CA3146737A1 - Pharmaceutical formulations containing gaboxadol for therapeutic treatment - Google Patents
Pharmaceutical formulations containing gaboxadol for therapeutic treatment Download PDFInfo
- Publication number
- CA3146737A1 CA3146737A1 CA3146737A CA3146737A CA3146737A1 CA 3146737 A1 CA3146737 A1 CA 3146737A1 CA 3146737 A CA3146737 A CA 3146737A CA 3146737 A CA3146737 A CA 3146737A CA 3146737 A1 CA3146737 A1 CA 3146737A1
- Authority
- CA
- Canada
- Prior art keywords
- gaboxadol
- pharmaceutically acceptable
- acceptable salt
- drug
- pharmaceutical formulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- ZXRVKCBLGJOCEE-UHFFFAOYSA-N Gaboxadol Chemical compound C1NCCC2=C1ONC2=O ZXRVKCBLGJOCEE-UHFFFAOYSA-N 0.000 title claims abstract description 171
- 229950004346 gaboxadol Drugs 0.000 title claims abstract description 170
- 239000008194 pharmaceutical composition Substances 0.000 title claims abstract description 113
- 238000011282 treatment Methods 0.000 title description 24
- 230000001225 therapeutic effect Effects 0.000 title description 11
- 150000003839 salts Chemical class 0.000 claims abstract description 113
- 239000002552 dosage form Substances 0.000 claims abstract description 65
- 238000000034 method Methods 0.000 claims abstract description 49
- 239000000203 mixture Substances 0.000 claims abstract description 48
- 201000006517 essential tremor Diseases 0.000 claims abstract description 42
- 238000009472 formulation Methods 0.000 claims abstract description 39
- 201000004311 Gilles de la Tourette syndrome Diseases 0.000 claims abstract description 32
- 208000000323 Tourette Syndrome Diseases 0.000 claims abstract description 32
- 208000016620 Tourette disease Diseases 0.000 claims abstract description 32
- 208000001914 Fragile X syndrome Diseases 0.000 claims abstract description 31
- 238000013265 extended release Methods 0.000 claims abstract description 23
- 239000002775 capsule Substances 0.000 claims description 26
- 230000002459 sustained effect Effects 0.000 claims description 21
- 239000006191 orally-disintegrating tablet Substances 0.000 claims description 15
- 230000003111 delayed effect Effects 0.000 abstract description 41
- 230000000541 pulsatile effect Effects 0.000 abstract description 11
- 239000003814 drug Substances 0.000 description 137
- 229940079593 drug Drugs 0.000 description 136
- 239000010410 layer Substances 0.000 description 40
- 239000000463 material Substances 0.000 description 30
- 208000024891 symptom Diseases 0.000 description 30
- 239000003826 tablet Substances 0.000 description 30
- 239000000853 adhesive Substances 0.000 description 28
- 230000001070 adhesive effect Effects 0.000 description 24
- 206010044565 Tremor Diseases 0.000 description 23
- 239000012528 membrane Substances 0.000 description 23
- 210000004379 membrane Anatomy 0.000 description 23
- 239000003961 penetration enhancing agent Substances 0.000 description 23
- 210000003491 skin Anatomy 0.000 description 23
- 235000021251 pulses Nutrition 0.000 description 20
- 230000009471 action Effects 0.000 description 19
- 238000000576 coating method Methods 0.000 description 17
- 229910052805 deuterium Inorganic materials 0.000 description 15
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 14
- 239000011324 bead Substances 0.000 description 14
- -1 e.g. Polymers 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 239000005038 ethylene vinyl acetate Substances 0.000 description 13
- 239000012729 immediate-release (IR) formulation Substances 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 12
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 12
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 11
- 230000006872 improvement Effects 0.000 description 11
- 238000001727 in vivo Methods 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 230000001276 controlling effect Effects 0.000 description 10
- 201000010099 disease Diseases 0.000 description 10
- 239000003623 enhancer Substances 0.000 description 10
- 230000033001 locomotion Effects 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 239000007909 solid dosage form Substances 0.000 description 10
- 229920000728 polyester Polymers 0.000 description 9
- 230000032258 transport Effects 0.000 description 9
- 239000012530 fluid Substances 0.000 description 8
- 239000003349 gelling agent Substances 0.000 description 8
- 210000000214 mouth Anatomy 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- UDHPXYNRXFPDOF-UHFFFAOYSA-N 4,5,6,7-tetrahydro-[1,2]oxazolo[5,4-c]pyridin-6-ium-3-olate;hydrate Chemical compound O.C1NCCC2=C1ON=C2O UDHPXYNRXFPDOF-UHFFFAOYSA-N 0.000 description 7
- 239000004821 Contact adhesive Substances 0.000 description 7
- 239000012790 adhesive layer Substances 0.000 description 7
- 238000012377 drug delivery Methods 0.000 description 7
- 239000008187 granular material Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000011068 loading method Methods 0.000 description 7
- 229920000058 polyacrylate Polymers 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 6
- 230000004907 flux Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 6
- 210000001035 gastrointestinal tract Anatomy 0.000 description 6
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 6
- 239000000902 placebo Substances 0.000 description 6
- 229940068196 placebo Drugs 0.000 description 6
- 210000003296 saliva Anatomy 0.000 description 6
- 230000037317 transdermal delivery Effects 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 210000004556 brain Anatomy 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 229920000591 gum Polymers 0.000 description 5
- 230000035515 penetration Effects 0.000 description 5
- 239000000546 pharmaceutical excipient Substances 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 230000002035 prolonged effect Effects 0.000 description 5
- 210000000434 stratum corneum Anatomy 0.000 description 5
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 4
- NZJXADCEESMBPW-UHFFFAOYSA-N 1-methylsulfinyldecane Chemical compound CCCCCCCCCCS(C)=O NZJXADCEESMBPW-UHFFFAOYSA-N 0.000 description 4
- ZDZDSZQYRBZPNN-UHFFFAOYSA-N 4,5,6,7-tetrahydro-[1,2]oxazolo[5,4-c]pyridin-6-ium-3-olate;hydrochloride Chemical compound Cl.C1NCCC2=C1ONC2=O ZDZDSZQYRBZPNN-UHFFFAOYSA-N 0.000 description 4
- 206010003805 Autism Diseases 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 230000006399 behavior Effects 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000010579 first pass effect Methods 0.000 description 4
- 235000003599 food sweetener Nutrition 0.000 description 4
- 230000002496 gastric effect Effects 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 239000003456 ion exchange resin Substances 0.000 description 4
- 229920003303 ion-exchange polymer Polymers 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000003765 sweetening agent Substances 0.000 description 4
- 230000008961 swelling Effects 0.000 description 4
- 208000020706 Autistic disease Diseases 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 102000027484 GABAA receptors Human genes 0.000 description 3
- 108091008681 GABAA receptors Proteins 0.000 description 3
- 206010064950 Head titubation Diseases 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 229930195725 Mannitol Natural products 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000007950 delayed release tablet Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000002702 enteric coating Substances 0.000 description 3
- 238000009505 enteric coating Methods 0.000 description 3
- 230000003371 gabaergic effect Effects 0.000 description 3
- 210000003128 head Anatomy 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 3
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 235000019359 magnesium stearate Nutrition 0.000 description 3
- 239000000594 mannitol Substances 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 210000003800 pharynx Anatomy 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229960002393 primidone Drugs 0.000 description 3
- DQMZLTXERSFNPB-UHFFFAOYSA-N primidone Chemical compound C=1C=CC=CC=1C1(CC)C(=O)NCNC1=O DQMZLTXERSFNPB-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 210000002784 stomach Anatomy 0.000 description 3
- 238000013268 sustained release Methods 0.000 description 3
- 239000012730 sustained-release form Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- WBZFUFAFFUEMEI-UHFFFAOYSA-M Acesulfame k Chemical compound [K+].CC1=CC(=O)[N-]S(=O)(=O)O1 WBZFUFAFFUEMEI-UHFFFAOYSA-M 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- WSVLPVUVIUVCRA-KPKNDVKVSA-N Alpha-lactose monohydrate Chemical compound O.O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O WSVLPVUVIUVCRA-KPKNDVKVSA-N 0.000 description 2
- 108010011485 Aspartame Proteins 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 108091006146 Channels Proteins 0.000 description 2
- 206010010964 Coprolalia Diseases 0.000 description 2
- 229920002785 Croscarmellose sodium Polymers 0.000 description 2
- 102000005915 GABA Receptors Human genes 0.000 description 2
- 108010005551 GABA Receptors Proteins 0.000 description 2
- 206010017577 Gait disturbance Diseases 0.000 description 2
- 206010061991 Grimacing Diseases 0.000 description 2
- 206010018762 Grunting Diseases 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical class Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- 208000004044 Hypesthesia Diseases 0.000 description 2
- 244000246386 Mentha pulegium Species 0.000 description 2
- 235000016257 Mentha pulegium Nutrition 0.000 description 2
- 235000004357 Mentha x piperita Nutrition 0.000 description 2
- 102000016193 Metabotropic glutamate receptors Human genes 0.000 description 2
- 108010010914 Metabotropic glutamate receptors Proteins 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- ILRKKHJEINIICQ-OOFFSTKBSA-N Monoammonium glycyrrhizinate Chemical compound N.O([C@@H]1[C@@H](O)[C@H](O)[C@H](O[C@@H]1O[C@H]1CC[C@]2(C)[C@H]3C(=O)C=C4[C@@H]5C[C@](C)(CC[C@@]5(CC[C@@]4(C)[C@]3(C)CC[C@H]2C1(C)C)C)C(O)=O)C(O)=O)[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O ILRKKHJEINIICQ-OOFFSTKBSA-N 0.000 description 2
- 229920000715 Mucilage Polymers 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 208000008234 Tics Diseases 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 235000010358 acesulfame potassium Nutrition 0.000 description 2
- 229960004998 acesulfame potassium Drugs 0.000 description 2
- 239000000619 acesulfame-K Substances 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000000605 aspartame Substances 0.000 description 2
- 229960003438 aspartame Drugs 0.000 description 2
- 235000010357 aspartame Nutrition 0.000 description 2
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000004397 blinking Effects 0.000 description 2
- 230000007177 brain activity Effects 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 235000010418 carrageenan Nutrition 0.000 description 2
- 229920001525 carrageenan Polymers 0.000 description 2
- 239000000679 carrageenan Substances 0.000 description 2
- 229940113118 carrageenan Drugs 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 210000001638 cerebellum Anatomy 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- 239000007931 coated granule Substances 0.000 description 2
- 230000019771 cognition Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 229960001681 croscarmellose sodium Drugs 0.000 description 2
- 229960000913 crospovidone Drugs 0.000 description 2
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 239000007884 disintegrant Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 2
- 208000002161 echolalia Diseases 0.000 description 2
- 230000002500 effect on skin Effects 0.000 description 2
- 238000000537 electroencephalography Methods 0.000 description 2
- 230000001815 facial effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000007903 gelatin capsule Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 235000001050 hortel pimenta Nutrition 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 210000000936 intestine Anatomy 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229960001021 lactose monohydrate Drugs 0.000 description 2
- 229940070765 laurate Drugs 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000002582 magnetoencephalography Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002483 medication Methods 0.000 description 2
- 239000012907 medicinal substance Substances 0.000 description 2
- 229920001179 medium density polyethylene Polymers 0.000 description 2
- 239000004701 medium-density polyethylene Substances 0.000 description 2
- 239000011140 metalized polyester Substances 0.000 description 2
- 239000011325 microbead Substances 0.000 description 2
- 239000012982 microporous membrane Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000004682 monohydrates Chemical class 0.000 description 2
- 210000004400 mucous membrane Anatomy 0.000 description 2
- 239000002353 niosome Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- 230000003285 pharmacodynamic effect Effects 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 150000004804 polysaccharides Chemical class 0.000 description 2
- 229920000053 polysorbate 80 Polymers 0.000 description 2
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 2
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 239000000018 receptor agonist Substances 0.000 description 2
- 229940044601 receptor agonist Drugs 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 230000001020 rhythmical effect Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000009747 swallowing Effects 0.000 description 2
- 230000000946 synaptic effect Effects 0.000 description 2
- 239000006211 transdermal dosage form Substances 0.000 description 2
- 239000000341 volatile oil Substances 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- QXQAPNSHUJORMC-UHFFFAOYSA-N 1-chloro-4-propylbenzene Chemical compound CCCC1=CC=C(Cl)C=C1 QXQAPNSHUJORMC-UHFFFAOYSA-N 0.000 description 1
- AXTGDCSMTYGJND-UHFFFAOYSA-N 1-dodecylazepan-2-one Chemical compound CCCCCCCCCCCCN1CCCCCC1=O AXTGDCSMTYGJND-UHFFFAOYSA-N 0.000 description 1
- CJPDBKNETSCHCH-UHFFFAOYSA-N 1-methylsulfinyldodecane Chemical compound CCCCCCCCCCCCS(C)=O CJPDBKNETSCHCH-UHFFFAOYSA-N 0.000 description 1
- GMRPSARGIUWARV-UHFFFAOYSA-N 1-methylsulfinylnonane Chemical compound CCCCCCCCCS(C)=O GMRPSARGIUWARV-UHFFFAOYSA-N 0.000 description 1
- PVVATGNFHKTPTA-UHFFFAOYSA-N 1-methylsulfinyloctane Chemical compound CCCCCCCCS(C)=O PVVATGNFHKTPTA-UHFFFAOYSA-N 0.000 description 1
- RTRMEPPVPFBYMG-UHFFFAOYSA-N 1-methylsulfinylundecane Chemical compound CCCCCCCCCCCS(C)=O RTRMEPPVPFBYMG-UHFFFAOYSA-N 0.000 description 1
- 239000000263 2,3-dihydroxypropyl (Z)-octadec-9-enoate Substances 0.000 description 1
- HCYFGRCYSCXKNQ-UHFFFAOYSA-N 2-(1,3-dimethyl-2,6-dioxo-7-purinyl)acetic acid Chemical compound O=C1N(C)C(=O)N(C)C2=C1N(CC(O)=O)C=N2 HCYFGRCYSCXKNQ-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- DPZHKLJPVMYFCU-UHFFFAOYSA-N 2-(5-bromopyridin-2-yl)acetonitrile Chemical compound BrC1=CC=C(CC#N)N=C1 DPZHKLJPVMYFCU-UHFFFAOYSA-N 0.000 description 1
- OZDAOHVKBFBBMZ-UHFFFAOYSA-N 2-aminopentanedioic acid;hydrate Chemical compound O.OC(=O)C(N)CCC(O)=O OZDAOHVKBFBBMZ-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- RZRNAYUHWVFMIP-GDCKJWNLSA-N 3-oleoyl-sn-glycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-GDCKJWNLSA-N 0.000 description 1
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 1
- PXRKCOCTEMYUEG-UHFFFAOYSA-N 5-aminoisoindole-1,3-dione Chemical compound NC1=CC=C2C(=O)NC(=O)C2=C1 PXRKCOCTEMYUEG-UHFFFAOYSA-N 0.000 description 1
- SKTFQHRVFFOHTQ-UHFFFAOYSA-N 8-bromo-1,3-dimethyl-7h-purine-2,6-dione Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC(Br)=N2 SKTFQHRVFFOHTQ-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 208000000044 Amnesia Diseases 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N Aspartic acid Chemical compound OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 206010003591 Ataxia Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 206010006100 Bradykinesia Diseases 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 244000298643 Cassia fistula Species 0.000 description 1
- 235000007631 Cassia fistula Nutrition 0.000 description 1
- PTHCMJGKKRQCBF-UHFFFAOYSA-N Cellulose, microcrystalline Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC)C(CO)O1 PTHCMJGKKRQCBF-UHFFFAOYSA-N 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- GJSURZIOUXUGAL-UHFFFAOYSA-N Clonidine Chemical compound ClC1=CC=CC(Cl)=C1NC1=NCCN1 GJSURZIOUXUGAL-UHFFFAOYSA-N 0.000 description 1
- 206010010904 Convulsion Diseases 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 206010011878 Deafness Diseases 0.000 description 1
- 206010013642 Drooling Diseases 0.000 description 1
- 206010013654 Drug abuse Diseases 0.000 description 1
- 208000012661 Dyskinesia Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 229920003134 Eudragit® polymer Polymers 0.000 description 1
- 208000001640 Fibromyalgia Diseases 0.000 description 1
- PLDUPXSUYLZYBN-UHFFFAOYSA-N Fluphenazine Chemical compound C1CN(CCO)CCN1CCCN1C2=CC(C(F)(F)F)=CC=C2SC2=CC=CC=C21 PLDUPXSUYLZYBN-UHFFFAOYSA-N 0.000 description 1
- 102000007338 Fragile X Mental Retardation Protein Human genes 0.000 description 1
- 108010032606 Fragile X Mental Retardation Protein Proteins 0.000 description 1
- 102000004300 GABA-A Receptors Human genes 0.000 description 1
- 108090000839 GABA-A Receptors Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 241000206671 Gelidium amansii Species 0.000 description 1
- 229920002148 Gellan gum Polymers 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- INJOMKTZOLKMBF-UHFFFAOYSA-N Guanfacine Chemical compound NC(=N)NC(=O)CC1=C(Cl)C=CC=C1Cl INJOMKTZOLKMBF-UHFFFAOYSA-N 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229920000569 Gum karaya Polymers 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 206010020852 Hypertonia Diseases 0.000 description 1
- 208000006083 Hypokinesia Diseases 0.000 description 1
- 206010021118 Hypotonia Diseases 0.000 description 1
- 201000006347 Intellectual Disability Diseases 0.000 description 1
- 206010022520 Intention tremor Diseases 0.000 description 1
- 208000015592 Involuntary movements Diseases 0.000 description 1
- 206010022998 Irritability Diseases 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- 150000000994 L-ascorbates Chemical class 0.000 description 1
- 244000211187 Lepidium sativum Species 0.000 description 1
- 235000007849 Lepidium sativum Nutrition 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- 240000007228 Mangifera indica Species 0.000 description 1
- 235000014826 Mangifera indica Nutrition 0.000 description 1
- 208000036626 Mental retardation Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 101100381510 Mus musculus Bcl10 gene Proteins 0.000 description 1
- 240000008790 Musa x paradisiaca Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 208000007379 Muscle Hypotonia Diseases 0.000 description 1
- 208000002740 Muscle Rigidity Diseases 0.000 description 1
- 208000008238 Muscle Spasticity Diseases 0.000 description 1
- 208000010428 Muscle Weakness Diseases 0.000 description 1
- 206010028372 Muscular weakness Diseases 0.000 description 1
- MMOXZBCLCQITDF-UHFFFAOYSA-N N,N-diethyl-m-toluamide Chemical compound CCN(CC)C(=O)C1=CC=CC(C)=C1 MMOXZBCLCQITDF-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000029726 Neurodevelopmental disease Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 206010034912 Phobia Diseases 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 206010037180 Psychiatric symptoms Diseases 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 206010071390 Resting tremor Diseases 0.000 description 1
- 241000206572 Rhodophyta Species 0.000 description 1
- FTALBRSUTCGOEG-UHFFFAOYSA-N Riluzole Chemical compound C1=C(OC(F)(F)F)C=C2SC(N)=NC2=C1 FTALBRSUTCGOEG-UHFFFAOYSA-N 0.000 description 1
- 208000008630 Sialorrhea Diseases 0.000 description 1
- 208000013738 Sleep Initiation and Maintenance disease Diseases 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 206010043118 Tardive Dyskinesia Diseases 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical compound [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 208000003443 Unconsciousness Diseases 0.000 description 1
- 208000012886 Vertigo Diseases 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229950003769 acefylline Drugs 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000008484 agonism Effects 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000001961 anticonvulsive agent Substances 0.000 description 1
- 229940030600 antihypertensive agent Drugs 0.000 description 1
- 239000002220 antihypertensive agent Substances 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 239000002249 anxiolytic agent Substances 0.000 description 1
- 230000000949 anxiolytic effect Effects 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 239000003693 atypical antipsychotic agent Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 239000002876 beta blocker Substances 0.000 description 1
