CA3129003A1 - Method and system for characterizing undebarked wooden logs and computing optimal debarking parameters in real time - Google Patents
Method and system for characterizing undebarked wooden logs and computing optimal debarking parameters in real time Download PDFInfo
- Publication number
- CA3129003A1 CA3129003A1 CA3129003A CA3129003A CA3129003A1 CA 3129003 A1 CA3129003 A1 CA 3129003A1 CA 3129003 A CA3129003 A CA 3129003A CA 3129003 A CA3129003 A CA 3129003A CA 3129003 A1 CA3129003 A1 CA 3129003A1
- Authority
- CA
- Canada
- Prior art keywords
- log
- undebarked
- debarker
- deep learning
- logs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27L—REMOVING BARK OR VESTIGES OF BRANCHES; SPLITTING WOOD; MANUFACTURE OF VENEER, WOODEN STICKS, WOOD SHAVINGS, WOOD FIBRES OR WOOD POWDER
- B27L1/00—Debarking or removing vestiges of branches from trees or logs; Machines therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/46—Wood
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/217—Validation; Performance evaluation; Active pattern learning techniques
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/40—Software arrangements specially adapted for pattern recognition, e.g. user interfaces or toolboxes therefor
- G06F18/41—Interactive pattern learning with a human teacher
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Computing Systems (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Mathematical Physics (AREA)
- Forests & Forestry (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- Medical Informatics (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Multimedia (AREA)
- Human Computer Interaction (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Databases & Information Systems (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Image Analysis (AREA)
Abstract
A method for characterizing undebarked wooden logs and computing optimal debarking parameters in real time is provided. The method comprises a scanning device upstream of a debarker for providing data, usually in the form of images, to a deep learning algorithm model. The model may be trained with human assistance or not to detect and identify, with an acceptable amount of certainty, characteristics of undebarked logs. The characteristics are used in an optimization software and classified in an index table. The index table is used to determine optimized parameters for debarking the log.
Description
Title of the Invention Method and system for characterizing undebarked wooden logs and computing optimal debarking parameters in real time Cross-Reference to Related Applications [0001] The present patent application claims the benefits of priority of commonly assigned United States Provisional Patent Application no. 63/070,887, entitled "METHOD FOR CHARACTERIZING UNBARKED WOODEN LOGS AND
COMPUTING OPTIMAL DEBARKING PARAMETERS IN REAL TIME" and filed at the United States Patent and Trademark Office on August 27, 2020.
Field of the Invention
COMPUTING OPTIMAL DEBARKING PARAMETERS IN REAL TIME" and filed at the United States Patent and Trademark Office on August 27, 2020.
Field of the Invention
[0002] The present invention generally relates to the field of characterising an undebarked wooden log by deep learning AT models, upstream from a debarking device in order to adjust, in real time, said device and obtain an optimal debarking.
Adjusting the debarking device entails finding the optimal inline and rotational speed as well as cutting tools pressure applied on a given log. An optimal debarking process will minimize fiber loss and residual bark on logs.
Background of the Invention
Adjusting the debarking device entails finding the optimal inline and rotational speed as well as cutting tools pressure applied on a given log. An optimal debarking process will minimize fiber loss and residual bark on logs.
Background of the Invention
[0003] Debarking process is very important in industrial wood transformation.
Since bark is not a desired component in wood chips, it is preferably removed at the beginning of any log processing into lumber products. Moreover, the bark contains a lot of silica which deteriorates the saw blades quickly. The debarking process generally comprises removing a thin outer layer on the logs called bark (inner and outer), usually with a debarker, while being careful not to remove the healthy underlying wood fibres. Thus, the debarking efficiency influences the profitability of the mill. Removal of too much wood fibers as well as creation of external damages on logs ends up in lower volume yields and, consequently, financial lost. Furthermore, other industries like pulp and paper industries are using residual wood chips from sawmilling as raw material for their production. Any content in bark among the chips is then considered as a lost as it cannot be used or at least limited to a very small amount into paper pulp (1%-1.5% depending on the season). It is Date Recue/Date Received 2021-08-26 common practice for chip buyers to pay less or even reject material containing more than a certain amount of bark.
Since bark is not a desired component in wood chips, it is preferably removed at the beginning of any log processing into lumber products. Moreover, the bark contains a lot of silica which deteriorates the saw blades quickly. The debarking process generally comprises removing a thin outer layer on the logs called bark (inner and outer), usually with a debarker, while being careful not to remove the healthy underlying wood fibres. Thus, the debarking efficiency influences the profitability of the mill. Removal of too much wood fibers as well as creation of external damages on logs ends up in lower volume yields and, consequently, financial lost. Furthermore, other industries like pulp and paper industries are using residual wood chips from sawmilling as raw material for their production. Any content in bark among the chips is then considered as a lost as it cannot be used or at least limited to a very small amount into paper pulp (1%-1.5% depending on the season). It is Date Recue/Date Received 2021-08-26 common practice for chip buyers to pay less or even reject material containing more than a certain amount of bark.
