more contiguous thiophosphoramidate linkages located on both the 5' and 3' ends of the oligonucleotide. In some embodiments, the oligonucleotide comprises live contiguous thiophosphoramidate linkages located on the 5' end of the oligonucleotide, four contiguous thiophosphoramidate linkages located on the 3' end of the oligonucleotide, and six contiguous thiophosphate or phosphate linkages located between the five contiguous thiophosphoramidate linkages located on the 5' end of the oligonucleotide and the four contiguous thiophosphoramidate linkages located on the 3' end of the oligonucleotide. In some embodiments of any of the embodiments herein, the oligonucleotide is at least 95% complementary to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence ACGTI'GAGGGGCAT (SEQ ID NO:15). In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence TCGTCGCGGGAGGCTG (SEQ ID NO:16). In sonic embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence AACGTTGAGGGGCAT (SEQ Ill N0:1), UAACGTTGAGGGGCA (SEQ ID NO:2), TAACGTTGAGGGGCAT (SEQ ID NO:3), or TTTCATTGTTTTCCA (SEQ ID NO:4), CTCGTCGTTTCCGCAACAAG (SEQ ID NO:6), ACGTTGAGGGGCATCGTCGC (SEQ ID NO:7), AACGTTGAGGGGCATCGTCG (SEQ ID
NO:8), CTGCTGTCGTTGAGAGGGTA (SEQ ID NO:9), GGCATCGTCGCGGGAGGCTGCTGGAGCG (SEQ ID NO:10), GGCATCGTCGCGGGAGGCTG (SEQ Ill NO:11), TCGTCGCGGGAGGCTGCTGG (SEQ
ID NO:12), CCGCCCGCTCGCTCCCTCTG (SEQ ID NO:13), or GTTCTCCTCCTCGTCGCAGT (SEQ ID NO:14)..
[0013] In other aspects, provided herein are oligonucleotides comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein the oligonucleotide is a substrate for RNase-H-mediated degradation of the mRNA from a c-myc gene, and wherein the Date regue/Date received 2023-05-26 oligonucleotide comprises at least two contiguous phosphoramidate intersubunit linkages located on the 5' end of the oligonucleotide; wherein the oligonucleotide comprises at least two contiguous phosphoramidatc intersubunit linkages located on the 3' end of the oligonucleotide;
wherein the oligonucleotide comprises 2-11 contiguous thiophosphate or phosphate linkages located in between said at least two contiguous phosphoramidate linkages located on the 5' end and said at least two contiguous phosphoramidate linkages located on the 3' end of the oligonucleotide; and wherein the oligonucleotide comprises the sequence AACOTTGAGOGGCAT (SEQ ID NO:1). In some embodiments, contacting the oligonucleotide with a proliferating cell decreases relative c-myc protein expression in the cell by at least about 50% in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, contacting any of the oligonucleoti des disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than 50% in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments of any of the embodiments herein, the oligonucleotide further comprises one or more lipid or cholesterol moieties. In some embodiments of any of the embodiments herein, the one or more lipid or cholesterol moieties are connected to the oligonucleotide via a linker. In some embodiments, the one or more lipid or cholesterol moieties is/are located on the 5' end of the oligonucleotide, the 3' end of the oligonucleotide, or both the
5' and 3' ends of the oligonucleotide. In some embodiments the lipid or the cholesterol moiety is located on the 5' end of the oligonucleotide. In some embodiments of any of the embodiments herein, the lipid moiety comprises a Caprylic acid, a Capric acid, a Laurie acid, a Myristic acid, a Pahnitic acid, a Stearic acid, a Araehidic acid, a Behenic acid, a Lignoceric acid, or a Cerotic acid. In some embodiments, the lipid moiety comprises a Palmitic acid. In some embodiments, the oligonucleotide further comprises a fluorescent dye label. In some embodiments, the fluorescent dye label is tetramethylrhodamine (TAMRA).
[0014] In other aspects, provided herein are pharmaceutical compositions comprising one or more of any of the oligonucleotides disclosed herein. In some embodiments, the pharmaceutical compositions further comprise a pharmaceutically acceptable carrier. In some embodiments of any of the embodiments herein, the composition is formulated for oral, intravenous, subcutaneous, intramuscular, topical, intraperitoneal, intranasal, inhalation, intratumor, or intraocular administration.
[0014] In other aspects, provided herein are pharmaceutical compositions comprising one or more of any of the oligonucleotides disclosed herein. In some embodiments, the pharmaceutical compositions further comprise a pharmaceutically acceptable carrier. In some embodiments of any of the embodiments herein, the composition is formulated for oral, intravenous, subcutaneous, intramuscular, topical, intraperitoneal, intranasal, inhalation, intratumor, or intraocular administration.
6 Date regue/Date received 2023-05-26 [0015] In other aspects, provided herein are methods for treating or preventing a cell proliferative disorder in an individual in need thereof comprising:
administering to the individual a therapeutically effective amount of one or more of the oligonucleotides disclosed herein or a pharmaceutical composition disclosed herein, wherein administration of one or more of the oligonucleotides relieves at least one symptom of the cell proliferative disorder. In some embodiments, the cell proliferative disorder is cancer. In some embodiments, the cancer is liver cancer or a cancer resulting from B-cell proliferation. In some embodiments of any of the embodiments herein, administration of the therapeutically effective amount of one or more of the oligonucleotides comprises contacting one or more cancer cells with the oligonucleotides. In some embodiments of any of the embodiments herein, administration of the therapeutically effective amount of one or more of the oligonucleotides results in one or more of reduced cellular proliferation, increased apoptosis, or cellular senescence. In some embodiments of any of the embodiments herein, administration of the therapeutically effective amount of one or more of the oligonucleotides does not result in significant toxicity or morbidity in the individual.
In some embodiments of any of the embodiments herein, the method further comprises administering to the individual a therapeutically effective amount of one or more additional cancer therapeutic agents. In some embodiments of any of the embodiments herein, the oligonucleotides or the pharmaceutical composition is/are administered orally, intravenously, subcutaneously, intramuscularly, topically, intraperitoneally, intranasaly, intradermally, by inhalation, intratumorally, or intraocularly. In some embodiments of any of the embodiments herein, the individual is human.
[0016] In other aspects, provided herein are kits comprising: one or more of the oligonucleotides disclosed herein; and/or one or more of the pharmaceutical compositions disclosed herein.
DESCRIPTION OF THE DRAWINGS
[0017] Figure 1 depicts inhibition of proliferation of IIepG2 liver cancer cells due to anti-c-myc oligonucleotides in vitro. (A). Percentage of relative growth of HepG2 cells treated with AS ODNs for four or six days. (B). Percentage of relative growth of HepG2 cells treated with AS ODNs for four, six, or eight days. Cell growth is normalized to untreated controls.
administering to the individual a therapeutically effective amount of one or more of the oligonucleotides disclosed herein or a pharmaceutical composition disclosed herein, wherein administration of one or more of the oligonucleotides relieves at least one symptom of the cell proliferative disorder. In some embodiments, the cell proliferative disorder is cancer. In some embodiments, the cancer is liver cancer or a cancer resulting from B-cell proliferation. In some embodiments of any of the embodiments herein, administration of the therapeutically effective amount of one or more of the oligonucleotides comprises contacting one or more cancer cells with the oligonucleotides. In some embodiments of any of the embodiments herein, administration of the therapeutically effective amount of one or more of the oligonucleotides results in one or more of reduced cellular proliferation, increased apoptosis, or cellular senescence. In some embodiments of any of the embodiments herein, administration of the therapeutically effective amount of one or more of the oligonucleotides does not result in significant toxicity or morbidity in the individual.
In some embodiments of any of the embodiments herein, the method further comprises administering to the individual a therapeutically effective amount of one or more additional cancer therapeutic agents. In some embodiments of any of the embodiments herein, the oligonucleotides or the pharmaceutical composition is/are administered orally, intravenously, subcutaneously, intramuscularly, topically, intraperitoneally, intranasaly, intradermally, by inhalation, intratumorally, or intraocularly. In some embodiments of any of the embodiments herein, the individual is human.
[0016] In other aspects, provided herein are kits comprising: one or more of the oligonucleotides disclosed herein; and/or one or more of the pharmaceutical compositions disclosed herein.
DESCRIPTION OF THE DRAWINGS
[0017] Figure 1 depicts inhibition of proliferation of IIepG2 liver cancer cells due to anti-c-myc oligonucleotides in vitro. (A). Percentage of relative growth of HepG2 cells treated with AS ODNs for four or six days. (B). Percentage of relative growth of HepG2 cells treated with AS ODNs for four, six, or eight days. Cell growth is normalized to untreated controls.
7 Date regue/Date received 2023-05-26 [0018] Figure 2 depicts Western blot analyses of c-myc protein levels in HepG2 cells treated in vitro with antisense c-myc oligonucleotides, sense controls, or untreated controls for one (A), two (B), and three (C) days at 1 pM versus untreated controls. The three day experiment depicted in (C) also utilized the HepG2-Luc cells utilized in the in vivo tumor regression and prevention experiments for determining c-myc protein level following treatment with antisense c-myc oligonucleotides (see Example 3). HSP90 was utilized as a loading control and relative protein expression was normalized versus untreated (Unt) controls. (D). c-myc protein expression in cells treated with AS ODNs 16, 18,20 at 5 pM for four and five days in comparison to untreated controls, [0019] Figure 3 depicts inhibition of proliferation and Western blot analyses of c-myc protein levels in VAL follicular lymphoma cells treated with anti-c-myc oligonucleotides in vii iv. (A).
Percentage of relative growth of VAL cells treated with AS ODNs for four days.
Cell growth is normalized to untreated controls. (B). Western blot analyses of c-myc protein levels in HepG2 cells treated in vitro with antisense e-myc oligonucleotides, sense controls, or untreated controls for four days versus untreated (Una) controls. TISP90 was utilized as a loading control and relative protein expression was normalized versus untreated controls.
[0020] Figure 4 depicts c-myc antisense ODN effects on IlepG2 tumor cell growth in an in vivo tumor prevention model. Tumor volumes (A) at indicated times and tumor weight (B) at 63 days following 2 weeks treatment initiated at day 47 of the experiment are shown for mice treated with c-myc antisense ODN, sense ODN control, or PBS-treated controls.
[0021] Figure 5 depicts c-myc antisense ODN effects on VAL tumor cell growth in an in vivo tumor regression model. Tumor volumes (A) at indicated times and tumor weight (B) at 27 days following 2 weeks treatment initiated at day 13 in mice treated with c-myc antisense ODN, sense ODN control, or PBS-treated controls.
[0022] Figure 6 depicts the effects of overexpressine c-myc in the livers of the transgenic mice used in this study. When mice are deprived of a dietary source of the antibiotic doxycycline, c-myc is overexpressed in hepatic cells resulting in the formation of liver tumors.
Gross (A) and H & E-stained tissue (B) histology of livers from control animals. Gross (C) and H & E-stained tissue (D) histology of livers from transgenic animals overexpressing c-myc in hepatocytes.
Percentage of relative growth of VAL cells treated with AS ODNs for four days.
Cell growth is normalized to untreated controls. (B). Western blot analyses of c-myc protein levels in HepG2 cells treated in vitro with antisense e-myc oligonucleotides, sense controls, or untreated controls for four days versus untreated (Una) controls. TISP90 was utilized as a loading control and relative protein expression was normalized versus untreated controls.
[0020] Figure 4 depicts c-myc antisense ODN effects on IlepG2 tumor cell growth in an in vivo tumor prevention model. Tumor volumes (A) at indicated times and tumor weight (B) at 63 days following 2 weeks treatment initiated at day 47 of the experiment are shown for mice treated with c-myc antisense ODN, sense ODN control, or PBS-treated controls.
[0021] Figure 5 depicts c-myc antisense ODN effects on VAL tumor cell growth in an in vivo tumor regression model. Tumor volumes (A) at indicated times and tumor weight (B) at 27 days following 2 weeks treatment initiated at day 13 in mice treated with c-myc antisense ODN, sense ODN control, or PBS-treated controls.
[0022] Figure 6 depicts the effects of overexpressine c-myc in the livers of the transgenic mice used in this study. When mice are deprived of a dietary source of the antibiotic doxycycline, c-myc is overexpressed in hepatic cells resulting in the formation of liver tumors.
Gross (A) and H & E-stained tissue (B) histology of livers from control animals. Gross (C) and H & E-stained tissue (D) histology of livers from transgenic animals overexpressing c-myc in hepatocytes.
8 Date regue/Date received 2023-05-26 [0023] Figure 7 depicts the gross histological effects of three times weekly 30 mg/kg/day c-mye antisense oligonucleotide treatment on the livers of transgenic mice overexpressing c-myc in hepatocytes versus control transgenic animals treated with vehicle (PBS) or sense oligonucleotide.
[0024] Figure 8 depicts histological analysis of Ki67 expression, cleaved caspase 3, and SA-gal in tissue sections of primary tumors from antisense, sense, and vehicle-treated transgenic animals overexpressing c-myc in liver cells.
[0025] Figure 9 depicts MRI imaging of tumor growth at days 0, 18, and 30 post initiation of treatment. The images show size and growth of liver tumors in transgenic mice overexpressing c-myc in liver cells that have been treated with antisense c-myc oligonucleotides, sense oligonucleotides, or PBS.
[0026] Figure 10 depicts total tumor burden in the livers of transgenic mice as determined by MRI at days 0, 18, and 30 days post initiation of treatment.
[0027] Figure 11 depicts tumor volume for individual animals in the study treated with PBS
c-myc antisense oligonucleotide 20 or c-myc antisense oligonucleotide 16.
[0028] Figure 12 depicts Western blot analyses of c-myc protein levels in HepG2 cells treated in vitro with antisense c-myc oligonucleotide AS20 (Palm-AACGTTGAGGGGCAT) (NP/PS/NP) (SEQ ID NO:1) and a non-silencing control nucleotide (NON50) from Example 5.
[0029] Figure 13 (A and B) depicts immunofluorescence levels of c-myc protein in HepG2 cells treated in vitro with antisense c-myc oligonucleotides and a non-silencing control (NC) from Example 5.
DETAILED DESCRIPTION OF THE INVENTION
[0030] This invention provides, inter aim, antisense oligonucleotides that can effectively prevent or decrease c-myc protein expression as well as decrease overall rates of cell proliferation in in vitro and mammalian in vivo models of cell proliferative disorders as well as methods for using the same. The inventors have discovered, inter cilia, that antisense oligonucleotides having specific internucleoside linkages arrayed within the oligonucleotides can effectively prevent or decrease c-myc mRNA translation into protein within cells by
[0024] Figure 8 depicts histological analysis of Ki67 expression, cleaved caspase 3, and SA-gal in tissue sections of primary tumors from antisense, sense, and vehicle-treated transgenic animals overexpressing c-myc in liver cells.
[0025] Figure 9 depicts MRI imaging of tumor growth at days 0, 18, and 30 post initiation of treatment. The images show size and growth of liver tumors in transgenic mice overexpressing c-myc in liver cells that have been treated with antisense c-myc oligonucleotides, sense oligonucleotides, or PBS.
[0026] Figure 10 depicts total tumor burden in the livers of transgenic mice as determined by MRI at days 0, 18, and 30 days post initiation of treatment.
[0027] Figure 11 depicts tumor volume for individual animals in the study treated with PBS
c-myc antisense oligonucleotide 20 or c-myc antisense oligonucleotide 16.
[0028] Figure 12 depicts Western blot analyses of c-myc protein levels in HepG2 cells treated in vitro with antisense c-myc oligonucleotide AS20 (Palm-AACGTTGAGGGGCAT) (NP/PS/NP) (SEQ ID NO:1) and a non-silencing control nucleotide (NON50) from Example 5.
[0029] Figure 13 (A and B) depicts immunofluorescence levels of c-myc protein in HepG2 cells treated in vitro with antisense c-myc oligonucleotides and a non-silencing control (NC) from Example 5.
DETAILED DESCRIPTION OF THE INVENTION
[0030] This invention provides, inter aim, antisense oligonucleotides that can effectively prevent or decrease c-myc protein expression as well as decrease overall rates of cell proliferation in in vitro and mammalian in vivo models of cell proliferative disorders as well as methods for using the same. The inventors have discovered, inter cilia, that antisense oligonucleotides having specific internucleoside linkages arrayed within the oligonucleotides can effectively prevent or decrease c-myc mRNA translation into protein within cells by
9 Date regue/Date received 2023-05-26 sterically inhibiting the translation of the c-myc message into protein, by causing RNAse mediated degradation of the c-myc mRNA, or through steric inhibition and/or causing RNAse H-mediated degradation of the c-myc mRNA.
I. General Techniques [0031] The practice of the invention will employ, unless otherwise indicated, conventional techniques in nucleic acid chemistry, molecular biology, microbiology, cell biology, biochemistry, and immunology, which are well known to those skilled in the art. Such techniques are explained fully in the literature, such as, Molecular Cloning:
A Laboratory Manual, second edition (Sambrook et al., 1989) and Molecular Cloning: A
Laboratory Manual, third edition (Sambrook and Russel, 2001), (jointly referred to herein as "Sambrook"); Current Protocols in Molecular Biology (F.M. Ausubel et al., eds., 1987, including supplements through 2001); PCR: The Polymerase Chain Reaction, (Mullis et al., eds., 1994).
Nucleic acids can be synthesized in vitro by well-known chemical synthesis techniques, as described in, e.g., Carruthers (1982) Cold Spring Harbor Symp. Qucuu. Biol. 47:411-418; Adams (1983)J. Am.
Chem. Soc. 105:661; Relousov (1997) Nucleic Acids Res. 5 25:3440-3444; Frenkel (1995) Free Radic. Biol. Med. 19:373-380; Blommers (1994) Biochemistry 33:7886-7896;
Narang (1979) Meth. Enzymol. 68:90; Brown (1979) Meth. Enzymol. 68:109; Beaucage (1981) Tetra. Lett.
22:1859; Romberg and Baker, DNA Replication, 2nd Ed. (Freeman, San Francisco, 1992);
Scheit, Nucleotide Analogs (John Wiley, New York, 1980); Uhlmann and Peyman, Chemical Reviews, 90:543-584, 1990.
IL Definitions [0032] The term "nucleoside" refers to a moiety having the general structure represented below, where B represents a nucleobase and the 2' carbon can be substituted as described below. When incorporated into an oligomer or polymer, the 3' carbon is further linked to an oxygen or nitrogen atom.
Date regue/Date received 2023-05-26 S' ranerrw, 3' This structure includes 2'-deoxy and 2'-hydroxyl (i.e. deoxyribose and ribose) forms, and analogs. Less commonly, a 5-Nil group can be substituted for the 5'-oxygen.
"Analogs", in reference to nucleosides, includes synthetic nucleosides having modified nucleobase moieties (see definition of "nucleobase" below) and/or modified sugar moieties, such as 2'-lluoro sugars, and further analogs. Such analogs are typically designed to affect binding properties, e.g., stability, specificity, or the like.
[0033] A "polynucleoside," "oligonucleoside," "polynucleotide," or "oligonucleotide" can be used interchangeably herein to refer to an oligomer or polymer of the above-referenced nucleoside moieties, having between about 6 and about 20 such moieties, joined by specific intemucleoside linkages between their 5' and 3' positions. These terms "oligonucleotide" and "oligonucleoside" also include such polymers or oligomers having modifications, known to one skilled in the art, to the sugar (e.g., 2' substitutions), the base (see the definition of "nucleobase"
below), as well as the 3' and 5' termini.
[0034] The term "internucleoside linkage" refers to phosphorus-based linkages two atoms in length between the 5' oxygen and 3' carbon in the structure above, with phosphorus linking the 5' oxygen to a nitrogen or oxygen atom on the 3' carbon. Such linkages include, but are not limited to, phosphodiester or phosphate (i.e. a "native" linkage), phosphotriester, methylphosphonate, P3'4N5' phosphoramidatc, N3-P5' phosphoramidatc (NP), N3'4P5' thiophosphoramidate (NPS), and phosphorothioate linkages. Such linkages can be the same or different within a molecule.
[0035] An "NPS linkage" in the compounds of the invention is the group 3'-NH--P(0)(S)-- 5';
an "NP linkage' is the group 3'--NH--P(0)(0-)--5'.
[0036] A "nucleobase" (or "base") includes (i) native DNA and RNA nucleobases (uracil, thymine, adenine, guanine, and cytosine), (ii) modified nucleobases or nucleobase analogs (for Date regue/Date received 2023-05-26 example, but not limited to, 5-methylcytosine, 5-bromouracil, or inosine) and (iii) nucleobase analogs. A "nucleobase analog" is a compound whose molecular structure is similar that of a typical DNA or RNA nucleobase.
[0037] The term "lipid" encompasses substances that are soluble in organic solvents, but sparingly soluble, if at all, in water. The term lipid includes, but is not limited to, hydrocarbons, oils, fats (such as fatty acids and glycerides), sterols (for example, cholesterol), steroids and derivative forms of these compounds. In some embodiments, lipids are hydrocarbons, fatty acids and their derivatives. Fatty acids usually contain even numbers of carbon atoms in a straight chain (commonly 12-24 carbons) and can be saturated or unsaturated, and can contain, or be modified to contain, a variety of substituent groups. For simplicity, the term "fatty acid" also encompasses fatty acid derivatives, such as fatty acid esters.
[0038] The term "substituted" refers to a compound which has been modified by the exchange of one atom or moiety for another, typically substitution of hydrogen by a different atom or moiety.
[0039] The term "RNA target" refers to an RNA transcript to which an antisense oligonucleotide binds in a sequence specific manner. In some embodiments the RNA target is one or more c-myc mRNA molecules.
[0040] As used herein, -RNAse H-mediated degradation" refers to the specific cleavage of the 3'-0-P bond of an RNA in a DNA/RNA duplex to produce 3'-hydroxyl and 5`-phosphate terminated products by the nonspecific endogenous cellular ribonuclease RNAse H.
[0041] As used herein, the term "gapmer" refers to an oligonucleotide comprising two end regions (the "5' end" and the "3' end") and a central region (a "gap"), wherein the 5' end and the 3' end regions comprise at least one modification difference compared to the gap region. Such modifications include monomeric linkage and sugar modifications as well as the absence of modification (unmodified RNA or DNA). Thus, in certain embodiments, the nucleotide linkages in each of the 5' and 3' ends are different than the nucleotide linkages in the gap. In certain embodiments, the modifications in the 5' and 3' ends are the same as one another. In certain embodiments, the modifications in the 5' and 3' ends are different from each other. In certain embodiments, nucleotides in the gap are unmodified and nucleotides in the 5' and 3' ends are modified. In certain embodiments, the modification(s) within each 5' and 3' end are the same. In Date regue/Date received 2023-05-26 certain embodiments, the modification(s) in one of the 5' or 3' ends are different from the modification(s) in the other end. In sonic embodiments, gapmer oligonucleotide hybridization to a target mRNA molecule (such as a c-myc mRNA molecule), results in the RNAse H-mediated degradation of the target mRNA molecule.
[0042] As used herein, an antisense oligonucleotide that prevents target mRNA
translation by "steric hindrance" is an oligonucleotide that interferes with gene expression or other mRNA-dependent cellular processes (for example, mRNA splicing or initiation of translation at the level of the ribosome) by binding to a target mRNA. Such an oligonucleotide may or may not be RNase-H independent in functionality.
[0043] An "individual" can be a mammal, such as any common laboratory model organism, or a mammal. Mammals include, but are not limited to, humans and non-human primates, farm animals, sport animals, pets, mice, rats, and other rodents. In some embodiments, an individual is a human.
[0044] As used herein, "treatment" (and grammatical variations thereof such as "treat" or "treating") refers to clinical intervention designed to alter the natural course of the individual or cell being treated during the course of clinical pathology. Desirable effects of treatment include, but are not limited to, decreasing the rate of disease progression, amelioration or palliation of the disease state, and remission or improved prognosis.
[0045] As used herein, "prevention" includes providing prophylaxis with respect to occurrence or recurrence of a disease or the symptoms associated with a disease in an individual. An individual may be predisposed to, susceptible to, or at risk of developing a disease, but has not yet been diagnosed with the disease.
[0046] An "effective amount" or "therapeutically effective amount" refers to an amount of therapeutic compound, such as an antisense oligomer, administered to a mammalian subject, either as a single dose or as part of a series of doses, which is effective to produce a desired therapeutic effect. For an antisense oligomer, this effect is typically brought about by inhibiting translation or natural splice-processing of a selected target sequence.
[0047] As used herein, the singular form "a", "an", and "the" includes plural references unless indicated otherwise.
Date regue/Date received 2023-05-26 [0048] It is understood that aspects and embodiments of the invention described herein include "comprising," "consisting," and "consisting essentially of" aspects and embodiments.
[0049] It is intended that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
c-myc Antisense Oligonucleotides [0050] The principle underlying antisense technology lies in the ability of an antisense oligonucleotide to hybridize to a target nucleic acid and modulate gene expression, such as by affecting transcription, translation, or splicing. This modulation of gene expression can specifically he achieved by, for example, target degradation, occupancy-based inhibition (i.e.
sterics), or a combination of both. An example of modulation of RNA target function by degradation is RNase H-based degradation of the target RNA upon hybridization with a DNA-like antisense compound. Another example is interference with mRNA translation due to steric hindrance. This sequence-specificity makes antisense oligonucleotides attractive as therapeutics to selectively modulate the expression of genes involved in the pathogenesis of any one of a variety of diseases (such as cell proliferative disorders). Antisense technology is an effective means for reducing the expression of one or more specific gene products and can therefore prove to be uniquely useful in a number of therapeutic applications.
[0051] The sequence of any of the antisense oligonucleotides disclosed herein can be, but need not necessarily be. 100% complementary to an mRNA from a c-myc gene to be specifically hybridizable. In one embodiment, the antisense oligonucleotides of the present invention comprise at least 70%, or at least 75%, or at least 80%, or at least 85%
sequence complementarily to an mRNA from a c-myc gene. In other embodiments, the antisense oligonucleotides of the present invention comprise at least 90% sequence complementarity and even comprise at least 95% or at least 99% sequence complementarity to an mRNA
from a c-mye gene to which they are targeted. For example, an antisense oligonueleutide in which 18 of Date regue/Date received 2023-05-26 20 nucleobases of the antisense oligonucleotide are complementary to an mRNA
from a c-myc gene, would specifically hybridize and would represent 90 percent complementarily. In this example, the remaining noncomplemcntary nucleobases can be clustered or interspersed with complementary nucleobases and need not be contiguous to each other or to complementary nucleobases. Percent complementarily of an antisense compound with a region of a target nucleic acid can be determined routinely using BLAST programs (basic local alignment search tools) and PowerBLAST programs known in the art (Altschul et al., J. Mol.
Biol, 1990, 215, 403-410; Mang 84. Madden, Genome Res., 1997, 7, 649-656).
[0052] Provided herein are antisense c-myc oligonucleotides having specific internucleoside subunit linkages wherein the oligonucleotides effectively decrease or prevent c-myc protein expression within proliferating cells. In some aspects, the c-myc antisense oligonucleotides decrease or prevent translation of an mRNA from a c-myc gene by steric hindrance. In other aspects, the c-rnyc antisense oligonucleotides decrease or prevent translation of an mRNA from a c-myc gene by RNase-H-mediated degradation of the mRNA from a c-myc gene. In yet other aspects, the c-myc antisense oligonucleotides decrease or prevent translation of an mRNA from a c-myc gene by steric hindrance and/or by RNase-H-rnediated degradation of the mRNA from a c-myc gene. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35% (such as at least about 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%-100% in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35% (such as at least 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater Date regue/Date received 2023-05-26 than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%400% in comparison to cells that have not been contacted with the oligonucicotidc.
[0053] In some aspects of any of the c-myc antisense oligonucleotides disclosed herein, the oligonucicotidc is from about any of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length, up to any of 25, or 30, or 50 nucleotides in length. In another embodiment, the oligonucleotide comprises 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length. In one embodiment, the c-myc antisense oligonucleotides is at least about 6 to at least about 50, including at least about 8 to at least about 30, is about 6 to about 30 nucleotides, or is about 6 to about 20, or at least about 10 to at least about 20, and at least about 12 to at least about 16 nucleotides in length. In some embodiments, any of the c-myc antisense oligonucleotides disclosed herein are modified with one or more lipid and/or cholesterol moieties. In some embodiments, the cholesterol and/or lipid moiety is attached to the oligonucleotide via a linking group. In other embodiments of any of the c-myc antisense oligonucleotides disclosed herein, the oligonucleotide is complementary (such as at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%%, 96%, 97%, 98%, 99%, or 100%, including any percentages in between these values, complementary) to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments of any of the c-mye antisense oligonucleotides disclosed herein, the oligonucleotide is complementary (such as at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%%, 96%, 97%, 98%, 99%, or 100%, including any percentages in between these values, complementary) to an mRNA from a c-myc gene at a site on the mRNA where two exons arc spliced together. In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence ACGTTGAGGGGCAT
(SEQ
ID NO:15). In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence RXITCGCGGGAGGCTG (SEQ ID NO:16). In some embodiments of any of the embodiments herein, the oligonucleotide has the sequence selected from the group consisting of AACUEI GAGGGGCAT (SEQ ID NO:1), UAACGTTGAGGGGCA (SEQ ID
NO:2), TAACGITGAGGGGCAT (SEQ Ill NO:3), or T'ITCA'ITGTITECCA (SEQ Ill NO:4), CTCGTCGTTTCCGCAACAAG (SEQ ID NO:6), ACGTTGAGGGGCATCGTCGC (SEQ ID
NO:7), AACGTTGAGGGGCATCGTCG (SEQ ID NO:8), CTGCTGTCGI'IGAGAGGGTA
(SEQ Ill NO:9), GGCATCGTCGCGGGAGGCTGCTGGAGCG (SEQ Ill NO:10), GGCATCGTCGCGGGAGGCTG (SEQ ID NO:11), TCGTCGCGGGAGGCTGCTGG (SEQ
Date regue/Date received 2023-05-26 ID NO:12), CCGCCCGCTCGCTCCCTCTG (SEQ ID NO:13), and GTTCTCCTCCTCGTCGCAGT (SEQ ID NO:14).. In other embodiments, the oligonucleotide comprises the sequence AACGTTGAGGGGCAT (SEQ ID NO:1). In another embodiment, the oligonucleotide comprises the sequence UAACGTI'GAGGGGCA (SEQ ID NO:2). In one embodiment, when the oligonucleotide comprises LIAACG'ITGAGGGGCA (SEQ 11) NO:2), the 5'uridine can be 3'-amino-2'-hydroxy- uridine or 3'-oxy-2'-hydroxy-uridine. In a further embodiment, the oligonucleotide comprises the sequence TAACGTTGAGGGGCAT (SEQ
ID
NO:3). In yet another embodiment, the oligonucleotide comprises the sequence TITCATTG'ITITCCA (SEQ Ill NO:4).
[0054] Methods known in the art can be used to determine whether a c-myc anti sense oligonucleotide is effective in preventing or decreasing expression of c-myc in a proliferating cell. These include, without limitation, methods to assess mRNA such as reverse transcription-quantitative PCT (RT-qPCR), Northern Blot, in situ hybridization, microarray, serial analysis of gene expression (SAGE), or RNA-Seq. Also included are common methods known in the art to assess c-myc protein levels in proliferating cells such as, but not limited to, Western Blot, irnmunohistochemistry, enzyme-linked imrnunosorbant assay (HASA), radioimmunoassay (RIA), or 2D gel electrophoresis followed by quantitative mass spectrometry.
A. Internucleoside subunit linkages [0055] In some aspects, any of the c-myc antisense oligonucleotides useful in this invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages.
As defined herein, oligonucleotides having modified backbones include, inter ulia, those that retain a phosphorus atom in the backbone of the oligonucleotide.
[0056] In some embodiments, the modified intersubunit linkages found in any of the c-myc antisense oligonucleotides disclosed herein include, but are not limited to, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates, 5'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thiophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, thiophosphates, selenophosphates and boranophosphates having normal 3'-5 linkages, 2'-5' linked analogs of these, and those having Date regue/Date received 2023-05-26 inverted polarity wherein one or more internucleotide linkages is a 3' to 3', 5' to 5' or 2' to 2' linkage. Methods for synthesizing these modified intersubunit linkages can be found in U.S.
Patent Nos. 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717;
5,321,131;
5,399,676; 40 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925;
5,519,126; 5,536,821;
5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,194,599; 5,565,555;
5,527,899;
5,721,218; 5,672,697 and 5,625,050.
[0057] In some embodiments, the modified intersubunit linkages found in any of the c-myc antisense oligonucleotides disclosed herein are thiophosphoramidate (NPS), phosphoramidate (NP), thiophosphate (PS) linkages, and phosphodiester (i.e. a phosphate) (PO).
An NPS linkage in the oligonucleotides of the present invention is the group 3'-NH¨P(0)(S-)-5'. An NP linkage is the group 3'-NH¨P(0)(0+5'. A PS linkage is the group 3'-0¨P(0)(S+5'. A
phosphodiester linkage is the group P03. In particular, NPS and NP linkages have the benefits of high hydrolytic stability and resistance to cellular nucleases. In addition, they show much less nonspecific protein binding than exhibited by PS linkages. Methods for synthesizing NP
intersubunit linkages can be found in U.S. Patent Nos. 5,837,835; and 5,824,793; and NPS
intersubunit linkages in US Patent Nos 5,824,793;and 5,859,233.
B. Antisense ODN inhibitors of c-myc protein expression by steric hindrance [0058] For oligonucleotides that prevent target mRNA translation via a steric-acting mechanism, oligonucleotide-target mRNA heteroduplex formation does not lead to RNA
turnover (as is the case with RNAse-H mediated degradation), but results instead in the hindrance of RNA
processing, nucleocytoplasmic transport or translation of the mRNA itself at the level of the ribosome. This is particularly the case when the antisense oligonucleotide is targeted to the translation initiation region of the target mRNA (i.e. the region on and surrounding the START
codon).
[0059] Accordingly, in some aspects, provided herein are oligonucleotides comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein at least one of the intersubunit linkages is a thiophosphoramidate linkage, wherein the oligonucleotide is about 6 to about 25 Date recue/Date received 2023-05-26 nucleotides in length, and wherein the oligonucleotide prevents translation of the mRNA by steric hindrance. In one embodiment, the oligonucleotide is about 6 to about 20 nucleotides or is about 6 to about 30 nucleotides in length.
[0060] In some embodiments, the c-myc antisense oligonucleotide that prevents translation of an mRNA from a c-myc gene due to steric hindrance contains at least one thiophosphoramidate (NPS) intersubunit linkage. In other embodiments, the oligonucleotide contains any of 6, 7, 8, 9,
I. General Techniques [0031] The practice of the invention will employ, unless otherwise indicated, conventional techniques in nucleic acid chemistry, molecular biology, microbiology, cell biology, biochemistry, and immunology, which are well known to those skilled in the art. Such techniques are explained fully in the literature, such as, Molecular Cloning:
A Laboratory Manual, second edition (Sambrook et al., 1989) and Molecular Cloning: A
Laboratory Manual, third edition (Sambrook and Russel, 2001), (jointly referred to herein as "Sambrook"); Current Protocols in Molecular Biology (F.M. Ausubel et al., eds., 1987, including supplements through 2001); PCR: The Polymerase Chain Reaction, (Mullis et al., eds., 1994).
Nucleic acids can be synthesized in vitro by well-known chemical synthesis techniques, as described in, e.g., Carruthers (1982) Cold Spring Harbor Symp. Qucuu. Biol. 47:411-418; Adams (1983)J. Am.
Chem. Soc. 105:661; Relousov (1997) Nucleic Acids Res. 5 25:3440-3444; Frenkel (1995) Free Radic. Biol. Med. 19:373-380; Blommers (1994) Biochemistry 33:7886-7896;
Narang (1979) Meth. Enzymol. 68:90; Brown (1979) Meth. Enzymol. 68:109; Beaucage (1981) Tetra. Lett.
22:1859; Romberg and Baker, DNA Replication, 2nd Ed. (Freeman, San Francisco, 1992);
Scheit, Nucleotide Analogs (John Wiley, New York, 1980); Uhlmann and Peyman, Chemical Reviews, 90:543-584, 1990.
