CA2808185A1 - Antibodies to il-1.beta. and il-18, for treatment of disease - Google Patents
Antibodies to il-1.beta. and il-18, for treatment of disease Download PDFInfo
- Publication number
- CA2808185A1 CA2808185A1 CA2808185A CA2808185A CA2808185A1 CA 2808185 A1 CA2808185 A1 CA 2808185A1 CA 2808185 A CA2808185 A CA 2808185A CA 2808185 A CA2808185 A CA 2808185A CA 2808185 A1 CA2808185 A1 CA 2808185A1
- Authority
- CA
- Canada
- Prior art keywords
- antibody
- antibodies
- disease
- cells
- human
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title claims abstract description 125
- 201000010099 disease Diseases 0.000 title claims abstract description 100
- 238000011282 treatment Methods 0.000 title abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 151
- 102000003810 Interleukin-18 Human genes 0.000 claims description 109
- 108090000171 Interleukin-18 Proteins 0.000 claims description 109
- 108010002352 Interleukin-1 Proteins 0.000 claims description 50
- 102000000589 Interleukin-1 Human genes 0.000 claims description 49
- 230000000694 effects Effects 0.000 claims description 31
- 208000022559 Inflammatory bowel disease Diseases 0.000 claims description 30
- 208000001072 type 2 diabetes mellitus Diseases 0.000 claims description 27
- 208000011231 Crohn disease Diseases 0.000 claims description 20
- 230000001404 mediated effect Effects 0.000 claims description 19
- 206010064930 age-related macular degeneration Diseases 0.000 claims description 17
- 208000002780 macular degeneration Diseases 0.000 claims description 16
- 208000023275 Autoimmune disease Diseases 0.000 claims description 13
- 230000000903 blocking effect Effects 0.000 claims description 12
- 230000003472 neutralizing effect Effects 0.000 claims description 12
- 108010034143 Inflammasomes Proteins 0.000 claims description 11
- 208000026278 immune system disease Diseases 0.000 claims description 10
- 206010009900 Colitis ulcerative Diseases 0.000 claims description 9
- 201000006704 Ulcerative Colitis Diseases 0.000 claims description 9
- 238000002560 therapeutic procedure Methods 0.000 claims description 9
- 230000002757 inflammatory effect Effects 0.000 claims description 8
- 208000011594 Autoinflammatory disease Diseases 0.000 claims description 7
- 230000009977 dual effect Effects 0.000 claims description 4
- 239000000203 mixture Substances 0.000 abstract description 37
- 210000004027 cell Anatomy 0.000 description 159
- 241000282414 Homo sapiens Species 0.000 description 117
- 108090000623 proteins and genes Proteins 0.000 description 86
- 230000027455 binding Effects 0.000 description 82
- 239000000427 antigen Substances 0.000 description 64
- 108091007433 antigens Proteins 0.000 description 63
- 102000036639 antigens Human genes 0.000 description 63
- 102000004169 proteins and genes Human genes 0.000 description 62
- 235000018102 proteins Nutrition 0.000 description 58
- 108060003951 Immunoglobulin Proteins 0.000 description 53
- 102000018358 immunoglobulin Human genes 0.000 description 53
- 239000013598 vector Substances 0.000 description 44
- 108090000765 processed proteins & peptides Proteins 0.000 description 38
- 230000014509 gene expression Effects 0.000 description 36
- 241000699670 Mus sp. Species 0.000 description 35
- 102000005962 receptors Human genes 0.000 description 34
- 108020003175 receptors Proteins 0.000 description 34
- 241000699666 Mus <mouse, genus> Species 0.000 description 33
- 150000007523 nucleic acids Chemical class 0.000 description 32
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 30
- 102000004196 processed proteins & peptides Human genes 0.000 description 30
- 241001465754 Metazoa Species 0.000 description 28
- 238000004519 manufacturing process Methods 0.000 description 27
- 206010028980 Neoplasm Diseases 0.000 description 26
- 210000001072 colon Anatomy 0.000 description 26
- -1 e.g. Proteins 0.000 description 26
- 235000018417 cysteine Nutrition 0.000 description 25
- 208000035475 disorder Diseases 0.000 description 25
- 102000039446 nucleic acids Human genes 0.000 description 25
- 108020004707 nucleic acids Proteins 0.000 description 25
- 229920001184 polypeptide Polymers 0.000 description 25
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 24
- 235000001014 amino acid Nutrition 0.000 description 23
- 210000004408 hybridoma Anatomy 0.000 description 23
- 108010076504 Protein Sorting Signals Proteins 0.000 description 22
- 125000003275 alpha amino acid group Chemical group 0.000 description 22
- 210000001508 eye Anatomy 0.000 description 22
- 108091033319 polynucleotide Proteins 0.000 description 22
- 102000040430 polynucleotide Human genes 0.000 description 22
- 239000002157 polynucleotide Substances 0.000 description 22
- 108020004414 DNA Proteins 0.000 description 21
- 238000003556 assay Methods 0.000 description 21
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 20
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 20
- 238000005516 engineering process Methods 0.000 description 20
- 230000001965 increasing effect Effects 0.000 description 20
- 206010061218 Inflammation Diseases 0.000 description 19
- 229940024606 amino acid Drugs 0.000 description 19
- 239000003814 drug Substances 0.000 description 19
- 239000012634 fragment Substances 0.000 description 19
- 230000006870 function Effects 0.000 description 19
- 230000004054 inflammatory process Effects 0.000 description 19
- 210000001519 tissue Anatomy 0.000 description 19
- 150000001413 amino acids Chemical class 0.000 description 18
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 17
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 17
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 17
- 201000011510 cancer Diseases 0.000 description 17
- 206010012601 diabetes mellitus Diseases 0.000 description 17
- 108090000426 Caspase-1 Proteins 0.000 description 16
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 16
- 239000003795 chemical substances by application Substances 0.000 description 16
- 239000003446 ligand Substances 0.000 description 16
- 125000003729 nucleotide group Chemical group 0.000 description 16
- 230000001225 therapeutic effect Effects 0.000 description 16
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 15
- 102100035904 Caspase-1 Human genes 0.000 description 15
- 102000004877 Insulin Human genes 0.000 description 15
- 108090001061 Insulin Proteins 0.000 description 15
- 229940125396 insulin Drugs 0.000 description 15
- 230000028327 secretion Effects 0.000 description 15
- 102000004127 Cytokines Human genes 0.000 description 14
- 108090000695 Cytokines Proteins 0.000 description 14
- 241000124008 Mammalia Species 0.000 description 14
- 206010035226 Plasma cell myeloma Diseases 0.000 description 14
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 14
- 229940072221 immunoglobulins Drugs 0.000 description 14
- 125000000539 amino acid group Chemical group 0.000 description 13
- 150000001945 cysteines Chemical class 0.000 description 13
- 230000004927 fusion Effects 0.000 description 13
- 201000000050 myeloid neoplasm Diseases 0.000 description 13
- 239000002773 nucleotide Substances 0.000 description 13
- 210000001744 T-lymphocyte Anatomy 0.000 description 12
- 241000700605 Viruses Species 0.000 description 12
- 230000004913 activation Effects 0.000 description 12
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 12
- 229940079593 drug Drugs 0.000 description 12
- 239000013604 expression vector Substances 0.000 description 12
- 239000001963 growth medium Substances 0.000 description 12
- 208000027866 inflammatory disease Diseases 0.000 description 12
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 12
- 210000002966 serum Anatomy 0.000 description 12
- 208000019693 Lung disease Diseases 0.000 description 11
- 108091028043 Nucleic acid sequence Proteins 0.000 description 11
- 238000013459 approach Methods 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 11
- 206010009887 colitis Diseases 0.000 description 11
- 208000022993 cryopyrin-associated periodic syndrome Diseases 0.000 description 11
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 11
- 229920003045 dextran sodium sulfate Polymers 0.000 description 11
- 125000005647 linker group Chemical group 0.000 description 11
- 238000002965 ELISA Methods 0.000 description 10
- 102000004190 Enzymes Human genes 0.000 description 10
- 108090000790 Enzymes Proteins 0.000 description 10
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 10
- 230000004071 biological effect Effects 0.000 description 10
- 238000004113 cell culture Methods 0.000 description 10
- 238000010367 cloning Methods 0.000 description 10
- 239000012636 effector Substances 0.000 description 10
- 239000003623 enhancer Substances 0.000 description 10
- 229940088598 enzyme Drugs 0.000 description 10
- 238000009472 formulation Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 10
- 229960002702 piroxicam Drugs 0.000 description 10
- 230000004044 response Effects 0.000 description 10
- 241000894007 species Species 0.000 description 10
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 9
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 9
- 241001529936 Murinae Species 0.000 description 9
- 230000001363 autoimmune Effects 0.000 description 9
- 239000000872 buffer Substances 0.000 description 9
- 230000028993 immune response Effects 0.000 description 9
- 210000004962 mammalian cell Anatomy 0.000 description 9
- 230000035772 mutation Effects 0.000 description 9
- 239000013612 plasmid Substances 0.000 description 9
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 8
- 108091026890 Coding region Proteins 0.000 description 8
- 108020004705 Codon Proteins 0.000 description 8
- 108091034117 Oligonucleotide Proteins 0.000 description 8
- 230000004075 alteration Effects 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 230000001684 chronic effect Effects 0.000 description 8
- 239000000562 conjugate Substances 0.000 description 8
- 230000012010 growth Effects 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 8
- 230000003993 interaction Effects 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 230000037361 pathway Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- 230000010076 replication Effects 0.000 description 8
- 206010039073 rheumatoid arthritis Diseases 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 235000000346 sugar Nutrition 0.000 description 8
- 102100024746 Dihydrofolate reductase Human genes 0.000 description 7
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 7
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 7
- 206010022489 Insulin Resistance Diseases 0.000 description 7
- 208000029523 Interstitial Lung disease Diseases 0.000 description 7
- 102100024952 Protein CBFA2T1 Human genes 0.000 description 7
- 201000004681 Psoriasis Diseases 0.000 description 7
- 239000000556 agonist Substances 0.000 description 7
- 208000006673 asthma Diseases 0.000 description 7
- 235000005911 diet Nutrition 0.000 description 7
- 108020001096 dihydrofolate reductase Proteins 0.000 description 7
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 7
- 230000001900 immune effect Effects 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 208000014674 injury Diseases 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 239000002953 phosphate buffered saline Substances 0.000 description 7
- 238000003127 radioimmunoassay Methods 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 208000011580 syndromic disease Diseases 0.000 description 7
- 238000013518 transcription Methods 0.000 description 7
- 230000035897 transcription Effects 0.000 description 7
- 201000004624 Dermatitis Diseases 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 6
- 208000030836 Hashimoto thyroiditis Diseases 0.000 description 6
- 101000960954 Homo sapiens Interleukin-18 Proteins 0.000 description 6
- 208000031981 Thrombocytopenic Idiopathic Purpura Diseases 0.000 description 6
- 230000001154 acute effect Effects 0.000 description 6
- 208000026935 allergic disease Diseases 0.000 description 6
- 230000001588 bifunctional effect Effects 0.000 description 6
- 230000007812 deficiency Effects 0.000 description 6
- 230000002950 deficient Effects 0.000 description 6
- 230000037213 diet Effects 0.000 description 6
- 239000008103 glucose Substances 0.000 description 6
- 230000036541 health Effects 0.000 description 6
- 108010037896 heparin-binding hemagglutinin Proteins 0.000 description 6
- 102000043959 human IL18 Human genes 0.000 description 6
- 229940127121 immunoconjugate Drugs 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 208000015181 infectious disease Diseases 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 210000000056 organ Anatomy 0.000 description 6
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 6
- 238000002823 phage display Methods 0.000 description 6
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 6
- 230000002285 radioactive effect Effects 0.000 description 6
- 230000003248 secreting effect Effects 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- 208000024891 symptom Diseases 0.000 description 6
- 229940124597 therapeutic agent Drugs 0.000 description 6
- 108700012359 toxins Proteins 0.000 description 6
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 5
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 5
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 5
- 208000002267 Anti-neutrophil cytoplasmic antibody-associated vasculitis Diseases 0.000 description 5
- 206010003827 Autoimmune hepatitis Diseases 0.000 description 5
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 5
- 208000005590 Choroidal Neovascularization Diseases 0.000 description 5
- 206010060823 Choroidal neovascularisation Diseases 0.000 description 5
- 241000699800 Cricetinae Species 0.000 description 5
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 5
- 102000003886 Glycoproteins Human genes 0.000 description 5
- 108090000288 Glycoproteins Proteins 0.000 description 5
- 241000282412 Homo Species 0.000 description 5
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 description 5
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 5
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 5
- 208000001145 Metabolic Syndrome Diseases 0.000 description 5
- 241000283984 Rodentia Species 0.000 description 5
- 201000009594 Systemic Scleroderma Diseases 0.000 description 5
- 206010042953 Systemic sclerosis Diseases 0.000 description 5
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 5
- 208000027418 Wounds and injury Diseases 0.000 description 5
- 230000003213 activating effect Effects 0.000 description 5
- 230000004900 autophagic degradation Effects 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- 229960002685 biotin Drugs 0.000 description 5
- 239000011616 biotin Substances 0.000 description 5
- 229940098773 bovine serum albumin Drugs 0.000 description 5
- 150000001720 carbohydrates Chemical class 0.000 description 5
- 235000014633 carbohydrates Nutrition 0.000 description 5
- 230000000295 complement effect Effects 0.000 description 5
- 230000021615 conjugation Effects 0.000 description 5
- 229940127089 cytotoxic agent Drugs 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 5
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 5
- 230000002163 immunogen Effects 0.000 description 5
- 230000016784 immunoglobulin production Effects 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- 210000004969 inflammatory cell Anatomy 0.000 description 5
- 238000007912 intraperitoneal administration Methods 0.000 description 5
- 208000017169 kidney disease Diseases 0.000 description 5
- 210000000265 leukocyte Anatomy 0.000 description 5
- 210000002540 macrophage Anatomy 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 208000010125 myocardial infarction Diseases 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000010188 recombinant method Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 239000003053 toxin Substances 0.000 description 5
- 231100000765 toxin Toxicity 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000002054 transplantation Methods 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 4
- 241000702423 Adeno-associated virus - 2 Species 0.000 description 4
- 201000004569 Blindness Diseases 0.000 description 4
- 206010008874 Chronic Fatigue Syndrome Diseases 0.000 description 4
- 206010009944 Colon cancer Diseases 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 4
- 206010016207 Familial Mediterranean fever Diseases 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 4
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 4
- 206010018364 Glomerulonephritis Diseases 0.000 description 4
- 206010020751 Hypersensitivity Diseases 0.000 description 4
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 4
- 102000051628 Interleukin-1 receptor antagonist Human genes 0.000 description 4
- 102000003814 Interleukin-10 Human genes 0.000 description 4
- 108090000174 Interleukin-10 Proteins 0.000 description 4
- 108050003558 Interleukin-17 Proteins 0.000 description 4
- 102000013691 Interleukin-17 Human genes 0.000 description 4
- 102000004557 Interleukin-18 Receptors Human genes 0.000 description 4
- 108010017537 Interleukin-18 Receptors Proteins 0.000 description 4
- 208000012659 Joint disease Diseases 0.000 description 4
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 4
- 241000235649 Kluyveromyces Species 0.000 description 4
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 4
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 4
- 108090000157 Metallothionein Proteins 0.000 description 4
- 102100022691 NACHT, LRR and PYD domains-containing protein 3 Human genes 0.000 description 4
- 241000238413 Octopus Species 0.000 description 4
- 208000031845 Pernicious anaemia Diseases 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- 206010052779 Transplant rejections Diseases 0.000 description 4
- 206010046851 Uveitis Diseases 0.000 description 4
- 206010047115 Vasculitis Diseases 0.000 description 4
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 4
- 238000001042 affinity chromatography Methods 0.000 description 4
- 230000007815 allergy Effects 0.000 description 4
- 239000005557 antagonist Substances 0.000 description 4
- 239000003472 antidiabetic agent Substances 0.000 description 4
- 230000008827 biological function Effects 0.000 description 4
- 235000020958 biotin Nutrition 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000000356 contaminant Substances 0.000 description 4
- 210000000805 cytoplasm Anatomy 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 210000004602 germ cell Anatomy 0.000 description 4
- 208000006454 hepatitis Diseases 0.000 description 4
- 201000001421 hyperglycemia Diseases 0.000 description 4
- 229940126904 hypoglycaemic agent Drugs 0.000 description 4
- 238000003018 immunoassay Methods 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 239000007928 intraperitoneal injection Substances 0.000 description 4
- 229960003299 ketamine Drugs 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 210000003292 kidney cell Anatomy 0.000 description 4
- 210000004379 membrane Anatomy 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229960000485 methotrexate Drugs 0.000 description 4
- 239000003094 microcapsule Substances 0.000 description 4
- 201000006417 multiple sclerosis Diseases 0.000 description 4
- 108010087904 neutravidin Proteins 0.000 description 4
- 238000012014 optical coherence tomography Methods 0.000 description 4
- 201000008482 osteoarthritis Diseases 0.000 description 4
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 4
- 102000054765 polymorphisms of proteins Human genes 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000005180 public health Effects 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 150000008163 sugars Chemical class 0.000 description 4
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 4
- 239000011573 trace mineral Substances 0.000 description 4
- 235000013619 trace mineral Nutrition 0.000 description 4
- GXPHKUHSUJUWKP-UHFFFAOYSA-N troglitazone Chemical compound C1CC=2C(C)=C(O)C(C)=C(C)C=2OC1(C)COC(C=C1)=CC=C1CC1SC(=O)NC1=O GXPHKUHSUJUWKP-UHFFFAOYSA-N 0.000 description 4
- 229960001641 troglitazone Drugs 0.000 description 4
- 235000002374 tyrosine Nutrition 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 238000001262 western blot Methods 0.000 description 4
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 4
- 229960001600 xylazine Drugs 0.000 description 4
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 3
- 208000036487 Arthropathies Diseases 0.000 description 3
- 201000001320 Atherosclerosis Diseases 0.000 description 3
- 206010050245 Autoimmune thrombocytopenia Diseases 0.000 description 3
- 108090001008 Avidin Proteins 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 201000003274 CINCA syndrome Diseases 0.000 description 3
- 206010006895 Cachexia Diseases 0.000 description 3
- 241000282693 Cercopithecidae Species 0.000 description 3
- 108091035707 Consensus sequence Proteins 0.000 description 3
- 206010012689 Diabetic retinopathy Diseases 0.000 description 3
- 241000206602 Eukaryota Species 0.000 description 3
- 208000035690 Familial cold urticaria Diseases 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- 208000009329 Graft vs Host Disease Diseases 0.000 description 3
- 208000015023 Graves' disease Diseases 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 101001109465 Homo sapiens NACHT, LRR and PYD domains-containing protein 3 Proteins 0.000 description 3
- 208000031226 Hyperlipidaemia Diseases 0.000 description 3
- 206010020772 Hypertension Diseases 0.000 description 3
- 102100029098 Hypoxanthine-guanine phosphoribosyltransferase Human genes 0.000 description 3
- 241001138401 Kluyveromyces lactis Species 0.000 description 3
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 3
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 3
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 3
- 208000005777 Lupus Nephritis Diseases 0.000 description 3
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 3
- 102000003792 Metallothionein Human genes 0.000 description 3
- 229930193140 Neomycin Natural products 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- 208000036824 Psoriatic arthropathy Diseases 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 3
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 3
- 101150006914 TRP1 gene Proteins 0.000 description 3
- 229940123464 Thiazolidinedione Drugs 0.000 description 3
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 3
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 3
- 102000018594 Tumour necrosis factor Human genes 0.000 description 3
- 108050007852 Tumour necrosis factor Proteins 0.000 description 3
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 3
- 208000000208 Wet Macular Degeneration Diseases 0.000 description 3
- 201000000690 abdominal obesity-metabolic syndrome Diseases 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 208000007502 anemia Diseases 0.000 description 3
- 210000004102 animal cell Anatomy 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- 229940049595 antibody-drug conjugate Drugs 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 208000010668 atopic eczema Diseases 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000001124 body fluid Anatomy 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000002738 chelating agent Substances 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 239000003593 chromogenic compound Substances 0.000 description 3
- 208000037976 chronic inflammation Diseases 0.000 description 3
- 230000006020 chronic inflammation Effects 0.000 description 3
- 230000006957 competitive inhibition Effects 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 210000004087 cornea Anatomy 0.000 description 3
- 238000012258 culturing Methods 0.000 description 3
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 3
- 239000002254 cytotoxic agent Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 206010064570 familial cold autoinflammatory syndrome Diseases 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 229960004580 glibenclamide Drugs 0.000 description 3
- ZNNLBTZKUZBEKO-UHFFFAOYSA-N glyburide Chemical compound COC1=CC=C(Cl)C=C1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)NC2CCCCC2)C=C1 ZNNLBTZKUZBEKO-UHFFFAOYSA-N 0.000 description 3
- 208000024908 graft versus host disease Diseases 0.000 description 3
- 210000002443 helper t lymphocyte Anatomy 0.000 description 3
- 231100000283 hepatitis Toxicity 0.000 description 3
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 3
- 210000004754 hybrid cell Anatomy 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 238000001114 immunoprecipitation Methods 0.000 description 3
- 230000008676 import Effects 0.000 description 3
- 230000028709 inflammatory response Effects 0.000 description 3
- 230000000968 intestinal effect Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 201000002215 juvenile rheumatoid arthritis Diseases 0.000 description 3
- 238000011542 limb amputation Methods 0.000 description 3
- 208000014018 liver neoplasm Diseases 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 208000029766 myalgic encephalomeyelitis/chronic fatigue syndrome Diseases 0.000 description 3
- 229960004927 neomycin Drugs 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- 230000001575 pathological effect Effects 0.000 description 3
- 230000007170 pathology Effects 0.000 description 3
- 210000001322 periplasm Anatomy 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000000159 protein binding assay Methods 0.000 description 3
- 208000002574 reactive arthritis Diseases 0.000 description 3
- 230000002207 retinal effect Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 201000000306 sarcoidosis Diseases 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 235000004400 serine Nutrition 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 206010041823 squamous cell carcinoma Diseases 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000005030 transcription termination Effects 0.000 description 3
- 230000009261 transgenic effect Effects 0.000 description 3
- GXPHKUHSUJUWKP-NTKDMRAZSA-N troglitazone Natural products C([C@@]1(OC=2C(C)=C(C(=C(C)C=2CC1)O)C)C)OC(C=C1)=CC=C1C[C@H]1SC(=O)NC1=O GXPHKUHSUJUWKP-NTKDMRAZSA-N 0.000 description 3
- 208000035408 type 1 diabetes mellitus 1 Diseases 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- LOGFVTREOLYCPF-KXNHARMFSA-N (2s,3r)-2-[[(2r)-1-[(2s)-2,6-diaminohexanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxybutanoic acid Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H]1CCCN1C(=O)[C@@H](N)CCCCN LOGFVTREOLYCPF-KXNHARMFSA-N 0.000 description 2
- HMLGSIZOMSVISS-ONJSNURVSA-N (7r)-7-[[(2z)-2-(2-amino-1,3-thiazol-4-yl)-2-(2,2-dimethylpropanoyloxymethoxyimino)acetyl]amino]-3-ethenyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid Chemical compound N([C@@H]1C(N2C(=C(C=C)CSC21)C(O)=O)=O)C(=O)\C(=N/OCOC(=O)C(C)(C)C)C1=CSC(N)=N1 HMLGSIZOMSVISS-ONJSNURVSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 2
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 2
- VPFUWHKTPYPNGT-UHFFFAOYSA-N 3-(3,4-dihydroxyphenyl)-1-(5-hydroxy-2,2-dimethylchromen-6-yl)propan-1-one Chemical compound OC1=C2C=CC(C)(C)OC2=CC=C1C(=O)CCC1=CC=C(O)C(O)=C1 VPFUWHKTPYPNGT-UHFFFAOYSA-N 0.000 description 2
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 2
- 208000004611 Abdominal Obesity Diseases 0.000 description 2
- 102000013563 Acid Phosphatase Human genes 0.000 description 2
- 108010051457 Acid Phosphatase Proteins 0.000 description 2
- 208000026872 Addison Disease Diseases 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- 201000004384 Alopecia Diseases 0.000 description 2
- 101710154825 Aminoglycoside 3'-phosphotransferase Proteins 0.000 description 2
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- 206010003445 Ascites Diseases 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 2
- 208000031212 Autoimmune polyendocrinopathy Diseases 0.000 description 2
- 102100040355 Autophagy-related protein 16-1 Human genes 0.000 description 2
- 108091008875 B cell receptors Proteins 0.000 description 2
- 208000003950 B-cell lymphoma Diseases 0.000 description 2
- 241000194108 Bacillus licheniformis Species 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- 229940123208 Biguanide Drugs 0.000 description 2
- 208000008439 Biliary Liver Cirrhosis Diseases 0.000 description 2
- 208000033222 Biliary cirrhosis primary Diseases 0.000 description 2
- 241000701822 Bovine papillomavirus Species 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 201000009030 Carcinoma Diseases 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 206010065941 Central obesity Diseases 0.000 description 2
- 206010008609 Cholangitis sclerosing Diseases 0.000 description 2
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 2
- 241000193403 Clostridium Species 0.000 description 2
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 2
- 208000035473 Communicable disease Diseases 0.000 description 2
- 241000699802 Cricetulus griseus Species 0.000 description 2
- 241000701022 Cytomegalovirus Species 0.000 description 2
- 206010072224 Deficiency of the interleukin-1 receptor antagonist Diseases 0.000 description 2
- 206010012438 Dermatitis atopic Diseases 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 241000255925 Diptera Species 0.000 description 2
- 206010061818 Disease progression Diseases 0.000 description 2
- 201000005948 Donohue syndrome Diseases 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 238000012286 ELISA Assay Methods 0.000 description 2
- 208000008069 Geographic Atrophy Diseases 0.000 description 2
- 208000007465 Giant cell arteritis Diseases 0.000 description 2
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 2
- 102100022624 Glucoamylase Human genes 0.000 description 2
- 208000002705 Glucose Intolerance Diseases 0.000 description 2
- 102000005731 Glucose-6-phosphate isomerase Human genes 0.000 description 2
- 108010070600 Glucose-6-phosphate isomerase Proteins 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- 208000024869 Goodpasture syndrome Diseases 0.000 description 2
- 208000003807 Graves Disease Diseases 0.000 description 2
- 108010051696 Growth Hormone Proteins 0.000 description 2
- 206010019280 Heart failures Diseases 0.000 description 2
- 208000005176 Hepatitis C Diseases 0.000 description 2
- 101000964092 Homo sapiens Autophagy-related protein 16-1 Proteins 0.000 description 2
- 101001032334 Homo sapiens Immunity-related GTPase family M protein Proteins 0.000 description 2
- 101000840258 Homo sapiens Immunoglobulin J chain Proteins 0.000 description 2
- 101001076407 Homo sapiens Interleukin-1 receptor antagonist protein Proteins 0.000 description 2
- 101001076418 Homo sapiens Interleukin-1 receptor type 1 Proteins 0.000 description 2
- 101001125026 Homo sapiens Nucleotide-binding oligomerization domain-containing protein 2 Proteins 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 206010060378 Hyperinsulinaemia Diseases 0.000 description 2
- 206010020710 Hyperphagia Diseases 0.000 description 2
- 206010020850 Hyperthyroidism Diseases 0.000 description 2
- 201000009794 Idiopathic Pulmonary Fibrosis Diseases 0.000 description 2
- 206010021245 Idiopathic thrombocytopenic purpura Diseases 0.000 description 2
- 208000028622 Immune thrombocytopenia Diseases 0.000 description 2
- 102100038249 Immunity-related GTPase family M protein Human genes 0.000 description 2
- 208000029462 Immunodeficiency disease Diseases 0.000 description 2
- 102100029571 Immunoglobulin J chain Human genes 0.000 description 2
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 2
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 2
- 206010056997 Impaired fasting glucose Diseases 0.000 description 2
- 208000031773 Insulin resistance syndrome Diseases 0.000 description 2
- 229940119178 Interleukin 1 receptor antagonist Drugs 0.000 description 2
- 102000003777 Interleukin-1 beta Human genes 0.000 description 2
- 108090000193 Interleukin-1 beta Proteins 0.000 description 2
- 108700021006 Interleukin-1 receptor antagonist Proteins 0.000 description 2
- 101710144554 Interleukin-1 receptor antagonist protein Proteins 0.000 description 2
- 102100026018 Interleukin-1 receptor antagonist protein Human genes 0.000 description 2
- 102000014158 Interleukin-12 Subunit p40 Human genes 0.000 description 2
- 108010011429 Interleukin-12 Subunit p40 Proteins 0.000 description 2
- 102100035017 Interleukin-18-binding protein Human genes 0.000 description 2
- 101710205006 Interleukin-18-binding protein Proteins 0.000 description 2
- 208000003456 Juvenile Arthritis Diseases 0.000 description 2
- 208000011200 Kawasaki disease Diseases 0.000 description 2
- 244000285963 Kluyveromyces fragilis Species 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- 108090001090 Lectins Proteins 0.000 description 2
- 102000004856 Lectins Human genes 0.000 description 2
- 108010000817 Leuprolide Proteins 0.000 description 2
- 208000016604 Lyme disease Diseases 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 201000002795 Muckle-Wells syndrome Diseases 0.000 description 2
- 102000003945 NF-kappa B Human genes 0.000 description 2
- 108010057466 NF-kappa B Proteins 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- 206010034277 Pemphigoid Diseases 0.000 description 2
- 201000011152 Pemphigus Diseases 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Natural products OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 208000004880 Polyuria Diseases 0.000 description 2
- 208000012654 Primary biliary cholangitis Diseases 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 2
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 2
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 2
- 201000001263 Psoriatic Arthritis Diseases 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 2
- 239000012980 RPMI-1640 medium Substances 0.000 description 2
- 208000033464 Reiter syndrome Diseases 0.000 description 2
- 108020005091 Replication Origin Proteins 0.000 description 2
- 208000017442 Retinal disease Diseases 0.000 description 2
- 206010038923 Retinopathy Diseases 0.000 description 2
- 108010039491 Ricin Proteins 0.000 description 2
- 241000607142 Salmonella Species 0.000 description 2
- 206010039710 Scleroderma Diseases 0.000 description 2
- 206010040047 Sepsis Diseases 0.000 description 2
- 206010040070 Septic Shock Diseases 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 241000607720 Serratia Species 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 208000021386 Sjogren Syndrome Diseases 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 102100038803 Somatotropin Human genes 0.000 description 2
- 241000256251 Spodoptera frugiperda Species 0.000 description 2
- 208000006045 Spondylarthropathies Diseases 0.000 description 2
- 208000006011 Stroke Diseases 0.000 description 2
- 229940100389 Sulfonylurea Drugs 0.000 description 2
- 108700012920 TNF Proteins 0.000 description 2
- 208000001106 Takayasu Arteritis Diseases 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 102000006601 Thymidine Kinase Human genes 0.000 description 2
- 108020004440 Thymidine kinase Proteins 0.000 description 2
- BGDKAVGWHJFAGW-UHFFFAOYSA-N Tropicamide Chemical compound C=1C=CC=CC=1C(CO)C(=O)N(CC)CC1=CC=NC=C1 BGDKAVGWHJFAGW-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 231100000360 alopecia Toxicity 0.000 description 2
- 229960004238 anakinra Drugs 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 239000000611 antibody drug conjugate Substances 0.000 description 2
- 210000000628 antibody-producing cell Anatomy 0.000 description 2
- 210000000612 antigen-presenting cell Anatomy 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 239000000607 artificial tear Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 201000008937 atopic dermatitis Diseases 0.000 description 2
- 208000037979 autoimmune inflammatory disease Diseases 0.000 description 2
- 201000003710 autoimmune thrombocytopenic purpura Diseases 0.000 description 2
- 208000010928 autoimmune thyroid disease Diseases 0.000 description 2
- 201000003308 autosomal dominant familial periodic fever Diseases 0.000 description 2
- 229940120638 avastin Drugs 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 2
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 2
- 150000004283 biguanides Chemical class 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 238000006664 bond formation reaction Methods 0.000 description 2
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 208000020832 chronic kidney disease Diseases 0.000 description 2
- 208000025302 chronic primary adrenal insufficiency Diseases 0.000 description 2
- 238000011284 combination treatment Methods 0.000 description 2
- 230000001447 compensatory effect Effects 0.000 description 2
- 238000012875 competitive assay Methods 0.000 description 2
- 208000018631 connective tissue disease Diseases 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 231100000599 cytotoxic agent Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 239000003405 delayed action preparation Substances 0.000 description 2
- 210000004443 dendritic cell Anatomy 0.000 description 2
- 201000001981 dermatomyositis Diseases 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229940039227 diagnostic agent Drugs 0.000 description 2
- 239000000032 diagnostic agent Substances 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 208000010643 digestive system disease Diseases 0.000 description 2
- 229960005156 digoxin Drugs 0.000 description 2
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 2
- 230000005750 disease progression Effects 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 208000028208 end stage renal disease Diseases 0.000 description 2
- 201000000523 end stage renal failure Diseases 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- 230000005714 functional activity Effects 0.000 description 2
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- ZJJXGWJIGJFDTL-UHFFFAOYSA-N glipizide Chemical compound C1=NC(C)=CN=C1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)NC2CCCCC2)C=C1 ZJJXGWJIGJFDTL-UHFFFAOYSA-N 0.000 description 2
- 229960001381 glipizide Drugs 0.000 description 2
- 230000004153 glucose metabolism Effects 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 2
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 239000000122 growth hormone Substances 0.000 description 2
- 208000007475 hemolytic anemia Diseases 0.000 description 2
- 230000002949 hemolytic effect Effects 0.000 description 2
- 208000005252 hepatitis A Diseases 0.000 description 2
- 210000003630 histaminocyte Anatomy 0.000 description 2
- 230000002962 histologic effect Effects 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000012872 hydroxylapatite chromatography Methods 0.000 description 2
- 230000003345 hyperglycaemic effect Effects 0.000 description 2