[0004] Inventions such as those disclosed in US Patent no. 6,526,154 B1 are useful for determining debarking quality but are useless for adjusting the debarker in real time when the wood species or moisture content of incoming logs varies, for example.
[0005] Debarking process optimisation is a very complex task. It requires detailed knowledge of the incoming material and knowledge of the control of the debarking devices in order to decrease fiber loss and remaining bark quantity. Debarking parameters such as rotational speed and tools pressure are related to the intrinsic characteristics of the logs. Yet, there may be important variations in log characteristics depending on some environmental factors such as moisture content, species, temperature, etc.
These factors greatly influence the ease of debarking. Such factors contribute to complexify the optimisation of the debarking process. It is well known in the industry that sorting wooden logs upstream of the debarker comprises operational and financial benefits.
Manually sorting the logs by species, for example, may be done on the logging site as well as in the mill's lumber yard. However, such processes are demanding, costly and time consuming. These processes are especially pushed to their operational limits when log characterizing and debarking is required to be as fast as possible while simultaneously maintaining an acceptable debarking quality for operational and financial benefits and requirements.
These factors greatly influence the ease of debarking. Such factors contribute to complexify the optimisation of the debarking process. It is well known in the industry that sorting wooden logs upstream of the debarker comprises operational and financial benefits.
Manually sorting the logs by species, for example, may be done on the logging site as well as in the mill's lumber yard. However, such processes are demanding, costly and time consuming. These processes are especially pushed to their operational limits when log characterizing and debarking is required to be as fast as possible while simultaneously maintaining an acceptable debarking quality for operational and financial benefits and requirements.
[0006] The US Patent 9,588,098 B2 discloses an optical method for subdividing images into a plurality of small squares for which a plurality of texture statistics is calculated.
The US Patent 9,588,098 B2 calculates Local Binary Patterns (LBPs) and histogram and performs statistical analysis and classification based on LBPs and histogram.
The statistics are transformed into vectors which are then classified by a simple neural network, a support vector machine (SVM), a multivariate linear model, a static gain matrix, etc. The classification processing is carried out for the calculated vectors associated with all image regions, resulting in a set of probable species indications. Such classic texture methods are not as accurate as newer deep learning Al techniques. Larger .. crops used by Al are more prone to give a better identification with their more global Date Recue/Date Received 2021-08-26 views statistically speaking. Small local texture images of US Patent 9,588,098 B2 may not all contain special characteristics of a species for instance.
The US Patent 9,588,098 B2 calculates Local Binary Patterns (LBPs) and histogram and performs statistical analysis and classification based on LBPs and histogram.
The statistics are transformed into vectors which are then classified by a simple neural network, a support vector machine (SVM), a multivariate linear model, a static gain matrix, etc. The classification processing is carried out for the calculated vectors associated with all image regions, resulting in a set of probable species indications. Such classic texture methods are not as accurate as newer deep learning Al techniques. Larger .. crops used by Al are more prone to give a better identification with their more global Date Recue/Date Received 2021-08-26 views statistically speaking. Small local texture images of US Patent 9,588,098 B2 may not all contain special characteristics of a species for instance.
[0007] Some other techniques for wood species identification are known in the art. Such techniques typically involve chemical reaction on wood such as disclosed in US
Patent no. 6,072,890, microscopic inspections, UV radiation (US Patent no. 9,063,094 B2) or infra-red radiation (US Patent no. 5,406,378) to name a few. The latter being not possible due to bark presence on logs.
Patent no. 6,072,890, microscopic inspections, UV radiation (US Patent no. 9,063,094 B2) or infra-red radiation (US Patent no. 5,406,378) to name a few. The latter being not possible due to bark presence on logs.
[0008] Another apparatus and method shown in US Patent no. 8,215,347 B2 comprises a mechanical surface scraper used to determine optimal operating parameters of the debarker. The disclosed apparatus, operating in a harsh environment such as debarker infeed conveyor, is hard to implement, having a reliability and ruggedness issues.
[0009] To sum up, the prior art methods are either far from being applicable in real time or too complicated to implement in a real production environment of unbarked wooden logs.
[0010] Traditionally, human judgement was the only way to adjust the settings of debarkers. A system such as the one disclosed in the US Patent no. 10,099,400 B2 titled "Method and System for Detecting the Quality of Debarking at the surface of a Wooden Log" discloses measuring the efficiency of debarking downstream of the debarker. Such systems provide data of the process and use such data to adjust said debarker accordingly either by human intervention or automated process. As such system is located downstream of the debarker, the system presents hints on what should have been performed during the debarking process. In the last years, some feedback systems have been deployed to help the sawmillers in the debarking process. The main drawback of the prior art feedback systems, however, is that they cannot predict sudden unexpected changes in the incoming undebarked logs. The results of such systems are only adequate for steady lines of production having a low variation in log characteristics.
Any change in the parameters applied to the debarker as a result of a drop in debarking quality is not guaranteed to be optimal for upcoming logs with significantly different characteristics.