IL Definitions [0032] The term "nucleoside" refers to a moiety having the general structure represented below, where B represents a nucleobase and the 2' carbon can be substituted as described below. When incorporated into an oligomer or polymer, the 3' carbon is further linked to an oxygen or nitrogen atom.
Date regue/Date received 2023-05-26 S' ranerrw, 3' This structure includes 2'-deoxy and 2'-hydroxyl (i.e. deoxyribose and ribose) forms, and analogs. Less commonly, a 5-Nil group can be substituted for the 5'-oxygen.
"Analogs", in reference to nucleosides, includes synthetic nucleosides having modified nucleobase moieties (see definition of "nucleobase" below) and/or modified sugar moieties, such as 2'-lluoro sugars, and further analogs. Such analogs are typically designed to affect binding properties, e.g., stability, specificity, or the like.
[0033] A "polynucleoside," "oligonucleoside," "polynucleotide," or "oligonucleotide" can be used interchangeably herein to refer to an oligomer or polymer of the above-referenced nucleoside moieties, having between about 6 and about 20 such moieties, joined by specific intemucleoside linkages between their 5' and 3' positions. These terms "oligonucleotide" and "oligonucleoside" also include such polymers or oligomers having modifications, known to one skilled in the art, to the sugar (e.g., 2' substitutions), the base (see the definition of "nucleobase"
below), as well as the 3' and 5' termini.
[0034] The term "internucleoside linkage" refers to phosphorus-based linkages two atoms in length between the 5' oxygen and 3' carbon in the structure above, with phosphorus linking the 5' oxygen to a nitrogen or oxygen atom on the 3' carbon. Such linkages include, but are not limited to, phosphodiester or phosphate (i.e. a "native" linkage), phosphotriester, methylphosphonate, P3'4N5' phosphoramidatc, N3-P5' phosphoramidatc (NP), N3'4P5' thiophosphoramidate (NPS), and phosphorothioate linkages. Such linkages can be the same or different within a molecule.
[0035] An "NPS linkage" in the compounds of the invention is the group 3'-NH--P(0)(S)-- 5';
an "NP linkage' is the group 3'--NH--P(0)(0-)--5'.
[0036] A "nucleobase" (or "base") includes (i) native DNA and RNA nucleobases (uracil, thymine, adenine, guanine, and cytosine), (ii) modified nucleobases or nucleobase analogs (for Date regue/Date received 2023-05-26 example, but not limited to, 5-methylcytosine, 5-bromouracil, or inosine) and (iii) nucleobase analogs. A "nucleobase analog" is a compound whose molecular structure is similar that of a typical DNA or RNA nucleobase.
[0037] The term "lipid" encompasses substances that are soluble in organic solvents, but sparingly soluble, if at all, in water. The term lipid includes, but is not limited to, hydrocarbons, oils, fats (such as fatty acids and glycerides), sterols (for example, cholesterol), steroids and derivative forms of these compounds. In some embodiments, lipids are hydrocarbons, fatty acids and their derivatives. Fatty acids usually contain even numbers of carbon atoms in a straight chain (commonly 12-24 carbons) and can be saturated or unsaturated, and can contain, or be modified to contain, a variety of substituent groups. For simplicity, the term "fatty acid" also encompasses fatty acid derivatives, such as fatty acid esters.
[0038] The term "substituted" refers to a compound which has been modified by the exchange of one atom or moiety for another, typically substitution of hydrogen by a different atom or moiety.
[0039] The term "RNA target" refers to an RNA transcript to which an antisense oligonucleotide binds in a sequence specific manner. In some embodiments the RNA target is one or more c-myc mRNA molecules.
[0040] As used herein, -RNAse H-mediated degradation" refers to the specific cleavage of the 3'-0-P bond of an RNA in a DNA/RNA duplex to produce 3'-hydroxyl and 5`-phosphate terminated products by the nonspecific endogenous cellular ribonuclease RNAse H.
[0041] As used herein, the term "gapmer" refers to an oligonucleotide comprising two end regions (the "5' end" and the "3' end") and a central region (a "gap"), wherein the 5' end and the 3' end regions comprise at least one modification difference compared to the gap region. Such modifications include monomeric linkage and sugar modifications as well as the absence of modification (unmodified RNA or DNA). Thus, in certain embodiments, the nucleotide linkages in each of the 5' and 3' ends are different than the nucleotide linkages in the gap. In certain embodiments, the modifications in the 5' and 3' ends are the same as one another. In certain embodiments, the modifications in the 5' and 3' ends are different from each other. In certain embodiments, nucleotides in the gap are unmodified and nucleotides in the 5' and 3' ends are modified. In certain embodiments, the modification(s) within each 5' and 3' end are the same. In Date regue/Date received 2023-05-26 certain embodiments, the modification(s) in one of the 5' or 3' ends are different from the modification(s) in the other end. In sonic embodiments, gapmer oligonucleotide hybridization to a target mRNA molecule (such as a c-myc mRNA molecule), results in the RNAse H-mediated degradation of the target mRNA molecule.
[0042] As used herein, an antisense oligonucleotide that prevents target mRNA
translation by "steric hindrance" is an oligonucleotide that interferes with gene expression or other mRNA-dependent cellular processes (for example, mRNA splicing or initiation of translation at the level of the ribosome) by binding to a target mRNA. Such an oligonucleotide may or may not be RNase-H independent in functionality.
[0043] An "individual" can be a mammal, such as any common laboratory model organism, or a mammal. Mammals include, but are not limited to, humans and non-human primates, farm animals, sport animals, pets, mice, rats, and other rodents. In some embodiments, an individual is a human.
[0044] As used herein, "treatment" (and grammatical variations thereof such as "treat" or "treating") refers to clinical intervention designed to alter the natural course of the individual or cell being treated during the course of clinical pathology. Desirable effects of treatment include, but are not limited to, decreasing the rate of disease progression, amelioration or palliation of the disease state, and remission or improved prognosis.
[0045] As used herein, "prevention" includes providing prophylaxis with respect to occurrence or recurrence of a disease or the symptoms associated with a disease in an individual. An individual may be predisposed to, susceptible to, or at risk of developing a disease, but has not yet been diagnosed with the disease.
[0046] An "effective amount" or "therapeutically effective amount" refers to an amount of therapeutic compound, such as an antisense oligomer, administered to a mammalian subject, either as a single dose or as part of a series of doses, which is effective to produce a desired therapeutic effect. For an antisense oligomer, this effect is typically brought about by inhibiting translation or natural splice-processing of a selected target sequence.
[0047] As used herein, the singular form "a", "an", and "the" includes plural references unless indicated otherwise.
Date regue/Date received 2023-05-26 [0048] It is understood that aspects and embodiments of the invention described herein include "comprising," "consisting," and "consisting essentially of" aspects and embodiments.
[0049] It is intended that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
c-myc Antisense Oligonucleotides [0050] The principle underlying antisense technology lies in the ability of an antisense oligonucleotide to hybridize to a target nucleic acid and modulate gene expression, such as by affecting transcription, translation, or splicing. This modulation of gene expression can specifically he achieved by, for example, target degradation, occupancy-based inhibition (i.e.
sterics), or a combination of both. An example of modulation of RNA target function by degradation is RNase H-based degradation of the target RNA upon hybridization with a DNA-like antisense compound. Another example is interference with mRNA translation due to steric hindrance. This sequence-specificity makes antisense oligonucleotides attractive as therapeutics to selectively modulate the expression of genes involved in the pathogenesis of any one of a variety of diseases (such as cell proliferative disorders). Antisense technology is an effective means for reducing the expression of one or more specific gene products and can therefore prove to be uniquely useful in a number of therapeutic applications.
[0051] The sequence of any of the antisense oligonucleotides disclosed herein can be, but need not necessarily be. 100% complementary to an mRNA from a c-myc gene to be specifically hybridizable. In one embodiment, the antisense oligonucleotides of the present invention comprise at least 70%, or at least 75%, or at least 80%, or at least 85%
sequence complementarily to an mRNA from a c-myc gene. In other embodiments, the antisense oligonucleotides of the present invention comprise at least 90% sequence complementarity and even comprise at least 95% or at least 99% sequence complementarity to an mRNA
from a c-mye gene to which they are targeted. For example, an antisense oligonueleutide in which 18 of Date regue/Date received 2023-05-26 20 nucleobases of the antisense oligonucleotide are complementary to an mRNA
from a c-myc gene, would specifically hybridize and would represent 90 percent complementarily. In this example, the remaining noncomplemcntary nucleobases can be clustered or interspersed with complementary nucleobases and need not be contiguous to each other or to complementary nucleobases. Percent complementarily of an antisense compound with a region of a target nucleic acid can be determined routinely using BLAST programs (basic local alignment search tools) and PowerBLAST programs known in the art (Altschul et al., J. Mol.
Biol, 1990, 215, 403-410; Mang 84. Madden, Genome Res., 1997, 7, 649-656).
[0052] Provided herein are antisense c-myc oligonucleotides having specific internucleoside subunit linkages wherein the oligonucleotides effectively decrease or prevent c-myc protein expression within proliferating cells. In some aspects, the c-myc antisense oligonucleotides decrease or prevent translation of an mRNA from a c-myc gene by steric hindrance. In other aspects, the c-rnyc antisense oligonucleotides decrease or prevent translation of an mRNA from a c-myc gene by RNase-H-mediated degradation of the mRNA from a c-myc gene. In yet other aspects, the c-myc antisense oligonucleotides decrease or prevent translation of an mRNA from a c-myc gene by steric hindrance and/or by RNase-H-rnediated degradation of the mRNA from a c-myc gene. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35% (such as at least about 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%-100% in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35% (such as at least 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater Date regue/Date received 2023-05-26 than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%400% in comparison to cells that have not been contacted with the oligonucicotidc.
[0053] In some aspects of any of the c-myc antisense oligonucleotides disclosed herein, the oligonucicotidc is from about any of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length, up to any of 25, or 30, or 50 nucleotides in length. In another embodiment, the oligonucleotide comprises 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length. In one embodiment, the c-myc antisense oligonucleotides is at least about 6 to at least about 50, including at least about 8 to at least about 30, is about 6 to about 30 nucleotides, or is about 6 to about 20, or at least about 10 to at least about 20, and at least about 12 to at least about 16 nucleotides in length. In some embodiments, any of the c-myc antisense oligonucleotides disclosed herein are modified with one or more lipid and/or cholesterol moieties. In some embodiments, the cholesterol and/or lipid moiety is attached to the oligonucleotide via a linking group. In other embodiments of any of the c-myc antisense oligonucleotides disclosed herein, the oligonucleotide is complementary (such as at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%%, 96%, 97%, 98%, 99%, or 100%, including any percentages in between these values, complementary) to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments of any of the c-mye antisense oligonucleotides disclosed herein, the oligonucleotide is complementary (such as at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%%, 96%, 97%, 98%, 99%, or 100%, including any percentages in between these values, complementary) to an mRNA from a c-myc gene at a site on the mRNA where two exons arc spliced together. In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence ACGTTGAGGGGCAT
(SEQ
ID NO:15). In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence RXITCGCGGGAGGCTG (SEQ ID NO:16). In some embodiments of any of the embodiments herein, the oligonucleotide has the sequence selected from the group consisting of AACUEI GAGGGGCAT (SEQ ID NO:1), UAACGTTGAGGGGCA (SEQ ID
NO:2), TAACGITGAGGGGCAT (SEQ Ill NO:3), or T'ITCA'ITGTITECCA (SEQ Ill NO:4), CTCGTCGTTTCCGCAACAAG (SEQ ID NO:6), ACGTTGAGGGGCATCGTCGC (SEQ ID
NO:7), AACGTTGAGGGGCATCGTCG (SEQ ID NO:8), CTGCTGTCGI'IGAGAGGGTA
(SEQ Ill NO:9), GGCATCGTCGCGGGAGGCTGCTGGAGCG (SEQ Ill NO:10), GGCATCGTCGCGGGAGGCTG (SEQ ID NO:11), TCGTCGCGGGAGGCTGCTGG (SEQ
Date regue/Date received 2023-05-26 ID NO:12), CCGCCCGCTCGCTCCCTCTG (SEQ ID NO:13), and GTTCTCCTCCTCGTCGCAGT (SEQ ID NO:14).. In other embodiments, the oligonucleotide comprises the sequence AACGTTGAGGGGCAT (SEQ ID NO:1). In another embodiment, the oligonucleotide comprises the sequence UAACGTI'GAGGGGCA (SEQ ID NO:2). In one embodiment, when the oligonucleotide comprises LIAACG'ITGAGGGGCA (SEQ 11) NO:2), the 5'uridine can be 3'-amino-2'-hydroxy- uridine or 3'-oxy-2'-hydroxy-uridine. In a further embodiment, the oligonucleotide comprises the sequence TAACGTTGAGGGGCAT (SEQ
ID
NO:3). In yet another embodiment, the oligonucleotide comprises the sequence TITCATTG'ITITCCA (SEQ Ill NO:4).
[0054] Methods known in the art can be used to determine whether a c-myc anti sense oligonucleotide is effective in preventing or decreasing expression of c-myc in a proliferating cell. These include, without limitation, methods to assess mRNA such as reverse transcription-quantitative PCT (RT-qPCR), Northern Blot, in situ hybridization, microarray, serial analysis of gene expression (SAGE), or RNA-Seq. Also included are common methods known in the art to assess c-myc protein levels in proliferating cells such as, but not limited to, Western Blot, irnmunohistochemistry, enzyme-linked imrnunosorbant assay (HASA), radioimmunoassay (RIA), or 2D gel electrophoresis followed by quantitative mass spectrometry.
A. Internucleoside subunit linkages [0055] In some aspects, any of the c-myc antisense oligonucleotides useful in this invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages.
As defined herein, oligonucleotides having modified backbones include, inter ulia, those that retain a phosphorus atom in the backbone of the oligonucleotide.
[0056] In some embodiments, the modified intersubunit linkages found in any of the c-myc antisense oligonucleotides disclosed herein include, but are not limited to, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates, 5'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thiophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, thiophosphates, selenophosphates and boranophosphates having normal 3'-5 linkages, 2'-5' linked analogs of these, and those having Date regue/Date received 2023-05-26 inverted polarity wherein one or more internucleotide linkages is a 3' to 3', 5' to 5' or 2' to 2' linkage. Methods for synthesizing these modified intersubunit linkages can be found in U.S.
Patent Nos. 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717;
5,321,131;
5,399,676; 40 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925;
5,519,126; 5,536,821;
5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,194,599; 5,565,555;
5,527,899;
5,721,218; 5,672,697 and 5,625,050.
[0057] In some embodiments, the modified intersubunit linkages found in any of the c-myc antisense oligonucleotides disclosed herein are thiophosphoramidate (NPS), phosphoramidate (NP), thiophosphate (PS) linkages, and phosphodiester (i.e. a phosphate) (PO).
An NPS linkage in the oligonucleotides of the present invention is the group 3'-NH¨P(0)(S-)-5'. An NP linkage is the group 3'-NH¨P(0)(0+5'. A PS linkage is the group 3'-0¨P(0)(S+5'. A
phosphodiester linkage is the group P03. In particular, NPS and NP linkages have the benefits of high hydrolytic stability and resistance to cellular nucleases. In addition, they show much less nonspecific protein binding than exhibited by PS linkages. Methods for synthesizing NP
intersubunit linkages can be found in U.S. Patent Nos. 5,837,835; and 5,824,793; and NPS
intersubunit linkages in US Patent Nos 5,824,793;and 5,859,233.
B. Antisense ODN inhibitors of c-myc protein expression by steric hindrance [0058] For oligonucleotides that prevent target mRNA translation via a steric-acting mechanism, oligonucleotide-target mRNA heteroduplex formation does not lead to RNA
turnover (as is the case with RNAse-H mediated degradation), but results instead in the hindrance of RNA
processing, nucleocytoplasmic transport or translation of the mRNA itself at the level of the ribosome. This is particularly the case when the antisense oligonucleotide is targeted to the translation initiation region of the target mRNA (i.e. the region on and surrounding the START
codon).
[0059] Accordingly, in some aspects, provided herein are oligonucleotides comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein at least one of the intersubunit linkages is a thiophosphoramidate linkage, wherein the oligonucleotide is about 6 to about 25 Date recue/Date received 2023-05-26 nucleotides in length, and wherein the oligonucleotide prevents translation of the mRNA by steric hindrance. In one embodiment, the oligonucleotide is about 6 to about 20 nucleotides or is about 6 to about 30 nucleotides in length.
[0060] In some embodiments, the c-myc antisense oligonucleotide that prevents translation of an mRNA from a c-myc gene due to steric hindrance contains at least one thiophosphoramidate (NPS) intersubunit linkage. In other embodiments, the oligonucleotide contains any of 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 NPS
intersubunit linkages, or up to about 25, or 30, or 50 NPS intersubunit linkages. In another embodiment, the oligonucleotide comprises 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,23, 24, or 25 NPS
intersubunit linkages. In yet other embodiments, the oligonucleotide contains at least about 10%, 20%, 30%, 40%, 50%, 55%, 60%. 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%, inclusive, including any percentages in between these values, NPS intersubunit linkages. In further embodiments, about 10% to about 95%, about 20% to about 90%, about 30% to about 80%, about 40% to about 70%, or about 50%
of the intersubunit linkages are thiophosphoramidate linkages. In one embodiment, about 10% to about 90% of the intersubunit linkages are thiophosphoramidate linkages. In some embodiments, the oligonucleotide is complementary to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments, the oligonucleotide is at least 80% complementary (such as at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% complementary) to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments of any of the c-myc antisense oligonucicotides disclosed herein, the oligonucleotide is complementary (such as at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%%, 96%, 97%, 98%, 99%, or 100%, including any percentages in between these values, complementary) to an mRNA from a c-myc gene at a site on the mRNA where two exons are spliced together. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative e-myc protein expression in the cell by greater than at least about 35% (such as at least about 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-Date regue/Date received 2023-05-26 80%, 75%-85%, 80%-90%, 85%-95%, or 90%100% in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35% (such as at least 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%-100% in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, the oligonucleotide has a sequence selected from the group consisting of AACG
Fl GAGGGGCAT
(SEQ ID NO:1), UAACGI'l GAGGGGCA (SEQ ID NO:2), TAACGTTGAGGGGCAT (SEQ ID
NO:3), and TTTCATTGTTTTCCA (SEQ ID NO:4). In other embodiments, the oligonucleotide comprises the sequence AACGTTGAGGGGCAT (SEQ ID NO:!). In another embodiment, the oligonucleotide comprises the sequence UAACGTTGAGGGGCA (SEQ ID NO:2). In one embodiment, when the oligonucleotide comprises UAACGTTGAGGGGCA (SEQ ID NO:2), the 5'uridine can be 3'-amino-2'-hydroxy- uridine or 3'-oxy-2'-hydroxy-uridine. In a further embodiment, the oligonucleotide comprises the sequence TAACGITGAGOGGCAT (SEQ
ID
NO:3). In yet another embodiment, the oligonucleotide comprises the sequence TTTCATTGTTTTCCA (SEQ ID NO:4),In other aspects, provided herein are oligonucleotides comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein at least one of the intersubunit linkages is a phosphoramidate linkage, wherein the oligonucleotide is about 6 to about 25 nucleotides in length, and wherein the oligonucleotide prevents translation of the mRNA
by steric hindrance. In one embodiment, the oligonucleotide is about 6 to about 20 nucleotides or is about 6 to about 30 nucleotides in length. In some embodiments, the oligonucleotide is from about any of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length, up to any of 25, or 30, or 50 nucleotides in length. In another embodiment, the oligonucleotide comprises 6. 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length. In one embodiment, the c-myc antisense oligonucleotide is at least about 6 to at least about 50, including at least about 8 to at least about 30, about 6 to about 20 Date regue/Date received 2023-05-26 nucleotides or about 6 to about 30 nucleotides or at least about 10 to at least about 20, and at least about 12 to at least about 16 nucleotides in length.
[0062] In some embodiments, the c-myc antisense oligonucleotide that prevents translation of an inRNA from a c-myc gene due to steric hindrance contains at least one phosphoramidate (NP) intersubunit linkage. In other embodiments, the oligonucleotide contains any of 6, 7, 8, 9, 10,
intersubunit linkages, or up to about 25, or 30, or 50 NPS intersubunit linkages. In another embodiment, the oligonucleotide comprises 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,23, 24, or 25 NPS
intersubunit linkages. In yet other embodiments, the oligonucleotide contains at least about 10%, 20%, 30%, 40%, 50%, 55%, 60%. 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%, inclusive, including any percentages in between these values, NPS intersubunit linkages. In further embodiments, about 10% to about 95%, about 20% to about 90%, about 30% to about 80%, about 40% to about 70%, or about 50%
of the intersubunit linkages are thiophosphoramidate linkages. In one embodiment, about 10% to about 90% of the intersubunit linkages are thiophosphoramidate linkages. In some embodiments, the oligonucleotide is complementary to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments, the oligonucleotide is at least 80% complementary (such as at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% complementary) to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments of any of the c-myc antisense oligonucicotides disclosed herein, the oligonucleotide is complementary (such as at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%%, 96%, 97%, 98%, 99%, or 100%, including any percentages in between these values, complementary) to an mRNA from a c-myc gene at a site on the mRNA where two exons are spliced together. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative e-myc protein expression in the cell by greater than at least about 35% (such as at least about 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-Date regue/Date received 2023-05-26 80%, 75%-85%, 80%-90%, 85%-95%, or 90%100% in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35% (such as at least 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%-100% in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, the oligonucleotide has a sequence selected from the group consisting of AACG
Fl GAGGGGCAT
(SEQ ID NO:1), UAACGI'l GAGGGGCA (SEQ ID NO:2), TAACGTTGAGGGGCAT (SEQ ID
NO:3), and TTTCATTGTTTTCCA (SEQ ID NO:4). In other embodiments, the oligonucleotide comprises the sequence AACGTTGAGGGGCAT (SEQ ID NO:!). In another embodiment, the oligonucleotide comprises the sequence UAACGTTGAGGGGCA (SEQ ID NO:2). In one embodiment, when the oligonucleotide comprises UAACGTTGAGGGGCA (SEQ ID NO:2), the 5'uridine can be 3'-amino-2'-hydroxy- uridine or 3'-oxy-2'-hydroxy-uridine. In a further embodiment, the oligonucleotide comprises the sequence TAACGITGAGOGGCAT (SEQ
ID
NO:3). In yet another embodiment, the oligonucleotide comprises the sequence TTTCATTGTTTTCCA (SEQ ID NO:4),In other aspects, provided herein are oligonucleotides comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein at least one of the intersubunit linkages is a phosphoramidate linkage, wherein the oligonucleotide is about 6 to about 25 nucleotides in length, and wherein the oligonucleotide prevents translation of the mRNA
by steric hindrance. In one embodiment, the oligonucleotide is about 6 to about 20 nucleotides or is about 6 to about 30 nucleotides in length. In some embodiments, the oligonucleotide is from about any of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length, up to any of 25, or 30, or 50 nucleotides in length. In another embodiment, the oligonucleotide comprises 6. 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length. In one embodiment, the c-myc antisense oligonucleotide is at least about 6 to at least about 50, including at least about 8 to at least about 30, about 6 to about 20 Date regue/Date received 2023-05-26 nucleotides or about 6 to about 30 nucleotides or at least about 10 to at least about 20, and at least about 12 to at least about 16 nucleotides in length.
[0062] In some embodiments, the c-myc antisense oligonucleotide that prevents translation of an inRNA from a c-myc gene due to steric hindrance contains at least one phosphoramidate (NP) intersubunit linkage. In other embodiments, the oligonucleotide contains any of 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 NP intersubunit linkages, or up to about 25, or 30, or 50 NP intersubunit linkages. In another embodiment, the oligonucleotide comprises 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 NP
intersubunit linkages. In yet other embodiments, the oligonucleotide contains at least about 10%, 20%, 30%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%, inclusive, including any percentages in between these values, NP intersubunit linkages. In further embodiments, about 10% to about 90%, about 20% to about 80%, about 30% to about 70%, about 40% to about 60%, or about 50%
of the intersubunit linkages are phosphoramidate linkages. In one embodiment, about 10% to about 90% of the intersubunit linkages are phosphoramidate linkages. In some embodiments, the oligonucleotide is complementary to an mRNA from a c-rnyc gene at the site of the mRNA's translation initiation region. In some embodiments, the oligonucleotide is complementary to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments, the oligonucleotide is at least 80% complementary (such as at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% complementary) to an mRNA
from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments of any of the c-myc antisense oligonucleotides disclosed herein, the oligonucicotide is complementary (such as at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%%, 96%, 97%, 98%, 99%, or 100%, including any percentages in between these values, complementary) to an mRNA from a e-mye gene at a site on the mRNA where two exons are spliced together. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35%
(such as at least about 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, Date regue/Date received 2023-05-26 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%-100% in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotidcs disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35% (such as at least 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, /15%-95%, or 90%-100% in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence ACGTTGAGGGGCAT (SEQ ID
NO:15).
In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence TCGTCGCGGGAGGCTG (SEQ ID NO:16). In some embodiments of any of the embodiments herein, the oligonucleotide has the sequence selected from the group consisting of AACGTTGAGGGGCAT (SEQ ID NO:1), IJAACGT'TGAGGGGCA (SEQ ID NO:2), TAACGTTGAGGGGCAT (SEQ ID NO:3), or TTTCATTGTT riCCA (SEQ ID NO:4), CTCGTCGTTTCCGCAACAAG (SEQ ID NO:6), ACGTTGAGGGGCATCGTCGC (SEQ ID
NO:7), AACGTTGAGGGGCATCGTCG (SEQ ID NO :8), CT'GCTGTCGTTGAGAGGGTA
(SEQ ID NO:9), GGCATCGTCGCGGGAGGCTGCTGGAGCG (SEQ ID NO:10), GGCATCGTCGCGGGAGGCTG (SEQ ID NO:11), TCGTCGCGGGAGGCTGCTGG (SEQ
ID NO:12), CCGCCCGCTCGCTCCCTCTG (SEQ ID NO:13), and GTTCTCCTCCTCGTCGCAGT (SEQ ID NO:14). In other embodiments, the oligonucleotide comprises the sequence AACGTTGAGGGGCAT (SEQ ID NO:1). In another embodiment, the oligonucleotide comprises the sequence UAACGTI'GAGGGGCA (SEQ Ill NO:2). In one embodiment, when the oligonucleotide comprises UAACGTTGAGGGGCA (SEQ ID NO:2), the 5'uridine can be 3'-amino-2'-hydroxy- uridine or 3'-oxy-2'-hydroxy-uridine. In a further embodiment, the oligonucleotide comprises the sequence TAACG'ITGAGGGGCAT (SEQ
Ill NO:3), In yet another embodiment, the oligonucleotide comprises the sequence TTTCATTGTTTYCCA (SEQ ID NO:4).
Date regue/Date received 2023-05-26 [0063] In other embodiments, the c-myc antisense oligonucleotide that prevents translation of an mRNA from a c-myc gene due to RNase-H-mediated degradation of the mRNA from a c-myc gene and/or steric hindrance is fluorescently labeled. Non-limiting examples of fluorescent labels include fluorescein, phosphor, rhodamine, and polymethine dye derivative. Examples of commercially available fluorescent dyes include BODIPY FL (brand name, manufactured by Molecular Probe Inc.), FluorePrime (trade name, manufactured by Amersham Pharmacia), Fluoredite (trade name, manufactured by Millipore Corporation), FAIL
(manufactured by ABI), Cy3 and Cy5 (manufactured by Amersham Pharmacia), and tetramethylrhodamine (TAMRA;
manufactured by Molecular Probe Inc.).
[0064] Techniques for synthesizing oligonucleotides with NPS, NP, PS, or PO
intersubunit linkages can be found, inter alia, in U.S. Patent No. 7,494,982.
[0065] In some embodiments, the c-myc antisense oligonucleotide that prevents translation of an mRNA from a c-myc gene due to steric hindrance is an oligonucleotide shown in Table 1.
Table 1: Steric blocking c-myc antisense oligonucleotides SEQ ID Type of ODN
5' ¨ d- (Oligonucleotide) ¨ 3' NO: intersubunit Mode of action linkage 2 AACGTTGAGGGGCAT 1 All-NP steric blocker 13 Palm-AACGTTGAGGGGCAT 1 All-NP steric blocker 15 TAACGTTGAGGGGCAT 3 All-NPS steric blocker = 29 TAACGTTGAGGGGCAT- 3 TAMRA All-NP steric blocker 30 Palm-AACGTTGAGGGGCAT- 1 TAMRA All-NP steric blocker 31 Palm-AACGTTGAGGGGCAT- 1 TAMRA All-NPS steric blocker * Palm = Palmitic acid lipid moiety (see discussion infra); ** TAMRA =
fluorescent label Date regue/Date received 2023-05-26 C. Antisense ODN inhibitors of c-mvc protein expression by RNAse-H
mediated degradation [0066] Following heteroduplex formation with a target mRNA, certain antisense oligonucleotides (i.e. gapmers) can serve as a substrate for the intracellular ribonuclease RNase H, which leads to cleavage of the target mRNA component of the heteroduplcx.
While not intending to be bound by theory, it is thought that once the target mRNA is cleaved, the gapmer oligonucleotides can target additional copies of the target mRNA. Gapmers are chimeric oligonucleotides comprising a central region (a "gap') and a region on either side of the central region (the "5' end" and the "3' end"), wherein the nucleoside subunits contained within the gap comprise at least one modification difference in comparison to the nucleoside subunits that make up the 5' and "3' ends.
[0067] Accordingly, in some aspects, provided herein are oligonucleotide comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein the oligonucleotide comprises two or more contiguous thiophosphoramidate or phosphoramidate linkages located on both the 5' and 3' ends of the oligonucleotide, wherein the oligonucleotide is about 6 to about 25 nucleotides in length, and wherein the oligonucleotide is a substrate for RNase-H-mediated degradation of the mRNA from a c-myc gene In one embodiment, the oligonucleotide is about 6 to about 20 nucleotides or is about 6 to about 30 nucleotides in length. In some embodiments, the oligonucleotide is from about any of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length, up to any of 25, or 30, or 50 nucleotides in length. In another embodiment, the oligonucleotide comprises 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length. In one embodiment, the c-myc antisense oligonucleotide is at least about 6 to at least about 50, including at least about 8 to at least about 30, is about 6 to about 20 nucleotides or is about 6 to about 30 nucleotides or at least about 10 to at least about 20, and at least about 12 to at least about 16 nucleotides in length. In another embodiment, the oligonucleotide comprises two or more contiguous thiophosphoramidate linkages located on both the 5' and 3' ends of the oligonucleotide. In yet a further embodiment, the oligonucleotide comprises two or more contiguous phosphoramidate linkages located on both the 5' and 3' ends of the oligonucleotide. In still a further embodiment, the oligonucleotide further comprises two or more contiguous thiophosphate or phosphate linkages located in Date regue/Date received 2023-05-26 between (i.e., in the gap between) the two or more contiguous thiophosphoramidate linkages located on both the 5' and 3' ends of the oligonucleotide.
[0068] In some embodiments, the c-myc antisense oligonucleotides that prevent translation of an mRNA from a c-myc gene due to RNase-H-mediated degradation of the niRNA from a c-myc gene provided herein comprise at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,20, 21, 22, 23, 24, or 25 nucleotides in length having a gap of about 2 to 16 nucleotides in length and having 5' and 3' end regions that are independently at least 2 to 16 nucleotides in length.
Exemplary 5' end-gap-3'end configurations for the c-myc antisense gapmer oligonucleotides disclosed herein are 2-4-2, 2-5-2, 4-6-4, 3-6-3, 2-6-2, 4-7-4, 3-7-3, 2-7-2, 4-8-4, 3-8-3, 2-8-2õ 2-9-2, 2-10-2, 2-14-2, 2-13-3, 3-13-2, 2-12-4, 4-12-2, 3-12-3, 2-11-5, 5-11-2, 3-11-4, 4-11-3, 2-15-2, 2-14-3, 3-14-2, 2-13-4, 4-13-2, 3-13-3, 2-12-5, 5-12-2, 3-12-4, 4-12-3, 2-11-6, 6-11-2, 3-11-5, 5-11-3, 4-11-4, 2-16-2, 2-15-3, 3-15-2, 2-14-4, 4-14-2, 3-14-3,2-13-5, 5-13-2, 3-13-4, 4-13-3,2-
intersubunit linkages. In yet other embodiments, the oligonucleotide contains at least about 10%, 20%, 30%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%, inclusive, including any percentages in between these values, NP intersubunit linkages. In further embodiments, about 10% to about 90%, about 20% to about 80%, about 30% to about 70%, about 40% to about 60%, or about 50%
of the intersubunit linkages are phosphoramidate linkages. In one embodiment, about 10% to about 90% of the intersubunit linkages are phosphoramidate linkages. In some embodiments, the oligonucleotide is complementary to an mRNA from a c-rnyc gene at the site of the mRNA's translation initiation region. In some embodiments, the oligonucleotide is complementary to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments, the oligonucleotide is at least 80% complementary (such as at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% complementary) to an mRNA
from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments of any of the c-myc antisense oligonucleotides disclosed herein, the oligonucicotide is complementary (such as at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%%, 96%, 97%, 98%, 99%, or 100%, including any percentages in between these values, complementary) to an mRNA from a e-mye gene at a site on the mRNA where two exons are spliced together. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35%
(such as at least about 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, Date regue/Date received 2023-05-26 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%-100% in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotidcs disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35% (such as at least 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, /15%-95%, or 90%-100% in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence ACGTTGAGGGGCAT (SEQ ID
NO:15).
In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence TCGTCGCGGGAGGCTG (SEQ ID NO:16). In some embodiments of any of the embodiments herein, the oligonucleotide has the sequence selected from the group consisting of AACGTTGAGGGGCAT (SEQ ID NO:1), IJAACGT'TGAGGGGCA (SEQ ID NO:2), TAACGTTGAGGGGCAT (SEQ ID NO:3), or TTTCATTGTT riCCA (SEQ ID NO:4), CTCGTCGTTTCCGCAACAAG (SEQ ID NO:6), ACGTTGAGGGGCATCGTCGC (SEQ ID
NO:7), AACGTTGAGGGGCATCGTCG (SEQ ID NO :8), CT'GCTGTCGTTGAGAGGGTA
(SEQ ID NO:9), GGCATCGTCGCGGGAGGCTGCTGGAGCG (SEQ ID NO:10), GGCATCGTCGCGGGAGGCTG (SEQ ID NO:11), TCGTCGCGGGAGGCTGCTGG (SEQ
ID NO:12), CCGCCCGCTCGCTCCCTCTG (SEQ ID NO:13), and GTTCTCCTCCTCGTCGCAGT (SEQ ID NO:14). In other embodiments, the oligonucleotide comprises the sequence AACGTTGAGGGGCAT (SEQ ID NO:1). In another embodiment, the oligonucleotide comprises the sequence UAACGTI'GAGGGGCA (SEQ Ill NO:2). In one embodiment, when the oligonucleotide comprises UAACGTTGAGGGGCA (SEQ ID NO:2), the 5'uridine can be 3'-amino-2'-hydroxy- uridine or 3'-oxy-2'-hydroxy-uridine. In a further embodiment, the oligonucleotide comprises the sequence TAACG'ITGAGGGGCAT (SEQ
Ill NO:3), In yet another embodiment, the oligonucleotide comprises the sequence TTTCATTGTTTYCCA (SEQ ID NO:4).
Date regue/Date received 2023-05-26 [0063] In other embodiments, the c-myc antisense oligonucleotide that prevents translation of an mRNA from a c-myc gene due to RNase-H-mediated degradation of the mRNA from a c-myc gene and/or steric hindrance is fluorescently labeled. Non-limiting examples of fluorescent labels include fluorescein, phosphor, rhodamine, and polymethine dye derivative. Examples of commercially available fluorescent dyes include BODIPY FL (brand name, manufactured by Molecular Probe Inc.), FluorePrime (trade name, manufactured by Amersham Pharmacia), Fluoredite (trade name, manufactured by Millipore Corporation), FAIL
(manufactured by ABI), Cy3 and Cy5 (manufactured by Amersham Pharmacia), and tetramethylrhodamine (TAMRA;
manufactured by Molecular Probe Inc.).