- 230000003451 hyperinsulinaemic effect Effects 0.000 description 2
- 201000008980 hyperinsulinism Diseases 0.000 description 2
- 230000002218 hypoglycaemic effect Effects 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000004968 inflammatory condition Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 230000003914 insulin secretion Effects 0.000 description 2
- 239000003407 interleukin 1 receptor blocking agent Substances 0.000 description 2
- 108040006732 interleukin-1 receptor activity proteins Proteins 0.000 description 2
- 102000014909 interleukin-1 receptor activity proteins Human genes 0.000 description 2
- 208000036971 interstitial lung disease 2 Diseases 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 230000000366 juvenile effect Effects 0.000 description 2
- 239000002523 lectin Substances 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- RGLRXNKKBLIBQS-XNHQSDQCSA-N leuprolide acetate Chemical compound CC(O)=O.CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 RGLRXNKKBLIBQS-XNHQSDQCSA-N 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 201000007270 liver cancer Diseases 0.000 description 2
- 210000005229 liver cell Anatomy 0.000 description 2
- 208000019423 liver disease Diseases 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 206010025135 lupus erythematosus Diseases 0.000 description 2
- 230000000527 lymphocytic effect Effects 0.000 description 2
- 210000005004 lymphoid follicle Anatomy 0.000 description 2
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 208000030159 metabolic disease Diseases 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- XZWYZXLIPXDOLR-UHFFFAOYSA-N metformin Chemical compound CN(C)C(=N)NC(N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 description 2
- 229960003105 metformin Drugs 0.000 description 2
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 2
- 206010072221 mevalonate kinase deficiency Diseases 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 238000001823 molecular biology technique Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 210000001616 monocyte Anatomy 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 208000001725 mucocutaneous lymph node syndrome Diseases 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 230000007823 neuropathy Effects 0.000 description 2
- 201000001119 neuropathy Diseases 0.000 description 2
- 210000000440 neutrophil Anatomy 0.000 description 2
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 239000002751 oligonucleotide probe Substances 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 238000004091 panning Methods 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- AQIXEPGDORPWBJ-UHFFFAOYSA-N pentan-3-ol Chemical compound CCC(O)CC AQIXEPGDORPWBJ-UHFFFAOYSA-N 0.000 description 2
- 208000025487 periodic fever syndrome Diseases 0.000 description 2
- 208000033808 peripheral neuropathy Diseases 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- ICFJFFQQTFMIBG-UHFFFAOYSA-N phenformin Chemical compound NC(=N)NC(=N)NCCC1=CC=CC=C1 ICFJFFQQTFMIBG-UHFFFAOYSA-N 0.000 description 2
- 229960003243 phenformin Drugs 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 206010036067 polydipsia Diseases 0.000 description 2
- 208000005987 polymyositis Diseases 0.000 description 2
- 201000009104 prediabetes syndrome Diseases 0.000 description 2
- 230000000770 proinflammatory effect Effects 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 230000022558 protein metabolic process Effects 0.000 description 2
- ZCCUUQDIBDJBTK-UHFFFAOYSA-N psoralen Chemical compound C1=C2OC(=O)C=CC2=CC2=C1OC=C2 ZCCUUQDIBDJBTK-UHFFFAOYSA-N 0.000 description 2
- 238000002708 random mutagenesis Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 210000001525 retina Anatomy 0.000 description 2
- 210000003583 retinal pigment epithelium Anatomy 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 208000010157 sclerosing cholangitis Diseases 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- JJGWLCLUQNFDIS-GTSONSFRSA-M sodium;1-[6-[5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]hexanoyloxy]-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)CCCCCNC(=O)CCCC[C@H]1[C@H]2NC(=O)N[C@H]2CS1 JJGWLCLUQNFDIS-GTSONSFRSA-M 0.000 description 2
- 201000005671 spondyloarthropathy Diseases 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 208000026082 sterile multifocal osteomyelitis with periostitis and pustulosis Diseases 0.000 description 2
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 208000020408 systemic-onset juvenile idiopathic arthritis Diseases 0.000 description 2
- 206010043207 temporal arteritis Diseases 0.000 description 2
- 150000001467 thiazolidinediones Chemical class 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- 206010043778 thyroiditis Diseases 0.000 description 2
- 101150065732 tir gene Proteins 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 229960004791 tropicamide Drugs 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 150000003668 tyrosines Chemical class 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- WZUVPPKBWHMQCE-XJKSGUPXSA-N (+)-haematoxylin Chemical compound C12=CC(O)=C(O)C=C2C[C@]2(O)[C@H]1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-XJKSGUPXSA-N 0.000 description 1
- JKHVDAUOODACDU-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(2,5-dioxopyrrol-1-yl)propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCN1C(=O)C=CC1=O JKHVDAUOODACDU-UHFFFAOYSA-N 0.000 description 1
- PVGATNRYUYNBHO-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-(2,5-dioxopyrrol-1-yl)butanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCCN1C(=O)C=CC1=O PVGATNRYUYNBHO-UHFFFAOYSA-N 0.000 description 1
- BQWBEDSJTMWJAE-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-[(2-iodoacetyl)amino]benzoate Chemical compound C1=CC(NC(=O)CI)=CC=C1C(=O)ON1C(=O)CCC1=O BQWBEDSJTMWJAE-UHFFFAOYSA-N 0.000 description 1
- PMJWDPGOWBRILU-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-[4-(2,5-dioxopyrrol-1-yl)phenyl]butanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCCC(C=C1)=CC=C1N1C(=O)C=CC1=O PMJWDPGOWBRILU-UHFFFAOYSA-N 0.000 description 1
- VLARLSIGSPVYHX-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 6-(2,5-dioxopyrrol-1-yl)hexanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCCCCN1C(=O)C=CC1=O VLARLSIGSPVYHX-UHFFFAOYSA-N 0.000 description 1
- WCMOHMXWOOBVMZ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 6-[3-(2,5-dioxopyrrol-1-yl)propanoylamino]hexanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCCCCNC(=O)CCN1C(=O)C=CC1=O WCMOHMXWOOBVMZ-UHFFFAOYSA-N 0.000 description 1
- IHVODYOQUSEYJJ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 6-[[4-[(2,5-dioxopyrrol-1-yl)methyl]cyclohexanecarbonyl]amino]hexanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCCCCNC(=O)C(CC1)CCC1CN1C(=O)C=CC1=O IHVODYOQUSEYJJ-UHFFFAOYSA-N 0.000 description 1
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- MFRNYXJJRJQHNW-DEMKXPNLSA-N (2s)-2-[[(2r,3r)-3-methoxy-3-[(2s)-1-[(3r,4s,5s)-3-methoxy-5-methyl-4-[methyl-[(2s)-3-methyl-2-[[(2s)-3-methyl-2-(methylamino)butanoyl]amino]butanoyl]amino]heptanoyl]pyrrolidin-2-yl]-2-methylpropanoyl]amino]-3-phenylpropanoic acid Chemical compound CN[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H]([C@@H](C)CC)[C@H](OC)CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 MFRNYXJJRJQHNW-DEMKXPNLSA-N 0.000 description 1
- XMQUEQJCYRFIQS-YFKPBYRVSA-N (2s)-2-amino-5-ethoxy-5-oxopentanoic acid Chemical compound CCOC(=O)CC[C@H](N)C(O)=O XMQUEQJCYRFIQS-YFKPBYRVSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- ZOBPZXTWZATXDG-UHFFFAOYSA-N 1,3-thiazolidine-2,4-dione Chemical compound O=C1CSC(=O)N1 ZOBPZXTWZATXDG-UHFFFAOYSA-N 0.000 description 1
- VILFTWLXLYIEMV-UHFFFAOYSA-N 1,5-difluoro-2,4-dinitrobenzene Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=C(F)C=C1F VILFTWLXLYIEMV-UHFFFAOYSA-N 0.000 description 1
- BOVGTQGAOIONJV-BETUJISGSA-N 1-[(3ar,6as)-3,3a,4,5,6,6a-hexahydro-1h-cyclopenta[c]pyrrol-2-yl]-3-(4-methylphenyl)sulfonylurea Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC(=O)NN1C[C@H]2CCC[C@H]2C1 BOVGTQGAOIONJV-BETUJISGSA-N 0.000 description 1
- DIYPCWKHSODVAP-UHFFFAOYSA-N 1-[3-(2,5-dioxopyrrol-1-yl)benzoyl]oxy-2,5-dioxopyrrolidine-3-sulfonic acid Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)C1=CC=CC(N2C(C=CC2=O)=O)=C1 DIYPCWKHSODVAP-UHFFFAOYSA-N 0.000 description 1
- CULQNACJHGHAER-UHFFFAOYSA-N 1-[4-[(2-iodoacetyl)amino]benzoyl]oxy-2,5-dioxopyrrolidine-3-sulfonic acid Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)C1=CC=C(NC(=O)CI)C=C1 CULQNACJHGHAER-UHFFFAOYSA-N 0.000 description 1
- PNDPGZBMCMUPRI-HVTJNCQCSA-N 10043-66-0 Chemical compound [131I][131I] PNDPGZBMCMUPRI-HVTJNCQCSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- YBBNVCVOACOHIG-UHFFFAOYSA-N 2,2-diamino-1,4-bis(4-azidophenyl)-3-butylbutane-1,4-dione Chemical compound C=1C=C(N=[N+]=[N-])C=CC=1C(=O)C(N)(N)C(CCCC)C(=O)C1=CC=C(N=[N+]=[N-])C=C1 YBBNVCVOACOHIG-UHFFFAOYSA-N 0.000 description 1
- KGLPWQKSKUVKMJ-UHFFFAOYSA-N 2,3-dihydrophthalazine-1,4-dione Chemical class C1=CC=C2C(=O)NNC(=O)C2=C1 KGLPWQKSKUVKMJ-UHFFFAOYSA-N 0.000 description 1
- NHJVRSWLHSJWIN-UHFFFAOYSA-N 2,4,6-trinitrobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O NHJVRSWLHSJWIN-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- FZDFGHZZPBUTGP-UHFFFAOYSA-N 2-[[2-[bis(carboxymethyl)amino]-3-(4-isothiocyanatophenyl)propyl]-[2-[bis(carboxymethyl)amino]propyl]amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)C(C)CN(CC(O)=O)CC(N(CC(O)=O)CC(O)=O)CC1=CC=C(N=C=S)C=C1 FZDFGHZZPBUTGP-UHFFFAOYSA-N 0.000 description 1
- FBUTXZSKZCQABC-UHFFFAOYSA-N 2-amino-1-methyl-7h-purine-6-thione Chemical compound S=C1N(C)C(N)=NC2=C1NC=N2 FBUTXZSKZCQABC-UHFFFAOYSA-N 0.000 description 1
- AXAVXPMQTGXXJZ-UHFFFAOYSA-N 2-aminoacetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol Chemical compound NCC(O)=O.OCC(N)(CO)CO AXAVXPMQTGXXJZ-UHFFFAOYSA-N 0.000 description 1
- XBBVURRQGJPTHH-UHFFFAOYSA-N 2-hydroxyacetic acid;2-hydroxypropanoic acid Chemical compound OCC(O)=O.CC(O)C(O)=O XBBVURRQGJPTHH-UHFFFAOYSA-N 0.000 description 1
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 1
- VXGRJERITKFWPL-UHFFFAOYSA-N 4',5'-Dihydropsoralen Natural products C1=C2OC(=O)C=CC2=CC2=C1OCC2 VXGRJERITKFWPL-UHFFFAOYSA-N 0.000 description 1
- OBWSOTREAMFOCQ-UHFFFAOYSA-N 4-(4-amino-3,5-dimethylphenyl)-2,6-dimethylaniline;hydrochloride Chemical compound Cl.CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 OBWSOTREAMFOCQ-UHFFFAOYSA-N 0.000 description 1
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- ZMRMMAOBSFSXLN-UHFFFAOYSA-N 4-[4-(2,5-dioxopyrrol-1-yl)phenyl]butanehydrazide Chemical compound C1=CC(CCCC(=O)NN)=CC=C1N1C(=O)C=CC1=O ZMRMMAOBSFSXLN-UHFFFAOYSA-N 0.000 description 1
- YRNWIFYIFSBPAU-UHFFFAOYSA-N 4-[4-(dimethylamino)phenyl]-n,n-dimethylaniline Chemical compound C1=CC(N(C)C)=CC=C1C1=CC=C(N(C)C)C=C1 YRNWIFYIFSBPAU-UHFFFAOYSA-N 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- 101710169336 5'-deoxyadenosine deaminase Proteins 0.000 description 1
- 102100031126 6-phosphogluconolactonase Human genes 0.000 description 1
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- 239000013607 AAV vector Substances 0.000 description 1
- 101150102803 ATG16L1 gene Proteins 0.000 description 1
- 208000035657 Abasia Diseases 0.000 description 1
- 108010066676 Abrin Proteins 0.000 description 1
- 208000029483 Acquired immunodeficiency Diseases 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 102100036664 Adenosine deaminase Human genes 0.000 description 1
- 241000256118 Aedes aegypti Species 0.000 description 1
- 241000256173 Aedes albopictus Species 0.000 description 1
- 101710187573 Alcohol dehydrogenase 2 Proteins 0.000 description 1
- 101710133776 Alcohol dehydrogenase class-3 Proteins 0.000 description 1
- 206010027654 Allergic conditions Diseases 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- QGZKDVFQNNGYKY-OUBTZVSYSA-N Ammonia-15N Chemical compound [15NH3] QGZKDVFQNNGYKY-OUBTZVSYSA-N 0.000 description 1
- 208000003343 Antiphospholipid Syndrome Diseases 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 206010003267 Arthritis reactive Diseases 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000351920 Aspergillus nidulans Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 101000669426 Aspergillus restrictus Ribonuclease mitogillin Proteins 0.000 description 1
- 206010003645 Atopy Diseases 0.000 description 1
- 229930003347 Atropine Natural products 0.000 description 1
- 241001367049 Autographa Species 0.000 description 1
- 206010055128 Autoimmune neutropenia Diseases 0.000 description 1
- 108010082399 Autophagy-Related Proteins Proteins 0.000 description 1
- 241000713842 Avian sarcoma virus Species 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 210000002237 B-cell of pancreatic islet Anatomy 0.000 description 1
- 230000003844 B-cell-activation Effects 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 108090000363 Bacterial Luciferases Proteins 0.000 description 1
- 208000023328 Basedow disease Diseases 0.000 description 1
- 208000027496 Behcet disease Diseases 0.000 description 1
- 208000009137 Behcet syndrome Diseases 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 241000255789 Bombyx mori Species 0.000 description 1
- 241000409811 Bombyx mori nucleopolyhedrovirus Species 0.000 description 1
- 208000020084 Bone disease Diseases 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 201000006474 Brain Ischemia Diseases 0.000 description 1
- 206010055113 Breast cancer metastatic Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 108010041884 CD4 Immunoadhesins Proteins 0.000 description 1
- 101150013553 CD40 gene Proteins 0.000 description 1
- QCMYYKRYFNMIEC-UHFFFAOYSA-N COP(O)=O Chemical class COP(O)=O QCMYYKRYFNMIEC-UHFFFAOYSA-N 0.000 description 1
- 101100298998 Caenorhabditis elegans pbs-3 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282832 Camelidae Species 0.000 description 1
- 206010058019 Cancer Pain Diseases 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 101710158575 Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- OKTJSMMVPCPJKN-OUBTZVSYSA-N Carbon-13 Chemical compound [13C] OKTJSMMVPCPJKN-OUBTZVSYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-NJFSPNSNSA-N Carbon-14 Chemical compound [14C] OKTJSMMVPCPJKN-NJFSPNSNSA-N 0.000 description 1
- 206010007559 Cardiac failure congestive Diseases 0.000 description 1
- 206010007710 Cartilage injury Diseases 0.000 description 1
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 1
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 102100035360 Cerebellar degeneration-related antigen 1 Human genes 0.000 description 1
- 206010008120 Cerebral ischaemia Diseases 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 241000606161 Chlamydia Species 0.000 description 1
- 241000282552 Chlorocebus aethiops Species 0.000 description 1
- 102000011413 Chondroitinases and Chondroitin Lyases Human genes 0.000 description 1
- 108010023736 Chondroitinases and Chondroitin Lyases Proteins 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 206010008909 Chronic Hepatitis Diseases 0.000 description 1
- 208000008818 Chronic Mucocutaneous Candidiasis Diseases 0.000 description 1
- 208000030939 Chronic inflammatory demyelinating polyneuropathy Diseases 0.000 description 1
- 108090000746 Chymosin Proteins 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 208000015943 Coeliac disease Diseases 0.000 description 1
- 206010052358 Colorectal cancer metastatic Diseases 0.000 description 1
- 201000003874 Common Variable Immunodeficiency Diseases 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 206010053547 Congenital generalised lipodystrophy Diseases 0.000 description 1
- 201000006705 Congenital generalized lipodystrophy Diseases 0.000 description 1
- 206010056370 Congestive cardiomyopathy Diseases 0.000 description 1
- 206010010744 Conjunctivitis allergic Diseases 0.000 description 1
- 201000000054 Coronary Restenosis Diseases 0.000 description 1
- 206010056489 Coronary artery restenosis Diseases 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 208000014997 Crohn colitis Diseases 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 108700032819 Croton tiglium crotin II Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UWTATZPHSA-N D-alanine Chemical compound C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 108050003414 DNA primase large subunit PriL Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 101100285402 Danio rerio eng1a gene Proteins 0.000 description 1
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 208000006313 Delayed Hypersensitivity Diseases 0.000 description 1
- 208000016192 Demyelinating disease Diseases 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 206010012442 Dermatitis contact Diseases 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 206010012692 Diabetic uveitis Diseases 0.000 description 1
- 206010051392 Diapedesis Diseases 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- LTMHDMANZUZIPE-AMTYYWEZSA-N Digoxin Natural products O([C@H]1[C@H](C)O[C@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@](C)([C@H](O)C4)[C@H](C4=CC(=O)OC4)CC5)CC3)CC2)C[C@@H]1O)[C@H]1O[C@H](C)[C@@H](O[C@H]2O[C@@H](C)[C@H](O)[C@@H](O)C2)[C@@H](O)C1 LTMHDMANZUZIPE-AMTYYWEZSA-N 0.000 description 1
- 201000010046 Dilated cardiomyopathy Diseases 0.000 description 1
- 235000017274 Diospyros sandwicensis Nutrition 0.000 description 1
- 102000016607 Diphtheria Toxin Human genes 0.000 description 1
- 108010053187 Diphtheria Toxin Proteins 0.000 description 1
- 208000006926 Discoid Lupus Erythematosus Diseases 0.000 description 1
- 241000255601 Drosophila melanogaster Species 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 208000032928 Dyslipidaemia Diseases 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 201000009273 Endometriosis Diseases 0.000 description 1
- 241000588914 Enterobacter Species 0.000 description 1
- 241000588921 Enterobacteriaceae Species 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 208000001351 Epiretinal Membrane Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000588698 Erwinia Species 0.000 description 1
- 206010015218 Erythema multiforme Diseases 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 241001522878 Escherichia coli B Species 0.000 description 1
- 241001302584 Escherichia coli str. K-12 substr. W3110 Species 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 208000004332 Evans syndrome Diseases 0.000 description 1
- 101710082714 Exotoxin A Proteins 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 108091006020 Fc-tagged proteins Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 208000007984 Female Infertility Diseases 0.000 description 1
- 208000001640 Fibromyalgia Diseases 0.000 description 1
- 108090000331 Firefly luciferases Proteins 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 238000009017 Fluorometric Assay Kit Methods 0.000 description 1
- 208000004262 Food Hypersensitivity Diseases 0.000 description 1
- 206010016946 Food allergy Diseases 0.000 description 1
- 241000700662 Fowlpox virus Species 0.000 description 1
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 108010015133 Galactose oxidase Proteins 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108700004714 Gelonium multiflorum GEL Proteins 0.000 description 1
- 108700023863 Gene Components Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 241001416183 Ginglymostomatidae Species 0.000 description 1
- 102000030595 Glucokinase Human genes 0.000 description 1
- 108010021582 Glucokinase Proteins 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 206010018473 Glycosuria Diseases 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 201000005569 Gout Diseases 0.000 description 1
- 206010018634 Gouty Arthritis Diseases 0.000 description 1
- 206010072579 Granulomatosis with polyangiitis Diseases 0.000 description 1
- 208000035895 Guillain-Barré syndrome Diseases 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 208000037357 HIV infectious disease Diseases 0.000 description 1
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Natural products C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 1
- 208000031856 Haemosiderosis Diseases 0.000 description 1
- 208000001204 Hashimoto Disease Diseases 0.000 description 1
- 101710121697 Heat-stable enterotoxin Proteins 0.000 description 1
- 208000035186 Hemolytic Autoimmune Anemia Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 208000005331 Hepatitis D Diseases 0.000 description 1
- 206010019755 Hepatitis chronic active Diseases 0.000 description 1
- 208000037319 Hepatitis infectious Diseases 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 102000005548 Hexokinase Human genes 0.000 description 1
- 108700040460 Hexokinases Proteins 0.000 description 1
- 102100035108 High affinity nerve growth factor receptor Human genes 0.000 description 1
- 101000655398 Homo sapiens General transcription factor IIH subunit 2 Proteins 0.000 description 1
- 101001041117 Homo sapiens Hyaluronidase PH-20 Proteins 0.000 description 1
- 101000840293 Homo sapiens Interferon-induced protein 44 Proteins 0.000 description 1
- 101001033233 Homo sapiens Interleukin-10 Proteins 0.000 description 1
- 101000582546 Homo sapiens Methylosome protein 50 Proteins 0.000 description 1
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 1
- 101000648012 Homo sapiens Signal transducing adapter molecule 1 Proteins 0.000 description 1
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 1
- 101000809875 Homo sapiens TYRO protein tyrosine kinase-binding protein Proteins 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 241000701109 Human adenovirus 2 Species 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- RKUNBYITZUJHSG-UHFFFAOYSA-N Hyosciamin-hydrochlorid Natural products CN1C(C2)CCC1CC2OC(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-UHFFFAOYSA-N 0.000 description 1
- 208000004454 Hyperalgesia Diseases 0.000 description 1
- 208000035154 Hyperesthesia Diseases 0.000 description 1
- 208000013016 Hypoglycemia Diseases 0.000 description 1
- 208000000038 Hypoparathyroidism Diseases 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 102000039996 IL-1 family Human genes 0.000 description 1
- 108091069196 IL-1 family Proteins 0.000 description 1
- 208000016300 Idiopathic chronic eosinophilic pneumonia Diseases 0.000 description 1
- 208000010159 IgA glomerulonephritis Diseases 0.000 description 1
- 206010021263 IgA nephropathy Diseases 0.000 description 1
- 102100026120 IgG receptor FcRn large subunit p51 Human genes 0.000 description 1
- 101710177940 IgG receptor FcRn large subunit p51 Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical class C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 206010021928 Infertility female Diseases 0.000 description 1
- 102000003781 Inhibitor of growth protein 1 Human genes 0.000 description 1
- 108090000191 Inhibitor of growth protein 1 Proteins 0.000 description 1
- 206010022491 Insulin resistant diabetes Diseases 0.000 description 1
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 1
- 108010064600 Intercellular Adhesion Molecule-3 Proteins 0.000 description 1
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 1
- 102100037872 Intercellular adhesion molecule 2 Human genes 0.000 description 1
- 101710148794 Intercellular adhesion molecule 2 Proteins 0.000 description 1
- 102100037871 Intercellular adhesion molecule 3 Human genes 0.000 description 1
- 238000012695 Interfacial polymerization Methods 0.000 description 1
- 108050006617 Interleukin-1 receptor Proteins 0.000 description 1
- 102000019223 Interleukin-1 receptor Human genes 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 102000017761 Interleukin-33 Human genes 0.000 description 1
- 108010067003 Interleukin-33 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- ZCYVEMRRCGMTRW-AHCXROLUSA-N Iodine-123 Chemical compound [123I] ZCYVEMRRCGMTRW-AHCXROLUSA-N 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 1
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 241000481961 Lachancea thermotolerans Species 0.000 description 1
- 241000235651 Lachancea waltii Species 0.000 description 1
- 102100038609 Lactoperoxidase Human genes 0.000 description 1
- 108010023244 Lactoperoxidase Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241000282838 Lama Species 0.000 description 1
- 201000010743 Lambert-Eaton myasthenic syndrome Diseases 0.000 description 1
- 208000035369 Leprechaunism Diseases 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 201000001779 Leukocyte adhesion deficiency Diseases 0.000 description 1
- 206010024453 Ligament sprain Diseases 0.000 description 1
- 208000012309 Linear IgA disease Diseases 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 208000017170 Lipid metabolism disease Diseases 0.000 description 1
- 206010024604 Lipoatrophy Diseases 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 102000008072 Lymphokines Human genes 0.000 description 1
- 108010074338 Lymphokines Proteins 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 241000282553 Macaca Species 0.000 description 1
- 239000004907 Macro-emulsion Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 102000013460 Malate Dehydrogenase Human genes 0.000 description 1
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 1
- 208000007466 Male Infertility Diseases 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 201000009906 Meningitis Diseases 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- 206010049567 Miller Fisher syndrome Diseases 0.000 description 1
- 208000003250 Mixed connective tissue disease Diseases 0.000 description 1
- 244000302512 Momordica charantia Species 0.000 description 1
- 235000009811 Momordica charantia Nutrition 0.000 description 1
- 206010028080 Mucocutaneous candidiasis Diseases 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101001076419 Mus musculus Interleukin-1 receptor type 1 Proteins 0.000 description 1
- 102000008934 Muscle Proteins Human genes 0.000 description 1
- 108010074084 Muscle Proteins Proteins 0.000 description 1
- 208000021642 Muscular disease Diseases 0.000 description 1
- 206010028424 Myasthenic syndrome Diseases 0.000 description 1
- 201000009623 Myopathy Diseases 0.000 description 1
- 201000002481 Myositis Diseases 0.000 description 1
- 206010028665 Myxoedema Diseases 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- WTBIAPVQQBCLFP-UHFFFAOYSA-N N.N.N.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O Chemical compound N.N.N.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O WTBIAPVQQBCLFP-UHFFFAOYSA-N 0.000 description 1
- 108091008099 NLRP3 inflammasome Proteins 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- 206010029164 Nephrotic syndrome Diseases 0.000 description 1
- 206010029240 Neuritis Diseases 0.000 description 1
- 241000221960 Neurospora Species 0.000 description 1
- 241000221961 Neurospora crassa Species 0.000 description 1
- 206010029350 Neurotoxicity Diseases 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 102100029441 Nucleotide-binding oligomerization domain-containing protein 2 Human genes 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 206010029888 Obliterative bronchiolitis Diseases 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 102100021079 Ornithine decarboxylase Human genes 0.000 description 1
- 108700005126 Ornithine decarboxylases Proteins 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010033165 Ovarian failure Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 108010016731 PPAR gamma Proteins 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 208000016222 Pancreatic disease Diseases 0.000 description 1
- 108010067372 Pancreatic elastase Proteins 0.000 description 1
- 102000016387 Pancreatic elastase Human genes 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 206010033645 Pancreatitis Diseases 0.000 description 1
- 206010033647 Pancreatitis acute Diseases 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 208000030852 Parasitic disease Diseases 0.000 description 1
- 208000000733 Paroxysmal Hemoglobinuria Diseases 0.000 description 1
- 241000721454 Pemphigus Species 0.000 description 1
- 208000027086 Pemphigus foliaceus Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 108010087702 Penicillinase Proteins 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- 102100038825 Peroxisome proliferator-activated receptor gamma Human genes 0.000 description 1
- 240000007377 Petunia x hybrida Species 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 102100036050 Phosphatidylinositol N-acetylglucosaminyltransferase subunit A Human genes 0.000 description 1
- 102000001105 Phosphofructokinases Human genes 0.000 description 1
- 108010069341 Phosphofructokinases Proteins 0.000 description 1
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 1
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical group OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 101100413173 Phytolacca americana PAP2 gene Proteins 0.000 description 1
- 101710194982 Platelet glycoprotein VI Proteins 0.000 description 1
- 102100038394 Platelet glycoprotein VI Human genes 0.000 description 1
- 229920000805 Polyaspartic acid Polymers 0.000 description 1
- 206010036105 Polyneuropathy Diseases 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- 206010057244 Post viral fatigue syndrome Diseases 0.000 description 1
- 102100025067 Potassium voltage-gated channel subfamily H member 4 Human genes 0.000 description 1
- 101710163352 Potassium voltage-gated channel subfamily H member 4 Proteins 0.000 description 1
- 208000006399 Premature Obstetric Labor Diseases 0.000 description 1
- 208000002500 Primary Ovarian Insufficiency Diseases 0.000 description 1
- 241000677647 Proba Species 0.000 description 1
- KCLANYCVBBTKTO-UHFFFAOYSA-N Proparacaine Chemical compound CCCOC1=CC=C(C(=O)OCCN(CC)CC)C=C1N KCLANYCVBBTKTO-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010001267 Protein Subunits Proteins 0.000 description 1
- 102000002067 Protein Subunits Human genes 0.000 description 1
- 241000588769 Proteus <enterobacteria> Species 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 101100084022 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) lapA gene Proteins 0.000 description 1
- 108010001946 Pyrin Domain-Containing 3 Protein NLR Family Proteins 0.000 description 1
- 108010011939 Pyruvate Decarboxylase Proteins 0.000 description 1
- 102000013009 Pyruvate Kinase Human genes 0.000 description 1
- 108020005115 Pyruvate Kinase Proteins 0.000 description 1
- 102000004879 Racemases and epimerases Human genes 0.000 description 1
- 108090001066 Racemases and epimerases Proteins 0.000 description 1
- 208000032056 Radiation Fibrosis Syndrome Diseases 0.000 description 1
- 206010067953 Radiation fibrosis Diseases 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 230000010799 Receptor Interactions Effects 0.000 description 1
- 108090000873 Receptor Protein-Tyrosine Kinases Proteins 0.000 description 1
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 206010063837 Reperfusion injury Diseases 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 208000002367 Retinal Perforations Diseases 0.000 description 1
- 241000219061 Rheum Species 0.000 description 1
- 206010039085 Rhinitis allergic Diseases 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- 229910006124 SOCl2 Inorganic materials 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 206010061934 Salivary gland cancer Diseases 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 241000311088 Schwanniomyces Species 0.000 description 1
- 241001123650 Schwanniomyces occidentalis Species 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 206010053879 Sepsis syndrome Diseases 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 102100025245 Signal transducing adapter molecule 1 Human genes 0.000 description 1
- 102100025265 Signal transducing adapter molecule 2 Human genes 0.000 description 1
- 101710191637 Signal transducing adapter molecule 2 Proteins 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 208000010040 Sprains and Strains Diseases 0.000 description 1
- 108010088160 Staphylococcal Protein A Proteins 0.000 description 1
- 206010072148 Stiff-Person syndrome Diseases 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- QTENRWWVYAAPBI-YZTFXSNBSA-N Streptomycin sulfate Chemical compound OS(O)(=O)=O.OS(O)(=O)=O.OS(O)(=O)=O.CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@H]1[C@H](N=C(N)N)[C@@H](O)[C@H](N=C(N)N)[C@@H](O)[C@@H]1O.CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@H]1[C@H](N=C(N)N)[C@@H](O)[C@H](N=C(N)N)[C@@H](O)[C@@H]1O QTENRWWVYAAPBI-YZTFXSNBSA-N 0.000 description 1
- ZSJLQEPLLKMAKR-UHFFFAOYSA-N Streptozotocin Natural products O=NN(C)C(=O)NC1C(O)OC(CO)C(O)C1O ZSJLQEPLLKMAKR-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 206010042742 Sympathetic ophthalmia Diseases 0.000 description 1
- 206010051379 Systemic Inflammatory Response Syndrome Diseases 0.000 description 1
- 208000004732 Systemic Vasculitis Diseases 0.000 description 1
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 1
- 102100038717 TYRO protein tyrosine kinase-binding protein Human genes 0.000 description 1
- 229940123237 Taxane Drugs 0.000 description 1
- 241000255588 Tephritidae Species 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 102000002933 Thioredoxin Human genes 0.000 description 1
- 108010034949 Thyroglobulin Proteins 0.000 description 1
- 102000009843 Thyroglobulin Human genes 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 241001149964 Tolypocladium Species 0.000 description 1
- 206010044221 Toxic encephalopathy Diseases 0.000 description 1
- 206010044248 Toxic shock syndrome Diseases 0.000 description 1
- 231100000650 Toxic shock syndrome Toxicity 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 241000223259 Trichoderma Species 0.000 description 1
- 102000005924 Triose-Phosphate Isomerase Human genes 0.000 description 1
- 108700015934 Triose-phosphate isomerases Proteins 0.000 description 1
- 229940122618 Trypsin inhibitor Drugs 0.000 description 1
- 101710162629 Trypsin inhibitor Proteins 0.000 description 1
- 206010048302 Tubulointerstitial nephritis Diseases 0.000 description 1
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 1
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 1
- 206010053613 Type IV hypersensitivity reaction Diseases 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 108091023045 Untranslated Region Proteins 0.000 description 1
- 108010092464 Urate Oxidase Proteins 0.000 description 1
- 108010046334 Urease Proteins 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000024780 Urticaria Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 244000000188 Vaccinium ovalifolium Species 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 240000001866 Vernicia fordii Species 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 206010047642 Vitiligo Diseases 0.000 description 1
- 206010047741 Vulval cancer Diseases 0.000 description 1
- 201000011032 Werner Syndrome Diseases 0.000 description 1
- 208000027207 Whipple disease Diseases 0.000 description 1
- 102100033220 Xanthine oxidase Human genes 0.000 description 1
- 108010093894 Xanthine oxidase Proteins 0.000 description 1
- 241000235013 Yarrowia Species 0.000 description 1
- 241000607734 Yersinia <bacteria> Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- IEDXPSOJFSVCKU-HOKPPMCLSA-N [4-[[(2S)-5-(carbamoylamino)-2-[[(2S)-2-[6-(2,5-dioxopyrrolidin-1-yl)hexanoylamino]-3-methylbutanoyl]amino]pentanoyl]amino]phenyl]methyl N-[(2S)-1-[[(2S)-1-[[(3R,4S,5S)-1-[(2S)-2-[(1R,2R)-3-[[(1S,2R)-1-hydroxy-1-phenylpropan-2-yl]amino]-1-methoxy-2-methyl-3-oxopropyl]pyrrolidin-1-yl]-3-methoxy-5-methyl-1-oxoheptan-4-yl]-methylamino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]-N-methylcarbamate Chemical compound CC[C@H](C)[C@@H]([C@@H](CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C)[C@@H](O)c1ccccc1)OC)N(C)C(=O)[C@@H](NC(=O)[C@H](C(C)C)N(C)C(=O)OCc1ccc(NC(=O)[C@H](CCCNC(N)=O)NC(=O)[C@@H](NC(=O)CCCCCN2C(=O)CCC2=O)C(C)C)cc1)C(C)C IEDXPSOJFSVCKU-HOKPPMCLSA-N 0.000 description 1
- 229960000446 abciximab Drugs 0.000 description 1
- 201000010390 abdominal obesity-metabolic syndrome 1 Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 201000010272 acanthosis nigricans Diseases 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 208000033017 acquired idiopathic inflammatory myopathy Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 201000003229 acute pancreatitis Diseases 0.000 description 1
- 208000018254 acute transverse myelitis Diseases 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 230000033289 adaptive immune response Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000009824 affinity maturation Effects 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000001270 agonistic effect Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 239000013566 allergen Substances 0.000 description 1
- 208000002205 allergic conjunctivitis Diseases 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 201000010105 allergic rhinitis Diseases 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 108010001818 alpha-sarcin Proteins 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- 229940059260 amidate Drugs 0.000 description 1
- 150000001412 amines Chemical group 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000002583 angiography Methods 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 208000022531 anorexia Diseases 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 229940045799 anthracyclines and related substance Drugs 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000036436 anti-hiv Effects 0.000 description 1
- 238000011091 antibody purification Methods 0.000 description 1
- 238000009175 antibody therapy Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 239000012131 assay buffer Substances 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 208000010927 atrophic thyroiditis Diseases 0.000 description 1
- RKUNBYITZUJHSG-SPUOUPEWSA-N atropine Chemical compound O([C@H]1C[C@H]2CC[C@@H](C1)N2C)C(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-SPUOUPEWSA-N 0.000 description 1
- 229960000396 atropine Drugs 0.000 description 1
- 108010044540 auristatin Proteins 0.000 description 1
- 229940090047 auto-injector Drugs 0.000 description 1
- 201000000448 autoimmune hemolytic anemia Diseases 0.000 description 1
- 201000004988 autoimmune vasculitis Diseases 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 239000008228 bacteriostatic water for injection Substances 0.000 description 1
- 210000004082 barrier epithelial cell Anatomy 0.000 description 1
- 210000003651 basophil Anatomy 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 229960000397 bevacizumab Drugs 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000008236 biological pathway Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- HUTDDBSSHVOYJR-UHFFFAOYSA-H bis[(2-oxo-1,3,2$l^{5},4$l^{2}-dioxaphosphaplumbetan-2-yl)oxy]lead Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O HUTDDBSSHVOYJR-UHFFFAOYSA-H 0.000 description 1