Any change in the parameters applied to the debarker as a result of a drop in debarking quality is not guaranteed to be optimal for upcoming logs with significantly different characteristics.
[0011] Thus, there is a need for a method for characterized undebarked wooden logs and for computing optimal debarking parameters in real time.
Date Recue/Date Received 2021-08-26 Summary of the Invention
Date Recue/Date Received 2021-08-26 Summary of the Invention
[0012] The shortcomings of the prior art can be mitigated by providing an efficient log characterization method upstream from the debarking system that may allow automatic adjustment of the debarker.
[0013] Provided may be the computer-implemented method for characterizing an undebarked log in real time, the method comprising the steps of measuring attributes of the undebarked log; identifying characteristics of the undebarked log based on measured attributes of the undebarked log using a trained deep learning model;
computing operating parameters of a debarker based on the identified characteristics;
and sending the computed operating parameters to the debarker. The measurement of the attributes of the undebarked log may be using a scanning device. The measurement of the attributes of the undebarked log may be using one or more sensors.
computing operating parameters of a debarker based on the identified characteristics;
and sending the computed operating parameters to the debarker. The measurement of the attributes of the undebarked log may be using a scanning device. The measurement of the attributes of the undebarked log may be using one or more sensors.
[0014] In another aspect of the invention, the identification of the characteristics of the log further may comprise one or a combination of any of the following steps, identifying the species of the log; measuring the moisture level of the log; and calculating an intensity of knot presence on the log. The computation of operating parameters may further comprise retrieving operating parameters associated with the identified characteristics. The operating parameters may be indexed in a table having operating parameters associated with one or more log characteristics. The indexation of the log operating parameters may consider the intensity level of the one or more log characteristics.
[0015] In another aspect of the invention, the trained deep learning model may be trained comprising the steps of selecting a representative sample of a plurality of logs having identifiable characteristics; scanning the plurality of logs to obtain scan data of the logs;
identifying with a deep learning algorithm software of the deep learning model the identifiable characteristics of the logs based on the scan data; analysing the identified characteristics of the logs to output an identification score; and considering the deep learning model trained if the identification score is different from a predetermined value.
The deep learning model may be automatically trained by using the measured attributes of the undebarked log for the analysis of the identified characteristics of the logs to output Date Recue/Date Received 2021-08-26 the identification score. The deep learning model may be manually trained with training data and human validations for the analysis of the identified characteristics of the logs to output an identification score. The measured attributes of the undebarked log may further be comprising external data to the undebarked log.
identifying with a deep learning algorithm software of the deep learning model the identifiable characteristics of the logs based on the scan data; analysing the identified characteristics of the logs to output an identification score; and considering the deep learning model trained if the identification score is different from a predetermined value.
The deep learning model may be automatically trained by using the measured attributes of the undebarked log for the analysis of the identified characteristics of the logs to output Date Recue/Date Received 2021-08-26 the identification score. The deep learning model may be manually trained with training data and human validations for the analysis of the identified characteristics of the logs to output an identification score. The measured attributes of the undebarked log may further be comprising external data to the undebarked log.
[0016] Another embodiment provided may be a system for characterizing an undebarked log in real time, the system comprising a log measurement device for identifying attributes of the undebarked log; a characterizing unit in communication with the log measurement device, the characterizing unit comprising a deep learning model;
and a computerized device configured to identify characteristics of the undebarked log based on measured attributes of the undebarked log using the deep learning model; a debarker optimizer in communication with the characterizing unit, the debarker optimizer being configured to compute operating parameters of a debarker based the characteristics identified by the characterizing unit; and a debarker controller in communication with the debarker optimizer and the debarker, the debarker controller being configured to control .. the debarker using the computed operating parameters from the debarker optimizer.
and a computerized device configured to identify characteristics of the undebarked log based on measured attributes of the undebarked log using the deep learning model; a debarker optimizer in communication with the characterizing unit, the debarker optimizer being configured to compute operating parameters of a debarker based the characteristics identified by the characterizing unit; and a debarker controller in communication with the debarker optimizer and the debarker, the debarker controller being configured to control .. the debarker using the computed operating parameters from the debarker optimizer.
[0017] In another aspect of the invention, the deep learning model may be trainable. The deep learning model may be automatically trainable with the measured attributes of the undebarked log. The deep learning model may be manually trainable with sample logs having identifiable characteristics and with human intervention. The characteristics identified by the characterizing unit may be indexed in a table comprising operating parameters associated with one or more identifiable log characteristics. The characterizing unit may take into account the intensity levels of the identified log characteristics when indexing the characteristics in the table. The system may further comprise one or more lighting device for illuminating the undebarked log when identified by the log measurement device. The system may further comprise external sensors identifying attributes external to the undebarked log, the attributes external to the undebarked log being used by the debarker optimizer. The log measurement device may be any one or a combination of a line scanner, an area scan camera or an infrared camera.