[0064] Techniques for synthesizing oligonucleotides with NPS, NP, PS, or PO
intersubunit linkages can be found, inter alia, in U.S. Patent No. 7,494,982.
[0065] In some embodiments, the c-myc antisense oligonucleotide that prevents translation of an mRNA from a c-myc gene due to steric hindrance is an oligonucleotide shown in Table 1.
Table 1: Steric blocking c-myc antisense oligonucleotides SEQ ID Type of ODN
5' ¨ d- (Oligonucleotide) ¨ 3' NO: intersubunit Mode of action linkage 2 AACGTTGAGGGGCAT 1 All-NP steric blocker 13 Palm-AACGTTGAGGGGCAT 1 All-NP steric blocker 15 TAACGTTGAGGGGCAT 3 All-NPS steric blocker = 29 TAACGTTGAGGGGCAT- 3 TAMRA All-NP steric blocker 30 Palm-AACGTTGAGGGGCAT- 1 TAMRA All-NP steric blocker 31 Palm-AACGTTGAGGGGCAT- 1 TAMRA All-NPS steric blocker * Palm = Palmitic acid lipid moiety (see discussion infra); ** TAMRA =
fluorescent label Date regue/Date received 2023-05-26 C. Antisense ODN inhibitors of c-mvc protein expression by RNAse-H
mediated degradation [0066] Following heteroduplex formation with a target mRNA, certain antisense oligonucleotides (i.e. gapmers) can serve as a substrate for the intracellular ribonuclease RNase H, which leads to cleavage of the target mRNA component of the heteroduplcx.
While not intending to be bound by theory, it is thought that once the target mRNA is cleaved, the gapmer oligonucleotides can target additional copies of the target mRNA. Gapmers are chimeric oligonucleotides comprising a central region (a "gap') and a region on either side of the central region (the "5' end" and the "3' end"), wherein the nucleoside subunits contained within the gap comprise at least one modification difference in comparison to the nucleoside subunits that make up the 5' and "3' ends.
[0067] Accordingly, in some aspects, provided herein are oligonucleotide comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein the oligonucleotide comprises two or more contiguous thiophosphoramidate or phosphoramidate linkages located on both the 5' and 3' ends of the oligonucleotide, wherein the oligonucleotide is about 6 to about 25 nucleotides in length, and wherein the oligonucleotide is a substrate for RNase-H-mediated degradation of the mRNA from a c-myc gene In one embodiment, the oligonucleotide is about 6 to about 20 nucleotides or is about 6 to about 30 nucleotides in length. In some embodiments, the oligonucleotide is from about any of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length, up to any of 25, or 30, or 50 nucleotides in length. In another embodiment, the oligonucleotide comprises 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length. In one embodiment, the c-myc antisense oligonucleotide is at least about 6 to at least about 50, including at least about 8 to at least about 30, is about 6 to about 20 nucleotides or is about 6 to about 30 nucleotides or at least about 10 to at least about 20, and at least about 12 to at least about 16 nucleotides in length. In another embodiment, the oligonucleotide comprises two or more contiguous thiophosphoramidate linkages located on both the 5' and 3' ends of the oligonucleotide. In yet a further embodiment, the oligonucleotide comprises two or more contiguous phosphoramidate linkages located on both the 5' and 3' ends of the oligonucleotide. In still a further embodiment, the oligonucleotide further comprises two or more contiguous thiophosphate or phosphate linkages located in Date regue/Date received 2023-05-26 between (i.e., in the gap between) the two or more contiguous thiophosphoramidate linkages located on both the 5' and 3' ends of the oligonucleotide.
[0068] In some embodiments, the c-myc antisense oligonucleotides that prevent translation of an mRNA from a c-myc gene due to RNase-H-mediated degradation of the niRNA from a c-myc gene provided herein comprise at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,20, 21, 22, 23, 24, or 25 nucleotides in length having a gap of about 2 to 16 nucleotides in length and having 5' and 3' end regions that are independently at least 2 to 16 nucleotides in length.
Exemplary 5' end-gap-3'end configurations for the c-myc antisense gapmer oligonucleotides disclosed herein are 2-4-2, 2-5-2, 4-6-4, 3-6-3, 2-6-2, 4-7-4, 3-7-3, 2-7-2, 4-8-4, 3-8-3, 2-8-2õ 2-9-2, 2-10-2, 2-14-2, 2-13-3, 3-13-2, 2-12-4, 4-12-2, 3-12-3, 2-11-5, 5-11-2, 3-11-4, 4-11-3, 2-15-2, 2-14-3, 3-14-2, 2-13-4, 4-13-2, 3-13-3, 2-12-5, 5-12-2, 3-12-4, 4-12-3, 2-11-6, 6-11-2, 3-11-5, 5-11-3, 4-11-4, 2-16-2, 2-15-3, 3-15-2, 2-14-4, 4-14-2, 3-14-3,2-13-5, 5-13-2, 3-13-4, 4-13-3,2-
12-6, 6-12-2, 3-12-5, 5-12-3, 4-12-4, 2-11-7, 7-11-2, 3-11-6, 6-11-3, 4-11-5, 5-11-4, 2-16-2, 2-15-3, 3-15-2, 2-14-4, 4-14-2, 3-14-3, 2-13-5, 5-13-2, 3-13-4, 4-13-3, 2-12-6, 6-12-2, 3-12-5, 5-12-3, 4-12-4, 2-11-7, 7-11-2, 3-11-6, 6-11-3, 4-11-5, 5-11-4, 2-17-2, 2-16-3, 3-16-2, 2-15-4, 4-15-2, 3-15-3, 2-14-5, 5-14-2, 3-14-4, 4-14-3, 2-13-6, 6-13-2, 3-13-5, 5-13-3, 4-13-4, 2-12-7,7-12-2, 3-12-6, 6-12-3, 4-12-5, 5-12-4, 2-11-8, 8-11-2, 3-11-7, 7-11-3, 4-11-6, 6-11-4, 5-11-5, 2-18-2, 2-17-3, 3-17-2, 2-16-4, 4-16-2, 3-16-3, 2-15-5, 5-15-2, 3-15-4, 4-15-3, 2-14-6, 6-14-2, 3-14-5, 5-14-3, 4-14-4, 2-13-7, 7-13-2, 3-13-6, 6-13-3, 4-13-5, 5-13-4, 2-12-8, 8-12-2, 3-12-7, 7-12-3, 4-12-6, 6-12-4, 5-12-5, 3-11-8, 8-11-3, 4-11-7, 7-11-4, 5-11-6, 6-11-5, 2-19-2, 2-18-3, 3-18-2, 2-17-4, 4-17-2, 3-17-3, 2-16-5, 5-16-2, 3-16-4, 4-16-3, 2-15-6, 6-15-2, 3-15-5, 5-15-3, 4-15-4, 2-14-7, 7-14-2, 3-14-6, 6-14-3, 4-14-5, 5-14-4, 2-13-8, 8-13-2, 3-13-7, 7-13-3, 4-13-6, 6-
13-4, 5-13-5, 2-12-9, 9-12-2, 3-12-8, 8-12-3, 4-12-7, 7-12-4, 5-12-6, 6-12-5, 4-11-8, 8-11-4, 5-11-7, 7-11-5, 6-11-6, 2-20-2, 2-19-3, 3-19-2, 2-18-4, 4-18-2, 3-18-3, 2-17-5, 5-17-2, 3-17-4, 4-17-3, 2-16-6, 6-16-2, 3-16-5, 5-16-3, 4-16-4, 2-15-7, 7-15-2, 3-15-6, 6-15-3, 4-15-5, 5-15-4, 2-
14-8, 8-14-2, 3-14-7, 7-14-3, 4-14-6, 6-14-4, 5-14-5, 3-13-8, 8-13-3, 4-13-7, 7-13-4, 5-13-6, 6-13-5, 4-12-8, 8-12-4, 5-12-7, 7-12-5, 6-12-6, 5-11-8, 8-11-5, 6-11-7, or 7-11-6.
[0069] In some embodiments, the c-myc antisense oligonucleotide that prevents translation of an mRNA from a c-myc gene due to RNase-H-mediated degradation of the mRNA from a c-myc gene comprises four contiguous thiophosphoramidate linkages located on the 5' end of the oligonucleotide, five contiguous thiophosphoramidate linkages located on the 3' end of the Date regue/Date received 2023-05-26 oligonucleotide, and six contiguous thiophosphate or phosphate linkages located between the four contiguous thiophosphuramidate linkages located on the 5' end of the oligonucleotide and the five contiguous thiophosphoramidate linkages located on the 3' end of the oligonucleotide.
In some embodiments, the c-myc antisense oligonucleotide comprises four contiguous phosphoramidate linkages located on the 5' end of the oligonucleotide, five contiguous phosphoramidate linkages located on the 3' end of the oligonucleotide, and six contiguous thiophosphate or phosphate linkages located between the four contiguous phosphoramidate linkages located on the 5' end of the oligonucleotide and the five contiguous phosphoramidate linkages located on the 3' end of the oligonucleotide. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35% (such as at least about 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%-100% in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35%
(such as at least 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 7593-85%, 80%-90%, 85%-95%, or 90%400% in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, the oligonucleotide is complementary to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In some embodiments, the oligonucleotide is complementary to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments, the oligonucleotide is at least 80%
complementary (such as at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%
complementary) Date regue/Date received 2023-05-26 to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments of any of the c-rnyc antisense oligonucleotides disclosed herein, the oligonucleotide is complementary (such as at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%%, 96%, 97%, 98%, 99%, or 100%, including any percentages in between these values, complementary) to an mRNA from a c-myc gene at a site on the mRNA where two exons are spliced together. In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence ACGTTGAGGGGCAT (SEQ ID NO:15). In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence TCGTCGCGGGAGGCTG (SEQ Ill NO:16). In some embodiments of any of the embodiments herein, the oligonucleotide has the sequence selected from the group consisting of AACGTTGAGGGGCAT (SEQ ID NO:1), IJAACGTTGAGGGGCA (SEQ ID NO:2), TAACGTTGAGGGGCAT (SEQ ID NO:3), or TTTCATTGTTI'ICCA (SEQ ID NO:4), CTCGTCGTTTCCGCAACAAG (SEQ ID NO:6), ACGTTGAGGGGCATCGTCGC (SEQ ID
NO:7), AACGITGAGGOGCATCGTCG (SEQ ID NO:8), CTGCTGTCOTTGAGAGGGTA
(SEQ ID NO:9), GGCATCGTCGCGGGAGGCTGCTGGAGCG (SEQ ID NO:10), GGCATCGTCGCGGGAGGCTG (SEQ ID NO:11), TCGTCGCGGGAGGCTGCTGG (SEQ
ID NO:12), CCGCCCGCTCGCTCCCTCTG (SEQ ID NO:13), and GTTCTCCTCCTCGTCGCAGT (SEQ ID NO:14),In other embodiments, the oligonucleotide comprises the sequence AACGTTGAGGGGCAT (SEQ ID NO:1). In another embodiment, the oligonucleotide comprises the sequence UAACGTTGAGGGGCA (SEQ ID NO:2). In one embodiment, when the oligonucleotide comprises UAACGTTGAGGGGCA (SEQ ID NO:2), the 5'uridine can be 3' -amino-2' -hydroxy- uridine or 3' -oxy-2' -hydroxy-uridine. In a further embodiment, the oligonucleotide comprises the sequence TAACGTTGAGGGGCAT (SEQ
ID
NO:3). In yet another embodiment, the oligonucleotide comprises the sequence TTTCATTGTTTTCCA (SEQ ID NO:4).
[0070] In other aspects, also provided herein are oligonucleotides comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein the oligonucleotidc is a substrate for RNase-H-mediated degradation of the mRNA from a c-myc gene, and wherein the oligonucleotide comprises at least two contiguous phosphoramidate intersubunit linkages located on the 5' end of the oligonucleotide; wherein the oligonucleotide comprises at least two contiguous phosphoramidate intersubunit linkages located on the 3' end of the oligonucleotide;
Date regue/Date received 2023-05-26 =
wherein the oligonucleotide comprises 2-11 contiguous thiophosphate or phosphate linkages located in between said at least two contiguous phosphoramidate linkages located on the 5' end and said at least two contiguous phosphoramidate linkages located on the 3' end of the oligonucleotide; and wherein the oligonucleotide comprises the sequence AACGTTGAGGGGCAT (SEQ ID NO:1). In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence ACGTTGAGGGGCAT (SEQ ID
NO:15).
In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence TCGTCGCGGGAGGCTG (SEQ ID NO:16). In some embodiments of any of the embodiments herein, the oligonucleotide has the sequence selected from the group consisting of AACGTTGAGGGGCAT (SEQ ID NO:1), UAACGTTGAGGGGCA (SEQ ID NO:2), TAACGTTGAGGGGCAT (SEQ ID NO:3), or TTTCATTGTTTTCCA (SEQ ID NO:4), CTCGTCGTTTCCGCAACAAG (SEQ ID NO:6), ACGTTGAGGGGCATCGTCGC (SEQ ID
NO:7), AACGTTGAGGGGCATCGTCG (SEQ ID NO:8), CTGCTGTCGTTGAGAGGGTA
(SEQ ID NO:9), GGCATCGTCGCGGGAGGCTGCTGGAGCG (SEQ ID NO:10), GGCATCGTCGCGGGAGGCTG (SEQ ID NO:11), TCGTCGCGGGAGGCTGCTGG (SEQ
ID NO:12), CCGCCCGCTCGCTCCCTCTG (SEQ ID NO:13), and GTTCTCCTCCTCGTCGCAGT (SEQ ID NO:14) In other embodiments, the oligonucleotide comprises the sequence AACGTTGAGGGGCAT(SEQ ID NO:1). In another embodiment, the oligonucleotide comprises the sequence UAACGTTGAGGGGCA (SEQ ID NO:2). In one embodiment, when the oligonucleotide comprises UAACGTTGAGGGGCA (SEQ ID NO:2), the 5'uridine can be 3'-amino-2'-hydroxy- uridine or 3'-oxy-2'-hydroxy-uridine. In a further embodiment, the oligonucleotide comprises the sequence TAACGTTGAGGGGCAT (SEQ
ID
NO:3). In yet another embodiment, the oligonucleotide comprises the sequence TTTCATTGTTTTCCA (SEQ ID NO:4).
[0071] Techniques for synthesizing oligonucleotides with varying types of intersubunit linkages can be found, inter alia, in U.S. Patent No. 7,494,982.
[0072] In other embodiments, the c-myc antisense oligonucleotide that prevents translation of an mRNA from a c-myc gene due to RNase-H-mediated degradation of the mRNA from a c-myc gene and/or steric hindrance is fluorescently labeled. Non-limiting examples of fluorescent labels include fluorescein, phosphor, rhodamine, and polymethine dye derivative. Examples of Date recue/Date received 2023-05-26 commercially available fluorescent dyes include BODIPY FL (brand name, manufactured by Molecular Probe Inc.), FluorePrime (trade name, manufactured by Amersham Pharmacia), Fluoredite (trade name, manufactured by Millipore Corporation), FAIL
(manufactured by ABI), Cy3 and Cy5 (manufactured by Amersham Pharmacia), and tetramethylrhodamine (TAMRA;
manufactured by Molecular Probe Inc.).
[0073] In some embodiments, the c-myc antisense oligonucleotide that prevents translation of an mRNA from a c-myc gene due to RNAse H-mediated degradation of the mRNA is an oligonucleotide shown in Table 2.
Table 2: Gapmer c-myc antisense oligonucleotides SEQ ID Type of ODN
5' ¨ d- (Oligonucleotide) ¨ 3' NO: intersubunit Mode of action linkage(s) 16 Palm-AACGTTGAGGGGCAT 1 NPS/PS/NPS RNAse-H
17 TAACGTTGAGGGGCAT 3 NPS/PS/NPS RNAse-H
20 Palm-AACGTTGAGGGGCAT 1 NP/PS/NP RNAse-H
21 TAACGTTGAGGGGCAT 3 NP/PS/NP RNAse-H
32 Palm-AACGTTGAGGGGCAT- 1 NPS/PS/NPS RNAse-H
TAMRA
NPS/PS/NPS RNAse-H
TAMRA
TAMRA NP/PS/NP RNAse-H
* Palm = palmitic acid lipid moiety (see discussion infra); ** TAMRA =
fluorescent label;
***underlined and bold nucleotides indicate a different intersubunit linkage D. Antisense ODN inhibitors of c-inyc protein expression by steric hindrance and/or RNAse H-mediated degradation [0074] Provided herein are c-myc antisense oligonucleotides that can effectively prevent or decrease c-myc mRNA translation into protein within cells through steric inhibition and/or Date regue/Date received 2023-05-26 RNAse H-mediated degradation. These oligonucleotides possess characteristics of both traditional steric-blocking antisense oligonucleotides as well as gapmers, which cause RNAse H-mediated degradation of target mRNA.
[0075] Accordingly, provided herein are antisense oligonucleotides comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein the oligonucleotide comprises alternating thiophosphoramidate or phosphoramidate and thiophosphate or phosphate intersubunit linkages, wherein the oligonucleotide is about 6 to about 25 nucleotides in length, and wherein the oligonucleotide is a substrate for RNase-H-mediated degradation of the mRNA
from a c-myc gene and/or wherein the oligonucleotide prevents translation of the mRNA by steric hindrance. In one embodiment, the oligonucleotide is about 6 to about 20 nucleotides or is about 6 to about 30 nucleotides in length. In some embodiments, the oligonucleotide is from about arty of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length, up to any of 25, or 30, or 50 nucleotides in length. In another embodiment, the oligonucleotide comprises 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length. In one embodiment, the c-myc antisense oligonucleotide is at least about 6 to at least about 50, including at least about 8 to at least about 30, or is about 6 to about 20 nucleotides or is about 6 to about 30 nucleotides or at least about 10 to at least about 20, and at least about 12 to at least about 16 nucleotides in length.
[0076] In some embodiments, the c-myc antisense oligonucleotides that prevent translation of an mRNA from a c-myc gene due to RNase-II-mediated degradation of the mRNA and/or steric hindrance (such as any of the oligonucleotides provided herein) are at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,21, 22, 23, 24, or 25 nucleotides in length and comprise the sequence (AnBAAn. In some embodiments, A comprises a thiophosphoramidate or phosphoramidate intersubunit linkage, B comprises a thiophosphate or phosphate intersubunit linkage, n and y indicate independently the number of contiguous intersubunit linkages represented by A and B, respectively, and q is any number from 1-10. In one embodiment, n and y are both 1-and the oligonucleotide is any of at least about 7, 9, 11, 13, 15 nucleotides in length. In another embodiment, n is 1 and y is 2 and the oligonucleotide is any of at least about 7, 10, 13, 16, 19, 22, 25 nucleotides in length. In another embodiment, n is 1 and y is 3 and the oligonucleotide is any of at least about 5, 9, 13, 17, nucleotides in length.
In another Date regue/Date received 2023-05-26 embodiment, n is 1 and y is 4 and the oligonucleotide is any of at least about 6, 12, 18, or 24 nucleotides in length. In another embodiment, n is 1 and y is 5 and the oligonucleotide is any of at least about 7, 14, or 21 nucleotides in length. In another embodiment, n is 1 and y is 6 and the oligonucleotide is any of at least about 8, 16, 24 nucleotides in length. In another embodiment, n is 1 and y is 7 and the oligonucleotide is any of at least about 9 or 17 nucleotides in length. In another embodiment, n is 1 and y is 8 and the oligonucleotide is any of at least about 10 or 20 nucleotides in length. In another embodiment, n is 2 and y is 1 and the oligonucleotide is any of at least about 8, 11, 14, 17, nucleotides in length. In another embodiment, n is 3 and y is 1 and the oligonucleotide is any of at least about 7, 11, 15, nucleotides in length.
[0077] In one embodiment, n and y are both 2 and the oligonucleotide is any of at least about 6, 12, 18, or 24 nucleotides in length. In another embodiment, n is 2 and y is 3 and the oligonucleotide is any of at least about 7, 14, or 21 nucleotides in length.
In another embodiment, n is 2 and y is 4 and the oligonucleotide is any of at least about 8, 16, or 24 nucleotides in length. In another embodiment, n is 2 and y is 5 and the oligonucleotide is any of at least about 9 or 18 nucleotides in length. In another embodiment, n is 2 and y is 6 and the oligonucleotide is any of at least about 10 or 20 nucleotides in length. In another embodiment, n is 2 and y is 7 and the oligonucleotide is any of at least about 11 or 22 nucleotides in length. In another embodiment, n is 3 and y is 2 and the oligonucleotide is any of at least about 8, 16, or 24 nucleotides in length. In another embodiment, n is 4 and y is 2 and the oligonucleotide is any of at least about 10 or 20 nucleotides in length. In another embodiment, n is 5 and y is 2 and the oligonucleotide is any of at least about 11 or 22 nucleotides in length.
[0078] In one embodiment, n and y are both 3 and the oligonucleotide is any of at least about 9 or 18 nucleotides in length. In another embodiment, n is 3 and y is 4 and the oligonucleotide is any of at least about 10 or 20 nucleotides in length. In another embodiment, n is 3 and y is 5 and the oligonucleotide is any of at least about 11 or 22 nucleotides in length. In another embodiment, n is 3 and y is 6 and the oligonucleotide is any of at least about 12 or 24 nucleotides in length. In another embodiment, n is 4 and y is 3 and the oligonucleotide is any of at least about 11 or 22 nucleotides in length.
[0079] In another embodiment, the c-myc antisense oligonucleotides that prevent translation of an mRNA from a c-myc gene due to RNase-H-mediated degradation of the mRNA from a c-myc gene and/or steric hindrance comprise alternating thiophosphoramidate and thiophosphate Date regue/Date received 2023-05-26 linkages. In other embodiments, the oligonucleotide comprises alternating phosphoramidate and thiophosphate linkages. In another embodiment, the oligonucleotide comprises alternating phosphoramidate and phosphate linkages. In another embodiment, the oligonucleotide comprises alternating thiophosphoramidate and phosphate linkages. In another embodiment, the oligonucleotide with alternating thiophosphoramidate and thiophosphate linkages comprises at least about any of 25%-35%, 30%-40%, 35%-45%, 45%-55%, 50%-60%, 55%-65%, or 60-70%
thiophosphoramidate linkages. In another embodiment, the oligonucleotide with alternating phosphoramidate and thiophosphate comprises at least about any of 25%-35%, 30%-40%, 35%-45%, 45%-55%, 50%-60%, 55%-65%, or 60-70% phosphoramidate linkages. ln another embodiment, the oligonucleotide with alternating thiophosphoramidate and phosphate linkages comprises at least about any of 25%-35%, 30%-40%, 35%-45%, 45%-55%, 50%-60%, 55%-65%, or 60-70% thiophosphoramidate linkages. In another embodiment, the oligonucleotide with alternating phosphoramidate and phosphate comprises at least about any of 25%-35%, 30%-40%, 35%-45%, 45%-55%, 50%-60%, 55%-65%, or 60-70% phosphoramidate linkages. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35%
(such as at least about 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%-100% in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35% (such as at least 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%400% in comparison to cells that have not Date regue/Date received 2023-05-26 been contacted with the oligonucleotide. In some embodiments, the oligonucleotide is complementary to an mRNA from a c-rnyc gene at the site of the mRNA's translation initiation region. In other embodiments, the oligonucicotide is at least 80%
complementary (such as at least 85%. 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%
complementary) to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments of any of the c-myc antiscnse oligonucicotides disclosed herein, the oligonucleotide is complementary (such as at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%%, 96%, 97%, 98%, 99%, or 100%, including any percentages in between these values, complementary) to an mRNA from a c-myc gene at a site on the mRNA where two exons arc spliced together. In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence ACCIITGAGGGGCAT (SEQ ID NO:15). In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence TCGTCGCGGGAGGCTG (SEQ ID NO:16). In some embodiments of any of the embodiments herein, the oligonucleotide has the sequence selected from the group consisting of AACGTTGAGGGGCAT (SEQ ID NO:1), UAACGTTGAGGGGCA (SEQ ID NO:2), TAACGTTGAGGGGCAT (SEQ ID NO:3), or TTTCATTGTTTICCA (SEQ ID NO:4).
CTCGTCGT'TTCCGCAACAAG (SEQ ID NO:6), ACGTT'GAGGGGCATCGTCGC (SEQ ID
NO:7), AACGTTGAGGGGCATCGTCG (SEQ ID NO:8), CTGCTGTCGI'l GAGAGGGTA
(SEQ ID NO:9), GGCATCGTCGCGGGAGGCTGCTGGAGCG (SEQ ID NO:10), GGCATCGTCGCGGGAGGCTG (SEQ ID NO:11), TCGTCGCGGGAGGCTGCTGG (SEQ
ID NO:12), CCGCCCGCTCGCTCCCTCTG (SEQ ID NO:13), and GTTCTCCTCCTCGTCGCAGT (SEQ ID NO:14) In other embodiments, the oligonucleotide comprises the sequence AACGTTGAGGGGCAT(SEQ ID NO:1). In another embodiment, the oligonucleotide comprises the sequence UAACGTTGAGGGGCA (SEQ ID NO:2). In one embodiment, when the oligonucleotide comprises UAACGTTGAGGGGCA (SEQ ID NO:2), the 5'uridinc can be 3'-amino-2'-hydroxy- uridine or 3'-oxy-2'-hydroxy-uridinc. In a further embodiment, the oligonucleotide comprises the sequence TAACGTTGAGGGGCAT (SEQ
ID
NO:3). In yet another embodiment, the oligonucleotide comprises the sequence fITCATI'GrITFCCA (SEQ Ill NO:4).
[0080] In some aspects, also provided herein are oligonucleotides comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein the oligonucleotide comprises two Date regue/Date received 2023-05-26 or more contiguous thiophosphoramidate linkages located on both the 5' and 3' ends of the oligonucleotide, wherein the oligonucleotide is about 6 to about 25 nucleotides in length, and wherein the oligonucleotide is a substrate for RNase-H-mediated degradation of the mRNA from a c-myc gene and/or prevents translation of the mRNA by steric hindrance. In one embodiment, the oligonucleotide is about 6 to about 20 nucleotides or is about 6 to about 30 nucleotides in length. In some embodiments, the oligonucleotide is from about any of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length, up to any of 25, or 30, or 50 nucleotides in length. In another embodiment, the oligonucleotide comprises 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length. In one embodiment, the c-myc antisense oligonucleotide is at least about 6 to at least about 50.
including at least about 8 to at least about 30, or is about 6 to about 20 nucleotides or is about 6 to about 30 nucleotides or at least about 10 to at least about 20, and at least about 12 to at least about 16 nucleotides in length.
[0081] In some embodiments, the c-myc antisense oligonucleotides that prevent translation of an mRNA from a c-myc gene due to RNase-H-mediated degradation of the mRNA from a c-myc gene and/or steric hindrance provided herein comprise at least about 6, 7, 8, 9, 10, 11, 12, 13, 14,
[0069] In some embodiments, the c-myc antisense oligonucleotide that prevents translation of an mRNA from a c-myc gene due to RNase-H-mediated degradation of the mRNA from a c-myc gene comprises four contiguous thiophosphoramidate linkages located on the 5' end of the oligonucleotide, five contiguous thiophosphoramidate linkages located on the 3' end of the Date regue/Date received 2023-05-26 oligonucleotide, and six contiguous thiophosphate or phosphate linkages located between the four contiguous thiophosphuramidate linkages located on the 5' end of the oligonucleotide and the five contiguous thiophosphoramidate linkages located on the 3' end of the oligonucleotide.
In some embodiments, the c-myc antisense oligonucleotide comprises four contiguous phosphoramidate linkages located on the 5' end of the oligonucleotide, five contiguous phosphoramidate linkages located on the 3' end of the oligonucleotide, and six contiguous thiophosphate or phosphate linkages located between the four contiguous phosphoramidate linkages located on the 5' end of the oligonucleotide and the five contiguous phosphoramidate linkages located on the 3' end of the oligonucleotide. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35% (such as at least about 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%-100% in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35%
(such as at least 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 7593-85%, 80%-90%, 85%-95%, or 90%400% in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, the oligonucleotide is complementary to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In some embodiments, the oligonucleotide is complementary to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments, the oligonucleotide is at least 80%
complementary (such as at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%
complementary) Date regue/Date received 2023-05-26 to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments of any of the c-rnyc antisense oligonucleotides disclosed herein, the oligonucleotide is complementary (such as at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%%, 96%, 97%, 98%, 99%, or 100%, including any percentages in between these values, complementary) to an mRNA from a c-myc gene at a site on the mRNA where two exons are spliced together. In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence ACGTTGAGGGGCAT (SEQ ID NO:15). In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence TCGTCGCGGGAGGCTG (SEQ Ill NO:16). In some embodiments of any of the embodiments herein, the oligonucleotide has the sequence selected from the group consisting of AACGTTGAGGGGCAT (SEQ ID NO:1), IJAACGTTGAGGGGCA (SEQ ID NO:2), TAACGTTGAGGGGCAT (SEQ ID NO:3), or TTTCATTGTTI'ICCA (SEQ ID NO:4), CTCGTCGTTTCCGCAACAAG (SEQ ID NO:6), ACGTTGAGGGGCATCGTCGC (SEQ ID
NO:7), AACGITGAGGOGCATCGTCG (SEQ ID NO:8), CTGCTGTCOTTGAGAGGGTA
(SEQ ID NO:9), GGCATCGTCGCGGGAGGCTGCTGGAGCG (SEQ ID NO:10), GGCATCGTCGCGGGAGGCTG (SEQ ID NO:11), TCGTCGCGGGAGGCTGCTGG (SEQ
ID NO:12), CCGCCCGCTCGCTCCCTCTG (SEQ ID NO:13), and GTTCTCCTCCTCGTCGCAGT (SEQ ID NO:14),In other embodiments, the oligonucleotide comprises the sequence AACGTTGAGGGGCAT (SEQ ID NO:1). In another embodiment, the oligonucleotide comprises the sequence UAACGTTGAGGGGCA (SEQ ID NO:2). In one embodiment, when the oligonucleotide comprises UAACGTTGAGGGGCA (SEQ ID NO:2), the 5'uridine can be 3' -amino-2' -hydroxy- uridine or 3' -oxy-2' -hydroxy-uridine. In a further embodiment, the oligonucleotide comprises the sequence TAACGTTGAGGGGCAT (SEQ
ID
NO:3). In yet another embodiment, the oligonucleotide comprises the sequence TTTCATTGTTTTCCA (SEQ ID NO:4).
[0070] In other aspects, also provided herein are oligonucleotides comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein the oligonucleotidc is a substrate for RNase-H-mediated degradation of the mRNA from a c-myc gene, and wherein the oligonucleotide comprises at least two contiguous phosphoramidate intersubunit linkages located on the 5' end of the oligonucleotide; wherein the oligonucleotide comprises at least two contiguous phosphoramidate intersubunit linkages located on the 3' end of the oligonucleotide;
Date regue/Date received 2023-05-26 =
wherein the oligonucleotide comprises 2-11 contiguous thiophosphate or phosphate linkages located in between said at least two contiguous phosphoramidate linkages located on the 5' end and said at least two contiguous phosphoramidate linkages located on the 3' end of the oligonucleotide; and wherein the oligonucleotide comprises the sequence AACGTTGAGGGGCAT (SEQ ID NO:1). In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence ACGTTGAGGGGCAT (SEQ ID
NO:15).
In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence TCGTCGCGGGAGGCTG (SEQ ID NO:16). In some embodiments of any of the embodiments herein, the oligonucleotide has the sequence selected from the group consisting of AACGTTGAGGGGCAT (SEQ ID NO:1), UAACGTTGAGGGGCA (SEQ ID NO:2), TAACGTTGAGGGGCAT (SEQ ID NO:3), or TTTCATTGTTTTCCA (SEQ ID NO:4), CTCGTCGTTTCCGCAACAAG (SEQ ID NO:6), ACGTTGAGGGGCATCGTCGC (SEQ ID
NO:7), AACGTTGAGGGGCATCGTCG (SEQ ID NO:8), CTGCTGTCGTTGAGAGGGTA
(SEQ ID NO:9), GGCATCGTCGCGGGAGGCTGCTGGAGCG (SEQ ID NO:10), GGCATCGTCGCGGGAGGCTG (SEQ ID NO:11), TCGTCGCGGGAGGCTGCTGG (SEQ
ID NO:12), CCGCCCGCTCGCTCCCTCTG (SEQ ID NO:13), and GTTCTCCTCCTCGTCGCAGT (SEQ ID NO:14) In other embodiments, the oligonucleotide comprises the sequence AACGTTGAGGGGCAT(SEQ ID NO:1). In another embodiment, the oligonucleotide comprises the sequence UAACGTTGAGGGGCA (SEQ ID NO:2). In one embodiment, when the oligonucleotide comprises UAACGTTGAGGGGCA (SEQ ID NO:2), the 5'uridine can be 3'-amino-2'-hydroxy- uridine or 3'-oxy-2'-hydroxy-uridine. In a further embodiment, the oligonucleotide comprises the sequence TAACGTTGAGGGGCAT (SEQ
ID
NO:3). In yet another embodiment, the oligonucleotide comprises the sequence TTTCATTGTTTTCCA (SEQ ID NO:4).
[0071] Techniques for synthesizing oligonucleotides with varying types of intersubunit linkages can be found, inter alia, in U.S. Patent No. 7,494,982.
[0072] In other embodiments, the c-myc antisense oligonucleotide that prevents translation of an mRNA from a c-myc gene due to RNase-H-mediated degradation of the mRNA from a c-myc gene and/or steric hindrance is fluorescently labeled. Non-limiting examples of fluorescent labels include fluorescein, phosphor, rhodamine, and polymethine dye derivative. Examples of Date recue/Date received 2023-05-26 commercially available fluorescent dyes include BODIPY FL (brand name, manufactured by Molecular Probe Inc.), FluorePrime (trade name, manufactured by Amersham Pharmacia), Fluoredite (trade name, manufactured by Millipore Corporation), FAIL
(manufactured by ABI), Cy3 and Cy5 (manufactured by Amersham Pharmacia), and tetramethylrhodamine (TAMRA;
manufactured by Molecular Probe Inc.).
[0073] In some embodiments, the c-myc antisense oligonucleotide that prevents translation of an mRNA from a c-myc gene due to RNAse H-mediated degradation of the mRNA is an oligonucleotide shown in Table 2.
Table 2: Gapmer c-myc antisense oligonucleotides SEQ ID Type of ODN
5' ¨ d- (Oligonucleotide) ¨ 3' NO: intersubunit Mode of action linkage(s) 16 Palm-AACGTTGAGGGGCAT 1 NPS/PS/NPS RNAse-H
17 TAACGTTGAGGGGCAT 3 NPS/PS/NPS RNAse-H
20 Palm-AACGTTGAGGGGCAT 1 NP/PS/NP RNAse-H
21 TAACGTTGAGGGGCAT 3 NP/PS/NP RNAse-H
32 Palm-AACGTTGAGGGGCAT- 1 NPS/PS/NPS RNAse-H
TAMRA
NPS/PS/NPS RNAse-H
TAMRA
TAMRA NP/PS/NP RNAse-H
* Palm = palmitic acid lipid moiety (see discussion infra); ** TAMRA =
fluorescent label;
***underlined and bold nucleotides indicate a different intersubunit linkage D. Antisense ODN inhibitors of c-inyc protein expression by steric hindrance and/or RNAse H-mediated degradation [0074] Provided herein are c-myc antisense oligonucleotides that can effectively prevent or decrease c-myc mRNA translation into protein within cells through steric inhibition and/or Date regue/Date received 2023-05-26 RNAse H-mediated degradation. These oligonucleotides possess characteristics of both traditional steric-blocking antisense oligonucleotides as well as gapmers, which cause RNAse H-mediated degradation of target mRNA.