- 201000000053 blastoma Diseases 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 108010006025 bovine growth hormone Proteins 0.000 description 1
- 208000029028 brain injury Diseases 0.000 description 1
- 210000000069 breast epithelial cell Anatomy 0.000 description 1
- 201000003848 bronchiolitis obliterans Diseases 0.000 description 1
- 208000023367 bronchiolitis obliterans with obstructive pulmonary disease Diseases 0.000 description 1
- 208000019748 bullous skin disease Diseases 0.000 description 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N butyl alcohol Substances CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- HXCHCVDVKSCDHU-LULTVBGHSA-N calicheamicin Chemical compound C1[C@H](OC)[C@@H](NCC)CO[C@H]1O[C@H]1[C@H](O[C@@H]2C\3=C(NC(=O)OC)C(=O)C[C@](C/3=C/CSSSC)(O)C#C\C=C/C#C2)O[C@H](C)[C@@H](NO[C@@H]2O[C@H](C)[C@@H](SC(=O)C=3C(=C(OC)C(O[C@H]4[C@@H]([C@H](OC)[C@@H](O)[C@H](C)O4)O)=C(I)C=3C)OC)[C@@H](O)C2)[C@@H]1O HXCHCVDVKSCDHU-LULTVBGHSA-N 0.000 description 1
- 229930195731 calicheamicin Natural products 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 230000023852 carbohydrate metabolic process Effects 0.000 description 1
- 235000021256 carbohydrate metabolism Nutrition 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000006727 cell loss Effects 0.000 description 1
- 239000008004 cell lysis buffer Substances 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 206010008118 cerebral infarction Diseases 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 210000003161 choroid Anatomy 0.000 description 1
- 238000011098 chromatofocusing Methods 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 201000009323 chronic eosinophilic pneumonia Diseases 0.000 description 1
- 201000005795 chronic inflammatory demyelinating polyneuritis Diseases 0.000 description 1
- 230000012085 chronic inflammatory response Effects 0.000 description 1
- 229940080701 chymosin Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 238000005354 coacervation Methods 0.000 description 1
- 230000003475 colitic effect Effects 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000007398 colorimetric assay Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000004540 complement-dependent cytotoxicity Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 208000010247 contact dermatitis Diseases 0.000 description 1
- 239000005289 controlled pore glass Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000002586 coronary angiography Methods 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 208000004921 cutaneous lupus erythematosus Diseases 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- NZNMSOFKMUBTKW-UHFFFAOYSA-N cyclohexanecarboxylic acid Chemical compound OC(=O)C1CCCCC1 NZNMSOFKMUBTKW-UHFFFAOYSA-N 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 125000001295 dansyl group Chemical group [H]C1=C([H])C(N(C([H])([H])[H])C([H])([H])[H])=C2C([H])=C([H])C([H])=C(C2=C1[H])S(*)(=O)=O 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 206010061428 decreased appetite Diseases 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000003413 degradative effect Effects 0.000 description 1
- 206010061811 demyelinating polyneuropathy Diseases 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 229930191339 dianthin Natural products 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- LTMHDMANZUZIPE-PUGKRICDSA-N digoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LTMHDMANZUZIPE-PUGKRICDSA-N 0.000 description 1
- LTMHDMANZUZIPE-UHFFFAOYSA-N digoxine Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2C(OC(OC3CC4C(C5C(C6(CCC(C6(C)C(O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)CC2O)C)CC1O LTMHDMANZUZIPE-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- ZLFRJHOBQVVTOJ-UHFFFAOYSA-N dimethyl hexanediimidate Chemical compound COC(=N)CCCCC(=N)OC ZLFRJHOBQVVTOJ-UHFFFAOYSA-N 0.000 description 1
- 206010013023 diphtheria Diseases 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- NJDNXYGOVLYJHP-UHFFFAOYSA-L disodium;2-(3-oxido-6-oxoxanthen-9-yl)benzoate Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=CC(=O)C=C2OC2=CC([O-])=CC=C21 NJDNXYGOVLYJHP-UHFFFAOYSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 208000009190 disseminated intravascular coagulation Diseases 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 210000004921 distal colon Anatomy 0.000 description 1
- ZWIBGKZDAWNIFC-UHFFFAOYSA-N disuccinimidyl suberate Chemical compound O=C1CCC(=O)N1OC(=O)CCCCCCC(=O)ON1C(=O)CCC1=O ZWIBGKZDAWNIFC-UHFFFAOYSA-N 0.000 description 1
- 230000006334 disulfide bridging Effects 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- AMRJKAQTDDKMCE-UHFFFAOYSA-N dolastatin Chemical compound CC(C)C(N(C)C)C(=O)NC(C(C)C)C(=O)N(C)C(C(C)C)C(OC)CC(=O)N1CCCC1C(OC)C(C)C(=O)NC(C=1SC=CN=1)CC1=CC=CC=C1 AMRJKAQTDDKMCE-UHFFFAOYSA-N 0.000 description 1
- 229930188854 dolastatin Natural products 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 208000011325 dry age related macular degeneration Diseases 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 230000008482 dysregulation Effects 0.000 description 1
- 238000002001 electrophysiology Methods 0.000 description 1
- 230000007831 electrophysiology Effects 0.000 description 1
- 201000008184 embryoma Diseases 0.000 description 1
- 206010014599 encephalitis Diseases 0.000 description 1
- 201000003914 endometrial carcinoma Diseases 0.000 description 1
- 230000002357 endometrial effect Effects 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 108010028531 enomycin Proteins 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 230000002327 eosinophilic effect Effects 0.000 description 1
- 201000009580 eosinophilic pneumonia Diseases 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 230000004890 epithelial barrier function Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- NPUKDXXFDDZOKR-LLVKDONJSA-N etomidate Chemical compound CCOC(=O)C1=CN=CN1[C@H](C)C1=CC=CC=C1 NPUKDXXFDDZOKR-LLVKDONJSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 201000001155 extrinsic allergic alveolitis Diseases 0.000 description 1
- 208000030533 eye disease Diseases 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 230000003176 fibrotic effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000013534 fluorescein angiography Methods 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 210000000285 follicular dendritic cell Anatomy 0.000 description 1
- 210000001061 forehead Anatomy 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000003500 gene array Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Natural products O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 1
- 229960000346 gliclazide Drugs 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 108060003196 globin Proteins 0.000 description 1
- 102000018146 globin Human genes 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 150000002333 glycines Chemical class 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 229940084936 gonak Drugs 0.000 description 1
- 201000007192 granulomatous hepatitis Diseases 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 201000010284 hepatitis E Diseases 0.000 description 1
- 230000001553 hepatotropic effect Effects 0.000 description 1
- 238000011102 hetero oligomerization reaction Methods 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- 238000005734 heterodimerization reaction Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 238000012766 histopathologic analysis Methods 0.000 description 1
- 102000052620 human IL10 Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 1
- 229960002773 hyaluronidase Drugs 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 229940044700 hylenex Drugs 0.000 description 1
- 208000022098 hypersensitivity pneumonitis Diseases 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 150000002463 imidates Chemical class 0.000 description 1
- 230000014726 immortalization of host cell Effects 0.000 description 1
- 239000012642 immune effector Substances 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- APFVFJFRJDLVQX-AHCXROLUSA-N indium-111 Chemical compound [111In] APFVFJFRJDLVQX-AHCXROLUSA-N 0.000 description 1
- 229940055742 indium-111 Drugs 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 230000019189 interleukin-1 beta production Effects 0.000 description 1
- 102000044166 interleukin-18 binding protein Human genes 0.000 description 1
- 108010070145 interleukin-18 binding protein Proteins 0.000 description 1
- 108040002014 interleukin-18 receptor activity proteins Proteins 0.000 description 1
- 102000008625 interleukin-18 receptor activity proteins Human genes 0.000 description 1
- 108040007659 interleukin-33 receptor activity proteins Proteins 0.000 description 1
- 201000006334 interstitial nephritis Diseases 0.000 description 1
- 239000001573 invertase Substances 0.000 description 1
- 235000011073 invertase Nutrition 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 238000011813 knockout mouse model Methods 0.000 description 1
- 229940057428 lactoperoxidase Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229950005692 larotaxel Drugs 0.000 description 1
- SEFGUGYLLVNFIJ-QDRLFVHASA-N larotaxel dihydrate Chemical compound O.O.O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@@]23[C@H]1[C@@]1(CO[C@@H]1C[C@@H]2C3)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 SEFGUGYLLVNFIJ-QDRLFVHASA-N 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 208000022215 lipoatrophic diabetes Diseases 0.000 description 1
- 201000009099 lipoatrophic diabetes mellitus Diseases 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 201000005249 lung adenocarcinoma Diseases 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- 229940087857 lupron Drugs 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 150000002671 lyxoses Chemical class 0.000 description 1
- 208000029233 macular holes Diseases 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012092 media component Substances 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 208000011661 metabolic syndrome X Diseases 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 108010029942 microperoxidase Proteins 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229950003063 mitumomab Drugs 0.000 description 1
- 108010010621 modeccin Proteins 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 208000037890 multiple organ injury Diseases 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 208000025113 myeloid leukemia Diseases 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- GNOLWGAJQVLBSM-UHFFFAOYSA-N n,n,5,7-tetramethyl-1,2,3,4-tetrahydronaphthalen-1-amine Chemical compound C1=C(C)C=C2C(N(C)C)CCCC2=C1C GNOLWGAJQVLBSM-UHFFFAOYSA-N 0.000 description 1
- UPSFMJHZUCSEHU-JYGUBCOQSA-N n-[(2s,3r,4r,5s,6r)-2-[(2r,3s,4r,5r,6s)-5-acetamido-4-hydroxy-2-(hydroxymethyl)-6-(4-methyl-2-oxochromen-7-yl)oxyoxan-3-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide Chemical compound CC(=O)N[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@H]1[C@H](O)[C@@H](NC(C)=O)[C@H](OC=2C=C3OC(=O)C=C(C)C3=CC=2)O[C@@H]1CO UPSFMJHZUCSEHU-JYGUBCOQSA-N 0.000 description 1
- 239000002088 nanocapsule Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 230000010807 negative regulation of binding Effects 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 201000008383 nephritis Diseases 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 230000007135 neurotoxicity Effects 0.000 description 1
- 231100000228 neurotoxicity Toxicity 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003448 neutrophilic effect Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 229960000470 omalizumab Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003538 oral antidiabetic agent Substances 0.000 description 1
- 229940127209 oral hypoglycaemic agent Drugs 0.000 description 1
- 229950007283 oregovomab Drugs 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- BWKDAMBGCPRVPI-ZQRPHVBESA-N ortataxel Chemical compound O([C@@H]1[C@]23OC(=O)O[C@H]2[C@@H](C(=C([C@@H](OC(C)=O)C(=O)[C@]2(C)[C@@H](O)C[C@H]4OC[C@]4([C@H]21)OC(C)=O)C3(C)C)C)OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)CC(C)C)C(=O)C1=CC=CC=C1 BWKDAMBGCPRVPI-ZQRPHVBESA-N 0.000 description 1
- 229950001094 ortataxel Drugs 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 201000004535 ovarian dysfunction Diseases 0.000 description 1
- 231100000539 ovarian failure Toxicity 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N p-hydroxybenzoic acid methyl ester Natural products COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 210000003134 paneth cell Anatomy 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 201000003045 paroxysmal nocturnal hemoglobinuria Diseases 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 201000001976 pemphigus vulgaris Diseases 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229950009506 penicillinase Drugs 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 208000028169 periodontal disease Diseases 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 201000002628 peritoneum cancer Diseases 0.000 description 1
- 102000013415 peroxidase activity proteins Human genes 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 108010076042 phenomycin Proteins 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 101150009573 phoA gene Proteins 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 238000002428 photodynamic therapy Methods 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 201000006292 polyarteritis nodosa Diseases 0.000 description 1
- 108010064470 polyaspartate Proteins 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 230000007824 polyneuropathy Effects 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 206010036601 premature menopause Diseases 0.000 description 1
- 208000017942 premature ovarian failure 1 Diseases 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 201000000742 primary sclerosing cholangitis Diseases 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 208000037821 progressive disease Diseases 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 235000013930 proline Nutrition 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 125000001500 prolyl group Chemical class [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- LFULEKSKNZEWOE-UHFFFAOYSA-N propanil Chemical compound CCC(=O)NC1=CC=C(Cl)C(Cl)=C1 LFULEKSKNZEWOE-UHFFFAOYSA-N 0.000 description 1
- 229960003981 proparacaine Drugs 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000012743 protein tagging Effects 0.000 description 1
- 231100000654 protein toxin Toxicity 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 201000007801 psoriasis 2 Diseases 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 201000009732 pulmonary eosinophilia Diseases 0.000 description 1
- 208000002815 pulmonary hypertension Diseases 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 229960003876 ranibizumab Drugs 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000004243 retinal function Effects 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 201000003068 rheumatic fever Diseases 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 229960004641 rituximab Drugs 0.000 description 1
- 201000003804 salivary gland carcinoma Diseases 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 201000000980 schizophrenia Diseases 0.000 description 1
- 238000003345 scintillation counting Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 210000003786 sclera Anatomy 0.000 description 1
- 150000003341 sedoheptuloses Chemical class 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 230000036303 septic shock Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 150000003355 serines Chemical class 0.000 description 1
- 210000000717 sertoli cell Anatomy 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 208000022925 sleep disturbance Diseases 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- MKNJJMHQBYVHRS-UHFFFAOYSA-M sodium;1-[11-(2,5-dioxopyrrol-1-yl)undecanoyloxy]-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)CCCCCCCCCCN1C(=O)C=CC1=O MKNJJMHQBYVHRS-UHFFFAOYSA-M 0.000 description 1
- ULARYIUTHAWJMU-UHFFFAOYSA-M sodium;1-[4-(2,5-dioxopyrrol-1-yl)butanoyloxy]-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)CCCN1C(=O)C=CC1=O ULARYIUTHAWJMU-UHFFFAOYSA-M 0.000 description 1
- VUFNRPJNRFOTGK-UHFFFAOYSA-M sodium;1-[4-[(2,5-dioxopyrrol-1-yl)methyl]cyclohexanecarbonyl]oxy-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)C1CCC(CN2C(C=CC2=O)=O)CC1 VUFNRPJNRFOTGK-UHFFFAOYSA-M 0.000 description 1
- MIDXXTLMKGZDPV-UHFFFAOYSA-M sodium;1-[6-(2,5-dioxopyrrol-1-yl)hexanoyloxy]-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)CCCCCN1C(=O)C=CC1=O MIDXXTLMKGZDPV-UHFFFAOYSA-M 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 208000017572 squamous cell neoplasm Diseases 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- SFVFIFLLYFPGHH-UHFFFAOYSA-M stearalkonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 SFVFIFLLYFPGHH-UHFFFAOYSA-M 0.000 description 1
- 238000011146 sterile filtration Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- YROXIXLRRCOBKF-UHFFFAOYSA-N sulfonylurea Chemical class OC(=N)N=S(=O)=O YROXIXLRRCOBKF-UHFFFAOYSA-N 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 201000004595 synovitis Diseases 0.000 description 1
- DKPFODGZWDEEBT-QFIAKTPHSA-N taxane Chemical class C([C@]1(C)CCC[C@@H](C)[C@H]1C1)C[C@H]2[C@H](C)CC[C@@H]1C2(C)C DKPFODGZWDEEBT-QFIAKTPHSA-N 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- MODVSQKJJIBWPZ-VLLPJHQWSA-N tesetaxel Chemical compound O([C@H]1[C@@H]2[C@]3(OC(C)=O)CO[C@@H]3CC[C@@]2(C)[C@H]2[C@@H](C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C(=CC=CN=4)F)C[C@]1(O)C3(C)C)O[C@H](O2)CN(C)C)C(=O)C1=CC=CC=C1 MODVSQKJJIBWPZ-VLLPJHQWSA-N 0.000 description 1
- 229950009016 tesetaxel Drugs 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- CNHYKKNIIGEXAY-UHFFFAOYSA-N thiolan-2-imine Chemical compound N=C1CCCS1 CNHYKKNIIGEXAY-UHFFFAOYSA-N 0.000 description 1
- 108060008226 thioredoxin Proteins 0.000 description 1
- 229940094937 thioredoxin Drugs 0.000 description 1
- 206010043554 thrombocytopenia Diseases 0.000 description 1
- 229960002175 thyroglobulin Drugs 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 208000005057 thyrotoxicosis Diseases 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- 229960005267 tositumomab Drugs 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 208000009174 transverse myelitis Diseases 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- LZAJKCZTKKKZNT-PMNGPLLRSA-N trichothecene Chemical compound C12([C@@]3(CC[C@H]2OC2C=C(CCC23C)C)C)CO1 LZAJKCZTKKKZNT-PMNGPLLRSA-N 0.000 description 1
- 229930013292 trichothecene Natural products 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 230000006433 tumor necrosis factor production Effects 0.000 description 1
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
- 108010087967 type I signal peptidase Proteins 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 208000012991 uterine carcinoma Diseases 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000003156 vasculitic effect Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 201000005539 vernal conjunctivitis Diseases 0.000 description 1
- ZQFGRJWRSLZCSQ-ZSFNYQMMSA-N verteporfin Chemical compound C=1C([C@@]2([C@H](C(=O)OC)C(=CC=C22)C(=O)OC)C)=NC2=CC(C(=C2C=C)C)=NC2=CC(C(=C2CCC(O)=O)C)=NC2=CC2=NC=1C(C)=C2CCC(=O)OC ZQFGRJWRSLZCSQ-ZSFNYQMMSA-N 0.000 description 1
- 229960003895 verteporfin Drugs 0.000 description 1
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 1
- 229960004355 vindesine Drugs 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 230000004393 visual impairment Effects 0.000 description 1
- 201000005102 vulva cancer Diseases 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-OUBTZVSYSA-N water-17o Chemical compound [17OH2] XLYOFNOQVPJJNP-OUBTZVSYSA-N 0.000 description 1
- 208000016261 weight loss Diseases 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 150000003742 xyloses Chemical class 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
- C07K16/244—Interleukins [IL]
- C07K16/245—IL-1
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
- C07K16/244—Interleukins [IL]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
- A61K2039/507—Comprising a combination of two or more separate antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Diabetes (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Emergency Medicine (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Endocrinology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
Abstract
The present invention relates to compositions and methods for treatment of disease. More particularly, the present invention relates to anti-IL-1ß and anti-IL-18 antibodies, including anti-IL-1ß and anti-IL-18 bispecific antibodies, and methods of treating disease using such antibodies.
Description
ANTIBODIES TO IL-113 AND IL-18, FOR TREATMENT OF DISEASE
RELATED APPLICATION
[0001] This non-provisional application claims the benefit of priority of U.S.
Provisional Application Serial No. 61/373,760 filed 13 August 2010, which is incorporated by reference in its entirety.
FIELD OF THE INVENTION
RELATED APPLICATION
[0001] This non-provisional application claims the benefit of priority of U.S.
Provisional Application Serial No. 61/373,760 filed 13 August 2010, which is incorporated by reference in its entirety.
FIELD OF THE INVENTION
[0002] The present invention relates generally to anti-IL-113 and anti-IL-18 antibodies, including anti-IL-113 and anti-IL-18 bispecific antibodies and monoclonal antibodies, and methods of using such antibodies for the treatment of disease.
BACKGROUND
BACKGROUND
[0003] The interleukin-1 (1L-1) and IL-18 family of cytokines are related by mechanism of origin, receptor structure, and signal transduction pathways utilized. These cytokines are synthesized as precursor molecules and cleaved by the enzyme caspase-1 before or during release from the cell. The NALP-3 inflammasome is of crucial importance in generating active caspase-1 (Cassel et al., 2009; Ferrero-Miliani et al., 2007). The IL-1 family contains two agonists, 1L-1a and IL-1[3, a specific inhibitor, IL-1 receptor antagonist (1L-1Ra), and two receptors, the biologically active type IL-1R and inactive type II IL-1R
(Arend et al., 2008).
Both IL-1R1 and IL-33R utilize the same interacting accessory protein (1L-1RAcP). The balance between IL-1 and IL-1Ra is important in preventing disease in various organs, and excess production of 1L-1 has been implicated in many human diseases. The IL-18 family also contains a specific inhibitor, the IL-18-binding protein (1L-18BP), which binds IL-18 in the fluid phase. The IL-18 receptor is similar to the IL-1 receptor complex, including a single ligand-binding chain and a different interacting accessory protein. IL-18 provides an important link between the innate and adaptive immune responses.
(Arend et al., 2008).
Both IL-1R1 and IL-33R utilize the same interacting accessory protein (1L-1RAcP). The balance between IL-1 and IL-1Ra is important in preventing disease in various organs, and excess production of 1L-1 has been implicated in many human diseases. The IL-18 family also contains a specific inhibitor, the IL-18-binding protein (1L-18BP), which binds IL-18 in the fluid phase. The IL-18 receptor is similar to the IL-1 receptor complex, including a single ligand-binding chain and a different interacting accessory protein. IL-18 provides an important link between the innate and adaptive immune responses.
[0004] Inflammasome activation and IL-1[3/1L-18 processing and secretion may be involved in disease progression. Genome-wide association studies indicate a role for the inflammasome in inflammatory bowel disease (IBD). Patients with polymorphisms in the inflammasome-compound NALP-3 are reportedly at increased risk for Crohn's disease (Ferrero-Miliani et al., 2007; Villani et al., 2009). In addition, polymorphisms in autophagy components Atg16I1 and IRGM that control caspase-1 activation and IL-113/1L-18 processing have been reportedly linked to Crohn's disease (Baldassano et al., 2007;
Cadwell et al., 2008;
Kuballa et al., 2008; Saitoh et al., 2008). Independent studies have reported increased serum levels of IL-113 and IL-18 in patients with IBD (Ludwiczek et al., 2005;
Ludwiczek et al., 2004;
Monteleone et al., 1999). Studies in humans have been further supported by preclinical studies. Blockade of IL-18 or IL-113 reportedly leads to amelioration of clinical scores in preclinical models of the disease (Ten Hove et al., 2001).
Cadwell et al., 2008;
Kuballa et al., 2008; Saitoh et al., 2008). Independent studies have reported increased serum levels of IL-113 and IL-18 in patients with IBD (Ludwiczek et al., 2005;
Ludwiczek et al., 2004;
Monteleone et al., 1999). Studies in humans have been further supported by preclinical studies. Blockade of IL-18 or IL-113 reportedly leads to amelioration of clinical scores in preclinical models of the disease (Ten Hove et al., 2001).
[0005] Further, it has been reported that in the eye, there are increased levels of IL-113 in patients with diabetic retinopathy (Kowluru and Odenbach, 2004).
SUMMARY OF THE INVENTION
SUMMARY OF THE INVENTION
[0006] The present invention provides anti-IL-1[3 and anti-IL-18 antibodies, including e.g., anti-IL-113 and anti-IL-18 bispecific antibodies, and methods of using such antibodies for treatment of disease. In some embodiments, the anti-IL-113 and anti-IL-18 antibodies are monoclonal antibodies, and are administered concurrently or consecutively to a patient, for treatment of disease. In other embodiments, the anti-IL-113 and anti-IL-18 are bispecific antibodies and are administered to a patient for treatment of disease. In some embodiments the disease is an inflammasome-mediated disease, e.g., a disease wherein the inflammasome is activated. Examples of diseases include immune diseases and autoimmune diseases, and include inflammatory bowel disease (IBD), age-related macular degeneration (AMD), and type 2 diabetes (T2D).
[0007] In some embodiments, the anti-IL-113 and anti-IL-18 antibodies of the present invention, block or neutralize the activity of, and/or bind to, IL-113 and/or IL-18. In some embodiments the bispecific antibody blocks or neutralizes the activity or, and/or binds to, IL-113 and/or IL-18.
[0008] In one aspect, there is provided a method of treating a disease in a patient, the method comprising administering to said patient an effective amount of:
a. An I L-18/IL-18 bispecific antibody; or b. An antibody that binds IL-1 13 and IL-18; or c. An antibody that binds IL-1 13 and an antibody that binds IL-18;
wherein said antibody or antibodies of parts a, b or c is/are capable of neutralizing or blocking IL-113 and IL-18 activity in cells or tissue.
a. An I L-18/IL-18 bispecific antibody; or b. An antibody that binds IL-1 13 and IL-18; or c. An antibody that binds IL-1 13 and an antibody that binds IL-18;
wherein said antibody or antibodies of parts a, b or c is/are capable of neutralizing or blocking IL-113 and IL-18 activity in cells or tissue.
[0009] In some embodiments, the antibody/antibodies used in the method is/are humanized. In some embodiments, the antibody is a dual action antibody.
[0010] In some embodiments, the method uses a combined treatment comprising an anti-IL-113 antibody and an anti-IL-18 antibody. In one embodiment, at least one antibody is monoclonal. In some embodiments, each antibody is monoclonal. In some embodiments, the antibodies of part (c) are given simultaneously, or consecutively. In some embodiments, the antibodies are administered within one hour.
[0011] In some embodiments, the disease to be treated is an immune disease or an autoimmune disease or an inflammatory or an autoinflammatory disease. In some embodiments, the disease is an inflammasome-mediated disease. In some embodiments, the disease is an IL-1[3 related disease or an IL-18 related disease or an IL-1[3/IL-18 13 disease.
[0012] In some embodiments, the disease is age-related macular degeneration (AMD). In some embodiments, the disease is type 2 diabetes (T2D). In some embodiments, the inflammatory bowel disease (IBD). In some embodiments, the disease is Crohn's disease (CD). In some embodiments, the disease is ulcerative colitis (UC). In some embodiments, the disease is atherosclerosis. In some embodiments, the disease is cardio-metabolic disease. In some embodiments, the disease is fibrostenosing Crohn's disease.
[0013] In some embodiments, the patient being treated by the method has not responded to anti-TNF therapy.
[0014] In some embodiments, the method of treating disease in a patient comprises administering to said patient an effective amount of a monoclonal antibody that binds IL-113 and a monoclonal antibody that binds IL-18.
[0015] In another aspect, there is provided a method of neutralizing or blocking IL-113 and/or IL-18 activity in cells or tissue, the method comprising contacting said cells or tissue with a monoclonal antibody that binds IL-113 and a monoclonal antibody that binds IL-18, and thereby neutralizing or blocking said activity. In some embodiments, the antibodies are administered concurrently or consecutively. In some embodiments, the cells are contacted concurrently or consecutively with said monoclonal antibody that binds IL-113 and said monoclonal antibody that binds IL-18.
[0016] In another aspect, there is provided an antibody that neutralizes or blocks IL-1[3 and IL-18 activity. In some embodiments, the antibody is a bispecific antibody. In some embodiments, the antibody is humanized. In some embodiments, the antibody binds to IL-113 and IL-18.
BRIEF DESCRIPTION OF THE DRAWINGS
BRIEF DESCRIPTION OF THE DRAWINGS
[0017] Figure 1 depicts examples of ligands and receptors for IL-113 and for IL-18. For example, signaling can be initiated though engagement of two receptor chains by IL-113 or IL-18. It is thought that intracellular Toll-Interleukin Rexeptor-like (TIR) domain leads to activation of transcription factors NF-kB and AP1 that in turn increase cytokine production ultimately resulting in protective immunity, autoinflammatory disorders or chronic inflammation.
[0018] Figure 2 depicts an example of a hypothetical model for IL-18/1L-18 involvement in inflammatory bowel disease. Stimulation of lamina propria macrophages by intestinal microbes leads to autocatalytic activation of caspase-1 that in turn processes and secretes !L-IB and IL-18. IL-113 and IL-18 act on various immune cells and induce pro-inflammatory cytokines in macrophages, polarize T-cells towards Th1 and Th17 pathogenic T
cells and disrupt the epithelial barrier, enabling more pathogens to stimulate macrophages.
[0018] Figure 2 depicts an example of a hypothetical model for IL-18/1L-18 involvement in inflammatory bowel disease. Stimulation of lamina propria macrophages by intestinal microbes leads to autocatalytic activation of caspase-1 that in turn processes and secretes !L-IB and IL-18. IL-113 and IL-18 act on various immune cells and induce pro-inflammatory cytokines in macrophages, polarize T-cells towards Th1 and Th17 pathogenic T
cells and disrupt the epithelial barrier, enabling more pathogens to stimulate macrophages.
[0019] Figure 3 depicts an example of how genetics suggest a role for inflammasome activation in Crohn's disease. Polymophisms in autophagy-related genes ATG16L1 and IRGM and inflammasome regulating genes NOD2 and NALP3 results in increased Caspase-1 activation and secretion of IL-113 and IL-18.
[0020] Figure 4(A) is data showing that expression of IL-113 and IL-18 mRNA is increased in colon biopsies from Crohn's and UC patients. The values are based on relative intensities of the hybridization signal on an Agilent gene platform. (B) is data showing that IL-113 and IL-18 are increased in serum from patients with Crohn's disease and UC.
[0021] Figure 5 is data showing that differential expression of IL-113 and IL-18 in inflamed colon. lmmunohistochemistry on cross-sections through colon biopsies from patients with UC.
Sections were stained with antibody to human IL-113 and IL-18. While IL-113 is primarily found in macrophages present at sites of transmural inflammation, IL-18 is predominantly found in dendritic cells present in lymphoid follicles. In both cases, staining was only observed in regions of inflammation.
Sections were stained with antibody to human IL-113 and IL-18. While IL-113 is primarily found in macrophages present at sites of transmural inflammation, IL-18 is predominantly found in dendritic cells present in lymphoid follicles. In both cases, staining was only observed in regions of inflammation.
[0022] Figure 6 is data showing that increased secretion of IL-113 and IL-18 from colons of mice receiving 3.5 % DSS in their drinking water ad libitum for 5 days [0023] Figure 7 is data showing that increased secretion of IL-113 and IL-18 from colons of mice receiving adoptively transferred CD4+CD45RBhi T cells.
[0024] Figure 8 is data showing that increased secretion of IL-113 and IL-18 from colons of IL-10 KO mice treated with piroxicam.
[0025] Figure 9 is data showing that that IL-1R1 and ASC KO mice show significantly reduced severity of DSS-induced colitis. Colon scores from mice deficient in IL-1R1, IL-18Ra and ASC.
[0026] Figure 10 IL-1R1 deficiency leads to a significant reduction of IL-113, IL-18, IL-17 and TNF-alpha in DSS-induced colitis.
[0027] Figure 11 is data showing that IL-18R deficiency leads to a significant reduction in the levels of IL-18 and IL-12p40 in DSS-induced colitis.
[0028] Figure 12 is data showing that ASC deficiency leads to a significant reduction in the levels of IL-18, IL-18, IL-12p40 and IL-17 in DSS-induced colitis.
[0029] Figure 13 is a summary of exemplary cytokine responses in ex-vivo colon cultures obtained from various mouse IBD models.
[0030] Figure 14 is data showing that that IL-113 is expressed in vitreous of a subpopulation of AMD patients. Vitreous was collected from patients diagnosed with wet AMD, geographic atrophy (GA) or from patients with a macular pucker or macular hole.
Cytokine levels were determined using and ELISA assay.
Cytokine levels were determined using and ELISA assay.
[0031] Figure 15 is data showing increased IL-113 and Caspase-1 expression in the eye following constant light exposure. In (A) Mice were exposed to constant light (1800 Lux) for days, after which eyes were removed; in (B) mRNA was isolated from the retina, and IL-113 mRNA levels were determined by real-time PCR; and in (C) Whole eyes were homogenized in lysis buffer, and cell extracts were separated on an SDS gel, blotted and stained with an antibody to murine caspase-1.
[0032] Figure 16 is data showing expression of pro-IL-13 and caspase-1 in IL-infected eyes. Adeno-associated virus (AAV) expressing mature murine IL-113 was injected sub-retinally. Three weeks later, mice were exposed to intense light (5000 Lux) (ILE; intense light exposure) for 6 hrs. Eyes were processed 1 day later for Western blot analysis of IL-113 and Caspase-1 as described in Figure 15.
[0033] Figure 17 is data showing increased inflammation and neo-angiogenesis following 11_1[3 over-expression in the mouse eye. In (A), albino mice received a sub-retinal injection of empty AAV virus or virus expressing IL-113. Three weeks later, mice were injected with FITC solution and their eyes were scanned by fluorescein angiography.
Arrow points to an area with choroidal neovascularization (CNV). In (B), the eyes were enucleated, fixed and processed for paraffin embedding and sectioning. Sections were stained with an antibody to CD45 to visualize infiltrating immune cells (see inset). Inflammation was absent in mice sub-retinally injected with an empty AAV vector.
Arrow points to an area with choroidal neovascularization (CNV). In (B), the eyes were enucleated, fixed and processed for paraffin embedding and sectioning. Sections were stained with an antibody to CD45 to visualize infiltrating immune cells (see inset). Inflammation was absent in mice sub-retinally injected with an empty AAV vector.
[0034] Figure 18 is data showing AAV eyes infected with pro-IL-13 show inflammation independent of caspase-1 activity. Caspase-1 wt or ko mice were injected subretinally with AAV-pro-IL-13 as described for Figure 17. Three weeks later, the eyes were enucleated and processed as described. Inflammation proceeded independent of caspase-1 activity.
[0035] Figure 19 is data showing that both AAV-IL113 and AAV-IL-18 significantly reduce scotopic ERG responses. Electro Retino Grams (ERGs) of mice treated with AAV-IL-113 and AAV-1L18 show significant reduction in "a" and "b"-wave responses compared to mice injected with empty vector.
[0036] Figure 20 is a summary of the biology of IL-113 and IL-18 in AMD useful for developing anti-IL-113 and anti-IL-18 neutralizing antibodies for use in preclinical studies in nonhuman animals (e.g., mice), and as a clinical reagent for human studies.
[0037] Figure 21 is data showing an example of a method for screening of anti-IL-1[3 neutralizing antibodies using an ELISA-based approach.
[0038] Figure 22 is an ELISA assay showing the neutralizing activity of a subset of hamster anti-mouse IL-1[3 hybridomas.
[0039] Figure 23 is a Table illustrating the I050 values for the blocking activity of hamster anti-mouse anti-IL-1[3 antibodies.
[0040] Figure 24 is data showing cell lines used to determine neutralizing activity of human and murine IL-16/IL-18.
[0041] Figure 25 is data showing (A) the dose-response of NF-kB reporter activity in an NIH3T3 cell line treated with increasing concentrations of murine IL-16; and (B) blocking activity of hybridoma supernatants containing IL-1[3-neutralizing Abs.
[0042] Figure 26 is a summary of exemplary antibodies derived by phage technology.
Various phage display libraries with diversity in the heavy chain variable region (VH) or both the heavy and light chain variable regions (VHVL) were screened. Also screened was a synthetic library (YSGX) which is a reduced genetic codon library which generates randomized CDRs using codons enriched in tyrosines, serines and glycines (Fe!louse et al., J Mol Biol, 373, 924-940) and a peptide library which is an antibody library designed to potentially bind specific peptide sequences.
Various phage display libraries with diversity in the heavy chain variable region (VH) or both the heavy and light chain variable regions (VHVL) were screened. Also screened was a synthetic library (YSGX) which is a reduced genetic codon library which generates randomized CDRs using codons enriched in tyrosines, serines and glycines (Fe!louse et al., J Mol Biol, 373, 924-940) and a peptide library which is an antibody library designed to potentially bind specific peptide sequences.