[0018] Other and further aspects and advantages of the present invention will be obvious upon an understanding of the illustrative embodiments about to be described or will be Date Recue/Date Received 2021-08-26 indicated in the appended claims, and various advantages not referred to herein will occur to one skilled in the art upon employment of the invention in practice.
Brief Description of the Drawings
Brief Description of the Drawings
[0019] The above and other aspects, features and advantages of the invention will become more readily apparent from the following description, reference being made to the accompanying drawings in which:
[0020] FIG. 1 is an elevation side view of an embodiment of a system for characterizing barked wooden logs and computing optimal debarking parameters in real time in accordance with the principles of the present invention.
[0021] FIG. 2 is an elevation front view of the system of FIG. 1.
[0022] FIG. 3 is a schematic view of an embodiment of a data processing flow for characterizing barked wooden logs and computing optimal debarking parameters in real time in accordance with the principles of the present invention.
[0023] FIG. 4 is a schematic representation of an embodiment of a learning process for a given model for characterizing wooden logs having bark and computing optimal debarking parameters in real time in accordance with the principles of the present invention.
Detailed Description of the Preferred Embodiment
Detailed Description of the Preferred Embodiment
[0024] A novel system and method for characterizing undebarked wooden logs and computing optimal debarking parameters in real time will be described hereinafter.
Although the invention is described in terms of specific illustrative embodiments, it is to be understood that the embodiments described herein are by way of example only and that the scope of the invention is not intended to be limited thereby. The term undebarked is used to describe a log that comprises bark and that has not been debarked yet.
Accordingly, the term unbarked is used to describe a log comprising no bark that has been debarked.
Although the invention is described in terms of specific illustrative embodiments, it is to be understood that the embodiments described herein are by way of example only and that the scope of the invention is not intended to be limited thereby. The term undebarked is used to describe a log that comprises bark and that has not been debarked yet.
Accordingly, the term unbarked is used to describe a log comprising no bark that has been debarked.
[0025] Referring to FIG. 1, an exemplary embodiment of a system for characterizing wooden logs having bark 10 is shown. A wooden log having bark 1 is conveyed, typically using a conveyor 2, towards direction 3, generally referred as the Y axis. The system 10 Date Recue/Date Received 2021-08-26 comprises an encoder 4 that determines coordinates and/or position of the conveyor belt 2. The system further comprises a data acquisition unit 5, typically embodied as a computerized device 5. The data acquisition unit 5 may comprise a transient memory unit, a central processing unit (CPU), a storage unit and a network unit. The encoder 4 is in direct communication with the data acquisition unit 5 to communicate the determined coordinates and/or position of the conveyor belt 2.
[0026] The conveyor 2 may be any type of conveyor known in the art. The conveyor 2 may comprise a flat surface, a curved surface as shown at FIG. 2, or a supporting surface made of chains, a rubber surface, etc.
[0027] The system 10 may further comprise one or more lighting devices 6. The lighting device may be configured to illuminate a region/area 7 of the surface of the log with bark 1. The system further comprises a scanning device 8. The light from the lighting device is reflected on the outer surface of the log 1 and captured by the scanning device 8. The reflected light may reach the scanning device 8 through a field of view 9 of the scanning device 8. Accordingly, the illuminated region 7 of the log 1 may be scanned by the scanning device 8 and the scanned information is communicated to the data acquisition unit 5. Understandably, any type of scanning device 8 may be used for scanning the undebarked log 1 and may be for example a line scan, an area scan camera or an infrared camera.
[0028] The scanned data may be color and/or grayscale images of partial or complete external surface of the undebarked wooden log 1. The scanning device 8 is typically positioned to capture/scan the log 1 while moving towards a debarker or bark removing unit, not shown. The captured images are transmitted to the data acquisition unit 5 through a network or through a wire. The data acquisition unit 5 is programmed to perform a real-time analysis of the received image data. To determine characteristics of the undebarked logs 1, such as species, type, quality, freshness (moisture level), sap level, quantity of knots, and so on, the data acquisition unit 5 may be programmed to execute one or more deep learning models algorithms using the collected data from the scans as input.
Date Recue/Date Received 2021-08-26
Date Recue/Date Received 2021-08-26
[0029] The system 10 may further comprise a parameter index or table. Such table generally comprises specific operating parameters of the debarker associated with a range of characteristics of the log. The operating parameters of the debarker may comprise, but are not limited to, conveying speed, rotational speed, level of pressure to be applied by .. the tools on the outer surface of the undebarked log, tool aperture size, etc. The measured characteristics of the undebarked logs 1 may comprise, but are not limited to, surface temperature of the log 1, species of the wood, humidity level and special features, such as knots, kink or protuberances, presence/absence of moisture or of blue stain, diameter or shape of the log. As will be discussed in more details, the characteristics of the log 1 may .. be measured or calculated using different means, not shown, such as capturing color images using a sensor or camera or using different sensors measuring the said characteristics of the log 1.