- 229940097320 beta blocking agent Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000022371 chronic pain syndrome Diseases 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229960002896 clonidine Drugs 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 230000007278 cognition impairment Effects 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229960001673 diethyltoluamide Drugs 0.000 description 1
- FSBVERYRVPGNGG-UHFFFAOYSA-N dimagnesium dioxido-bis[[oxido(oxo)silyl]oxy]silane hydrate Chemical compound O.[Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O FSBVERYRVPGNGG-UHFFFAOYSA-N 0.000 description 1
- 229940105988 dimethyl lauramine Drugs 0.000 description 1
- 238000007907 direct compression Methods 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012738 dissolution medium Substances 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 229940126534 drug product Drugs 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000008451 emotion Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- AFAXGSQYZLGZPG-UHFFFAOYSA-N ethanedisulfonic acid Chemical compound OS(=O)(=O)CCS(O)(=O)=O AFAXGSQYZLGZPG-UHFFFAOYSA-N 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 229960002690 fluphenazine Drugs 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 235000010492 gellan gum Nutrition 0.000 description 1
- 239000000216 gellan gum Substances 0.000 description 1
- 235000021474 generally recognized As safe (food) Nutrition 0.000 description 1
- 235000021473 generally recognized as safe (food ingredients) Nutrition 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 229960002048 guanfacine Drugs 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 229960003878 haloperidol Drugs 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000036074 healthy skin Effects 0.000 description 1
- 230000010370 hearing loss Effects 0.000 description 1
- 231100000888 hearing loss Toxicity 0.000 description 1
- 208000016354 hearing loss disease Diseases 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 210000001320 hippocampus Anatomy 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 208000034783 hypoesthesia Diseases 0.000 description 1
- 208000003532 hypothyroidism Diseases 0.000 description 1
- 230000002989 hypothyroidism Effects 0.000 description 1
- 210000003405 ileum Anatomy 0.000 description 1
- 230000005032 impulse control Effects 0.000 description 1
- KHLVKKOJDHCJMG-QDBORUFSSA-L indigo carmine Chemical compound [Na+].[Na+].N/1C2=CC=C(S([O-])(=O)=O)C=C2C(=O)C\1=C1/NC2=CC=C(S(=O)(=O)[O-])C=C2C1=O KHLVKKOJDHCJMG-QDBORUFSSA-L 0.000 description 1
- 239000004179 indigotine Substances 0.000 description 1
- 235000012738 indigotine Nutrition 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 206010022437 insomnia Diseases 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 235000010494 karaya gum Nutrition 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 1
- 229940069445 licorice extract Drugs 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 229940031703 low substituted hydroxypropyl cellulose Drugs 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 235000019793 magnesium trisilicate Nutrition 0.000 description 1
- 229940099273 magnesium trisilicate Drugs 0.000 description 1
- 229910000386 magnesium trisilicate Inorganic materials 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000007909 melt granulation Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003924 mental process Effects 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 230000004089 microcirculation Effects 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 206010027599 migraine Diseases 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- RZRNAYUHWVFMIP-UHFFFAOYSA-N monoelaidin Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-UHFFFAOYSA-N 0.000 description 1
- 230000037023 motor activity Effects 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000002200 mouth mucosa Anatomy 0.000 description 1
- 230000001921 mouthing effect Effects 0.000 description 1
- 230000017311 musculoskeletal movement, spinal reflex action Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 1
- YWFWDNVOPHGWMX-UHFFFAOYSA-N n,n-dimethyldodecan-1-amine Chemical compound CCCCCCCCCCCCN(C)C YWFWDNVOPHGWMX-UHFFFAOYSA-N 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000001123 neurodevelopmental effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 231100000862 numbness Toxicity 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000001584 occupational therapy Methods 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 208000035824 paresthesia Diseases 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 239000007967 peppermint flavor Substances 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 208000019899 phobic disease Diseases 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000000554 physical therapy Methods 0.000 description 1
- YVUQSNJEYSNKRX-UHFFFAOYSA-N pimozide Chemical compound C1=CC(F)=CC=C1C(C=1C=CC(F)=CC=1)CCCN1CCC(N2C(NC3=CC=CC=C32)=O)CC1 YVUQSNJEYSNKRX-UHFFFAOYSA-N 0.000 description 1
- 229960003634 pimozide Drugs 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000001242 postsynaptic effect Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 229960003712 propranolol Drugs 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 150000004040 pyrrolidinones Chemical class 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 229940121896 radiopharmaceutical Drugs 0.000 description 1
- 239000012217 radiopharmaceutical Substances 0.000 description 1
- 230000002799 radiopharmaceutical effect Effects 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229960004181 riluzole Drugs 0.000 description 1
- RAPZEAPATHNIPO-UHFFFAOYSA-N risperidone Chemical compound FC1=CC=C2C(C3CCN(CC3)CCC=3C(=O)N4CCCCC4=NC=3C)=NOC2=C1 RAPZEAPATHNIPO-UHFFFAOYSA-N 0.000 description 1
- 229960001534 risperidone Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000013464 silicone adhesive Substances 0.000 description 1
- 201000002859 sleep apnea Diseases 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 208000018198 spasticity Diseases 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000021 stimulant Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 208000011117 substance-related disease Diseases 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 210000001103 thalamus Anatomy 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- PBJUNZJWGZTSKL-MRXNPFEDSA-N tiagabine Chemical compound C1=CSC(C(=CCCN2C[C@@H](CCC2)C(O)=O)C2=C(C=CS2)C)=C1C PBJUNZJWGZTSKL-MRXNPFEDSA-N 0.000 description 1
- 229960001918 tiagabine Drugs 0.000 description 1
- 230000001256 tonic effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000440 toxicity profile Toxicity 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 231100000889 vertigo Toxicity 0.000 description 1
- PJDFLNIOAUIZSL-UHFFFAOYSA-N vigabatrin Chemical compound C=CC(N)CCC(O)=O PJDFLNIOAUIZSL-UHFFFAOYSA-N 0.000 description 1
- 229960005318 vigabatrin Drugs 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- MVWVFYHBGMAFLY-UHFFFAOYSA-N ziprasidone Chemical compound C1=CC=C2C(N3CCN(CC3)CCC3=CC=4CC(=O)NC=4C=C3Cl)=NSC2=C1 MVWVFYHBGMAFLY-UHFFFAOYSA-N 0.000 description 1
- 229960000607 ziprasidone Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
- A61K9/006—Oral mucosa, e.g. mucoadhesive forms, sublingual droplets; Buccal patches or films; Buccal sprays
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
- A61K31/437—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
- A61K9/0056—Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2013—Organic compounds, e.g. phospholipids, fats
- A61K9/2018—Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2022—Organic macromolecular compounds
- A61K9/2027—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/70—Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
- A61K9/7023—Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Physiology (AREA)
- Nutrition Science (AREA)
- Dermatology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Pharmaceutical formulations containing gaboxadol or a pharmaceutically acceptable salt thereof and methods of treating essential tremors, Tourette syndrome or Fragile X syndrome are provided. Pharmaceutical formulations herein include transdermal formulations and modified release dosage forms. In embodiments, a modified release dosage form includes an orally disintegrating dosage form. In embodiments, a modified release dosage form includes an extended release dosage form. In embodiments, a modified release dosage form includes a delayed release dosage form. In embodiments, a modified release dosage form includes a pulsatile release dosage form.
Description
PHARMACEUTICAL FORMULATIONS CONTAINING GABOXADOL
FOR THERAPEUTIC TREATMENT
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims benefit and priority to U.S. Provisional Application No. 62/874,152, filed July 15, 2019, which is incorporated herein by reference in its entirety.
TECHNICAL FIELD
FOR THERAPEUTIC TREATMENT
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims benefit and priority to U.S. Provisional Application No. 62/874,152, filed July 15, 2019, which is incorporated herein by reference in its entirety.
TECHNICAL FIELD
[0002] Pharmaceutical formulations containing gaboxadol or a pharmaceutically acceptable salt thereof are provided.
BACKGROUND
BACKGROUND
[0003] Gaboxadol (4,5,6,7-tetrahydroisoxazolo [5,4-c]pyridine-3-ol) (THIP)) is described in EP Patent No. 0000338 and in EP Patent No. 0840601, U.S. Patent Nos.
4,278,676, 4,362,731, 4,353,910, and WO 2005/094820. Gaboxadol is a selective GABAA
receptor agonist with a preference for 6-subunit containing GABAA receptors. Gaboxadol is an agonist of GABA receptors that contain a4, a6, and 6, subunits, which have more restricted anatomic distribution in the thalamus, hippocampus, and cerebellum and are mainly extrasynaptic in location. Gaboxadol has its greatest efficacy at a4,86 and a6,86 GABAA
receptors, that is, benzodiazepine-insensitive receptors that contribute to tonic inhibitory conductances rather than synaptic inhibitory postsynaptic currents. Accordingly, the mode of action and effects of gaboxadol are distinct from those of benzodiazepine receptor agonists.
Extrasynaptic GABA
receptors are sensitive to low concentrations of GABA, they desensitize slowly, and their activation can induce sustained neuronal effects. In conventional pharmaceutical formulations such as tablets and capsules, gaboxadol is rapidly absorbed, reaching peak concentration within 30 minutes, with a half-life of approximately 1.5 to 2 hours. Gaboxadol is a zwitterion with pKa values of 4.3 (acidic) and 8.3 (basic) and log P of 0.61. Gaboxadol is highly soluble, more than 30 mg/mL in the physiological pH range.
[0004] In the early 1980s gaboxadol was the subject of a series of pilot studies that tested its efficacy as an analgesic and anxiolytic, as well as a treatment for tardive dyskinesia, Huntington's disease, Alzheimer's disease, and spasticity. In the 1990s gaboxadol moved into late stage development for the treatment of insomnia. The development was discontinued after the compound failed to show significant effects in sleep onset and sleep maintenance in a three-month efficacy study. Additionally, patients with a history of drug abuse who received gaboxadol experienced a steep increase in psychiatric adverse events.
receptor agonist with a preference for 6-subunit containing GABAA receptors. Gaboxadol is an agonist of GABA receptors that contain a4, a6, and 6, subunits, which have more restricted anatomic distribution in the thalamus, hippocampus, and cerebellum and are mainly extrasynaptic in location. Gaboxadol has its greatest efficacy at a4,86 and a6,86 GABAA
receptors, that is, benzodiazepine-insensitive receptors that contribute to tonic inhibitory conductances rather than synaptic inhibitory postsynaptic currents. Accordingly, the mode of action and effects of gaboxadol are distinct from those of benzodiazepine receptor agonists.
Extrasynaptic GABA
receptors are sensitive to low concentrations of GABA, they desensitize slowly, and their activation can induce sustained neuronal effects. In conventional pharmaceutical formulations such as tablets and capsules, gaboxadol is rapidly absorbed, reaching peak concentration within 30 minutes, with a half-life of approximately 1.5 to 2 hours. Gaboxadol is a zwitterion with pKa values of 4.3 (acidic) and 8.3 (basic) and log P of 0.61. Gaboxadol is highly soluble, more than 30 mg/mL in the physiological pH range.
[0004] In the early 1980s gaboxadol was the subject of a series of pilot studies that tested its efficacy as an analgesic and anxiolytic, as well as a treatment for tardive dyskinesia, Huntington's disease, Alzheimer's disease, and spasticity. In the 1990s gaboxadol moved into late stage development for the treatment of insomnia. The development was discontinued after the compound failed to show significant effects in sleep onset and sleep maintenance in a three-month efficacy study. Additionally, patients with a history of drug abuse who received gaboxadol experienced a steep increase in psychiatric adverse events.
[0005] According to the National Institutes of Health, National Institute of Neurological Disorders and Stroke (https ://www.ninds ni h. gov/Di sorders/All-Di sorders/Ess enti al-Tremor-Information-Page), tremor is an unintentional, somewhat rhythmic, muscle movement involving to-and-fro movements (oscillations) of one or more parts of the body. Essential tremor (previously called benign essential tremor) is the most common form of abnormal tremor. Although it may be mild and nonprogressive in some people, in others the tremor is slowly progressive, starting on one side of the body but eventually affecting both sides. Hand tremor is most common but the head, arms, voice, tongue, legs, and trunk may also be involved. Hand tremor may cause problems with purposeful movements such as eating, writing, sewing, or shaving. Head tremor may be seen as a "yes-yes" or "no-no"
motion.
Essential tremor may be accompanied by mild gait disturbance. Heightened emotion, stress, fever, physical exhaustion, or low blood sugar may trigger tremors or increase their severity.
There may be mild degeneration in the certain parts of the cerebellum in persons with essential tremor. Onset is most common after age 40, although symptoms can appear at any age. Children of a parent who has essential tremor have up to a 50 percent chance of inheriting the condition. Essential tremor is not associated with any known pathology.
motion.
Essential tremor may be accompanied by mild gait disturbance. Heightened emotion, stress, fever, physical exhaustion, or low blood sugar may trigger tremors or increase their severity.
There may be mild degeneration in the certain parts of the cerebellum in persons with essential tremor. Onset is most common after age 40, although symptoms can appear at any age. Children of a parent who has essential tremor have up to a 50 percent chance of inheriting the condition. Essential tremor is not associated with any known pathology.
[0006] There is no definitive cure for essential tremor. Symptomatic drug therapy may include propranolol or other beta blockers and primidone, an anticonvulsant drug.
Eliminating tremor "triggers" such as caffeine and other stimulants from the diet is often recommended. Physical and occupational therapy may help to reduce tremor and improve coordination and muscle control for some individuals. Deep brain stimulation uses a surgically implanted, battery-operated medical device called a neurostimulator to deliver electrical stimulation to targeted areas of the brain that control movement, temporarily blocking the nerve signals that cause tremor. Other surgical intervention is effective but may have side effects. U.S. Patent Application Serial No. 16/356,517 describes use of gaboxadol to treat essential tremor. However, there remains a need for additional modalities for treatment of essential tremor.
Eliminating tremor "triggers" such as caffeine and other stimulants from the diet is often recommended. Physical and occupational therapy may help to reduce tremor and improve coordination and muscle control for some individuals. Deep brain stimulation uses a surgically implanted, battery-operated medical device called a neurostimulator to deliver electrical stimulation to targeted areas of the brain that control movement, temporarily blocking the nerve signals that cause tremor. Other surgical intervention is effective but may have side effects. U.S. Patent Application Serial No. 16/356,517 describes use of gaboxadol to treat essential tremor. However, there remains a need for additional modalities for treatment of essential tremor.
[0007] Tourette syndrome (TS) is a neurological disorder characterized by repetitive, stereotyped, involuntary movements and vocalizations called tics. The first symptoms of TS
are almost always noticed in childhood, usually appearing between the ages of 3 and 12. Some of the more common tics include eye blinking and other vision irregularities, throat clearing, grunting, facial grimacing, shoulder shrugging, and head or shoulder jerking. Perhaps the most dramatic and disabling tics are those that result in self-harm such as punching oneself, or vocal tics including coprolalia (uttering swear words) or echolalia (repeating the words or phrases of others). Medications may be administered to control some symptoms of TS. For example, typical and atypical neuroleptics including risperidone, ziprasidone, haloperidol, pimozide and fluphenazine may be utilized but can have long-term and short-term adverse effects. Antihypertensive agents such as clonidine and guanfacine are also used to treat tics.
are almost always noticed in childhood, usually appearing between the ages of 3 and 12. Some of the more common tics include eye blinking and other vision irregularities, throat clearing, grunting, facial grimacing, shoulder shrugging, and head or shoulder jerking. Perhaps the most dramatic and disabling tics are those that result in self-harm such as punching oneself, or vocal tics including coprolalia (uttering swear words) or echolalia (repeating the words or phrases of others). Medications may be administered to control some symptoms of TS. For example, typical and atypical neuroleptics including risperidone, ziprasidone, haloperidol, pimozide and fluphenazine may be utilized but can have long-term and short-term adverse effects. Antihypertensive agents such as clonidine and guanfacine are also used to treat tics.
[0008] Fragile X syndrome (FXS) may be the most common genetic cause of intellectual disability and the most common single-gene cause of autism. It is caused by mutations on the fragile X mental retardation gene (FMR1) and lack of fragile X mental retardation protein, which in turn, leads to decreased inhibition of translation of many synaptic proteins. The main efforts have focused on metabotropic glutamate receptor (mGluR) targeted treatments;
however, investigation on the gamma-aminobutyric acid (GABA) system and its potential as a targeted treatment is less emphasized. Fragile X mouse models show decreased GABA
subunit receptors, decreased synthesis of GABA, increased catabolism of GABA, and overall decreased GABAergic input in many regions of the brain. These symptoms are also observed in individuals with autism and other neurodevelopmental disorders, therefore targeted treatments for Fragile X syndrome are leading the way in the treatment of other neurodevelopmental syndromes and autism. Potential GABAergic treatments, such as riluzole, gaboxadol, tiagabine, and vigabatrin have been discussed. However, further studies are needed to determine the safety and efficacy of GABAergic treatments for Fragile X
syndrome. Moreover, further studies in fragile X animal models are necessary to provide cumulative evidence in the efficacy and safety of gaboxadol. Lozano et at., Neuropsychiatr Dis Treat.,10: 1769-1779 (2014).
SUMMARY
however, investigation on the gamma-aminobutyric acid (GABA) system and its potential as a targeted treatment is less emphasized. Fragile X mouse models show decreased GABA
subunit receptors, decreased synthesis of GABA, increased catabolism of GABA, and overall decreased GABAergic input in many regions of the brain. These symptoms are also observed in individuals with autism and other neurodevelopmental disorders, therefore targeted treatments for Fragile X syndrome are leading the way in the treatment of other neurodevelopmental syndromes and autism. Potential GABAergic treatments, such as riluzole, gaboxadol, tiagabine, and vigabatrin have been discussed. However, further studies are needed to determine the safety and efficacy of GABAergic treatments for Fragile X
syndrome. Moreover, further studies in fragile X animal models are necessary to provide cumulative evidence in the efficacy and safety of gaboxadol. Lozano et at., Neuropsychiatr Dis Treat.,10: 1769-1779 (2014).