[0075] Accordingly, provided herein are antisense oligonucleotides comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein the oligonucleotide comprises alternating thiophosphoramidate or phosphoramidate and thiophosphate or phosphate intersubunit linkages, wherein the oligonucleotide is about 6 to about 25 nucleotides in length, and wherein the oligonucleotide is a substrate for RNase-H-mediated degradation of the mRNA
from a c-myc gene and/or wherein the oligonucleotide prevents translation of the mRNA by steric hindrance. In one embodiment, the oligonucleotide is about 6 to about 20 nucleotides or is about 6 to about 30 nucleotides in length. In some embodiments, the oligonucleotide is from about arty of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length, up to any of 25, or 30, or 50 nucleotides in length. In another embodiment, the oligonucleotide comprises 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length. In one embodiment, the c-myc antisense oligonucleotide is at least about 6 to at least about 50, including at least about 8 to at least about 30, or is about 6 to about 20 nucleotides or is about 6 to about 30 nucleotides or at least about 10 to at least about 20, and at least about 12 to at least about 16 nucleotides in length.
[0076] In some embodiments, the c-myc antisense oligonucleotides that prevent translation of an mRNA from a c-myc gene due to RNase-II-mediated degradation of the mRNA and/or steric hindrance (such as any of the oligonucleotides provided herein) are at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,21, 22, 23, 24, or 25 nucleotides in length and comprise the sequence (AnBAAn. In some embodiments, A comprises a thiophosphoramidate or phosphoramidate intersubunit linkage, B comprises a thiophosphate or phosphate intersubunit linkage, n and y indicate independently the number of contiguous intersubunit linkages represented by A and B, respectively, and q is any number from 1-10. In one embodiment, n and y are both 1-and the oligonucleotide is any of at least about 7, 9, 11, 13, 15 nucleotides in length. In another embodiment, n is 1 and y is 2 and the oligonucleotide is any of at least about 7, 10, 13, 16, 19, 22, 25 nucleotides in length. In another embodiment, n is 1 and y is 3 and the oligonucleotide is any of at least about 5, 9, 13, 17, nucleotides in length.
In another Date regue/Date received 2023-05-26 embodiment, n is 1 and y is 4 and the oligonucleotide is any of at least about 6, 12, 18, or 24 nucleotides in length. In another embodiment, n is 1 and y is 5 and the oligonucleotide is any of at least about 7, 14, or 21 nucleotides in length. In another embodiment, n is 1 and y is 6 and the oligonucleotide is any of at least about 8, 16, 24 nucleotides in length. In another embodiment, n is 1 and y is 7 and the oligonucleotide is any of at least about 9 or 17 nucleotides in length. In another embodiment, n is 1 and y is 8 and the oligonucleotide is any of at least about 10 or 20 nucleotides in length. In another embodiment, n is 2 and y is 1 and the oligonucleotide is any of at least about 8, 11, 14, 17, nucleotides in length. In another embodiment, n is 3 and y is 1 and the oligonucleotide is any of at least about 7, 11, 15, nucleotides in length.
[0077] In one embodiment, n and y are both 2 and the oligonucleotide is any of at least about 6, 12, 18, or 24 nucleotides in length. In another embodiment, n is 2 and y is 3 and the oligonucleotide is any of at least about 7, 14, or 21 nucleotides in length.
In another embodiment, n is 2 and y is 4 and the oligonucleotide is any of at least about 8, 16, or 24 nucleotides in length. In another embodiment, n is 2 and y is 5 and the oligonucleotide is any of at least about 9 or 18 nucleotides in length. In another embodiment, n is 2 and y is 6 and the oligonucleotide is any of at least about 10 or 20 nucleotides in length. In another embodiment, n is 2 and y is 7 and the oligonucleotide is any of at least about 11 or 22 nucleotides in length. In another embodiment, n is 3 and y is 2 and the oligonucleotide is any of at least about 8, 16, or 24 nucleotides in length. In another embodiment, n is 4 and y is 2 and the oligonucleotide is any of at least about 10 or 20 nucleotides in length. In another embodiment, n is 5 and y is 2 and the oligonucleotide is any of at least about 11 or 22 nucleotides in length.
[0078] In one embodiment, n and y are both 3 and the oligonucleotide is any of at least about 9 or 18 nucleotides in length. In another embodiment, n is 3 and y is 4 and the oligonucleotide is any of at least about 10 or 20 nucleotides in length. In another embodiment, n is 3 and y is 5 and the oligonucleotide is any of at least about 11 or 22 nucleotides in length. In another embodiment, n is 3 and y is 6 and the oligonucleotide is any of at least about 12 or 24 nucleotides in length. In another embodiment, n is 4 and y is 3 and the oligonucleotide is any of at least about 11 or 22 nucleotides in length.
[0079] In another embodiment, the c-myc antisense oligonucleotides that prevent translation of an mRNA from a c-myc gene due to RNase-H-mediated degradation of the mRNA from a c-myc gene and/or steric hindrance comprise alternating thiophosphoramidate and thiophosphate Date regue/Date received 2023-05-26 linkages. In other embodiments, the oligonucleotide comprises alternating phosphoramidate and thiophosphate linkages. In another embodiment, the oligonucleotide comprises alternating phosphoramidate and phosphate linkages. In another embodiment, the oligonucleotide comprises alternating thiophosphoramidate and phosphate linkages. In another embodiment, the oligonucleotide with alternating thiophosphoramidate and thiophosphate linkages comprises at least about any of 25%-35%, 30%-40%, 35%-45%, 45%-55%, 50%-60%, 55%-65%, or 60-70%
thiophosphoramidate linkages. In another embodiment, the oligonucleotide with alternating phosphoramidate and thiophosphate comprises at least about any of 25%-35%, 30%-40%, 35%-45%, 45%-55%, 50%-60%, 55%-65%, or 60-70% phosphoramidate linkages. ln another embodiment, the oligonucleotide with alternating thiophosphoramidate and phosphate linkages comprises at least about any of 25%-35%, 30%-40%, 35%-45%, 45%-55%, 50%-60%, 55%-65%, or 60-70% thiophosphoramidate linkages. In another embodiment, the oligonucleotide with alternating phosphoramidate and phosphate comprises at least about any of 25%-35%, 30%-40%, 35%-45%, 45%-55%, 50%-60%, 55%-65%, or 60-70% phosphoramidate linkages. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35%
(such as at least about 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%-100% in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35% (such as at least 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%400% in comparison to cells that have not Date regue/Date received 2023-05-26 been contacted with the oligonucleotide. In some embodiments, the oligonucleotide is complementary to an mRNA from a c-rnyc gene at the site of the mRNA's translation initiation region. In other embodiments, the oligonucicotide is at least 80%
complementary (such as at least 85%. 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%
complementary) to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments of any of the c-myc antiscnse oligonucicotides disclosed herein, the oligonucleotide is complementary (such as at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%%, 96%, 97%, 98%, 99%, or 100%, including any percentages in between these values, complementary) to an mRNA from a c-myc gene at a site on the mRNA where two exons arc spliced together. In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence ACCIITGAGGGGCAT (SEQ ID NO:15). In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence TCGTCGCGGGAGGCTG (SEQ ID NO:16). In some embodiments of any of the embodiments herein, the oligonucleotide has the sequence selected from the group consisting of AACGTTGAGGGGCAT (SEQ ID NO:1), UAACGTTGAGGGGCA (SEQ ID NO:2), TAACGTTGAGGGGCAT (SEQ ID NO:3), or TTTCATTGTTTICCA (SEQ ID NO:4).
CTCGTCGT'TTCCGCAACAAG (SEQ ID NO:6), ACGTT'GAGGGGCATCGTCGC (SEQ ID
NO:7), AACGTTGAGGGGCATCGTCG (SEQ ID NO:8), CTGCTGTCGI'l GAGAGGGTA
(SEQ ID NO:9), GGCATCGTCGCGGGAGGCTGCTGGAGCG (SEQ ID NO:10), GGCATCGTCGCGGGAGGCTG (SEQ ID NO:11), TCGTCGCGGGAGGCTGCTGG (SEQ
ID NO:12), CCGCCCGCTCGCTCCCTCTG (SEQ ID NO:13), and GTTCTCCTCCTCGTCGCAGT (SEQ ID NO:14) In other embodiments, the oligonucleotide comprises the sequence AACGTTGAGGGGCAT(SEQ ID NO:1). In another embodiment, the oligonucleotide comprises the sequence UAACGTTGAGGGGCA (SEQ ID NO:2). In one embodiment, when the oligonucleotide comprises UAACGTTGAGGGGCA (SEQ ID NO:2), the 5'uridinc can be 3'-amino-2'-hydroxy- uridine or 3'-oxy-2'-hydroxy-uridinc. In a further embodiment, the oligonucleotide comprises the sequence TAACGTTGAGGGGCAT (SEQ
ID
NO:3). In yet another embodiment, the oligonucleotide comprises the sequence fITCATI'GrITFCCA (SEQ Ill NO:4).
[0080] In some aspects, also provided herein are oligonucleotides comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein the oligonucleotide comprises two Date regue/Date received 2023-05-26 or more contiguous thiophosphoramidate linkages located on both the 5' and 3' ends of the oligonucleotide, wherein the oligonucleotide is about 6 to about 25 nucleotides in length, and wherein the oligonucleotide is a substrate for RNase-H-mediated degradation of the mRNA from a c-myc gene and/or prevents translation of the mRNA by steric hindrance. In one embodiment, the oligonucleotide is about 6 to about 20 nucleotides or is about 6 to about 30 nucleotides in length. In some embodiments, the oligonucleotide is from about any of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length, up to any of 25, or 30, or 50 nucleotides in length. In another embodiment, the oligonucleotide comprises 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length. In one embodiment, the c-myc antisense oligonucleotide is at least about 6 to at least about 50.
including at least about 8 to at least about 30, or is about 6 to about 20 nucleotides or is about 6 to about 30 nucleotides or at least about 10 to at least about 20, and at least about 12 to at least about 16 nucleotides in length.
[0081] In some embodiments, the c-myc antisense oligonucleotides that prevent translation of an mRNA from a c-myc gene due to RNase-H-mediated degradation of the mRNA from a c-myc gene and/or steric hindrance provided herein comprise at least about 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length having a gap of about 2 to 16 nucleotides in length and having 5' and "3' end regions that are independently at least 2 to 16.
In other embodiments, exemplary 5' end-gap-3'end configurations for the c-myc antisense gapmer oligonucleotides can be any of the exemplary configurations disclosed above.
[0082] In some embodiments, the c-myc antisense oligonucleotide that prevents translation of an mRNA from a c-myc gene due to RNase-H-mediated degradation of the mRNA from a c-myc gene and/or steric hindrance further comprises two or more contiguous thiophosphate or phosphate linkages located in between the two or more contiguous thiophosphoramidate linkages located on both the 5' and 3' ends of the oligonucleotide. In other embodiments, the oligonucleotide comprises five contiguous thiophosphoramidate linkages located on the 5' end of the oligonucleotide, four contiguous thiophosphoramidate linkages located on the 3' end of the oligonucleotide, and six contiguous thiophosphate or phosphate linkages located between the five contiguous thiophosphoramidate linkages located on the 5' end of the oligonucleotide and the four contiguous thiophosphoramidate linkages located on the 3' end of the oligonucleotide.
In some embodiments, contacting any of the oligonucleotides disclosed herein with a Date regue/Date received 2023-05-26 proliferating cell decreases relative e-myc protein expression in the cell by greater than at least about 35% (such as at least about 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%100% in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucicotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35% (such as at least 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%400% in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, the oligonucleotide is complementary to an mRNA from a c-myc gene at the site of the niRNA's translation initiation region. In other embodiments, the oligonucleotide is at least 80%
complementary (such as at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%
complementary) to an niRNA from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments of any of the c-myc antisense oligonucleotides disclosed herein, the oligonucleotide is complementary (such as at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%%, 96%, 97%, 98%, 99%, or 100%, including any percentages in between these values, complementary) to an mRNA from a c-myc gene at a site on the mRNA where two exons arc spliced together. In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence ACGTTGAGGGGCAT (SEQ ID NO:15). In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence TCGT'CGCGGGAGGCTG (SEQ ID NO:16). In some embodiments of any of the embodiments herein, the oligonucleotide has the sequence selected from the group consisting of AACGITGAGGGGCAT (SEQ Ill NO:1), UAACGTTGAGGGGCA (SEQ 1D NO:2), Date regue/Date received 2023-05-26 TAACGTTGAGGGGCAT (SEQ ID NO:3), or n ____ TCA __ FIG n'TTCCA (SEQ ID NO:4), CTCGTCGTTTCCGCAACAAG (SEQ ID NO:6), ACGTTGAGGGGCATCGTCGC (SEQ ID
NO:7), AACGTTGAGGGGCATCGTCG (SEQ ID NO:8), CTGCTGTCGTTGAGAGGGTA
(SEQ ID NO:9), GGCATCGTCGCGGGAGGCTGCTGGAGCG (SEQ ID NO:10), GGCATCGTCGCGGGAGGCTG (SEQ ID NO:11), TCGTCGCGGGAGGCTGCTGG (SEQ
ID NO:12), CCGCCCGCTCGCTCCCTCTG (SEQ ID NO:13), and GTTCTCCTCCTCGTCGCAGT (SEQ ID NO:14) In other embodiments, the oligonucleotide comprises the sequence AACGTTGAGGGGCAT(SEQ ID NO:!). In another embodiment, the oligonucleotide comprises the sequence UAACGTT'GAGGGGCA (SEQ ID NO:2). In one embodiment, when the oligonucleotide comprises UAACG1TGAGGGGCA (SEQ ID NO:2), the 5'uridine can be 3'-amino-2'-hydroxy- uridine or 3'-oxy-2'-hydroxy-uridine. In a further embodiment, the oligonucleotide comprises the sequence TAACGTTGAGGGGCAT (SEQ
ID
NO:3). In yet another embodiment, the oligonucleotide comprises the sequence TTTCATTGTTTTCCA (SEQ ID NO:4).
[0083] In other embodiments, the c-myc antisense oligonucleotide that prevents translation of an mRNA from a c-myc gene due to RNase-H-mediated degradation of the mRNA from a c-myc gene and/or steric hindrance is fluorescently labeled. Non-limiting examples of fluorescent labels include fluorescein, phosphor, rhodamine, and polymethine dye derivative. Examples of commercially available fluorescent dyes include BODIPY FL (brand name, manufactured by Molecular Probe Inc.), FluorePrime (trade name, manufactured by Amersham Pharmacia), Fluoredite (trade name, manufactured by Millipore Corporation), FAIL
(manufactured by ABI), Cy3 and Cy5 (manufactured by Amersham Pharmacia), and tetramethylrhodamine (TAMRA;
manufactured by Molecular Probe Inc.).
[0084] Techniques for synthesizing mixed-action oligonucleotides with varying intersubunit linkages can be found, inter alia, in U.S. Patent No. 7,494,982.
[0085] In some embodiments, the c-myc antisense oligonucleotide that prevents translation of an mRNA from a c-myc gene due to RNAse H-mediated degradation of the mRNA and/or steric hindrance is an oligonucleotide shown in Table 3.
Date recue/Date received 2023-05-26 Table 3: Mixed-action antisense oligonucleotides SEQ ID Type of ODN
Mode of 5' ¨ d- (Oligonucleotide) ¨3' NO: intersubunit action linkage(s) , 18 Palm-TAACGTTGAGGGGCAT 3 Alt-NPS/PS
mixed 19 TAACGTTGAGGGGCAT _ _ _ 3 Alt-NPS/PS
mixed Palm- U-rA-rA-rC-dG-dT-dT-dG-dA- 2 24 rNPS/PS/rNPS
dG-dG-dGdGrCrA mixed 25 U-rA-rA-rC-dG-dT-dT-dG-dA-dG-dG- 2 rNPS/PS/rNPS mixed dG-dG-rC-rA
Palm-AACGT'TGAGGGGCAT-TAMRA Alt-NPS/PS
mixed * Palm = palmitic acid lipid moiety (see discussion infra); ** TAMRA =
fluorescent label;
***underlined and bold nucleotides indicate a different intersubunit linkage;
****alt =
alternating; ******r = ribo All nucleosides are dideoxy unless indicated r = ribo or d=dideoxy.
E. Lipid or cholesterol conjugation to oligonucleotides [0086] In some aspects, any of the c-myc antisense oligonucleotides described herein can be conjugated to a cholesterol or lipid moiety. Conjugation of antisense oligonucleotide have been associated with increased cellular uptake as well as other improved properties for delivering nucleic acids to cells such as, but not limited to, improved pharmacokinetics (see, e.g., U.S.
Patent Application Publication No. 2005/0113325.
[0087] In some embodiments, any of the c-myc antisense oligonucleotides described herein can be conjugated to a cholesterol moiety to facilitate oligonucleotide delivery into a target cell or tissue (such as, but not limited to, a cancer cell or a tumor). In some embodiments, a cholesterol moiety is a cholesterol molecule, sterol or any compound derived from cholesterol including chlolestanol, ergosterol, stimastanol, stigrnasterol, methyl-lithocholic acid, Cortisol, corticosterone, A5-pregnenolone, progesterone, deoxycorticosterone, 17-0H-pregnenolone, 17-Date recue/Date received 2023-05-26 OH-progesterone, 11-dioxycortisol, dehydroepiandrosterone, dehydroepiandrosterone sulfate, androstenedione, aldosterone, 18-hydroxycorticosterone, tetrahydrocortisol, tetrahydrocortisone, cortisone, prednisone, 6a-methylpredisone, 9a -fluoro-16a-hydroxyprednisolone, 9 a -fluoro-16amethylprednisolone, 9 a -fluorocortisol, testosterone, dihydrotestosterone, androstenediol, androstenedione, androstenedione, 3 a,5 a -androstanediol, estrone, estradiol, estrogen, spernildine cholesterol carbamate, N4-spermidine cholesteryl carbamate, N4-spermidine cholesteryl carbamate di HC1 salt, N4-spermidine-7 dehydro cholesteryl carbamate, N4-spermine cholesteryl carbamate, N,N bis(3-aminopropyl) cholesteryl carbamate, N,N bis(6-aminohexyl) cholesteryl carbamate, N4-spermidine dihydrocholesteryl carbamate, spermidine lithocholic carbamate methyl ester, N1,N8-bis(3-aminopropyl-N4-spermidine cholesteryl carbamate, N(N4-3-aminopropylspermidine) cholesteryl carbamate, N,N-bis(4-aminobutyl) cholesteryl carbamate, N4-spermidine cholesteryl urea, N4-spermine cholesteryl urea, N4-spermidine dihydro cholesteryl urea, N4-spermine dihydro cholesteryl urea, N,N-bis(N'-3-arninopropyl-N''4aminobutyl) cholesteryl carbamate, N4-spermidine cholesteryl carboxamide, and N __ 1N1,N4,N8-tris(3-aminopropyl) spettnidine] cholesteryl carbamate, lumisterol, cholic acid, desoxycholic acid, chenodesoxycholic acid and lithocholic acid and derivatives thereof.
[0088] In other embodiments, any of the c-myc antisense oligonucleotides described herein can be conjugated to a lipid moiety to facilitate oligonucleotide delivery into a target cell or tissue (such as, but not limited to, a cancer cell or a tumor). The conjugated lipid moiety can be any lipid or lipid derivative that provides enhanced cellular uptake compared to the unmodified oligonucicoside. In some embodiments, the lipids are linear hydrocarbons, saturated or unsaturated, fatty acids, or fatty acid derivatives, such as fatty amides. The length of the hydrocarbon chain can be from C8-C22 Examples of saturated hydrocarbons include, but are not limited to, octane (C8H20), nonane (C91I20), decane (C10H22), undecane (C111124), dock:cane (C12H26), and tridecane (C13H28). Other nonlimiting examples of saturated hydrocarbons are depicted in Table 4.
Date regue/Date received 2023-05-26 Table 4: Saturated hydrocarbons Omin To11'f:dec.:me C
nt*
PC**&41i*
Cialfss Ort,,adecaric Calms NUA,Sevatie IC:0140 PimaIna ezdr.ix [0089] In other embodiments, mono- and poly-unsaturated forms (alkenes and polyenes, such as alkadienes and alkatrienes) of hydrocarbons can also be selected. In some embodiments, mono- and poly-unsaturated lipid moieties having one to three double bonds can be utilized, although .moities having more double bonds can also be employed. In further embodiments, alkynes (containing one or more triple bonds) and alkenynes (containing triple bond(s) and double bond(s)) can also be utilized.
[0090] In some embodiments, a fatty alcohol can be selected. In one embodiment, the fatty alcohol is from C16 to CD, for example, batyl (1-0-Octadecylglycerol (C18)).
[0091] Other suitable lipid components include simple fatty acids and fatty acid derivatives can he conjugated to any of the c-myc antisense oligonucleotides disclosed herein. In some embodiments, fatty acids and their derivatives can be fully saturated or mono-or poly-unsaturated. The length of the fatty acid or fatty acid derivative chain can be from C8-C22.
[0092] Examples of saturated fatty acids include, but are not limited to, caprylic acid, caprie acid, lauric acid, behenic acid, lignoceric acid, or cerotic acid. Other nonlimiting examples of saturated fatty acids are depicted in Table 5.
Table 5: Saturated fatty acids mow (:oftzQ.i) Teltadecirtok.! 149) Homdi(nuoio 16:0 ratx.kstukDic arzaitlic Date regue/Date received 2023-05-26 [0093] Mono- and poly-unsaturated forms of fatty acids can also be employed.
In some embodiments, mono- and poly-unsaturated lipid moieties having one to three double bonds can bc employed, although compounds having more double bonds can also be conjugated to the c-myc antisense oligonucleotides. Fatty acids with one or more triple bonds in the carbon chain, as well as branched fatty acids, can also be used in the compounds of the invention. Non-limiting examples of common mono- and poly-unsaturated fatty acids that can be employed include those depicted in Table 6.
Table 6: Mono- and poly-unsaturated fatty acids symemilk., a:mu: .tim:;11;c: rise Catho a a 3iu p:Omit:A!;.; 16 !!4;1 egs,:ki,CoktµNanuie rarrav0RW 10;1 012) Cli-SI-coAlo2Anuic otekt 10:1 01-9) 9,12--oorsidc,;%:sdik.soi Ma110121--ligiak 103 i0.-6) '-U ItLs,ic*ha - 183 5,0,11:44-eicroii2tcuwasoie 2M+1 [0094] The linkage between the oligonucleotide and the lipid moiety may be a direct linkage, or it may be via an optional linker moiety. The linker moiety may also serve to facilitate the chemical synthesis of the compounds. Whether or not a linker group is used to mediate the conjugation of the oligonucleotide and the lipid moiety components, there are multiple sites on oligonucleoside components of the oligonucleotide to which the lipid moiety(ies) may be conveniently conjugated. Suitable linkage points include the 5' and 3' teiiiiini, one or more sugar rings, the internucleoside backbone and the nucleobases of the oligonucleoside. Typically, the lipid moiety is attached to the 3' or 5' terminus of the oligonucleoside.
[0095] If the lipid moiety is to be attached to the 3' terminus, the attachment may be directly to the 3' substituent, such as a 3'-amino group or 3'-hydroxy group.
Alternatively, the lipid moiety may be linked via a 3'-linked phosphate group. If the lipid moiety is to be linked to the 5' terminus, it is typically attached through a 5'-linked phosphate group.
[0096] Attachment of the lipid moiety to a base on the oligonucleoside may through any suitable atom, for example to the N2 amino group of guanosine.
[0097] Examples of preferred linker groups x include amino glycerol and 0-alkyl glycerol-type linkers, which can be depicted, respectively, by the generic structures:
Date regue/Date received 2023-05-26 -NR-(CH2)i1r-CH(W)-(CH2)-Z- and -0-(CH2)-CH(OR')-(C112)-0-(II) where R is either H or methyl; R'=H, OH, NH2 or SH; Z=0, S or NR; and n and in are independently integers between 1-18. Specific examples of suitable linkers are an aminoglycerol linker, in which R'=OH, Z=0, and m and n are each 1 (formula I);
a bis-aminoglycerol linker, in which R'=OH, Z=NH, and in and n are each 1 (formula I); and an 0-alkyl glycerol linker, in which R'=.11 (formula 11).
[0098] In some embodiments, one or two lipid or cholesterol moieties can be conjugated to a c-mye antisense oligonucleotide. In some embodiments, the one or two lipid or cholesterol moieties can be conjugated to a c-myc antisense oligonucleotide by a linker, such as any of the linkers disclosed above. Where one lipid or cholesterol moiety is used, it can be conjugated to either the 5' or 3' end of the oligonucleotide. When two lipid or cholesterol moieties are conjugated to the oligonucleotide, each lipid or cholesterol moiety component can be identical or can be selected independently. In some embodiments of the present invention, a palrnitic acid lipid moiety is not conjugated to a c-myc antisense oligonucleotide wherein the intersubunit linkages of the oligonucleotide are entirely NPS and wherein the oligonucleotide has the sequence AACGTTGAGGGGCAT (SEQ ID NO:1). In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35% (such as at least about 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%400% in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35%
(such as at least 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted Date regue/Date received 2023-05-26 with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%400% in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, the oligonucleotide is complementary to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments, the oligonucleotide is at least 80% complementary (such as at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% complementary) to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments of any of the c-myc antisense oligonucleotides disclosed herein, the oligonucleotide is complementary (such as at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%%, 96%, 97%, 98%, 99%, or 100%, including any percentages in between these values, complementary) to an mRNA from a c-myc gene at a site on the mRNA where two exons are spliced together. In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence ACGTTGAGGGGCAT
(SEQ
ID NO:15). In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence TCGTCGCGGGAGGCTG (SEQ ID NO:16). In some embodiments of any of the embodiments herein, the oligonucleotide has the sequence selected from the group consisting of AACGITGAGGGGCAT (SEQ ID NO:1), UAACGTTGAGGGGCA (SEQ ID
NO:2), TAACGITGAGGGGCAT (SEQ ID NO:3), or TITCATTGTTTTCCA (SEQ ID NO:4), CTCGTCGTTTCCGCAACAAG (SEQ ID NO:6), ACGTTGAGGGGCATCGTCGC (SEQ ID
NO:7), AACGTTGAGGGGCATCGTCG (SEQ ID NO:8), CTGCTGTCG1'IGAGAGGGTA
(SEQ ID NO:9), GGCATCGTCGCGGGAGGCTGCTGGAGCG (SEQ ID NO:10), GGCATCGTCGCGGGAGGCTG (SEQ ID NO:11), TCGTCGCGGGAGGCTGCTGG (SEQ
ID NO:12), CCGCCCGCTCGCTCCCTCTG (SEQ ID NO:13), and GlICTCCTCCTCGTCGCAGT (SEQ Ill NO:14)In other embodiments, the oligonucleotide comprises the sequence AACGTTGAGGGGCAT (SEQ ID NO:1). In another embodiment, the oligonucleotide comprises the sequence UAACGTTGAGGGGCA (SEQ ID NO:2). In one embodiment, when the oligonucleotide comprises UAACG'1"I'GAGGGGCA (SEQ ID
NO:2), the 5'uridine can be 3'-amino-2' -hydroxy- uridine or 3'-oxy-2'-hydroxy-uridine. In a further embodiment, the oligonucleotide comprises the sequence TAACGTTGAGGGGCAT (SEQ
ID
NO:3). In yet another embodiment, the oligonucleotide comprises the sequence Date regue/Date received 2023-05-26 TTTCATTGTTTTCCA (SEQ ID NO:4). In another embodiment, a palmitic acid is conjugated to the 5' end of the oligonucleotide.
100991 Antisense oligonucleotides of the present invention described as being conjugated to a specified hydrocarbon or a specified fatty acid (with the same number of carbon atoms as the specified hydrocarbon) are closely related and differ in structure only in the nature of the bond that joins the moiety to the oligonucleotide, which in turn is a result of the synthesis procedure used to produce the conjugated compound. For example, when compounds are synthesized having the lipid moiety conjugated to the 3'-amino terminus of an oligonucleoside, the use of the aldehyde form of a fatty acid (a fatty aldehyde) as the starting material results in the formation of an amine linkage between the lipid chain and the oligonucleoside, such that the lipid group appears as a hydrocarbon. In contrast, use of the carboxylic acid, acid anhydride or acid chloride forms of the same fatty acid results in the formation of an amide linkage, such that the lipid group appears as a fatty acid derivative, specifically in this instance a fatty amide (as noted in the definitions section above, for the sake of simplicity, the term "fatty acid" when describing the conjugated lipid group is used broadly herein to include fatty acid derivatives, including fatty amides). Techniques for conjugating lipid or cholesterol moieties to oligonucleotides can be found, inter alia, in U.S. Patent No. 7,494,982.
E. Modified or substituted sugar moieties.
101001 In some aspects, any of the c-myc antisense oligonucleotides disclosed herein can further comprise one or more modified or substituted sugar moieties. In some embodiments, the oligonucleotides comprise one of the following substitutions at the 2' position: OH; F; 0¨, S¨, or N-alkyl; 0¨, S¨, or N-alkenyl; 0¨, S¨ or N-alkynyl; or 0-alkyl-0-alkyl, wherein the alkyl, alkenyl and alkynyl can be substituted or unsubstituted Ci to Cio alkyl or C2 to Cio alkenyl and alkynyl. Other oligonucleotides can comprise one of the following at the 2' position: CI to C10 lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkaryl, aralkyl, 0-alkaryl or 0-aralkyl, SH, SCH3, OCN, CI, Br, CN, CF3, OCF3, SOCH3, SO2CH3, 0NO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar Date regue/Date received 2023-05-26 properties. Another modification can include 2'-methoxyethoxy CH2CH2OCH3, also known as 2'-0-(2-methoxyethyl) or 2'-M0E) i.e., an alkoxyalkoxy group. A
further modification can include 2'-dimethylaminooxyethoxy, i.e., a 0(CH2)20N (CH3) 2 group, also known as 2'-DMA0E, as described in examples herein, and 2'-dimethylaminoethoxyethoxy (also known in the art as 2'-0-dimethyl-amino-ethoxy-ethyl or 2'-DMAEOE), i.e., 2' -0---CH2-0--CH2¨
N(CH3)2, also described in examples herein.
Other sugar modifications can include 2'-methoxy (2'¨ 0 CH3), 2'-aminopropoxy (2'¨OCH2CH2CH2NH2), 2'-allyl(2'-CH2¨CH=CH2), 2'-0-ally1(2'-0¨CH2¨ 5 CH=CH2) and 2'-fluoro (2'-F). The 2'-modification can be in the arabino (up) position or ribo (down) position. A 2'-arabino modification can be 2'-F. Similar modifications can also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of 5' terminal nucleotide.
Oligonucleotides can also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative U.S. patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos. 5,514,785;
5,519,134; 5,567,811;
5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265;
5,658,873;
5,670,633; 5,792,747; and 5,700,920, 20.
F. Nucleobase modifications [0102] Any of the c-myc antisense oligonucleotides disclosed herein can also include nucleobase modifications or substitutions. As used herein, "unmodified" or "natural"
nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, N-alkyl N-derivatives of 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl (-0^C¨CH3) uracil and cytosine and other alkynyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-Date recue/Date received 2023-05-26 methyladenine, 2-F-adenine, 2-aminoadenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. Further modified nucleobases include tricyclic pyrimidines such as phenoxazine cytidine (1H-pyrimido[5,4-b][1,4]benzoxazin2(3H)-one), phenothiazine cytidine (1H-pyrimido[5,4-b][1, 4]benzothiazin-2(31-1)-one), G-clamps such as a substituted phenoxazine cytidine (e.g. 9-(2-aminoethoxy)-H-pyrimido [5,4-b][1,4]benzoxazin-2(3H)-one), carbazole cytidine (2H- 60 pyrimido[4,5-b]indol-2-one), pyridoindole cytidine (H-pyrido[3',2':4,5]pyrrolo[2,3-d]pyrimidin-2-one). Modified nucleobases can also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone.
Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. I., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y. S., Chapter 15, Antisense Research and Applications, pages 289-302, Crooke, S. T. and Lebleu, B., ed., CRC
Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the compounds of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability and can be included as base substitutions, even more particularly when combined with 2'-0-methoxyethyl sugar modifications.
[0103] Representative United States patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. Pat. No. 3,687,808, as well as 5,502,177; 5,525,711;
5,552,540;
5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,645,985; 5,830,653; 5,763,588;
6,005,096;
5,681,941 and U.S. Pat. No. 5,750, 692.
IV. Pharmaceutical compositions [0104] In some aspects of the present invention, when employed as pharmaceuticals, the c-myc antisense oligonucleotides disclosed herein can be formulated with a pharmaceutically acceptable excipient or carrier to be formulated into a pharmaceutical composition.
Date recue/Date received 2023-05-26 [0105] When employed as pharmaceuticals, the c-myc antisense oligonucleotides can be administered in the form of pharmaceutical compositions. These compounds can be administered by a variety of routes including oral, rectal, transdermal, subcutaneous, intravenous, intramuscular, and intranasal. These compounds are effective as both injectable and oral compositions. Such compositions are prepared in a manner well known in the pharmaceutical art and comprise at least one active compound. When employed as oral compositions, the c-myc antisense oligonucleotides disclosed herein are protected from acid digestion in the stomach by a pharmaceutically acceptable protectant.
[0106] This invention also includes pharmaceutical compositions which contain, as the active ingredient, one or more of the antisense oligonucleotides associated with one or more pharmaceutically acceptable excipients or carriers. In making the compositions of this invention, the active ingredient is usually mixed with an excipient or carrier, diluted by an excipient or carrier or enclosed within such an excipient or carrier which can he in the form of a capsule, sachet, paper or other container. When the excipient or carrier serves as a diluent, it can be a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient. Thus, the compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10% by weight of the active compound, soft and hard gelatin capsules, suppositories, sterile injectable solutions, and sterile packaged powders.
[0107] In preparing a formulation, it may be necessary to mill the active lyophilized compound to provide the appropriate particle size prior to combining with the other ingredients. If the active compound is substantially insoluble, it ordinarily is milled to a particle size of less than 200 mesh. If the active compound is substantially water soluble, the particle size is normally adjusted by milling to provide a substantially unifoim distribution in the formulation, e.g. about 40 mesh.
[0108] Some examples of suitable excipients or carriers include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, sterile water, syrup, and methyl cellulose. The formulations can additionally include: lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents;
Date regue/Date received 2023-05-26 preserving agents such as methyl- and propylhydroxy-benzoates; sweetening agents; and flavoring agents. The compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.
[0109] Thc compositions can be formulated in a unit dosage form, each dosage containing from about 5 mg to about 100 mg or more, such as any of about 1 mg to about 5 mg, 1 mg to about 10 fig, about 1 mg to about 20 mg, about 1 mg to about 30 mg, about 1 mg to about 40 mg, about 1 mg to about 50 mg, about 1 mg to about 60 mg, about 1 mg to about 70 mg, about 1 mg to about 80 mg, or about 1 mg to about 90 mg, inclusive, including any range in between these values, of the active ingredient. The term "unit dosage forms" refers to physically discrete units suitable as unitary dosages for individuals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient or carrier.
[0110] The antisense oligonucleotides are effective over a wide dosage range and are generally administered in a therapeutically effective amount. It will he understood, however, that the amount of the antisense oligonucleotides actually administered will be determined by a physician, in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
[0111] For preparing solid compositions such as tablets, the principal active ingredient antisense oligonucleotide is mixed with a pharmaceutical excipient or carrier to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention. When referring to these preformulation compositions as homoeeneous, it is meant that the active ingredient is dispersed evenly throughout the composition so that the composition can be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules.
[0112] The tablets or pills of the present invention can be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action and to protect the c-myc antisense oligonucleotide from acid hydrolysis in the stomach. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an Date regue/Date received 2023-05-26 envelope over the former. The two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.
[0113] The liquid forms in which the novel compositions of the present invention can be incorporated for administration orally or by injection include aqueous solutions, suitably flavored syrups, aqueous or oil suspensions, and flavored emulsions with edible oils such as corn oil, cottonseed oil, sesame oil, coconut oil, or peanut oil, as well as elixirs and similar pharmaceutical vehicles.
[0114] Compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders. The liquid or solid compositions can contain suitable pharmaceutically acceptable excipients as described supra. The compositions can be administered by the oral or nasal respiratory route for local or systemic effect. Compositions in pharmaceutically acceptable solvents can he nebulized by use of inert gases. Nebulized solutions can be inhaled directly from the nebulizing device or the nebulizing device can be attached to a face mask tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions can also be administered, orally or nasally, from devices which deliver the formulation in an appropriate manner.