[0030] Referring now to FIG. 2, a front view of the system 10 of FIG. 1 is shown. As shown, the round end of the log 1 rests on the conveyor 2. The conveyor 2 is moving the log 1 towards the Y axis 3 (as illustrated in FIG. 1). At least one lighting device 6, embodied as a light diffuser, is positioned above the conveyed log 1. The field of light 11 created by the lighting device 6 is delimited on each side of the conveyed log 1. The scanning device 8 captures one or more images of the conveyed log 1 through the field of view 9 of the said scanning device 8. Understandably, both the lighting device and the .. scanning device 8 may be positioned over, on the side or under the undebarked log 1, as long as the scanning device 8 has a field of view of the log 1.
[0031] In other embodiments, the system 10 may further comprise a plurality of lighting devices 6. In such embodiments, the lighting devices 6 may be positioned or disposed anywhere radially around the undebarked log 1. Each field of light 11 of their respective lighting device 6 are combined to partially or completely illuminate the undebarked log 1, at least to cover the scanned field of view 9.
[0032] Referring now to FIG. 3, an embodiment of a system to control operations of a debarker 100 is illustrated. The system 100 is configured to receive data from the one or more scanning devices 8 or sensors, not shown, such as images of the surface of the undebarked logs 1. The system 100 generally comprises a deep learning model Date Recue/Date Received 2021-08-26 application software 110, also referred to as deep learning, artificial intelligence or AT
model, a debarking optimization software 140, log characterizing module 115 and a debarking control software 160.
model, a debarking optimization software 140, log characterizing module 115 and a debarking control software 160.
[0033] The log scanning and deep learning model application software 110 is programmed to identify the characteristics of the conveyed log 1. The log scanning and deep learning model application software 110 is in data communication with the scanning device and sensors, such as camera, humidity sensors, infra-red sensors, etc.
The sensing devices 8 and 120 may feed data to the log scanning application software 110 which determines the characteristics of the log 1. The log scanning and deep learning model application software 110 may be manually trained with training data and human interactions validating the assumptions of the software 110. In other embodiments, the deep learning model application software 110 may be configured to automatically train with real-time data using additional sensors validating the assumptions of the software 110. The deep learning model application software 110 uses the trained deep learning model to identify, characteristics of the log, such as be not limited to species 112 and moisture level 114. In some embodiments, the system 110 further comprises other external sensors 120 adapted to measures or identify other characteristics 122 such as log temperature, diameter, etc. The external sensors 120 may measure characteristics which are external to the log, such as weather, humidity level, temperature or characteristics which are particular to the log 1, such as moisture level of the log 1. For example, the external sensors 120 may be weather sensors providing data about atmospheric conditions. In some embodiments, the system 10 may be connected with third party systems through a network, such as the Internet. In such embodiments, external data such a historical temperature or weather data associated with the logs or the environment where the log 1 growth may be used to identify characteristics of the log 1.
The sensing devices 8 and 120 may feed data to the log scanning application software 110 which determines the characteristics of the log 1. The log scanning and deep learning model application software 110 may be manually trained with training data and human interactions validating the assumptions of the software 110. In other embodiments, the deep learning model application software 110 may be configured to automatically train with real-time data using additional sensors validating the assumptions of the software 110. The deep learning model application software 110 uses the trained deep learning model to identify, characteristics of the log, such as be not limited to species 112 and moisture level 114. In some embodiments, the system 110 further comprises other external sensors 120 adapted to measures or identify other characteristics 122 such as log temperature, diameter, etc. The external sensors 120 may measure characteristics which are external to the log, such as weather, humidity level, temperature or characteristics which are particular to the log 1, such as moisture level of the log 1. For example, the external sensors 120 may be weather sensors providing data about atmospheric conditions. In some embodiments, the system 10 may be connected with third party systems through a network, such as the Internet. In such embodiments, external data such a historical temperature or weather data associated with the logs or the environment where the log 1 growth may be used to identify characteristics of the log 1.
[0034] The outputted or identified characteristics 130 of the log 1 are inputted in the optimization software 140. The optimization software 140 is programmed to compute optimal debarking parameters 150 based on the characteristics of the log 1 identified by the log scanning software 110. The optimal debarking parameters 150 are inputted in the debarker control software 160. The debarker control software 160 is connected or in communication with the debarker (not shown) and controls the operations of a debarker.
Date Recue/Date Received 2021-08-26
Date Recue/Date Received 2021-08-26
[0035] In some embodiments, the optimization software 140 has access or comprises a table of debarking parameters, not shown, associated with characteristics of the log or with ranges of values of the characteristics of the log. As discussed above, the control parameters may comprise debarker rotation speed, conveying speed, tools pressure, tool aperture size, etc. The optimization software 140 may be configured to fetch the operating parameter of the debarker associated with one or more values of the characteristics of the logs. In some embodiments, combination of intensity levels of identified characteristics may require different optimized debarking parameters 150. As an example, a log having a high moisture level and a high number of knots by square inch may be associated with a reduced speed of rotation of the tools compared to a log having a low moisture level and a low number of knots by square inch which may require an increased speed or rotation of the tools. The optimization software 140 may thus, in real time, adjust the debarking parameters 150 in view of the received characteristics 130 of the log to be debarked. The optimal debarking parameters 150 may be any parameter of a debarking apparatus known in the art, such as pressure of the tools, rotational speed, said rotational speed possibly varying lengthwise of the log, advancing speed of the log, pressure on the rollers, etc.