SUMMARY
[0009] Pharmaceutical formulations containing gaboxadol or a pharmaceutically acceptable salt thereof and methods of treating essential tremors, Tourette syndrome or Fragile X
syndrome are provided. Pharmaceutical formulations herein include transdermal formulations and modified release dosage forms. In embodiments, pharmaceutical formulations include about 0.05 mg to about 100 mg gaboxadol or a pharmaceutically acceptable salt thereof and are administered to a patient in need thereof. In embodiments, transdermal dosage forms contain a reservoir or matrix of gaboxadol monohydrate. In embodiments, transdermal dosage forms contain a reservoir or matrix of gaboxadol hydrochloride. In embodiments, a modified release dosage form includes an orally disintegrating dosage form. In embodiments, a modified release dosage form includes an extended release dosage form. In embodiments, a modified release dosage form includes a delayed release dosage form. In embodiments, a modified release dosage form includes a pulsatile release dosage form.
DETAILED DESCRIPTION
syndrome are provided. Pharmaceutical formulations herein include transdermal formulations and modified release dosage forms. In embodiments, pharmaceutical formulations include about 0.05 mg to about 100 mg gaboxadol or a pharmaceutically acceptable salt thereof and are administered to a patient in need thereof. In embodiments, transdermal dosage forms contain a reservoir or matrix of gaboxadol monohydrate. In embodiments, transdermal dosage forms contain a reservoir or matrix of gaboxadol hydrochloride. In embodiments, a modified release dosage form includes an orally disintegrating dosage form. In embodiments, a modified release dosage form includes an extended release dosage form. In embodiments, a modified release dosage form includes a delayed release dosage form. In embodiments, a modified release dosage form includes a pulsatile release dosage form.
DETAILED DESCRIPTION
[0010] Described herein are formulations and methods for treating essential tremor, Tourette syndrome or Fragile X syndrome by administering to a patient in need thereof a pharmaceutical formulation including gaboxadol or a pharmaceutically acceptable salt thereof In embodiments, formulations and methods are described herein for treating essential tremor, Tourette syndrome or Fragile X syndrome by administering to a patient in need thereof a transdermal pharmaceutical formulation including gaboxadol or a pharmaceutically acceptable salt thereof In embodiments, formulations and methods are described herein for treating essential tremor, Tourette syndrome or Fragile X syndrome by administering to a patient in need thereof a modified release pharmaceutical formulation including gaboxadol or a pharmaceutically acceptable salt thereof.
[0011] Many pharmaceutical products are administered as a fixed dose, at regular intervals, to achieve therapeutic efficacy. The duration of action is typically reflected by plasma half-life of the drug post administration. Gaboxadol has a relatively short half-life (ty2= 1.5-2 h).
Since efficacy is often dependent on rapid onset of action and sufficient exposure within the central nervous system, administration of CNS drugs with a short half-life may require frequent maintenance dosing.
Since efficacy is often dependent on rapid onset of action and sufficient exposure within the central nervous system, administration of CNS drugs with a short half-life may require frequent maintenance dosing.
[0012] Different clinical situations frequently require different therapeutic approaches. For example, treatment of an acute symptomatic episode may call for a dosage form which facilitates a rapid onset of action for fast relief of acute symptoms. For example, alleviating a sudden worsening of essential tremors, a sudden worsening of tics in the case of Tourette syndrome, or a sudden worsening of autistic behavior in Fragile X syndrome.
Intravenous administration of a drug typically results in a more rapid onset of action than, for example, a conventional tablet or capsule foimulation, which must be swallowed and disintegrated in the stomach before the drug can be absorbed. However, intravenous administration can be inconvenient in a non-clinical setting.
Intravenous administration of a drug typically results in a more rapid onset of action than, for example, a conventional tablet or capsule foimulation, which must be swallowed and disintegrated in the stomach before the drug can be absorbed. However, intravenous administration can be inconvenient in a non-clinical setting.
[0013] A modified release dosage form which provides rapid onset of action such as an orally disintegrating dosage form ("ODDF"), e.g., an orally disintegrating tablet ("OD'F") or orally disintegrating film ("ODF") as described herein can advantageously release gaboxadol to the sublingual or buccal mucous membranes in the mouth (the oral mucosa).
When gaboxadol comes into contact with the mucous membranes beneath the tongue and/or the cheek, it is absorbed directly into the bloodstream, thus bypassing the GI
tract. This is because the connective tissue beneath the epithelium contains a rich network of capillaries into which the drug diffuses, thereby entering the venous circulation. In contrast, substances absorbed in the GI tract are subject to first-pass metabolism in the liver before entering the general circulation. Avoiding first pass metabolism can be preferable to conventional oral administration when rapid onset of action is desirable, since this route transports the gaboxadol directly to the brain, where it exerts it's extrasynaptic GABAA
agonism.
When gaboxadol comes into contact with the mucous membranes beneath the tongue and/or the cheek, it is absorbed directly into the bloodstream, thus bypassing the GI
tract. This is because the connective tissue beneath the epithelium contains a rich network of capillaries into which the drug diffuses, thereby entering the venous circulation. In contrast, substances absorbed in the GI tract are subject to first-pass metabolism in the liver before entering the general circulation. Avoiding first pass metabolism can be preferable to conventional oral administration when rapid onset of action is desirable, since this route transports the gaboxadol directly to the brain, where it exerts it's extrasynaptic GABAA
agonism.
[0014] In other clinical situations such as those where symptoms are chronic, it may desirable to maintain a relatively constant sustained level of gaboxadol in the bloodstream leading to a sustained treatment of symptoms. In contrast to an ODDF
containing gaboxadol where onset is rapid, but duration of action is not sustained due to the short half-life of gaboxadol, a modified dosage form herein having a sustained release profile provides a sustained therapeutic level of gaboxadol which provides a prolonged period of symptom relief without the need for repeated dosing throughout the day. As discussed in more detail below certain sustained relief dosage forms are administered orally and are absorbed in the GI tract where they undergo first pass metabolism.
containing gaboxadol where onset is rapid, but duration of action is not sustained due to the short half-life of gaboxadol, a modified dosage form herein having a sustained release profile provides a sustained therapeutic level of gaboxadol which provides a prolonged period of symptom relief without the need for repeated dosing throughout the day. As discussed in more detail below certain sustained relief dosage forms are administered orally and are absorbed in the GI tract where they undergo first pass metabolism.
[0015] Transdermal delivery of gaboxadol as described herein can provide sustained release profiles while avoiding first pass metabolism. Transdermal delivery is a painless method of delivering gaboxadol systemically by applying a formulation containing gaboxadol onto intact and healthy skin. The drug initially penetrates through the stratum corneum and then passes through the deeper epidermis. When the gaboxadol reaches the dermal layer, it becomes available for systemic absorption via dermal microcirculation.
Transdermal delivery may have certain advantages over other routes of drug delivery. It can provide a non-invasive alternative to parenteral routes, thus circumventing issues such as needle phobia. A large surface area of skin and ease of access allows many placement options on the skin for transdermal absorption. Furthermore, the pharmacokinetic profile of transdermally administered gaboxadol may be more uniform with fewer peaks, thus minimizing the risk of toxic side effects. As with sustained release dosage forms, transdermal delivery can improve patient compliance due to the reduction of dosing frequencies and is also suitable for patients who are unconscious or vomiting, or those who rely on self-administration.
Transdermal delivery may have certain advantages over other routes of drug delivery. It can provide a non-invasive alternative to parenteral routes, thus circumventing issues such as needle phobia. A large surface area of skin and ease of access allows many placement options on the skin for transdermal absorption. Furthermore, the pharmacokinetic profile of transdermally administered gaboxadol may be more uniform with fewer peaks, thus minimizing the risk of toxic side effects. As with sustained release dosage forms, transdermal delivery can improve patient compliance due to the reduction of dosing frequencies and is also suitable for patients who are unconscious or vomiting, or those who rely on self-administration.
[0016] In embodiments, pharmaceutical formulations herein provide modified release of gaboxadol or a pharmaceutically acceptable salt thereof resulting in pharmacokinetic properties which include a T. of 20 minutes or less. Accordingly, ODDF dosage forms are described that provide a rapid onset of action. In embodiments, pharmaceutical formulations having modified release profiles provide pharmacokinetic properties which result in both rapid onset and sustained duration of action. In embodiments, pharmaceutical formulations having modified release profiles provide pharmacokinetic properties which result in both rapid onset and extended release. In embodiments, pharmaceutical formulations having modified release profiles provide pharmacokinetic properties which result in both rapid onset and delayed release. In embodiments, pharmaceutical formulations having modified release profiles provide pharmacokinetic properties which result in both rapid onset and extended release which is pulsatile in nature. In embodiments, pharmaceutical formulations having modified release profiles provide pharmacokinetic properties which result in both rapid onset and delayed release which is pulsatile in nature. In embodiments, pharmaceutical formulations having modified release profiles provide pharmacokinetic properties which result in a combination of rapid onset, delayed release and sustained duration of action. In embodiments, pharmaceutical formulations having modified release profiles provide pharmacokinetic properties which result in a combination of rapid onset, delayed release and sustained duration of action which is pulsatile in nature.
[0017] Conventional (or unmodified) release oral dosage forms such as tablets or capsules typically release medications into the stomach or intestines as the tablet or capsule shell dissolves. The pattern of drug release from modified release (MR) dosage forms is deliberately changed from that of a conventional dosage form to achieve a desired therapeutic objective and/or better patient compliance. Types of MR drug products include, 1) orally disintegrating dosage forms (ODDFs) which provide immediate release, 2) extended release dosage forms, 3) delayed release dosage forms (e.g., enteric coated), 4) pulsatile release dosage forms, and 5) combinations of the foregoing.
[0018] In embodiments, pharmaceutical formulations herein provide immediate release of gaboxadol or a pharmaceutically acceptable salt thereof resulting in pharmacokinetic properties which include a Tmax of 20 minutes or less. In embodiments, pharmaceutical formulations herein provide a T. of 20 minutes or less, a T. of 19 minutes or less, a T.
of 18 minutes or less, a T. of 17 minutes or less, a T. of 16 minutes or less, a T. of 15 minutes or less, a Tmax of 14 minutes or less, a Tmax of 13 minutes or less, a Tmax of 12 minutes or less, a Tmax of 11 minutes or less, a Tmax of 10 minutes or less, a Tmax of 9 minutes or less, a Tmax of 8 minutes or less, a Tmax of 7 minutes or less, a Tmax of 6 minutes or less, or a Tmax of 5 minutes or less. Such pharmaceutical formulations include ODDFs such as orally disintegrating tablets (ODTs) or orally disintegrating films (ODF s).
of 18 minutes or less, a T. of 17 minutes or less, a T. of 16 minutes or less, a T. of 15 minutes or less, a Tmax of 14 minutes or less, a Tmax of 13 minutes or less, a Tmax of 12 minutes or less, a Tmax of 11 minutes or less, a Tmax of 10 minutes or less, a Tmax of 9 minutes or less, a Tmax of 8 minutes or less, a Tmax of 7 minutes or less, a Tmax of 6 minutes or less, or a Tmax of 5 minutes or less. Such pharmaceutical formulations include ODDFs such as orally disintegrating tablets (ODTs) or orally disintegrating films (ODF s).
[0019] An ODDF is a solid dosage form containing a medicinal substance or active ingredient which disintegrates rapidly, usually within a matter of seconds when placed upon the tongue, sublingually or buccally. The disintegration time for ODDFs generally range from one or two seconds to about a minute. ODDFs are designed to disintegrate or dissolve rapidly on contact with saliva. This mode of administration can be beneficial to people who may have problems swallowing tablets whether it be from physical infirmity or psychiatric in nature. Patients with essential tremors, Tourette syndrome or Fragile X
syndrome may exhibit such behavior. In addition, ODDFs herein provide a rapid onset of action which can provide rapid alleviation or cessation of symptoms associated with essential tremors, Tourette syndrome or Fragile X syndrome, respectively. In embodiments, when administered to an oral cavity, an ODDF herein disintegrates in less than one minute, less than 55 seconds, less than 50 seconds, less than 45 seconds, less than 40 seconds, less than 35 seconds, less than 30 seconds, less than 25 seconds, less than 20 seconds, less than 15 seconds, less than 10 seconds, or less than 5 seconds.
syndrome may exhibit such behavior. In addition, ODDFs herein provide a rapid onset of action which can provide rapid alleviation or cessation of symptoms associated with essential tremors, Tourette syndrome or Fragile X syndrome, respectively. In embodiments, when administered to an oral cavity, an ODDF herein disintegrates in less than one minute, less than 55 seconds, less than 50 seconds, less than 45 seconds, less than 40 seconds, less than 35 seconds, less than 30 seconds, less than 25 seconds, less than 20 seconds, less than 15 seconds, less than 10 seconds, or less than 5 seconds.
[0020] An ODT is a solid dosage form containing a medicinal substance or active ingredient which disintegrates rapidly, usually within a matter of seconds when placed upon the tongue, sublingually or buccally. The disintegration time for ODTs generally ranges from several seconds to about a minute. ODTs are designed to disintegrate or dissolve rapidly on contact with saliva, thus eliminating the need to chew the tablet, swallow the intact tablet, or take the tablet with liquids. As with ODDFs in general, this mode of administration can be beneficial to people who may have problems swallowing tablets whether it be from physical infirmity or psychiatric in nature. Patients with essential tremors, Tourette syndrome or Fragile X syndrome may exhibit such behavior. In addition, ODTs herein provide a rapid onset of action which can result in a rapid alleviation or cessation of symptoms associated with essential tremors, Tourette syndrome or Fragile X syndrome, respectively.
In embodiments, an ODT herein disintegrates in less than one minute, less than 55 seconds, less than 50 seconds, less than 45 seconds, less than 40 seconds, less than 35 seconds, less than 30 seconds, less than 25 seconds, less than 20 seconds, less than 15 seconds, less than 10 seconds, or less than 5 seconds, based upon, e.g., the United States Pharmacopeia (USP) disintegration test method set forth at section 701, Revision Bulletin Official August 1, 2008.
In embodiments, an ODT herein disintegrates in less than one minute, less than 55 seconds, less than 50 seconds, less than 45 seconds, less than 40 seconds, less than 35 seconds, less than 30 seconds, less than 25 seconds, less than 20 seconds, less than 15 seconds, less than 10 seconds, or less than 5 seconds, based upon, e.g., the United States Pharmacopeia (USP) disintegration test method set forth at section 701, Revision Bulletin Official August 1, 2008.
[0021] In embodiments, the fast dissolving property of the ODTs requires quick ingress of water into the tablet matrix. This may be accomplished by maximizing the porous structure of the tablet, incorporation of suitable disintegrating agents and use of highly water-soluble excipients in the formulation. Excipients used in ODTs typically contain at least one superdisintegrant (which can have a mechanism of wicking, swelling or both), a diluent, a lubricant and optionally a swelling agent, sweeteners and flavorings. See, e.g., Nagar et al., Journal of Applied Pharmaceutical Science, 2011;01(04):35-45, incorporated herein by reference. Superdisintegrants can be classified as synthetic, natural and co-processed. In this context synthetic superdisintegrants can be exemplified by sodium starch glycolate, croscarmellose sodium, cross-linked polyvinylpyrrolidone, low-substituted hydroxypropyl cellulose, microcrystalline cellulose, partially pregelatinized starch, cross-linked alginic acid and modified resin. Natural superdisintegrants can be processed mucilages and gums are obtained from plants and can be exemplified by Lepidium sativum seed mucilage, banana powder, gellan gum, locust bean gum, xanthan gum, guar gum, gum karaya, cassia fistula seed gum, mangifera indica gum, carrageenan, agar from Gelidium amansii and other red algaes, soy polysaccharide and chitosan. Diluents can include, e.g., mannitol, sorbitol, xylitol, calcium carbonate, magnesium carbonate, calcium sulfate, magnesium tri silicate and the like. Lubricants can include, e.g., magnesium stearate and the like. Those skilled in the art are familiar with ODT manufacturing techniques.
[0022] Other ODDFs which may be used herein include rapidly dissolving films which are thin oral strips that release medication such as gaboxadol or a pharmaceutically acceptable salt thereof quickly after administration to the oral cavity. The film is placed on a patient's tongue, sublingually, bucally, or on any other mucosal surface and is instantly wet by saliva whereupon the film rapidly hydrates and dissolves to release the medication.
See. e.g., Chaturvedi et al., Curr Drug Deliv. 2011 Jul;8(4):373-80. Fastcaps are a rapidly disintegrating drug delivery system based on gelatin capsules. In contrast to conventional hard gelatin capsules, fastcaps consist of a gelation of low bloom strength and various additives to improve the mechanical and dissolution properties of the capsule shell. Fastcaps are also referred to herein as orally disintegrating capsules. See, e.g., Ciper and Bodmeier, Int J Pharm. 2005 Oct 13;303(1-2):62-71. Freeze dried (lyophilized) wafers (also referred to herein as orally disintegrating wafers) are rapidly disintegrating, thin matrixes that contain a medicinal agent. The wafer or film disintegrates rapidly in the oral cavity and releases drug which dissolves or disperses in the saliva. See, e.g., Boateng et al., Int J
Pharm. 2010 Apr 15;389(1-2):24-31. Those skilled in the art are familiar with various techniques utilized to manufacture ODDFs such as freeze drying, spray drying, phase transition processing, melt granulation, sublimation, mass extrusion, cotton candy processing, direct compression, etc.
See, e.g., Nagar et al., supra.
See. e.g., Chaturvedi et al., Curr Drug Deliv. 2011 Jul;8(4):373-80. Fastcaps are a rapidly disintegrating drug delivery system based on gelatin capsules. In contrast to conventional hard gelatin capsules, fastcaps consist of a gelation of low bloom strength and various additives to improve the mechanical and dissolution properties of the capsule shell. Fastcaps are also referred to herein as orally disintegrating capsules. See, e.g., Ciper and Bodmeier, Int J Pharm. 2005 Oct 13;303(1-2):62-71. Freeze dried (lyophilized) wafers (also referred to herein as orally disintegrating wafers) are rapidly disintegrating, thin matrixes that contain a medicinal agent. The wafer or film disintegrates rapidly in the oral cavity and releases drug which dissolves or disperses in the saliva. See, e.g., Boateng et al., Int J
Pharm. 2010 Apr 15;389(1-2):24-31. Those skilled in the art are familiar with various techniques utilized to manufacture ODDFs such as freeze drying, spray drying, phase transition processing, melt granulation, sublimation, mass extrusion, cotton candy processing, direct compression, etc.