[0043] Figure 27 is data showing the locking activity of various phage antibodies in an ELISA-based neutralization assay.
[0044] Figure 28 is a cartoon depicting an exemplary sequence of events leading up to pancreatic beta cell loss and the potential level of intervention with anti-IL-neutralizing antibodies.
[0045] Figure 29 is a schematic of the experimental protocol used in Example 4.
[0046] Figure 30 is a graphic displaying the (A) histology colon score results and (B) visual colon score results of anti-IL-18 and/or anti-IL18 treatment in the piroxicam IL-10K0 mouse IBD model. Also shown is the result of TNF-alpha blockade. The anti-IL-18 and anti-I L18 combination treatment was equally effective as TNF blockade.
DETAILED DESCRIPTION OF THE INVENTION
DETAILED DESCRIPTION OF THE INVENTION
[0047] The present invention provides anti-IL-113 and anti-IL-18 antibodies, including e.g., anti-IL-113 and anti-IL-18 bispecific antibodies, and methods of using such antibodies for treatment of disease. In some embodiments, the anti-IL-113 and anti-IL-18 antibodies are monoclonal antibodies, and are administered concurrently or consecutively to a patient, for treatment of disease. In other embodiments, the anti-IL-113 and anti-IL-18 are bispecific antibodies and are administered to a patient for treatment of disease.
Examples of diseases include immune diseases and autoimmune diseases, and include inflammatory bowel disease (IBD), age-related macular degeneration (AMD), and type 2 diabetes (T2D).
Examples of diseases include immune diseases and autoimmune diseases, and include inflammatory bowel disease (IBD), age-related macular degeneration (AMD), and type 2 diabetes (T2D).
[0048] In some embodiments, the anti-IL-1[3 and anti-IL-18 antibodies of the present invention, block or neutralize the activity of, and/or bind to, IL-113 and/or IL-18.
[0049] All references, including patents, applications, and scientific literature, cited herein are hereby incorporated by reference in their entirety.
GENERAL TECHNIQUES
GENERAL TECHNIQUES
[0050] The techniques and procedures described or referenced herein are generally well understood and commonly employed using conventional methodology by those skilled in the art, such as, for example, the widely utilized methodologies described in Sambrook et al., Molecular Cloning: A Laboratory Manual 3rd. edition (2001) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; Current Protocols in Molecular Biology (F. M.
Ausubel, et al.
eds., (2003)); the series Methods in Enzymology (Academic Press, Inc.): PCR 2:
A Practical Approach (M. J. MacPherson, B. D. Hames and G. R. Taylor eds. (1995)), Harlow and Lane, eds. (1988) Antibodies, A Laboratory Manual, and Animal Cell Culture (R. I.
Freshney, ed.
(1987)); Oligonucleotide Synthesis (M. J. Gait, ed., 1984); Methods in Molecular Biology, Humana Press; Cell Biology: A Laboratory Notebook (J. E. Cellis, ed., 1998) Academic Press;
Animal Cell Culture (R. I. Freshney), ed., 1987); Introduction to Cell and Tissue Culture (J. P.
Mather and P. E. Roberts, 1998) Plenum Press; Cell and Tissue Culture:
Laboratory Procedures (A. Doyle, J. B. Griffiths, and D. G. Newell, eds., 1993-8) J.
Wiley and Sons;
Handbook of Experimental Immunology (D. M. Weir and C. C. Blackwell, eds.);
Gene Transfer Vectors for Mammalian Cells (J. M. Miller and M. P. Cabs, eds., 1987); PCR: The Polymerase Chain Reaction, (Mullis et al., eds., 1994); Current Protocols in Immunology (J.
E. Coligan et al., eds., 1991); Short Protocols in Molecular Biology (Wiley and Sons, 1999);
Immunobiology (C. A. Janeway and P. Travers, 1997); Antibodies (P. Finch, 1997);
Antibodies: A Practical Approach (D. Catty., ed., IRL Press, 1988-1989);
Monoclonal Antibodies: A Practical Approach (P. Shepherd and C. Dean, eds., Oxford University Press, 2000); Using Antibodies: A Laboratory Manual (E. Harlow and D. Lane (Cold Spring Harbor Laboratory Press, 1999); The Antibodies (M. Zanetti and J. D. Capra, eds., Harwood Academic Publishers, 1995); and Cancer: Principles and Practice of Oncology (V. T. DeVita et al., eds., J.B. Lippincott Company, 1993).
DEFINITIONS
Ausubel, et al.
eds., (2003)); the series Methods in Enzymology (Academic Press, Inc.): PCR 2:
A Practical Approach (M. J. MacPherson, B. D. Hames and G. R. Taylor eds. (1995)), Harlow and Lane, eds. (1988) Antibodies, A Laboratory Manual, and Animal Cell Culture (R. I.
Freshney, ed.
(1987)); Oligonucleotide Synthesis (M. J. Gait, ed., 1984); Methods in Molecular Biology, Humana Press; Cell Biology: A Laboratory Notebook (J. E. Cellis, ed., 1998) Academic Press;
Animal Cell Culture (R. I. Freshney), ed., 1987); Introduction to Cell and Tissue Culture (J. P.
Mather and P. E. Roberts, 1998) Plenum Press; Cell and Tissue Culture:
Laboratory Procedures (A. Doyle, J. B. Griffiths, and D. G. Newell, eds., 1993-8) J.
Wiley and Sons;
Handbook of Experimental Immunology (D. M. Weir and C. C. Blackwell, eds.);
Gene Transfer Vectors for Mammalian Cells (J. M. Miller and M. P. Cabs, eds., 1987); PCR: The Polymerase Chain Reaction, (Mullis et al., eds., 1994); Current Protocols in Immunology (J.
E. Coligan et al., eds., 1991); Short Protocols in Molecular Biology (Wiley and Sons, 1999);
Immunobiology (C. A. Janeway and P. Travers, 1997); Antibodies (P. Finch, 1997);
Antibodies: A Practical Approach (D. Catty., ed., IRL Press, 1988-1989);
Monoclonal Antibodies: A Practical Approach (P. Shepherd and C. Dean, eds., Oxford University Press, 2000); Using Antibodies: A Laboratory Manual (E. Harlow and D. Lane (Cold Spring Harbor Laboratory Press, 1999); The Antibodies (M. Zanetti and J. D. Capra, eds., Harwood Academic Publishers, 1995); and Cancer: Principles and Practice of Oncology (V. T. DeVita et al., eds., J.B. Lippincott Company, 1993).
DEFINITIONS
[0051] For purposes of interpreting this specification, the following definitions will apply and whenever appropriate, terms used in the singular will also include the plural and vice versa. In the event that any definition set forth below conflicts with any document incorporated herein by reference, the definition set forth below shall control.
[0052] With reference to the molecules referred to herein (e.g., antibodies, and the molecules that the antibodies bind to), "active" or "activity" refer to biological, immunological and/or functional activities of such molecules. For example, in some embodiments, the anti-IL-1[3 and anti-IL-18 antibodies of the present invention are bispecific antibodies that bind to IL-113 and IL-18 and thus have a binding activity. In a further embodiment, anti-IL-113 and anti-IL-18 antibodies of the present invention have neutralizing or blocking activity, i.e., such antibodies can neutralize or block the activity of IL-113 and/or IL-18.
[0053] "Affibodies" or "Affibody" refers to the use of a protein liked by peptide bond to an Fc region, wherein the protein is used as a scaffold to provide a binding surface for a target molecule. The binding surface may be altered through mutagenisis to generate a library of proteins that can bind other target molecules or other epitopes on the same target molecule.
The starting protein is often a naturally occurring protein such as staphylococcal protein A or IgG-binding B domain, or the Z protein derived therefrom (see Nilsson et al (1987), Prot Eng 1, 107-133, and U.S. Pat. No. 5,143,844) or a fragment or derivative thereof.
For example, affibodies can be created from Z proteins variants having altered binding affinity to target molecule(s), wherein a segment of the Z protein has been mutated by random mutagenesis to create a library of variants capable of binding a target molecule. Examples of affibodies include U.S. Pat. No. 6,534,628, Nord K et al, Prot Eng 8:601-608 (1995) and Nord K et al, Nat Biotech 15:772-777 (1997). Biotechnol Appl Biochem. 2008 Jun; 50(Pt 2):97-112.
The starting protein is often a naturally occurring protein such as staphylococcal protein A or IgG-binding B domain, or the Z protein derived therefrom (see Nilsson et al (1987), Prot Eng 1, 107-133, and U.S. Pat. No. 5,143,844) or a fragment or derivative thereof.
For example, affibodies can be created from Z proteins variants having altered binding affinity to target molecule(s), wherein a segment of the Z protein has been mutated by random mutagenesis to create a library of variants capable of binding a target molecule. Examples of affibodies include U.S. Pat. No. 6,534,628, Nord K et al, Prot Eng 8:601-608 (1995) and Nord K et al, Nat Biotech 15:772-777 (1997). Biotechnol Appl Biochem. 2008 Jun; 50(Pt 2):97-112.
[0054] The term "antibody" herein is used in the broadest sense and refers to any immunoglobulin (Ig) molecule whether naturally occurring or engineered, and any fragment, mutant, variant or derivation thereof which so long as it exhibits the desired biological activity (e.g., epitope binding activity). Examples of antibodies include, but are not limited to, monoclonal antibodies, polyclonal antibodies, multispecific antibodies, antibody fragments, single domain antibodies, octopus antibodies and DVD antibodies. In one embodiment, an antibody of the present invention comprises at least one variable domain. In another embodiment, an antibody of the present invention is a bispecific antibody.
[0055] Generally, immunoglobulins are assigned to different classes, depending on the amino acid sequences of the heavy chain constant domains. Five major classes of immunoglobulins have been described: IgA, IgD, IgE, IgG and IgM. These may be further divided into subclasses (isotypes), e.g., IgG-1, IgG-2, IgA-1, IgA-2, and the like. The heavy chain constant domains corresponding to each immunoglobulin class are termed a, 6, E, y and p for IgA, D, E, G, and M, respectively. The subunit structures and three-dimensional configurations of the different classes of immunoglobulins are well known and described generally, for example, in Abbas et al., 2000, Cellular and Mol. Immunology, 4th ed. An antibody may be part of a larger fusion molecule, formed by covalent or non-covalent association of the antibody with one or more other protein or peptide.
[0056] In one embodiment, antibodies of the present invention have reduced (fewer) disulfide linkages. In one embodiment, antibodies of the invention comprise a hinge region in which at least one cysteine residue is rendered incapable of forming a disulfide linkage, wherein the disulfide linkage is preferably intermolecular, preferably between two heavy chains. A hinge cysteine can be rendered incapable of forming a disulfide linkage by any of a variety of suitable methods known in the art, some of which are described herein, including but not limited to deletion of the cysteine residue or substitution of the cysteine with another amino acid.
[0057] The phrase "an anti- IL-113 antibody and/or anti-IL-18 antibody/antibodies" refers, depending on the context, to (1) an anti- IL-1[3 antibody, or (2) an anti-IL-18 antibody, or (3) a combination of an anti- IL-113 antibody and an anti-IL-18 antibody (i.e., two antibodies), or (4) an antibody that binds to both IL-113 and IL-18.
[0058] An "affinity matured" antibody is one having one or more alteration in one or more CDRs thereof which result in an improvement in the affinity of the antibody for antigen, compared to a parent antibody which does not possess those alteration(s).
Preferred affinity matured antibodies will have nanomolar or even picomolar affinities for the target antigen.
Affinity matured antibodies are produced by known procedures. See, for example, Marks et al., 1992, Biotechnology 10:779-783 that describes affinity maturation by variable heavy chain (VH) and variable light chain (VL) domain shuffling. Random mutagenesis of CDR
and/or framework residues is described in: Barbas, et al. 1994, Proc. Nat. Acad. Sci, USA 91:3809-3813; Shier et al., 1995, Gene 169:147-155; YeIton et al., 1995, J. Immunol.
155:1994-2004;
Jackson et al., 1995, J. Immunol. 154(7):3310-9; and Hawkins et al, 1992, J.
Mol. Biol.
226:889-896, for example.
Preferred affinity matured antibodies will have nanomolar or even picomolar affinities for the target antigen.
Affinity matured antibodies are produced by known procedures. See, for example, Marks et al., 1992, Biotechnology 10:779-783 that describes affinity maturation by variable heavy chain (VH) and variable light chain (VL) domain shuffling. Random mutagenesis of CDR
and/or framework residues is described in: Barbas, et al. 1994, Proc. Nat. Acad. Sci, USA 91:3809-3813; Shier et al., 1995, Gene 169:147-155; YeIton et al., 1995, J. Immunol.
155:1994-2004;
Jackson et al., 1995, J. Immunol. 154(7):3310-9; and Hawkins et al, 1992, J.
Mol. Biol.
226:889-896, for example.
[0059] An "agonist antibody" or "agonistic antibody" is an antibody that binds and activates an antigen, such as a receptor. Generally, receptor activation capability of the agonist antibody will be at least qualitatively similar (and may be essentially quantitatively similar) to that of a native agonist ligand of the receptor.
[0060] "Antibody fragments" refers to an antibody comprising a portion of an intact antibody, preferably the antigen binding or a variable region of the intact antibody. Examples of antibody fragments include Fab, Fab', F(ab)2, and Fv fragments; diabodies (Db); tandem diabodies (taDb), linear antibodies (see U.S. Patent No. 5,641,870, Example 2;
Zapata et al., Protein Eng. 8(10):1057-1062 (1995)); one-armed antibodies, minibodies, single-chain antibody molecules; and multispecific antibodies formed from antibody fragments (e.g., including but not limited to, Db-Fc, taDb-Fc, taDb-CH3 and (scFV)4-Fc).
Zapata et al., Protein Eng. 8(10):1057-1062 (1995)); one-armed antibodies, minibodies, single-chain antibody molecules; and multispecific antibodies formed from antibody fragments (e.g., including but not limited to, Db-Fc, taDb-Fc, taDb-CH3 and (scFV)4-Fc).
[0061] In some embodiments, an antibody fragment comprises only a portion of an intact antibody, where the portion retains at least one, and may retain most or all, of the functions normally associated with that portion when present in an intact antibody. In another embody, an antibody fragment of the invention comprises a sufficient portion of the constant region to permit dimerization (or multimerization) of heavy chains that have reduced disulfide linkage capability, for example where at least one of the hinge cysteines normally involved in inter-heavy chain disulfide linkage is altered as described herein. In one embodiment, an antibody fragment comprises an antigen binding site or variable domains of the intact antibody and thus retains the ability to bind antigen. In another embodiment, an antibody fragment, for example one that comprises the Fc region, retains at least one of the biological functions normally associated with the Fc region when present in an intact antibody, such as FcRn binding, antibody half life modulation, ADCC function, and/or complement binding (for example, where the antibody has a glycosylation profile necessary for ADCC
function or complement binding). Examples of antibody fragments include, but are not limited to, linear antibodies; single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.
function or complement binding). Examples of antibody fragments include, but are not limited to, linear antibodies; single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.
[0062] "Antibody-dependent cell-mediated cytotoxicity" and "ADCC" refer to a cell-mediated reaction in which nonspecific cytotoxic cells that express FcRs (such as Natural Killer (NK) cells, neutrophils, and macrophages) recognize bound antibody on a target cell and subsequently cause lysis of the target cell. NK cells, the primary cells for mediating ADCC, express only FcyRIII, whereas monocytes express FcyRI, FcyRII, and FcyRIII. FcR
expression on hematopoietic cells is summarized in Table 3 on page 464 of Ravetch et al., 1991, Annu. Rev. Immunol 9:457-92. To assess ADCC activity of a molecule of interest, an in vitro ADCC assay such as that described in U.S. Pat. No. 5,500,362 or 5,821,337 may be performed. Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC
activity of the molecule of interest may be assessed in vivo, for example, in a animal model such as that disclosed in Clynes et al., 1998, PNAS (USA) 95:652-656.
expression on hematopoietic cells is summarized in Table 3 on page 464 of Ravetch et al., 1991, Annu. Rev. Immunol 9:457-92. To assess ADCC activity of a molecule of interest, an in vitro ADCC assay such as that described in U.S. Pat. No. 5,500,362 or 5,821,337 may be performed. Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC
activity of the molecule of interest may be assessed in vivo, for example, in a animal model such as that disclosed in Clynes et al., 1998, PNAS (USA) 95:652-656.
[0063] The terms "anti- IL-113 antibody" and "an antibody that binds to IL-1 13" refer to an antibody that is capable of binding IL-113 with sufficient affinity such that the antibody is useful as a diagnostic and/or therapeutic agent in targeting IL-1 13. In one embodiment, the extent of binding of an anti- IL-16 antibody to an unrelated, non- IL-16 protein is less than about 10% of the binding of the antibody to IL-113 as measured, e.g., by a radioimmunoassay (RIA). In certain embodiments, an anti- IL-113 antibody binds to an epitope of IL-1[3 that is conserved among IL-113 from different species.
[0064] The terms "anti-IL-18 antibody" and "an antibody that binds to IL-18"
refer to an antibody that is capable of binding IL-18 with sufficient affinity such that the antibody is useful as a diagnostic and/or therapeutic agent in targeting IL-18. In one embodiment, the extent of binding of an anti-IL-18 antibody to an unrelated, non-IL-18 protein is less than about 10% of the binding of the antibody to IL-18 as measured, e.g., by a radioimmunoassay (RIA). In certain embodiments, an anti-IL-18 antibody binds to an epitope of IL-18 that is conserved among IL-18 from different species.
refer to an antibody that is capable of binding IL-18 with sufficient affinity such that the antibody is useful as a diagnostic and/or therapeutic agent in targeting IL-18. In one embodiment, the extent of binding of an anti-IL-18 antibody to an unrelated, non-IL-18 protein is less than about 10% of the binding of the antibody to IL-18 as measured, e.g., by a radioimmunoassay (RIA). In certain embodiments, an anti-IL-18 antibody binds to an epitope of IL-18 that is conserved among IL-18 from different species.
[0065] An "autoimmune disease" as used herein is a non-malignant disease or disorder arising from and directed against an individual's own tissues. The autoimmune diseases described herein specifically exclude malignant or cancerous diseases or conditions, particularly excluding B cell lymphoma, acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), Hairy cell leukemia, and chronic myeloblastic leukemia.
Examples of autoimmune diseases or disorders include, but are not limited to, age-related macular degeneration (AMD), inflammatory responses such as inflammatory skin diseases including psoriasis and dermatitis (for example, atopic dermatitis); systemic scleroderma and sclerosis; responses associated with inflammatory bowel disease (such as Crohn's disease and ulcerative colitis); respiratory distress syndrome (including adult respiratory distress syndrome; ARDS); dermatitis; meningitis; encephalitis; uveitis; colitis;
glomerulonephritis;
allergic conditions such as eczema and asthma and other conditions involving infiltration of T
cells and chronic inflammatory responses; atherosclerosis; leukocyte adhesion deficiency;
rheumatoid arthritis; systemic lupus erythematosus (SLE); lupus nephritis (LN); diabetes mellitus (e.g. Type I diabetes mellitus or insulin dependent diabetes mellitis); multiple sclerosis; Reynaud's syndrome; autoimmune thyroiditis; allergic encephalomyelitis; Sjorgen's syndrome; juvenile onset diabetes; and immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T-lymphocytes typically found in tuberculosis, sarcoidosis, polymyositis, granulomatosis and vasculitis;
pernicious anemia (Addison's disease); diseases involving leukocyte diapedesis; central nervous system (CNS) inflammatory disorder; multiple organ injury syndrome; hemolytic anemia (including, but not limited to cryoglobinemia or Coombs positive anemia); myasthenia gravis;
antigen-antibody complex mediated diseases; anti-glomerular basement membrane disease;
antiphospholipid syndrome; allergic neuritis; Graves' disease; Lambert-Eaton myasthenic syndrome;
pemphigoid bullous; pemphigus; autoimmune polyendocrinopathies; Reiter's disease; stiff-man syndrome; Behcet disease; giant cell arteritis; immune complex nephritis;
IgA
nephropathy; IgM polyneuropathies; immune thrombocytopenic purpura (ITP) or autoimmune thrombocytopenia etc.
Examples of autoimmune diseases or disorders include, but are not limited to, age-related macular degeneration (AMD), inflammatory responses such as inflammatory skin diseases including psoriasis and dermatitis (for example, atopic dermatitis); systemic scleroderma and sclerosis; responses associated with inflammatory bowel disease (such as Crohn's disease and ulcerative colitis); respiratory distress syndrome (including adult respiratory distress syndrome; ARDS); dermatitis; meningitis; encephalitis; uveitis; colitis;
glomerulonephritis;
allergic conditions such as eczema and asthma and other conditions involving infiltration of T
cells and chronic inflammatory responses; atherosclerosis; leukocyte adhesion deficiency;
rheumatoid arthritis; systemic lupus erythematosus (SLE); lupus nephritis (LN); diabetes mellitus (e.g. Type I diabetes mellitus or insulin dependent diabetes mellitis); multiple sclerosis; Reynaud's syndrome; autoimmune thyroiditis; allergic encephalomyelitis; Sjorgen's syndrome; juvenile onset diabetes; and immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T-lymphocytes typically found in tuberculosis, sarcoidosis, polymyositis, granulomatosis and vasculitis;
pernicious anemia (Addison's disease); diseases involving leukocyte diapedesis; central nervous system (CNS) inflammatory disorder; multiple organ injury syndrome; hemolytic anemia (including, but not limited to cryoglobinemia or Coombs positive anemia); myasthenia gravis;
antigen-antibody complex mediated diseases; anti-glomerular basement membrane disease;
antiphospholipid syndrome; allergic neuritis; Graves' disease; Lambert-Eaton myasthenic syndrome;
pemphigoid bullous; pemphigus; autoimmune polyendocrinopathies; Reiter's disease; stiff-man syndrome; Behcet disease; giant cell arteritis; immune complex nephritis;
IgA
nephropathy; IgM polyneuropathies; immune thrombocytopenic purpura (ITP) or autoimmune thrombocytopenia etc.
[0066] AMD is a leading cause of severe, irreversible vision loss among the elderly (see e.g., Bressler (2004) JAMA 291:1900-01). It is characterized by a broad spectrum of clinical and pathologic findings, including pale yellow spots known as drusen, disruption of the retinal pigment epithelium (RPE), choroidal neovascularization (CNV), and disciform macular degeneration. The manifestations of the disease is classified into two forms:
non-exudative (dry) and exudative (wet or neovascular). Recently, several therapies for treatment of wet AMD have been approved ¨ photodynamic therapy using verteporfin (Visudyne0); a VEGF-binding aptamer, pegaptantib (Macugen0); and an anti-VEGF antibody fragment, ranibizumab (Lucentis0).
non-exudative (dry) and exudative (wet or neovascular). Recently, several therapies for treatment of wet AMD have been approved ¨ photodynamic therapy using verteporfin (Visudyne0); a VEGF-binding aptamer, pegaptantib (Macugen0); and an anti-VEGF antibody fragment, ranibizumab (Lucentis0).
[0067] An "autoinflammatory disease" as used herein refers to a group of rare hereditary immune-mediated disorders that share similar features, particularly fever.
Autoinflammatory diseases are characterized by recurrent unprovoked inflammation in the absence of high titers of autoantibodies, infection, or antigen-specific T lymphocytes. Exemplary autoinflammatory diseases include, but is not limited to, Familial Mediterranean Fever (FMF);
tumour necrosis factor (TNF) receptor-associated periodic fever syndrome (TRAPS);
hyperimmunoglobulinemia D and periodic fever syndrome (HIDS); systemic onset juvenile idiopathic arthritis (Still's disease); cryopyrin-associated periodic syndrome (CAPS); familial cold autoinflammatory syndrome; Muckle-Wells syndrome; deficiency of the interleukin-1 receptor antagonist (DIRA); and neonatal onset multi-system inflammatory disease (NOMID)/chronic infantile neurological cutaneous and articular (CINCA) syndrome.
Autoinflammatory diseases are characterized by recurrent unprovoked inflammation in the absence of high titers of autoantibodies, infection, or antigen-specific T lymphocytes. Exemplary autoinflammatory diseases include, but is not limited to, Familial Mediterranean Fever (FMF);
tumour necrosis factor (TNF) receptor-associated periodic fever syndrome (TRAPS);
hyperimmunoglobulinemia D and periodic fever syndrome (HIDS); systemic onset juvenile idiopathic arthritis (Still's disease); cryopyrin-associated periodic syndrome (CAPS); familial cold autoinflammatory syndrome; Muckle-Wells syndrome; deficiency of the interleukin-1 receptor antagonist (DIRA); and neonatal onset multi-system inflammatory disease (NOMID)/chronic infantile neurological cutaneous and articular (CINCA) syndrome.
[0068] Autoimmune and autoinflammatory diseases share common characteristics in that both groups of disorders result from the immune system attacking the body's own tissues, and also result in increased inflammation. The distinguishing feature between the two is the lack of autoantibodies (at high titers) in autoinflammatory diseases.
[0069] A "biologically active" or "functional" immunoglobulin is one capable of exerting one or more of its natural activities in structural, regulatory, biochemical or biophysical events.
For example, a biologically active antibody may have the ability to specifically bind an antigen and the binding may elicit or alter a cellular or molecular event such as signaling transduction or enzymatic activity. A biologically active antibody may also block ligand activation of a receptor or act as an agonist antibody. The capability of an antibody to exert one or more of its natural activities depends on several factors, including proper folding and assembly of the polypeptide chains.
For example, a biologically active antibody may have the ability to specifically bind an antigen and the binding may elicit or alter a cellular or molecular event such as signaling transduction or enzymatic activity. A biologically active antibody may also block ligand activation of a receptor or act as an agonist antibody. The capability of an antibody to exert one or more of its natural activities depends on several factors, including proper folding and assembly of the polypeptide chains.
[0070] "Binding affinity" generally refers to the strength of the sum total of noncovalent interactions between a single binding site of a molecule (e.g., an antibody) and its binding partner (e.g., an antigen). The affinity of a molecule X for its partner Y can generally be represented by the dissociation constant (Kd). Affinity can be measured by common methods known in the art, including those described herein. Low-affinity antibodies bind antigen weakly and tend to dissociate readily, whereas high-affinity antibodies bind antigen more tightly and remain bound longer.
[0071] "Biological molecule" refers to a nucleic acid, a protein, a carbohydrate, a lipid, and combinations thereof. In one embodiment, the biologic molecule exists in nature.
[0072] A "blocking" antibody or an "antagonist" antibody is one that inhibits or reduces biological activity of the antigen it binds. Such blocking can occur by any means, for example, by interfering with: ligand binding to the receptor, receptor complex formation, tyrosine kinase activity of a tyrosine kinase receptor in a receptor complex and/or phosphorylation of tyrosine kinase residue(s) in or by the receptor. Preferred blocking antibodies or antagonist antibodies substantially or completely inhibit the biological activity of the antigen.
[0073] The terms "cancer" and "cancerous" refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer include but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia. More particular examples of such cancers include squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, and various types of head and neck cancer.
[0074] The term "chimeric" antibodies refer to antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (See, for example, U.S. Pat. No. 4,816,567 and Morrison et al., 1984, Proc.
Natl. Acad. Sci.
USA 81:6851-6855).
Natl. Acad. Sci.
USA 81:6851-6855).
[0075] As used herein, the expressions "cell," "cell line," and "cell culture"
are used interchangeably and all such designations include progeny. Thus, the words "transformants"
and "transformed cells" include the primary subject cell and cultures derived therefrom without regard for the number of transfers. It is also understood that all progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Mutant progeny that have the same function or biological activity as screened for in the originally transformed cell are included. Where distinct designations are intended, it will be clear from the context.
are used interchangeably and all such designations include progeny. Thus, the words "transformants"
and "transformed cells" include the primary subject cell and cultures derived therefrom without regard for the number of transfers. It is also understood that all progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Mutant progeny that have the same function or biological activity as screened for in the originally transformed cell are included. Where distinct designations are intended, it will be clear from the context.
[0076] The expression "control sequences" refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.
[0077] "Diabetes" as used herein is a chronic disorder affecting carbohydrate, fat and protein metabolism in animals. Diabetes is the leading cause of blindness, renal failure, and lower limb amputations in adults and is a major risk factor for cardiovascular disease and stroke. Type I diabetes mellitus (or insulin-dependent diabetes mellitus ("IDDM") or juvenile-onset diabetes) comprises approximately 10% of all diabetes cases. The disease is characterized by a progressive loss of insulin secretory function by beta cells of the pancreas.
This characteristic is also shared by non-idiopathic, or "secondary", diabetes having its origins in pancreatic disease. Type I diabetes mellitus is associated with the following clinical signs or symptoms, e.g., persistently elevated plasma glucose concentration or hyperglycemia;
polyuria; polydipsia and/or hyperphagia; chronic microvascular complications such as retinopathy, nephropathy and neuropathy; and macrovascular complications such as hyperlipidemia and hypertension which can lead to blindness, end-stage renal disease, limb amputation and myocardial infarction.
This characteristic is also shared by non-idiopathic, or "secondary", diabetes having its origins in pancreatic disease. Type I diabetes mellitus is associated with the following clinical signs or symptoms, e.g., persistently elevated plasma glucose concentration or hyperglycemia;
polyuria; polydipsia and/or hyperphagia; chronic microvascular complications such as retinopathy, nephropathy and neuropathy; and macrovascular complications such as hyperlipidemia and hypertension which can lead to blindness, end-stage renal disease, limb amputation and myocardial infarction.
[0078] Type II diabetes mellitus (non-insulin-dependent diabetes mellitus or NIDDM) is a metabolic disorder involving the dysregulation of glucose metabolism and impaired insulin sensitivity. Type II diabetes mellitus usually develops in adulthood and is associated with the body's inability to utilize or make sufficient insulin. In addition to the insulin resistance observed in the target tissues, patients suffering from type II diabetes mellitus have a relative insulin deficiency--that is, patients have lower than predicted insulin levels for a given plasma glucose concentration. Type II diabetes mellitus is characterized by the following clinical signs or symptoms, e.g., persistently elevated plasma glucose concentration or hyperglycemia;
polyuria; polydipsia and/or hyperphagia; chronic microvascular complications such as retinopathy, nephropathy and neuropathy; and macrovascular complications such as hyperlipidemia and hypertension which can lead to blindness, end-stage renal disease, limb amputation and myocardial infarction. Syndrome X, also termed Insulin Resistance Syndrome (IRS), Metabolic Syndrome, or Metabolic Syndrome X, is recognized in some 2%
of diagnostic coronary catheterizations. Often disabling, it presents symptoms or risk factors for the development of Type II diabetes mellitus and cardiovascular disease, including, e.g., impaired glucose tolerance (IGT), impaired fasting glucose (IFG), hyperinsulinemia, insulin resistance, dyslipidemia (e.g., high triglycerides, low HDL), hypertension and obesity.
polyuria; polydipsia and/or hyperphagia; chronic microvascular complications such as retinopathy, nephropathy and neuropathy; and macrovascular complications such as hyperlipidemia and hypertension which can lead to blindness, end-stage renal disease, limb amputation and myocardial infarction. Syndrome X, also termed Insulin Resistance Syndrome (IRS), Metabolic Syndrome, or Metabolic Syndrome X, is recognized in some 2%
of diagnostic coronary catheterizations. Often disabling, it presents symptoms or risk factors for the development of Type II diabetes mellitus and cardiovascular disease, including, e.g., impaired glucose tolerance (IGT), impaired fasting glucose (IFG), hyperinsulinemia, insulin resistance, dyslipidemia (e.g., high triglycerides, low HDL), hypertension and obesity.
[0079] A "disorder" is any condition that would benefit from treatment with a therapeutic antibody or antibodies. This includes chronic and acute disorders or diseases including those pathological conditions which predispose the mammal to the disorder in question. In some embodiments, the disorder is a cancer, an inflammatory, an immune, an autoinflammatory or an autoimmune disease.
[0080] An "extracellular domain" is defined herein as that region of a transmembrane polypeptide, such as an FcR, that is external to a cell.
[0081] The terms "Fe receptor" or "FeR" are used to describe a receptor that binds to the Fc region of an antibody.
[0082] The term "Fe region" herein is used to define a C-terminal region of an immunoglobulin heavy chain, including native sequence Fc regions and variant Fc regions. In one embodiment, the Fc region comprises a CH2 domain and/or a CH3 domain.
Although the boundaries of the Fc region of an immunoglobulin heavy chain might vary, the human IgG
heavy chain Fc region is usually defined to stretch from an amino acid residue at position Cys226, or from Pro230, to the carboxyl-terminus thereof. The C-terminal lysine (residue 447 according to the EU numbering system) of the Fc region may be removed, for example, during production or purification of the antibody, or by recombinantly engineering the nucleic acid encoding a heavy chain of the antibody. Accordingly, a composition of intact antibodies may comprise antibody populations with all K447 residues removed, antibody populations with no K447 residues removed, and antibody populations having a mixture of antibodies with and without the K447 residue. "Fe complex" as used herein refers to two CH2 domains and/or two CH3 domains, wherein the CH2 domains and/or the CH3 domains are bound together through interactions that are not peptide bonds.
Although the boundaries of the Fc region of an immunoglobulin heavy chain might vary, the human IgG
heavy chain Fc region is usually defined to stretch from an amino acid residue at position Cys226, or from Pro230, to the carboxyl-terminus thereof. The C-terminal lysine (residue 447 according to the EU numbering system) of the Fc region may be removed, for example, during production or purification of the antibody, or by recombinantly engineering the nucleic acid encoding a heavy chain of the antibody. Accordingly, a composition of intact antibodies may comprise antibody populations with all K447 residues removed, antibody populations with no K447 residues removed, and antibody populations having a mixture of antibodies with and without the K447 residue. "Fe complex" as used herein refers to two CH2 domains and/or two CH3 domains, wherein the CH2 domains and/or the CH3 domains are bound together through interactions that are not peptide bonds.
[0083] "Framework regions" (FR) are those variable domain residues other than the CDR
residues. Each IgG variable domain typically has four FRs identified as FR1, FR2, FR3, and FR4. If the CDRs are defined according to Kabat, the light chain FR residues are positioned at about residues 1-23 (LCFR1), 35-49 (LCFR2), 57-88 (LCFR3), and 98-107 (LCFR4) and the heavy chain FR residues are positioned about at residues 1-30 (HCFR1), 36-49 (HCFR2), 66-94 (HCFR3), and 103-113 (HCFR4) in the heavy chain residues. If the CDRs comprise amino acid residues from hypervariable loops, the light chain FR residues are positioned about at residues 1-25 (LCFR1), 33-49 (LCFR2), 53-90 (LCFR3), and 97-107 (LCFR4) in the light chain and the heavy chain FR residues are positioned about at residues 1-25 (HCFRI), 33-52 (HCFR2), 56-95 (HCFR3), and 102-113 (HCFR4) in the heavy chain residues.
In some instances, when the CDR comprises amino acids from both a CDR as defined by Kabat and those of a hypervariable loop, the FR residues will be adjusted accordingly.