[0036] Now referring to FIG. 4, an embodiment of a method 200 for building a deep learning model for a given characteristic is shown. The method generally comprises selecting and gathering wooden logs according to characteristics of the log, such as but not limited to identified species and moisture level 210, scanning selected logs to capture images of the outer surface of the log, either partially or completely 220, classifying the captured images according to characteristics of the log, such as species or moisture levels 230 and communicating the captured images to the deep learning training unit 240. The method 200 further comprise testing the performance of the trained model 250.
If the performances are equal or above a predetermined level, the model is created for the tested characteristics 260. If the performances are under the predetermined level, the method 200 is executed another time with different parameters, at least until the predetermined levels are achieved.
If the performances are equal or above a predetermined level, the model is created for the tested characteristics 260. If the performances are under the predetermined level, the method 200 is executed another time with different parameters, at least until the predetermined levels are achieved.
[0037] The selection of wooden logs 210 generally comprise picking a representative sample of a plurality of logs of having similar and/or different characteristics to be Date Recue/Date Received 2021-08-26 identified. As an example, and as shown in FIG. 4, logs may be selected according to the species and moisture levels of logs. Thus, logs of the sample may be grouped into categories regarding the parameters of debarking based on the species or moisture levels of the selected logs. For example, a first group of logs may comprise fir logs and a second group having pine and spruce logs. When an appreciable or representative number of logs has been gathered, the logs may be scanned by a scanning system 220.
[0038] The deep learning algorithm may be configured to learn with or without human assistance 230. In embodiments without human intervention, the deep learning algorithm may learn by itself with repetition and may detect characteristics or combination of characteristics that could possibly be unnoticed by human operators. This embodiment may both provide unexpectedly good or bad results and mostly depends on the quality of the model used.
[0039] In embodiments using human intervention, intervention by at least an operator may be used to classify and tag the data, usually in the form of images, of the scanned logs from the sample according to the chosen characteristic. The deep learning algorithm may therefore comprise a frame of reference to selected desired characteristics. For example, an operator may apply paint on certain logs having certain characteristics and may verify if the identified logs are correctly characterised by the algorithm. The amount of human intervention may vary based on the quality and/or capacity of the model and may be reduced over time. It may further be possible to set up the intervention of a human only when outlying or abnormal data is received.
[0040] The classified and scanned images are sent to a deep learning processing software unit 240 proceeding with the learning and which may thus output an identification score on the characteristics of the sample data 250. If the score is satisfying, the model may be considered ready and used for determined log characteristics in production 260.
Otherwise, if the score is not satisfying, the operator may provide or reassess already established learning parameters of the deep learning processing software and/or gather more samples and start the process.
Otherwise, if the score is not satisfying, the operator may provide or reassess already established learning parameters of the deep learning processing software and/or gather more samples and start the process.
[0041] Various algorithms may be used to determine if a score is satisfying or not. For example, the score may be required to be above a certain level to be satisfying. It may be Date Recue/Date Received 2021-08-26 noted that any type of deep learning algorithm may be used with the method of the present invention and is not limited to one type only. In an embodiment of the invention, more than one model of deep learning algorithms may be used. The model to be used may be determined based on the received data from the scanning device. For example, a model may be preferable for certain log characteristics wherein it may not be preferable for other log characteristics wherein another model may be preferable.
[0042] While illustrative and presently preferred embodiments of the invention have been described in detail hereinabove, it is to be understood that the inventive concepts may be otherwise variously embodied and employed and that the appended claims are intended to be construed to include such variations except insofar as limited by the prior art.
Date Recue/Date Received 2021-08-26
Date Recue/Date Received 2021-08-26
Claims (20)
1) A computer-implemented method for characterizing an undebarked log in real time, the method comprising:
measuring attributes of the undebarked log;
identifying characteristics of the undebarked log based on measured attributes of the undebarked log using a trained deep learning model;
computing operating parameters of a debarker based on the identified characteri stics; and sending the computed operating parameters to the debarker.
measuring attributes of the undebarked log;
identifying characteristics of the undebarked log based on measured attributes of the undebarked log using a trained deep learning model;
computing operating parameters of a debarker based on the identified characteri stics; and sending the computed operating parameters to the debarker.
2) The method of claim 1, the measurement of the attributes of the undebarked log using a scanning device.
3) The method of claim 1 or 2, the measurement of the attributes of the undebarked log using one or more sensors.
4) The method of any one of claims 1 to 3, the identification of the characteristics of the log further comprising one or a combination of any of the followings:
identifying the species of the log;
measuring the moisture level of the log; and calculating an intensity of knot presence on the log.
identifying the species of the log;
measuring the moisture level of the log; and calculating an intensity of knot presence on the log.