See, e.g., Nagar et al., supra.
[0023] When administered, ODDFs containing gaboxadol or a pharmaceutically acceptable salt thereof disintegrate rapidly to release the drug, which dissolves or disperses in the saliva.
The drug may be absorbed in the oral cavity, e.g., sublingually, buccally, from the pharynx and esophagus or from other sections of gastrointestinal tract as the saliva travels down. In such cases, bioavailability can be significantly greater than that observed from conventional tablet dosage forms which travel to the stomach or intestines where drug can be released.
The drug may be absorbed in the oral cavity, e.g., sublingually, buccally, from the pharynx and esophagus or from other sections of gastrointestinal tract as the saliva travels down. In such cases, bioavailability can be significantly greater than that observed from conventional tablet dosage forms which travel to the stomach or intestines where drug can be released.
[0024] ODDFs herein provide a Tmax of 20 minutes or less, a Tmax of 19 minutes or less, a T. of 18 minutes or less, a T. of 17 minutes or less, a T. of 16 minutes or less, a T. of 15 minutes or less, a Tmax of 14 minutes or less, a Tmax of 13 minutes or less, a Tmax of 12 minutes or less, a Tmax of 11 minutes or less, a Tmax of 10 minutes or less, a Tmax of 9 minutes or less, a Tmax of 8 minutes or less, a Tmax of 7 minutes or less, a Tmax of 6 minutes or less, or a T. of 5 minutes or less. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 4 hours after administration of the pharmaceutical formulation is between about 65% to about 85% less than the administered dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 4 hours after administration of the pharmaceutical formulation is less than 65% 70%, 75%, 80%, or 85% of the administered dose.
[0025] In embodiments, ODDFs herein provide an in vivo plasma profile having C. less than about 2500 ng/ml, 2000 ng/ml, 1750 ng/ml, 1500 ng/ml, 1250 ng/ml, 1000 ng/ml, 750 ng/ml, 500 ng/ml, 450 ng/ml, 400 ng/ml, 350 ng/ml, 300 ng/ml, 250 ng/ml, 200 ng/ml, 150 ng/ml, 100 ng/ml, 50 ng/ml or 25 ng/ml. In embodiments, ODDFs herein provide an in vivo plasma profile having a AUCo_. of less than about, e.g., 900 ng=hr/ml, 850 ng=hr/ml, 800 ng=hr/ml, 750 ng=hr/ml, or 700 ng=hr/ml 650 ng=hr/ml, 600 ng=hr/ml, 550 ng=hr/ml, 500 ng=hr/ml, or 450 ng=hr/ml. In embodiments, ODDFs herein provide an in vivo plasma profile having a AUCo_. of less than about, e.g., 400 ng=hr/ml, 350 ng=hr/ml, 300 ng=hr/ml, 250 ng=hr/ml, or 200 ng=hr/ml. In embodiments, ODDFs herein provide an in vivo plasma profile having a AUCo_. of less than about, e.g., 150 ng=hr/ml, 100 ng=hr/ml, 75 ng=hr/ml, or 50 ng=hr/ml.
[0026] In embodiments, pharmaceutical formulations having modified release profiles provide pharmacolcinetic properties which result in both rapid onset and sustained duration of action. Such pharmaceutical formulations include an immediate release aspect and an extended release aspect. Immediate release aspects are discussed above in connection with ODDFs. Extended release dosage forms (ERDFs) have an extended release profiles and are those that allow a reduction in dosing frequency as compared to that presented by a conventional dosage form, e.g., a solution or unmodified release dosage form.
ERDFs provide a sustained duration of action of a drug. In embodiments, modified release dosage forms herein may incorporate an ODDF aspect to provide immediate release of a loading dose and then an ERDF aspect that provides prolonged delivery to maintain drug levels in the blood within a desired therapeutic range for a desirable period of time in excess of the activity resulting from a single dose of the drug. In embodiments, the ODDF
aspect releases the drug immediately and the ERDF aspect thereafter provides continuous release of drug for sustained action. In embodiments, ERDFs are not combined with an ODDF aspect and can be administered as a solitary dosage form.
ERDFs provide a sustained duration of action of a drug. In embodiments, modified release dosage forms herein may incorporate an ODDF aspect to provide immediate release of a loading dose and then an ERDF aspect that provides prolonged delivery to maintain drug levels in the blood within a desired therapeutic range for a desirable period of time in excess of the activity resulting from a single dose of the drug. In embodiments, the ODDF
aspect releases the drug immediately and the ERDF aspect thereafter provides continuous release of drug for sustained action. In embodiments, ERDFs are not combined with an ODDF aspect and can be administered as a solitary dosage form.
[0027] In embodiments, the immediate release aspect achieves a Tmax of 20 minutes or less, a Tmax of 19 minutes or less, a Tmax of 18 minutes or less, a Tmax of 17 minutes or less, a Tmax of 16 minutes or less, a T. of 15 minutes or less, a T. of 14 minutes or less, a T. of 13 minutes or less, a Tmax of 12 minutes or less, a Tmax of 11 minutes or less, a Tmax of 10 minutes or less, a Tmax of 9 minutes or less, a Tmax of 8 minutes or less, a Tmax of 7 minutes or less, a Tmax of 6 minutes or less, or a Tmax of 5 minutes or less. In embodiments, the extended release aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 4 or more hours after administration of the pharmaceutical formulation between about 50% to about 100% of the initially administered ODDF
dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 4 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose. In embodiments, the extended release aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 6 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 6 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose.
In embodiments, the extended release aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 8 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 8 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose. In embodiments, the extended release aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 10 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 10 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose. In embodiments, the extended release aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 12 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF
dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 12 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose.
dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 4 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose. In embodiments, the extended release aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 6 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 6 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose.
In embodiments, the extended release aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 8 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 8 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose. In embodiments, the extended release aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 10 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 10 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose. In embodiments, the extended release aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 12 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF
dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 12 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose.
[0028] In embodiments, an ODDF is applied as a coating or band over an ERDF, or as a layer adjacent to an ERDF, to allow direct exposure of the ODDF to the oral cavity and consequent disintegration of the ODDF. In embodiments, the ODDF and the ERDF
can be mixed in a chewable resin, e.g., gum. Those skilled in the art are familiar with techniques for applying coatings, bands and layers to fabricate pharmaceutical dosage forms.
can be mixed in a chewable resin, e.g., gum. Those skilled in the art are familiar with techniques for applying coatings, bands and layers to fabricate pharmaceutical dosage forms.
[0029] Suitable formulations which provide extended release profiles are well-known in the art. For example, coated slow release beads or granules ("beads" and "granules" are used interchangeably herein) in which, e.g., gaboxadol or a pharmaceutically acceptable salt thereof is applied to beads, e.g., confectioners nonpareil beads, and then coated with conventional release retarding materials such as waxes, enteric coatings and the like. In embodiments, beads can be formed in which gaboxadol or pharmaceutically acceptable salt thereof is mixed with a material to provide a mass from which the drug leaches out. In embodiments, the beads may be engineered to provide different rates of release by varying characteristics of the coating or mass, e.g., thickness, porosity, using different materials, etc.
Beads having different rates of release may be combined into a single dosage form to provide variable or continuous release. The beads can be contained in capsules or compressed into tablets. In embodiments, the ODDF is applied as a coating, a layer or a band to a capsule or tablet. In embodiments, slow release cores which are incorporated into tablets or capsules can also provide extended release profiles. For example, gaboxadol or a pharmaceutically acceptable salt thereof can be mixed in a substance or a mixture of substances non-absorbable from the gastrointestinal tract but capable of slow dissolution or loss of drug by leaching, and an outer ODDF layer which is applied to the core by, e.g., compression or spraying. In embodiments, extended release profiles may be provided by multiple layer tablets, each layer having different release properties. Multilayer tableting machines allow incorporation into one tablet of two or more separate layers which may be made to release gaboxadol or a pharmaceutically acceptable salt thereof at different rates. For example, one or more outer layers may be an ODDF, and each other layer an ERDF that exhibits different release rates.
In embodiments, gaboxadol or a pharmaceutically acceptable salt thereof is incorporated into porous inert carriers that provide extended release profiles. In embodiments, the porous inert carriers incorporate channels or passages from which the drug diffuses into surrounding fluids. In embodiments, gaboxadol or a pharmaceutically acceptable salt thereof is incorporated into an ion-exchange resin to provide an extended release profile. Prolonged action results from a predetermined rate of release of the drug from the resin when the drug-resin complex contacts gastrointestinal fluids and the ionic constituents dissolved therein. In embodiments, membranes are utilized to control rate of release from drug containing reservoirs. In embodiments, liquid preparations may also be utilized to provide an extended release profile. For example, a liquid preparation consisting of solid particles dispersed throughout a liquid phase in which the particles are not soluble. The suspension is formulated to allow at least a reduction in dosing frequency as compared to that drug presented as a conventional dosage form (e.g., as a solution or a prompt drug-releasing, conventional solid dosage form). For example, a suspension of ion-exchange resin constituents or microbeads.
Beads having different rates of release may be combined into a single dosage form to provide variable or continuous release. The beads can be contained in capsules or compressed into tablets. In embodiments, the ODDF is applied as a coating, a layer or a band to a capsule or tablet. In embodiments, slow release cores which are incorporated into tablets or capsules can also provide extended release profiles. For example, gaboxadol or a pharmaceutically acceptable salt thereof can be mixed in a substance or a mixture of substances non-absorbable from the gastrointestinal tract but capable of slow dissolution or loss of drug by leaching, and an outer ODDF layer which is applied to the core by, e.g., compression or spraying. In embodiments, extended release profiles may be provided by multiple layer tablets, each layer having different release properties. Multilayer tableting machines allow incorporation into one tablet of two or more separate layers which may be made to release gaboxadol or a pharmaceutically acceptable salt thereof at different rates. For example, one or more outer layers may be an ODDF, and each other layer an ERDF that exhibits different release rates.
In embodiments, gaboxadol or a pharmaceutically acceptable salt thereof is incorporated into porous inert carriers that provide extended release profiles. In embodiments, the porous inert carriers incorporate channels or passages from which the drug diffuses into surrounding fluids. In embodiments, gaboxadol or a pharmaceutically acceptable salt thereof is incorporated into an ion-exchange resin to provide an extended release profile. Prolonged action results from a predetermined rate of release of the drug from the resin when the drug-resin complex contacts gastrointestinal fluids and the ionic constituents dissolved therein. In embodiments, membranes are utilized to control rate of release from drug containing reservoirs. In embodiments, liquid preparations may also be utilized to provide an extended release profile. For example, a liquid preparation consisting of solid particles dispersed throughout a liquid phase in which the particles are not soluble. The suspension is formulated to allow at least a reduction in dosing frequency as compared to that drug presented as a conventional dosage form (e.g., as a solution or a prompt drug-releasing, conventional solid dosage form). For example, a suspension of ion-exchange resin constituents or microbeads.
[0030] In embodiments, absorbable or non-absorbable polymers may be utilized to form ERDFs. Various ERDFs including those discussed above and others that can be utilizable herein are known to those with skill in the art. See, e.g., Fu and Kao, Expert Opin Drug Deliv. 2010 Apr; 7(4): 429-444.
[0031] In embodiments, modified dosage forms herein encompass delayed release dosage forms having delayed release profiles. Delayed release dosage forms can include delayed release tablets or delayed release capsules. A delayed release tablet is a solid dosage form which releases a drug (or drugs) such as gaboxadol or a pharmaceutically acceptable salt thereof at a time other than promptly after administration. A delayed release capsule is a solid dosage form in which the drug is enclosed within either a hard or soft soluble container made from a suitable form of gelatin, and which releases a drug (or drugs) at a time other than promptly after administration. For example, with respect to tablets or capsules, enteric-coated articles are examples of delayed release dosage forms. In embodiments, a delayed release tablet is a solid dosage form containing a conglomerate of medicinal particles that releases a drug (or drugs) at a time other than promptly after administration.
In embodiments, the conglomerate of medicinal particles are covered with a coating which delays release of the drug. In embodiments, a delayed release capsule is a solid dosage form containing a conglomerate of medicinal particles that releases a drug (or drugs) at a time other than promptly after administration. In embodiments, the conglomerate of medicinal particles are covered with a coating which delays release of the drug.
In embodiments, the conglomerate of medicinal particles are covered with a coating which delays release of the drug. In embodiments, a delayed release capsule is a solid dosage form containing a conglomerate of medicinal particles that releases a drug (or drugs) at a time other than promptly after administration. In embodiments, the conglomerate of medicinal particles are covered with a coating which delays release of the drug.
[0032] In embodiments, ODDFs with a delayed release formulation aspect are provided that are solid dosage forms containing medicinal substances which disintegrate rapidly, usually within a matter of seconds, when placed upon the tongue, but which also releases a drug (or drugs) at a time other than promptly after administration.
Accordingly, in embodiments, modified release dosage forms herein incorporate an ODDF aspect to provide immediate release of a loading dose and then an a delayed release formulation aspect that provides a period in which there is no drug delivery followed by a period of drug delivery to provide drug levels in the blood within a desired therapeutic range for a desirable period of time in excess of the activity resulting from a single dose of the drug. In embodiments, the ODDF aspect releases the drug immediately and then, after a period of delay, a delayed release formulation aspect thereafter provides a single release of drug to provide an additional period of activity. In embodiments, the ODDF aspect releases the drug immediately and then, after a period of delay, a delayed release formulation aspect thereafter provides a continuous release of drug for sustained action.
Accordingly, in embodiments, modified release dosage forms herein incorporate an ODDF aspect to provide immediate release of a loading dose and then an a delayed release formulation aspect that provides a period in which there is no drug delivery followed by a period of drug delivery to provide drug levels in the blood within a desired therapeutic range for a desirable period of time in excess of the activity resulting from a single dose of the drug. In embodiments, the ODDF aspect releases the drug immediately and then, after a period of delay, a delayed release formulation aspect thereafter provides a single release of drug to provide an additional period of activity. In embodiments, the ODDF aspect releases the drug immediately and then, after a period of delay, a delayed release formulation aspect thereafter provides a continuous release of drug for sustained action.
[0033] In embodiments, the immediate release aspect of a ODDF with a delayed release aspect achieves a Tmax of 20 minutes or less, a Tmax of 19 minutes or less, a Tmax of 18 minutes or less, a Tmax of 17 minutes or less, a Tmax of 16 minutes or less, a Tmax of 15 minutes or less, a Tmax of 14 minutes or less, a Tmax of 13 minutes or less, a Tmax of 12 minutes or less, a Tmax of 11 minutes or less, a Tmax of 10 minutes or less, a Tmax of 9 minutes or less, a Tmax of 8 minutes or less, a Tmax of 7 minutes or less, a Tmax of 6 minutes or less, or a T. of 5 minutes or less. In embodiments, the delayed release aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 1, 2, 3 or 4 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 1, 2, 3 or 4 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose. In embodiments, the delayed release formulation aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 6 or more hours after administration of the pharmaceutical formulation between about 50%
to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 6 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose. In embodiments, the delayed release formulation aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 8 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 8 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose. In embodiments, the delayed release formulation aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 10 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 10 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose. In embodiments, the delayed release formulation aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 12 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 12 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose.
to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 6 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose. In embodiments, the delayed release formulation aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 8 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 8 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose. In embodiments, the delayed release formulation aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 10 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 10 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose. In embodiments, the delayed release formulation aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 12 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 12 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose.
[0034] Delayed release dosage forms are known to those skilled in the art. For example, coated delayed release beads or granules ("beads" and "granules" are used interchangeably herein) in which, e.g., gaboxadol or a pharmaceutically acceptable salt thereof is applied to beads, e.g., confectioners nonpareil beads, and then coated with conventional release delaying materials such as waxes, enteric coatings and the like. In embodiments, beads can be formed in which gaboxadol or pharmaceutically acceptable salt thereof is mixed with a material to provide a mass from which the drug leaches out. In embodiments, the beads may be engineered to provide different rates of release by varying characteristics of the coating or mass, e.g., thickness, porosity, using different materials, etc. In embodiments, enteric coated granules of gaboxadol or a pharmaceutically acceptable salt thereof can be contained in an enterically coated capsule or tablet which releases the granules in the small intestine. In embodiments, the granules have a coating which remains intact until the coated granules reach at least the ileum and thereafter provide a delayed release of the drug in the colon.
Suitable enteric coating materials are well known in the art, e.g., Eudragit coatings such methacrylic acid and methyl methacrylate polymers and others. The granules can be contained in capsules or compressed into tablets. In embodiments, the ODDF is applied as a coating, a layer or a band to the capsule or tablet. In embodiments, delayed release cores which are incorporated into tablets or capsules can also provide delayed release profiles. For example, gaboxadol or a pharmaceutically acceptable salt thereof can be mixed in a substance or a mixture of substances non-absorbable from the gastrointestinal tract but capable of slow dissolution or loss of drug by leaching, and an outer ODDF layer which is applied to the core by, e.g., compression or spraying. In embodiments, delayed release profiles may be provided by multiple layer tablets, each layer having different release properties.
Multilayer tableting machines allow incorporation into one tablet of two or more separate layers which may be made to release gaboxadol or a pharmaceutically acceptable salt thereof at different rates after a period of delay. For example, one or more outer layers may be an ODDF, and each other layer a delayed release dosage form that exhibits different release rates. In embodiments, gaboxadol or a pharmaceutically acceptable salt thereof is incorporated into porous inert carriers that provide delayed release profiles. In embodiments, the porous inert carriers incorporate channels or passages from which the drug diffuses into surrounding fluids. In embodiments, gaboxadol or a pharmaceutically acceptable salt thereof is incorporated into an ion-exchange resin to provide a delayed release profile.
Delayed action may result from a predetermined rate of release of the drug from the resin when the drug-resin complex contacts gastrointestinal fluids and the ionic constituents dissolved therein. In embodiments, membranes are utilized to control rate of release from drug containing reservoirs. In embodiments, liquid preparations may also be utilized to provide a delayed release profile. For example, a liquid preparation consisting of solid particles dispersed throughout a liquid phase in which the particles are not soluble. The suspension is formulated to allow at least a reduction in dosing frequency as compared to that drug presented as a conventional dosage form (e.g., as a solution or a prompt drug-releasing, conventional solid dosage form). For example, a suspension of ion-exchange resin constituents or microbeads.
Suitable enteric coating materials are well known in the art, e.g., Eudragit coatings such methacrylic acid and methyl methacrylate polymers and others. The granules can be contained in capsules or compressed into tablets. In embodiments, the ODDF is applied as a coating, a layer or a band to the capsule or tablet. In embodiments, delayed release cores which are incorporated into tablets or capsules can also provide delayed release profiles. For example, gaboxadol or a pharmaceutically acceptable salt thereof can be mixed in a substance or a mixture of substances non-absorbable from the gastrointestinal tract but capable of slow dissolution or loss of drug by leaching, and an outer ODDF layer which is applied to the core by, e.g., compression or spraying. In embodiments, delayed release profiles may be provided by multiple layer tablets, each layer having different release properties.