For example, when CDRH1 includes amino acids H26-H35, the heavy chain FR1 residues are at positions 1-25 and the FR2 residues are at positions 36-49.
residues. Each IgG variable domain typically has four FRs identified as FR1, FR2, FR3, and FR4. If the CDRs are defined according to Kabat, the light chain FR residues are positioned at about residues 1-23 (LCFR1), 35-49 (LCFR2), 57-88 (LCFR3), and 98-107 (LCFR4) and the heavy chain FR residues are positioned about at residues 1-30 (HCFR1), 36-49 (HCFR2), 66-94 (HCFR3), and 103-113 (HCFR4) in the heavy chain residues. If the CDRs comprise amino acid residues from hypervariable loops, the light chain FR residues are positioned about at residues 1-25 (LCFR1), 33-49 (LCFR2), 53-90 (LCFR3), and 97-107 (LCFR4) in the light chain and the heavy chain FR residues are positioned about at residues 1-25 (HCFRI), 33-52 (HCFR2), 56-95 (HCFR3), and 102-113 (HCFR4) in the heavy chain residues.
In some instances, when the CDR comprises amino acids from both a CDR as defined by Kabat and those of a hypervariable loop, the FR residues will be adjusted accordingly.
For example, when CDRH1 includes amino acids H26-H35, the heavy chain FR1 residues are at positions 1-25 and the FR2 residues are at positions 36-49.
[0084] A "functional Fc region" possesses an "effector function" of a native sequence Fc region. Exemplary "effector functions" include C1q binding; complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC);
phagocytosis; down regulation of cell surface receptors (e.g. B cell receptor;
BCR), and the like. Such effector functions generally require the Fc region to be combined with a binding domain (e.g. an antibody variable domain) and can be assessed using various assays as, for example, those disclosed herein. A "native sequence Fc region" comprises an amino acid sequence identical to the amino acid sequence of a Fc region found in nature.
Native sequence human Fc regions include a native sequence human IgG1 Fc region (non-A and A
allotypes); native sequence human IgG2 Fc region; native sequence human IgG3 Fc region;
and native sequence human IgG4 Fc region as well as naturally occurring variants thereof. A
"variant Fc region" comprises an amino acid sequence that differs from a native sequence Fc region by virtue of at least one "amino acid modification" as herein defined.
The variant Fc region can have at least one amino acid substitution compared to a native sequence Fc region or to the Fc region of a parent antibody, and may have, for example, from about one to about ten amino acid substitutions, or from about one to about five amino acid substitutions in a native sequence Fc region or in the Fc region of the parent antibody. The variant Fc region can possess at least about 80% identity with a native sequence Fc region and/or with an Fc region of a parent antibody, and may have at least about 90% identity therewith, or have at least about 95% identity therewith.
phagocytosis; down regulation of cell surface receptors (e.g. B cell receptor;
BCR), and the like. Such effector functions generally require the Fc region to be combined with a binding domain (e.g. an antibody variable domain) and can be assessed using various assays as, for example, those disclosed herein. A "native sequence Fc region" comprises an amino acid sequence identical to the amino acid sequence of a Fc region found in nature.
Native sequence human Fc regions include a native sequence human IgG1 Fc region (non-A and A
allotypes); native sequence human IgG2 Fc region; native sequence human IgG3 Fc region;
and native sequence human IgG4 Fc region as well as naturally occurring variants thereof. A
"variant Fc region" comprises an amino acid sequence that differs from a native sequence Fc region by virtue of at least one "amino acid modification" as herein defined.
The variant Fc region can have at least one amino acid substitution compared to a native sequence Fc region or to the Fc region of a parent antibody, and may have, for example, from about one to about ten amino acid substitutions, or from about one to about five amino acid substitutions in a native sequence Fc region or in the Fc region of the parent antibody. The variant Fc region can possess at least about 80% identity with a native sequence Fc region and/or with an Fc region of a parent antibody, and may have at least about 90% identity therewith, or have at least about 95% identity therewith.
[0085] The terms "full length antibody," "intact antibody" and "whole antibody" are used herein interchangeably, to refer to an antibody in its substantially intact form, and not antibody fragments as defined below. The terms particularly refer to an antibody with heavy chains and Fc regions. An antibody variant of the invention can be for example a full length antibody. Also, a full length antibody can be for example human, humanized, chimeric, and/or affinity matured.
[0086] A "hinge region," and variations thereof, as used herein, includes the meaning known in the art, which is illustrated in, for example, Janeway et al., 1999, Immuno Biology:
The Immune System in Health and Disease, Elsevier Science Ltd., NY. 4th ed.;
Bloom et al., 1997, Protein Science, 6:407-415; Humphreys et al., 1997, J. Immunol. Methods, 209:193-202.
The Immune System in Health and Disease, Elsevier Science Ltd., NY. 4th ed.;
Bloom et al., 1997, Protein Science, 6:407-415; Humphreys et al., 1997, J. Immunol. Methods, 209:193-202.
[0087] "Homology" is defined as the percentage of residues in the amino acid sequence variant that are identical after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent homology. Methods and computer programs for the alignment are well known in the art. One such computer program is "Align 2," authored by Genentech, Inc., and filed with user documentation in the United States Copyright Office, Washington, D.C. 20559, on Dec. 10, 1991.
[0088] The term "host cell" (or "recombinant host cell"), as used herein, refers to a cell that has been genetically altered, or is capable of being genetically altered, by introduction of an exogenous polynucleotide, such as a recombinant plasmid or vector. It should be understood that such terms are intended to refer not only to the particular subject cell but to the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term "host cell"
as used herein.
as used herein.
[0089] A "human consensus framework" is a framework that represents the most commonly occurring amino acid residues in a selection of human immunoglobulin VI_ or VH
framework sequences. Generally, the selection of human immunoglobulin VI_ or VH
sequences is from a subgroup of variable domain sequences. Generally, the subgroup of sequences is a subgroup as in Kabat. In one embodiment, for the VL, the subgroup is subgroup kappa I as in Kabat. In one embodiment, for the VH, the subgroup is subgroup III
as in Kabat.
framework sequences. Generally, the selection of human immunoglobulin VI_ or VH
sequences is from a subgroup of variable domain sequences. Generally, the subgroup of sequences is a subgroup as in Kabat. In one embodiment, for the VL, the subgroup is subgroup kappa I as in Kabat. In one embodiment, for the VH, the subgroup is subgroup III
as in Kabat.
[0090] The Kabat numbering system is generally used when referring to a residue in the variable domain (approximately residues 1-107 of the light chain and residues 1-113 of the heavy chain) (e.g, Kabat etal., Sequences of Immunological Interest. 5th Ed.
Public Health Service, National Institutes of Health, Bethesda, Md. (1991)). The "EU
numbering system" or "EU index" is generally used when referring to a residue in an immunoglobulin heavy chain constant region (e.g., the EU index reported in Kabat etal., supra). The "EU
index as in Kabat" refers to the residue numbering of the human IgG1 EU antibody. Unless stated otherwise herein, references to residue numbers in the variable domain of antibodies means residue numbering by the Kabat numbering system. Unless stated otherwise herein, references to residue numbers in the constant domain of antibodies means residue numbering by the EU numbering system (e.g., see United States Provisional Application No.
60/640,323, Figures for EU numbering).
Public Health Service, National Institutes of Health, Bethesda, Md. (1991)). The "EU
numbering system" or "EU index" is generally used when referring to a residue in an immunoglobulin heavy chain constant region (e.g., the EU index reported in Kabat etal., supra). The "EU
index as in Kabat" refers to the residue numbering of the human IgG1 EU antibody. Unless stated otherwise herein, references to residue numbers in the variable domain of antibodies means residue numbering by the Kabat numbering system. Unless stated otherwise herein, references to residue numbers in the constant domain of antibodies means residue numbering by the EU numbering system (e.g., see United States Provisional Application No.
60/640,323, Figures for EU numbering).
[0091] A naturally occurring basic 4-chain antibody unit is a heterotetrameric glycoprotein composed of two identical light (L) chains and two identical heavy (H) chains (an IgM antibody consists of 5 of the basic heterotetramer units along with an additional polypeptide called J
chain, and therefore contains 10 antigen binding sites, while secreted IgA
antibodies can polymerize to form polyvalent assemblages comprising 2-5 of the basic 4-chain units along with J chain). In the case of IgGs, the 4-chain unit is generally about 150,000 daltons. Each L chain is linked to an H chain by one covalent disulfide bond, while the two H chains are linked to each other by one or more disulfide bonds depending on the H chain isotype. Each H and L chain also has regularly spaced intrachain disulfide bridges. Each H
chain has, at the N-terminus, a variable domain (VH) followed by three constant domains (CH) for each of the a and y chains and four CH domains for p and E isotypes. Each L chain has, at the N-terminus, a variable domain (VL) followed by a constant domain (CL) at its other end. The VL
is aligned with the VH and the CL is aligned with the first constant domain of the heavy chain (CH1). Particular amino acid residues are believed to form an interface between the light chain and heavy chain variable domains. The pairing of a VH and VL together forms a single antigen-binding site. For the structure and properties of the different classes of antibodies, see, e.g., Basic and Clinical Immunology, 8th edition, Daniel P. Stites, Abba I. Terr and Tristram G. Parslow (eds.), Appleton & Lange, Norwalk, CT, 1994, page 71 and Chapter 6.
chain, and therefore contains 10 antigen binding sites, while secreted IgA
antibodies can polymerize to form polyvalent assemblages comprising 2-5 of the basic 4-chain units along with J chain). In the case of IgGs, the 4-chain unit is generally about 150,000 daltons. Each L chain is linked to an H chain by one covalent disulfide bond, while the two H chains are linked to each other by one or more disulfide bonds depending on the H chain isotype. Each H and L chain also has regularly spaced intrachain disulfide bridges. Each H
chain has, at the N-terminus, a variable domain (VH) followed by three constant domains (CH) for each of the a and y chains and four CH domains for p and E isotypes. Each L chain has, at the N-terminus, a variable domain (VL) followed by a constant domain (CL) at its other end. The VL
is aligned with the VH and the CL is aligned with the first constant domain of the heavy chain (CH1). Particular amino acid residues are believed to form an interface between the light chain and heavy chain variable domains. The pairing of a VH and VL together forms a single antigen-binding site. For the structure and properties of the different classes of antibodies, see, e.g., Basic and Clinical Immunology, 8th edition, Daniel P. Stites, Abba I. Terr and Tristram G. Parslow (eds.), Appleton & Lange, Norwalk, CT, 1994, page 71 and Chapter 6.
[0092] The L chain from any vertebrate species can be assigned to one of two clearly distinct types, called kappa and lambda, based on the amino acid sequences of their constant domains. Depending on the amino acid sequence of the constant domain of their heavy chains (CH), immunoglobulins can be assigned to different classes or isotypes.
There are five classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, having heavy chains designated a, 6, y, E, and p, respectively. The y and a classes are further divided into subclasses on the basis of relatively minor differences in CH sequence and function, e.g., humans express the following subclasses: IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2.
There are five classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, having heavy chains designated a, 6, y, E, and p, respectively. The y and a classes are further divided into subclasses on the basis of relatively minor differences in CH sequence and function, e.g., humans express the following subclasses: IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2.
[0093] "Human effector cells" are leukocytes that express one or more FcRs and perform effector functions. In some embodiments the cells express at least FcyRIII and perform ADCC effector function. Examples of human leukocytes that mediate ADCC include peripheral blood mononuclear cells (PBMC), natural killer (NK) cells, monocytes, cytotoxic T
cells, and neutrophils. The effector cells may be isolated from a native source, for example, from blood or PBMCs (Peripheral blood mononuclear cells) as described herein.
cells, and neutrophils. The effector cells may be isolated from a native source, for example, from blood or PBMCs (Peripheral blood mononuclear cells) as described herein.
[0094] "Humanized" forms of non-human (for example, murine) antibodies are chimeric antibodies that contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and capacity. In some instances, Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. In general, the humanized an body will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
For further details, see Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992).
For further details, see Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992).
[0095] A "human antibody" is an antibody that possesses an amino acid sequence corresponding to that of an antibody produced by a human and/or has been made using any of the techniques for making human antibodies disclosed herein. This definition specifically excludes a humanized antibody that comprises non-human antigen-binding residues.
[0096] As used herein, the term "hyperglycemic disorders" refers to all forms of diabetes and disorders resulting from insulin resistance, such as Type I and Type ll diabetes, as well as severe insulin resistance, hyperinsulinemia, and hyperlipidemia, e.g., obese subjects, and insulin-resistant diabetes, such as Mendenhall's Syndrome, Werner Syndrome, leprechaunism, lipoatrophic diabetes, and other lipoatrophies. A particular hyperglycemic disorder disclosed herein is diabetes, especially Type 1 and Type ll diabetes.
"Diabetes" itself refers to a progressive disease of carbohydrate metabolism involving inadequate production or utilization of insulin and is characterized by hyperglycemia and glycosuria.
"Diabetes" itself refers to a progressive disease of carbohydrate metabolism involving inadequate production or utilization of insulin and is characterized by hyperglycemia and glycosuria.
[0097] The term "hypervariable region," "HVR," or "HV," when used herein refers to the regions of an antibody variable domain which are hypervariable in sequence and/or form structurally defined loops. Generally, antibodies comprise six HVRs; three in the VH (H1, H2, H3), and three in the VI_ (L1, L2, L3). In native antibodies, H3 and L3 display the most diversity of the six HVRs, and H3 in particular is believed to play a unique role in conferring fine specificity to antibodies. See, e.g., Xu et al., Immunity 13:37-45 (2000); Johnson and Wu, in Methods in Molecular Biology 248:1-25 (Lo, ed., Human Press, Totowa, NJ, 2003).
However, there are a number of examples of naturally occurring and engineered, functional antibodies having only a heavy chain and lacking a light chain. See, e.g., Hamers-Casterman et al., Nature 363:446-448 (1993); Sheriff et al., Nature Struct. Biol. 3:733-736 (1996).
However, there are a number of examples of naturally occurring and engineered, functional antibodies having only a heavy chain and lacking a light chain. See, e.g., Hamers-Casterman et al., Nature 363:446-448 (1993); Sheriff et al., Nature Struct. Biol. 3:733-736 (1996).
[0098] A number of HVR delineations are in use and are encompassed herein. The Kabat Complementarity Determining Regions (CDRs) are based on sequence variability and are the most commonly used (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD.
(1991)). Chothia refers instead to the location of the structural loops (Chothia and Lesk J.
Mol. Biol. 196:901-917 (1987)). The AbM HVRs represent a compromise between the Kabat HVRs and Chothia structural loops, and are used by Oxford Molecular's AbM antibody modeling software. The "contact" HVRs are based on an analysis of the available complex crystal structures. The residues from each of these HVRs are noted below.
Loop Kabat AbM Chothia Contact H1 (Kabat Numbering) H1 (Chothia Numbering) [0099] HVRs generally comprise amino acid residues from the hypervariable loops and/or from the "complementarity determining regions" (CDRs), the latter being of highest sequence variability and/or involved in antigen recognition. Exemplary hypervariable loops occur at amino acid residues 26-32 (L1), 50-52 (L2), 91-96 (L3), 26-32 (H1), 53-55 (H2), and 96-101 (H3). (Chothia and Lesk, J. Mol. Biol. 196:901-917 (1987).) Exemplary CDRs (CDR-L1, CDR-L2, CDR-L3, CDR-H1, CDR-H2, and CDR-H3) occur at amino acid residues of L1, 50-56 of L2, 89-97 of L3, 31-35B of H1, 50-65 of H2, and 95-102 of H3.
(Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991).) With the exception of CDR1 in VH, CDRs generally comprise the amino acid residues that form the hypervariable loops.
CDRs also comprise "specificity determining residues," or "SDRs," which are residues that contact antigen. SDRs are contained within regions of the CDRs called abbreviated-CDRs, or a-CDRs. Exemplary a-CDRs (a-CDR-L1, a-CDR-L2, a-CDR-L3, a-CDR-H1, a-CDR-H2, and a-CDR-H3) occur at amino acid residues 31-34 of L1, 50-55 of L2, 89-96 of L3, 31-35B of H1, 50-58 of H2, and 95-102 of H3. (See Almagro and Fransson, Front. Biosci.
13:1619-1633 (2008).) IgG HVRs may comprise "extended HVRs" as follows: 24-36 or 24-34 (L1), 46-56 or 50-56 (L2) and 89-97 or 89-96 (L3) in the VI_ and 26-35 (H1), 50-65 or 49-65 (H2) and 93-102, 94-102, or 95-102 (H3) in the VH. Unless otherwise indicated, HVR residues and other residues in the variable domain (e.g., FR residues) are numbered herein according to Kabat et al., supra.
(1991)). Chothia refers instead to the location of the structural loops (Chothia and Lesk J.
Mol. Biol. 196:901-917 (1987)). The AbM HVRs represent a compromise between the Kabat HVRs and Chothia structural loops, and are used by Oxford Molecular's AbM antibody modeling software. The "contact" HVRs are based on an analysis of the available complex crystal structures. The residues from each of these HVRs are noted below.
Loop Kabat AbM Chothia Contact H1 (Kabat Numbering) H1 (Chothia Numbering) [0099] HVRs generally comprise amino acid residues from the hypervariable loops and/or from the "complementarity determining regions" (CDRs), the latter being of highest sequence variability and/or involved in antigen recognition. Exemplary hypervariable loops occur at amino acid residues 26-32 (L1), 50-52 (L2), 91-96 (L3), 26-32 (H1), 53-55 (H2), and 96-101 (H3). (Chothia and Lesk, J. Mol. Biol. 196:901-917 (1987).) Exemplary CDRs (CDR-L1, CDR-L2, CDR-L3, CDR-H1, CDR-H2, and CDR-H3) occur at amino acid residues of L1, 50-56 of L2, 89-97 of L3, 31-35B of H1, 50-65 of H2, and 95-102 of H3.
(Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991).) With the exception of CDR1 in VH, CDRs generally comprise the amino acid residues that form the hypervariable loops.
CDRs also comprise "specificity determining residues," or "SDRs," which are residues that contact antigen. SDRs are contained within regions of the CDRs called abbreviated-CDRs, or a-CDRs. Exemplary a-CDRs (a-CDR-L1, a-CDR-L2, a-CDR-L3, a-CDR-H1, a-CDR-H2, and a-CDR-H3) occur at amino acid residues 31-34 of L1, 50-55 of L2, 89-96 of L3, 31-35B of H1, 50-58 of H2, and 95-102 of H3. (See Almagro and Fransson, Front. Biosci.
13:1619-1633 (2008).) IgG HVRs may comprise "extended HVRs" as follows: 24-36 or 24-34 (L1), 46-56 or 50-56 (L2) and 89-97 or 89-96 (L3) in the VI_ and 26-35 (H1), 50-65 or 49-65 (H2) and 93-102, 94-102, or 95-102 (H3) in the VH. Unless otherwise indicated, HVR residues and other residues in the variable domain (e.g., FR residues) are numbered herein according to Kabat et al., supra.
[0100] Antibodies having a VH/VL unit that can bind two or more epitopes can be made (Bostrom et al. (2009) Science 323:1610-1614; WO 2008/027236 (incorporated by reference). Such multispecific antibodies are referred to herein as "two-in one" antibodies or "dual acting Fab" or "DAF" to indicate that a single arm of an antibody (aka the VH/VL unit) can bind to at least two epitopes on the same target molecule or two epitopes on different target molecules. In one aspect, these DAF antibodies can be made by mutating the VI_ domain of a VH/VL unit of an antibody that binds a first epitope and selecting the mutant VH/VL unit that can bind the first epitope and a second epitope. For example, in one embodiment, one or more solvent accessible amino acid residue(s) of the light chain CDRs are be randomly or selectively substituted with one or more other amino acid residues(s) prior to screening the mutated VH/VL unit for binding to a second epitope.
[0101] An "inflammasome-mediated disease" refers to any disease where IL-113 and/or IL-18 are elevated relative to normal, uninflammed tissue. Generally, in an inflammasome-mediated disease, caspase-1 processing and/or activation is involved/elevated relative to uninduced control cells. Caspase-1 activity can be measured using commercially available assay kits, e.g., Caspase 1 Fluorometric Assay Kit ((Cat. No. ab394120; AbCam, Cambridge, MA), Caspase-1 Colorimetric Assay (Cat. No. BF14100; R&D Systems), etc.
[0102] In general, a disease or condition can be considered an IL-1[3 related disease or condition if it is associated with elevated levels of IL-1[3 in bodily fluids or tissue or if cells or tissues taken from the body produce elevated levels of IL-113 in culture.
Similarly, a disease or condition can be considered an IL-18 related disease or condition if it is associated with elevated levels of IL-18 in bodily fluids or tissue or if cells or tissues taken from the body produce elevated levels of IL-18 in culture. Thus, an IL-18/IL-18 related disease or condition is associated with elevated levels of IL-113 and IL-18 in bodily fluids or tissue or if cells or tissues taken from the body produce elevated levels of both cytokines in culture.
Similarly, a disease or condition can be considered an IL-18 related disease or condition if it is associated with elevated levels of IL-18 in bodily fluids or tissue or if cells or tissues taken from the body produce elevated levels of IL-18 in culture. Thus, an IL-18/IL-18 related disease or condition is associated with elevated levels of IL-113 and IL-18 in bodily fluids or tissue or if cells or tissues taken from the body produce elevated levels of both cytokines in culture.
[0103] Immune and inflammatory diseases include: chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, osteoarthritis, juvenile chronic arthritis, spondyloarthropathies, systemic sclerosis (scleroderma), idiopathic inflammatory myopathies (dermatomyositis), systemic vasculitis, sarcoidosis, autoimmune hemolytic anemia (immune pancytopenia, paroxysmal nocturnal hemoglobinuria), autoimmune thrombocytopenia (idiopathic thrombocytopenic purpura, immune-mediated thrombocytopenia), thyroiditis (Grave's disease, Hashimoto's thyroiditis, juvenile lymphocytic thyroiditis, atrophic thyroiditis) autoimmune inflammatory diseases (e.g., allergic encephalomyelitis, multiple sclerosis, insulin-dependent diabetes mellitus, autoimmune uveoretinitis, thyrotoxicosis, autoimmune thyroid disease, pernicious-anemia, autograft rejection, diabetes mellitus, and immune-mediated renal disease (glomerulonephritis, tubulointerstitial nephritis)), demyelinating diseases of the central and peripheral nervous systems such as multiple sclerosis, idiopathic demyelinating polyneuropathy or Guillain-Barre syndrome, and chronic inflammatory demyelinating polyneuropathy; hepatobiliary diseases such as infectious hepatitis (hepatitis A, B, C, D, E and other non-hepatotropic viruses), autoimmune chronic active hepatitis, primary biliary cirrhosis, granulomatous hepatitis, and sclerosing cholangitis, gluten-sensitive enteropathy, and Whipple's disease; autoimmune or immune-mediated skin diseases including bullous skin diseases, erythema multiforme and contact dermatitis, psoriasis;
allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, vernal conjunctivitis, eczema, food hypersensitivity and urticaria; immunologic diseases of the lung such as eosinophilic pneumonia, idiopathic pulmonary fibrosis and hypersensitivity pneumonitis;
transplantation associated disease including graft rejection and graft-versus-host-disease.
allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, vernal conjunctivitis, eczema, food hypersensitivity and urticaria; immunologic diseases of the lung such as eosinophilic pneumonia, idiopathic pulmonary fibrosis and hypersensitivity pneumonitis;
transplantation associated disease including graft rejection and graft-versus-host-disease.
[0104] Immune related and inflammatory diseases are the manifestations or consequences of fairly complex, often multiple interconnected biological pathways which in normal physiology are critical to respond to insult or injury, initiate repair from insult or injury, and mount innate and acquired defense against foreign organisms. Disease or pathology occurs when these normal physiological pathways cause additional insult or injury either as directly related to the intensity of the response, as a consequence of abnormal regulation or excessive stimulation, as a reaction to self, or a combination of these.
[0105] Examples of IL-113 related diseases are acute pancreatitis; ALS;
cachexia/anorexia, including AIDS-induced cachexia; asthma and other pulmonary diseases;
autoimmune vasculitis; CIAS1 Associated Periodic Syndromes (CAPS); Neonatal Onset Multisystem Inflammatory Disorder (NOMID/CINCA), systemic onset juvenile idiopathic arthritis, Stills disease, Muckle-Wells syndrome, chronic fatigue syndrome;
Clostridium associated illnesses, including Clostridium-associated diarrhea; coronary conditions and indications, including congestive heart failure, coronary restenosis, myocardial infarction, myocardial dysfunction (e.g., related to sepsis), and coronary artery bypass graft; cancers, such as multiple myeloma and myelogenous (e.g., AML and CML) and other leukemias, as well as tumor metastasis; diabetes (e.g., insulin diabetes); endometriosis;
familial Cold Autoinflammatory Syndrome (FCAS); familial mediterranean fever (FMF); fever;
fibromyalgia;
glomerulonephritis; graft versus host disease/transplant rejection;
hemohorragic shock;
hyperalgesia; inflammatory bowel disease; inflammatory conditions of a joint, including psoriatic arthritis (as well as osteoarthritis and rheumatoid arthritis);
inflammatory eye disease, as may be associated with, for example, corneal transplant; ischemia, including cerebral ischemia (e.g., brain injury as a result of trauma, epilepsy, hemorrhage or stroke, each of which may lead to neurodegeneration); Kawasaki's disease; learning impairment;
lung diseases (e.g., ARDS); myopathies (e.g., muscle protein metabolism, especially in sepsis); neurotoxicity (e.g., as induced by HIV); osteoporosis; pain, including cancer-related pain; Parkinson's disease; periodontal disease; pre-term labor; psoriasis;
reperfusion injury;
side effects from radiation therapy; sleep disturbance; temporal mandibular joint disease;
tumor necrosis factor receptor-associated periodic fever syndrome (TRAPS);
uveitis; or an inflammatory condition resulting from strain, sprain, cartilage damage, trauma, orthopedic surgery, infection or other disease processes.
cachexia/anorexia, including AIDS-induced cachexia; asthma and other pulmonary diseases;
autoimmune vasculitis; CIAS1 Associated Periodic Syndromes (CAPS); Neonatal Onset Multisystem Inflammatory Disorder (NOMID/CINCA), systemic onset juvenile idiopathic arthritis, Stills disease, Muckle-Wells syndrome, chronic fatigue syndrome;
Clostridium associated illnesses, including Clostridium-associated diarrhea; coronary conditions and indications, including congestive heart failure, coronary restenosis, myocardial infarction, myocardial dysfunction (e.g., related to sepsis), and coronary artery bypass graft; cancers, such as multiple myeloma and myelogenous (e.g., AML and CML) and other leukemias, as well as tumor metastasis; diabetes (e.g., insulin diabetes); endometriosis;
familial Cold Autoinflammatory Syndrome (FCAS); familial mediterranean fever (FMF); fever;
fibromyalgia;
glomerulonephritis; graft versus host disease/transplant rejection;
hemohorragic shock;
hyperalgesia; inflammatory bowel disease; inflammatory conditions of a joint, including psoriatic arthritis (as well as osteoarthritis and rheumatoid arthritis);
inflammatory eye disease, as may be associated with, for example, corneal transplant; ischemia, including cerebral ischemia (e.g., brain injury as a result of trauma, epilepsy, hemorrhage or stroke, each of which may lead to neurodegeneration); Kawasaki's disease; learning impairment;
lung diseases (e.g., ARDS); myopathies (e.g., muscle protein metabolism, especially in sepsis); neurotoxicity (e.g., as induced by HIV); osteoporosis; pain, including cancer-related pain; Parkinson's disease; periodontal disease; pre-term labor; psoriasis;
reperfusion injury;
side effects from radiation therapy; sleep disturbance; temporal mandibular joint disease;
tumor necrosis factor receptor-associated periodic fever syndrome (TRAPS);
uveitis; or an inflammatory condition resulting from strain, sprain, cartilage damage, trauma, orthopedic surgery, infection or other disease processes.
[0106] Interleukin 18 plays a critical role in the pathology associated with a variety of diseases involving immune and inflammatory elements. These diseases include, but are not limited to, rheumatoid arthritis, osteoarthritis, juvenile chronic arthritis, Lyme arthritis, psoriatic arthritis, reactive arthritis, spondyloarthropathy, lupus (e.g., Systemic Lupus Erythematosus, and Lupus Nephritis), Crohn's disease, ulcerative colitis, inflammatory bowel disease, insulin dependent diabetes mellitus, thyroiditis, asthma, allergic diseases, psoriasis, psoriasis type 1, psoriasis type 2, dermatitis scleroderma, graft versus host disease, organ transplant rejection, acute or chronic immune disease associated with organ transplantation, sarcoidosis, atherosclerosis, disseminated intravascular coagulation, Kawasaki's disease, Grave's disease, nephrotic syndrome, chronic fatigue syndrome, Wegener's granulomatosis, Henoch-Schoenlein purpurea, microscopic vasculitis of the kidneys, chronic active hepatitis, uveitis, septic shock, toxic shock syndrome, sepsis syndrome, cachexia, infectious diseases, parasitic diseases, acute transverse myelitis, Huntington's chorea, Parkinson's disease, Alzheimer's disease, stroke, primary biliary cirrhosis, hemolytic anemia, malignancies, heart failure, myocardial infarction, Addison's disease, sporadic, polyglandular deficiency type I and polyglandular deficiency type II, Schmidt's syndrome, adult respiratory distress syndrome, alopecia, alopecia greata, seronegative arthopathy, arthropathy, Reiter's disease, psoriatic arthropathy, ulcerative colitic arthropathy, enteropathic synovitis, chlamydia, yersinia and salmonella associated arthropathy, spondyloarthopathy, atheromatous disease1 arteriosclerosis, atopic allergy, autoimmune bullous disease, pemphigus vulgaris, pemphigus foliaceus, pemphigoid, linear IgA disease, autoimmune haemolytic anemia, Coombs positive haemolytic anemia, acquired pernicious anemia, juvenile pernicious anemia, myalgic encephalitis/Royal Free Disease. chronic mucocutaneous candidiasis, giant cell arteritis, primary sclerosing hepatitis, cryptogenic autoimmune hepatitis, Acquired Immunodeficiency Disease Syndrome, Acquired Immunodeficiency Related Diseases, Hepatitis C, common varied immunodeficiency, common variable hypogammaglobulinemia, dilated cardiomyopathy, female infertility, ovarian failure, premature ovarian failure, fibrotic lung disease, cryptogenic fibrosing alveolitis, post-inflammatory interstitial lung disease, interstitial pneumonitis, connective tissue disease associated interstitial lung disease, mixed connective tissue disease associated lung disease, systemic sclerosis associated interstitial lung disease, rheumatoid arthritis associated interstitial lung disease, systemic lupus erythematosus associated lung disease, dermatomyositis/polymyositis associated lung disease, Sjogren's disease associated lung disease, ankylosing spondylitis associated lung disease, vasculitic diffuse lung disease, haemosiderosis associated lung disease, drug-induced interstitial lung disease, radiation fibrosis, bronchiolitis obliterans, chronic eosinophilic pneumonia, lymphocytic infiltrative lung disease, postinfectious interstitial lung disease, gouty arthritis, autoimmune hepatitis, type-1 autoimmune hepatitis, classical autoimmune or lupoid hepatitis, type-2 autoimmune hepatitis, anti-LKM antibody hepatitis, autoimmune mediated hypoglycemia, type B insulin resistance with acanthosis nigricans, hypoparathyroidism, acute immune disease associated with organ transplantation, chronic immune disease associated with organ transplantation, osteoarthrosis, primary sclerosing cholangitis, idiopathic leucopaenia, autoimmune neutropenia, renal disease NOS, glomerulonephritides, microscopic vasulitis of the kidneys, Lyme disease, discoid lupus erythematosus, male infertility idiopathic or NOS, sperm autoimmunity, all subtypes of multiple sclerosis, sympathetic ophthalmia, pulmonary hypertension secondary to connective tissue disease, Goodpasture's syndrome, pulmonary manifestation of polyarteritis nodosa, acute rheumatic fever, rheumatoid spondylitis, Still's disease, systemic sclerosis, Sjogren's syndrome, Takayasu's disease/arteritis, autoimmune thrombocytopenia, idiopathic thrombocytopenia, autoimmune thyroid disease, hyperthyroidism, goitrous autoimmune hypothyroidism or Hashimoto's disease, atrophic autoimmune hypothyroidism, primary myxoedema, phacogenic uveitis, primary vasculitis, vitiligo, acute liver disease, chronic liver diseases, allergy and asthma, mental disorders, depression, schizophrenia, Th2 Type and Thl Type mediated diseases, Chronic Obstructive Pulmonary Disease (COPD), inflammatory, autoimmune and bone diseases.
[0107] The present antibodies and fragments can also be used to treat or prevent IL-113 related, or IL-18 related, or autoinflammatory, or autoimmune or inflammation or immune diseases.
[0108] Though the genesis of these diseases often involved multistep pathways and often multiple different biological systems/pathways, intervention at critical points in one or more of these pathways can have an ameliorative or therapeutic effect.
Therapeutic intervention can occur by either antagonism of a detrimental process/pathway or stimulation of a beneficial process/pathway.
Therapeutic intervention can occur by either antagonism of a detrimental process/pathway or stimulation of a beneficial process/pathway.
[0109] T lymphocytes (T cells) are an important component of a mammalian immune response. T cells recognize antigens which are associated with a self-molecule encoded by genes within the major histocompatibility complex (MHC). The antigen may be displayed together with MHC molecules on the surface of antigen presenting cells, virus infected cells, cancer cells, grafts, etc. The T cell system eliminates these altered cells which pose a health threat to the host animal. T cells include helper T cells and cytotoxic T
cells. Helper T cells proliferate extensively following recognition of an antigen-MHC complex on an antigen presenting cell. Helper T cells also secrete a variety of cytokines, e.g., lymphokines, which play a central role in the activation of B cells, cytotoxic T cells and a variety of other cells which participate in the immune response.
cells. Helper T cells proliferate extensively following recognition of an antigen-MHC complex on an antigen presenting cell. Helper T cells also secrete a variety of cytokines, e.g., lymphokines, which play a central role in the activation of B cells, cytotoxic T cells and a variety of other cells which participate in the immune response.
[0110] In many immune responses, inflammatory cells infiltrate the site of injury or infection. The migrating cells may be neutrophilic, eosinophilic, monocytic or lymphocytic as can be determined by histologic examination of the affected tissues. See, e.g., Current Protocols in Immunology, ed. John E. Coligan, 1994, John Wiley & Sons, Inc.
Many immune related diseases are known and have been extensively studied. Such diseases include immune-mediated inflammatory diseases (e.g., rheumatoid arthritis, immune mediated renal disease, hepatobiliary diseases, inflammatory bowel disease (IBD), psoriasis, and asthma), non-immune-mediated inflammatory diseases, infectious diseases, immunodeficiency diseases, neoplasia, and graft rejection, etc. In the area of immunology, targets were identified for the treatment of inflammation and inflammatory disorders. In the area of immunology, targets have been identified herein for the treatment of inflammation and inflammatory disorders. Immune related diseases, in one instance, could be treated by suppressing the immune response. Using neutralizing antibodies that inhibit molecules having immune stimulatory activity would be beneficial in the treatment of immune-mediated and inflammatory diseases. Molecules which inhibit the immune response can be utilized (proteins directly or via the use of antibody agonists) to inhibit the immune response and thus ameliorate immune related disease.
Many immune related diseases are known and have been extensively studied. Such diseases include immune-mediated inflammatory diseases (e.g., rheumatoid arthritis, immune mediated renal disease, hepatobiliary diseases, inflammatory bowel disease (IBD), psoriasis, and asthma), non-immune-mediated inflammatory diseases, infectious diseases, immunodeficiency diseases, neoplasia, and graft rejection, etc. In the area of immunology, targets were identified for the treatment of inflammation and inflammatory disorders. In the area of immunology, targets have been identified herein for the treatment of inflammation and inflammatory disorders. Immune related diseases, in one instance, could be treated by suppressing the immune response. Using neutralizing antibodies that inhibit molecules having immune stimulatory activity would be beneficial in the treatment of immune-mediated and inflammatory diseases. Molecules which inhibit the immune response can be utilized (proteins directly or via the use of antibody agonists) to inhibit the immune response and thus ameliorate immune related disease.