V. Methods of the Invention [0115] The antisense oligonucleotides (such as in compositions) disclosed herein can be used for the treatment and/or prevention of a cell proliferative disorder. In some embodiments, the individual is diagnosed with or is suspected of having a cell proliferative disorder.
[0116] The present invention is directed to methods for inhibiting the symptoms or conditions (disabilities, impairments) associated with a cell proliferative disorder as described in detail below. As such, it is not required that all effects of the condition be entirely prevented or reversed, although the effects of the presently disclosed methods likely extend to a significant therapeutic benefit for the patient. As such, a therapeutic benefit is not necessarily a complete prevention or cure for a particular condition resulting from a cell proliferative disorder, but Date regue/Date received 2023-05-26 rather, can encompass a result which includes reducing or preventing the symptoms that result from a cell proliferative disorder, reducing or preventing the occurrence of such symptoms (either quantitatively or qualitatively), reducing the severity of such symptoms or physiological effects thereof, and/or enhancing the recovery of the individual after experiencing a cell proliferative disorder symptoms.
[0117] Specifically, a composition of the present invention (such as any of the c-myc antisense oligonucleotides disclosed herein), when administered to an individual, can treat or prevent one or more of the symptoms or conditions associated with a cell proliferative disorder and/or reduce or alleviate symptoms of or conditions associated with this disorder. As such, protecting an individual from the effects or symptoms resulting from an a cell proliferative disorder includes both preventing or reducing the occurrence and/or severity of the effects of the disorder and treating a patient in which the effects of the disorder are already occurring or beginning to occur. A beneficial effect can easily be assessed by one of ordinary skill in the art and/or by a trained clinician who is treating the patient. Preferably, there is a positive or beneficial difference in the severity or occurrence of at least one clinical or biological score, value, or measure used to evaluate such patients in those who have been treated with the methods of the present invention as compared to those that have not.
[0118] The methods can be practiced in an adjuvant setting. "Adjuvant setting"
refers to a clinical setting in which an individual has had a history of a proliferative disease, particularly cancer, and generally (but not necessarily) been responsive to therapy, which includes, but is not limited to, surgery (such as surgical resection), radiotherapy, and chemotherapy. However, because of their history of the proliferative disease (such as cancer), these individuals are considered at risk of development of the disease. Treatment or administration in the "adjuvant setting" refers to a subsequent mode of treatment. The degree of risk (i.e., when an individual in the adjuvant setting is considered as "high risk" or "low risk") depends upon several factors, most usually the extent of disease when first treated.
[0119] The methods provided herein can also be practiced in a "neoadjuvant setting," i.e., the method can be carried out before the primary/definitive therapy. In some embodiments, the individual has previously been treated. In some embodiments, the individual has not previously been treated. In some embodiments, the treatment is a first line therapy.
Date regue/Date received 2023-05-26 A. Cell proliferative disorders [0120] A "proliferative disorder" is any cellular disorder in which the cells proliferate more rapidly than normal tissue growth. Thus a "proliferating cell" is a cell that is proliferating more rapidly than normal cells. The proliferative disorder includes, but is not limited to, neoplasms. A
"neoplasm" is an abnormal tissue growth, generally forming a distinct mass that grows by cellular proliferation more rapidly than normal tissue growth. Neoplasms show partial or total lack of structural organization and functional coordination with normal tissue. These can be broadly classified into three major types. Malignant neoplasms arising from epithelial structures are called carcinomas, malignant neoplasms that originate from connective tissues such as muscle, cartilage, fat or hone are called sarcomas and malignant tumors affecting hematopoetic structures (structures pertaining to the formation of blood cells) including components of the immune system, are called leukemias and lymphomas. A tumor is the neoplastic growth of the disease cancer. As used herein, a neoplasm, also referred to as a "tumor", is intended to encompass hematopoietic neoplasms as well as solid neoplasms. Other proliferative disorders include, but are not limited to neurofibromatosis.
[0121] The c-myc antisense oligonucleotides (such as in compositions) provided herein are useful for modulating disease states associated with dysregulation of c-myc expression in cells.
The c-myc gene is involved in multiple biological and physiological functions, including, e.g., cell proliferation. In some embodiments, the cell proliferative disorder is associated with increased expression or activity of c-myc or cellular growth, or both. In some embodiments, the cell proliferation is cancer.
[0122] The methods described herein are also useful for treating solid tumors (such as advanced solid tumors). In some embodiments, there is provided a method of treating lung cancer, including, for example, non-small cell lung cancer (NSCLC, such as advanced NSCLC), small cell lung cancer (SCLC, such as advanced SCLC), and advanced solid tumor malignancy in the lung. In some embodiments, there is provided a method of treating any of ovarian cancer, head and neck cancer, gastric malignancies, melanoma (including metastatic melanoma and malignant melanoma), ovarian cancer, colorectal cancer, and pancreatic cancer.
Date regue/Date received 2023-05-26 [0123] In some embodiments, the method is useful for treating one or more of the following:
cutaneous T cell lymphoma (CTCL), leukemia, follicular lymphoma, Hodgkin lymphoma, and acute myeloid leukemia.
[0124] In some embodiments, the disease is a cancer of any one of the following: basal cell carcinoma, mcdulloblastoma, glioblastoma, multiple mycloma, chronic myclogenous leukemia (CML), acute myelogenous leukemia, pancreatic cancer, lung cancer (small cell lung cancer and non-small cell lung cancer), esophageal cancer, stomach cancer, billary cancer, prostate cancer, liver cancer, hepatocellular cancer, gastrointestinal cancer, gastric cancer, and ovarian and bladder cancer. In some embodiments, the cancer is selected from the group consisting of pancreas ductal adenocarcinoma, colon adenocarcinoma, and ovary cystadenocarcinoma. In some embodiments, the cancer is pancreas ductal adenocarcinoma. In some embodiments, the cancer is a tumor that is poorly perfused and/or poorly vascularized.
[0125] In some embodiments, the cancer is pancreatic cancer, including for example pancreatic adenocarcinoma, pancreatic adenosquamous carcinoma, pancreatic squamous cell carcinoma, and pancreatic giant cell carcinoma. In some embodiments, the pancreatic cancer is exocrine pancreatic cancer. In some embodiments, the pancreatic cancer is endocrine pancreatic cancer (such as islet cell carcinoma). In some embodiments, the pancreatic cancer is advanced metastatic pancreatic cancer.
[0126] Other examples of cancers that can be treated by the methods of the invention include, but are not limited to, adenocortical carcinoma. agnogenic myeloid metaplasia.
AIDS-related cancers (e.g., AIDS-related lymphoma), anal cancer, appendix cancer, astrocytoma (e.g., cerebellar and cerebral), basal cell carcinoma, bile duct cancer (e.g., extrahepatic), bladder cancer, bone cancer. (osteosarcoma and malignant fibrous histiocytoma), brain tumor (e.g., glioma, brain stem glioma, cerebellar or cerebral astrocytoma (e.g., pilocytic astrocytoma, diffuse astrocytoma, anaplastic (malignant) astrocytoma), malignant glioma, ependymoma, oligodenglioma, meningioma, craniopharyngioma, haemangioblastomas, medulloblastoma, supratentorial primitive neuroectodermal tumors, visual pathway and hypothalamic glioma, and glioblastoina), breast cancer, bronchial adenomas/carcinoids, carcinoid tumor (e.g., gastrointestinal carcinoid tumor), carcinoma of unknown primary, central nervous system lymphoma, cervical cancer, colon cancer, colorectal cancer, chronic myeloproliferative disorders, endometrial cancer (e.g., uterine cancer), ependymoma, esophageal cancer, Ewing's Date regue/Date received 2023-05-26 family of tumors, eye cancer (e.g., intraocular melanoma and retinoblastoma), gallbladder cancer, gastric (stonaach) cancer, gastrointestinal carcinoid tumor, gastrointestinal stromal tumor (GIST), germ cell tumor, (e.g., cxtracranial, cxtragonadal, ovarian), gestational trophoblastic tumor, head and neck cancer, hepatocellular (liver) cancer (e.g., hepatic carcinoma and heptoma), hypopharyngeal cancer, islet cell carcinoma (endocrine pancreas), laryngeal cancer, laryngeal cancer, leukemia, lip and oral cavity cancer, oral cancer, liver cancer, lung cancer (e.g., small cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, and squamous carcinoma of the lung), lymphoid neoplasm (e.g., lymphoma), medulloblastoma, ovarian cancer, mesothelioma, metastatic squamous neck cancer, mouth cancer, multiple endocrine neoplasia syndrome, myelodysplastic syndromes, myelodysplastic/myeloproliferative diseases, nasal cavity and paranasal sinus cancer, nasopharyngeal cancer, neuroblastoma, neuroendocrine cancer, oropharyngeal cancer, ovarian cancer (e.g., ovarian epithelial cancer, ovarian germ cell rumor, ovarian low malignant potential tumor), pancreatic cancer, parathyroid cancer, penile cancer, cancer of the peritoneal, pharyngeal cancer, pheochromocytoma, pineoblastoma and supratentorial primitive neuroectodermal tumors, pituitary tumor, pleuropulmonary blastoma, lymphoma, primary central nervous system lymphoma (microglioma), pulmonary lymphangiomyomatosis, rectal cancer, renal cancer, renal pelvis and ureter cancer (transitional cell cancer), rhabdomyosarcoma, salivary gland cancer, skin cancer (e.g., non-melanoma (e.g., squamous cell carcinoma), melanoma, and Merkel cell carcinoma), small intestine cancer, squamous cell cancer, testicular cancer, throat cancer, thymoma and thymic carcinoma, thyroid cancer, tuberous sclerosis, urethral cancer, vaginal cancer, vulvar cancer, Wilms' tumor, and post-transplant lymphoproliferative disorder (PTLD), abnormal vascular proliferation associated with phakomatoses, edema (such as that associated with brain tumors), and Meigs' syndrome.
[0127] In some embodiments, the cancer is a solid tumor (such as advanced solid tumor). Solid tumor includes, but is not limited to, sarcomas and carcinomas such as fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarconia, Kaposi's sarcoma, soft tissue sarcoma, uterine sacronomasynovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma Date regue/Date received 2023-05-26 (including for example adenocarcinoma, clear cell renal cell carcinoma, papillary renal cell carcinoma, chromophobe renal cell carcinoma, collecting duct renal cell carcinoma, granular renal cell carcinoma, mixed granular renal cell carcinoma, renal angiomyolipomas, or spindle renal cell carcinoma.), hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilm's tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, menangioma, melanoma, neuroblastoma, and retinoblastoma.
[0128] In some embodiments the lymphoid neoplasm (e.g., lymphoma) is a B-cell neoplasm.
Examples of B-cell neoplasms include, hut are not limited to, precursor B-cell neoplasms (e.g., precursor B-lymphoblastic leukemia/lymphoma) and peripheral B-cell neoplasms (e.g., B-cell chronic lymphocytic leukemia/prolymphocytic leukemia/small lymphocytic lymphoma (small lymphocytic (SI) NHL), lymphoplasmacytoid lymphomdimmunocytonia, mantel cell lymphoma, follicle center lymphoma, follicular lymphoma (e.g., cytologic grades: I (small cell), II (mixed small and large cell), III (large cell) and/or subtype: diffuse and predominantly small cell type), low grade/follicular non-Hodgkin's lymphoma (NHL), intermediate grade/follicular NHL, marginal zone B-cell lymphoma (e.g., extranodal (e.g., MALT-type +/-monocytoid B
cells) and/or Nodal (e.g., +/- monocytoid B cells)), splenic marginal zone lymphoma (e.g., +/-villous lymphocytes), hairy cell leukemia, plasmacytoma/plasma cell myeloma (e.g., myeloma and multiple myeloma), diffuse large B-cell lymphoma (e.g., primary mediastinal (thymic) B-cell lymphoma), intermediate grade diffuse NHL, Burkitt's lymphoma, High-grade B-cell lymphoma, Burkitt-likc, high grade immunoblastic NHL, high grade lymphoblastic NHL, high grade small non-cleaved cell NHL, bulky disease NHL, AIDS-related lymphoma, and Wa1denstrom's macroglobulinemia).
[0129] In some embodiments the lymphoid neoplasm (e.g., lymphoma) is a T-cell and/or putative NK-cell neoplasm. Examples of T-cell and/or putative NK-eell neoplasms include, but are not limited to, precursor T-cell neoplasm (precursor T-lymphoblastic lymphoma/leukemia) and peripheral T-cell and NK-cell neoplasms (e.g., T-cell chronic lymphocytic leukemia/prolymphocytic leukemia, and large granular lymphocyte leukemia (LGL) (e.g., T-cell type and/or NK-cell type), cutaneous T-cell lymphoma (e.g., mycosis fungoidcs/Sezary syndrome), primary T-cell lymphomas unspecified (e.g., cytological categories (e.g., medium-Date regue/Date received 2023-05-26 sized cell, mixed medium and large cell), large cell, lymphoepitheloid cell, subtype hepatosplenic y6 T-cell lymphoma, and subcutaneous panniculitic T-cell lymphoma), angioimmunoblastic T-cell lymphoma (AILD), angioccntric lymphoma, intestinal T-cell lymphoma (e.g., +/- enteropathy associated), adult T-cell lymphoma/leukemia (ATL), anaplastic large cell lymphoma (ALCL) (e.g., CD30+, '1'- and null-cell types), anaplastic large-cell lymphoma, and Hodgkin's lymphoma).
[0130] In some embodiments the lymphoid neoplasm (e.g., lymphoma) is Hodgkin's disease.
For example, the Hodgkin's disease can be lymphocyte predominance, nodular sclerosis, mixed cellularity, lymphocyte depletion, and/or lymphocyte-rich.
[0131] In some embodiments, the cancer is leukemia. In some embodiments, the leukemia is chronic leukemia. Examples of chronic leukemia include, but are not limited to, chronic myelocytic I (granulocytic) leukemia, chronic myelogenous, and chronic lymphocytic leukemia (CLL). In some embodiments, the leukemia is acute leukemia. Examples of acute leukemia include, but are not limited to, acute lymphoblastic leukemia (ALL), acute myeloid leukemia, acute lymphocytic leukemia, and acute myelocytic leukemia (e.g., myeloblastic, promyelocytic, myelomonocytic, monocytic, and erythroleukemia).
[0132] In some embodiments, the cancer is liquid tumor or plasmacytoma.
Plasmacytoma includes, but is not limited to, myeloma. Myeloma includes, but is not limited to, an extramedullary plasmacytoma, a solitary myeloma, and multiple myeloma. In some embodiments, the plasmacytoma is multiple myeloma.
[0133] In some embodiments, the cancer is multiple myeloma. Examples of multiple myeloma include, but are not limited to, IgG multiple myeloma, IgA multiple rnyeloma, IgD multiple myeloma, IgE multiple myeloma, and nonsecretory multiple myeloma. In some embodiments, the multiple myeloma is IgG multiple myeloma. In some embodiments, the multiple myeloma is IgA multiple myeloma. In some embodiments, the multiple myeloma is a smoldering or indolent multiple myeloma. In some embodiments, the multiple myeloma is progressive multiple myeloma. In some embodiments, multiple myeloma may be resistant to a drug, such as, but not limited to, bortezomib, dexamethasone (Dex-), doxorubicin (Dox-), and melphalan (LR).
Date regue/Date received 2023-05-26 B. Methods of treating cell proliferative disorders [0134] Provided herein are methods for inhibiting or decreasing c-myc-mediated cell proliferation, said method comprising administering to an individual in need thereof a therapeutically effective amount of a c-myc antisense oligonucleotide (such as in a composition) described herein. In some embodiments, the cell proliferative disorder is associated with increased expression or activity of c-myc or cellular growth, or both. In some embodiments, the cell proliferation is cancer. In some embodiments, the cancer is liver cancer, lymphoma, lung cancer, glioblastoma, pancreatic cancer, sarcoma, renal cell carcinoma, gastric cancer, colorectal cancer, or breast cancer. In some embodiments, the cancer is stage Illb and/or stage IV. In some embodiments, the cancer is locally advanced or metastatic cancer. In sonic embodiments, the cancer is c-myc positive (i.e. the cancer cells express c-myc, for example, as determined by immunohistochemistry (IHC)). In further embodiments of any of the methods described herein, administration of the c-myc antisense oligonucleotide (such as any of the c-myc antisense oligonucleotides disclosed herein) comprises contacting one or more cancer cells with the oligonucleotide. In one embodiment, administration of the therapeutically effective amount of one or more of the oligonucleotides results in one or more of reduced cellular proliferation, increased apoptosis, or cellular senescence. In another embodiment, administration of the therapeutically effective amount of one or more of the oligonucleotides does not result in significant toxicity or morbidity in the individual. In some embodiments, the individual is a human.
[0135] Also, provided herein are methods of treating a pathological condition associated with dysregulation of c-myc expression in a subject, said method comprising administering to an individual in need thereof a therapeutically effective amount of a c-myc antisense oligonucleotide (such as in a composition) described herein. In some embodiments, the cell proliferative disorder is associated with increased expression or activity of c-myc or cellular growth, or both. In some embodiments, the cell proliferation is cancer. In some embodiments, the cancer is liver cancer, lymphoma, lung cancer, glioblastoma, pancreatic cancer, sarcoma, renal cell carcinoma, gastric cancer, colorectal cancer, or breast cancer. In some embodiments, the cancer is stage IIIb and/or stage IV. In some embodiments, the cancer is locally advanced or metastatic cancer. In some embodiments, the therapy is second line or third line therapy. In some embodiments, the cancer is c-myc positive (i.e. the cancer cells express c-myc for example, as Date regue/Date received 2023-05-26 determined by immunohistochemistry (IHC)). In further embodiments of any of the methods described herein, administration of the c-myc antisense oligonucleotide (such as any of the c-myc antisense oligonucicotides disclosed herein) comprises contacting one or more cancer cells with the oligonucleotide. In one embodiment, administration of the therapeutically effective amount of one or more of the oligonucleotides results in one or more of reduced cellular proliferation, increased apoptosis, or cellular senescence. In another embodiment, administration of the therapeutically effective amount of one or more of the oligonucleotides does not result in significant toxicity or morbidity in the individual. In some embodiments, the individual is a human.
[0136] Also provided herein are methods of inhibiting the growth of a cell that expresses c-myc, said method comprising administering to an individual in need thereof a therapeutically effective amount of a c-myc antisense oligonucleotide (such as in a composition) described herein. In some embodiments, the cell has abnormally high cellular growth. In some embodiments, the cell is a cancer cell. In some embodiments, the cancer is liver cancer, lymphoma, lung cancer, glioblastoma, pancreatic cancer, sarcoma, renal cell carcinoma, gastric cancer, colorectal cancer, or breast cancer. In some embodiments, the cancer is stage Mb and/or stage IV.
In some embodiments, the cancer is locally advanced or metastatic cancer. In some embodiments, the therapy is second line or third line therapy. In some embodiments, the cancer is c-myc positive (i.e. the cancer cells express c-myc for example, as determined by immunohistochemistry (IHC)). In further embodiments of any of the methods described herein, administration of the c-myc antisense oligonucleotide (such as any of the c-myc antisense oligonucleotides disclosed herein) comprises contacting one or more cancer cells with the oligonucleotide. In one embodiment, administration of the therapeutically effective amount of one or more of the oligonucleotides results in one or more of reduced cellular proliferation, increased apoptosis, or cellular senescence. in another embodiment, administration of the therapeutically effective amount of one or more of the oligonucleotides does not result in significant toxicity or morbidity in the individual. In some embodiments, the individual is a human.
C. Administration of c-myc antisense oligonucleotides [0137] In some embodiments, the c-myc antisense oligonucleotide (such as any of the c-myc antisense oligonucleotides disclosed herein) is administered in the form of an injection. The injection can comprise the compound in combination with an aqueous injectable excipient or Date regue/Date received 2023-05-26 carrier. Non-limiting examples of suitable aqueous injectable excipients or carriers are well known to persons of ordinary skill in the art, and they, and the methods of formulating the formulations, may be found in such standard references as Alfonso AR:
Rcmington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton Pa., 1985.
Suitable aqueous injectable excipients or carriers include water, aqueous saline solution, aqueous dextrose solution, and the like, optionally containing dissolution enhancers such as 10%
mannitol or other sugars. 10% glycine, or other amino acids. The composition can be injected subcutaneously, intraperitoneally, or intravenously.
[0138] In some embodiments, intravenous administration is used, and it can be continuous intravenous infusion over a period of a few minutes to an hour or more, such as around fifteen minutes. The amount administered can vary widely depending on the type of antisense oligonucleotide, size of a unit dosage, kind of excipients or carriers, and other factors well known to those of ordinary skill in the art. The antisense oligonucleotide can comprise, for example, from about 0.001% to about 10% (w/w), from about 0.01% to about 1%, from about 0.1% to about 0.8%, or any range therein, with the remainder comprising the excipient(s) or carrier(s).
[0139] For oral administration, the c-myc antisense oligonucleotide can take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients or carriers such as binding agents; fillers; lubricants;
disintegrants; or wetting agents.
Liquid preparations for oral administration can take the form of, for example, solutions, syrups or suspensions, or they can be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations can be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia);
non-aqueous vehicles (e.g., ationd oil, oily esters, ethyl alcohol or fractionated vegetable oils);
and preservatives (e.g., methyl or propyl-p- hydroxybenzoates or sorbic acid).
The preparations can also contain buffer salts, flavoring, and coloring as appropriate.
[0140] In some embodiments, the c-inyc antisense oligonucleotide can be administered by inhalation through an aerosol spray or a nebulizer that can include a suitable propellant such as, for example, dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide, or a combination thereof. In one non-limiting example, a dosage unit for a Date regue/Date received 2023-05-26 pressurized aerosol can be delivered through a metering valve. In another embodiment, capsules and cartridges of gelatin, for example, can be used in an inhaler and can be formulated to contain a powderized mix of the compound with a suitable powder base such as, for example, starch or lactose.
[0141] In some embodiments, the amount of c-myc antisense oligonucicotide in the composition (such as a pharmaceutical composition) is included in any of the following ranges: about 0.5 to about 5 nig, about 5 to about 10 mg, about 10 to about 15 mg, about 15 to about 20 mg, about 20 to about 25 mg, about 20 to about 50 mg, about 25 to about 50 mg, about 50 to about 75 mg, about 50 to about 100 mg, about 75 to about 100 mg, about 100 to about 125 mg, about 125 to about 150 mg, about 150 to about 175 fig, about 175 to about 200 mg, about 200 to about 225 mg, about 225 to about 250 mg, about 250 to about 300 mg, about 300 to about 350 mg, about 350 to about 400 mg, about 400 to about 450 mg, or about 450 to about 500 mg.
In some embodiments, the amount of a of c-rnyc antisense oligonucleotide in the effective amount of the pharmaceutical composition (e.g., a unit dosage form) is in the range of about 5 mg to about 500 mg, such as about 30 mg to about 300 mg or about 50 mg to about 200 mg. In some embodiments, the concentration of the of c-myc anti sense oligonucleotide in the pharmaceutical composition is dilute (about 0.1 mg/me or concentrated (about 100 mg/m1), including for example any of about 0.1 to about 50 mg/ml, about 0.1 to about 20 mg/ml, about 1 to about 10 mg/ml, about 2 mg/ml to about 8 mg/ml, about 4 to about 6 mg/ml, about 5 mg/ml. In some embodiments, the concentration of the of c-myc antisense oligonucleotide is at least about any of 0.5 mg/ml, 1.3 mg/ml, 1.5 mg/ml, 2 mg/ml, 3 mg/ml, 4 mg/ml, 5 m2/ml, 6 mg/ml, 7 mg/ml, 8 mg/ml, 9 mg/ml, 10 mg/ml, 15 mg/ml, 20 mg/ml, 25 mg/ml, 30 mg/ml, 40 mg/ml, or 50 mg/ml.
[0142] Exemplary effective amounts of a of c-myc antisense oligonucleotide in the pharmaceutical composition include, but are not limited to, at least about any of 25 mg/m2, 30 mg/m2, 50 mg/m2, 60 mg/m2, 75 mg/m2, 80 mg/m2, 90 m2/m2, 100 mg/m2, 120 mg/m2, mg/m2, 150 mg/m2, 160 mg/m2, 175 mg/m2, 180 mg/m2, 200 mg/m2, 210 mg/m2, 220 mg/m2, 250 mg/m2, 260 mg/m2, 300 mg/m2, 350 mg/m2, 400 mg/m2, 500 mg/m2, 540 mg/m2, mg/m2, 1000 mg/m2, or 1080 mg/m2. In various embodiments, the pharmaceutical composition includes less than about any of 350 mg/m2, 300 mg/m2, 250 mg/m2, 200 mg/m2, 150 ing/in2, 120 mg/m2, 100 mg/m2, 90 mg/m2, 50 mg/m2, or 30 mg/m2 of a of c-myc antiscnsc oligonucleotide.
In some embodiments, the amount of the of c-myc antisense oligonucleotide per administration Date regue/Date received 2023-05-26 is less than about any of 25 mg/m2, 22 mg/m2, 20 mg/m2, 18 mg/m2, 15 mg/m2, 14 mg/m2, 13 mg/m2, 12 mg/m2, 11 ing/m2, 10 ing/m2, 9 mg/1112, 8 nig/1112, 7 mg/m2, 6 mg/m2, 5 mg/m2, 4 mg/m2, 3 mg/m2, 2 mg/m2, or 1 mg/m2. In some embodiments, the effective amount of a of c-myc antisense oligonucleotide in the pharmaceutical composition is included in any of the following ranges: about 1 to about 5 mg/m2, about 5 to about 10 mg/m2, about 10 to about 25 mg/m2, about 25 to about 50 mg/m2, about 50 to about 75 mg/m2, about 75 to about 100 mg/m2, about 100 to about 125 mg/m2, about 125 to about 150 mg/m2, about 150 to about 175 mg/m2, about 175 to about 200 mg/m2, about 200 to about 225 mg/m2, about 225 to about 250 mg/m2, about 250 to about 300 mg/m2, about 300 to about 350 mg/m2, or about 350 to about 400 mg/m2.
In some embodiments, the effective amount of a of c-myc antisense oligonucleotide in the pharmaceutical composition is about 5 to about 300 mg/m2, such as about 20 to about 300 mg/m2, about 50 to about 250 mg/m2, about 100 to about 150 mg/m2, about 120 mg/m2, about 130 mg/m2, or about 140 mg/m2, or about 260 mg/m2 [0143] In some embodiments of any of the above aspects, the effective amount of a c-myc antisense oligonucleotide in the pharmaceutical composition includes at least about any of 1 mg/kg, 2.5 mg/kg, 3.5 mg/kg, 5 mg/kg, 6.5 mg/kg, 7.5 nag/kg, 10 mg/kg, 15 mg/kg, or 20 mg/kg.
In various embodiments, the effective amount of a of c-myc antisense oligonucleotide in the pharmaceutical composition includes less than about any of 350 mg/kg, 300 mg/kg, 250 mg/kg, 200 mg/kg, 150 mg/kg, 100 mg/kg, 50 mg/kg, 30 mg/kg, 25 mg/kg, 20 mg/kg, 10 mg/kg, 7.5 mg/kg, 6.5 mg/kg, 5 mg/kg, 3.5 mg/kg, 2.5 mg/kg, or 1 mg/kg of a of c-myc antisense oligonucleotide.
[0144] Exemplary dosing frequencies for the pharmaceutical compositions (such as a pharmaceutical composition containing any of the c-myc antisense oligonucleotides disclosed herein) include, but are not limited to, daily; every other day; twice per week; three times per week; weekly without break; weekly, three out of four weeks; once every three weeks; once every two weeks; weekly, two out of three weeks. In some embodiments, the pharmaceutical composition is administered about once every 2 weeks, once every 3 weeks, once every 4 weeks, once every 6 weeks, or once every 8 weeks. In some embodiments, the composition is administered at least about any of lx, 2x, 3x, 4x, 5x, 6x, or 7x (i.e., daily) a week, or three times daily, two times daily. In some embodiments, the intervals between each administration are less than about any of 6 months, 3 months, 1 month, 20 days, 15 days, 12 days, 10 days, 9 days, 8 Date regue/Date received 2023-05-26 days, 7 days, 6 days, 5 days, 4 days, 3 days, 2 days, or 1 day. In some embodiments, the intervals between each administration are inure than about any of 1 month, 2 months, 3 months, 4 months, months, 6 months, 8 months, or 12 months. In some embodiments, there is no break in the dosing schedule. In some embodiments, the interval between each administration is no more than about a week.
[0145] The administration of the pharmaceutical composition can be extended over an extended period of time, such as from about a month up to about seven years. In sonic embodiments, the composition is administered over a period of at least about any of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 24, 30, 36, 48, 60, 72, or 84 months.
D. Combination therapy [0146] In some aspects, any of the methods disclosed herein can further comprise administering to the individual a therapeutically effective amount (such as any of the therapeutically effective amounts described above) of one or more additional anticancer therapeutic agents in addition to any of the c-myc antisense oligonucleotides disclosed herein (such as in a pharmaceutical composition). Various classes of anti-cancer agents can be used. Non-limiting examples include:
alkylating agents, antimetabolites, anthracyclines, plant alkaloids, topoisomerase inhibitors, podophyllotoxin, antibodies (e.g., monoclonal or polyclonal), tyrosine kinase inhibitors (e.g., imatinib mesylate (Gleevec or Glivec(0)), hormone treatments, soluble receptors and other antineoplastics.
[0147] Topoisomerase inhibitors are also another class of anti-cancer agents that can be used.
Topoisomerases are essential enzymes that maintain the topology of DNA.
Inhibition of type I or type II topoisomerases interferes with both transcription and replication of DNA by upsetting proper DNA supercoiling. Some type I topoisomerase inhibitors include camptotheeins:
irinotecan and topotecan. Examples of type II inhibitors include amsacrine, etoposide, etoposide phosphate, and teniposide. These are semisynthetic derivatives of epipodophyllotoxins, alkaloids naturally occurring in the root of American Mayapple (Podophyllum peltatum).
[0148] Antineoplastics include the immunosuppressant dactinomycin, doxorubicin, epirubicin, bleomycin, mechlorethamine, cyclophosphamide, chlorambucil, ifosfamide. The antineoplastic compounds generally' work by chemically modifying a cell's DNA.
Date regue/Date received 2023-05-26 [0149] Alkylating agents can alkylate many nucleophilic functional groups under conditions present in cells. Cisplatin and carboplatin, and oxaliplatin are alkylating agents. They impair cell function by forming covalent bonds with the amino, carboxyl, sulthydryl, and phosphate groups in biologically important molecules.
[0150] Vinca alkaloids bind to specific sites on tubulin, inhibiting the assembly of tubulin into microtubules (M phase of the cell cycle). The vinca alkaloids include:
vincristine, vinblastine, vinorelbine, and vindesine.
[0151] Anti-metabolites resemble purines (azathioprine, mercaptopurine) or pyrimidine and prevent these substances from becoming incorporated in to DNA during the "S"
phase of the cell cycle, stopping normal development and division. Anti-metabolites also affect RNA synthesis.
[0152] Plant alkaloids and terpenoids are derived from plants and block cell division by preventing microtubule function. Since microtubules are vital for cell division, without them, cell division cannot occur. The main examples are vinca alkaloids and taxanes.
Podophylloto)dn is a plant-derived compound which has been reported to help with digestion as well as used to produce two other cytostatic drugs, etoposide and teniposide.
They prevent the cell from entering the G1 phase (the start of DNA replication) and the replication of DNA (the S
phase). Taxanes as a group includes paclitaxel and docetaxel. Paclitaxel is a natural product, originally known as Taxol and first derived from the bark of the Pacific Yew tree. Docetaxel is a semi-synthetic analogue of paclitaxel. Taxanes enhance stability of microtubules, preventing the separation of chromosomes during anaphase.
VI. Kits and Articles of Manufacture [0153] In one embodiment, the invention provides an article of manufacture that includes a pharmaceutical composition containing an inhibitor of the invention for any of the uses and methods of the invention. Such articles may be a useful device such as a sustained release device, bandage, transdermal patch or a similar device. The device holds a therapeutically effective amount of a pharmaceutical composition, such as any of the pharmaceutical compositions described herein. The device may be packaged in a kit along with instructions for using the pharmaceutical composition for any of the uses or methods described herein. The Date regue/Date received 2023-05-26 pharmaceutical composition includes at least one c-myc antisense oligonucleotide of the present invention, in a therapeutically effective amount such that the use or method is accomplished.
EXAMPLES
Example 1: Effects of c-myc antisense oligonucleotides on c-myc protein expression and proliferation of liver cancer cells in vitro [0154] This example demonstrates that c-myc antisense oligonucleotide are effective in reducing c-myc protein expression and cell growth in IlepG2 liver cancer cells.
Materials and Methods Table 7. Oligonucleotides SEQ ID Type of ODN
5' ¨ d- (Oligonucleotide) ¨ 3' NO: intersubunit Mode of action linkage 1 Palm-AACGTTGAGGGGCAT 1 All-NP steric blocker 2 AACGTTGAGGGGCAT 1 All-NP steric blocker 13 Palm-AACGITGAGGGGCAT 1 All-NP steric blocker 15 TAACGTTGAGGGGCAT 3 All-NPS steric blocker
In other embodiments, exemplary 5' end-gap-3'end configurations for the c-myc antisense gapmer oligonucleotides can be any of the exemplary configurations disclosed above.
[0082] In some embodiments, the c-myc antisense oligonucleotide that prevents translation of an mRNA from a c-myc gene due to RNase-H-mediated degradation of the mRNA from a c-myc gene and/or steric hindrance further comprises two or more contiguous thiophosphate or phosphate linkages located in between the two or more contiguous thiophosphoramidate linkages located on both the 5' and 3' ends of the oligonucleotide. In other embodiments, the oligonucleotide comprises five contiguous thiophosphoramidate linkages located on the 5' end of the oligonucleotide, four contiguous thiophosphoramidate linkages located on the 3' end of the oligonucleotide, and six contiguous thiophosphate or phosphate linkages located between the five contiguous thiophosphoramidate linkages located on the 5' end of the oligonucleotide and the four contiguous thiophosphoramidate linkages located on the 3' end of the oligonucleotide.
In some embodiments, contacting any of the oligonucleotides disclosed herein with a Date regue/Date received 2023-05-26 proliferating cell decreases relative e-myc protein expression in the cell by greater than at least about 35% (such as at least about 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%100% in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucicotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35% (such as at least 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%400% in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, the oligonucleotide is complementary to an mRNA from a c-myc gene at the site of the niRNA's translation initiation region. In other embodiments, the oligonucleotide is at least 80%
complementary (such as at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%
complementary) to an niRNA from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments of any of the c-myc antisense oligonucleotides disclosed herein, the oligonucleotide is complementary (such as at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%%, 96%, 97%, 98%, 99%, or 100%, including any percentages in between these values, complementary) to an mRNA from a c-myc gene at a site on the mRNA where two exons arc spliced together. In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence ACGTTGAGGGGCAT (SEQ ID NO:15). In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence TCGT'CGCGGGAGGCTG (SEQ ID NO:16). In some embodiments of any of the embodiments herein, the oligonucleotide has the sequence selected from the group consisting of AACGITGAGGGGCAT (SEQ Ill NO:1), UAACGTTGAGGGGCA (SEQ 1D NO:2), Date regue/Date received 2023-05-26 TAACGTTGAGGGGCAT (SEQ ID NO:3), or n ____ TCA __ FIG n'TTCCA (SEQ ID NO:4), CTCGTCGTTTCCGCAACAAG (SEQ ID NO:6), ACGTTGAGGGGCATCGTCGC (SEQ ID
NO:7), AACGTTGAGGGGCATCGTCG (SEQ ID NO:8), CTGCTGTCGTTGAGAGGGTA
(SEQ ID NO:9), GGCATCGTCGCGGGAGGCTGCTGGAGCG (SEQ ID NO:10), GGCATCGTCGCGGGAGGCTG (SEQ ID NO:11), TCGTCGCGGGAGGCTGCTGG (SEQ
ID NO:12), CCGCCCGCTCGCTCCCTCTG (SEQ ID NO:13), and GTTCTCCTCCTCGTCGCAGT (SEQ ID NO:14) In other embodiments, the oligonucleotide comprises the sequence AACGTTGAGGGGCAT(SEQ ID NO:!). In another embodiment, the oligonucleotide comprises the sequence UAACGTT'GAGGGGCA (SEQ ID NO:2). In one embodiment, when the oligonucleotide comprises UAACG1TGAGGGGCA (SEQ ID NO:2), the 5'uridine can be 3'-amino-2'-hydroxy- uridine or 3'-oxy-2'-hydroxy-uridine. In a further embodiment, the oligonucleotide comprises the sequence TAACGTTGAGGGGCAT (SEQ
ID
NO:3). In yet another embodiment, the oligonucleotide comprises the sequence TTTCATTGTTTTCCA (SEQ ID NO:4).