Multilayer tableting machines allow incorporation into one tablet of two or more separate layers which may be made to release gaboxadol or a pharmaceutically acceptable salt thereof at different rates after a period of delay. For example, one or more outer layers may be an ODDF, and each other layer a delayed release dosage form that exhibits different release rates. In embodiments, gaboxadol or a pharmaceutically acceptable salt thereof is incorporated into porous inert carriers that provide delayed release profiles. In embodiments, the porous inert carriers incorporate channels or passages from which the drug diffuses into surrounding fluids. In embodiments, gaboxadol or a pharmaceutically acceptable salt thereof is incorporated into an ion-exchange resin to provide a delayed release profile.
Delayed action may result from a predetermined rate of release of the drug from the resin when the drug-resin complex contacts gastrointestinal fluids and the ionic constituents dissolved therein. In embodiments, membranes are utilized to control rate of release from drug containing reservoirs. In embodiments, liquid preparations may also be utilized to provide a delayed release profile. For example, a liquid preparation consisting of solid particles dispersed throughout a liquid phase in which the particles are not soluble. The suspension is formulated to allow at least a reduction in dosing frequency as compared to that drug presented as a conventional dosage form (e.g., as a solution or a prompt drug-releasing, conventional solid dosage form). For example, a suspension of ion-exchange resin constituents or microbeads.
[0035] In embodiments, an ODDF is applied as a coating or band over a delayed release dosage form, or as a layer adjacent to a delayed release dosage form, to allow direct exposure of the ODDF to the oral cavity and consequent disintegration of the ODDF. In embodiments, the ODDF and a delayed release dosage form can be mixed in a chewable resin, e.g., gum.
Those skilled in the art are familiar with techniques for applying coatings, bands and layers to fabricate pharmaceutical dosage forms.
Those skilled in the art are familiar with techniques for applying coatings, bands and layers to fabricate pharmaceutical dosage forms.
[0036] In embodiments, modified release pharmaceutical formulations herein include pulsatile release dosage formulations (PRDFs). Pulsatile drug release involves rapid release of defined or discrete amounts of a drug (or drugs) such as gaboxadol or a pharmaceutically acceptable salt thereof after a lag time following an initial release of drug.
In embodiments, PRDFs can provide a single pulse. In embodiments, PRDFs can provide multiple pulses over time. Various PRDFs are known to those with skill in the art.
In embodiments, PRDFs can provide a single pulse. In embodiments, PRDFs can provide multiple pulses over time. Various PRDFs are known to those with skill in the art.
[0037] In embodiments, a PRDF can be a capsule. In embodiments, release after a lag time is provided by a system that uses osmotic pressure to cause release of a plug.
In this system, gaboxadol or a pharmaceutically acceptable salt thereof is contained in an insoluble capsule shell sealed by an osmotically responsive plug, e.g., a hydrogel, which is pushed away by swelling or erosion. When the seal is broken the drug is released as a pulse from the capsule body. Contact with gastrointestinal fluid or dissolution medium causes the plug to swell, either pushing itself out of the capsule or causing the capsule to rupture after the lag-time.
Position & dimensions of the plug can control lag-time. For rapid release of drug effervescent or disintegrating agents may be added. Effervescent materials can cause an increase in pressure thus aiding or causing expulsion of the plug. Examples of suitable plug material may be swellable materials coated with permeable polymer (polymethacrylates), erodible compressed polymer (HPMC, polyvinyl alcohol), congealed melted polymer (glyceryl monooleate), and enzymatically controlled erodible polymers such as pectin. In embodiments, an insoluble capsule contains multiple drug compartments separated by osmotically activated plugs. When a first plug is exposed to the environmental fluids, the first compartment opens, drug is released and the adjacent plug is exposed. The process continues until no sealed compartment are left. Lag time between pulses can be further controlled by varying the thickness of the plug and the properties of the materials from which the plug is made. More hygroscopic materials will absorb fluid faster and will swell faster. In embodiments, a membrane may be substituted for the plug. If effervescent materials are included in one or more compartments, fluids pass through the membrane by osmosis and the effervescent action and pressure increase causes the membrane to rupture, thereby releasing the drug. In embodiments, the membrane(s) are erodible and dissolve to release the contents of the compartment(s). Varying the thickness, porosity and properties of materials of the membrane can allow further control of lag time between pulses. In embodiments, a PRDF can be a tablet. In embodiments, single pulse tablets involve a core containing gaboxadol or a pharmaceutically acceptable salt thereof surrounded by one or more layers of swellable, rupturable coatings. In embodiments, a rupturable coating surrounds a swellable layer. As the swellable layer expands, it causes the rupturable coating to rupture, thereby releasing the drug from the core. Swellable materials such as hydrogels are well known. In embodiments, an inner swelling layer can contain a superdisintegrant, e.g., croscarmellose sodium, and an outer rupturable layer can be made of a polymeric porous materials such as polyethylene oxides, ethylcellulose and the like. Porous film coats of sucrose may also be suitable. In embodiments, multiple pulse tablets incorporate multiple layers surrounding a core. As a first outermost layer erodes and releases the drug contained within the layer, an underlying layer is exposed, thus releasing drug after a predetermined lag time. The process repeats until the innermost core is exposed.
In this system, gaboxadol or a pharmaceutically acceptable salt thereof is contained in an insoluble capsule shell sealed by an osmotically responsive plug, e.g., a hydrogel, which is pushed away by swelling or erosion. When the seal is broken the drug is released as a pulse from the capsule body. Contact with gastrointestinal fluid or dissolution medium causes the plug to swell, either pushing itself out of the capsule or causing the capsule to rupture after the lag-time.
Position & dimensions of the plug can control lag-time. For rapid release of drug effervescent or disintegrating agents may be added. Effervescent materials can cause an increase in pressure thus aiding or causing expulsion of the plug. Examples of suitable plug material may be swellable materials coated with permeable polymer (polymethacrylates), erodible compressed polymer (HPMC, polyvinyl alcohol), congealed melted polymer (glyceryl monooleate), and enzymatically controlled erodible polymers such as pectin. In embodiments, an insoluble capsule contains multiple drug compartments separated by osmotically activated plugs. When a first plug is exposed to the environmental fluids, the first compartment opens, drug is released and the adjacent plug is exposed. The process continues until no sealed compartment are left. Lag time between pulses can be further controlled by varying the thickness of the plug and the properties of the materials from which the plug is made. More hygroscopic materials will absorb fluid faster and will swell faster. In embodiments, a membrane may be substituted for the plug. If effervescent materials are included in one or more compartments, fluids pass through the membrane by osmosis and the effervescent action and pressure increase causes the membrane to rupture, thereby releasing the drug. In embodiments, the membrane(s) are erodible and dissolve to release the contents of the compartment(s). Varying the thickness, porosity and properties of materials of the membrane can allow further control of lag time between pulses. In embodiments, a PRDF can be a tablet. In embodiments, single pulse tablets involve a core containing gaboxadol or a pharmaceutically acceptable salt thereof surrounded by one or more layers of swellable, rupturable coatings. In embodiments, a rupturable coating surrounds a swellable layer. As the swellable layer expands, it causes the rupturable coating to rupture, thereby releasing the drug from the core. Swellable materials such as hydrogels are well known. In embodiments, an inner swelling layer can contain a superdisintegrant, e.g., croscarmellose sodium, and an outer rupturable layer can be made of a polymeric porous materials such as polyethylene oxides, ethylcellulose and the like. Porous film coats of sucrose may also be suitable. In embodiments, multiple pulse tablets incorporate multiple layers surrounding a core. As a first outermost layer erodes and releases the drug contained within the layer, an underlying layer is exposed, thus releasing drug after a predetermined lag time. The process repeats until the innermost core is exposed.
[0038] In embodiments, PRDFs can incorporate ODDFs that are solid dosage forms containing medicinal substances which disintegrate rapidly, usually within a matter of seconds, when placed upon the tongue, but which also releases a drug (or drugs) in pulsatile fashion. Accordingly, in embodiments, modified release dosage forms herein incorporate an ODDF aspect to provide immediate release of a loading dose and a PRDF aspect that provides a period in which there is no drug delivery (lag time) followed by pulsatile drug delivery to provide drug levels in the blood within a desired therapeutic range for a desirable period of time in excess of the activity resulting from a single dose of the drug. In embodiments, the ODDF aspect releases the drug immediately and then, after a period of delay, the PRDF aspect thereafter provides a single pulse release of drug to provide an additional period of activity. In embodiments, the ODDF aspect releases the drug immediately and then, after a period of delay, the PRFD aspect thereafter provides multiple pulsatile release of drug for prolonged therapeutic effect.
[0039] In embodiments, the immediate release aspect of a ODDF with a PRDF
aspect achieves a T. of 20 minutes or less, a T. of 19 minutes or less, a T. of 18 minutes or less, a Tmax of 17 minutes or less, a Tmax of 16 minutes or less, a Tmax of 15 minutes or less, a T. of 14 minutes or less, a T. of 13 minutes or less, a T. of 12 minutes or less, a T. of 11 minutes or less, a Tmax of 10 minutes or less, a Tmax of 9 minutes or less, a T. of 8 minutes or less, a Tmax of 7 minutes or less, a Tmax of 6 minutes or less, or a Tmax of 5 minutes or less. In embodiments, a PRDF aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 0.5, 1, 2, 3 or 4 or more hours after administration of the pharmaceutical formulation between about 50%
to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 0.5, 1, 2, 3 or 4 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose.
In embodiments, a PRDF aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 6 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 6 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose. In embodiments, a PRDF
aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 8 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 8 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose. In embodiments, a PRDF aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 10 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 10 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose.
In embodiments, a PRDF aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 12 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 12 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose. In embodiments, the PRDF delivers one pulse in accordance with the above amounts. In embodiments, the PRDF
delivers two pulses in accordance with the above amounts. In embodiments, the PRDF delivers three pulses in accordance with the above amounts. In embodiments, the PRDF delivers four pulses in accordance with the above amounts. In embodiments, the PRDF delivers five pulses in accordance with the above amounts. In embodiments, the PRDF delivers six pulses in accordance with the above amounts. In embodiments, the PRDF delivers seven pulses in accordance with the above amounts. In embodiments, the PRDF delivers eight pulses in accordance with the above amounts. In embodiments, the PRDF delivers nine pulses in accordance with the above amounts. The pulses may be provided in intervals separated by 0.25 h, 0.5 h, 0.75 h, 1 h, 1.25 h, 1.5 h, 1.75 h, 2, h, 2.25 h, 2.5 h, 2.75 h, 3 h, 3.25 h, 3.5 h, 3.75 h, 4 h, 4.25 h, 4.5 h, 4.75 h, 5 h, 5.5 h, 6 h, 7 h, 8 h, 9 h, 10 h, 11 h, or 12 h. In embodiments the amount of gaboxadol or a pharmaceutically acceptable salt thereof released with each pulse may vary.
aspect achieves a T. of 20 minutes or less, a T. of 19 minutes or less, a T. of 18 minutes or less, a Tmax of 17 minutes or less, a Tmax of 16 minutes or less, a Tmax of 15 minutes or less, a T. of 14 minutes or less, a T. of 13 minutes or less, a T. of 12 minutes or less, a T. of 11 minutes or less, a Tmax of 10 minutes or less, a Tmax of 9 minutes or less, a T. of 8 minutes or less, a Tmax of 7 minutes or less, a Tmax of 6 minutes or less, or a Tmax of 5 minutes or less. In embodiments, a PRDF aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 0.5, 1, 2, 3 or 4 or more hours after administration of the pharmaceutical formulation between about 50%
to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 0.5, 1, 2, 3 or 4 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose.
In embodiments, a PRDF aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 6 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 6 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose. In embodiments, a PRDF
aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 8 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 8 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose. In embodiments, a PRDF aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 10 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 10 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose.
In embodiments, a PRDF aspect provides an amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient at about 12 or more hours after administration of the pharmaceutical formulation between about 50% to about 110% of the initially administered ODDF dose. In embodiments, the amount of gaboxadol or pharmaceutically acceptable salt thereof within the patient about 12 hours after administration of the pharmaceutical formulation is more than 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, or 110% of the initially administered ODDF dose. In embodiments, the PRDF delivers one pulse in accordance with the above amounts. In embodiments, the PRDF
delivers two pulses in accordance with the above amounts. In embodiments, the PRDF delivers three pulses in accordance with the above amounts. In embodiments, the PRDF delivers four pulses in accordance with the above amounts. In embodiments, the PRDF delivers five pulses in accordance with the above amounts. In embodiments, the PRDF delivers six pulses in accordance with the above amounts. In embodiments, the PRDF delivers seven pulses in accordance with the above amounts. In embodiments, the PRDF delivers eight pulses in accordance with the above amounts. In embodiments, the PRDF delivers nine pulses in accordance with the above amounts. The pulses may be provided in intervals separated by 0.25 h, 0.5 h, 0.75 h, 1 h, 1.25 h, 1.5 h, 1.75 h, 2, h, 2.25 h, 2.5 h, 2.75 h, 3 h, 3.25 h, 3.5 h, 3.75 h, 4 h, 4.25 h, 4.5 h, 4.75 h, 5 h, 5.5 h, 6 h, 7 h, 8 h, 9 h, 10 h, 11 h, or 12 h. In embodiments the amount of gaboxadol or a pharmaceutically acceptable salt thereof released with each pulse may vary.
[0040] In embodiments, an ODDF is applied as a coating or band over a PRDF, or as a layer adjacent to a PRDF, to allow direct exposure of the ODDF to the oral cavity and consequent disintegration of the ODDF. In embodiments, the ODDF and a PRDF can be mixed in a chewable resin, e.g., gum. Those skilled in the art are familiar with techniques for applying coatings, bands and layers to fabricate pharmaceutical dosage forms.
[0041] In embodiments, transdermal pharmaceutical formulations are provided for treatment of essential tremors, Tourette syndrome or Fragile X syndrome.
Transdermal formulations may encompass dosage forms of gels, ointments, lotions, sprays, or patches.
Transdermal formulations such as patches rely for their effect, on delivery of a known flux of drug to the skin for a prolonged period of time, generally a day, several days, or a week. Two mechanisms may be used to regulate drug flux: either the drug is contained within a drug reservoir, which is separated from the skin of the wearer by a synthetic membrane, through which the drug diffuses; or the drug is held dissolved or suspended in a polymer matrix, through which the drug diffuses to the skin. In embodiments, transdermal pharmaceutical formulations herein are formulated to provide maximum thermodynamic driving force for passive diffusion across the skin which is saturated with sufficient payload of gaboxadol to insure delivery across the skin. In delivery systems involving transdermal patches, gaboxadol, e.g., gaboxadol monohydrate or gaboxadol hydrochloride is stored, e.g., in a reservoir (reservoir type) or dissolved in a liquid or gel-based reservoir (matrix type).
Transdermal formulations may encompass dosage forms of gels, ointments, lotions, sprays, or patches.
Transdermal formulations such as patches rely for their effect, on delivery of a known flux of drug to the skin for a prolonged period of time, generally a day, several days, or a week. Two mechanisms may be used to regulate drug flux: either the drug is contained within a drug reservoir, which is separated from the skin of the wearer by a synthetic membrane, through which the drug diffuses; or the drug is held dissolved or suspended in a polymer matrix, through which the drug diffuses to the skin. In embodiments, transdermal pharmaceutical formulations herein are formulated to provide maximum thermodynamic driving force for passive diffusion across the skin which is saturated with sufficient payload of gaboxadol to insure delivery across the skin. In delivery systems involving transdermal patches, gaboxadol, e.g., gaboxadol monohydrate or gaboxadol hydrochloride is stored, e.g., in a reservoir (reservoir type) or dissolved in a liquid or gel-based reservoir (matrix type).
[0042] In embodiments, transdermal formulations may include chemical penetration enhancers and emulsions to facilitate transport of gaboxadol across the statum corneum.
Examples of suitable penetration enhancers are alcohols, sulphoxides, azone, pyrrolidones, essential oils, terpenes and terpenoids, fatty acids, water and urea. In embodiments, semisolid vehicles such as proniosomes and microemulsion gels may be utilized as penetration enhancers. Proniosomes are non-ionic based surfactant vesicles, and may be known as "dry niosomes" since they can require hydration before drug release and permeation through the skin. Upon hydration proniosomes are converted into niosomes which are capable of diffusing across the stratum corneum and then adhere to the cell surface which causes a high thermodynamic activity gradient of the drug at the vesicle/stratum corneum surface, thus acting as the driving force for the penetration of drugs across the skin.
Examples of suitable penetration enhancers are alcohols, sulphoxides, azone, pyrrolidones, essential oils, terpenes and terpenoids, fatty acids, water and urea. In embodiments, semisolid vehicles such as proniosomes and microemulsion gels may be utilized as penetration enhancers. Proniosomes are non-ionic based surfactant vesicles, and may be known as "dry niosomes" since they can require hydration before drug release and permeation through the skin. Upon hydration proniosomes are converted into niosomes which are capable of diffusing across the stratum corneum and then adhere to the cell surface which causes a high thermodynamic activity gradient of the drug at the vesicle/stratum corneum surface, thus acting as the driving force for the penetration of drugs across the skin.
[0043] The starting point for the evaluation of the kinetics of drug release from a transdermal patch is an estimation of the drug compound's maximum flux across the skin (flux (J)) which is typically expressed in units of 1.tg/cm2/h). Based on Fick's law of diffusion, the transport of gaboxadol molecules across skin will be maintained until the concentration gradient ceases to exist.
[0044] Accordingly, transdermal pharmaceutical formulations incorporating a reservoir will deliver a steady flux of gaboxadol across the membrane as long as excess undissolved drug remains in the reservoir. The time required for gaboxadol to reach a steady state of diffusion is called the lag time. In embodiments, matrix or monolithic devices may be characterized by a falling drug flux with time, as the matrix layers closer to the skin are depleted of drug. In embodiments, reservoir patches can include a porous membrane covering the reservoir of medication which can control release, while heat melting thin layers of medication embedded in the polymer matrix (e.g., the adhesive layer), can control release of drug from matrix or monolithic devices.
[0045] In embodiments, transdermal patches can include a release liner which protects the patch during storage and is removed prior to use, drug or drug solution in direct contact with the release liner, an adhesive which serves to adhere the components of the patch together along with adhering the patch to the skin, one or more membranes which can separate other layers, control the release of the drug from the reservoir and multi-layer patches, etc., and backing which protects the patch from the outer environment.