5) The method of any one of claims 1 to 4, the computation of operating parameters further comprising retrieving operating parameters associated with the identified characteri stics.
6) The method of claim 5, the operating parameters being indexed in a table having operating parameters associated with one or more log characteristics.
7) The method of claim 6, the indexation of the log operating parameters taking into account the intensity level of the one or more log characteristics.
8) The method of any one of claims 1 to 7, the trained deep learning model being trained comprising the steps of:
Date Recue/Date Received 2021-08-26 selecting a representative sample of a plurality of logs having identifiable characteristics;
scanning the plurality of logs to obtain scan data of the logs;
identifying with a deep learning algorithm software of the deep learning model the identifiable characteristics of the logs based on the scan data;
analysing the identified characteristics of the logs to output an identification score; and considering the deep learning model trained if the identification score is different from a predetermined value.
Date Recue/Date Received 2021-08-26 selecting a representative sample of a plurality of logs having identifiable characteristics;
scanning the plurality of logs to obtain scan data of the logs;
identifying with a deep learning algorithm software of the deep learning model the identifiable characteristics of the logs based on the scan data;
analysing the identified characteristics of the logs to output an identification score; and considering the deep learning model trained if the identification score is different from a predetermined value.
9) The method of claim 8, the deep learning model being automatically trained by using the measured attributes of the undebarked log for the analysis of the identified characteristics of the logs to output the identification score.
10) The method of any one of claims 1 to 7, the deep learning model being manually trained with training data and human validations for the analysis of the identified characteristics of the logs to output an identification score.
11) The method of any one of claims 1 to 10, the measured attributes of the undebarked log further comprising external data to the undebarked log.
12) A system for characterizing an undebarked log in real time, the system comprising:
a log measurement device for identifying attributes of the undebarked log;
a characterizing unit in communication with the log measurement device, the characterizing unit comprising:
a deep learning model; and a computerized device configured to identify characteristics of the undebarked log based on measured attributes of the undebarked log using the deep learning model;
Date Recue/Date Received 2021-08-26 a debarker optimizer in communication with the characterizing unit, the debarker optimizer being configured to compute operating parameters of a debarker based the characteristics identified by the characterizing unit; and a debarker controller in communication with the debarker optimizer and the debarker, the debarker controller being configured to control the debarker using the computed operating parameters from the debarker optimizer.
a log measurement device for identifying attributes of the undebarked log;
a characterizing unit in communication with the log measurement device, the characterizing unit comprising:
a deep learning model; and a computerized device configured to identify characteristics of the undebarked log based on measured attributes of the undebarked log using the deep learning model;
Date Recue/Date Received 2021-08-26 a debarker optimizer in communication with the characterizing unit, the debarker optimizer being configured to compute operating parameters of a debarker based the characteristics identified by the characterizing unit; and a debarker controller in communication with the debarker optimizer and the debarker, the debarker controller being configured to control the debarker using the computed operating parameters from the debarker optimizer.
13) The system of claim 12, the deep learning model being trainable.
14) The system of claim 13, the deep learning model being automatically trainable with the measured attributes of the undebarked log.
15) The system of claim 13, the deep learning model being manually trainable with sample logs having identifiable characteristics and with human intervention.
16) The system of any one of claims 12 to 15, the characteristics identified by the characterizing unit being indexed in a table comprising operating parameters associated with one or more identifiable log characteristics.
17) The method of claim 16, the characterizing unit taking into account the intensity levels of the identified log characteristics when indexing the characteristics in the table.
18) The system of any one of claims 12 to 17, the system further comprising one or more lighting device for illuminating the undebarked log when identified by the log measurement device.
19) The system of any one of claims 12 to 18, the system further comprising external sensors identifying attributes external to the undebarked log, the attributes external to the undebarked log being used by the debarker optimizer.
20) The system of any one of claims 12 to 19, the log measurement device being any one or a combination of a line scanner, an area scan camera or an infrared camera.