[0083] In other embodiments, the c-myc antisense oligonucleotide that prevents translation of an mRNA from a c-myc gene due to RNase-H-mediated degradation of the mRNA from a c-myc gene and/or steric hindrance is fluorescently labeled. Non-limiting examples of fluorescent labels include fluorescein, phosphor, rhodamine, and polymethine dye derivative. Examples of commercially available fluorescent dyes include BODIPY FL (brand name, manufactured by Molecular Probe Inc.), FluorePrime (trade name, manufactured by Amersham Pharmacia), Fluoredite (trade name, manufactured by Millipore Corporation), FAIL
(manufactured by ABI), Cy3 and Cy5 (manufactured by Amersham Pharmacia), and tetramethylrhodamine (TAMRA;
manufactured by Molecular Probe Inc.).
[0084] Techniques for synthesizing mixed-action oligonucleotides with varying intersubunit linkages can be found, inter alia, in U.S. Patent No. 7,494,982.
[0085] In some embodiments, the c-myc antisense oligonucleotide that prevents translation of an mRNA from a c-myc gene due to RNAse H-mediated degradation of the mRNA and/or steric hindrance is an oligonucleotide shown in Table 3.
Date recue/Date received 2023-05-26 Table 3: Mixed-action antisense oligonucleotides SEQ ID Type of ODN
Mode of 5' ¨ d- (Oligonucleotide) ¨3' NO: intersubunit action linkage(s) , 18 Palm-TAACGTTGAGGGGCAT 3 Alt-NPS/PS
mixed 19 TAACGTTGAGGGGCAT _ _ _ 3 Alt-NPS/PS
mixed Palm- U-rA-rA-rC-dG-dT-dT-dG-dA- 2 24 rNPS/PS/rNPS
dG-dG-dGdGrCrA mixed 25 U-rA-rA-rC-dG-dT-dT-dG-dA-dG-dG- 2 rNPS/PS/rNPS mixed dG-dG-rC-rA
Palm-AACGT'TGAGGGGCAT-TAMRA Alt-NPS/PS
mixed * Palm = palmitic acid lipid moiety (see discussion infra); ** TAMRA =
fluorescent label;
***underlined and bold nucleotides indicate a different intersubunit linkage;
****alt =
alternating; ******r = ribo All nucleosides are dideoxy unless indicated r = ribo or d=dideoxy.
E. Lipid or cholesterol conjugation to oligonucleotides [0086] In some aspects, any of the c-myc antisense oligonucleotides described herein can be conjugated to a cholesterol or lipid moiety. Conjugation of antisense oligonucleotide have been associated with increased cellular uptake as well as other improved properties for delivering nucleic acids to cells such as, but not limited to, improved pharmacokinetics (see, e.g., U.S.
Patent Application Publication No. 2005/0113325.
[0087] In some embodiments, any of the c-myc antisense oligonucleotides described herein can be conjugated to a cholesterol moiety to facilitate oligonucleotide delivery into a target cell or tissue (such as, but not limited to, a cancer cell or a tumor). In some embodiments, a cholesterol moiety is a cholesterol molecule, sterol or any compound derived from cholesterol including chlolestanol, ergosterol, stimastanol, stigrnasterol, methyl-lithocholic acid, Cortisol, corticosterone, A5-pregnenolone, progesterone, deoxycorticosterone, 17-0H-pregnenolone, 17-Date recue/Date received 2023-05-26 OH-progesterone, 11-dioxycortisol, dehydroepiandrosterone, dehydroepiandrosterone sulfate, androstenedione, aldosterone, 18-hydroxycorticosterone, tetrahydrocortisol, tetrahydrocortisone, cortisone, prednisone, 6a-methylpredisone, 9a -fluoro-16a-hydroxyprednisolone, 9 a -fluoro-16amethylprednisolone, 9 a -fluorocortisol, testosterone, dihydrotestosterone, androstenediol, androstenedione, androstenedione, 3 a,5 a -androstanediol, estrone, estradiol, estrogen, spernildine cholesterol carbamate, N4-spermidine cholesteryl carbamate, N4-spermidine cholesteryl carbamate di HC1 salt, N4-spermidine-7 dehydro cholesteryl carbamate, N4-spermine cholesteryl carbamate, N,N bis(3-aminopropyl) cholesteryl carbamate, N,N bis(6-aminohexyl) cholesteryl carbamate, N4-spermidine dihydrocholesteryl carbamate, spermidine lithocholic carbamate methyl ester, N1,N8-bis(3-aminopropyl-N4-spermidine cholesteryl carbamate, N(N4-3-aminopropylspermidine) cholesteryl carbamate, N,N-bis(4-aminobutyl) cholesteryl carbamate, N4-spermidine cholesteryl urea, N4-spermine cholesteryl urea, N4-spermidine dihydro cholesteryl urea, N4-spermine dihydro cholesteryl urea, N,N-bis(N'-3-arninopropyl-N''4aminobutyl) cholesteryl carbamate, N4-spermidine cholesteryl carboxamide, and N __ 1N1,N4,N8-tris(3-aminopropyl) spettnidine] cholesteryl carbamate, lumisterol, cholic acid, desoxycholic acid, chenodesoxycholic acid and lithocholic acid and derivatives thereof.
[0088] In other embodiments, any of the c-myc antisense oligonucleotides described herein can be conjugated to a lipid moiety to facilitate oligonucleotide delivery into a target cell or tissue (such as, but not limited to, a cancer cell or a tumor). The conjugated lipid moiety can be any lipid or lipid derivative that provides enhanced cellular uptake compared to the unmodified oligonucicoside. In some embodiments, the lipids are linear hydrocarbons, saturated or unsaturated, fatty acids, or fatty acid derivatives, such as fatty amides. The length of the hydrocarbon chain can be from C8-C22 Examples of saturated hydrocarbons include, but are not limited to, octane (C8H20), nonane (C91I20), decane (C10H22), undecane (C111124), dock:cane (C12H26), and tridecane (C13H28). Other nonlimiting examples of saturated hydrocarbons are depicted in Table 4.
Date regue/Date received 2023-05-26 Table 4: Saturated hydrocarbons Omin To11'f:dec.:me C
nt*
PC**&41i*
Cialfss Ort,,adecaric Calms NUA,Sevatie IC:0140 PimaIna ezdr.ix [0089] In other embodiments, mono- and poly-unsaturated forms (alkenes and polyenes, such as alkadienes and alkatrienes) of hydrocarbons can also be selected. In some embodiments, mono- and poly-unsaturated lipid moieties having one to three double bonds can be utilized, although .moities having more double bonds can also be employed. In further embodiments, alkynes (containing one or more triple bonds) and alkenynes (containing triple bond(s) and double bond(s)) can also be utilized.
[0090] In some embodiments, a fatty alcohol can be selected. In one embodiment, the fatty alcohol is from C16 to CD, for example, batyl (1-0-Octadecylglycerol (C18)).
[0091] Other suitable lipid components include simple fatty acids and fatty acid derivatives can he conjugated to any of the c-myc antisense oligonucleotides disclosed herein. In some embodiments, fatty acids and their derivatives can be fully saturated or mono-or poly-unsaturated. The length of the fatty acid or fatty acid derivative chain can be from C8-C22.
[0092] Examples of saturated fatty acids include, but are not limited to, caprylic acid, caprie acid, lauric acid, behenic acid, lignoceric acid, or cerotic acid. Other nonlimiting examples of saturated fatty acids are depicted in Table 5.
Table 5: Saturated fatty acids mow (:oftzQ.i) Teltadecirtok.! 149) Homdi(nuoio 16:0 ratx.kstukDic arzaitlic Date regue/Date received 2023-05-26 [0093] Mono- and poly-unsaturated forms of fatty acids can also be employed.
In some embodiments, mono- and poly-unsaturated lipid moieties having one to three double bonds can bc employed, although compounds having more double bonds can also be conjugated to the c-myc antisense oligonucleotides. Fatty acids with one or more triple bonds in the carbon chain, as well as branched fatty acids, can also be used in the compounds of the invention. Non-limiting examples of common mono- and poly-unsaturated fatty acids that can be employed include those depicted in Table 6.
Table 6: Mono- and poly-unsaturated fatty acids symemilk., a:mu: .tim:;11;c: rise Catho a a 3iu p:Omit:A!;.; 16 !!4;1 egs,:ki,CoktµNanuie rarrav0RW 10;1 012) Cli-SI-coAlo2Anuic otekt 10:1 01-9) 9,12--oorsidc,;%:sdik.soi Ma110121--ligiak 103 i0.-6) '-U ItLs,ic*ha - 183 5,0,11:44-eicroii2tcuwasoie 2M+1 [0094] The linkage between the oligonucleotide and the lipid moiety may be a direct linkage, or it may be via an optional linker moiety. The linker moiety may also serve to facilitate the chemical synthesis of the compounds. Whether or not a linker group is used to mediate the conjugation of the oligonucleotide and the lipid moiety components, there are multiple sites on oligonucleoside components of the oligonucleotide to which the lipid moiety(ies) may be conveniently conjugated. Suitable linkage points include the 5' and 3' teiiiiini, one or more sugar rings, the internucleoside backbone and the nucleobases of the oligonucleoside. Typically, the lipid moiety is attached to the 3' or 5' terminus of the oligonucleoside.
[0095] If the lipid moiety is to be attached to the 3' terminus, the attachment may be directly to the 3' substituent, such as a 3'-amino group or 3'-hydroxy group.
Alternatively, the lipid moiety may be linked via a 3'-linked phosphate group. If the lipid moiety is to be linked to the 5' terminus, it is typically attached through a 5'-linked phosphate group.
[0096] Attachment of the lipid moiety to a base on the oligonucleoside may through any suitable atom, for example to the N2 amino group of guanosine.
[0097] Examples of preferred linker groups x include amino glycerol and 0-alkyl glycerol-type linkers, which can be depicted, respectively, by the generic structures:
Date regue/Date received 2023-05-26 -NR-(CH2)i1r-CH(W)-(CH2)-Z- and -0-(CH2)-CH(OR')-(C112)-0-(II) where R is either H or methyl; R'=H, OH, NH2 or SH; Z=0, S or NR; and n and in are independently integers between 1-18. Specific examples of suitable linkers are an aminoglycerol linker, in which R'=OH, Z=0, and m and n are each 1 (formula I);
a bis-aminoglycerol linker, in which R'=OH, Z=NH, and in and n are each 1 (formula I); and an 0-alkyl glycerol linker, in which R'=.11 (formula 11).
[0098] In some embodiments, one or two lipid or cholesterol moieties can be conjugated to a c-mye antisense oligonucleotide. In some embodiments, the one or two lipid or cholesterol moieties can be conjugated to a c-myc antisense oligonucleotide by a linker, such as any of the linkers disclosed above. Where one lipid or cholesterol moiety is used, it can be conjugated to either the 5' or 3' end of the oligonucleotide. When two lipid or cholesterol moieties are conjugated to the oligonucleotide, each lipid or cholesterol moiety component can be identical or can be selected independently. In some embodiments of the present invention, a palrnitic acid lipid moiety is not conjugated to a c-myc antisense oligonucleotide wherein the intersubunit linkages of the oligonucleotide are entirely NPS and wherein the oligonucleotide has the sequence AACGTTGAGGGGCAT (SEQ ID NO:1). In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35% (such as at least about 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, contacting any of the oligonucleotides disclosed herein with a proliferating cell decreases relative c-myc protein expression in the cell by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%400% in comparison to cells that have not been contacted with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35%
(such as at least 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, inclusive, including any percentages in between these values) in comparison to cells that have not been contacted Date regue/Date received 2023-05-26 with the oligonucleotide. In other embodiments, contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than at least about 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, 80%-90%, 85%-95%, or 90%400% in comparison to cells that have not been contacted with the oligonucleotide. In some embodiments, the oligonucleotide is complementary to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments, the oligonucleotide is at least 80% complementary (such as at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% complementary) to an mRNA from a c-myc gene at the site of the mRNA's translation initiation region. In other embodiments of any of the c-myc antisense oligonucleotides disclosed herein, the oligonucleotide is complementary (such as at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%%, 96%, 97%, 98%, 99%, or 100%, including any percentages in between these values, complementary) to an mRNA from a c-myc gene at a site on the mRNA where two exons are spliced together. In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence ACGTTGAGGGGCAT
(SEQ
ID NO:15). In some embodiments of any of the embodiments herein, the oligonucleotide comprises the sequence TCGTCGCGGGAGGCTG (SEQ ID NO:16). In some embodiments of any of the embodiments herein, the oligonucleotide has the sequence selected from the group consisting of AACGITGAGGGGCAT (SEQ ID NO:1), UAACGTTGAGGGGCA (SEQ ID
NO:2), TAACGITGAGGGGCAT (SEQ ID NO:3), or TITCATTGTTTTCCA (SEQ ID NO:4), CTCGTCGTTTCCGCAACAAG (SEQ ID NO:6), ACGTTGAGGGGCATCGTCGC (SEQ ID
NO:7), AACGTTGAGGGGCATCGTCG (SEQ ID NO:8), CTGCTGTCG1'IGAGAGGGTA
(SEQ ID NO:9), GGCATCGTCGCGGGAGGCTGCTGGAGCG (SEQ ID NO:10), GGCATCGTCGCGGGAGGCTG (SEQ ID NO:11), TCGTCGCGGGAGGCTGCTGG (SEQ
ID NO:12), CCGCCCGCTCGCTCCCTCTG (SEQ ID NO:13), and GlICTCCTCCTCGTCGCAGT (SEQ Ill NO:14)In other embodiments, the oligonucleotide comprises the sequence AACGTTGAGGGGCAT (SEQ ID NO:1). In another embodiment, the oligonucleotide comprises the sequence UAACGTTGAGGGGCA (SEQ ID NO:2). In one embodiment, when the oligonucleotide comprises UAACG'1"I'GAGGGGCA (SEQ ID
NO:2), the 5'uridine can be 3'-amino-2' -hydroxy- uridine or 3'-oxy-2'-hydroxy-uridine. In a further embodiment, the oligonucleotide comprises the sequence TAACGTTGAGGGGCAT (SEQ
ID
NO:3). In yet another embodiment, the oligonucleotide comprises the sequence Date regue/Date received 2023-05-26 TTTCATTGTTTTCCA (SEQ ID NO:4). In another embodiment, a palmitic acid is conjugated to the 5' end of the oligonucleotide.
100991 Antisense oligonucleotides of the present invention described as being conjugated to a specified hydrocarbon or a specified fatty acid (with the same number of carbon atoms as the specified hydrocarbon) are closely related and differ in structure only in the nature of the bond that joins the moiety to the oligonucleotide, which in turn is a result of the synthesis procedure used to produce the conjugated compound. For example, when compounds are synthesized having the lipid moiety conjugated to the 3'-amino terminus of an oligonucleoside, the use of the aldehyde form of a fatty acid (a fatty aldehyde) as the starting material results in the formation of an amine linkage between the lipid chain and the oligonucleoside, such that the lipid group appears as a hydrocarbon. In contrast, use of the carboxylic acid, acid anhydride or acid chloride forms of the same fatty acid results in the formation of an amide linkage, such that the lipid group appears as a fatty acid derivative, specifically in this instance a fatty amide (as noted in the definitions section above, for the sake of simplicity, the term "fatty acid" when describing the conjugated lipid group is used broadly herein to include fatty acid derivatives, including fatty amides). Techniques for conjugating lipid or cholesterol moieties to oligonucleotides can be found, inter alia, in U.S. Patent No. 7,494,982.
E. Modified or substituted sugar moieties.
101001 In some aspects, any of the c-myc antisense oligonucleotides disclosed herein can further comprise one or more modified or substituted sugar moieties. In some embodiments, the oligonucleotides comprise one of the following substitutions at the 2' position: OH; F; 0¨, S¨, or N-alkyl; 0¨, S¨, or N-alkenyl; 0¨, S¨ or N-alkynyl; or 0-alkyl-0-alkyl, wherein the alkyl, alkenyl and alkynyl can be substituted or unsubstituted Ci to Cio alkyl or C2 to Cio alkenyl and alkynyl. Other oligonucleotides can comprise one of the following at the 2' position: CI to C10 lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkaryl, aralkyl, 0-alkaryl or 0-aralkyl, SH, SCH3, OCN, CI, Br, CN, CF3, OCF3, SOCH3, SO2CH3, 0NO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar Date regue/Date received 2023-05-26 properties. Another modification can include 2'-methoxyethoxy CH2CH2OCH3, also known as 2'-0-(2-methoxyethyl) or 2'-M0E) i.e., an alkoxyalkoxy group. A
further modification can include 2'-dimethylaminooxyethoxy, i.e., a 0(CH2)20N (CH3) 2 group, also known as 2'-DMA0E, as described in examples herein, and 2'-dimethylaminoethoxyethoxy (also known in the art as 2'-0-dimethyl-amino-ethoxy-ethyl or 2'-DMAEOE), i.e., 2' -0---CH2-0--CH2¨
N(CH3)2, also described in examples herein.
Other sugar modifications can include 2'-methoxy (2'¨ 0 CH3), 2'-aminopropoxy (2'¨OCH2CH2CH2NH2), 2'-allyl(2'-CH2¨CH=CH2), 2'-0-ally1(2'-0¨CH2¨ 5 CH=CH2) and 2'-fluoro (2'-F). The 2'-modification can be in the arabino (up) position or ribo (down) position. A 2'-arabino modification can be 2'-F. Similar modifications can also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of 5' terminal nucleotide.
Oligonucleotides can also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative U.S. patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos. 5,514,785;
5,519,134; 5,567,811;
5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265;
5,658,873;
5,670,633; 5,792,747; and 5,700,920, 20.
F. Nucleobase modifications [0102] Any of the c-myc antisense oligonucleotides disclosed herein can also include nucleobase modifications or substitutions. As used herein, "unmodified" or "natural"
nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, N-alkyl N-derivatives of 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl (-0^C¨CH3) uracil and cytosine and other alkynyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-Date recue/Date received 2023-05-26 methyladenine, 2-F-adenine, 2-aminoadenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. Further modified nucleobases include tricyclic pyrimidines such as phenoxazine cytidine (1H-pyrimido[5,4-b][1,4]benzoxazin2(3H)-one), phenothiazine cytidine (1H-pyrimido[5,4-b][1, 4]benzothiazin-2(31-1)-one), G-clamps such as a substituted phenoxazine cytidine (e.g. 9-(2-aminoethoxy)-H-pyrimido [5,4-b][1,4]benzoxazin-2(3H)-one), carbazole cytidine (2H- 60 pyrimido[4,5-b]indol-2-one), pyridoindole cytidine (H-pyrido[3',2':4,5]pyrrolo[2,3-d]pyrimidin-2-one). Modified nucleobases can also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone.
Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. I., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y. S., Chapter 15, Antisense Research and Applications, pages 289-302, Crooke, S. T. and Lebleu, B., ed., CRC
Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the compounds of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability and can be included as base substitutions, even more particularly when combined with 2'-0-methoxyethyl sugar modifications.
[0103] Representative United States patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. Pat. No. 3,687,808, as well as 5,502,177; 5,525,711;
5,552,540;
5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,645,985; 5,830,653; 5,763,588;
6,005,096;
5,681,941 and U.S. Pat. No. 5,750, 692.
IV. Pharmaceutical compositions [0104] In some aspects of the present invention, when employed as pharmaceuticals, the c-myc antisense oligonucleotides disclosed herein can be formulated with a pharmaceutically acceptable excipient or carrier to be formulated into a pharmaceutical composition.
Date recue/Date received 2023-05-26 [0105] When employed as pharmaceuticals, the c-myc antisense oligonucleotides can be administered in the form of pharmaceutical compositions. These compounds can be administered by a variety of routes including oral, rectal, transdermal, subcutaneous, intravenous, intramuscular, and intranasal. These compounds are effective as both injectable and oral compositions. Such compositions are prepared in a manner well known in the pharmaceutical art and comprise at least one active compound. When employed as oral compositions, the c-myc antisense oligonucleotides disclosed herein are protected from acid digestion in the stomach by a pharmaceutically acceptable protectant.
[0106] This invention also includes pharmaceutical compositions which contain, as the active ingredient, one or more of the antisense oligonucleotides associated with one or more pharmaceutically acceptable excipients or carriers. In making the compositions of this invention, the active ingredient is usually mixed with an excipient or carrier, diluted by an excipient or carrier or enclosed within such an excipient or carrier which can he in the form of a capsule, sachet, paper or other container. When the excipient or carrier serves as a diluent, it can be a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient. Thus, the compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10% by weight of the active compound, soft and hard gelatin capsules, suppositories, sterile injectable solutions, and sterile packaged powders.
[0107] In preparing a formulation, it may be necessary to mill the active lyophilized compound to provide the appropriate particle size prior to combining with the other ingredients. If the active compound is substantially insoluble, it ordinarily is milled to a particle size of less than 200 mesh. If the active compound is substantially water soluble, the particle size is normally adjusted by milling to provide a substantially unifoim distribution in the formulation, e.g. about 40 mesh.
[0108] Some examples of suitable excipients or carriers include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, sterile water, syrup, and methyl cellulose. The formulations can additionally include: lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents;
Date regue/Date received 2023-05-26 preserving agents such as methyl- and propylhydroxy-benzoates; sweetening agents; and flavoring agents. The compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.
[0109] Thc compositions can be formulated in a unit dosage form, each dosage containing from about 5 mg to about 100 mg or more, such as any of about 1 mg to about 5 mg, 1 mg to about 10 fig, about 1 mg to about 20 mg, about 1 mg to about 30 mg, about 1 mg to about 40 mg, about 1 mg to about 50 mg, about 1 mg to about 60 mg, about 1 mg to about 70 mg, about 1 mg to about 80 mg, or about 1 mg to about 90 mg, inclusive, including any range in between these values, of the active ingredient. The term "unit dosage forms" refers to physically discrete units suitable as unitary dosages for individuals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient or carrier.
[0110] The antisense oligonucleotides are effective over a wide dosage range and are generally administered in a therapeutically effective amount. It will he understood, however, that the amount of the antisense oligonucleotides actually administered will be determined by a physician, in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
[0111] For preparing solid compositions such as tablets, the principal active ingredient antisense oligonucleotide is mixed with a pharmaceutical excipient or carrier to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention. When referring to these preformulation compositions as homoeeneous, it is meant that the active ingredient is dispersed evenly throughout the composition so that the composition can be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules.
[0112] The tablets or pills of the present invention can be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action and to protect the c-myc antisense oligonucleotide from acid hydrolysis in the stomach. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an Date regue/Date received 2023-05-26 envelope over the former. The two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.
[0113] The liquid forms in which the novel compositions of the present invention can be incorporated for administration orally or by injection include aqueous solutions, suitably flavored syrups, aqueous or oil suspensions, and flavored emulsions with edible oils such as corn oil, cottonseed oil, sesame oil, coconut oil, or peanut oil, as well as elixirs and similar pharmaceutical vehicles.
[0114] Compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders. The liquid or solid compositions can contain suitable pharmaceutically acceptable excipients as described supra. The compositions can be administered by the oral or nasal respiratory route for local or systemic effect. Compositions in pharmaceutically acceptable solvents can he nebulized by use of inert gases. Nebulized solutions can be inhaled directly from the nebulizing device or the nebulizing device can be attached to a face mask tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions can also be administered, orally or nasally, from devices which deliver the formulation in an appropriate manner.
V. Methods of the Invention [0115] The antisense oligonucleotides (such as in compositions) disclosed herein can be used for the treatment and/or prevention of a cell proliferative disorder. In some embodiments, the individual is diagnosed with or is suspected of having a cell proliferative disorder.
[0116] The present invention is directed to methods for inhibiting the symptoms or conditions (disabilities, impairments) associated with a cell proliferative disorder as described in detail below. As such, it is not required that all effects of the condition be entirely prevented or reversed, although the effects of the presently disclosed methods likely extend to a significant therapeutic benefit for the patient. As such, a therapeutic benefit is not necessarily a complete prevention or cure for a particular condition resulting from a cell proliferative disorder, but Date regue/Date received 2023-05-26 rather, can encompass a result which includes reducing or preventing the symptoms that result from a cell proliferative disorder, reducing or preventing the occurrence of such symptoms (either quantitatively or qualitatively), reducing the severity of such symptoms or physiological effects thereof, and/or enhancing the recovery of the individual after experiencing a cell proliferative disorder symptoms.
[0117] Specifically, a composition of the present invention (such as any of the c-myc antisense oligonucleotides disclosed herein), when administered to an individual, can treat or prevent one or more of the symptoms or conditions associated with a cell proliferative disorder and/or reduce or alleviate symptoms of or conditions associated with this disorder. As such, protecting an individual from the effects or symptoms resulting from an a cell proliferative disorder includes both preventing or reducing the occurrence and/or severity of the effects of the disorder and treating a patient in which the effects of the disorder are already occurring or beginning to occur. A beneficial effect can easily be assessed by one of ordinary skill in the art and/or by a trained clinician who is treating the patient. Preferably, there is a positive or beneficial difference in the severity or occurrence of at least one clinical or biological score, value, or measure used to evaluate such patients in those who have been treated with the methods of the present invention as compared to those that have not.
[0118] The methods can be practiced in an adjuvant setting. "Adjuvant setting"
refers to a clinical setting in which an individual has had a history of a proliferative disease, particularly cancer, and generally (but not necessarily) been responsive to therapy, which includes, but is not limited to, surgery (such as surgical resection), radiotherapy, and chemotherapy. However, because of their history of the proliferative disease (such as cancer), these individuals are considered at risk of development of the disease. Treatment or administration in the "adjuvant setting" refers to a subsequent mode of treatment. The degree of risk (i.e., when an individual in the adjuvant setting is considered as "high risk" or "low risk") depends upon several factors, most usually the extent of disease when first treated.
[0119] The methods provided herein can also be practiced in a "neoadjuvant setting," i.e., the method can be carried out before the primary/definitive therapy. In some embodiments, the individual has previously been treated. In some embodiments, the individual has not previously been treated. In some embodiments, the treatment is a first line therapy.
Date regue/Date received 2023-05-26 A. Cell proliferative disorders [0120] A "proliferative disorder" is any cellular disorder in which the cells proliferate more rapidly than normal tissue growth. Thus a "proliferating cell" is a cell that is proliferating more rapidly than normal cells. The proliferative disorder includes, but is not limited to, neoplasms. A
"neoplasm" is an abnormal tissue growth, generally forming a distinct mass that grows by cellular proliferation more rapidly than normal tissue growth. Neoplasms show partial or total lack of structural organization and functional coordination with normal tissue. These can be broadly classified into three major types. Malignant neoplasms arising from epithelial structures are called carcinomas, malignant neoplasms that originate from connective tissues such as muscle, cartilage, fat or hone are called sarcomas and malignant tumors affecting hematopoetic structures (structures pertaining to the formation of blood cells) including components of the immune system, are called leukemias and lymphomas. A tumor is the neoplastic growth of the disease cancer. As used herein, a neoplasm, also referred to as a "tumor", is intended to encompass hematopoietic neoplasms as well as solid neoplasms. Other proliferative disorders include, but are not limited to neurofibromatosis.
[0121] The c-myc antisense oligonucleotides (such as in compositions) provided herein are useful for modulating disease states associated with dysregulation of c-myc expression in cells.
The c-myc gene is involved in multiple biological and physiological functions, including, e.g., cell proliferation. In some embodiments, the cell proliferative disorder is associated with increased expression or activity of c-myc or cellular growth, or both. In some embodiments, the cell proliferation is cancer.
[0122] The methods described herein are also useful for treating solid tumors (such as advanced solid tumors). In some embodiments, there is provided a method of treating lung cancer, including, for example, non-small cell lung cancer (NSCLC, such as advanced NSCLC), small cell lung cancer (SCLC, such as advanced SCLC), and advanced solid tumor malignancy in the lung. In some embodiments, there is provided a method of treating any of ovarian cancer, head and neck cancer, gastric malignancies, melanoma (including metastatic melanoma and malignant melanoma), ovarian cancer, colorectal cancer, and pancreatic cancer.
Date regue/Date received 2023-05-26 [0123] In some embodiments, the method is useful for treating one or more of the following:
cutaneous T cell lymphoma (CTCL), leukemia, follicular lymphoma, Hodgkin lymphoma, and acute myeloid leukemia.
[0124] In some embodiments, the disease is a cancer of any one of the following: basal cell carcinoma, mcdulloblastoma, glioblastoma, multiple mycloma, chronic myclogenous leukemia (CML), acute myelogenous leukemia, pancreatic cancer, lung cancer (small cell lung cancer and non-small cell lung cancer), esophageal cancer, stomach cancer, billary cancer, prostate cancer, liver cancer, hepatocellular cancer, gastrointestinal cancer, gastric cancer, and ovarian and bladder cancer. In some embodiments, the cancer is selected from the group consisting of pancreas ductal adenocarcinoma, colon adenocarcinoma, and ovary cystadenocarcinoma. In some embodiments, the cancer is pancreas ductal adenocarcinoma. In some embodiments, the cancer is a tumor that is poorly perfused and/or poorly vascularized.
[0125] In some embodiments, the cancer is pancreatic cancer, including for example pancreatic adenocarcinoma, pancreatic adenosquamous carcinoma, pancreatic squamous cell carcinoma, and pancreatic giant cell carcinoma. In some embodiments, the pancreatic cancer is exocrine pancreatic cancer. In some embodiments, the pancreatic cancer is endocrine pancreatic cancer (such as islet cell carcinoma). In some embodiments, the pancreatic cancer is advanced metastatic pancreatic cancer.
[0126] Other examples of cancers that can be treated by the methods of the invention include, but are not limited to, adenocortical carcinoma. agnogenic myeloid metaplasia.
AIDS-related cancers (e.g., AIDS-related lymphoma), anal cancer, appendix cancer, astrocytoma (e.g., cerebellar and cerebral), basal cell carcinoma, bile duct cancer (e.g., extrahepatic), bladder cancer, bone cancer. (osteosarcoma and malignant fibrous histiocytoma), brain tumor (e.g., glioma, brain stem glioma, cerebellar or cerebral astrocytoma (e.g., pilocytic astrocytoma, diffuse astrocytoma, anaplastic (malignant) astrocytoma), malignant glioma, ependymoma, oligodenglioma, meningioma, craniopharyngioma, haemangioblastomas, medulloblastoma, supratentorial primitive neuroectodermal tumors, visual pathway and hypothalamic glioma, and glioblastoina), breast cancer, bronchial adenomas/carcinoids, carcinoid tumor (e.g., gastrointestinal carcinoid tumor), carcinoma of unknown primary, central nervous system lymphoma, cervical cancer, colon cancer, colorectal cancer, chronic myeloproliferative disorders, endometrial cancer (e.g., uterine cancer), ependymoma, esophageal cancer, Ewing's Date regue/Date received 2023-05-26 family of tumors, eye cancer (e.g., intraocular melanoma and retinoblastoma), gallbladder cancer, gastric (stonaach) cancer, gastrointestinal carcinoid tumor, gastrointestinal stromal tumor (GIST), germ cell tumor, (e.g., cxtracranial, cxtragonadal, ovarian), gestational trophoblastic tumor, head and neck cancer, hepatocellular (liver) cancer (e.g., hepatic carcinoma and heptoma), hypopharyngeal cancer, islet cell carcinoma (endocrine pancreas), laryngeal cancer, laryngeal cancer, leukemia, lip and oral cavity cancer, oral cancer, liver cancer, lung cancer (e.g., small cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, and squamous carcinoma of the lung), lymphoid neoplasm (e.g., lymphoma), medulloblastoma, ovarian cancer, mesothelioma, metastatic squamous neck cancer, mouth cancer, multiple endocrine neoplasia syndrome, myelodysplastic syndromes, myelodysplastic/myeloproliferative diseases, nasal cavity and paranasal sinus cancer, nasopharyngeal cancer, neuroblastoma, neuroendocrine cancer, oropharyngeal cancer, ovarian cancer (e.g., ovarian epithelial cancer, ovarian germ cell rumor, ovarian low malignant potential tumor), pancreatic cancer, parathyroid cancer, penile cancer, cancer of the peritoneal, pharyngeal cancer, pheochromocytoma, pineoblastoma and supratentorial primitive neuroectodermal tumors, pituitary tumor, pleuropulmonary blastoma, lymphoma, primary central nervous system lymphoma (microglioma), pulmonary lymphangiomyomatosis, rectal cancer, renal cancer, renal pelvis and ureter cancer (transitional cell cancer), rhabdomyosarcoma, salivary gland cancer, skin cancer (e.g., non-melanoma (e.g., squamous cell carcinoma), melanoma, and Merkel cell carcinoma), small intestine cancer, squamous cell cancer, testicular cancer, throat cancer, thymoma and thymic carcinoma, thyroid cancer, tuberous sclerosis, urethral cancer, vaginal cancer, vulvar cancer, Wilms' tumor, and post-transplant lymphoproliferative disorder (PTLD), abnormal vascular proliferation associated with phakomatoses, edema (such as that associated with brain tumors), and Meigs' syndrome.
[0127] In some embodiments, the cancer is a solid tumor (such as advanced solid tumor). Solid tumor includes, but is not limited to, sarcomas and carcinomas such as fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarconia, Kaposi's sarcoma, soft tissue sarcoma, uterine sacronomasynovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma Date regue/Date received 2023-05-26 (including for example adenocarcinoma, clear cell renal cell carcinoma, papillary renal cell carcinoma, chromophobe renal cell carcinoma, collecting duct renal cell carcinoma, granular renal cell carcinoma, mixed granular renal cell carcinoma, renal angiomyolipomas, or spindle renal cell carcinoma.), hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilm's tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, menangioma, melanoma, neuroblastoma, and retinoblastoma.
[0128] In some embodiments the lymphoid neoplasm (e.g., lymphoma) is a B-cell neoplasm.
Examples of B-cell neoplasms include, hut are not limited to, precursor B-cell neoplasms (e.g., precursor B-lymphoblastic leukemia/lymphoma) and peripheral B-cell neoplasms (e.g., B-cell chronic lymphocytic leukemia/prolymphocytic leukemia/small lymphocytic lymphoma (small lymphocytic (SI) NHL), lymphoplasmacytoid lymphomdimmunocytonia, mantel cell lymphoma, follicle center lymphoma, follicular lymphoma (e.g., cytologic grades: I (small cell), II (mixed small and large cell), III (large cell) and/or subtype: diffuse and predominantly small cell type), low grade/follicular non-Hodgkin's lymphoma (NHL), intermediate grade/follicular NHL, marginal zone B-cell lymphoma (e.g., extranodal (e.g., MALT-type +/-monocytoid B
cells) and/or Nodal (e.g., +/- monocytoid B cells)), splenic marginal zone lymphoma (e.g., +/-villous lymphocytes), hairy cell leukemia, plasmacytoma/plasma cell myeloma (e.g., myeloma and multiple myeloma), diffuse large B-cell lymphoma (e.g., primary mediastinal (thymic) B-cell lymphoma), intermediate grade diffuse NHL, Burkitt's lymphoma, High-grade B-cell lymphoma, Burkitt-likc, high grade immunoblastic NHL, high grade lymphoblastic NHL, high grade small non-cleaved cell NHL, bulky disease NHL, AIDS-related lymphoma, and Wa1denstrom's macroglobulinemia).