[0046] In embodiments, transdermal patches may include, but are not limited to, single-layer drug-in-adhesive patches, wherein the adhesive layer contains gaboxadol and serves to adhere the various layers of the patch together, along with the entire patch system to the skin, but is also responsible for the releasing of the drug; multi-layer drug-in-adhesive, wherein which is similar to a single-layer drug-in-adhesive patch, but contains multiple layers, for example, a layer for immediate release of the drug and another layer for controlled release of drug from the reservoir; reservoir patches wherein the drug layer is a liquid compartment containing a drug solution or suspension separated by the adhesive layer;
matrix patches, wherein a drug layer of a semisolid matrix containing a drug solution or suspension which is surrounded and partially overlaid by the adhesive layer; and vapor patches, wherein an adhesive layer not only serves to adhere the various layers together but also to release vapor.
Methods for making transdermal patches are described, e.g., in U.S. Patent Nos. 6,461,644, 6,676,961, 5,985,311, and 5,948,433.
matrix patches, wherein a drug layer of a semisolid matrix containing a drug solution or suspension which is surrounded and partially overlaid by the adhesive layer; and vapor patches, wherein an adhesive layer not only serves to adhere the various layers together but also to release vapor.
Methods for making transdermal patches are described, e.g., in U.S. Patent Nos. 6,461,644, 6,676,961, 5,985,311, and 5,948,433.
[0047] For example, an exemplary patch can include an impermeable backing bonded about its periphery to a permeation enhancer release rate controlling element and spaced apart therefrom in its central portion to define a permeation enhancer reservoir.
The permeation enhancer release rate controlling element is similarly bonded about its periphery to a porous support member and spaced apart therefrom in its central portion to define an aqueous drug reservoir containing gaboxadol, which is water soluble. A contact adhesive layer which is permeable to the gaboxadol and enhancer can be bonded to the surface of porous support and a strippable release liner, adapted to protect the adhesive prior to use and can be readily removed therefrom, may also be provided. To permit transport of drug and enhancer to the skin, the adhesive may be porous or hydrated to be permeable to the drug and enhancer. If impermeable to drug and enhancer, the adhesive can be located or otherwise adapted to impose no significant resistance to drug and permeation enhancer transport to the skin. In embodiments, a porous polyacrylate adhesive can be utilized in the contact adhesive layer. If a hydratable contact adhesive formulation is used, the adhesive can be equilibrated with at least about 10 weight percent water to permit transport of ionized drug. It should be recognized, however, that if a peripherally located adhesive is used, it need not be porous or permeable. Also, if desired, an adhesive overlay or some other means such as buckles, belts, or elastic bands could be used to maintain the transdermal delivery device on the skin in which case, if properly packaged, the adhesive layer and the strippable release liner could be omitted. Such a system might be desirable, for example, if the drug adversely affected the adhesive properties of the adhesive layer or if the drug were highly soluble in the adhesive.
The permeation enhancer release rate controlling element is similarly bonded about its periphery to a porous support member and spaced apart therefrom in its central portion to define an aqueous drug reservoir containing gaboxadol, which is water soluble. A contact adhesive layer which is permeable to the gaboxadol and enhancer can be bonded to the surface of porous support and a strippable release liner, adapted to protect the adhesive prior to use and can be readily removed therefrom, may also be provided. To permit transport of drug and enhancer to the skin, the adhesive may be porous or hydrated to be permeable to the drug and enhancer. If impermeable to drug and enhancer, the adhesive can be located or otherwise adapted to impose no significant resistance to drug and permeation enhancer transport to the skin. In embodiments, a porous polyacrylate adhesive can be utilized in the contact adhesive layer. If a hydratable contact adhesive formulation is used, the adhesive can be equilibrated with at least about 10 weight percent water to permit transport of ionized drug. It should be recognized, however, that if a peripherally located adhesive is used, it need not be porous or permeable. Also, if desired, an adhesive overlay or some other means such as buckles, belts, or elastic bands could be used to maintain the transdermal delivery device on the skin in which case, if properly packaged, the adhesive layer and the strippable release liner could be omitted. Such a system might be desirable, for example, if the drug adversely affected the adhesive properties of the adhesive layer or if the drug were highly soluble in the adhesive.
[0048] In embodiments, the aqueous reservoir containing the gaboxadol dispersed therein can contain at least 50%, e.g., 55%, 60%, 65%, 70%, 75%, 80%, 85% or 90%, water. In embodiments, the gaboxadol is present at a level above saturation. In embodiments, the reservoir can be in the form of a gel which may also contain stabilizing agents, other excipients and additives. A buffering agent may also be present if required to maintain the drug reservoir at physiological pH.
[0049] The permeation enhancer release rate controlling membrane controls the rate of release of the permeation enhancer from the permeation enhancer reservoir to the skin. In embodiments, a porous substrate functions as a physical support for the gelled aqueous reservoir and it should be sufficiently porous so that it imposes little or no resistance to the transport of drug and permeation enhancer to the skin. In this regard, viscosity of the aqueous reservoir can be related to the porosity of the porous substrate, i.e., it should be sufficiently viscous so that the aqueous reservoir will not readily flow through the porous substrate. The amount of gelling or other thickening agent used is not critical but should be an amount required to produce a viscosity in the aqueous reservoir sufficient to prevent the reservoir from migrating or otherwise leaking or oozing through the porous substrate.
The porous adhesive is likewise selected to provide little or no resistance to drug or enhancer release. A
function of the porous substrate is to provide a support to which the adhesive can be applied since it is difficult in many cases to provide a good bond between the porous adhesive and the aqueous medium within the reservoir. In embodiments, the rate controlling membrane can be a hydrophobic membrane which is capable of controlling the rate of release of the permeation enhancer from the enhancer reservoir while simultaneously preventing either water or the drug from diffusing or otherwise migrating into enhancer reservoir. In embodiments, upon standing, the aqueous drug reservoir can contain a saturation level of the permeation enhancer.
The porous adhesive is likewise selected to provide little or no resistance to drug or enhancer release. A
function of the porous substrate is to provide a support to which the adhesive can be applied since it is difficult in many cases to provide a good bond between the porous adhesive and the aqueous medium within the reservoir. In embodiments, the rate controlling membrane can be a hydrophobic membrane which is capable of controlling the rate of release of the permeation enhancer from the enhancer reservoir while simultaneously preventing either water or the drug from diffusing or otherwise migrating into enhancer reservoir. In embodiments, upon standing, the aqueous drug reservoir can contain a saturation level of the permeation enhancer.
[0050] The impermeable backing can be any material which has the desired flexibility, impermeability and insolubility with respect to the permeation enhancer and may, e.g., either be a single element or a metalized or composite coated element. Suitable materials can include, without limitation, ethylene vinyl acetate copolymers (EVA), polyesters, metalized polyesters, polyethylenes, polycarbonates, polyvinyl chlorides, polyvinylidene fluoride, polysulfones, or laminates of the above such as metalized polyester/EVA or medium density polyethylene/ EVA.
[0051] In embodiments, the porous substrate can be a soft, open-mesh, hydrophobic, fibrous material or may also be a non-fibrous, porous or sponge-like material as long as the substrate performs the function of being bondable to the adhesive and maintaining the gelled aqueous material within the reservoir without providing any significant resistance to the transport of drug and permeation enhancer. Examples of suitable materials include spun laced polyester, spun-laced polyolefin coated polyester, spun bonded polyethylene, spun laced polyethylene or EVA, microporous polypropylene, microporous polycarbonate, woven nylon, rayon or polyester cloths, and open cellular polyethylene or polyurethane foams.
[0052] The porous adhesive can be, e.g., a polyacrylate contact adhesive or any other suitable porous adhesive. Alternatively, the adhesive can be a non-porous contact adhesive which is applied about the periphery leaving the center portion beneath the aqueous reservoir substantially free of adhesive. In that case, any biocompatible contact adhesive could be applied, porous or not. Examples of adhesive compositions include silicone adhesives, polyacrylates, polyisobutylene-mineral oil adhesives, tackified styrene-isoprene-styrene block copolymers (SIS), tackified EVA contact adhesives, polyacrylamides and various hydratable, hot melt or emulsified (water borne) adhesive compositions.
[0053] The strippable release liner can be any material known to the art and may be the same as or different from the material used to provide the impermeable backing. A basic requirement for the strippable release liner is that it be substantially impermeable to the passage of components from the reservoir and be readily removed from the adhesive without destruction of the integrity of the patch.
[0054] With respect to the gelled aqueous drug reservoir, in the case of gaboxadol it is intended that water be the continuous phase. For that reason, the reservoir should be at least 50%, e.g., over 70% water. The gelling agent used to thicken the reservoir can be any of a wide variety of gelling agents, such as silica, particulate porous polyisoprene, bentonite clay, various gums such as agar, tragacanth, polysaccharides, cellulosic materials such as hydroxyethyl cellulose, hydroxypropyl cellulose or hydroxypropyl methyl cellulose and polyacrylates. The basic requirements are that the gelling agent is non-reactive with gaboxadol and does not substantially interfere with the ready diffusion of the materials from the patch. A relatively wide degree of flexibility in the amount of gelling agent used is available since the required viscosity varies inversely with the pore size selected for the substrate. A general range of approximately 1% to 10% by weight of these gelling agents may be adequate.
[0055] The drug reservoir may also contain a buffer to maintain the pH of the solution in a desired range during the drug delivery period. Suitable buffers should, of course, be unreactive with the other components of the system. Suitable buffers for acid drugs and basic drugs include, without limitation, phosphates, citrates, ascorbates and carbonates.
[0056] The permeation enhancer release rate controlling membrane should be substantially impermeable to the flow of water and gaboxadol from the aqueous reservoir into the permeation enhancer reservoir while having a sufficient degree of permeability to the permeation enhancer to permit the rate at which the permeation enhancer is released from the permeation enhancer reservoir into the skin to be controlled by membranes of reasonable thickness, e.g., in the range of 0.001-0.003 inches. The permeation enhancer release rate controlling membrane may either be a solid membrane or a microporous membrane having rate controlling material in the micropores to meter the release of permeation enhancer.
Examples of rate controlling materials for the formation of a membrane per se or for the rate controlling material to be included in the pores of a microporous membrane can be, e.g., hydrophobic materials such as polyethylene EVA, polycarbonates, polyvinyl chloride, polyacrylate polymers, polysulfone polymers, polyvinylidienes, polyvinylidenes, polyesters, and polyisobutylenes.
Examples of rate controlling materials for the formation of a membrane per se or for the rate controlling material to be included in the pores of a microporous membrane can be, e.g., hydrophobic materials such as polyethylene EVA, polycarbonates, polyvinyl chloride, polyacrylate polymers, polysulfone polymers, polyvinylidienes, polyvinylidenes, polyesters, and polyisobutylenes.
[0057] The permeation enhancer may be present in the permeation enhancer reservoir either neat or as solution or dispersion in an appropriate medium. Exemplary materials include surfactants, such as alkyl substituted sulfoxides, e.g., n-octyl methyl sulfoxide, n-nonyl methyl sulfoxide, n-decylmethyl sulfoxide (n-DMS), n-undecyl methyl sulfoxide, n-dodecyl methyl sulfoxide; mono- and di-substituted alkyl polyethylene glycols such as polyethylene glycol mono laurate and polyethylene glycol di laurate; ethanol and other lower alcohols; n-methyl pyrrolidone, dimethyl lauramine, diethyltoluamide, and the 1-substituted azacycloalkan-2-ones.
[0058] In embodiments, active methods are utilized to drive penetration of gaboxadol through the stratum corneum. In embodiments, active methods for skin permeabilisation involve the use of external energy to act as a driving force for drug transport across the skin or by physically disrupting the stratum corneum. Active methods for skin permeabilisation include ultrasound, electrically assisted methods (electroporation and iontophoresis), velocity based devices (powder injection, jet injectors), thermal approaches (lasers and radio-frequency heating) and mechanical methodologies such as microneedles and tape stripping.
[0059] Embodiments described herein provide that a patient with essential tremor, Tourette syndrome or Fragile X syndrome and in need thereof is administered a modified release pharmaceutical formulation or a transdermal pharmaceutical formulation form including gaboxadol or a pharmaceutically acceptable salt thereof. Gaboxadol or pharmaceutically acceptable salt thereof may be provided as an acid addition salt, a zwitter ion hydrate, zwitter ion anhydrate, hydrochloride or hydrobromide salt, or in the form of the zwitter ion monohydrate. Acid addition salts, include but are not limited to, maleic, fumaric, benzoic, ascorbic, succinic, oxalic, bis-methylenesalicylic, methanesulfonic, ethane-disulfonic, acetic, propionic, tartaric, salicylic, citric, gluconic, lactic, malic, mandelic, cinnamic, citraconic, aspartic, stearic, palmitic, itaconic, glycolic, p-amino-benzoic, glutamic, benzene sulfonic or theophylline acetic acid addition salts, as well as the 8-halotheophyllines, for example 8-bromo-theophylline. In other suitable embodiments, inorganic acid addition salts, including but not limited to, hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric or nitric acid addition salts may be used.
[0060] In embodiments, gaboxadol is provided as gaboxadol monohydrate. One skilled in the art will readily understand that the amounts of active ingredient in a pharmaceutical formulation will depend on the form of gaboxadol provided. For example, pharmaceutical formulations including 5.0, 10.0, or 15.0 mg gaboxadol correspond to 5.6, 11.3, or 16.9 mg gaboxadol monohydrate.
[0061] In embodiments, gaboxadol is crystalline, such as the crystalline hydrochloric acid salt, the crystalline hydrobromic acid salt, or the crystalline zwitter ion monohydrate. In embodiments, gaboxadol is provided as a crystalline monohydrate.
[0062] Deuteration of pharmaceuticals to improve pharmacokinetics (PK), pharmacodynamics (PD), and toxicity profiles, has been demonstrated previously with some classes of drugs. Accordingly the use of deuterium enriched gaboxadol is contemplated and within the scope of the methods and formulations described herein. Deuterium can be incorporated in any position in replace of hydrogen synthetically, according to the synthetic procedures known in the art. For example, deuterium may be incorporated to various positions having an exchangeable proton, such as the amine N--H, via proton-deuterium equilibrium exchange. Thus, deuterium may be incorporated selectively or non-selectively through methods known in the art to provide deuterium enriched gaboxadol. See Journal of Labeled Compounds and Radiopharmaceuticals 19(5) 689-702 (1982).
[0063] Deuterium enriched gaboxadol may be described by the percentage of incorporation of deuterium at a given position in the molecule in the place of hydrogen. For example, deuterium enrichment of 1% at a given position means that 1% of molecules in a given sample contain deuterium at that specified position. The deuterium enrichment can be determined using conventional analytical methods, such as mass spectrometry and nuclear magnetic resonance spectroscopy. In some embodiments deuterium enriched gaboxadol means that the specified position is enriched with deuterium above the naturally occurring distribution (i.e., above about.0156%). In embodiments deuterium enrichment is no less than about 1%, no less than about 5%, no less than about 10%, no less than about 20%, no less than about 50%, no less than about 70%, no less than about 80%, no less than about 90%, or no less than about 98% of deuterium at a specified position.
[0064] In embodiments methods of treating a patient with essential tremor, Tourette syndrome or Fragile X syndrome include administering to a patient in need thereof a modified release pharmaceutical formulation or a transdermal pharmaceutical formulation including about 0.05 mg to about 100 mg gaboxadol or a pharmaceutically acceptable salt thereof
[0065] In embodiments, the modified release pharmaceutical formulations or transdermal pharmaceutical formulations include 0.1 mg to 75 mg, 0.1 mg to 70 mg, 0.1 mg to 65 mg, 0.1 mg to 55 mg, 0.1 mg to 50 mg, 0.1 mg to 45 mg, 0.1 mg to 40 mg, 0.1 mg to 35 mg, 0.1 mg to 30 mg, 0.1 mg to 25 mg, 0.1 mg to 20 mg, 0.1 mg to 15 mg, 0.1 mg to 10 mg, 0.5 mg to 75 mg, 0.5 mg to 70 mg, 0.5 mg to 65 mg, 0.5 mg to 55 mg, 0.5 mg to 50 mg, 0.5 mg to 45 mg, 0.5 mg to 40 mg, 0.5 mg to 35 mg, 0.5 mg to 30 mg, 0.5 mg to 25 mg, 0.5 mg to 20 mg, 0.5 to 15 mg, 0.5 to 10 mg, 1 mg to 75 mg, 1 mg to 70 mg, 1 mg to 65 mg, 1 mg to 55 mg, 1 mg to 50 mg, 1 mg to 45 mg, 1 mg to 40 mg, 1 mg to 35 mg, 1 mg to 30 mg, 1 mg to 25 mg, 1 mg to 20 mg, 1 mg to 15 mg, 1 mg to 10 mg, 1.5 mg to 75 mg, 1.5 mg to 70 mg, 1.5 mg to 65 mg, 1.5 mg to 55 mg, 1.5 mg to 50 mg, 1.5 mg to 45 mg, 1.5 mg to 40 mg, 1.5 mg to 35 mg, 1.5 mg to 30 mg, 1.5 mg to 25 mg, 1.5 mg to 20 mg, 1.5 mg to 15 mg, 1.5 mg to 10 mg, 2 mg to 75 mg, 2 mg to 70 mg, 2 mg to 65 mg, 2 mg to 55 mg, 2 mg to 50 mg, 2 mg to 45 mg, 2 mg to 40 mg, 2 mg to 35 mg, 2 mg to 30 mg, 2 mg to 25 mg, 2 mg to 20 mg, 2 mg to 15 mg, 2 mg to 10 mg, 2.5 mg to 75 mg, 2.5 mg to 70 mg, 2.5 mg to 65 mg, 2.5 mg to 55 mg, 2.5 mg to 50 mg, 2.5 mg to 45 mg, 2.5 mg to 40 mg, 2.5 mg to 35 mg, 2.5 mg to 30 mg, 2.5 mg to 25 mg, 2.5 mg to 20 mg, 2.5 mg to 15 mg, 2.5 mg to 10 mg, 3 mg to 75 mg, 3 mg to 70 mg, 3 mg to 65 mg, 3 mg to 55 mg, 3 mg to 50 mg, 3 mg to 45 mg, 3 mg to 40 mg, 3 mg to 35 mg, 3 mg to 30 mg, 3 mg to 25 mg, 3 mg to 20 mg, 3 mg to 15 mg, 3 mg to 10 mg, 3.5 mg to 75 mg, 3.5 mg to 70 mg, 3.5 mg to 65 mg, 3.5 mg to 55 mg, 3.5 mg to 50 mg, 3.5 mg to 45 mg, 3.5 mg to 40 mg, 3.5 mg to 35 mg, 3.5 mg to 30 mg, 3.5 mg to 25 mg, 3.5 mg to 20 mg, 3.5 mg to 15 mg, 3.5 mg to 10 mg, 4 mg to 75 mg, 4 mg to 70 mg, 4 mg to 65 mg, 4 mg to 55 mg, 4 mg to 50 mg, 4 mg to 45 mg, 4 mg to 40 mg, 4 mg to 35 mg, 4 mg to 30 mg, 4 mg to 25 mg, 4 mg to 20 mg, 4 mg to 15 mg, 4 mg to 10 mg, 4.5 mg to 75 mg, 4.5 mg to 70 mg, 4.5 mg to 65 mg, 4.5 mg to 55 mg, 4.5 mg to 50 mg, 4.5 mg to 45 mg, 4.5 mg to 40 mg, 4.5 mg to 35 mg, 4.5 mg to 30 mg, 4.5 mg to 25 mg, 4.5 mg to 20 mg, 4.5 mg to 15 mg, 4.5 mg to 10 mg, 5 mg to 75 mg, 5 mg to 70 mg, 5 mg to 65 mg, 5 mg to 55 mg, 5 mg to 50 mg, 5 mg to 45 mg, 5 mg to 40 mg, 5 mg to 35 mg, 5 mg to 30 mg, 5 mg to 25 mg, 5 mg to 20 mg, 5 mg to 15 mg, or 5 mg to 10 mg, gaboxadol or a pharmaceutically acceptable salt thereof
[0066] In embodiments, pharmaceutical formulations include 5 mg to 20 mg, 5 mg to 10 mg, 4 mg to 6 mg, 6 mg to 8 mg, 8 mg to 10 mg, 10 mg to 12 mg, 12 mg to 14 mg, 14 mg to 16 mg, 16 mg to 18 mg, or 18 mg to 20 mg gaboxadol or a pharmaceutically acceptable salt thereof
[0067] In embodiments, modified pharmaceutical formulations or transdermal pharmaceutical formulations include 0.1 mg, 0.25 mg, 0.5 mg, 1 mg, 2.5 mg, 3 mg, 4 mg, 5 mg, 7 mg, 7.5 mg, 10 mg, 12.5 mg, 15 mg, 17.5 mg, or 20 mg gaboxadol or a pharmaceutically acceptable salt thereof or amounts that are multiples of such doses. In embodiments, modified pharmaceutical formulations or transdermal pharmaceutical formulations include 2.5 mg, 5 mg, 7.5 mg, 10 mg, 15 mg, or 20 mg gaboxadol or a pharmaceutically acceptable salt thereof.