Date Recue/Date Received 2021-08-26
Date Recue/Date Received 2021-08-26
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US202063070887P | 2020-08-27 | 2020-08-27 | |
| US63/070,887 | 2020-08-27 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CA3129003A1 true CA3129003A1 (en) | 2022-02-27 |
Family
ID=80356665
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA3129003A Pending CA3129003A1 (en) | 2020-08-27 | 2021-08-26 | Method and system for characterizing undebarked wooden logs and computing optimal debarking parameters in real time |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US12163947B2 (en) |
| CA (1) | CA3129003A1 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11861877B2 (en) * | 2020-03-09 | 2024-01-02 | Bid Group Technologies Ltd | System and method for identifying a machine tool having processed a wood piece |
| IT202100021143A1 (en) * | 2021-08-04 | 2023-02-04 | Microtec Srl | Method and device for determining an angular orientation of a trunk |
| CN115971576A (en) * | 2022-12-06 | 2023-04-18 | 云南国钛金属股份有限公司 | Precise peeling process and device for titanium sponge lead |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SE466420B (en) | 1989-11-14 | 1992-02-10 | Svenska Traeforskningsinst | PROCEDURE AND DEVICE FOR THE DETECTION OF BARK AND DETERMINATION OF BARKING RATE BY WOOD OR TIP |
| FI101327B1 (en) | 1996-09-19 | 1998-05-29 | Valtion Teknillinen | ON-line method for determining the wood-bark ratio from the mass flow |
| FI102521B2 (en) | 1997-05-19 | 2004-05-25 | Andritz Patentverwaltung | Method and apparatus for reducing wood losses in a barking process |
| US6072890A (en) | 1998-05-06 | 2000-06-06 | Forintek Canada Corp. | Automatic lumber sorting |
| US7431060B2 (en) * | 2003-10-02 | 2008-10-07 | The Price Companies, Inc. | Automatic fiber yield system and method |
| CA2545787C (en) | 2005-05-05 | 2009-07-14 | Centre De Recherche Industrielle Du Quebec | System and method of monitoring the quality of cutting |
| ITVR20070018A1 (en) | 2007-02-02 | 2008-08-03 | Microtec Srl | PROCEDURE FOR CHECKING THE QUALITY OF TRUNKS |
| WO2010037206A1 (en) | 2008-10-03 | 2010-04-08 | Fpinnovations | Apparatus and methods for controlled debarking of wood |
| AT508503B1 (en) | 2009-08-06 | 2011-07-15 | Stora Enso Wood Products Gmbh | PROCESS FOR DETECTING BLUE IN WOOD |
| NZ609625A (en) | 2010-09-24 | 2015-04-24 | Usnr Kockums Cancar Co | Automated wood species identification |
| CA2780202C (en) * | 2012-06-19 | 2014-11-18 | Centre De Recherche Industrielle Du Quebec | Method and system for detecting the quality of debarking at the surface of a wooden log |
| US9588098B2 (en) | 2015-03-18 | 2017-03-07 | Centre De Recherche Industrielle Du Quebec | Optical method and apparatus for identifying wood species of a raw wooden log |
| WO2018169712A1 (en) * | 2017-03-13 | 2018-09-20 | Lucidyne Technologies, Inc. | Method of board lumber grading using deep learning techniques |
| US10830754B2 (en) * | 2018-09-19 | 2020-11-10 | Osmose Utilities Services, Inc. | Automated profiling of the condition of wood |
-
2021
- 2021-08-26 CA CA3129003A patent/CA3129003A1/en active Pending
- 2021-08-26 US US17/445,974 patent/US12163947B2/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| US12163947B2 (en) | 2024-12-10 |
| US20220065841A1 (en) | 2022-03-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12163947B2 (en) | Method and system for characterizing undebarked wooden logs and computing optimal debarking parameters in real time | |
| AU606015B2 (en) | Lumber optimizer | |
| US7426422B2 (en) | Wood tracking by identification of surface characteristics | |
| US10099400B2 (en) | Method and system for detecting the quality of debarking at the surface of a wooden log | |
| US20140056482A1 (en) | Method, sensor unit and machine for detecting "sugar top" defects in potatoes | |
| US6756789B1 (en) | Method for imaging logs or stems and apparatus | |
| US9033008B2 (en) | Method for optimizing lumber derived from a log | |
| Longo et al. | Validation of a CT knot detection algorithm on fresh Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) logs | |
| Wells et al. | Defect detection performance of automated hardwood lumber grading system | |
| Sandak et al. | Development of a sensorized timber processor head prototype–part 1: sensors description and hardware integration | |
| Kline et al. | Performance of color camera machine vision in automated furniture rough mill systems | |
| US6493076B1 (en) | Method and arrangement for measuring wood | |
| Sepúlveda et al. | Predicting spiral grain by computed tomography of Norway spruce | |
| EP4137283B1 (en) | A method and a system for processing raw wood layers | |
| US11861877B2 (en) | System and method for identifying a machine tool having processed a wood piece | |
| Lycken | Comparison between automatic and manual quality grading of sawn softwood | |
| Mori et al. | Total Soluble Solids, pH, and Titratable Acidity Prediction in Wine Grape Bunch from Veraison to Harvest using Hyperspectral Imaging | |
| Magaznieks et al. | Bark Abrasion Evaluation on Birch (Betula Spp.) Round Timber by Using Machine Learning Algorithm | |
| Lee et al. | Using an embedded-processor camera for surface scanning of unplaned hardwood lumber | |
| RU2786242C1 (en) | Timber processing method and felling machine for its implementation | |
| US12406354B2 (en) | Method for identifying a log of origin of a first board | |
| Kline et al. | Automatic edging and trimming of hardwood lumber | |
| Ding et al. | MPC based ring deberking process optimization | |
| Regalado | Optimization of edging and trimming operations for red oak lumber | |
| Möller et al. | A field-tested log traceability system |