[0129] In some embodiments the lymphoid neoplasm (e.g., lymphoma) is a T-cell and/or putative NK-cell neoplasm. Examples of T-cell and/or putative NK-eell neoplasms include, but are not limited to, precursor T-cell neoplasm (precursor T-lymphoblastic lymphoma/leukemia) and peripheral T-cell and NK-cell neoplasms (e.g., T-cell chronic lymphocytic leukemia/prolymphocytic leukemia, and large granular lymphocyte leukemia (LGL) (e.g., T-cell type and/or NK-cell type), cutaneous T-cell lymphoma (e.g., mycosis fungoidcs/Sezary syndrome), primary T-cell lymphomas unspecified (e.g., cytological categories (e.g., medium-Date regue/Date received 2023-05-26 sized cell, mixed medium and large cell), large cell, lymphoepitheloid cell, subtype hepatosplenic y6 T-cell lymphoma, and subcutaneous panniculitic T-cell lymphoma), angioimmunoblastic T-cell lymphoma (AILD), angioccntric lymphoma, intestinal T-cell lymphoma (e.g., +/- enteropathy associated), adult T-cell lymphoma/leukemia (ATL), anaplastic large cell lymphoma (ALCL) (e.g., CD30+, '1'- and null-cell types), anaplastic large-cell lymphoma, and Hodgkin's lymphoma).
[0130] In some embodiments the lymphoid neoplasm (e.g., lymphoma) is Hodgkin's disease.
For example, the Hodgkin's disease can be lymphocyte predominance, nodular sclerosis, mixed cellularity, lymphocyte depletion, and/or lymphocyte-rich.
[0131] In some embodiments, the cancer is leukemia. In some embodiments, the leukemia is chronic leukemia. Examples of chronic leukemia include, but are not limited to, chronic myelocytic I (granulocytic) leukemia, chronic myelogenous, and chronic lymphocytic leukemia (CLL). In some embodiments, the leukemia is acute leukemia. Examples of acute leukemia include, but are not limited to, acute lymphoblastic leukemia (ALL), acute myeloid leukemia, acute lymphocytic leukemia, and acute myelocytic leukemia (e.g., myeloblastic, promyelocytic, myelomonocytic, monocytic, and erythroleukemia).
[0132] In some embodiments, the cancer is liquid tumor or plasmacytoma.
Plasmacytoma includes, but is not limited to, myeloma. Myeloma includes, but is not limited to, an extramedullary plasmacytoma, a solitary myeloma, and multiple myeloma. In some embodiments, the plasmacytoma is multiple myeloma.
[0133] In some embodiments, the cancer is multiple myeloma. Examples of multiple myeloma include, but are not limited to, IgG multiple myeloma, IgA multiple rnyeloma, IgD multiple myeloma, IgE multiple myeloma, and nonsecretory multiple myeloma. In some embodiments, the multiple myeloma is IgG multiple myeloma. In some embodiments, the multiple myeloma is IgA multiple myeloma. In some embodiments, the multiple myeloma is a smoldering or indolent multiple myeloma. In some embodiments, the multiple myeloma is progressive multiple myeloma. In some embodiments, multiple myeloma may be resistant to a drug, such as, but not limited to, bortezomib, dexamethasone (Dex-), doxorubicin (Dox-), and melphalan (LR).
Date regue/Date received 2023-05-26 B. Methods of treating cell proliferative disorders [0134] Provided herein are methods for inhibiting or decreasing c-myc-mediated cell proliferation, said method comprising administering to an individual in need thereof a therapeutically effective amount of a c-myc antisense oligonucleotide (such as in a composition) described herein. In some embodiments, the cell proliferative disorder is associated with increased expression or activity of c-myc or cellular growth, or both. In some embodiments, the cell proliferation is cancer. In some embodiments, the cancer is liver cancer, lymphoma, lung cancer, glioblastoma, pancreatic cancer, sarcoma, renal cell carcinoma, gastric cancer, colorectal cancer, or breast cancer. In some embodiments, the cancer is stage Illb and/or stage IV. In some embodiments, the cancer is locally advanced or metastatic cancer. In sonic embodiments, the cancer is c-myc positive (i.e. the cancer cells express c-myc, for example, as determined by immunohistochemistry (IHC)). In further embodiments of any of the methods described herein, administration of the c-myc antisense oligonucleotide (such as any of the c-myc antisense oligonucleotides disclosed herein) comprises contacting one or more cancer cells with the oligonucleotide. In one embodiment, administration of the therapeutically effective amount of one or more of the oligonucleotides results in one or more of reduced cellular proliferation, increased apoptosis, or cellular senescence. In another embodiment, administration of the therapeutically effective amount of one or more of the oligonucleotides does not result in significant toxicity or morbidity in the individual. In some embodiments, the individual is a human.
[0135] Also, provided herein are methods of treating a pathological condition associated with dysregulation of c-myc expression in a subject, said method comprising administering to an individual in need thereof a therapeutically effective amount of a c-myc antisense oligonucleotide (such as in a composition) described herein. In some embodiments, the cell proliferative disorder is associated with increased expression or activity of c-myc or cellular growth, or both. In some embodiments, the cell proliferation is cancer. In some embodiments, the cancer is liver cancer, lymphoma, lung cancer, glioblastoma, pancreatic cancer, sarcoma, renal cell carcinoma, gastric cancer, colorectal cancer, or breast cancer. In some embodiments, the cancer is stage IIIb and/or stage IV. In some embodiments, the cancer is locally advanced or metastatic cancer. In some embodiments, the therapy is second line or third line therapy. In some embodiments, the cancer is c-myc positive (i.e. the cancer cells express c-myc for example, as Date regue/Date received 2023-05-26 determined by immunohistochemistry (IHC)). In further embodiments of any of the methods described herein, administration of the c-myc antisense oligonucleotide (such as any of the c-myc antisense oligonucicotides disclosed herein) comprises contacting one or more cancer cells with the oligonucleotide. In one embodiment, administration of the therapeutically effective amount of one or more of the oligonucleotides results in one or more of reduced cellular proliferation, increased apoptosis, or cellular senescence. In another embodiment, administration of the therapeutically effective amount of one or more of the oligonucleotides does not result in significant toxicity or morbidity in the individual. In some embodiments, the individual is a human.
[0136] Also provided herein are methods of inhibiting the growth of a cell that expresses c-myc, said method comprising administering to an individual in need thereof a therapeutically effective amount of a c-myc antisense oligonucleotide (such as in a composition) described herein. In some embodiments, the cell has abnormally high cellular growth. In some embodiments, the cell is a cancer cell. In some embodiments, the cancer is liver cancer, lymphoma, lung cancer, glioblastoma, pancreatic cancer, sarcoma, renal cell carcinoma, gastric cancer, colorectal cancer, or breast cancer. In some embodiments, the cancer is stage Mb and/or stage IV.
In some embodiments, the cancer is locally advanced or metastatic cancer. In some embodiments, the therapy is second line or third line therapy. In some embodiments, the cancer is c-myc positive (i.e. the cancer cells express c-myc for example, as determined by immunohistochemistry (IHC)). In further embodiments of any of the methods described herein, administration of the c-myc antisense oligonucleotide (such as any of the c-myc antisense oligonucleotides disclosed herein) comprises contacting one or more cancer cells with the oligonucleotide. In one embodiment, administration of the therapeutically effective amount of one or more of the oligonucleotides results in one or more of reduced cellular proliferation, increased apoptosis, or cellular senescence. in another embodiment, administration of the therapeutically effective amount of one or more of the oligonucleotides does not result in significant toxicity or morbidity in the individual. In some embodiments, the individual is a human.
C. Administration of c-myc antisense oligonucleotides [0137] In some embodiments, the c-myc antisense oligonucleotide (such as any of the c-myc antisense oligonucleotides disclosed herein) is administered in the form of an injection. The injection can comprise the compound in combination with an aqueous injectable excipient or Date regue/Date received 2023-05-26 carrier. Non-limiting examples of suitable aqueous injectable excipients or carriers are well known to persons of ordinary skill in the art, and they, and the methods of formulating the formulations, may be found in such standard references as Alfonso AR:
Rcmington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton Pa., 1985.
Suitable aqueous injectable excipients or carriers include water, aqueous saline solution, aqueous dextrose solution, and the like, optionally containing dissolution enhancers such as 10%
mannitol or other sugars. 10% glycine, or other amino acids. The composition can be injected subcutaneously, intraperitoneally, or intravenously.
[0138] In some embodiments, intravenous administration is used, and it can be continuous intravenous infusion over a period of a few minutes to an hour or more, such as around fifteen minutes. The amount administered can vary widely depending on the type of antisense oligonucleotide, size of a unit dosage, kind of excipients or carriers, and other factors well known to those of ordinary skill in the art. The antisense oligonucleotide can comprise, for example, from about 0.001% to about 10% (w/w), from about 0.01% to about 1%, from about 0.1% to about 0.8%, or any range therein, with the remainder comprising the excipient(s) or carrier(s).
[0139] For oral administration, the c-myc antisense oligonucleotide can take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients or carriers such as binding agents; fillers; lubricants;
disintegrants; or wetting agents.
Liquid preparations for oral administration can take the form of, for example, solutions, syrups or suspensions, or they can be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations can be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia);
non-aqueous vehicles (e.g., ationd oil, oily esters, ethyl alcohol or fractionated vegetable oils);
and preservatives (e.g., methyl or propyl-p- hydroxybenzoates or sorbic acid).
The preparations can also contain buffer salts, flavoring, and coloring as appropriate.
[0140] In some embodiments, the c-inyc antisense oligonucleotide can be administered by inhalation through an aerosol spray or a nebulizer that can include a suitable propellant such as, for example, dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide, or a combination thereof. In one non-limiting example, a dosage unit for a Date regue/Date received 2023-05-26 pressurized aerosol can be delivered through a metering valve. In another embodiment, capsules and cartridges of gelatin, for example, can be used in an inhaler and can be formulated to contain a powderized mix of the compound with a suitable powder base such as, for example, starch or lactose.
[0141] In some embodiments, the amount of c-myc antisense oligonucicotide in the composition (such as a pharmaceutical composition) is included in any of the following ranges: about 0.5 to about 5 nig, about 5 to about 10 mg, about 10 to about 15 mg, about 15 to about 20 mg, about 20 to about 25 mg, about 20 to about 50 mg, about 25 to about 50 mg, about 50 to about 75 mg, about 50 to about 100 mg, about 75 to about 100 mg, about 100 to about 125 mg, about 125 to about 150 mg, about 150 to about 175 fig, about 175 to about 200 mg, about 200 to about 225 mg, about 225 to about 250 mg, about 250 to about 300 mg, about 300 to about 350 mg, about 350 to about 400 mg, about 400 to about 450 mg, or about 450 to about 500 mg.
In some embodiments, the amount of a of c-rnyc antisense oligonucleotide in the effective amount of the pharmaceutical composition (e.g., a unit dosage form) is in the range of about 5 mg to about 500 mg, such as about 30 mg to about 300 mg or about 50 mg to about 200 mg. In some embodiments, the concentration of the of c-myc anti sense oligonucleotide in the pharmaceutical composition is dilute (about 0.1 mg/me or concentrated (about 100 mg/m1), including for example any of about 0.1 to about 50 mg/ml, about 0.1 to about 20 mg/ml, about 1 to about 10 mg/ml, about 2 mg/ml to about 8 mg/ml, about 4 to about 6 mg/ml, about 5 mg/ml. In some embodiments, the concentration of the of c-myc antisense oligonucleotide is at least about any of 0.5 mg/ml, 1.3 mg/ml, 1.5 mg/ml, 2 mg/ml, 3 mg/ml, 4 mg/ml, 5 m2/ml, 6 mg/ml, 7 mg/ml, 8 mg/ml, 9 mg/ml, 10 mg/ml, 15 mg/ml, 20 mg/ml, 25 mg/ml, 30 mg/ml, 40 mg/ml, or 50 mg/ml.
[0142] Exemplary effective amounts of a of c-myc antisense oligonucleotide in the pharmaceutical composition include, but are not limited to, at least about any of 25 mg/m2, 30 mg/m2, 50 mg/m2, 60 mg/m2, 75 mg/m2, 80 mg/m2, 90 m2/m2, 100 mg/m2, 120 mg/m2, mg/m2, 150 mg/m2, 160 mg/m2, 175 mg/m2, 180 mg/m2, 200 mg/m2, 210 mg/m2, 220 mg/m2, 250 mg/m2, 260 mg/m2, 300 mg/m2, 350 mg/m2, 400 mg/m2, 500 mg/m2, 540 mg/m2, mg/m2, 1000 mg/m2, or 1080 mg/m2. In various embodiments, the pharmaceutical composition includes less than about any of 350 mg/m2, 300 mg/m2, 250 mg/m2, 200 mg/m2, 150 ing/in2, 120 mg/m2, 100 mg/m2, 90 mg/m2, 50 mg/m2, or 30 mg/m2 of a of c-myc antiscnsc oligonucleotide.
In some embodiments, the amount of the of c-myc antisense oligonucleotide per administration Date regue/Date received 2023-05-26 is less than about any of 25 mg/m2, 22 mg/m2, 20 mg/m2, 18 mg/m2, 15 mg/m2, 14 mg/m2, 13 mg/m2, 12 mg/m2, 11 ing/m2, 10 ing/m2, 9 mg/1112, 8 nig/1112, 7 mg/m2, 6 mg/m2, 5 mg/m2, 4 mg/m2, 3 mg/m2, 2 mg/m2, or 1 mg/m2. In some embodiments, the effective amount of a of c-myc antisense oligonucleotide in the pharmaceutical composition is included in any of the following ranges: about 1 to about 5 mg/m2, about 5 to about 10 mg/m2, about 10 to about 25 mg/m2, about 25 to about 50 mg/m2, about 50 to about 75 mg/m2, about 75 to about 100 mg/m2, about 100 to about 125 mg/m2, about 125 to about 150 mg/m2, about 150 to about 175 mg/m2, about 175 to about 200 mg/m2, about 200 to about 225 mg/m2, about 225 to about 250 mg/m2, about 250 to about 300 mg/m2, about 300 to about 350 mg/m2, or about 350 to about 400 mg/m2.
In some embodiments, the effective amount of a of c-myc antisense oligonucleotide in the pharmaceutical composition is about 5 to about 300 mg/m2, such as about 20 to about 300 mg/m2, about 50 to about 250 mg/m2, about 100 to about 150 mg/m2, about 120 mg/m2, about 130 mg/m2, or about 140 mg/m2, or about 260 mg/m2 [0143] In some embodiments of any of the above aspects, the effective amount of a c-myc antisense oligonucleotide in the pharmaceutical composition includes at least about any of 1 mg/kg, 2.5 mg/kg, 3.5 mg/kg, 5 mg/kg, 6.5 mg/kg, 7.5 nag/kg, 10 mg/kg, 15 mg/kg, or 20 mg/kg.
In various embodiments, the effective amount of a of c-myc antisense oligonucleotide in the pharmaceutical composition includes less than about any of 350 mg/kg, 300 mg/kg, 250 mg/kg, 200 mg/kg, 150 mg/kg, 100 mg/kg, 50 mg/kg, 30 mg/kg, 25 mg/kg, 20 mg/kg, 10 mg/kg, 7.5 mg/kg, 6.5 mg/kg, 5 mg/kg, 3.5 mg/kg, 2.5 mg/kg, or 1 mg/kg of a of c-myc antisense oligonucleotide.
[0144] Exemplary dosing frequencies for the pharmaceutical compositions (such as a pharmaceutical composition containing any of the c-myc antisense oligonucleotides disclosed herein) include, but are not limited to, daily; every other day; twice per week; three times per week; weekly without break; weekly, three out of four weeks; once every three weeks; once every two weeks; weekly, two out of three weeks. In some embodiments, the pharmaceutical composition is administered about once every 2 weeks, once every 3 weeks, once every 4 weeks, once every 6 weeks, or once every 8 weeks. In some embodiments, the composition is administered at least about any of lx, 2x, 3x, 4x, 5x, 6x, or 7x (i.e., daily) a week, or three times daily, two times daily. In some embodiments, the intervals between each administration are less than about any of 6 months, 3 months, 1 month, 20 days, 15 days, 12 days, 10 days, 9 days, 8 Date regue/Date received 2023-05-26 days, 7 days, 6 days, 5 days, 4 days, 3 days, 2 days, or 1 day. In some embodiments, the intervals between each administration are inure than about any of 1 month, 2 months, 3 months, 4 months, months, 6 months, 8 months, or 12 months. In some embodiments, there is no break in the dosing schedule. In some embodiments, the interval between each administration is no more than about a week.
[0145] The administration of the pharmaceutical composition can be extended over an extended period of time, such as from about a month up to about seven years. In sonic embodiments, the composition is administered over a period of at least about any of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 24, 30, 36, 48, 60, 72, or 84 months.
D. Combination therapy [0146] In some aspects, any of the methods disclosed herein can further comprise administering to the individual a therapeutically effective amount (such as any of the therapeutically effective amounts described above) of one or more additional anticancer therapeutic agents in addition to any of the c-myc antisense oligonucleotides disclosed herein (such as in a pharmaceutical composition). Various classes of anti-cancer agents can be used. Non-limiting examples include:
alkylating agents, antimetabolites, anthracyclines, plant alkaloids, topoisomerase inhibitors, podophyllotoxin, antibodies (e.g., monoclonal or polyclonal), tyrosine kinase inhibitors (e.g., imatinib mesylate (Gleevec or Glivec(0)), hormone treatments, soluble receptors and other antineoplastics.
[0147] Topoisomerase inhibitors are also another class of anti-cancer agents that can be used.
Topoisomerases are essential enzymes that maintain the topology of DNA.
Inhibition of type I or type II topoisomerases interferes with both transcription and replication of DNA by upsetting proper DNA supercoiling. Some type I topoisomerase inhibitors include camptotheeins:
irinotecan and topotecan. Examples of type II inhibitors include amsacrine, etoposide, etoposide phosphate, and teniposide. These are semisynthetic derivatives of epipodophyllotoxins, alkaloids naturally occurring in the root of American Mayapple (Podophyllum peltatum).
[0148] Antineoplastics include the immunosuppressant dactinomycin, doxorubicin, epirubicin, bleomycin, mechlorethamine, cyclophosphamide, chlorambucil, ifosfamide. The antineoplastic compounds generally' work by chemically modifying a cell's DNA.
Date regue/Date received 2023-05-26 [0149] Alkylating agents can alkylate many nucleophilic functional groups under conditions present in cells. Cisplatin and carboplatin, and oxaliplatin are alkylating agents. They impair cell function by forming covalent bonds with the amino, carboxyl, sulthydryl, and phosphate groups in biologically important molecules.
[0150] Vinca alkaloids bind to specific sites on tubulin, inhibiting the assembly of tubulin into microtubules (M phase of the cell cycle). The vinca alkaloids include:
vincristine, vinblastine, vinorelbine, and vindesine.
[0151] Anti-metabolites resemble purines (azathioprine, mercaptopurine) or pyrimidine and prevent these substances from becoming incorporated in to DNA during the "S"
phase of the cell cycle, stopping normal development and division. Anti-metabolites also affect RNA synthesis.
[0152] Plant alkaloids and terpenoids are derived from plants and block cell division by preventing microtubule function. Since microtubules are vital for cell division, without them, cell division cannot occur. The main examples are vinca alkaloids and taxanes.
Podophylloto)dn is a plant-derived compound which has been reported to help with digestion as well as used to produce two other cytostatic drugs, etoposide and teniposide.
They prevent the cell from entering the G1 phase (the start of DNA replication) and the replication of DNA (the S
phase). Taxanes as a group includes paclitaxel and docetaxel. Paclitaxel is a natural product, originally known as Taxol and first derived from the bark of the Pacific Yew tree. Docetaxel is a semi-synthetic analogue of paclitaxel. Taxanes enhance stability of microtubules, preventing the separation of chromosomes during anaphase.
VI. Kits and Articles of Manufacture [0153] In one embodiment, the invention provides an article of manufacture that includes a pharmaceutical composition containing an inhibitor of the invention for any of the uses and methods of the invention. Such articles may be a useful device such as a sustained release device, bandage, transdermal patch or a similar device. The device holds a therapeutically effective amount of a pharmaceutical composition, such as any of the pharmaceutical compositions described herein. The device may be packaged in a kit along with instructions for using the pharmaceutical composition for any of the uses or methods described herein. The Date regue/Date received 2023-05-26 pharmaceutical composition includes at least one c-myc antisense oligonucleotide of the present invention, in a therapeutically effective amount such that the use or method is accomplished.
EXAMPLES
Example 1: Effects of c-myc antisense oligonucleotides on c-myc protein expression and proliferation of liver cancer cells in vitro [0154] This example demonstrates that c-myc antisense oligonucleotide are effective in reducing c-myc protein expression and cell growth in IlepG2 liver cancer cells.
Materials and Methods Table 7. Oligonucleotides SEQ ID Type of ODN
5' ¨ d- (Oligonucleotide) ¨ 3' NO: intersubunit Mode of action linkage 1 Palm-AACGTTGAGGGGCAT 1 All-NP steric blocker 2 AACGTTGAGGGGCAT 1 All-NP steric blocker 13 Palm-AACGITGAGGGGCAT 1 All-NP steric blocker 15 TAACGTTGAGGGGCAT 3 All-NPS steric blocker
16 Palm-AACGTTGAGGGGCAT 1 NPS/PS/NPS RNAse-H
17 TAACGTTGAGGGGCAT 3 NPS/PS/NPS RNAse-H
18 Palm-TAACGT'TGAGGGGCAT 3 Alt-NPS/PS mixed
19 TAACGTTGAGGGGCAT 3 Alt-NPS/PS mixed
20 Palm-AACGTTGAGGGGCAT 1 NP/PS/NP RNAse-H
Date regue/Date received 2023-05-26
Date regue/Date received 2023-05-26
21 TAACGTTGAGGGGCAT 3 NP/PS/NP RNAse-H
5 Sense control-steric
5 Sense control-steric
22 Palm-ATGCCCCTCAACGTT All-NPS
blocker :
blocker :
23 Palm-ATGCCCCTCAACGTT 5 NPS/PS/NPS
RNAse-H-sense control Palm-U-rA-rA-rC-dG-dT-dT-dG- 2
RNAse-H-sense control Palm-U-rA-rA-rC-dG-dT-dT-dG- 2
24 1 rNPS/PS/rNPS mixed dA-dG-dG-dG-dG-rC-rA
U-rA-rA-rC-dG-dT-dT-dG-dA- 2
U-rA-rA-rC-dG-dT-dT-dG-dA- 2
25 rNPS/PS/rNPS mixed dG-dG-dG-dG-rC-rA
Palm-U-dG-rC-dC-dC-dC-dT-dC- , 17
Palm-U-dG-rC-dC-dC-dC-dT-dC- , 17
26 rNPS/PS/rNPS mixed-sense control dA-rA-rC-dG-U-U-rA
U-dG4C-dC-dC-dC-dT-dC-dA- 17
U-dG4C-dC-dC-dC-dT-dC-dA- 17
27 rNPS/PS/rNPS mixed-sense control rA-re-dG-U-U-rA
28 TAACGTTGAGGGGCAT 3 All NP Steric blocker
29 TAACGTTGAGGGGCAT- 3 All-NP steric blocker TAMRA
30 Palm-AACGTTGAGGGGCAT- 1 All-NP steric blocker TAMRA
31 Palm-AACGTTGAGGGGCAT- 1 All-NPS steric blocker TAMRA
1 ,
1 ,
32 Palm-AACGTTGAGGGGCAT- 1 NPSIPS/NPS RNAse-H
TAMRA
TAMRA
33 TAACGTTGAGGGGCAT- 3 NPSIPS/NPS RNAse-H
TAMRA
TAMRA
34 Palm-AACGTTGAGGGGCAT- 1 Alt-NPS/PS mixed TAMRA
35 TAACGTTGAGGGGCAT- 3 NP/PS/NP RNAse-H
TAMRA
TAMRA
36 18 TATGCCCCTCAACGTT NPS/PS/NPS RNAsc-H control Date recue/Date received 2023-05-26
37 TATGCCCCTCAACGTT - 18 NPS/PS/NPS RNAse-H control TAMRA
38 Palm-TATGCCCCTCAACGTT - 18 TAMRA NPS/PS/NPS RNAse-H control * Palm = Palmitic acid lipid moiety (see discussion infra); ** TAMRA =
fluorescent label r=ribo; d=dideoxy; all nucleosides are dideoxy unless specified ribo or U.
Cell culture [0100] For these experiments, approximately 10,000 HepG2 cells were plated in 96 well plates in standard growth media. The cells were treated with AS ODNs 16, 18. 20, 28, 29, 30, 31, 32, 33, 34, 35 and sense control ODNs 23, 36, 37, and 38 for either one, two, three, four or six days at a concentration of either 1 uM or 5 M.
Assessment of protein expression [0101] C-myc protein expression was assessed by Western blot according to standard procedures. Protein levels were normalized to the housekeeping gene Hsp90.
Antibodies were obtained from Santa Cruz Biotechnology, Inc. Protein expression was determined by densitometry and normalized to expression in untreated control cells.
Assessment of relative cell growth [0102] Cells were harvested at the times indicated at which time the cells were counted using a hemocytometer. Relative cell growth was then plotted as a percentage normalized to untreated control cells.
Results 10103] Measurements of relative growth rates revealed that HepG2 cells treated with AS ODNs 16, 18, 20 at 1 uM or 5 uM for 6 days grew more slowly in comparison to untreated controls (Figure 1A). Similarly, relative growth rates indicated that HepG2 cells treated with AS ODNs 16, 18, 20, 28, 30, 31, 32, 33, 34, 35 at 1 M for 6 and 8 days grew more slowly (less than 50%
the growth) in comparison to untreated controls (Figure 1B).
Date regue/Date received 2023-05-26 [0159] Measurements of relative c-myc protein expression also revealed dramatically decreased expression in HepG2 cells treated with AS ODNs 16, 20, 30, 31, 32, 33, 34, and 35 for one, two, and three days at 1 M (Figures 2A-C), in comparison to untreated controls.
Additionally, analysis of relative c-myc protein expression showed decreased expression in cells treated with AS ODNs 16, 18, 20 at 5 M for four and five days in comparison to untreated controls (Figure 2D).
[0160] This example demonstrated that treatment of a liver cancer cell line in vitro with AS
ODNs targeted to c-myc mRNA results in decreased cellular proliferation as well as decreased c-myc protein expression relative to controls.
Example 2: Effects of c-myc antiscnse oligonucleotides on c-mye protein expression and proliferation of follicular lymphoma cells in vitro.
[0161] This example shows that c-myc antisense oligonueleotide are effective in reducing c-myc protein expression and cell growth in VAL follicular lymphoma cancer cells.
Materials and Methods Cell culture [0162] For these experiments, approximately 10,000 HepG2 cells were plated in 96 well plates in standard growth media. Cells were treated with AS ODNs 30, 20, 32, 34 and sense control ODN 38 for four days at a concentration of 5 M.
Assessment of protein expression [0163] C-myc protein expression was assessed by Western blot according to standard procedures. Protein levels were normalized to the housekeeping gene Hsp90.
Antibodies were obtained from Santa Cruz Biotechnology, Inc. Protein expression was determined by densitometry and normalized to expression in untreated control cells.
Assessment of relative cell growth [0164] Cells were harvested at the times indicated at which time the cells were counted using a hemocytometer. Relative cell growth was then plotted as a percentage normalized to untreated control cells.
Date regue/Date received 2023-05-26 Results [0165] Measurements of relative growth rates revealed that the VAL cells treated with AS
ODNs 30, 20, 32, 34 at 51.IM grew more slowly in comparison to untreated controls (Figure 3A). Assays of relative c-myc protein expression also revealed dramatically decreased expression in cells treated with AS ODNs 30, 20, 32, 34 in comparison to untreated controls (Figure 3B).
[0166] This example demonstrated that treatment of a follicular lymphoma cancer cell line in vitro with AS ODNs targeted to c-myc mRNA results in decreased cellular proliferation as well as decreased c-myc protein expression relative to untreated control cells.
Example 3: Effects of c-myc antisense therapy on cancer cell lines in vivo [0167] This example shows that c-myc antisense ODNs arc effective in decreasing tumor volume and weight in both a tumor prevention and regression mouse model.
Materials and Methods [0168] HepG2-Luc liver cancer cells or VAL follicular lymphoma cancer cells (10 x 106 cells in PBS) were subcutaneously injected into the right flank of 5-6 week old male SC1D mice. For the tumor prevention study, HepG2 cells were employed. ODNs were administered by IP injection at a concentration of 30 mg/kg/day three times per week beginning on day 47.
Tumor volumes were monitored periodically by calipers. Control animals received injections of PBS.
[0169] For the tumor regression analysis, VAL cells were used and after tumor size reached an approximate volume of 5-50 mm3, c-myc antisense ODNs or sense control ODN 23 were administered by IP injection at a concentration of 30 mg/kg/day three times per week beginning on day 13. Control animals received PBS alone for the same period. Antitumor activities of the oligonucleotides were estimated by decreased tumor volume, which was measured with a caliper periodically over the period of the study.
[0170] Each point represents mean tumor volume calculated from 4 animals per experimental group. At the end of the study, the animals were sacrificed and the tumors removed and weighed.
Date regue/Date received 2023-05-26 Results [0171] In the tumor prevention model using IIepG2 liver cancer cells, mice treated with AS
ODN 20 exhibited tumors with significantly decreased tumor volumes (p <
0.0001) as well as tumor weights (p = 0.0021) in comparison to vehicle and sense ODN-treated control (Figures 4A and B). As for the tumor regression model using VAL cells, mice treated with AS ODN 16 similarly revealed significantly decreased tumor volumes (p = 0.0032) and tumor weights (p =
0.0025) compared to vehicle and sense ODN-treated control animals (Figures 5C
and D).
[0172] This example demonstrates that c-myc antisense ODNs can dramatically decrease both tumor volume and weight in both a tumor prevention or regression model using human cancer cells.
Example 4: Effects of c-myc antisense therapy on primary rnurine c-myc-induced cancer in vivo [0173] This example utilizes a conditional mouse model system for producing c-myc-induced hematopoietic tumors to determine the efficacy of c-myc antisense oligonucleotides in treating cancer.
Materials and Methods Transgenic mice [0174] The mouse model utilized in these experiments was developed to conditionally overexpress c-myc in the livers of mice when the mice are deprived of the antibiotic doxycyline (see Felsher & Bishop, Mot Cell, 4:199-207, 1999; Shachaf et al., Nature, 431:1117, 2004).
Transgenic mice were generated using conventional techniques. Founders were derived in FVB/N. Human MYC cDNA exons 2 and 3 were cloned into the EcoR1 site of the polylinker of pUHD10-3 (provided by H. Bujard), which contains the tetracycline response element generating tct-o-MYC. t'l'A was cloned into the EcoRV site of E SRa (Fclsher &
Bishop, Mol.
Cell, 4:199-207, 1999).
[0175] To suppress c-myc transgene expression, mice were administered doxycycline in their drinking water, changed once per week, at a concentration of 100 pg/ml. Upon initiation of the study, doxycycl ine administration to the mice was halted, resulting in overexpression of c-myc, and primary HCC tumors began to form. Mice were IF administered either c-myc antisense Date regue/Date received 2023-05-26 oligonucleotide 20 or 16, sense oligonucleotide 23 at 30 mg/kg/day, three days a week beginning when overall tumor size reached 50 mni3. Control animals received IP
injections of PBS.
Histology [0176] Tissues were fixed in 10% buffered formalin, and 5 gm paraffin sections were stained with hematoxylin and eosin (Felsher & Bishop, MoL Cell, 4:199-207, 1999).
Sections were also stained following labeling with antibodies to the Ki-67 protein (representative of cellular proliferation) and cleaved caspase 3 (indicating active apoptosis) (Santa Cruz Biotechnology) according to standard techniques. Tissue sections were also stained to detect senescence-associated beta-galactosidase (SA-f3ga1) activity according to techniques known in the art (see Debacq-Chainiaux et al., Nature Protocols, 4(141798-1806, 2009).
MRI and analysis of tumor burden [0177] Magnetic Resonance Imaging of tumors was conducted using established techniques.
Tumor burden and volume (calculated in cm') were determined as detailed above.
Results [0178] Hepatocytes in the mice utilized in this experiment have a c-myc gene under control of a tetracycline promoter. Following activation by removing docycyline from the diets of animlas, c-myc is overexpressed in the liver resulting in the formation of liver tumors (Figure 6).
[0179] Antisense oligonucleotide treatment with ODNs 16 and 20 of mice actively overexpressing c-myc in their livers dramatically reduced the size of the tumors associated with the livers in comparison with sense oligonucleotide and vehicle-treated controls (Figure 7). No observable toxicity associated with administration of the antisense ODNs was observed in any of the animals. Histological analysis of primary tumors revealed that tumor cells in mice treated with ODN 20 were actively undergoing apoptosis following staining with an antibody recognizing cleaved caspase 3 (Figure 8). On the other hand, analysis of primary HCC tumors from animals treated with ODN 16 revealed a high number of cells in senescence based on senescence-associated beta-galactosidase (SA-I3gal) activity (Figure 8).
Furthermore, MR1 imaging of the mice throughout the study shows that, in contrast to mice treated with vehicle or Date regue/Date received 2023-05-26 sense oligonucleotide 23, the liver tumors in mice treated with ODNs 16 or 20 either did not increase in size or actually shrunk as the study progressed (Figure 9).
[0180] Quantitative analysis of the total tumor burden in the study animals again showed that total tumor burden for mice treated with antisense ODNs 16 and 20 remained flat while tumor burden for vehicle and sense ODN-treated animals increased steadily throughout the study (Figures 10 and 11).
[0181] In summary, antisense oligonucleotides targeted to c-myc have significant activity in primary transgenic mouse models of c-myc-mediated liver cancer. Treatment with the anti-c-myc oligonucleotides is associated with reduced proliferation, increased apoptosis, and increased cellular senescence. Importantly, administration of these oligonucleotides do not result any observed significant toxicity or morbidity in mice treated with them.
Example 5: Effects of c-myc antiscnse oligonucleotidcs on c-myc protein expression and proliferation of liver cancer cells in vitro Cell treatment [0182] HepG2 cells (obtained from ATCC) were thawed and cultured for 5-25 passages in Eagle's minimal essential medium (EMEM, Invitro2en) plus 10% foetal calf scrum (FCS, Hyclone). Cells were treated with antisense PS- oligonueleotides or non-silencing control oligonucleotide (NC) as shown in Table 7 by transfection using LipofectamineTM
RNAiMAX
(lnvitrogen, Cat#13778) following the manufacturer's protocol. Treated cells were incubated in culture medium for 16-18 hours at 37 C, 5% CO2 prior to fixation or cell lysis for measurement of c-myc protein.
Date regue/Date received 2023-05-26 Table 8: Oligonucleotides Type of Oligonucleotide SEQ ID
Sequence intersubunit Number NO:
linkage PS4 CTCGTCGT1TCCGCAACAAG 6 All-PS
PS7 ACGTTGAGGGGCATCGTCGC 7 All-PS
P516 AACGITGAGGGGCATCGTCG 8 All-PS
PS18 CTGCTGTCGTTGAGAGGGTA 9 All-PS
PS23 GGCATCGTCGCGGGAGGCTGCTGGAGCG 10 All-PS
PS23.1 GCiCATCGTCGCGGGAGGCTG 11 All-PS
PS23.2 TCGTCGCGGGAGGCTGCTGG 12 All-PS
PS24 CCGCCCGCTCGCTCCCTCTG 13 All-PS
PS28 GTTCTCCTCCTCGTCGCAGT 14 All-PS
Measurement of c-myc protein Immunofluroescence [0183] Cells were fixed in 1% formaldehyde for 15 minutes. Cells were then incubated with a rabbit anti-c-myc antibody (cln D84C12, CST) at 5 pg/mL, in block (10% FCS in PBS, 0.1%
Triton X-100) at 37 C for 30', followed by incubation with a fluorescent anti-rabbit-Alexa594 (Invitrogen A21207) antibody at 10 jig/ml, in block at 37 C for 30 minutes.