[0068] In embodiments, ODDFs include 0.05 mg, 0.1 mg, 0.25 mg, 0.5 mg, 0.75 mg, 1 mg, 1.25 mg, 1.5 mg, 1.75 mg, 2 mg, 2.5 mg, 3 mg, 3.5 mg, 4 mg, 4.5 mg, 5 mg, 7 mg, 7.5 mg, 10 mg, 12.5 mg, 15 mg, 17.5 mg, or 20 mg gaboxadol or a pharmaceutically acceptable salt thereof or amounts that are multiples of such doses.
[0069] In embodiments, ERDFs include from about 1 mg to about 100 mg gaboxadol or a pharmaceutically acceptable salt thereof. In embodiments, ERDFs include 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 55 mg, 60 mg, 65 mg, 70 mg, 75 mg, 80 mg, 85 mg, 90 mg, 95 mg, or 100mg gaboxadol or a pharmaceutically acceptable salt thereof.
[0070] In embodiments, delayed release dosage forms include from about 0.05 mg to about 100 mg gaboxadol or a pharmaceutically acceptable salt thereof In embodiments, delayed release dosage forms include 0.05 mg, 0.1 mg, 0.25 mg, 0.5 mg, 0.75 mg, 1 mg, 1.25 mg, 1.5 mg, 1.75 mg, 2 mg, 2.5 mg, 3 mg, 3.5 mg, 4 mg, 4.5 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 55 mg, 60 mg, 65 mg, 70 mg, 75 mg, 80 mg, 85 mg, 90 mg, 95 mg, or 100mg gaboxadol or a pharmaceutically acceptable salt thereof
[0071] In embodiments, PRDFs include one or more pulse providing domains having from about 0.05 mg to about 100 mg gaboxadol or a pharmaceutically acceptable salt thereof. In embodiments, PRDFs include 0.05 mg, 0.1 mg, 0.25 mg, 0.5 mg, 0.75 mg, 1 mg, 1.25 mg, 1.5 mg, 1.75 mg, 2 mg, 2.5 mg, 3 mg, 3.5 mg, 4 mg, 4.5 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 55 mg, 60 mg, 65 mg, 70 mg, 75 mg, 80 mg, 85 mg, 90 mg, 95 mg, or 100mg gaboxadol or a pharmaceutically acceptable salt thereof
[0072] In embodiments, transdermal pharmaceutical formulations include from about 1 mg to about 100 mg gaboxadol or a pharmaceutically acceptable salt thereof. In embodiments, transdermal pharmaceutical formulations may include 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 55 mg, 60 mg, 65 mg, 70 mg, 75 mg, 80 mg, 85 mg, 90 mg, 95 mg, or 100mg gaboxadol or a pharmaceutically acceptable salt thereof.
[0073] In embodiments, a modified release pharmaceutical formulation provides an in vivo plasma profile having C. less than about 2500 ng/ml, 2000 ng/ml, 1750 ng/ml, 1500 ng/ml, 1250 ng/ml, 1000 ng/ml, 750 ng/ml, 500 ng/ml, 450 ng/ml, 400 ng/ml, 350 ng/ml, 300 ng/ml, 250 ng/ml, 200 ng/ml, 150 ng/ml, 100 ng/ml, 50 ng/ml or 25 ng/ml. In embodiments, ODDFs herein provide an in vivo plasma profile having a AUCo_. of less than about, e.g., 900 ng hr/ml, 850 ng hr/ml, 800 ng hr/ml, 750 ng hr/ml, or 700 ng hr/ml 650 ng hr/ml, 600 ng hr/ml, 550 ng hr/ml, 500 ng hr/ml, or 450 ng hr/ml. In embodiments, ODDFs herein provide an in vivo plasma profile having a AUCo_. of less than about, e.g., 400 ng hr/ml, 350 ng hr/ml, 300 ng hr/ml, 250 ng hr/ml, or 200 ng hr/ml. In embodiments, ODDFs herein provide an in vivo plasma profile having a AUCo_. of less than about, e.g., 150 ng hr/ml, 100 ng hr/ml, 75 ng hr/ml, or 50 ng hr/ml. In embodiments, transdermal pharmaceutical formulations provide an in vivo plasma profile having C. less than about 2500 ng/ml, 2000 ng/ml, 1750 ng/ml, 1500 ng/ml, 1250 ng/ml, 1000 ng/ml, 750 ng/ml, 500 ng/ml, 450 ng/ml, 400 ng/ml, 350 ng/ml, 300 ng/ml, 250 ng/ml, 200 ng/ml, 150 ng/ml, 100 ng/ml, 50 ng/ml or 25 ng/ml.
[0074] In embodiments, modified release pharmaceutical formulations with different drug release profiles may be combined to create a two phase or three-phase release profile. For example, as mentioned above, pharmaceutical formulations may be provided with an immediate release and an extended release profile. In embodiments, modified release pharmaceutical formulations may be provided with an immediate release, extended release and delayed release profile. Pharmaceutical formulations may be prepared using a pharmaceutically acceptable "carrier" composed of excipients that are considered safe and effective. The "carrier" includes all components present in the pharmaceutical formulation other than the active ingredient or ingredients. The term "carrier" includes, but is not limited to, excipients such as diluents, binders, lubricants, disintegrants, fillers, and coating formulations.
[0075] In embodiments, pharmaceutical formulations described herein are administered once, twice, three times daily, four times daily, every other day, every two days, every 3 days, every 4 days, every 5 days, every 6 days or every 7 days. In embodiments, a pharmaceutical formulation described herein is provided to the patient in the evening or in the morning. In embodiments, a pharmaceutical formulation described herein is provided to the patient once in the evening and once in the morning. In embodiments, the total amount of gaboxadol or a pharmaceutically acceptable salt thereof administered to a subject in a 24-hour period is 1 mg to 100 mg. In embodiments, the total amount of gaboxadol or a pharmaceutically acceptable salt thereof administered to a subject in a 24-hour period is 1 mg to 50 mg. In embodiments, the total amount of gaboxadol or a pharmaceutically acceptable salt thereof administered to a subject in a 24-hour period is 1 mg to 25 mg.
In embodiments, the total amount of gaboxadol or a pharmaceutically acceptable salt thereof administered to a subject in a 24-hour period is 1 mg to 20 mg. In embodiments, the total amount of gaboxadol or a pharmaceutically acceptable salt thereof administered to a subject in a 24-hour period is mg, 10 mg, or 15 mg. In embodiments, the total amount of gaboxadol or a pharmaceutically acceptable salt thereof administered to a subject in a 24-hour period is 20 mg.
In embodiments, the total amount of gaboxadol or a pharmaceutically acceptable salt thereof administered to a subject in a 24-hour period is 1 mg to 20 mg. In embodiments, the total amount of gaboxadol or a pharmaceutically acceptable salt thereof administered to a subject in a 24-hour period is mg, 10 mg, or 15 mg. In embodiments, the total amount of gaboxadol or a pharmaceutically acceptable salt thereof administered to a subject in a 24-hour period is 20 mg.
[0076] In embodiments, provided herein are methods of treating essential tremor, Tourette syndrome or Fragile X syndrome including administering to a patient in need thereof a modified release pharmaceutical formulation or a transdermal pharmaceutical formulation including gaboxadol or a pharmaceutically acceptable salt thereof wherein the formulation provides improvement in at least one symptom of essential tremor, Tourette syndrome or Fragile X syndrome. Symptoms of Fragile X syndrome may include, but are not limited to, tremors such as intention tremor, resting tremor, rigidity, ataxia, bradykinesia, gait, speech impairment, vocalization difficulties, cognition impairment, motor activity deficits, clinical seizure, hypotonia, hypertonia, feeding difficulty, drooling, mouthing behavior, sleep difficulties, hand flapping, easily provoked laughter, short attention span, reduced sensation, numbness or tingling, pain, muscle weakness in the lower limbs, inability to control the bladder or bowel, chronic pain syndromes, such as fibromyalgia and chronic migraine, hypothyroidism, hypertension, sleep apnea, vertigo, olfactory dysfunction, and hearing loss, short-term memory loss, loss of executive function, impulse control, self-monitoring, focusing attention appropriately, cognitive flexibility psychiatric symptoms such as anxiety, depression, moodiness, or irritability. In embodiments, provided herein are improvements in cognition. Cognition refers to the mental processes involved in gaining knowledge and comprehension, such as thinking, knowing, remembering, judging, and problem solving. These higher-level functions of the brain encompass language, imagination, perception, and the planning and execution of complex behaviors.
[0077] Symptoms of Tourette syndrome include common tics such as eye blinking and other vision irregularities, throat clearing, grunting, facial grimacing, shoulder shrugging, and head or shoulder jerking. self-harm such as punching oneself, and vocal tics including coprolalia (uttering swear words) or echolalia (repeating the words or phrases of others).
[0078] Symptoms of essential tremor include rhythmic, muscle movement involving to-and-fro movements (oscillations) of one or more parts of the body, e.g., hand tremor, head tremor, arm tremor, voice tremor, tongue tremor, leg tremor, and trunk tremor.
Head tremor may be seen as a "yes-yes" or "no-no" motion. Essential tremor may be accompanied by mild gait disturbance.
Head tremor may be seen as a "yes-yes" or "no-no" motion. Essential tremor may be accompanied by mild gait disturbance.
[0079] In embodiments, provided herein are methods of treating essential tremor, Tourette syndrome or Fragile X syndrome including administering to a patient in need thereof a ODDF including gaboxadol or a pharmaceutically acceptable salt thereof wherein the formulation provides improvement of at least one symptom within a half hour of administration. In embodiments, provided herein are methods of treating essential tremor, Tourette syndrome or Fragile X syndrome including administering to a patient in need thereof a ODDF including gaboxadol or a pharmaceutically acceptable salt thereof wherein the formulation provides improvement of at least one symptom within 45 minutes of administration. In embodiments, provided herein are methods of treating essential tremor, Tourette syndrome or Fragile X syndrome including administering to a patient in need thereof a ODDF including gaboxadol or a pharmaceutically acceptable salt thereof wherein the formulation provides improvement of at least one symptom within an hour of administration. In embodiments, provided herein are methods of treating essential tremor, Tourette syndrome or Fragile X syndrome including administering to a patient in need thereof a pharmaceutical formulation including gaboxadol or a pharmaceutically acceptable salt thereof wherein the formulation provides improvement of at least one symptom for more than 4 hours after administration of the pharmaceutical formulation to the patient. In embodiments, provided herein is improvement of at least one symptom for more than 6 hours after administration of the pharmaceutical formulation to the patient. In embodiments, provided herein is improvement of at least one symptom for more than, e.g., 8 hours, 10 hours, 12 hours, 15 hours, 18 hours, 20 hours, or 24 hours after administration of the pharmaceutical formulation to the patient. In embodiments, provided herein is improvement in at least one symptom for at least, e.g., 8 hours, 10 hours, 12 hours, 15 hours, 18 hours, 20 hours, or 24 hours after administration of the pharmaceutical formulation to the patient. In embodiments, provided herein is improvement in at least one symptom for 12 hours after administration of the pharmaceutical formulation to the patient.
[0080] Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of skill in the art to which the disclosure herein belongs.
[0081] The term "about" or "approximately" as used herein means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system. For example, "about" can mean within 3 or more than 3 standard deviations, per the practice in the art. Alternatively, "about" can mean a range of up to 20%, up to 10%, up to 5%, or up to 1% of a given value. Alternatively, particularly with respect to biological systems or processes, the term can mean within an order of magnitude, preferably within 5-fold, and more preferably within 2-fold, of a value.
[0082] "Improvement" refers to the treatment of a subject having essential tremor, Tourette syndrome or Fragile X syndrome measured relative to at least one symptom.
[0083] "PK" refers to the pharmacokinetic profile. C. is defined as the highest plasma drug concentration estimated during an experiment (ng/ml) following administration of a drug. T. is defined as the time when C. is estimated (min). AUCo_. is the total area under the plasma drug concentration-time curve, from drug administration until the drug is eliminated (ngphr/m1). The area under the curve is governed by clearance.
Clearance is defined as the volume of blood or plasma that is totally cleared of its content of drug per unit time (ml/min).
Clearance is defined as the volume of blood or plasma that is totally cleared of its content of drug per unit time (ml/min).
[0084] "Treating" or "treatment" refers to alleviating or delaying the appearance of clinical symptoms of a disease or condition in a subject that may be afflicted with or predisposed to the disease or condition, but does not yet experience or display clinical or subclinical symptoms of the disease or condition. In certain embodiments, "treating" or "treatment" may refer to preventing the appearance of clinical symptoms of a disease or condition in a subject that may be afflicted with or predisposed to the disease or condition, but does not yet experience or display clinical or subclinical symptoms of the disease or condition. "Treating"
or "treatment" also refers to inhibiting the disease or condition, e.g., arresting or reducing its development or at least one clinical or subclinical symptom thereof.
"Treating" or "treatment"
further refers to relieving the disease or condition, e.g., causing regression of the disease or condition or at least one of its clinical or subclinical symptoms. The benefit to a subject to be treated may be statistically significant, mathematically significant, or at least perceptible to the subject and/or the physician. Nonetheless, prophylactic (preventive) and therapeutic (curative) treatment are two separate embodiments of the disclosure herein.
or "treatment" also refers to inhibiting the disease or condition, e.g., arresting or reducing its development or at least one clinical or subclinical symptom thereof.
"Treating" or "treatment"
further refers to relieving the disease or condition, e.g., causing regression of the disease or condition or at least one of its clinical or subclinical symptoms. The benefit to a subject to be treated may be statistically significant, mathematically significant, or at least perceptible to the subject and/or the physician. Nonetheless, prophylactic (preventive) and therapeutic (curative) treatment are two separate embodiments of the disclosure herein.
[0085] "Pharmaceutically acceptable" refers to molecular entities, formulations and compositions that are "generally regarded as safe", e.g., that are physiologically tolerable and do not typically produce an allergic or similar untoward reaction, such as gastric upset and the like, when administered to a human. In embodiments, this term refers to molecular entities, formulations and compositions approved by a regulatory agency of the federal or a state government, as the GRAS list under section 204(s) and 409 of the Federal Food, Drug and Cosmetic Act, that is subject to premarket review and approval by the FDA
or similar lists, the U.S. Pharmacopeia or another generally recognized pharmacopeia for use in animals, and more particularly in humans.
or similar lists, the U.S. Pharmacopeia or another generally recognized pharmacopeia for use in animals, and more particularly in humans.
[0086] "Effective amount" or "therapeutically effective amount" means a dosage sufficient to alleviate one or more symptom of a disorder, disease, or condition being treated, or to otherwise provide a desired pharmacological and/or physiologic effect.
[0087] "Pharmaceutical formulations" includes dosage forms and unit doses.
[0088] "Patient in need thereof' may include individuals that have been diagnosed with essential tremor, Tourette syndrome or Fragile X syndrome. The methods may be provided to any individual including, e.g., wherein the patient is a neonate, infant, a pediatric patient (6 months to 12 years), an adolescent patient (age 12-18 years) or an adult (over 18 years).
[0089] The following examples are included to help illustrate and /or augment the description herein. The examples are not to be construed as limiting the disclosure herein in any way.
[0090] Prospective Assessment of Efficacy of Treatment of Essential Tremors With Gaboxadol 15mg Orally Disintegrating Tablets 15 mg
[0091]
Compendial Unit Strength Testing 15 mg Components Function Intragranular mg/tablet Gab ox ad ol t(equivalent anhydrous) Active 16.94 Aspartame NF Sweetener 2.00 Peppermint (Natural and Artificial) Flavor 1.00 Monoammonium Glycyrrhizinate Sweetener 1.00 Lactose Monohydrate NF Diluent 63.87 (modified spray-dried) Crospovidone NF Disintegrant 10.00 Mannitol USP Diluent 104.00 FD&C Blue No. 2 Aluminum Lake Colorant 0.20 Magnesium Stearate (non-bovine) NF Lubricant 1.00 Total Tablet Weight 200.0 t Conversion Factor: 1.129 mg of monohydrate = 1.0 mg of anhydrous
Compendial Unit Strength Testing 15 mg Components Function Intragranular mg/tablet Gab ox ad ol t(equivalent anhydrous) Active 16.94 Aspartame NF Sweetener 2.00 Peppermint (Natural and Artificial) Flavor 1.00 Monoammonium Glycyrrhizinate Sweetener 1.00 Lactose Monohydrate NF Diluent 63.87 (modified spray-dried) Crospovidone NF Disintegrant 10.00 Mannitol USP Diluent 104.00 FD&C Blue No. 2 Aluminum Lake Colorant 0.20 Magnesium Stearate (non-bovine) NF Lubricant 1.00 Total Tablet Weight 200.0 t Conversion Factor: 1.129 mg of monohydrate = 1.0 mg of anhydrous
[0092] The gaboxadol ODT formulation is prepared by blending the active drug, aspartame, peppermint flavor, monoammonium glycyrrhizinate, lactose monohydrate, crospovidone, mannitol and FD&C blue #2 in a suitable diffusional blender until uniform.