[0111] As used herein, the term "immunoadhesin" designates molecules which combine the binding specificity of a heterologous protein (an "adhesin") with the effector functions of immunoglobulin constant domains. Structurally, the immunoadhesins comprise a fusion of an amino acid sequence with a desired binding specificity, which amino acid sequence is other than the antigen recognition and binding site of an antibody (i.e., is "heterologous"), and an Fc region (e.g., CH2 and/or CH3 sequence of an IgG). Exemplary adhesin sequences include contiguous amino acid sequences that comprise a portion of a receptor (e.g., extracellular domain) or a ligand that binds to a protein of interest. Adhesin sequences can also be sequences that bind a protein of interest, but are not receptor or ligand sequences (e.g., adhesin sequences in peptibodies). Such polypeptide sequences can be selected or identified by various methods, include phage display techniques and high throughput sorting methods. The immunoglobulin constant domain sequence in the immunoadhesin can be obtained from any immunoglobulin, such as IgG-1, IgG-2, IgG-3, or IgG-4 subtypes, IgA
(including IgA-1 and IgA-2), IgE, IgD, or IgM. Exemplary molecules are the bispecific CD4-IgG molecules described in Berg et al., 1991, PNAS (USA) 88:4723-and Chamow et al., 1994, J. Immunol. 153:4268.
(including IgA-1 and IgA-2), IgE, IgD, or IgM. Exemplary molecules are the bispecific CD4-IgG molecules described in Berg et al., 1991, PNAS (USA) 88:4723-and Chamow et al., 1994, J. Immunol. 153:4268.
[0112] An "isolated" antibody is one that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In some embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present.
Ordinarily, however, isolated antibody will be prepared by at least one purification step.
Ordinarily, however, isolated antibody will be prepared by at least one purification step.
[0113] An "isolated" nucleic acid molecule is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the antibody nucleic acid. An isolated nucleic acid molecule is other than in the form or setting in which it is found in nature.
Isolated nucleic acid molecules therefore are distinguished from the nucleic acid molecule as it exists in natural cells. However, an isolated nucleic acid molecule includes a nucleic acid molecule contained in cells that ordinarily express the antibody where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.
Isolated nucleic acid molecules therefore are distinguished from the nucleic acid molecule as it exists in natural cells. However, an isolated nucleic acid molecule includes a nucleic acid molecule contained in cells that ordinarily express the antibody where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.
[0114] The term "knob-into-hole" or "KnH" as mentioned herein refers to the technology directing the selectively pairing of two polypeptides together in vitro or in vivo by introducing a pertuberance (knob) into one polypeptide and a cavity (hole) into the other polypeptide at an interface in which they interact. For example, KnHs have been introduced in the Fc:Fc binding interfaces, CL:CH1 interfaces or VH/VL interfaces of antibodies (e.g., US20007/0178552, WO 96/027011, WO 98/050431and Zhu et al. (1997) Protein Science 6:781-788). This is especially useful in driving the pairing of two different heavy chains together during the manufacture of multispecific antibodies. For example, multispecific antibodies having KnH in their Fc regions can further comprise single variable domains linked to each Fc region, or further comprise different heavy chain variable domains that pair with similar or different light chain variable domains. In fact, KnH technology can be used to pair two different receptor extracellular domains together or any other polypeptide sequences that comprises different target recognition sequences (e.g., including affibodies, peptibodies and other Fc fusions).
[0115] The expression "linear antibodies" generally refers to the antibodies described in Zapata et al., Protein Eng. 8(10):1057-1062 (1995). Briefly, these antibodies comprise a pair of tandem Fd segments (VH-CH1-VH-CH1) which, together with complementary light chain polypeptides, form a pair of antigen binding regions. Linear antibodies can be bispecific or monospecific.
[0116] The term "mammal" includes any animals classified as mammals, including humans, cows, horses, dogs, and cats. In one embodiment the mammal is a human.
[0117] The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations that typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen.
The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al., 1975, Nature 256:495, or may be made by recombinant DNA
methods (see, for example, U.S. Pat. No. 4,816,567). The "monoclonal antibodies" may also be isolated from phage antibody libraries using the techniques described in Clackson et al., 1991, Nature 352:624-628 and Marks et al., 1991, J. MoL Biol. 222:581-597, for example.
The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al., 1975, Nature 256:495, or may be made by recombinant DNA
methods (see, for example, U.S. Pat. No. 4,816,567). The "monoclonal antibodies" may also be isolated from phage antibody libraries using the techniques described in Clackson et al., 1991, Nature 352:624-628 and Marks et al., 1991, J. MoL Biol. 222:581-597, for example.
[0118] The monoclonal antibodies herein specifically include "chimeric"
antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Pat.
No. 4,816,567; and Morrison et al., 1984, Proc. Natl. Acad. Sci. USA 81:6851-6855).
antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Pat.
No. 4,816,567; and Morrison et al., 1984, Proc. Natl. Acad. Sci. USA 81:6851-6855).
[0119] The term "multispecific antibody" is used in the broadest sense and refers to an antibody that has polyeptopic specificity. Such multispecific antibodies include, but are not limited to, an antibody comprising a heavy chain variable domain (VH) and a light chain variable domain (VL), where the VHVL unit has polyepitopic specificity, antibodies having two or more VI_ and VH domains with each VHVL unit binding to a different epitope, antibodies having two or more single variable domains with at least two single variable domains binding to different epitopes, full length antibodies, antibody fragments such as Fab, Fv, dsFv, scFv, diabodies,tandem antibodies, linear antibodies and triabodies, antibody fragments that have been linked covalently or bind to each other through non-covalent interactions. Other examples of antibody formats have been used or may be used to create multispecific antibodies include, but are not limited to, Fc fusions of diabodies, tandem antibodies, and single chain antibodies (e.g, Db-Fc, taDb-Fc, taDb-CH3 and (scFV)4-Fc), knob-N-hole (KnH) antibodies, octopus antibodies and DAF antibodies.
[0120] "Multispecific Molecule" as used herein refers to a molecule that has polyepitopic specificity. "Polyepitopic specificity" refers to the ability to specifically bind to \at least two different epitopes on one target molecule or on a different target molecules.
"Monospecific"
refers to the ability to bind only one epitope. According to one embodiment a multispecific molecule binds to each epitope with an affinity of 5pM to 0.001pM, 3pM to 0.001pM, 1pM to 0.001pM, 0.5pM to 0.001pM or 0.1pM to 0.001pM. The term "bispecific" as used herein refers to the ability to bind two epitopes (e.g, an anti-IL-18/IL-18 bispecific antibody).
Examples of molecules that support or can be engineered to support polyepitopic specificity include, but is not limited to, antibodies, affibodies, immunoadhesins, peptibodies and other Fc fusions.
"Monospecific"
refers to the ability to bind only one epitope. According to one embodiment a multispecific molecule binds to each epitope with an affinity of 5pM to 0.001pM, 3pM to 0.001pM, 1pM to 0.001pM, 0.5pM to 0.001pM or 0.1pM to 0.001pM. The term "bispecific" as used herein refers to the ability to bind two epitopes (e.g, an anti-IL-18/IL-18 bispecific antibody).
Examples of molecules that support or can be engineered to support polyepitopic specificity include, but is not limited to, antibodies, affibodies, immunoadhesins, peptibodies and other Fc fusions.
[0121] The term "octopus" antibody or antibodies as used herein refers to multivalent antibodies comprising an Fc region and two or more antigen binding sites amino-terminal to the Fc region (e.g., W001/77342, Wu et al. (2007) Nature Biotechnology, and WO
2007/024715). In one preferred embodiment, the configuration of a polypeptide of the antibody is VD1-(X1)n-VD2-(X2)n-Fc, wherein VD1 is a first variable domain, VD2 is a second variable domain, Fc is one polypeptide chain of an Fc region, X1 and X2 represent an amino acid or polypeptide, and n is 0 or 1. In one embodiment, X1 or X2 is a CH1 domain, a portion of a CH1 domain, some other linker sequence such as a GS linker or some combination thereof (e.g., page 5 of WO 2007/024715).
2007/024715). In one preferred embodiment, the configuration of a polypeptide of the antibody is VD1-(X1)n-VD2-(X2)n-Fc, wherein VD1 is a first variable domain, VD2 is a second variable domain, Fc is one polypeptide chain of an Fc region, X1 and X2 represent an amino acid or polypeptide, and n is 0 or 1. In one embodiment, X1 or X2 is a CH1 domain, a portion of a CH1 domain, some other linker sequence such as a GS linker or some combination thereof (e.g., page 5 of WO 2007/024715).
[0122] A nucleic acid is "operably linked," as used herein, when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA
for a presequence or secretory leader is operably linked to DNA for a antibody if it is expressed as a preprotein that participates in the secretion of the antibody; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA
sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase.
However, an enhancer may not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
for a presequence or secretory leader is operably linked to DNA for a antibody if it is expressed as a preprotein that participates in the secretion of the antibody; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA
sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase.
However, an enhancer may not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
[0123] "Peptibody" or "peptibodies" refers to a fusion of peptide sequences with an Fc domain. See U.S. Pat. No. 6,660,843, issued Dec. 9, 2003 to Feige et al.
(incorporated by reference in its entirety). They include one or more peptides linked to the N-terminus, C-terminus, amino acid sidechains, or to more than one of these sites. Peptibody technology enables design of therapeutic agents that incorporate peptides that target one or more ligands or receptors, tumor-homing peptides, membrane-transporting peptides, and the like.
Peptibody technology has proven useful in design of a number of such molecules, including linear and disulfide-constrained peptides, "tandem peptide multimers" (i.e., more than one peptide on a single chain of an Fc domain). See, for example, U.S. Pat. No.
6,660,843; U.S.
Pat. App. No. 2003/0195156, published Oct. 16, 2003 (corresponding to WO
02/092620, published Nov. 21, 2002); U.S. Pat. App. No. 2003/0176352, published Sep. 18, (corresponding to WO 03/031589, published Apr. 17, 2003); U.S. Ser. No.
09/422,838, filed Oct. 22, 1999 (corresponding to WO 00/24770, published May 4, 2000); U.S. Pat.
App. No.
2003/0229023, published Dec. 11,2003; WO 03/057134, published Jul. 17, 2003;
U.S. Pat.
App. No. 2003/0236193, published Dec. 25, 2003 (corresponding to PCT/U504/010989, filed Apr. 8, 2004); U.S. Ser. No. 10/666,480, filed Sep. 18, 2003 (corresponding to WO
04/026329, published Apr. 1, 2004), each of which is hereby incorporated by reference in its entirety.
(incorporated by reference in its entirety). They include one or more peptides linked to the N-terminus, C-terminus, amino acid sidechains, or to more than one of these sites. Peptibody technology enables design of therapeutic agents that incorporate peptides that target one or more ligands or receptors, tumor-homing peptides, membrane-transporting peptides, and the like.
Peptibody technology has proven useful in design of a number of such molecules, including linear and disulfide-constrained peptides, "tandem peptide multimers" (i.e., more than one peptide on a single chain of an Fc domain). See, for example, U.S. Pat. No.
6,660,843; U.S.
Pat. App. No. 2003/0195156, published Oct. 16, 2003 (corresponding to WO
02/092620, published Nov. 21, 2002); U.S. Pat. App. No. 2003/0176352, published Sep. 18, (corresponding to WO 03/031589, published Apr. 17, 2003); U.S. Ser. No.
09/422,838, filed Oct. 22, 1999 (corresponding to WO 00/24770, published May 4, 2000); U.S. Pat.
App. No.
2003/0229023, published Dec. 11,2003; WO 03/057134, published Jul. 17, 2003;
U.S. Pat.
App. No. 2003/0236193, published Dec. 25, 2003 (corresponding to PCT/U504/010989, filed Apr. 8, 2004); U.S. Ser. No. 10/666,480, filed Sep. 18, 2003 (corresponding to WO
04/026329, published Apr. 1, 2004), each of which is hereby incorporated by reference in its entirety.
[0124] For the purposes herein, a "pharmaceutical composition" is one that is adapted and suitable for administration to a mammal, especially a human. Thus, the composition can be used to treat a disease or disorder in the mammal. Moreover, the protein in the composition has been subjected to one or more purification or isolation steps, such that contaminant(s) that might interfere with its therapeutic use have been separated therefrom.
Generally, the pharmaceutical composition comprises the therapeutic protein and a pharmaceutically acceptable carrier or diluent. The composition is usually sterile and may be lyophilized. Pharmaceutical preparations are described in more detail below.
Generally, the pharmaceutical composition comprises the therapeutic protein and a pharmaceutically acceptable carrier or diluent. The composition is usually sterile and may be lyophilized. Pharmaceutical preparations are described in more detail below.
[0125] "Polynucleotide," or "nucleic acid," as used interchangeably herein, refer to polymers of nucleotides of any length, and include DNA and RNA. The nucleotides can be deoxyribonucleotides, ribonucleotides, modified nucleotides or bases, and/or their analogs, or any substrate that can be incorporated into a polymer by DNA or RNA polymerase or by a synthetic reaction. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and their analogs. If present, modification to the nucleotide structure may be imparted before or after assembly of the polymer. The sequence of nucleotides may be interrupted by non-nucleotide components. A polynucleotide may be further modified after synthesis, such as by conjugation with a label. Other types of modifications include, for example, "caps", substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as, for example, those with uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoamidates, carbamates, etc.) and with charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), those containing pendant moieties, such as, for example, proteins (e.g., nucleases, toxins, antibodies, signal peptides, ply-L-lysine, etc.), those with intercalators (e.g., acridine, psoralen, etc.), those containing chelators (e.g., metals, radioactive metals, boron, oxidative metals, etc.), those containing alkylators, those with modified linkages (e.g., alpha anomeric nucleic acids, etc.), as well as unmodified forms of the polynucleotide(s). Further, any of the hydroxyl groups ordinarily present in the sugars may be replaced, for example, by phosphonate groups, phosphate groups, protected by standard protecting groups, or activated to prepare additional linkages to additional nucleotides, or may be conjugated to solid or semi-solid supports. The 5' and 3' terminal OH can be phosphorylated or substituted with amines or organic capping group moieties of from 1 to 20 carbon atoms. Other hydroxyls may also be derivatized to standard protecting groups. Polynucleotides can also contain analogous forms of ribose or deoxyribose sugars that are generally known in the art, including, for example, 2'-0-methyl-, 2'-0-allyl, 2'-fluoro- or 2'-azido-ribose, carbocyclic sugar analogs, a-anomeric sugars, epimeric sugars such as arabinose, xyloses or lyxoses, pyranose sugars, furanose sugars, sedoheptuloses, acyclic analogs, and abasic nucleoside analogs such as methyl riboside.
One or more phosphodiester linkage may be replaced by alternative linking groups. These alternative linking groups include, but are not limited to, embodiments wherein phosphate is replaced by P(0)S("thioate"), P(S)S ("dithioate"), "(0)NR2 ("amidate"), P(0)R, P(0)OR', CO
or CH2 ("formacetal"), in which each R or R' is independently H or substituted or unsubstituted alkyl (1-20 C.) optionally containing an ether (-0¨) linkage, aryl, alkenyl, cycloalkyl, cycloalkenyl, or araldyl. Not all linkages in a polynucleotide need be identical. The preceding description applies to all polynucleotides referred to herein, including RNA and DNA.
One or more phosphodiester linkage may be replaced by alternative linking groups. These alternative linking groups include, but are not limited to, embodiments wherein phosphate is replaced by P(0)S("thioate"), P(S)S ("dithioate"), "(0)NR2 ("amidate"), P(0)R, P(0)OR', CO
or CH2 ("formacetal"), in which each R or R' is independently H or substituted or unsubstituted alkyl (1-20 C.) optionally containing an ether (-0¨) linkage, aryl, alkenyl, cycloalkyl, cycloalkenyl, or araldyl. Not all linkages in a polynucleotide need be identical. The preceding description applies to all polynucleotides referred to herein, including RNA and DNA.
[0126] "Oligonucleotide," as used herein, generally refers to short, generally single stranded, generally synthetic polynucleotides that are generally, but not necessarily, less than about 200 nucleotides in length. The terms "oligonucleotide" and "polynucleotide" are not mutually exclusive. The description above for polynucleotides is equally and fully applicable to oligonucleotides.
[0127] The term "receptor binding domain" is used to designate any native ligand for a receptor, including cell adhesion molecules, or any region or derivative of such native ligand retaining at least a qualitative receptor binding ability of a corresponding native ligand. This definition, among others, specifically includes binding sequences from ligands for the above-mentioned receptors.
[0128] "Secretion signal sequence" or "signal sequence" refers to a nucleic acid sequence encoding a short signal peptide that can be used to direct a newly synthesized protein of interest through a cellular membrane, usually the inner membrane or both inner and outer membranes of prokaryotes. As such, the protein of interest such as the immunoglobulin light or heavy chain polypeptide is secreted into the periplasm of the prokaryotic host cells or into the culture medium. The signal peptide encoded by the secretion signal sequence may be endogenous to the host cells, or they may be exogenous, including signal peptides native to the polypeptide to be expressed. Secretion signal sequences are typically present at the amino terminus of a polypeptide to be expressed, and are typically removed enzymatically between biosynthesis and secretion of the polypeptide from the cytoplasm.
Thus, the signal peptide is usually not present in a mature protein product.
Thus, the signal peptide is usually not present in a mature protein product.
[0129] The expression "single domain antibodies" (sdAbs) or "single variable domain (SVD) antibodies" generally refers to antibodies in which a single variable domain (VH or VL) can confer antigen binding. In other words, the single variable domain need not interact with another variable domain in order to bind the target antigen. Examples of single domain antibodies include, but is not limited to, those derived from nature such as camelids (lamas and camels) and cartilaginous fish (e.g., nurse sharks) and those derived from recombinant methods from humans and mouse antibodies (Nature (1989) 341:544-546; Dev Comp Immunol (2006) 30:43-56; Trend Biochem Sci (2001) 26:230-235; Trends Biotechnol (2003):21:484-490; WO 2005/035572; WO 03/035694; Febs Lett (1994) 339:285-290;
W000/29004; WO 02/051870).
W000/29004; WO 02/051870).
[0130] As used herein, a "therapeutic antibody" is an antibody that is effective in treating a disease or disorder in a mammal with or predisposed to the disease or disorder. Exemplary therapeutic antibodies include the anti-IL-1 13 and anti-IL-18 antibodies of the present invention, including the anti-IL-113 and anti-IL-18 bispecific antibodies of the present invention, as well as antibodies including rhuMAb 4D5 (HERCEPTINO) (Carter et al., 1992, Proc. Natl.
Acad. Sci. USA, 89:4285-4289, U.S. Pat. No. 5,725,856); anti-CD20 antibodies such as chimeric anti-CD20 "C2B8" as in U.S. Pat. No. 5,736,137 (RITUXANO), a chimeric or humanized variant of the 2H7 antibody as in U.S. Pat. No. 5,721,108, B1 or Tositumomab (BEXXARO); anti-IL-8 (St John et al., 1993, Chest, 103:932, and International Publication No.
WO 95/23865); anti-VEGF antibodies including humanized and/or affinity matured anti-VEGF
antibodies such as the humanized anti-VEGF antibody huA4.6.1 AVASTIN TM (Kim et al., 1992, Growth Factors, 7:53-64, International Publication No. WO 96/30046, and WO
98/45331, published Oct. 15, 1998); anti-PSCA antibodies (W001/40309); anti-antibodies, including S2C6 and humanized variants thereof (W000/75348); anti-CD 11a (U.S.
Pat. No. 5,622,700, WO 98/23761, Steppe et al, 1991, Transplant Intl. 4:3-7, and Hourmant et al., 1994, Transplantation 58:377-380); anti-IgE (Presta et al., 1993, J.
Immunol. 151:2623-2632, and International Publication No. WO 95/19181); anti-CD18 (U.S. Pat. No.
5,622,700, issued Apr. 22, 1997, or as in WO 97/26912, published Jul. 31, 1997); anti-IgE
(U.S. Pat. No.
5,714,338, issued Feb. 3, 1998 or U.S. Pat. No. 5,091,313, issued Feb. 25, 1992, WO
93/04173 published Mar. 4, 1993, or International Application No.
PCT/US98/13410 filed Jun.
30, 1998, U.S. Pat. No. 5,714,338); anti-Apo-2 receptor antibody (WO 98/51793 published Nov. 19, 1998); anti-TNF-a antibodies including cA2 (REMICADEO), CDP571 and (See, U.S. Pat. No. 5,672,347 issued Sep. 30, 1997, Lorenz et al. 1996, J.
Immunol.
156(4):1646-1653, and Dhainaut et al. 1995, Crit. Care Med. 23(9):1461-1469);
anti-Tissue Factor (TF) (European Patent No. 0 420 937 B1 granted Nov. 9, 1994); anti-human y4137 integrin (WO 98/06248 published Feb. 19, 1998); anti-EGFR (chimerized or humanized 225 antibody as in WO 96/40210 published Dec. 19, 1996); anti-CD3 antibodies such as OKT3 (U.S. Pat. No. 4,515,893 issued May 7, 1985); anti-CD25 or anti-tac antibodies such as CHI-621 (SIMULECTO) and (ZENAPAX0) (See U.S. Pat. No. 5,693,762 issued Dec. 2, 1997);
anti-CD4 antibodies such as the cM-7412 antibody (Choy et al. 1996, Arthritis Rheum 39(1):52-56); anti-CD52 antibodies such as CAMPATH-1H (Riechmann et al. 1988, Nature 332:323-337; anti-Fc receptor antibodies such as the M22 antibody directed against FcyRI as in Graziano et al. 1995, J. Immunol. 155(10):4996-5002; anti-carcinoembryonic antigen (CEA) antibodies such as hMN-14 (Sharkey et al. 1995, Cancer Res. 55(23 Suppl):
5935s-5945s;
antibodies directed against breast epithelial cells including huBrE-3, hu-Mc 3 and CHL6 (Ceriani et al. 1995, Cancer Res. 55(23): 5852s-5856s; and Richman et al.
1995, Cancer Res. 55(23 Supp): 5916s-5920s); antibodies that bind to colon carcinoma cells such as C242 (Litton et al. 1996, Eur J. Immunol. 26(1): 1-9); anti-CD38 antibodies, e.g.
AT 13/5 (Ellis et al.
1995, J. Immunol. 155(2):925-937); anti-CD33 antibodies such as Hu M195 (Jurcic et al.
1995, Cancer Res 55(23 Suppl):5908s-5910s and CMA-676 or CDP771; anti-CD22 antibodies such as LL2 or LymphoCide (Juweid et al. 1995, Cancer Res 55(23 Suppl):5899s-5907s; anti-EpCAM antibodies such as 17-1A (PANOREX0); anti-Gpl lb/Illa antibodies such as abciximab or c7E3 Fab (REOPROO); anti-RSV antibodies such as MEDI-493 (SYNAGISO); anti-CMV antibodies such as PROTOVIRO; anti-HIV antibodies such as PR0542; anti-hepatitis antibodies such as the anti-Hep B antibody OSTAVIRO;
anti-CA 125 antibody OvaRex; anti-idiotypic GD3 epitope antibody BEC2; anti-avp antibody VITAXINO;
anti-human renal cell carcinoma antibody such as ch-G250; ING-1; anti-human 17-IA
antibody (3622W94); anti-human colorectal tumor antibody (A33); anti-human melanoma antibody R24 directed against GD3 ganglioside; anti-human squamous-cell carcinoma (SF-25); and anti-human leukocyte antigen (HLA) antibodies such as Smart ID10 and the anti-HLA DR antibody Oncolym (Lym-1).
Acad. Sci. USA, 89:4285-4289, U.S. Pat. No. 5,725,856); anti-CD20 antibodies such as chimeric anti-CD20 "C2B8" as in U.S. Pat. No. 5,736,137 (RITUXANO), a chimeric or humanized variant of the 2H7 antibody as in U.S. Pat. No. 5,721,108, B1 or Tositumomab (BEXXARO); anti-IL-8 (St John et al., 1993, Chest, 103:932, and International Publication No.
WO 95/23865); anti-VEGF antibodies including humanized and/or affinity matured anti-VEGF
antibodies such as the humanized anti-VEGF antibody huA4.6.1 AVASTIN TM (Kim et al., 1992, Growth Factors, 7:53-64, International Publication No. WO 96/30046, and WO
98/45331, published Oct. 15, 1998); anti-PSCA antibodies (W001/40309); anti-antibodies, including S2C6 and humanized variants thereof (W000/75348); anti-CD 11a (U.S.
Pat. No. 5,622,700, WO 98/23761, Steppe et al, 1991, Transplant Intl. 4:3-7, and Hourmant et al., 1994, Transplantation 58:377-380); anti-IgE (Presta et al., 1993, J.
Immunol. 151:2623-2632, and International Publication No. WO 95/19181); anti-CD18 (U.S. Pat. No.
5,622,700, issued Apr. 22, 1997, or as in WO 97/26912, published Jul. 31, 1997); anti-IgE
(U.S. Pat. No.
5,714,338, issued Feb. 3, 1998 or U.S. Pat. No. 5,091,313, issued Feb. 25, 1992, WO
93/04173 published Mar. 4, 1993, or International Application No.
PCT/US98/13410 filed Jun.
30, 1998, U.S. Pat. No. 5,714,338); anti-Apo-2 receptor antibody (WO 98/51793 published Nov. 19, 1998); anti-TNF-a antibodies including cA2 (REMICADEO), CDP571 and (See, U.S. Pat. No. 5,672,347 issued Sep. 30, 1997, Lorenz et al. 1996, J.
Immunol.
156(4):1646-1653, and Dhainaut et al. 1995, Crit. Care Med. 23(9):1461-1469);
anti-Tissue Factor (TF) (European Patent No. 0 420 937 B1 granted Nov. 9, 1994); anti-human y4137 integrin (WO 98/06248 published Feb. 19, 1998); anti-EGFR (chimerized or humanized 225 antibody as in WO 96/40210 published Dec. 19, 1996); anti-CD3 antibodies such as OKT3 (U.S. Pat. No. 4,515,893 issued May 7, 1985); anti-CD25 or anti-tac antibodies such as CHI-621 (SIMULECTO) and (ZENAPAX0) (See U.S. Pat. No. 5,693,762 issued Dec. 2, 1997);
anti-CD4 antibodies such as the cM-7412 antibody (Choy et al. 1996, Arthritis Rheum 39(1):52-56); anti-CD52 antibodies such as CAMPATH-1H (Riechmann et al. 1988, Nature 332:323-337; anti-Fc receptor antibodies such as the M22 antibody directed against FcyRI as in Graziano et al. 1995, J. Immunol. 155(10):4996-5002; anti-carcinoembryonic antigen (CEA) antibodies such as hMN-14 (Sharkey et al. 1995, Cancer Res. 55(23 Suppl):
5935s-5945s;
antibodies directed against breast epithelial cells including huBrE-3, hu-Mc 3 and CHL6 (Ceriani et al. 1995, Cancer Res. 55(23): 5852s-5856s; and Richman et al.
1995, Cancer Res. 55(23 Supp): 5916s-5920s); antibodies that bind to colon carcinoma cells such as C242 (Litton et al. 1996, Eur J. Immunol. 26(1): 1-9); anti-CD38 antibodies, e.g.
AT 13/5 (Ellis et al.
1995, J. Immunol. 155(2):925-937); anti-CD33 antibodies such as Hu M195 (Jurcic et al.
1995, Cancer Res 55(23 Suppl):5908s-5910s and CMA-676 or CDP771; anti-CD22 antibodies such as LL2 or LymphoCide (Juweid et al. 1995, Cancer Res 55(23 Suppl):5899s-5907s; anti-EpCAM antibodies such as 17-1A (PANOREX0); anti-Gpl lb/Illa antibodies such as abciximab or c7E3 Fab (REOPROO); anti-RSV antibodies such as MEDI-493 (SYNAGISO); anti-CMV antibodies such as PROTOVIRO; anti-HIV antibodies such as PR0542; anti-hepatitis antibodies such as the anti-Hep B antibody OSTAVIRO;
anti-CA 125 antibody OvaRex; anti-idiotypic GD3 epitope antibody BEC2; anti-avp antibody VITAXINO;
anti-human renal cell carcinoma antibody such as ch-G250; ING-1; anti-human 17-IA
antibody (3622W94); anti-human colorectal tumor antibody (A33); anti-human melanoma antibody R24 directed against GD3 ganglioside; anti-human squamous-cell carcinoma (SF-25); and anti-human leukocyte antigen (HLA) antibodies such as Smart ID10 and the anti-HLA DR antibody Oncolym (Lym-1).
[0131] "Target molecule" refers to a molecule that is capable of binding a target recognition site. Examples of target molecule:target recognition site interactions include antigen:antibody variable domain interactions, receptorligand interactions, ligand:receptor interactions, adhesin:adhesin interactions, biotin:strepavidin interactions, etc. In one embodiment, the target molecule is a biological molecule.
[0132] The term "therapeutically effective amount" refers to an amount of a composition of this invention effective to "alleviate" or "treat" a disease or disorder in a subject or mammal.
In one embodiment, "therapeutically effective amount" is intended to include an amount of the antibodies described herein alone or in combination with other active ingredients effective to inhibit or decrease IL-1beta and IL-18 binding to their receptors or effective to treat or prevent inflammatory disorders in a subject in need thereof.
In one embodiment, "therapeutically effective amount" is intended to include an amount of the antibodies described herein alone or in combination with other active ingredients effective to inhibit or decrease IL-1beta and IL-18 binding to their receptors or effective to treat or prevent inflammatory disorders in a subject in need thereof.
[0133] "Treatment" (and grammatical variations thereof such as "treat" or "treating") refers to clinical intervention in an attempt to alter the natural course of the subject being treated, and can be performed either for prophylaxis or during the course of clinical pathology.
Desirable effects of treatment include, but are not limited to, preventing occurrence or recurrence of disease, alleviation of symptoms, diminishment of any direct or indirect pathological consequences of the disease, preventing metastasis, decreasing the rate of disease progression, amelioration or palliation of the disease state, and remission or improved prognosis. In some embodiments, antibodies of the invention are used to delay development of a disease or to slow the progression of a disease. Generally, treatment of a disease or disorder involves the lessening of one or more symptoms or medical problems associated with the disease or disorder. In some embodiments, antibodies and compositions of this invention can be used to prevent the onset or reoccurrence of the disease or disorder in a subject or mammal. For example, in a subject with autoimmune disease, an antibody of this invention can be used to prevent or treat flare-ups. Consecutive treatment or administration refers to treatment on at least a daily basis without interruption in treatment by one or more days. Intermittent treatment or administration, or, treatment or administration in an intermittent fashion, refers to treatment that is not consecutive, but rather cyclic in nature.
The treatment regime herein may be either consecutive or intermittent.
Desirable effects of treatment include, but are not limited to, preventing occurrence or recurrence of disease, alleviation of symptoms, diminishment of any direct or indirect pathological consequences of the disease, preventing metastasis, decreasing the rate of disease progression, amelioration or palliation of the disease state, and remission or improved prognosis. In some embodiments, antibodies of the invention are used to delay development of a disease or to slow the progression of a disease. Generally, treatment of a disease or disorder involves the lessening of one or more symptoms or medical problems associated with the disease or disorder. In some embodiments, antibodies and compositions of this invention can be used to prevent the onset or reoccurrence of the disease or disorder in a subject or mammal. For example, in a subject with autoimmune disease, an antibody of this invention can be used to prevent or treat flare-ups. Consecutive treatment or administration refers to treatment on at least a daily basis without interruption in treatment by one or more days. Intermittent treatment or administration, or, treatment or administration in an intermittent fashion, refers to treatment that is not consecutive, but rather cyclic in nature.
The treatment regime herein may be either consecutive or intermittent.
[0134] The term "variable" refers to the fact that certain segments of the variable domains differ extensively in sequence among antibodies. The V domain mediates antigen binding and defines specificity of a particular antibody for its particular antigen. However, the variability is not evenly distributed across the amino acid span of a variable domain. Instead, the V region consist of relatively invariant stretches called framework regions (FRs) of separated by shorter regions of extreme variability called "hypervariable regions". The hypervariable regions in one variable domain may cooperate with the hypervariable regions from another chain to contribute to the formation of a antigen-binding site on antibodies, depending on the type of antibody (see Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991)).
Constant domains are not typically involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody dependent cellular cytotoxicity (ADCC).
Constant domains are not typically involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody dependent cellular cytotoxicity (ADCC).
[0135] A "variant" or "altered" heavy chain, as used herein, generally refers to a heavy chain with reduced disulfide linkage capability, for e.g., wherein at least one cysteine residue has been rendered incapable of disulfide linkage formation. Preferably, said at least one cysteine is in the hinge region of the heavy chain.
[0136] The term "vector," as used herein, is intended to refer to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", a circular double stranded DNA loop into which additional DNA
segments may be ligated. Another type of vector is a phage vector. Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (for example, bacterial vectors having a bacterial origin of replication and episomal mammalian vectors).
Other vectors (for example, non-episomal mammalian vectors) can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors" (or simply, "recombinant vectors"). In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" may be used interchangeably as the plasmid is the most commonly used form of vector.
segments may be ligated. Another type of vector is a phage vector. Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (for example, bacterial vectors having a bacterial origin of replication and episomal mammalian vectors).
Other vectors (for example, non-episomal mammalian vectors) can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors" (or simply, "recombinant vectors"). In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" may be used interchangeably as the plasmid is the most commonly used form of vector.
[0137] An antibody that "selectively binds" a target molecule with significantly better affinity than it binds to other molecules that are not the target molecule.
The relative binding and/or binding affinity may be demonstrated in a variety of methods accepted in the art including, but not limited to: enzyme linked immunosorbent assay (ELISA) and fluorescence activated cell sorting (FACS). In some embodiments, the antibody of the invention binds a target molecule with at least about 1 log higher concentration reactivity than it binds to a non-target molecule, as determined by an ELISA.
I. Exemplary Antibodies [0138] Soluble human IL-113 or human IL-18, or fragments thereof, optionally conjugated to other molecules, can be used as immunogens for generating antibodies.
Alternatively, or additionally, cells expressing human IL-113 or human IL-18 can be used as the immunogen.
Such cells can be derived from a natural source or may be cells that have been transformed by recombinant techniques to express human IL-1[3 or human IL-18. Other forms of human IL-113 or human IL-18 useful for preparing antibodies will be apparent to those in the art.
A. Polyclonal Antibodies [0139] Polyclonal antibodies are preferably raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the relevant antigen and an adjuvant. It may be useful to conjugate the relevant antigen to a protein that is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOCl2, or RiN=C=NR, where R and R1 aredifferent alkyl groups.
The relative binding and/or binding affinity may be demonstrated in a variety of methods accepted in the art including, but not limited to: enzyme linked immunosorbent assay (ELISA) and fluorescence activated cell sorting (FACS). In some embodiments, the antibody of the invention binds a target molecule with at least about 1 log higher concentration reactivity than it binds to a non-target molecule, as determined by an ELISA.
I. Exemplary Antibodies [0138] Soluble human IL-113 or human IL-18, or fragments thereof, optionally conjugated to other molecules, can be used as immunogens for generating antibodies.