For this second incubation Hoechst was also added to stain cell nuclei. Cells were imaged on a Cellomics Arraysean HCS imager (Thermoscientific). Five to 10 images per well for a 96-well plate format were taken. HepG2 nuclei were identified by Cellomics software using Hoechst staining. c-myc fluorescence intensity within the same area was measured. The results are shown in Figure 13.
Date regue/Date received 2023-05-26 Western Blotting 101841 For western blotting, cells were lysed in cell extraction buffer (Invitrogen FNN0011) plus protease (Roche #11836170001) and phosphatase (Pierce # 1861277) inhibitors. The BCA
assay (Pierce #23227) was used for protein quantitation according to the manufacturer's protocol, and protein concentrations between samples were normalized by dilution when necessary. Samples were heated with Laemmli buffer and proteins were separated electrophoretically on 4-12% Novex Bis-Tris gels (Invitrogen). Proteins were blotted onto a nitrocellulose membrane using wet-electophoretic transfer. Membranes were blocked with 1%
milk in Tris-buffered saline (TBS) plus 0.1% Tween detergent. Immunodetection was performed by incubation of the membrane with 10 p,g/mL anti-cmyc antibody followed by 0.4 gg/mL anti-rabbit-HRP secondary antibody. C-myc protein was visualized by with ECL2 (Thermofisher) reagent which acts as a substrate for HRP producing a luminescent product via a fluorescent intermediate. Blots were imaged on the Storm imager (GE Healthcare). Band densitometry was performed with imageQuant TL software and blots were reprobed with an anti-GAPDH (a housekeeping protein) antibody to normalize for protein loading. The results are shown in Figure 12. The antisense oligonucleotides inhibited expression of c-myc protein in a dose dependent manner.
10185] The examples, which are intended to be purely exemplary of the invention and should therefore not be considered to limit the invention in any way, also describe and detail aspects and embodiments of the invention discussed above. The foregoing examples and detailed description are offered by way of illustration and not by way of limitation.
Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
Date recue/Date received 2023-05-26
fluorescent label r=ribo; d=dideoxy; all nucleosides are dideoxy unless specified ribo or U.
Cell culture [0100] For these experiments, approximately 10,000 HepG2 cells were plated in 96 well plates in standard growth media. The cells were treated with AS ODNs 16, 18. 20, 28, 29, 30, 31, 32, 33, 34, 35 and sense control ODNs 23, 36, 37, and 38 for either one, two, three, four or six days at a concentration of either 1 uM or 5 M.
Assessment of protein expression [0101] C-myc protein expression was assessed by Western blot according to standard procedures. Protein levels were normalized to the housekeeping gene Hsp90.
Antibodies were obtained from Santa Cruz Biotechnology, Inc. Protein expression was determined by densitometry and normalized to expression in untreated control cells.
Assessment of relative cell growth [0102] Cells were harvested at the times indicated at which time the cells were counted using a hemocytometer. Relative cell growth was then plotted as a percentage normalized to untreated control cells.
Results 10103] Measurements of relative growth rates revealed that HepG2 cells treated with AS ODNs 16, 18, 20 at 1 uM or 5 uM for 6 days grew more slowly in comparison to untreated controls (Figure 1A). Similarly, relative growth rates indicated that HepG2 cells treated with AS ODNs 16, 18, 20, 28, 30, 31, 32, 33, 34, 35 at 1 M for 6 and 8 days grew more slowly (less than 50%
the growth) in comparison to untreated controls (Figure 1B).
Date regue/Date received 2023-05-26 [0159] Measurements of relative c-myc protein expression also revealed dramatically decreased expression in HepG2 cells treated with AS ODNs 16, 20, 30, 31, 32, 33, 34, and 35 for one, two, and three days at 1 M (Figures 2A-C), in comparison to untreated controls.
Additionally, analysis of relative c-myc protein expression showed decreased expression in cells treated with AS ODNs 16, 18, 20 at 5 M for four and five days in comparison to untreated controls (Figure 2D).
[0160] This example demonstrated that treatment of a liver cancer cell line in vitro with AS
ODNs targeted to c-myc mRNA results in decreased cellular proliferation as well as decreased c-myc protein expression relative to controls.
Example 2: Effects of c-myc antiscnse oligonucleotides on c-mye protein expression and proliferation of follicular lymphoma cells in vitro.
[0161] This example shows that c-myc antisense oligonueleotide are effective in reducing c-myc protein expression and cell growth in VAL follicular lymphoma cancer cells.
Materials and Methods Cell culture [0162] For these experiments, approximately 10,000 HepG2 cells were plated in 96 well plates in standard growth media. Cells were treated with AS ODNs 30, 20, 32, 34 and sense control ODN 38 for four days at a concentration of 5 M.
Assessment of protein expression [0163] C-myc protein expression was assessed by Western blot according to standard procedures. Protein levels were normalized to the housekeeping gene Hsp90.
Antibodies were obtained from Santa Cruz Biotechnology, Inc. Protein expression was determined by densitometry and normalized to expression in untreated control cells.
Assessment of relative cell growth [0164] Cells were harvested at the times indicated at which time the cells were counted using a hemocytometer. Relative cell growth was then plotted as a percentage normalized to untreated control cells.
Date regue/Date received 2023-05-26 Results [0165] Measurements of relative growth rates revealed that the VAL cells treated with AS
ODNs 30, 20, 32, 34 at 51.IM grew more slowly in comparison to untreated controls (Figure 3A). Assays of relative c-myc protein expression also revealed dramatically decreased expression in cells treated with AS ODNs 30, 20, 32, 34 in comparison to untreated controls (Figure 3B).
[0166] This example demonstrated that treatment of a follicular lymphoma cancer cell line in vitro with AS ODNs targeted to c-myc mRNA results in decreased cellular proliferation as well as decreased c-myc protein expression relative to untreated control cells.
Example 3: Effects of c-myc antisense therapy on cancer cell lines in vivo [0167] This example shows that c-myc antisense ODNs arc effective in decreasing tumor volume and weight in both a tumor prevention and regression mouse model.
Materials and Methods [0168] HepG2-Luc liver cancer cells or VAL follicular lymphoma cancer cells (10 x 106 cells in PBS) were subcutaneously injected into the right flank of 5-6 week old male SC1D mice. For the tumor prevention study, HepG2 cells were employed. ODNs were administered by IP injection at a concentration of 30 mg/kg/day three times per week beginning on day 47.
Tumor volumes were monitored periodically by calipers. Control animals received injections of PBS.
[0169] For the tumor regression analysis, VAL cells were used and after tumor size reached an approximate volume of 5-50 mm3, c-myc antisense ODNs or sense control ODN 23 were administered by IP injection at a concentration of 30 mg/kg/day three times per week beginning on day 13. Control animals received PBS alone for the same period. Antitumor activities of the oligonucleotides were estimated by decreased tumor volume, which was measured with a caliper periodically over the period of the study.
[0170] Each point represents mean tumor volume calculated from 4 animals per experimental group. At the end of the study, the animals were sacrificed and the tumors removed and weighed.
Date regue/Date received 2023-05-26 Results [0171] In the tumor prevention model using IIepG2 liver cancer cells, mice treated with AS
ODN 20 exhibited tumors with significantly decreased tumor volumes (p <
0.0001) as well as tumor weights (p = 0.0021) in comparison to vehicle and sense ODN-treated control (Figures 4A and B). As for the tumor regression model using VAL cells, mice treated with AS ODN 16 similarly revealed significantly decreased tumor volumes (p = 0.0032) and tumor weights (p =
0.0025) compared to vehicle and sense ODN-treated control animals (Figures 5C
and D).
[0172] This example demonstrates that c-myc antisense ODNs can dramatically decrease both tumor volume and weight in both a tumor prevention or regression model using human cancer cells.
Example 4: Effects of c-myc antisense therapy on primary rnurine c-myc-induced cancer in vivo [0173] This example utilizes a conditional mouse model system for producing c-myc-induced hematopoietic tumors to determine the efficacy of c-myc antisense oligonucleotides in treating cancer.
Materials and Methods Transgenic mice [0174] The mouse model utilized in these experiments was developed to conditionally overexpress c-myc in the livers of mice when the mice are deprived of the antibiotic doxycyline (see Felsher & Bishop, Mot Cell, 4:199-207, 1999; Shachaf et al., Nature, 431:1117, 2004).
Transgenic mice were generated using conventional techniques. Founders were derived in FVB/N. Human MYC cDNA exons 2 and 3 were cloned into the EcoR1 site of the polylinker of pUHD10-3 (provided by H. Bujard), which contains the tetracycline response element generating tct-o-MYC. t'l'A was cloned into the EcoRV site of E SRa (Fclsher &
Bishop, Mol.
Cell, 4:199-207, 1999).
[0175] To suppress c-myc transgene expression, mice were administered doxycycline in their drinking water, changed once per week, at a concentration of 100 pg/ml. Upon initiation of the study, doxycycl ine administration to the mice was halted, resulting in overexpression of c-myc, and primary HCC tumors began to form. Mice were IF administered either c-myc antisense Date regue/Date received 2023-05-26 oligonucleotide 20 or 16, sense oligonucleotide 23 at 30 mg/kg/day, three days a week beginning when overall tumor size reached 50 mni3. Control animals received IP
injections of PBS.
Histology [0176] Tissues were fixed in 10% buffered formalin, and 5 gm paraffin sections were stained with hematoxylin and eosin (Felsher & Bishop, MoL Cell, 4:199-207, 1999).
Sections were also stained following labeling with antibodies to the Ki-67 protein (representative of cellular proliferation) and cleaved caspase 3 (indicating active apoptosis) (Santa Cruz Biotechnology) according to standard techniques. Tissue sections were also stained to detect senescence-associated beta-galactosidase (SA-f3ga1) activity according to techniques known in the art (see Debacq-Chainiaux et al., Nature Protocols, 4(141798-1806, 2009).
MRI and analysis of tumor burden [0177] Magnetic Resonance Imaging of tumors was conducted using established techniques.
Tumor burden and volume (calculated in cm') were determined as detailed above.
Results [0178] Hepatocytes in the mice utilized in this experiment have a c-myc gene under control of a tetracycline promoter. Following activation by removing docycyline from the diets of animlas, c-myc is overexpressed in the liver resulting in the formation of liver tumors (Figure 6).
[0179] Antisense oligonucleotide treatment with ODNs 16 and 20 of mice actively overexpressing c-myc in their livers dramatically reduced the size of the tumors associated with the livers in comparison with sense oligonucleotide and vehicle-treated controls (Figure 7). No observable toxicity associated with administration of the antisense ODNs was observed in any of the animals. Histological analysis of primary tumors revealed that tumor cells in mice treated with ODN 20 were actively undergoing apoptosis following staining with an antibody recognizing cleaved caspase 3 (Figure 8). On the other hand, analysis of primary HCC tumors from animals treated with ODN 16 revealed a high number of cells in senescence based on senescence-associated beta-galactosidase (SA-I3gal) activity (Figure 8).
Furthermore, MR1 imaging of the mice throughout the study shows that, in contrast to mice treated with vehicle or Date regue/Date received 2023-05-26 sense oligonucleotide 23, the liver tumors in mice treated with ODNs 16 or 20 either did not increase in size or actually shrunk as the study progressed (Figure 9).
[0180] Quantitative analysis of the total tumor burden in the study animals again showed that total tumor burden for mice treated with antisense ODNs 16 and 20 remained flat while tumor burden for vehicle and sense ODN-treated animals increased steadily throughout the study (Figures 10 and 11).
[0181] In summary, antisense oligonucleotides targeted to c-myc have significant activity in primary transgenic mouse models of c-myc-mediated liver cancer. Treatment with the anti-c-myc oligonucleotides is associated with reduced proliferation, increased apoptosis, and increased cellular senescence. Importantly, administration of these oligonucleotides do not result any observed significant toxicity or morbidity in mice treated with them.
Example 5: Effects of c-myc antiscnse oligonucleotidcs on c-myc protein expression and proliferation of liver cancer cells in vitro Cell treatment [0182] HepG2 cells (obtained from ATCC) were thawed and cultured for 5-25 passages in Eagle's minimal essential medium (EMEM, Invitro2en) plus 10% foetal calf scrum (FCS, Hyclone). Cells were treated with antisense PS- oligonueleotides or non-silencing control oligonucleotide (NC) as shown in Table 7 by transfection using LipofectamineTM
RNAiMAX
(lnvitrogen, Cat#13778) following the manufacturer's protocol. Treated cells were incubated in culture medium for 16-18 hours at 37 C, 5% CO2 prior to fixation or cell lysis for measurement of c-myc protein.
Date regue/Date received 2023-05-26 Table 8: Oligonucleotides Type of Oligonucleotide SEQ ID
Sequence intersubunit Number NO:
linkage PS4 CTCGTCGT1TCCGCAACAAG 6 All-PS
PS7 ACGTTGAGGGGCATCGTCGC 7 All-PS
P516 AACGITGAGGGGCATCGTCG 8 All-PS
PS18 CTGCTGTCGTTGAGAGGGTA 9 All-PS
PS23 GGCATCGTCGCGGGAGGCTGCTGGAGCG 10 All-PS
PS23.1 GCiCATCGTCGCGGGAGGCTG 11 All-PS
PS23.2 TCGTCGCGGGAGGCTGCTGG 12 All-PS
PS24 CCGCCCGCTCGCTCCCTCTG 13 All-PS
PS28 GTTCTCCTCCTCGTCGCAGT 14 All-PS
Measurement of c-myc protein Immunofluroescence [0183] Cells were fixed in 1% formaldehyde for 15 minutes. Cells were then incubated with a rabbit anti-c-myc antibody (cln D84C12, CST) at 5 pg/mL, in block (10% FCS in PBS, 0.1%
Triton X-100) at 37 C for 30', followed by incubation with a fluorescent anti-rabbit-Alexa594 (Invitrogen A21207) antibody at 10 jig/ml, in block at 37 C for 30 minutes.
For this second incubation Hoechst was also added to stain cell nuclei. Cells were imaged on a Cellomics Arraysean HCS imager (Thermoscientific). Five to 10 images per well for a 96-well plate format were taken. HepG2 nuclei were identified by Cellomics software using Hoechst staining. c-myc fluorescence intensity within the same area was measured. The results are shown in Figure 13.
Date regue/Date received 2023-05-26 Western Blotting 101841 For western blotting, cells were lysed in cell extraction buffer (Invitrogen FNN0011) plus protease (Roche #11836170001) and phosphatase (Pierce # 1861277) inhibitors. The BCA
assay (Pierce #23227) was used for protein quantitation according to the manufacturer's protocol, and protein concentrations between samples were normalized by dilution when necessary. Samples were heated with Laemmli buffer and proteins were separated electrophoretically on 4-12% Novex Bis-Tris gels (Invitrogen). Proteins were blotted onto a nitrocellulose membrane using wet-electophoretic transfer. Membranes were blocked with 1%
milk in Tris-buffered saline (TBS) plus 0.1% Tween detergent. Immunodetection was performed by incubation of the membrane with 10 p,g/mL anti-cmyc antibody followed by 0.4 gg/mL anti-rabbit-HRP secondary antibody. C-myc protein was visualized by with ECL2 (Thermofisher) reagent which acts as a substrate for HRP producing a luminescent product via a fluorescent intermediate. Blots were imaged on the Storm imager (GE Healthcare). Band densitometry was performed with imageQuant TL software and blots were reprobed with an anti-GAPDH (a housekeeping protein) antibody to normalize for protein loading. The results are shown in Figure 12. The antisense oligonucleotides inhibited expression of c-myc protein in a dose dependent manner.
10185] The examples, which are intended to be purely exemplary of the invention and should therefore not be considered to limit the invention in any way, also describe and detail aspects and embodiments of the invention discussed above. The foregoing examples and detailed description are offered by way of illustration and not by way of limitation.
Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
Date recue/Date received 2023-05-26
Claims (22)
1. An oligonucleotide comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein at least one of the intersubunit linkages is a thiophosphoramidate linkage, wherein the oligonucleotide is about 6 to about 30 nucleotides in length, and wherein the oligonucleotide prevents translation of the mRNA by steric hindrance.
2. The oligonucleotide of claim 1, wherein about 20% to about 90% of the intersubunit linkages are thiophosphoramidate linkages.
3. The oligonucleotide of claim 1, wherein 100% of the intersubunit linkages are thiophosphoramidate linkages.
4. The oligonucleotide of claim 1, wherein the oligonucleotide further comprises one or more lipid or cholesterol moieties.
5. The oligonucleotide of claim 4, wherein the one or more lipid or cholesterol moieties is/are located on the 5' end of the oligonucleotide, the 3' end of the oligonucleotide, or both the 5' and 3' ends of the oligonucleotide.
6. The oligonucleotide of claim 1, wherein contacting the oligonucleotide with a proliferating cell decreases relative c-myc protein expression in the cell by at least about 50% in comparison to cells that have not been contacted with the oligonucleotide.
7. The oligonucleotide of claim 1, wherein contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than 50% in comparison to cells that have not been contacted with the oligonucleotide.
Date recue/Date received 2023-05-26
Date recue/Date received 2023-05-26
8. An oligonucleotide comprising a sequence complementary to an mRNA from a c-myc gene, wherein the nucleoside subunits of the oligonucleotide are joined by intersubunit linkages, wherein the oligonucleotide comprises alternating thiophosphoramidate or phosphoramidate and thiophosphate or phosphate intersubunit linkages, wherein the oligonucleotide is about 6 to about 30 nucleotides in length, and wherein the oligonucleotide is a substrate for RNase-H-mediated degradation of the mRNA
from a c-myc gene or wherein the oligonucleotide prevents translation of the mRNA by steric hindrance.
from a c-myc gene or wherein the oligonucleotide prevents translation of the mRNA by steric hindrance.
9. The oligonucleotide of claim 8, wherein the oligonucleotide comprises alternating linkages selected from the group consisting of alternating thiophosphoramidate and thiophosphate linkages, alternating thiophosphoramidate and phosphate linkages, alternating phosphoramidate and thiophosphate linkages and alternating phosphoramidate and phosphate linkages.
10. The oligonucleotide of claim 8 wherein the oligonucleotide comprises at least about 45%
to 55% thiophosphoramidate linkages.
to 55% thiophosphoramidate linkages.
11. The oligonucleotide of claim 8, wherein the oligonucleotide comprises at least about 45% to 55% phosphoramidate linkages.
12. The oligonucleotide of claim 8, wherein the oligonucleotide comprises the sequence ACGTTGAGGGGCAT (SEQ ID NO:15) or the sequence TCGTCGCGGGAGGCTG
(SEQ ID NO:16.
(SEQ ID NO:16.
13. The oligonucleotide of claim 8, wherein the oligonucleotide comprises a sequence selected from the group consisting of AACGTTGAGGGGCAT (SEQ ID NO:1), UAACGTTGAGGGGCA (SEQ ID NO:2), TAACGTTGAGGGGCAT (SEQ ID NO:3), TTTCATTGTTTTCCA (SEQ ID NO:4), CTCGTCGTTTCCGCAACAAG (SEQ ID
NO:6), ACGTTGAGGGGCATCGTCGC (SEQ ID NO:7), AACGTTGAGGGGCATCGTCG (SEQ ID NO:8), CTGCTGTCGTTGAGAGGGTA
(SEQ ID NO:9), GGCATCGTCGCGGGAGGCTGCTGGAGCG (SEQ ID NO:10), Date recue/Date received 2023-05-26 GGCATCGTCGCGGGAGGCTG (SEQ ID NO:11), TCGTCGCGGGAGGCTGCTGG
(SEQ ID NO:12), CCGCCCGCTCGCTCCCTCTG (SEQ ID NO:13), and GTTCTCCTCCTCGTCGCAGT (SEQ ID NO:14).
NO:6), ACGTTGAGGGGCATCGTCGC (SEQ ID NO:7), AACGTTGAGGGGCATCGTCG (SEQ ID NO:8), CTGCTGTCGTTGAGAGGGTA
(SEQ ID NO:9), GGCATCGTCGCGGGAGGCTGCTGGAGCG (SEQ ID NO:10), Date recue/Date received 2023-05-26 GGCATCGTCGCGGGAGGCTG (SEQ ID NO:11), TCGTCGCGGGAGGCTGCTGG
(SEQ ID NO:12), CCGCCCGCTCGCTCCCTCTG (SEQ ID NO:13), and GTTCTCCTCCTCGTCGCAGT (SEQ ID NO:14).
14. The oligonucleotide of claim 8, wherein contacting the oligonucleotide with a proliferating cell decreases relative c-myc protein expression in the cell by at least about 50% in comparison to cells that have not been contacted with the oligonucleotide.
15. The oligonucleotide of claim 8, wherein contacting any of the oligonucleotides disclosed herein with a population of proliferating cells decreases the relative cell growth rate of the population of cells by greater than 50% in comparison to cells that have not been contacted with the oligonucleotide.
16. A pharmaceutical composition comprising one or more oligonucleotides of claim 8.
17. The pharmaceutical composition of claim 16, further comprising a pharmaceutically acceptable carrier.
18. Use of one or more of the oligonucleotides of claim 1 for treatment or prevention of a cell proliferative disorder in an individual in need thereof, wherein the use of the one or more of the oligonucleotides relieves at least one symptom of the cell proliferative disorder.
19. The use of claim 18, wherein the cell proliferative disorder is cancer.
20. The use of claim 19, wherein the cancer is liver cancer or a cancer resulting from B-cell proliferation.
21. The use of claim 18, wherein the individual is human
22. A kit comprising one or more of the oligonucleoti des of claim 1.
Date recue/Date received 2023-05-26
Date recue/Date received 2023-05-26
Applications Claiming Priority (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201261719348P | 2012-10-26 | 2012-10-26 | |
| US61/719,348 | 2012-10-26 | ||
| US201361784910P | 2013-03-14 | 2013-03-14 | |
| US13/829,594 | 2013-03-14 | ||
| US13/829,594 US9228189B2 (en) | 2012-10-26 | 2013-03-14 | C-myc antisense oligonucleotides and methods for using the same to treat cell-proliferative disorders |
| US61/784,910 | 2013-03-14 | ||
| CA2887702A CA2887702C (en) | 2012-10-26 | 2013-10-25 | C-myc antisense oligonucleotides and methods for using the same to treat cell-proliferative disorders |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA2887702A Division CA2887702C (en) | 2012-10-26 | 2013-10-25 | C-myc antisense oligonucleotides and methods for using the same to treat cell-proliferative disorders |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CA3201145A1 true CA3201145A1 (en) | 2014-05-01 |
Family
ID=53002976
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA2887702A Active CA2887702C (en) | 2012-10-26 | 2013-10-25 | C-myc antisense oligonucleotides and methods for using the same to treat cell-proliferative disorders |
| CA3201145A Pending CA3201145A1 (en) | 2012-10-26 | 2013-10-25 | C-myc antisense oligonucleotides and methods for using the same to treat cell-proliferative disorders |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA2887702A Active CA2887702C (en) | 2012-10-26 | 2013-10-25 | C-myc antisense oligonucleotides and methods for using the same to treat cell-proliferative disorders |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP2912179A4 (en) |
| CA (2) | CA2887702C (en) |
| HK (1) | HK1214293A1 (en) |
| WO (1) | WO2014066851A1 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020124043A1 (en) * | 2018-12-13 | 2020-06-18 | Gordon Erlinda M | Methods of exploiting oncogenic drivers along the human cyclin g1 pathway for cancer gene therapy |
| WO2025015335A1 (en) * | 2023-07-13 | 2025-01-16 | Korro Bio, Inc. | Rna-editing oligonucleotides and uses thereof |
Family Cites Families (55)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3687808A (en) | 1969-08-14 | 1972-08-29 | Univ Leland Stanford Junior | Synthetic polynucleotides |
| US5550111A (en) | 1984-07-11 | 1996-08-27 | Temple University-Of The Commonwealth System Of Higher Education | Dual action 2',5'-oligoadenylate antiviral derivatives and uses thereof |
| US5264423A (en) | 1987-03-25 | 1993-11-23 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibitors for replication of retroviruses and for the expression of oncogene products |
| US5276019A (en) | 1987-03-25 | 1994-01-04 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibitors for replication of retroviruses and for the expression of oncogene products |
| JP2828642B2 (en) | 1987-06-24 | 1998-11-25 | ハワード フローレイ インスティテュト オブ イクスペリメンタル フィジオロジー アンド メディシン | Nucleoside derivative |
| US4924624A (en) | 1987-10-22 | 1990-05-15 | Temple University-Of The Commonwealth System Of Higher Education | 2,',5'-phosphorothioate oligoadenylates and plant antiviral uses thereof |
| US5188897A (en) | 1987-10-22 | 1993-02-23 | Temple University Of The Commonwealth System Of Higher Education | Encapsulated 2',5'-phosphorothioate oligoadenylates |
| WO1989009221A1 (en) | 1988-03-25 | 1989-10-05 | University Of Virginia Alumni Patents Foundation | Oligonucleotide n-alkylphosphoramidates |
| US5278302A (en) | 1988-05-26 | 1994-01-11 | University Patents, Inc. | Polynucleotide phosphorodithioates |
| US5194599A (en) | 1988-09-23 | 1993-03-16 | Gilead Sciences, Inc. | Hydrogen phosphonodithioate compositions |
| US5591722A (en) | 1989-09-15 | 1997-01-07 | Southern Research Institute | 2'-deoxy-4'-thioribonucleosides and their antiviral activity |
| US5399676A (en) | 1989-10-23 | 1995-03-21 | Gilead Sciences | Oligonucleotides with inverted polarity |
| US5721218A (en) | 1989-10-23 | 1998-02-24 | Gilead Sciences, Inc. | Oligonucleotides with inverted polarity |
| US5177198A (en) | 1989-11-30 | 1993-01-05 | University Of N.C. At Chapel Hill | Process for preparing oligoribonucleoside and oligodeoxyribonucleoside boranophosphates |
| US5459255A (en) | 1990-01-11 | 1995-10-17 | Isis Pharmaceuticals, Inc. | N-2 substituted purines |
| US5587470A (en) | 1990-01-11 | 1996-12-24 | Isis Pharmaceuticals, Inc. | 3-deazapurines |
| US5681941A (en) | 1990-01-11 | 1997-10-28 | Isis Pharmaceuticals, Inc. | Substituted purines and oligonucleotide cross-linking |
| US5670633A (en) | 1990-01-11 | 1997-09-23 | Isis Pharmaceuticals, Inc. | Sugar modified oligonucleotides that detect and modulate gene expression |
| US5587361A (en) | 1991-10-15 | 1996-12-24 | Isis Pharmaceuticals, Inc. | Oligonucleotides having phosphorothioate linkages of high chiral purity |
| US5646265A (en) | 1990-01-11 | 1997-07-08 | Isis Pharmceuticals, Inc. | Process for the preparation of 2'-O-alkyl purine phosphoramidites |
| US5321131A (en) | 1990-03-08 | 1994-06-14 | Hybridon, Inc. | Site-specific functionalization of oligodeoxynucleotides for non-radioactive labelling |
| GB9009980D0 (en) | 1990-05-03 | 1990-06-27 | Amersham Int Plc | Phosphoramidite derivatives,their preparation and the use thereof in the incorporation of reporter groups on synthetic oligonucleotides |
| DK0455905T3 (en) | 1990-05-11 | 1998-12-07 | Microprobe Corp | Dipsticks for nucleic acid hybridization assays and method for covalent immobilization of oligonucleotides |
| JPH0874B2 (en) | 1990-07-27 | 1996-01-10 | アイシス・ファーマシューティカルス・インコーポレーテッド | Nuclease-resistant, pyrimidine-modified oligonucleotides that detect and modulate gene expression |
| US5177196A (en) | 1990-08-16 | 1993-01-05 | Microprobe Corporation | Oligo (α-arabinofuranosyl nucleotides) and α-arabinofuranosyl precursors thereof |
| US5672697A (en) | 1991-02-08 | 1997-09-30 | Gilead Sciences, Inc. | Nucleoside 5'-methylene phosphonates |
| US5571799A (en) | 1991-08-12 | 1996-11-05 | Basco, Ltd. | (2'-5') oligoadenylate analogues useful as inhibitors of host-v5.-graft response |
| US5594121A (en) | 1991-11-07 | 1997-01-14 | Gilead Sciences, Inc. | Enhanced triple-helix and double-helix formation with oligomers containing modified purines |
| DE637965T1 (en) | 1991-11-26 | 1995-12-14 | Gilead Sciences Inc | INCREASED FORMATION OF TRIPLE AND DOUBLE HELICOS FROM OLIGOMERS WITH MODIFIED PYRIMIDINES. |
| TW393513B (en) | 1991-11-26 | 2000-06-11 | Isis Pharmaceuticals Inc | Enhanced triple-helix and double-helix formation with oligomers containing modified pyrimidines |
| FR2687679B1 (en) | 1992-02-05 | 1994-10-28 | Centre Nat Rech Scient | OLIGOTHIONUCLEOTIDES. |
| EP0577558A2 (en) | 1992-07-01 | 1994-01-05 | Ciba-Geigy Ag | Carbocyclic nucleosides having bicyclic rings, oligonucleotides therefrom, process for their preparation, their use and intermediates |
| US5476925A (en) | 1993-02-01 | 1995-12-19 | Northwestern University | Oligodeoxyribonucleotides including 3'-aminonucleoside-phosphoramidate linkages and terminal 3'-amino groups |
| GB9304618D0 (en) | 1993-03-06 | 1993-04-21 | Ciba Geigy Ag | Chemical compounds |
| ES2107205T3 (en) | 1993-03-30 | 1997-11-16 | Sanofi Sa | ANALOGS OF ACICLIC NUCLEOSIDES AND OLIGONUCLEOTIDE SEQUENCES THAT CONTAIN THEM. |
| DE4311944A1 (en) | 1993-04-10 | 1994-10-13 | Degussa | Coated sodium percarbonate particles, process for their preparation and detergent, cleaning and bleaching compositions containing them |
| US5502177A (en) | 1993-09-17 | 1996-03-26 | Gilead Sciences, Inc. | Pyrimidine derivatives for labeled binding partners |
| US5519134A (en) | 1994-01-11 | 1996-05-21 | Isis Pharmaceuticals, Inc. | Pyrrolidine-containing monomers and oligomers |
| WO1995025814A1 (en) * | 1994-03-18 | 1995-09-28 | Lynx Therapeutics, Inc. | Oligonucleotide n3'→p5' phosphoramidates: synthesis and compounds; hybridization and nuclease resistance properties |
| US5599922A (en) | 1994-03-18 | 1997-02-04 | Lynx Therapeutics, Inc. | Oligonucleotide N3'-P5' phosphoramidates: hybridization and nuclease resistance properties |
| US5596091A (en) | 1994-03-18 | 1997-01-21 | The Regents Of The University Of California | Antisense oligonucleotides comprising 5-aminoalkyl pyrimidine nucleotides |
| US5627053A (en) | 1994-03-29 | 1997-05-06 | Ribozyme Pharmaceuticals, Inc. | 2'deoxy-2'-alkylnucleotide containing nucleic acid |
| US5625050A (en) | 1994-03-31 | 1997-04-29 | Amgen Inc. | Modified oligonucleotides and intermediates useful in nucleic acid therapeutics |
| US5525711A (en) | 1994-05-18 | 1996-06-11 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Pteridine nucleotide analogs as fluorescent DNA probes |
| US5597909A (en) | 1994-08-25 | 1997-01-28 | Chiron Corporation | Polynucleotide reagents containing modified deoxyribose moieties, and associated methods of synthesis and use |
| US5792747A (en) | 1995-01-24 | 1998-08-11 | The Administrators Of The Tulane Educational Fund | Highly potent agonists of growth hormone releasing hormone |
| US5684143A (en) | 1996-02-21 | 1997-11-04 | Lynx Therapeutics, Inc. | Oligo-2'-fluoronucleotide N3'->P5' phosphoramidates |
| US5859233A (en) | 1996-02-21 | 1999-01-12 | Lynx Therapeutics, Inc. | Synthons for synthesis of oligonucleotide N3-P5 phosphoramidates |
| AU2542097A (en) | 1996-03-26 | 1997-10-17 | Lynx Therapeutics, Inc. | Oligonucleotide treatments and compositions for human melanoma |
| US6867294B1 (en) | 1998-07-14 | 2005-03-15 | Isis Pharmaceuticals, Inc. | Gapped oligomers having site specific chiral phosphorothioate internucleoside linkages |
| MXPA02002577A (en) * | 1999-09-10 | 2003-10-14 | Geron Corp | OLIGONUCLEOTIDE N3 rarr;P5 THIOPHOSPHORAMIDATES: THEIR SYNTHESIS AND USE. |
| AU5752601A (en) * | 2000-05-04 | 2001-11-12 | Avi Biopharma Inc | Splice-region antisense composition and method |
| AU2004271215B2 (en) * | 2003-09-09 | 2009-07-16 | Geron Corporation | Modified oligonucleotides for telomerase inhibition |
| US8785409B2 (en) * | 2007-01-30 | 2014-07-22 | Geron Corporation | Compounds having anti-adhesive effects on cancer cells |
| NZ600725A (en) * | 2009-12-18 | 2015-08-28 | Univ British Colombia | Methods and compositions for delivery of nucleic acids |
-
2013
- 2013-10-25 CA CA2887702A patent/CA2887702C/en active Active
- 2013-10-25 CA CA3201145A patent/CA3201145A1/en active Pending
- 2013-10-25 HK HK16102007.9A patent/HK1214293A1/en unknown
- 2013-10-25 EP EP13849097.4A patent/EP2912179A4/en active Pending
- 2013-10-25 WO PCT/US2013/066960 patent/WO2014066851A1/en not_active Ceased
Also Published As
| Publication number | Publication date |
|---|---|
| EP2912179A1 (en) | 2015-09-02 |
| WO2014066851A1 (en) | 2014-05-01 |
| CA2887702A1 (en) | 2014-05-01 |
| EP2912179A4 (en) | 2016-10-12 |
| HK1214293A1 (en) | 2016-07-22 |
| CA2887702C (en) | 2023-08-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| ES2856844T3 (en) | Combined antitumor immunotherapy | |
| WO2020205473A1 (en) | Compositions and methods for the treatment of kras associated diseases or disorders | |
| JP6949859B2 (en) | Treatment of cancer by systemic administration of DBAIT molecules | |
| US9771581B2 (en) | C-myc antisense oligonucleotides and methods for using the same to treat cell-proliferative disorders | |
| EA023793B1 (en) | Cancer treatment by combining dna molecules mimicking double strand breaks with hyperthermia | |
| US11813280B2 (en) | Reducing beta-catenin and IDO expression to potentiate immunotherapy | |
| JP2022031642A (en) | Antisense oligonucleotides | |
| US7273932B1 (en) | Antisense oligonucleotides for fertility and menstrual cycle regulation and for chemopreventive and chemotherapeutic use | |
| CA2887702C (en) | C-myc antisense oligonucleotides and methods for using the same to treat cell-proliferative disorders | |
| TW202214857A (en) | New conjugated nucleic acid molecules and their uses | |
| CN113395971A (en) | Modulators of YAP1 expression | |
| CN112996568A (en) | microRNA compounds and methods for modulating MIR-10B activity | |
| US20210238603A1 (en) | Beta catenin nucleic acid inhibitor molecule | |
| TW202210633A (en) | A dbait molecule in combination with kras inhibitor for the treatment of cancer | |
| JP7295804B2 (en) | Reducing beta-catenin expression to enhance immunotherapy | |
| US20170183650A1 (en) | Pharmaceutical compositions comprising rna and use for treating cancer | |
| WO2019086626A1 (en) | MIRNAs AND COMBINATIONS THEREOF FOR USE IN THE TREATMENT OF HUMAN B CELL NEOPLASIAS | |
| JP2004528851A (en) | Epidermal growth factor receptor antisense oligonucleotides | |
| US20200330606A1 (en) | Modulation of structural maintenance of chromosome-1 expression |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| EEER | Examination request |
Effective date: 20230526 |
|
| EEER | Examination request |
Effective date: 20230526 |
|
| EEER | Examination request |
Effective date: 20230526 |
|
| EEER | Examination request |
Effective date: 20230526 |
|
| EEER | Examination request |
Effective date: 20230526 |
|
| EEER | Examination request |
Effective date: 20230526 |