The magnesium stearate is added and the material is blended. The final lubricated blend is compressed on a tablet press.
The magnesium stearate is added and the material is blended. The final lubricated blend is compressed on a tablet press.
[0093] 15 mg gaboxadol ODTs prepared as above is to be utilized in a double-blind, placebo-controlled, parallel-group study. Subjects will be randomized to one of two treatment groups. Group A will receive 15 mg gaboxadol ODTs and Group B will receive placebo ODTs. Subject randomization will be stratified by concomitant primidone use and site type (sub-study vs non sub-study). Tremor will be assessed via The Essential Tremor Rating Assessment Scale (TETRAS) and accelerometry. In order to reduce rater bias, all subjects will be videotaped during the TETRAS performance scale testing according to a consistent script. The videotapes will be rated in a blinded manner. A subset of subjects will participate in an electroencephalography (EEG) and magnetoencephalography (MEG) sub-study to record power-spectral brain activity in specific neuro-anatomical locations and coherence with movement measures. Subjects will be screened up to one month prior to initiation of dosing. At Baseline, subjects will undergo safety and tremor assessments prior to dosing, will receive their first dose of study drug and will be monitored for safety for one hour following dosing. For one week subjects will receive one 15 mg ODT (or matching placebo) daily.
Subjects will return to the clinic on Day 8 for safety monitoring. At Day 15 (Week 3) subjects will return to clinic for safety and efficacy assessments. The final efficacy visit will occur at Day 28 (Week 4). A final safety visit will occur at Day 35 (Week 5).
Subjects will return to the clinic on Day 8 for safety monitoring. At Day 15 (Week 3) subjects will return to clinic for safety and efficacy assessments. The final efficacy visit will occur at Day 28 (Week 4). A final safety visit will occur at Day 35 (Week 5).
[0094] Prospective Assessment of Treatment of Essential Tremors With Gaboxadol Orally Disintegrating Film 10 mg
[0095] A hydrophilic film-forming agent is made from a graft copolymer having a film-forming block of polyvinyl alcohol (PVA) Kollicoat IR (marketed by BASF), molecular weight about 45,000 Da, and a polyethylene glycol (PEG) plasticizer. The gelling agent is Gelcarin 379 (commercially available from FMC Biopolymer), a compound of the carrageenan family. Kollicoat IR is introduced into 70% of the amount of purified water under stirring. Agitation is maintained until dissolution of Kollicoat IR .
Since gas bubbles are generated, the solution may be dissolved under a vacuum or the solution can stand (its viscosity is very low) until the gas is dispersed. Tween 80 is incorporated to the stirred solution and flavorings (condensed licorice extract and essential oil of peppermint) and sweetener (acesulfame potassium) are added. Stirring is continued until complete dissolution of all powder. Gaboxadol monohydrate 10 mg is introduced with stirring until it is dispersed in the mixture, then the remaining water (30%) is added. Gelcarin 379 is incorporated into suspension under agitation to prevent the formation of aggregates. The final mixture consists of gaboxadol 10 mg, Kollicoat IR 15% w/w, Gelcarin 379 5% w/w, Tween 80 0.2%
w/w, acesulfame potassium 0.05% w/w, flavorings 1.5% w/w, purified water qs. Mixing aliquots are then coated on a polyester backing and dried in a type Lab Dryer Coater (Mathis equipment). The coated surfaces are cut using a manual press in 6 cm2 units, and then manually packaged in sealed bags.
Since gas bubbles are generated, the solution may be dissolved under a vacuum or the solution can stand (its viscosity is very low) until the gas is dispersed. Tween 80 is incorporated to the stirred solution and flavorings (condensed licorice extract and essential oil of peppermint) and sweetener (acesulfame potassium) are added. Stirring is continued until complete dissolution of all powder. Gaboxadol monohydrate 10 mg is introduced with stirring until it is dispersed in the mixture, then the remaining water (30%) is added. Gelcarin 379 is incorporated into suspension under agitation to prevent the formation of aggregates. The final mixture consists of gaboxadol 10 mg, Kollicoat IR 15% w/w, Gelcarin 379 5% w/w, Tween 80 0.2%
w/w, acesulfame potassium 0.05% w/w, flavorings 1.5% w/w, purified water qs. Mixing aliquots are then coated on a polyester backing and dried in a type Lab Dryer Coater (Mathis equipment). The coated surfaces are cut using a manual press in 6 cm2 units, and then manually packaged in sealed bags.
[0096] 10 mg gaboxadol ODFs prepared as above will be utilized in a double-blind, placebo-controlled, parallel-group study. Subjects will be randomized to one of two treatment
97 PCT/US2020/042044 groups. Group A will receive 10 mg gaboxadol ODFs and Group B will receive placebo ODFs. Subject randomization will be stratified by concomitant primidone use and site type (sub-study vs non sub-study). Tremor will be assessed via The Essential Tremor Rating Assessment Scale (TETRAS) and accelerometry. In order to reduce rater bias, all subjects will be videotaped during the TETRAS performance scale testing according to a consistent script. The videotapes will be rated in a blinded manner. A subset of subjects will participate in an electroencephalography (EEG) and magnetoencephalography (MEG) sub-study to record power-spectral brain activity in specific neuro-anatomical locations and coherence with movement measures. Subjects will be screened up to one month prior to initiation of dosing. At Baseline, subjects will undergo safety and tremor assessments prior to dosing, will receive their first dose of study drug and will be monitored for safety for one hour following dosing. For one week subjects will receive one 10 mg ODF (or matching placebo) daily.
Subjects will return to the clinic on Day 8 for safety monitoring. At Day 15 (Week 3) subjects will return to clinic for safety and efficacy assessments. The final efficacy visit will occur at Day 28 (Week 4). A final safety visit will occur at Day 35 (Week 5).
EXAMPLES 3 and 4 [0097] Transdeonal Patch Fabrication
Subjects will return to the clinic on Day 8 for safety monitoring. At Day 15 (Week 3) subjects will return to clinic for safety and efficacy assessments. The final efficacy visit will occur at Day 28 (Week 4). A final safety visit will occur at Day 35 (Week 5).
EXAMPLES 3 and 4 [0097] Transdeonal Patch Fabrication
[0098] Transdermal delivery devices for the delivery of gaboxadol monohydrate and gaboxadol hydrochloride are fabricated as set forth below (percentages in weight %.). The systems can be fabricated in sizes of from 3 cm2 to 40 cm2. When applied to the chest of a patient, a projected steady state delivery rate in the ranges shown may be established after approximately 2-7 hours and maintained for the projected periods shown.
[0099] EXAMPLE 3 Backing: Polyester/ EVA laminate Permeation enhancer: 50% n-DMS - 50% EVA (40% VA) Reservoir: Loading 40 mg/cm2 Rate Control Membrane: EVA (12% VA) 2 mil thick Drug: 25% gaboxadol monohydrate Reservoir: 3% hydroxypropyl cellulose (gellant) ¨ 67%
water Loading 30 mg/cm2 Support membrane: Porous polypropylene ¨ 2 mil thick Adhesive: In-line porous polyacrylate Steady State In Vivo Release Rate: 15 [1g/cm2 hr for 1-3 days
water Loading 30 mg/cm2 Support membrane: Porous polypropylene ¨ 2 mil thick Adhesive: In-line porous polyacrylate Steady State In Vivo Release Rate: 15 [1g/cm2 hr for 1-3 days
[0100] EXAMPLE 4 Backing: Medium Density Polyethylene Polyester/ EVA
Trilaminate Permeation enhancer: 50% n-DMS - 50% EVA (40% VA) Reservoir: Loading 40 mg/cm2 Rate Control Membrane: EVA (12% VA) 2 mil thick Drug: 30% gaboxadol HC1 Reservoir: 5% hydroxypropylmethyl cellulose (gellant) ¨
80% water Loading 25 mg/cm2 Support membrane: Spun based EVA/polyester Adhesive: In-line porous polyacrylate Steady State In Vivo Release Rate: 20 [tg/cm2 hr for 1-3 days
Trilaminate Permeation enhancer: 50% n-DMS - 50% EVA (40% VA) Reservoir: Loading 40 mg/cm2 Rate Control Membrane: EVA (12% VA) 2 mil thick Drug: 30% gaboxadol HC1 Reservoir: 5% hydroxypropylmethyl cellulose (gellant) ¨
80% water Loading 25 mg/cm2 Support membrane: Spun based EVA/polyester Adhesive: In-line porous polyacrylate Steady State In Vivo Release Rate: 20 [tg/cm2 hr for 1-3 days
[0101] While embodiments of the disclosure have been described and exemplified herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of various embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
Claims (23)
1. A method of treating essential tremors comprising administering to a patient in need thereof a pharmaceutical formulation comprising about 0.05 mg to about 100 mg gaboxadol or a pharmaceutically acceptable salt thereof wherein the formulation provides a Tmax of less than 20 minutes.
2. The method according to claim 1, wherein the pharmaceutical formulation is an orally disintegrating dosage form.
3. The method according to claim 2, wherein the orally disintegrating dosage form is an orally disintegrating tablet, an orally disintegrating film, an orally disintegrating wafer or an orally disintegrating capsule.
4. A method of treating essential tremors comprising administering to a patient in need thereof an extended release pharmaceutical formulation comprising about 0.05 mg to about 100 mg gaboxadol or a pharmaceutically acceptable salt thereof wherein the formulation provides sustained delivery of gaboxadol or a pharmaceutically acceptable salt thereof for more than 4 hours.
5. The method according to claim 4, wherein the formulation provides sustained delivery of gaboxadol or a pharmaceutically acceptable salt thereof for more than 8 hours.
6. A method of treating essential tremors comprising administering to a patient in need thereof a transdermal pharmaceutical formulation comprising about 0.05 mg to about 100 mg gaboxadol or a pharmaceutically acceptable salt thereof wherein the transdermal pharmaceutical formulation comprises a patch.
7. The method according to claim 6, wherein the patch delivers a sustained dose of gaboxadol or a pharmaceutically acceptable salt thereof over a period ranging from 1 day to one week.
8. A transdermal patch comprising from about 0.05 mg to about 100 mg gaboxadol or a pharmaceutically acceptable salt thereof.
9. A method of treating Tourette syndrome comprising administering to a patient in need thereof a pharmaceutical formulation comprising about 0.05 mg to about 100 mg gaboxadol or a pharmaceutically acceptable salt thereof wherein the formulation provides a Tmax of less than 20 minutes.
10. The method according to claim 9, wherein the pharmaceutical formulation is an orally disintegrating dosage form.
11. The method according to claim 10, wherein the orally disintegrating dosage form is an orally disintegrating tablet, an orally disintegrating film, an orally disintegrating wafer or an orally disintegrating capsule.
12. A method of treating Tourette syndrome comprising administering to a patient in need thereof an extended release pharmaceutical formulation comprising about 0.05 mg to about 100 mg gaboxadol or a pharmaceutically acceptable salt thereof wherein the formulation provides sustained delivery of gaboxadol or a pharmaceutically acceptable salt thereof for more than 4 hours.
13. The method according to claim 12, wherein the formulation provides sustained delivery of gaboxadol or a pharmaceutically acceptable salt thereof for more than 8 hours.
14. A method of treating Tourette syndrome comprising administering to a patient in need thereof a transdermal pharmaceutical formulation comprising about 0.05 mg to about 100 mg gaboxadol or a pharmaceutically acceptable salt thereof wherein the transdermal pharmaceutical formulation comprises a patch.
15. The method according to claim 14, wherein the patch delivers a sustained dose of gaboxadol or a pharmaceutically acceptable salt thereof over a period ranging from 1 day to one week.
16. A method of treating Fragile X syndrome comprising administering to a patient in need thereof a transdermal pharmaceutical formulation comprising about 0.05 mg to about 100 mg gaboxadol or a pharmaceutically acceptable salt thereof wherein the transdermal pharmaceutical formulation comprises a patch.
17. The method according to claim 16, wherein the patch delivers a sustained dose of gaboxadol or a pharmaceutically acceptable salt thereof over a period ranging from 1 day to one week.
18. A method of treating Fragile X Syndrome comprising administering to a patient in need thereof a pharmaceutical formulation comprising about 0.05 mg to about 100 mg gaboxadol or a pharmaceutically acceptable salt thereof wherein the formulation provides a Tmax of less than 20 minutes.
19. The method according to claim 1, wherein the pharmaceutical formulation is an orally disintegrating dosage form.
20. The method according to claim 2, wherein the orally disintegrating dosage form is an orally disintegrating tablet, an orally disintegrating film, an orally disintegrating wafer or an orally disintegrating capsule.
21. A modified release pharmaceutical formulation comprising about 0.05 mg to about 100 mg gaboxadol or a pharmaceutically acceptable salt thereof wherein the formulation provides sustained delivery of gaboxadol or a pharmaceutically acceptable salt thereof for more than 4 hours for use in treating essential tremors, Tourette syndrome or Fragile X syndrome.
22. A modified release pharmaceutical formulation that is an orally disintegrating dosage form comprising about 0.05 mg to about 100 mg gaboxadol or a pharmaceutically acceptable salt thereof wherein the formulation provides a Tmax of less than 20 minutes for use in treating essential tremors, Tourette syndrome or Fragile X syndrome.
23. A transdermal pharmaceutical formulation comprising about 0.05 mg to about 100 mg gaboxadol or a pharmaceutically acceptable salt thereof for use in treating essential tremors, Tourette syndrome or Fragile X syndrome, wherein the transdermal pharmaceutical formulation is in the form of a patch.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201962874152P | 2019-07-15 | 2019-07-15 | |
| US62/874,152 | 2019-07-15 | ||
| PCT/US2020/042044 WO2021011597A1 (en) | 2019-07-15 | 2020-07-15 | Pharmaceutical formulations containing gaboxadol for therapeutic treatment |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CA3146737A1 true CA3146737A1 (en) | 2021-01-21 |
Family
ID=74211193
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA3146737A Pending CA3146737A1 (en) | 2019-07-15 | 2020-07-15 | Pharmaceutical formulations containing gaboxadol for therapeutic treatment |
Country Status (10)
| Country | Link |
|---|---|
| US (3) | US20210015760A1 (en) |
| EP (1) | EP3982937A4 (en) |
| JP (1) | JP2022540917A (en) |
| KR (1) | KR20220035195A (en) |
| CN (2) | CN118141810A (en) |
| AU (1) | AU2020313930A1 (en) |
| CA (1) | CA3146737A1 (en) |
| IL (1) | IL289657A (en) |
| MX (1) | MX2022000663A (en) |
| WO (1) | WO2021011597A1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180338959A1 (en) * | 2017-05-24 | 2018-11-29 | Ovid Therapeutics Inc. | Treatment of depressive disorders |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2017516868A (en) * | 2014-06-06 | 2017-06-22 | オービッド・セラピューティクス・インコーポレイテッドOvid Therapeutics, Inc. | How to increase persistent suppression and treat secondary insomnia |
| ES2664810T3 (en) * | 2014-06-12 | 2018-04-23 | Pfizer Limited | Imidazopyridazine derivatives as modulators of GABAA receptor activity |
| BR112018000933A2 (en) * | 2015-07-17 | 2018-09-04 | Ovid Therapeutics Inc | methods of treating a developmental disorder |
| US20170348232A1 (en) * | 2016-06-07 | 2017-12-07 | Ovid Therapeutics Inc. | Formulations of gaboxadol for treatment of angelman syndrome, fragile x syndrome and fragile x-associated tremor/ataxia syndrome |
| KR20230050474A (en) * | 2016-08-11 | 2023-04-14 | 오비드 테라퓨틱스 인크. | Methods and compositions for treatment of epileptic disorders |
| CA3043626A1 (en) * | 2016-11-22 | 2018-05-31 | Ovid Therapeutics Inc. | Methods of treating attention deficit/hyperactivity disorder with gaboxadol |
-
2020
- 2020-07-15 MX MX2022000663A patent/MX2022000663A/en unknown
- 2020-07-15 JP JP2022502537A patent/JP2022540917A/en active Pending
- 2020-07-15 KR KR1020227005115A patent/KR20220035195A/en active Pending
- 2020-07-15 AU AU2020313930A patent/AU2020313930A1/en active Pending
- 2020-07-15 WO PCT/US2020/042044 patent/WO2021011597A1/en not_active Ceased
- 2020-07-15 US US16/929,345 patent/US20210015760A1/en not_active Abandoned
- 2020-07-15 EP EP20840941.7A patent/EP3982937A4/en active Pending
- 2020-07-15 CN CN202410172907.XA patent/CN118141810A/en active Pending
- 2020-07-15 CN CN202080051393.2A patent/CN114173765A/en active Pending
- 2020-07-15 CA CA3146737A patent/CA3146737A1/en active Pending
-
2021
- 2021-10-21 US US17/507,369 patent/US20220040120A1/en not_active Abandoned
-
2022
- 2022-01-06 IL IL289657A patent/IL289657A/en unknown
-
2024
- 2024-04-09 US US18/630,105 patent/US20240252447A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| EP3982937A1 (en) | 2022-04-20 |
| IL289657A (en) | 2022-03-01 |
| CN118141810A (en) | 2024-06-07 |
| CN114173765A (en) | 2022-03-11 |
| MX2022000663A (en) | 2022-02-16 |
| US20210015760A1 (en) | 2021-01-21 |
| US20240252447A1 (en) | 2024-08-01 |
| KR20220035195A (en) | 2022-03-21 |
| EP3982937A4 (en) | 2022-08-10 |
| US20220040120A1 (en) | 2022-02-10 |
| AU2020313930A1 (en) | 2022-02-03 |
| JP2022540917A (en) | 2022-09-20 |
| WO2021011597A1 (en) | 2021-01-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2688557B1 (en) | Methods and compositions for treatment of attention deficit disorder | |
| JPH11511162A (en) | Oral fast dissolving composition for dopamine agonist | |
| WO2006133349A2 (en) | Orally disintegrable sleep aid formulations | |
| JP2008540437A (en) | Controlled release formulation containing quinine | |
| US20240252447A1 (en) | Pharmaceutical formulations containing gaboxadol for therapeutic treatment | |
| CA3075478A1 (en) | Use of gaboxadol in the treatment of narcolepsy | |
| AU2018285927B2 (en) | Modified-release tiopronin compositions, kits and methods for treating cystinuria and related disorders | |
| US11364228B2 (en) | Gaboxadol for therapeutic treatment of 1p36 deletion syndrome | |
| JP2007509031A (en) | Galantamine oral formulation and use thereof | |
| US20250073214A1 (en) | Use of gaboxadol for the treatment of non-24 hour sleep-wake disorder | |
| CA3071192A1 (en) | Modified-release bucillamine compositions, kits, and methods for treating cystinuria, arthritis, gout, and related disorders |