Alternatively, or additionally, cells expressing human IL-113 or human IL-18 can be used as the immunogen.
Such cells can be derived from a natural source or may be cells that have been transformed by recombinant techniques to express human IL-1[3 or human IL-18. Other forms of human IL-113 or human IL-18 useful for preparing antibodies will be apparent to those in the art.
A. Polyclonal Antibodies [0139] Polyclonal antibodies are preferably raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the relevant antigen and an adjuvant. It may be useful to conjugate the relevant antigen to a protein that is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOCl2, or RiN=C=NR, where R and R1 aredifferent alkyl groups.
[0140] Animals are immunized against the antigen, immunogenic conjugates, or derivatives by combining, for example, 100 pg or 5 pg of the protein or conjugate (for rabbits or mice, respectively) with 3 volumes of Freund's complete adjuvant and injecting the solution intradermally at multiple sites. Approximately one month later, the animals are boosted with 1/5 to 1/10 the original amount of peptide or conjugate in Freund's complete adjuvant by subcutaneous injection at multiple sites. Seven to 14 days later the animals are bled and the serum is assayed for antibody titer. Animals are boosted until the titer plateaus. Preferably, the animal is boosted with the conjugate of the same antigen, but conjugated to a different protein and/or through a different cross-linking reagent. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are suitably used to enhance the immune response.
B. Monoclonal Antibodies [0141] Monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., 1975, Nature, 256:495, or may be made by recombinant DNA
methods (See, for example, U.S. Pat. No. 4,816,567).
B. Monoclonal Antibodies [0141] Monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., 1975, Nature, 256:495, or may be made by recombinant DNA
methods (See, for example, U.S. Pat. No. 4,816,567).
[0142] In the hybridoma method, a mouse or other appropriate host animal, such as a hamster or macaque monkey, is immunized as hereinabove described to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, lymphocytes may be immunized in vitro.
Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, 1986, Monoclonal Antibodies: Principles and Practice, pp.
59-103 (Academic Press)).
Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, 1986, Monoclonal Antibodies: Principles and Practice, pp.
59-103 (Academic Press)).
[0143] The hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells. For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.
[0144] Preferred myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. Among these, preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, Calif. USA, and SP-2 or X63-Ag8-653 cells available from the American Type Culture Collection, Rockville, Md.
USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, 1984, J. Immunol., 133:3001; Brodeur et al., 1987, Monoclonal Antibody Production Techniques and Applications, pp.
51-63 (Marcel Dekker, Inc., New York)).
USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, 1984, J. Immunol., 133:3001; Brodeur et al., 1987, Monoclonal Antibody Production Techniques and Applications, pp.
51-63 (Marcel Dekker, Inc., New York)).
[0145] Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA).
[0146] After hybridoma cells are identified that produce antibodies of the desired specificity, affinity, and/or activity, the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, supra). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown in vivo as ascites tumors in an animal.
[0147] The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
[0148] DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the monoclonal antibodies). The hybridoma cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Recombinant production of antibodies will be described in more detail below.
[0149] In a further embodiment, antibodies or antibody fragments can be isolated from antibody phage libraries generated using the techniques described in McCafferty et al., 1990, Nature, 348:552-554. Clackson et al., 1991, Nature, 352:624-628, and Marks et al., 1991, J.
Mol. Biol., 222:581-597 describe the isolation of murine and human antibodies, respectively, using phage libraries. Subsequent publications describe the production of high affinity (nM
range) human antibodies by chain shuffling (Marks et al., 1992, Bio/Technology, 10:779-783), as well as combinatorial infection and in vivo recombination as a strategy for constructing very large phage libraries (Waterhouse et al., 1993, Nuc. Acids. Res., 21:2265-2266). Thus, these techniques are viable alternatives to traditional monoclonal antibody hybridoma techniques for isolation of monoclonal antibodies.
Mol. Biol., 222:581-597 describe the isolation of murine and human antibodies, respectively, using phage libraries. Subsequent publications describe the production of high affinity (nM
range) human antibodies by chain shuffling (Marks et al., 1992, Bio/Technology, 10:779-783), as well as combinatorial infection and in vivo recombination as a strategy for constructing very large phage libraries (Waterhouse et al., 1993, Nuc. Acids. Res., 21:2265-2266). Thus, these techniques are viable alternatives to traditional monoclonal antibody hybridoma techniques for isolation of monoclonal antibodies.
[0150] The DNA also may be modified, for example, by substituting the coding sequence for human heavy- and light-chain constant domains in place of the homologous murine sequences (U.S. Pat. No. 4,816,567; Morrison, et al., 1984, Proc. Natl. Acad.
Sci. USA, 81:6851), or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for non-immunoglobulin material (e.g., protein domains).
Sci. USA, 81:6851), or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for non-immunoglobulin material (e.g., protein domains).
[0151] Typically such non-immunoglobulin material is substituted for the constant domains of an antibody, or is substituted for the variable domains of one antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen.
C. Humanized and Human Antibodies [0152] A humanized antibody has one or more amino acid residues from a source that is non-human. The non-human amino acid residues are often referred to as "import"
residues, and are typically taken from an "import" variable domain. Humanization can be performed generally following the method of Winter and co-workers (Jones et al., 1986, Nature, 321:522-525; Riechmann et al., 1988, Nature, 332:323-327; Verhoeyen et al., 1988, Science, 239:1534-1536), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567) wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in non-human, for example, rodent antibodies.
C. Humanized and Human Antibodies [0152] A humanized antibody has one or more amino acid residues from a source that is non-human. The non-human amino acid residues are often referred to as "import"
residues, and are typically taken from an "import" variable domain. Humanization can be performed generally following the method of Winter and co-workers (Jones et al., 1986, Nature, 321:522-525; Riechmann et al., 1988, Nature, 332:323-327; Verhoeyen et al., 1988, Science, 239:1534-1536), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567) wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in non-human, for example, rodent antibodies.
[0153] The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity.
According to the so-called "best-fit" method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences.
The human sequence which is closest to that of the rodent is then accepted as the human framework (FR) for the humanized antibody (Sims et al., 1987, J. Immunol., 151:2296;
Chothia et al., 1987, J. Mol. Biol., 196:901). Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter et al., 1992, Proc. Natl. Acad. Sci. USA, 89:4285; Presta et al., 1993, J.
Immunol., 151:2623).
According to the so-called "best-fit" method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences.
The human sequence which is closest to that of the rodent is then accepted as the human framework (FR) for the humanized antibody (Sims et al., 1987, J. Immunol., 151:2296;
Chothia et al., 1987, J. Mol. Biol., 196:901). Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter et al., 1992, Proc. Natl. Acad. Sci. USA, 89:4285; Presta et al., 1993, J.
Immunol., 151:2623).
[0154] It is further important that antibodies be humanized with retention of high affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art.
Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the CDR residues are directly and most substantially involved in influencing antigen binding.
Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the CDR residues are directly and most substantially involved in influencing antigen binding.
[0155] Alternatively, it is now possible to produce transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (JH) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production.
Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., 1993, Proc. Natl. Acad. Sci. USA, 90:2551; Jakobovits et al., 1993, Nature, 362:255-258; Bruggermann et al., 1993, Year in Immuno., 7:33; and Duchosal et al., 1992, Nature 355:258. Human antibodies can also be derived from phage-display libraries (Hoogenboom et al., 1991, J. MoL Biol., 227:381; Marks et al., J. Mol. Biol., 1991, 222:581-597; Vaughan et al., 1996, Nature Biotech 14:309).
I. Chimeric and Humanized Antibodies [0156] In certain embodiments, an antibody provided herein is a chimeric antibody.
Certain chimeric antibodies are described, e.g., in U.S. Patent No. 4,816,567;
and Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984)). In one example, a chimeric antibody comprises a non-human variable region (e.g., a variable region derived from a mouse, rat, hamster, rabbit, or non-human primate, such as a monkey) and a human constant region. In a further example, a chimeric antibody is a "class switched" antibody in which the class or subclass has been changed from that of the parent antibody. Chimeric antibodies include antigen-binding fragments thereof.
Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., 1993, Proc. Natl. Acad. Sci. USA, 90:2551; Jakobovits et al., 1993, Nature, 362:255-258; Bruggermann et al., 1993, Year in Immuno., 7:33; and Duchosal et al., 1992, Nature 355:258. Human antibodies can also be derived from phage-display libraries (Hoogenboom et al., 1991, J. MoL Biol., 227:381; Marks et al., J. Mol. Biol., 1991, 222:581-597; Vaughan et al., 1996, Nature Biotech 14:309).
I. Chimeric and Humanized Antibodies [0156] In certain embodiments, an antibody provided herein is a chimeric antibody.
Certain chimeric antibodies are described, e.g., in U.S. Patent No. 4,816,567;
and Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984)). In one example, a chimeric antibody comprises a non-human variable region (e.g., a variable region derived from a mouse, rat, hamster, rabbit, or non-human primate, such as a monkey) and a human constant region. In a further example, a chimeric antibody is a "class switched" antibody in which the class or subclass has been changed from that of the parent antibody. Chimeric antibodies include antigen-binding fragments thereof.
[0157] In certain embodiments, a chimeric antibody is a humanized antibody.
Typically, a non-human antibody is humanized to reduce immunogenicity to humans, while retaining the specificity and affinity of the parental non-human antibody. Generally, a humanized antibody comprises one or more variable domains in which HVRs, e.g., CDRs, (or portions thereof) are derived from a non-human antibody, and FRs (or portions thereof) are derived from human antibody sequences. A humanized antibody optionally will also comprise at least a portion of a human constant region. In some embodiments, some FR residues in a humanized antibody are substituted with corresponding residues from a non-human antibody (e.g., the antibody from which the HVR residues are derived), e.g., to restore or improve antibody specificity or affinity.
Typically, a non-human antibody is humanized to reduce immunogenicity to humans, while retaining the specificity and affinity of the parental non-human antibody. Generally, a humanized antibody comprises one or more variable domains in which HVRs, e.g., CDRs, (or portions thereof) are derived from a non-human antibody, and FRs (or portions thereof) are derived from human antibody sequences. A humanized antibody optionally will also comprise at least a portion of a human constant region. In some embodiments, some FR residues in a humanized antibody are substituted with corresponding residues from a non-human antibody (e.g., the antibody from which the HVR residues are derived), e.g., to restore or improve antibody specificity or affinity.
[0158] Humanized antibodies and methods of making them are reviewed, e.g., in Almagro and Fransson, Front. Biosci. 13:1619-1633 (2008), and are further described, e.g., in Riechmann et al., Nature 332:323-329 (1988); Queen et al., Proc. Nat'l Acad.
Sci. USA
86:10029-10033 (1989); US Patent Nos. 5, 821,337, 7,527,791, 6,982,321, and 7,087,409;
Kashmiri et al., Methods 36:25-34 (2005) (describing SDR (a-CDR) grafting);
Padlan, Mo/.
Immunol. 28:489-498 (1991) (describing "resurfacing"); Dall'Acqua et al., Methods 36:43-60 (2005) (describing "FR shuffling"); and Osbourn et al., Methods 36:61-68 (2005) and Klimka et al., Br. J. Cancer, 83:252-260 (2000) (describing the "guided selection"
approach to FR
shuffling).
Sci. USA
86:10029-10033 (1989); US Patent Nos. 5, 821,337, 7,527,791, 6,982,321, and 7,087,409;
Kashmiri et al., Methods 36:25-34 (2005) (describing SDR (a-CDR) grafting);
Padlan, Mo/.
Immunol. 28:489-498 (1991) (describing "resurfacing"); Dall'Acqua et al., Methods 36:43-60 (2005) (describing "FR shuffling"); and Osbourn et al., Methods 36:61-68 (2005) and Klimka et al., Br. J. Cancer, 83:252-260 (2000) (describing the "guided selection"
approach to FR
shuffling).
[0159] Human framework regions that may be used for humanization include but are not limited to: framework regions selected using the "best-fit" method (see, e.g., Sims et al. J.
Immunol. 151:2296 (1993)); framework regions derived from the consensus sequence of human antibodies of a particular subgroup of light or heavy chain variable regions (see, e.g., Carter et al. Proc. Natl. Acad. Sci. USA, 89:4285 (1992); and Presta et al. J.
Immunol., 151:2623 (1993)); human mature (somatically mutated) framework regions or human germline framework regions (see, e.g., Almagro and Fransson, Front. Biosci.
13:1619-1633 (2008)); and framework regions derived from screening FR libraries (see, e.g., Baca et al., J.
Biol. Chem. 272:10678-10684 (1997) and Rosok et al., J. Biol. Chem. 271:22611-(1996)).
ii. Human Antibodies [0160] In certain embodiments, an antibody provided herein is a human antibody.
Human antibodies can be produced using various techniques known in the art.
Human antibodies are described generally in van Dijk and van de Winkel, Curr. Opin.
Pharmacol. 5:
368-74 (2001) and Lonberg, Curr. Opin. Immunol. 20:450-459 (2008).
Immunol. 151:2296 (1993)); framework regions derived from the consensus sequence of human antibodies of a particular subgroup of light or heavy chain variable regions (see, e.g., Carter et al. Proc. Natl. Acad. Sci. USA, 89:4285 (1992); and Presta et al. J.
Immunol., 151:2623 (1993)); human mature (somatically mutated) framework regions or human germline framework regions (see, e.g., Almagro and Fransson, Front. Biosci.
13:1619-1633 (2008)); and framework regions derived from screening FR libraries (see, e.g., Baca et al., J.
Biol. Chem. 272:10678-10684 (1997) and Rosok et al., J. Biol. Chem. 271:22611-(1996)).
ii. Human Antibodies [0160] In certain embodiments, an antibody provided herein is a human antibody.
Human antibodies can be produced using various techniques known in the art.
Human antibodies are described generally in van Dijk and van de Winkel, Curr. Opin.
Pharmacol. 5:
368-74 (2001) and Lonberg, Curr. Opin. Immunol. 20:450-459 (2008).
[0161] Human antibodies may be prepared by administering an immunogen to a transgenic animal that has been modified to produce intact human antibodies or intact antibodies with human variable regions in response to antigenic challenge.
Such animals typically contain all or a portion of the human immunoglobulin loci, which replace the endogenous immunoglobulin loci, or which are present extrachromosomally or integrated randomly into the animal's chromosomes. In such transgenic mice, the endogenous immunoglobulin loci have generally been inactivated. For review of methods for obtaining human antibodies from transgenic animals, see Lonberg, Nat. Biotech. 23:1117-1125 (2005).
See also, e.g., U.S. Patent Nos. 6,075,181 and 6,150,584 describing XENOMOUSETm technology; U.S. Patent No. 5,770,429 describing HuMABO technology; U.S.
Patent No.
7,041,870 describing K-M MOUSE technology, and U.S. Patent Application Publication No.
US 2007/0061900, describing VELociMousE technology). Human variable regions from intact antibodies generated by such animals may be further modified, e.g., by combining with a different human constant region.
Such animals typically contain all or a portion of the human immunoglobulin loci, which replace the endogenous immunoglobulin loci, or which are present extrachromosomally or integrated randomly into the animal's chromosomes. In such transgenic mice, the endogenous immunoglobulin loci have generally been inactivated. For review of methods for obtaining human antibodies from transgenic animals, see Lonberg, Nat. Biotech. 23:1117-1125 (2005).
See also, e.g., U.S. Patent Nos. 6,075,181 and 6,150,584 describing XENOMOUSETm technology; U.S. Patent No. 5,770,429 describing HuMABO technology; U.S.
Patent No.
7,041,870 describing K-M MOUSE technology, and U.S. Patent Application Publication No.
US 2007/0061900, describing VELociMousE technology). Human variable regions from intact antibodies generated by such animals may be further modified, e.g., by combining with a different human constant region.
[0162] Human antibodies can also be made by hybridoma-based methods. Human myeloma and mouse-human heteromyeloma cell lines for the production of human monoclonal antibodies have been described. (See, e.g., Kozbor J. Immunol., 133: 3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987); and Boerner et al., J. Immunol., 147: 86 (1991).) Human antibodies generated via human B-cell hybridoma technology are also described in Li et al., Proc. Natl. Acad. Sci. USA, 103:3557-3562 (2006). Additional methods include those described, for example, in U.S. Patent No. 7,189,826 (describing production of monoclonal human IgM antibodies from hybridoma cell lines) and Ni, Xiandai Mianyixue, 26(4):265-268 (2006) (describing human-human hybridomas). Human hybridoma technology (Trioma technology) is also described in Vollmers and Brand lein, Histology and Histopathology, 20(3):927-937 (2005) and Vollmers and Brandlein, Methods and Findings in Experimental and Clinical Pharmacology, 27(3):185-91 (2005).
[0163] Human antibodies may also be generated by isolating Fv clone variable domain sequences selected from human-derived phage display libraries. Such variable domain sequences may then be combined with a desired human constant domain.
Techniques for selecting human antibodies from antibody libraries are described below.
D. Multispecific Antibodies [0164] Multispecific antibodies have binding specificities for at least two different antigens. While such molecules normally will only bind two antigens (e.g., bispecific antibodies, BsAbs), antibodies with additional specificities such as trispecific antibodies are encompassed by this expression when used herein. Examples of BsAbs include those with one antigen binding site directed against IL-1[3 and another antigen binding site directed against IL-18. In some embodiments, the BsAbs comprise a first binding specificity for IL-113 or IL-18 and a second binding specificity for an activating receptor having a cytoplasmic ITAM
motif. An ITAM motif structure possesses two tyrosines separate by a 9-11 amino acid spacer. A general consensus sequence is YxxL/I(x)6_8YxxL (Isakov, N., 1997, J.
Leukoc. Biol., 61:6-16). Exemplary activating receptors include FccRI, FcyRIII, FcyRI, FcyRIIA, and FcyRIIC. Other activating receptors include, e.g., CD3, CD2, 0D10, CD161, DAP-12, KAR, KARAP, FccRII, Trem-1, Trem-2, CD28, p44, p46, B cell receptor, LMP2A, STAM, STAM-2, GPVI, and CD40 (See, e.g., Azzoni, et al., 1998, J. Immunol. 161:3493; Kita, et al., 1999, J.
Immunol. 162:6901; Merchant, et al., 2000, J. Biol. Chem. 74:9115; Pandey, et al., 2000, J.
Biol. Chem. 275:38633; Zheng, et al., 2001, J. Biol. Chem. 276:12999; Propst, et al., 2000, J.
Immunol. 165:2214).
Techniques for selecting human antibodies from antibody libraries are described below.
D. Multispecific Antibodies [0164] Multispecific antibodies have binding specificities for at least two different antigens. While such molecules normally will only bind two antigens (e.g., bispecific antibodies, BsAbs), antibodies with additional specificities such as trispecific antibodies are encompassed by this expression when used herein. Examples of BsAbs include those with one antigen binding site directed against IL-1[3 and another antigen binding site directed against IL-18. In some embodiments, the BsAbs comprise a first binding specificity for IL-113 or IL-18 and a second binding specificity for an activating receptor having a cytoplasmic ITAM
motif. An ITAM motif structure possesses two tyrosines separate by a 9-11 amino acid spacer. A general consensus sequence is YxxL/I(x)6_8YxxL (Isakov, N., 1997, J.
Leukoc. Biol., 61:6-16). Exemplary activating receptors include FccRI, FcyRIII, FcyRI, FcyRIIA, and FcyRIIC. Other activating receptors include, e.g., CD3, CD2, 0D10, CD161, DAP-12, KAR, KARAP, FccRII, Trem-1, Trem-2, CD28, p44, p46, B cell receptor, LMP2A, STAM, STAM-2, GPVI, and CD40 (See, e.g., Azzoni, et al., 1998, J. Immunol. 161:3493; Kita, et al., 1999, J.
Immunol. 162:6901; Merchant, et al., 2000, J. Biol. Chem. 74:9115; Pandey, et al., 2000, J.
Biol. Chem. 275:38633; Zheng, et al., 2001, J. Biol. Chem. 276:12999; Propst, et al., 2000, J.
Immunol. 165:2214).
[0165] In one embodiment, a BsAb comprises a first binding specificity for IL-113 and a second binding specificity for IL-18. Bispecific antibodies can be prepared as full length antibodies or antibody fragments (for example, F(ab')2bispecific antibodies).
Bispecific antibodies may additionally be prepared as knobs-in-holes or hingeless antibodies. Bispecific antibodies are reviewed in Segal et al., 2001, J. Immunol. Methods 248:1-6.
Bispecific antibodies may additionally be prepared as knobs-in-holes or hingeless antibodies. Bispecific antibodies are reviewed in Segal et al., 2001, J. Immunol. Methods 248:1-6.
[0166] Methods for making bispecific antibodies are known in the art.
Traditional production of full length bispecific antibodies is based on the coexpression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein et al., 1983, Nature, 305:537-539). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, and in Traunecker et al., 1991, EMBO J., 10:3655-3659.
Traditional production of full length bispecific antibodies is based on the coexpression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein et al., 1983, Nature, 305:537-539). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, and in Traunecker et al., 1991, EMBO J., 10:3655-3659.
[0167] According to a different approach, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. The fusion can be with an immunoglobulin heavy chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light chain binding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. This provides for great flexibility in adjusting the mutual proportions of the three antibody fragments in embodiments when unequal ratios of the three antibody chains used in the construction provide the optimum yields. It is, however, possible to insert the coding sequences for two or all three antibody chains in one expression vector when the expression of at least two antibody chains in equal ratios results in high yields or when the ratios are of no particular significance.
[0168] In another embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile method of separation. This approach is disclosed in WO 94/04690. For further details of methods for generating bispecific antibodies, see, for example, Suresh et al., 1986, Methods in Enzymology, 121:210.
[0169] According to another approach described in W096/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers that are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 domain of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (for example, tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g.
alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.
alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.
[0170] Bispecific antibodies include cross-linked or "heteroconjugate"
antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed, for example, in U.S. Pat. No. 4,676,980, along with a number of cross-linking techniques.
antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed, for example, in U.S. Pat. No. 4,676,980, along with a number of cross-linking techniques.
[0171] Antibodies with more than two valencies are also contemplated. For example, trispecific antibodies can be prepared According to Tutt et al., 1991, J.
Immunol. 147: 60.
Immunol. 147: 60.
[0172] Engineered antibodies with three or more functional antigen binding sites, including "Octopus antibodies," are also included herein (see, e.g. US
2006/0025576A1).
2006/0025576A1).
[0173] The antibody or fragment herein also includes a "Dual Acting FAb" or "DAF"
comprising an antigen binding site that binds to IL-113 as well as IL-18 (see, US 2008/0069820, for example).
E. Antibodies with Variant Hinge Regions [0174] The antibodies of the present invention may also comprise variant heavy chains, for example as described in application Ser. No. 10/697,995, filed Oct. 30, 2003. Antibodies comprising variant heavy chains comprise an alteration of at least one disulfide-forming cysteine residue, such that the cysteine residue is incapable of forming a disulfide linkage. In one aspect, said cysteine(s) is of the hinge region of the heavy chain (thus, such a hinge region is referred to herein as a "variant hinge region" and may additionally be referred to as "hingeless").
comprising an antigen binding site that binds to IL-113 as well as IL-18 (see, US 2008/0069820, for example).
E. Antibodies with Variant Hinge Regions [0174] The antibodies of the present invention may also comprise variant heavy chains, for example as described in application Ser. No. 10/697,995, filed Oct. 30, 2003. Antibodies comprising variant heavy chains comprise an alteration of at least one disulfide-forming cysteine residue, such that the cysteine residue is incapable of forming a disulfide linkage. In one aspect, said cysteine(s) is of the hinge region of the heavy chain (thus, such a hinge region is referred to herein as a "variant hinge region" and may additionally be referred to as "hingeless").
[0175] In some aspects, such immunoglobulins lack the complete repertoire of heavy chain cysteine residues that are normally capable of forming disulfide linkages, either intermolecularly (such as between two heavy chains) or intramolecularly (such as between two cysteine residues in a single polypeptide chain). Generally and preferably, the disulfide linkage formed by the cysteine residue(s) that is altered (i.e., rendered incapable of forming disulfide linkages) is one that, when not present in an antibody, does not result in a substantial loss of the normal physicochemical and/or biological characteristics of the immunoglobulin. Preferably, but not necessarily, the cysteine residue that is rendered incapable of forming disulfide linkages is a cysteine of the hinge region of a heavy chain.
[0176] An antibody with variant heavy chains or variant hinge region is generally produced by expressing in a host cell an antibody in which at least one, at least two, at least three, at least four, or between two and eleven inter-heavy chain disulfide linkages are eliminated, and recovering said antibody from the host cell. Expression of said antibody can be from a polynucleotide encoding an antibody, said antibody comprising a variant heavy chain with reduced disulfide linkage capability, followed by recovering said antibody from the host cell comprising the polynucleotide. Preferably, said heavy chain comprises a variant hinge region of an immunoglobulin heavy chain, wherein at least one cysteine of said variant hinge region is rendered incapable of forming a disulfide linkage.
[0177] It is further anticipated that any cysteine in an immunoglobulin heavy chain can be rendered incapable of disulfide linkage formation, similarly to the hinge cysteines described herein, provided that such alteration does not substantially reduce the biological function of the immunoglobulin. For example, IgM and IgE lack a hinge region, but each contains an extra heavy chain domain; at least one (in some embodiments, all) of the cysteines of the heavy chain can be rendered incapable of disulfide linkage formation in methods of the invention so long as it does not substantially reduce the biological function of the heavy chain and/or the antibody which comprises the heavy chain.
[0178] Heavy chain hinge cysteines are well known in the art, as described, for example, in Kabat, 1991, "Sequences of proteins of immunological interest," supra. As is known in the art, the number of hinge cysteines varies depending on the class and subclass of immunoglobulin. See, for example, Janeway, 1999, Immunobiology, 4th Ed., (Garland Publishing, NY). For example, in human IgGls, two hinge cysteines are separated by two prolines, and these are normally paired with their counterparts on an adjacent heavy chain in intermolecular disulfide linkages. Other examples include human IgG2 that contains 4 hinge cysteines, IgG3 that contains 11 hinge cysteines, and IgG4 that contains 2 hinge cysteines.
[0179] Accordingly, methods of the invention include expressing in a host cell an immunoglobulin heavy chain comprising a variant hinge region, where at least one cysteine of the variant hinge region is rendered incapable of forming a disulfide linkage, allowing the heavy chain to complex with a light chain to form a biologically active antibody, and recovering the antibody from the host cell.
[0180] Alternative embodiments include those where at least 2, 3, or 4 cysteines are rendered incapable of forming a disulfide linkage; where from about two to about eleven cysteines are rendered incapable; and where all the cysteines of the variant hinge region are rendered incapable.
[0181] Light chains and heavy chains constituting antibodies of the invention as produced according to methods of the invention may be encoded by a single polynucleotide or by separate polynucleotides.
[0182] Cysteines normally involved in disulfide linkage formation can be rendered incapable of forming disulfide linkages by any of a variety of methods known in the art, or those that would be evident to one skilled in the art in view of the criteria described herein.
For example, a hinge cysteine can be substituted with another amino acid, such as serine that is not capable of disulfide bonding. Amino acid substitution can be achieved by standard molecular biology techniques, such as site directed mutagenesis of the nucleic acid sequence encoding the hinge region that is to be modified. Suitable techniques include those described in Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd Ed., Other techniques for generating an immunoglobulin with a variant hinge region include synthesizing an oligonucleotide that encodes a hinge region, where the codon for the cysteine to be substituted is replaced with a codon for the substitute amino acid. This oligonucleotide can then be ligated into a vector backbone comprising other appropriate antibody sequences, such as variable regions and Fc sequences, as appropriate.
For example, a hinge cysteine can be substituted with another amino acid, such as serine that is not capable of disulfide bonding. Amino acid substitution can be achieved by standard molecular biology techniques, such as site directed mutagenesis of the nucleic acid sequence encoding the hinge region that is to be modified. Suitable techniques include those described in Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd Ed., Other techniques for generating an immunoglobulin with a variant hinge region include synthesizing an oligonucleotide that encodes a hinge region, where the codon for the cysteine to be substituted is replaced with a codon for the substitute amino acid. This oligonucleotide can then be ligated into a vector backbone comprising other appropriate antibody sequences, such as variable regions and Fc sequences, as appropriate.
[0183] In another embodiment, a hinge cysteine can be deleted. Amino acid deletion can be achieved by standard molecular biology techniques, such as site directed mutagenesis of the nucleic acid sequence encoding the hinge region that is to be modified.
Suitable techniques include those described in Sambrook et al., supra. Other techniques for generating an immunoglobulin with a variant hinge region include synthesizing an oligonucleotide comprising a sequence that encodes a hinge region in which the codon for the cysteine to be modified is deleted. This oligonucleotide can then be ligated into a vector backbone comprising other appropriate antibody sequences, such as variable regions and Fc sequences, as appropriate.
F. Bispecific Antibodies Formed Using "Protuberance-Into-Cavity" Strategy [0184] In some embodiments, bispecific antibodies of the invention are formed using a "protuberance-into-cavity" strategy, also referred to as "knobs into holes"
that serves to engineer an interface between a first and second polypeptide for hetero-oligomerization. The preferred interface comprises at least a part of the CH3 domain of an antibody constant domain. The "knobs into holes" mutations in the CH3 domain of an Fc sequence has been reported to greatly reduce the formation of homodimers (See, for example, Merchant et al., 1998, Nature Biotechnology, 16:677-681). "Protuberances" are constructed by replacing small amino acid side chains from the interface of the first polypeptide with larger side chains (e.g.
tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the protuberances are optionally created on the interface of the second polypeptide by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine).
Where a suitably positioned and dimensioned protuberance or cavity exists at the interface of either the first or second polypeptide, it is only necessary to engineer a corresponding cavity or protuberance, respectively, at the adjacent interface. The protuberance and cavity can be made by synthetic means such as altering the nucleic acid encoding the polypeptides or by peptide synthesis.
For further description of knobs into holes, see U.S. Pat. Nos. 5,731,168;
5,807,706;
5,821,333.
Suitable techniques include those described in Sambrook et al., supra. Other techniques for generating an immunoglobulin with a variant hinge region include synthesizing an oligonucleotide comprising a sequence that encodes a hinge region in which the codon for the cysteine to be modified is deleted. This oligonucleotide can then be ligated into a vector backbone comprising other appropriate antibody sequences, such as variable regions and Fc sequences, as appropriate.
F. Bispecific Antibodies Formed Using "Protuberance-Into-Cavity" Strategy [0184] In some embodiments, bispecific antibodies of the invention are formed using a "protuberance-into-cavity" strategy, also referred to as "knobs into holes"
that serves to engineer an interface between a first and second polypeptide for hetero-oligomerization. The preferred interface comprises at least a part of the CH3 domain of an antibody constant domain. The "knobs into holes" mutations in the CH3 domain of an Fc sequence has been reported to greatly reduce the formation of homodimers (See, for example, Merchant et al., 1998, Nature Biotechnology, 16:677-681). "Protuberances" are constructed by replacing small amino acid side chains from the interface of the first polypeptide with larger side chains (e.g.
tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the protuberances are optionally created on the interface of the second polypeptide by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine).
Where a suitably positioned and dimensioned protuberance or cavity exists at the interface of either the first or second polypeptide, it is only necessary to engineer a corresponding cavity or protuberance, respectively, at the adjacent interface. The protuberance and cavity can be made by synthetic means such as altering the nucleic acid encoding the polypeptides or by peptide synthesis.
For further description of knobs into holes, see U.S. Pat. Nos. 5,731,168;
5,807,706;
5,821,333.
[0185] In some embodiments "knobs into holes" technology is used to promote heterodimerization to generate full-length bispecific anti-FcyRIIB and anti-"activating receptor"
(e.g., IgER) antibody. In one embodiment, constructs were prepared for the anti-Fcyl IB
component (e.g., p5A6.11.Knob) by introducing the "knob" mutation (T366W) into the Fc region, and the anti-IgER component (e.g., p22E7.11.Hole) by introducing the "hole"
mutations (T3665, L368A, Y407V). In another embodiment, constructs are prepared for the anti-Fcyl IB component (e.g., p5A6.11.Hole) by introducing a "hole" mutation into its Fc region, and the anti-IgER component (e.g., p22E7.11.Knob) by introducing a "knob"
mutation in its Fc region such as by the procedures disclosed herein or the procedures disclosed by Merchant et al., (1998), supra, or in U.S. Pat. Nos. 5,731,168; 5,807,706; 5,821,333.
(e.g., IgER) antibody. In one embodiment, constructs were prepared for the anti-Fcyl IB
component (e.g., p5A6.11.Knob) by introducing the "knob" mutation (T366W) into the Fc region, and the anti-IgER component (e.g., p22E7.11.Hole) by introducing the "hole"
mutations (T3665, L368A, Y407V). In another embodiment, constructs are prepared for the anti-Fcyl IB component (e.g., p5A6.11.Hole) by introducing a "hole" mutation into its Fc region, and the anti-IgER component (e.g., p22E7.11.Knob) by introducing a "knob"
mutation in its Fc region such as by the procedures disclosed herein or the procedures disclosed by Merchant et al., (1998), supra, or in U.S. Pat. Nos. 5,731,168; 5,807,706; 5,821,333.
[0186] A general method of preparing a heteromultimer using the "protuberance-into-cavity" strategy comprises expressing, in one or separate host cells, a polynucleotide encoding a first polypeptide that has been altered from an original polynucleotide to encode a protuberance, and a second polynucleotide encoding a second polypeptide that has been altered from the original polynucleotide to encode the cavity. The polypeptides are expressed, either in a common host cell with recovery of the heteromultimer from the host cell culture, or in separate host cells, with recovery and purification, followed by formation of the heteromultimer. In some embodiments, the heteromultimer formed is a multimeric antibody, for example a bispecific antibody. See also US Patent Application Serial Number 13/092,708 filed 22 April 2011.
[0187] In some embodiments, antibodies of the present invention combine a knobs into holes strategy with variant hinge region constructs to produce hingeless bispecific antibodies.
G. lmmunoconjugates [0188] The invention also provides immunoconjugates comprising an anti- IL-113 antibody and/or anti-IL-18 antibody/antibodies herein conjugated to one or more cytotoxic agents, such as chemotherapeutic agents or drugs, growth inhibitory agents, toxins (e.g., protein toxins, enzymatically active toxins of bacterial, fungal, plant, or animal origin, or fragments thereof), or radioactive isotopes.
G. lmmunoconjugates [0188] The invention also provides immunoconjugates comprising an anti- IL-113 antibody and/or anti-IL-18 antibody/antibodies herein conjugated to one or more cytotoxic agents, such as chemotherapeutic agents or drugs, growth inhibitory agents, toxins (e.g., protein toxins, enzymatically active toxins of bacterial, fungal, plant, or animal origin, or fragments thereof), or radioactive isotopes.
[0189] In one embodiment, an immunoconjugate is an antibody-drug conjugate (ADC) in which an antibody is conjugated to one or more drugs, including but not limited to a maytansinoid (see U.S. Patent Nos. 5,208,020, 5,416,064 and European Patent EP
235 B1); an auristatin such as monomethylauristatin drug moieties DE and DF
(MMAE and MMAF) (see U.S. Patent Nos. 5,635,483 and 5,780,588, and 7,498,298); a dolastatin; a calicheamicin or derivative thereof (see U.S. Patent Nos. 5,712,374, 5,714,586, 5,739,116, 5,767,285, 5,770,701, 5,770,710, 5,773,001, and 5,877,296; Hinman et al., Cancer Res.
53:3336-3342 (1993); and Lode et al., Cancer Res. 58:2925-2928 (1998)); an anthracycline such as daunomycin or doxorubicin (see Kratz et al., Current Med. Chem. 13:477-523 (2006);
Jeffrey et al., Bioorganic & Med. Chem. Letters 16:358-362 (2006); Torgov et al., Bioconj.
Chem. 16:717-721 (2005); Nagy et al., Proc. Natl. Acad. Sci. USA 97:829-834 (2000);
Dubowchik et al., Bioorg. & Med. Chem. Letters 12:1529-1532 (2002); King et al., J. Med.
Chem. 45:4336-4343 (2002); and U.S. Patent No. 6,630,579); methotrexate;
vindesine; a taxane such as docetaxel, paclitaxel, larotaxel, tesetaxel, and ortataxel; a trichothecene; and 001065.
235 B1); an auristatin such as monomethylauristatin drug moieties DE and DF
(MMAE and MMAF) (see U.S. Patent Nos. 5,635,483 and 5,780,588, and 7,498,298); a dolastatin; a calicheamicin or derivative thereof (see U.S. Patent Nos. 5,712,374, 5,714,586, 5,739,116, 5,767,285, 5,770,701, 5,770,710, 5,773,001, and 5,877,296; Hinman et al., Cancer Res.
53:3336-3342 (1993); and Lode et al., Cancer Res. 58:2925-2928 (1998)); an anthracycline such as daunomycin or doxorubicin (see Kratz et al., Current Med. Chem. 13:477-523 (2006);
Jeffrey et al., Bioorganic & Med. Chem. Letters 16:358-362 (2006); Torgov et al., Bioconj.
Chem. 16:717-721 (2005); Nagy et al., Proc. Natl. Acad. Sci. USA 97:829-834 (2000);
Dubowchik et al., Bioorg. & Med. Chem. Letters 12:1529-1532 (2002); King et al., J. Med.
Chem. 45:4336-4343 (2002); and U.S. Patent No. 6,630,579); methotrexate;
vindesine; a taxane such as docetaxel, paclitaxel, larotaxel, tesetaxel, and ortataxel; a trichothecene; and 001065.
[0190] In another embodiment, an immunoconjugate comprises an antibody as described herein conjugated to an enzymatically active toxin or fragment thereof, including but not limited to diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes.
[0191] In another embodiment, an immunoconjugate comprises an antibody as described herein conjugated to a radioactive atom to form a radioconjugate. A variety of radioactive isotopes are available for the production of radioconjugates. Examples include At211, 1131, 1125, Y90, Re186 , Re188 , Sm13 , 212 , P32, Pb212 and radioactive isotopes of Lu.
When the 5 .
radioconjugate is used for detection, it may comprise a radioactive atom for scintigraphic studies, for example tc99m or 1123, or a spin label for nuclear magnetic resonance (NMR) imaging (also known as magnetic resonance imaging, mri), such as iodine-123 again, iodine-131, indium-111, fluorine-19, carbon-13, nitrogen-15, oxygen-17, gadolinium, manganese or iron.
When the 5 .
radioconjugate is used for detection, it may comprise a radioactive atom for scintigraphic studies, for example tc99m or 1123, or a spin label for nuclear magnetic resonance (NMR) imaging (also known as magnetic resonance imaging, mri), such as iodine-123 again, iodine-131, indium-111, fluorine-19, carbon-13, nitrogen-15, oxygen-17, gadolinium, manganese or iron.
[0192] Conjugates of an antibody and cytotoxic agent may be made using a variety of bifunctional protein coupling agents such as N-succinimidy1-3-(2-pyridyldithio) propionate (SPDP), succinimidy1-4-(N-maleimidomethyl) cyclohexane-l-carboxylate (SMCC), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HO!), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as toluene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene).
For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science 238:1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzy1-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See W094/11026. The linker may be a "cleavable linker"
facilitating release of a cytotoxic drug in the cell. For example, an acid-labile linker, peptidase-sensitive linker, photolabile linker, dimethyl linker or disulfide-containing linker (Chari et al., Cancer Res. 52:127-131 (1992); U.S. Patent No. 5,208,020) may be used.
For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science 238:1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzy1-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See W094/11026. The linker may be a "cleavable linker"
facilitating release of a cytotoxic drug in the cell. For example, an acid-labile linker, peptidase-sensitive linker, photolabile linker, dimethyl linker or disulfide-containing linker (Chari et al., Cancer Res. 52:127-131 (1992); U.S. Patent No. 5,208,020) may be used.
[0193] The immunuoconjugates or ADCs herein expressly contemplate, but are not limited to such conjugates prepared with cross-linker reagents including, but not limited to, BMPS, EMCS, GMBS, HBVS, LC-SMCC, MBS, MPBH, SBAP, SIA, SIAB, SMCC, SMPB, SMPH, sulfo-EMCS, sulfo-GMBS, sulfo-KMUS, sulfo-MBS, sulfo-SIAB, sulfo-SMCC, and sulfo-SMPB, and SVSB (succinimidy1-(4-vinylsulfone)benzoate) which are commercially available (e.g., from Pierce Biotechnology, Inc., Rockford, IL., U.S.A).
II. Vectors, Host Cells and Recombinant Methods [0194] The invention also provides isolated polynucleotides encoding the antibodies as disclosed herein, vectors and host cells comprising the polynucleotides, and recombinant techniques for the production of the antibodies.
II. Vectors, Host Cells and Recombinant Methods [0194] The invention also provides isolated polynucleotides encoding the antibodies as disclosed herein, vectors and host cells comprising the polynucleotides, and recombinant techniques for the production of the antibodies.
[0195] For recombinant production of the antibody, a polynucleotide encoding the antibody is isolated and inserted into a replicable vector for further cloning (amplification of the DNA) or for expression. DNA encoding the antibody is readily isolated and sequenced using conventional procedures, for example, by using oligonucleotide probes capable of binding specifically to genes encoding the antibody. Many vectors are available. The vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence.
(i) Signal Sequence Component [0196] The antibodies of this invention may be produced recombinantly, not only directly, but also as fusion antibodies with heterologous antibodies. In one embodiment, the heterologous antibody is a signal sequence or other antibody having a specific cleavage site at the N-terminus of the mature protein or antibody. The heterologous signal sequence selected preferably is one that is recognized and processed (i.e., cleaved by a signal peptidase) by the host cell. For prokaryotic host cells that do not recognize and process the native antibody signal sequence, the signal sequence is substituted by a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, 1pp, or heat-stable enterotoxin ll leaders. For yeast secretion the native signal sequence may be substituted by, e.g., the yeast invertase leader, a factor leader (including Saccharomyces and Kluyveromyces a-factor leaders), or acid phosphatase leader, the C.
albicans glucoamylase leader, or the signal described in WO 90/13646. In mammalian cell expression, mammalian signal sequences as well as viral secretory leaders, for example, the herpes simplex gD signal, are available. The DNA for such precursor region is ligated in reading frame to DNA encoding the antibody.
(i) Signal Sequence Component [0196] The antibodies of this invention may be produced recombinantly, not only directly, but also as fusion antibodies with heterologous antibodies. In one embodiment, the heterologous antibody is a signal sequence or other antibody having a specific cleavage site at the N-terminus of the mature protein or antibody. The heterologous signal sequence selected preferably is one that is recognized and processed (i.e., cleaved by a signal peptidase) by the host cell. For prokaryotic host cells that do not recognize and process the native antibody signal sequence, the signal sequence is substituted by a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, 1pp, or heat-stable enterotoxin ll leaders. For yeast secretion the native signal sequence may be substituted by, e.g., the yeast invertase leader, a factor leader (including Saccharomyces and Kluyveromyces a-factor leaders), or acid phosphatase leader, the C.
albicans glucoamylase leader, or the signal described in WO 90/13646. In mammalian cell expression, mammalian signal sequences as well as viral secretory leaders, for example, the herpes simplex gD signal, are available. The DNA for such precursor region is ligated in reading frame to DNA encoding the antibody.
[0197] In another embodiment, production of antibodies can occur in the cytoplasm of the host cell, and therefore does not require the presence of secretion signal sequences within each cistron. In that regard, immunoglobulin light and heavy chains are expressed, folded, and assembled to form functional immunoglobulins within the cytoplasm. Certain host strains (for example, the E. coli trx13 strains) provide cytoplasm conditions that are favorable for disulfide bond formation, thereby permitting proper folding and assembly of expressed protein subunits (Proba and Plukthun, 1995, Gene, 159:203).
(ii) Origin of Replication Component [0198] Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Generally, in cloning vectors this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2 pplasmid origin is suitable for yeast, and various viral origins (5V40, polyoma, adenovirus, VSV, or BPV) are useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (the SV40 origin may typically be used only because it contains the early promoter).
(iii) Selection Gene Component [0199] Expression and cloning vectors may contain a selection gene, also termed a selectable marker. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli.
(ii) Origin of Replication Component [0198] Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Generally, in cloning vectors this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2 pplasmid origin is suitable for yeast, and various viral origins (5V40, polyoma, adenovirus, VSV, or BPV) are useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (the SV40 origin may typically be used only because it contains the early promoter).
(iii) Selection Gene Component [0199] Expression and cloning vectors may contain a selection gene, also termed a selectable marker. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli.
[0200] One example of a selection scheme utilizes a drug to arrest growth of a host cell.
Those cells that are successfully transformed with a heterologous gene produce a protein conferring drug resistance and thus survive the selection regimen. Examples of such dominant selection use the drugs neomycin, mycophenolic acid and hygromycin.
Those cells that are successfully transformed with a heterologous gene produce a protein conferring drug resistance and thus survive the selection regimen. Examples of such dominant selection use the drugs neomycin, mycophenolic acid and hygromycin.
[0201] Another example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the antibody nucleic acid, such as DHFR, thymidine kinase, metallothionein-I and -II, preferably primate metallothionein genes, adenosine deaminase, ornithine decarboxylase, and the like.
[0202] For example, cells transformed with the DHFR selection gene are first identified by culturing all of the transformants in a culture medium that contains methotrexate (Mtx), a competitive antagonist of DHFR. An appropriate host cell when wild-type DHFR
is employed is the Chinese hamster ovary (CHO) cell line deficient in DHFR activity.
is employed is the Chinese hamster ovary (CHO) cell line deficient in DHFR activity.
[0203] Alternatively, host cells (particularly wild-type hosts that contain endogenous DHFR) transformed or co-transformed with DNA sequences encoding antibody, wild-type DHFR protein, and another selectable marker such as aminoglycoside 3'-phosphotransferase (APH) can be selected by cell growth in medium containing a selection agent for the selectable marker such as an aminoglycosidic antibiotic, e.g., kanamycin, neomycin, or G418.
See U.S. Pat. No. 4,965,199.
See U.S. Pat. No. 4,965,199.
[0204] A suitable selection gene for use in yeast is the trp 1 gene present in the yeast plasmid YRp7 (Stinchcomb et al., 1979, Nature, 282:39). The trp1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1. Jones, 1977, Genetics, 85:12. The presence of the trp1 lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan. Similarly, Leu2-deficient yeast strains (for example, strains having ATCC accession number 20,622 or 38,626) are complemented by known plasmids bearing the Leu2 gene.
[0205] In addition, vectors derived from the 1.6 pm circular plasmid pKD1 can be used for transformation of Kluyveromyces yeasts. Alternatively, an expression system for large-scale production of recombinant calf chymosin was reported for K. lactis. See Van den Berg, 1990, Bio/Technology, 8:135. Stable multi-copy expression vectors for secretion of mature recombinant human serum albumin by industrial strains of Kluyveromyces have also been disclosed. See Fleer et al., 1991, Bio/Technology, 9:968-975.
(iv) Promoter Component [0206] Expression and cloning vectors usually contain a promoter that is recognized by the host organism and is operably linked to the antibody nucleic acid.
Promoters suitable for use with prokaryotic hosts include the phoA promoter, 8-lactamase and lactose promoter systems, alkaline phosphatase, a tryptophan (trp) promoter system, and hybrid promoters such as the tac promoter. However, other known bacterial promoters are suitable. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding the antibody.
(iv) Promoter Component [0206] Expression and cloning vectors usually contain a promoter that is recognized by the host organism and is operably linked to the antibody nucleic acid.
Promoters suitable for use with prokaryotic hosts include the phoA promoter, 8-lactamase and lactose promoter systems, alkaline phosphatase, a tryptophan (trp) promoter system, and hybrid promoters such as the tac promoter. However, other known bacterial promoters are suitable. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding the antibody.
[0207] Promoter sequences are known for eukaryotes. Virtually all eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CNCAAT region where N may be any nucleotide.
At the 3' end of most eukaryotic genes is an AATAAA sequence that may be the signal for addition of the poly A tail to the 3' end of the coding sequence. All of these sequences are suitably inserted into eukaryotic expression vectors.
At the 3' end of most eukaryotic genes is an AATAAA sequence that may be the signal for addition of the poly A tail to the 3' end of the coding sequence. All of these sequences are suitably inserted into eukaryotic expression vectors.
[0208] Examples of suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase or other glycolytic enzymes, such as enolase, glyceraldehyde-3-phos-phate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.
[0209] Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization.
Suitable vectors and promoters for use in yeast expression are further described in EP
73,657. Yeast enhancers also are advantageously used with yeast promoters.
Suitable vectors and promoters for use in yeast expression are further described in EP
73,657. Yeast enhancers also are advantageously used with yeast promoters.
[0210] Antibody transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus, adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, from heat-shock promoters, provided such promoters are compatible with the host cell systems.
[0211] The early and late promoters of the 5V40 virus are conveniently obtained as an 5V40 restriction fragment that also contains the 5V40 viral origin of replication. The immediate early promoter of the human cytomegalovirus is conveniently obtained as a Hindi!!
E restriction fragment. A system for expressing DNA in mammalian hosts using the bovine papilloma virus as a vector is disclosed in U.S. Pat. No. 4,419,446. A
modification of this system is described in U.S. Pat. No. 4,601,978. See also Reyes et al., 1982, Nature 297:598-601 on expression of human 13-interferon cDNA in mouse cells under the control of a thymidine kinase promoter from herpes simplex virus. Alternatively, the rous sarcoma virus long terminal repeat can be used as the promoter.
(v) Enhancer Element Component [0212] Transcription of a DNA encoding the antibody of this invention by higher eukaryotes is often increased by inserting an enhancer sequence into the vector. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, a-fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. See also Yaniv, 1982, Nature 297:17-18 on enhancing elements for activation of eukaryotic promoters. The enhancer may be spliced into the vector at a position 5' or 3' to the antibody-encoding sequence, but is preferably located at a site 5' from the promoter.
(vi) Transcription Termination Component [0213] Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding the antibody.
One useful transcription termination component is the bovine growth hormone polyadenylation region. See W094/11026 and the expression vector disclosed therein.
(vii) Modulation of Translational Strength [0214] lmmunoglobulins of the present invention can also be expressed from an expression system in which the quantitative ratio of expressed light and heavy chains can be modulated in order to maximize the yield of secreted and properly assembled full length antibodies. Such modulation is accomplished by simultaneously modulating translational strengths for light and heavy chains.
E restriction fragment. A system for expressing DNA in mammalian hosts using the bovine papilloma virus as a vector is disclosed in U.S. Pat. No. 4,419,446. A
modification of this system is described in U.S. Pat. No. 4,601,978. See also Reyes et al., 1982, Nature 297:598-601 on expression of human 13-interferon cDNA in mouse cells under the control of a thymidine kinase promoter from herpes simplex virus. Alternatively, the rous sarcoma virus long terminal repeat can be used as the promoter.
(v) Enhancer Element Component [0212] Transcription of a DNA encoding the antibody of this invention by higher eukaryotes is often increased by inserting an enhancer sequence into the vector. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, a-fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. See also Yaniv, 1982, Nature 297:17-18 on enhancing elements for activation of eukaryotic promoters. The enhancer may be spliced into the vector at a position 5' or 3' to the antibody-encoding sequence, but is preferably located at a site 5' from the promoter.
(vi) Transcription Termination Component [0213] Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding the antibody.
One useful transcription termination component is the bovine growth hormone polyadenylation region. See W094/11026 and the expression vector disclosed therein.
(vii) Modulation of Translational Strength [0214] lmmunoglobulins of the present invention can also be expressed from an expression system in which the quantitative ratio of expressed light and heavy chains can be modulated in order to maximize the yield of secreted and properly assembled full length antibodies. Such modulation is accomplished by simultaneously modulating translational strengths for light and heavy chains.
[0215] One technique for modulating translational strength is disclosed in Simmons et al., U.S. Pat. No. 5,840,523 and Simmons et al., 2002, J. Immunol. Methods, 263:
133-147. It utilizes variants of the translational initiation region (TIR) within a cistron. For a given TIR, a series of amino acid or nucleic acid sequence variants can be created with a range of translational strengths, thereby providing a convenient means by which to adjust this factor for the desired expression level of the specific chain. TIR variants can be generated by conventional mutagenesis techniques that result in codon changes which can alter the amino acid sequence, although silent changes in the nucleotide sequence are preferred. Alterations in the TIR can include, for example, alterations in the number or spacing of Shine-Dalgamo sequences, along with alterations in the signal sequence. One preferred method for generating mutant signal sequences is the generation of a "codon bank" at the beginning of a coding sequence that does not change the amino acid sequence of the signal sequence (i.e., the changes are silent). This can be accomplished by changing the third nucleotide position of each codon; additionally, some amino acids, such as leucine, serine, and arginine, have multiple first and second positions that can add complexity in making the bank. This method of mutagenesis is described in detail in Yansura et al, 1992, METHODS: A
Companion to Methods in Enzymol., 4:151-158.
133-147. It utilizes variants of the translational initiation region (TIR) within a cistron. For a given TIR, a series of amino acid or nucleic acid sequence variants can be created with a range of translational strengths, thereby providing a convenient means by which to adjust this factor for the desired expression level of the specific chain. TIR variants can be generated by conventional mutagenesis techniques that result in codon changes which can alter the amino acid sequence, although silent changes in the nucleotide sequence are preferred. Alterations in the TIR can include, for example, alterations in the number or spacing of Shine-Dalgamo sequences, along with alterations in the signal sequence. One preferred method for generating mutant signal sequences is the generation of a "codon bank" at the beginning of a coding sequence that does not change the amino acid sequence of the signal sequence (i.e., the changes are silent). This can be accomplished by changing the third nucleotide position of each codon; additionally, some amino acids, such as leucine, serine, and arginine, have multiple first and second positions that can add complexity in making the bank. This method of mutagenesis is described in detail in Yansura et al, 1992, METHODS: A
Companion to Methods in Enzymol., 4:151-158.
[0216] Preferably, a set of vectors is generated with a range of TIR strengths for each cistron therein. This limited set provides a comparison of expression levels of each chain as well as the yield of full length products under various TIR strength combinations. TIR
strengths can be determined by quantifying the expression level of a reporter gene as described in detail in Simmons et al., U.S. Pat. No. 5,840,523 and Simmons et al., 2002, J.
Immunol. Methods, 263: 133-147. For the purpose of this invention, the translational strength combination for a particular pair of TIRs within a vector is represented by (N-light, M-heavy), wherein N is the relative TIR strength of light chain and M is the relative TIR strength of heavy chain. For example, (3-light, 7-heavy) means the vector provides a relative TIR strength of about 3 for light chain expression and a relative TIR strength of about 7 for heavy chain expression. Based on the translational strength comparison, the desired individual TIRs are selected to be combined in the expression vector constructs of the invention.
(viii) Selection and Transformation of Host Cells [0217] Suitable host cells for cloning or expressing the DNA in the vectors herein are the prokaryote, yeast, or higher eukaryote cells described above. Suitable prokaryotes for this purpose include Archaebacteria and Eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B.
licheniformis (e.g., B.
licheniformis 41P disclosed in DD 266,710, published 12 Apr. 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. One preferred E. coli cloning host is E. coli 294 (ATCC
31,446), although other strains such as E. coli B, E. coli X1776 (ATCC
31,537), and E. coli W3110 (ATCC 27,325) are suitable. These examples are illustrative rather than limiting. It is also preferably for the host cell to secrete minimal amounts of proteolytic enzymes, and additional protease inhibitors may desirably be incorporated in the cell culture. Prokaryotic host cells may also comprise mutation(s) in the thioredoxin and/or glutathione pathways.
strengths can be determined by quantifying the expression level of a reporter gene as described in detail in Simmons et al., U.S. Pat. No. 5,840,523 and Simmons et al., 2002, J.
Immunol. Methods, 263: 133-147. For the purpose of this invention, the translational strength combination for a particular pair of TIRs within a vector is represented by (N-light, M-heavy), wherein N is the relative TIR strength of light chain and M is the relative TIR strength of heavy chain. For example, (3-light, 7-heavy) means the vector provides a relative TIR strength of about 3 for light chain expression and a relative TIR strength of about 7 for heavy chain expression. Based on the translational strength comparison, the desired individual TIRs are selected to be combined in the expression vector constructs of the invention.
(viii) Selection and Transformation of Host Cells [0217] Suitable host cells for cloning or expressing the DNA in the vectors herein are the prokaryote, yeast, or higher eukaryote cells described above. Suitable prokaryotes for this purpose include Archaebacteria and Eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B.
licheniformis (e.g., B.
licheniformis 41P disclosed in DD 266,710, published 12 Apr. 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. One preferred E. coli cloning host is E. coli 294 (ATCC
31,446), although other strains such as E. coli B, E. coli X1776 (ATCC
31,537), and E. coli W3110 (ATCC 27,325) are suitable. These examples are illustrative rather than limiting. It is also preferably for the host cell to secrete minimal amounts of proteolytic enzymes, and additional protease inhibitors may desirably be incorporated in the cell culture. Prokaryotic host cells may also comprise mutation(s) in the thioredoxin and/or glutathione pathways.
[0218] In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for antibody-encoding vectors.
Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein, such as Schizosaccharomyces pombe;
Kluyveromyces hosts such as, e.g., K. lactis, K. fragilis (ATCC 12,424), K.
bulgaricus (ATCC
16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K.
drosophilarum (ATCC
36,906), K. therm otolerans, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP
183,070); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa;
Schwanniomyces such as Schwanniomyces occidentalis; and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium, and Aspergillus hosts such as A. nidulans and A.
niger.
Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein, such as Schizosaccharomyces pombe;
Kluyveromyces hosts such as, e.g., K. lactis, K. fragilis (ATCC 12,424), K.
bulgaricus (ATCC
16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K.
drosophilarum (ATCC
36,906), K. therm otolerans, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP
183,070); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa;
Schwanniomyces such as Schwanniomyces occidentalis; and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium, and Aspergillus hosts such as A. nidulans and A.
niger.
[0219] Suitable host cells for the expression of glycosylated antibody are derived from multicellular organisms. Examples of invertebrate cells include plant and insect cells.
Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruitfly), and Bombyx mori have been identified. A variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa califomica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells. Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco can also be utilized as hosts.
Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruitfly), and Bombyx mori have been identified. A variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa califomica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells. Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco can also be utilized as hosts.
[0220] Vertebrate host cells are widely used, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure. Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL
1651);
human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10);
Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., 1980, Proc. Natl. Acad.
Sci. USA
77:4216); mouse sertoli cells (TM4, Mather, 1980, Biol. Reprod. 23:243-251);
monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587);
human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC
CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC
CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC
CCL51); TRI cells (Mather et al., 1982, Annals N.Y. Acad. Sci. 383:44-68); MRC
5 cells; F54 cells; mouse myeloma cells, such as NSO (e.g. RCB0213, 1992, Bio/Technology 10:169) and SP2/0 cells (e.g. SP2/0-Ag14 cells, ATCC CRL 1581); rat myeloma cells, such as YB2/0 cells (e.g. YB2/3HL.P2.G11.16Ag.20 cells, ATCC CRL 1662); and a human hepatoma line (Hep G2). CHO cells are a preferred cell line for practicing the invention, with CHO-K1, DUK-B11, CHO-DP12, CHO-DG44 (Somatic Cell and Molecular Genetics 12:555 (1986)), and Lec13 being exemplary host cell lines. In the case of CHO-K1, DUK-B11, DG44 or CHO-DP12 host cells, these may be altered such that they are deficient in their ability to fucosylate proteins expressed therein.
1651);
human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10);
Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., 1980, Proc. Natl. Acad.
Sci. USA
77:4216); mouse sertoli cells (TM4, Mather, 1980, Biol. Reprod. 23:243-251);
monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587);
human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC
CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC
CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC
CCL51); TRI cells (Mather et al., 1982, Annals N.Y. Acad. Sci. 383:44-68); MRC
5 cells; F54 cells; mouse myeloma cells, such as NSO (e.g. RCB0213, 1992, Bio/Technology 10:169) and SP2/0 cells (e.g. SP2/0-Ag14 cells, ATCC CRL 1581); rat myeloma cells, such as YB2/0 cells (e.g. YB2/3HL.P2.G11.16Ag.20 cells, ATCC CRL 1662); and a human hepatoma line (Hep G2). CHO cells are a preferred cell line for practicing the invention, with CHO-K1, DUK-B11, CHO-DP12, CHO-DG44 (Somatic Cell and Molecular Genetics 12:555 (1986)), and Lec13 being exemplary host cell lines. In the case of CHO-K1, DUK-B11, DG44 or CHO-DP12 host cells, these may be altered such that they are deficient in their ability to fucosylate proteins expressed therein.
[0221] The invention is also applicable to hybridoma cells. The term "hybridoma" refers to a hybrid cell line produced by the fusion of an immortal cell line of immunologic origin and an antibody producing cell. The term encompasses progeny of heterohybrid myeloma fusions, which are the result of a fusion with human cells and a murine myeloma cell line subsequently fused with a plasma cell, commonly known as a trioma cell line. Furthermore, the term is meant to include any immortalized hybrid cell line that produces antibodies such as, for example, quadromas (See, for example, Milstein et al., 1983, Nature, 537:3053). The hybrid cell lines can be of any species, including human and mouse.
[0222] In a most preferred embodiment the mammalian cell is a non-hybridoma mammalian cell, which has been transformed with exogenous isolated nucleic acid encoding the antibody of interest. By "exogenous nucleic acid" or "heterologous nucleic acid" is meant a nucleic acid sequence that is foreign to the cell, or homologous to the cell but in a position within the host cell nucleic acid in which the nucleic acid is ordinarily not found.
(ix) Culturing the Host Cells [0223] Host cells are transformed with the above-described expression or cloning vectors for antibody production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
(ix) Culturing the Host Cells [0223] Host cells are transformed with the above-described expression or cloning vectors for antibody production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
[0224] The host cells used to produce the antibody of this invention may be cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), (Sigma), RPMI-1640 (Sigma)), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells. In addition, any of the media described in Ham et al., 1979, Meth. Enz. 58:44, Barnes et al., 1980, Anal. Biochem.
102:255, U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762; 4,560,655; or 5,122,469; WO
90/03430; WO 87/00195; or U.S. Patent Re. 30,985 may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleotides (such as adenosine and thymidine), antibiotics (such as GENTAMYCIN TM drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
102:255, U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762; 4,560,655; or 5,122,469; WO
90/03430; WO 87/00195; or U.S. Patent Re. 30,985 may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleotides (such as adenosine and thymidine), antibiotics (such as GENTAMYCIN TM drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
[0225] All culture medium typically provides at least one component from one or more of the following categories:
1) an energy source, usually in the form of a carbohydrate such as glucose;
2) all essential amino acids, and usually the basic set of twenty amino acids plus cystine;
3) vitamins and/or other organic compounds required at low concentrations;
4) free fatty acids; and 5) trace elements, where trace elements are defined as inorganic compounds or naturally occurring elements that are typically required at very low concentrations, usually in the micromolar range.
1) an energy source, usually in the form of a carbohydrate such as glucose;
2) all essential amino acids, and usually the basic set of twenty amino acids plus cystine;
3) vitamins and/or other organic compounds required at low concentrations;
4) free fatty acids; and 5) trace elements, where trace elements are defined as inorganic compounds or naturally occurring elements that are typically required at very low concentrations, usually in the micromolar range.
[0226] The culture medium is preferably free of serum, e.g. less than about 5%, preferably less than 1%, more preferably 0 to 0.1% serum, and other animal-derived proteins.
However, they can be used if desired. In a preferred embodiment of the invention the cell culture medium comprises excess amino acids. The amino acids that are provided in excess may, for example, be selected from Asn, Asp, Gly, Ile, Leu, Lys, Met, Ser, Thr, Trp, Tyr, and Val. Preferably, Asn, Asp, Lys, Met, Ser, and Trp are provided in excess. For example, amino acids, vitamins, trace elements and other media components at one or two times the ranges specified in European Patent EP 307,247 or U.S. Pat. No. 6,180,401 may be used. These two documents are incorporated by reference herein.
However, they can be used if desired. In a preferred embodiment of the invention the cell culture medium comprises excess amino acids. The amino acids that are provided in excess may, for example, be selected from Asn, Asp, Gly, Ile, Leu, Lys, Met, Ser, Thr, Trp, Tyr, and Val. Preferably, Asn, Asp, Lys, Met, Ser, and Trp are provided in excess. For example, amino acids, vitamins, trace elements and other media components at one or two times the ranges specified in European Patent EP 307,247 or U.S. Pat. No. 6,180,401 may be used. These two documents are incorporated by reference herein.
[0227] For the culture of the mammalian cells expressing the desired protein and capable of adding the desired carbohydrates at specific positions, numerous culture conditions can be used paying particular attention to the host cell being cultured. Suitable culture conditions for mammalian cells are well known in the art (W. Louis Cleveland et al., 1983, J.
Immunol.
Methods 56:221-234) or can be easily determined by the skilled artisan (see, for example, Animal Cell Culture: A Practical Approach 2nd Ed., Rickwood, D. and Hames, B.
D., eds.
Oxford University Press, New York (1992)), and vary according to the particular host cell selected.
(x) Antibody Purification [0228] When using recombinant techniques, the antibody can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, is removed, for example, by centrifugation or ultrafiltration. Carter et al., 1992, Bio/Technology 10: 163-167 describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. co/i. Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min.
Cell debris can be removed by centrifugation. Where the antibody is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. A
protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.
Immunol.
Methods 56:221-234) or can be easily determined by the skilled artisan (see, for example, Animal Cell Culture: A Practical Approach 2nd Ed., Rickwood, D. and Hames, B.
D., eds.
Oxford University Press, New York (1992)), and vary according to the particular host cell selected.
(x) Antibody Purification [0228] When using recombinant techniques, the antibody can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, is removed, for example, by centrifugation or ultrafiltration. Carter et al., 1992, Bio/Technology 10: 163-167 describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. co/i. Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min.
Cell debris can be removed by centrifugation. Where the antibody is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. A
protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.
[0229] The antibody composition prepared from the cells can be purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique. The suitability of protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc region that is present in the antibody. Protein A can be used to purify antibodies that are based on human y1, y2, or y4 heavy chains (Lindmark et al., 1983, J.
Immunol. Meth. 62:1-13). Protein G is recommended for all mouse isotypes and for human y3 (Guss et al., 1986, EMBO J. 5:15671575). The matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the antibody comprises a CH3 domain, the Bakerbond ABXTM resin (J. T. Baker, Phillipsburg, N.J.) is useful for purification.
Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin SEPHAROSETM chromatography on an anion or cation exchange resin (such as a polyaspartic acid column), chromatofocusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the antibody to be recovered.
Immunol. Meth. 62:1-13). Protein G is recommended for all mouse isotypes and for human y3 (Guss et al., 1986, EMBO J. 5:15671575). The matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the antibody comprises a CH3 domain, the Bakerbond ABXTM resin (J. T. Baker, Phillipsburg, N.J.) is useful for purification.
Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin SEPHAROSETM chromatography on an anion or cation exchange resin (such as a polyaspartic acid column), chromatofocusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the antibody to be recovered.
[0230] In one embodiment, the glycoprotein may be purified using adsorption onto a lectin substrate (e.g. a lectin affinity column) to remove fucose-containing glycoprotein from the preparation and thereby enrich for fucose-free glycoprotein.
(xi) Antibody Activity Assays [0231] The immunoglobulins of the present invention can be characterized for their physical/chemical properties and biological functions by various assays known in the art. In one aspect of the invention, it is important to compare the selectivity of an antibody of the present invention to bind the immunogen versus other binding targets.
(xi) Antibody Activity Assays [0231] The immunoglobulins of the present invention can be characterized for their physical/chemical properties and biological functions by various assays known in the art. In one aspect of the invention, it is important to compare the selectivity of an antibody of the present invention to bind the immunogen versus other binding targets.
[0232] In certain embodiments of the invention, the immunoglobulins produced herein are analyzed for their biological activity. In some embodiments, the immunoglobulins of the present invention are tested for their antigen binding activity. The antigen binding assays that are known in the art and can be used herein include without limitation any direct or competitive binding assays using techniques such as western blots, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich" immunoassays, immunoprecipitation assays, fluorescent immunoassays, and protein A
immunoassays.
Illustrative antigen binding assays are provided below in the Examples section.
immunoassays.
Illustrative antigen binding assays are provided below in the Examples section.
[0233] The purified immunoglobulins can be further characterized by a series of assays including, but not limited to, N-terminal sequencing, amino acid analysis, non-denaturing size exclusion high pressure liquid chromatography (H PLC), mass spectrometry, ion exchange chromatography, and papain digestion. Methods for protein quantification are well known in the art. For example, samples of the expressed proteins can be compared for their quantitative intensities on a Coomassie-stained SDS-PAGE. Alternatively, the specific band(s) of interest (e.g., the full length band) can be detected by, for example, western blot gel analysis and/or AME5-RP assay.
III. Pharmaceutical Formulations [0234] Therapeutic formulations of the antibody/antibodies can be prepared by mixing the antibody having the desired degree of purity with optional physiologically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A.
Ed. (1980)), in the form of lyophilized formulations or aqueous solutions.
Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids;
antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride;
benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) antibody; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine;
monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol;
salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes);
and/or non-ionic surfactants such as TWEEN TM, PLURONICSTM or polyethylene glycol (PEG).
Exemplary pharmaceutically acceptable carriers herein further include insterstitial drug dispersion agents such as soluble neutral-active hyaluronidase glycoproteins (sHASEGP), for example, human soluble PH-20 hyaluronidase glycoproteins, such as rHuPH20 (HYLENEX , Baxter International, Inc.). Certain exemplary sHASEGPs and methods of use, including rHuPH20, are described in US Patent Publication Nos. 2005/0260186 and 2006/0104968. In one aspect, a sHASEGP is combined with one or more additional glycosaminoglycanases such as chondroitinases.
III. Pharmaceutical Formulations [0234] Therapeutic formulations of the antibody/antibodies can be prepared by mixing the antibody having the desired degree of purity with optional physiologically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A.
Ed. (1980)), in the form of lyophilized formulations or aqueous solutions.
Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids;
antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride;
benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) antibody; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine;
monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol;
salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes);
and/or non-ionic surfactants such as TWEEN TM, PLURONICSTM or polyethylene glycol (PEG).
Exemplary pharmaceutically acceptable carriers herein further include insterstitial drug dispersion agents such as soluble neutral-active hyaluronidase glycoproteins (sHASEGP), for example, human soluble PH-20 hyaluronidase glycoproteins, such as rHuPH20 (HYLENEX , Baxter International, Inc.). Certain exemplary sHASEGPs and methods of use, including rHuPH20, are described in US Patent Publication Nos. 2005/0260186 and 2006/0104968. In one aspect, a sHASEGP is combined with one or more additional glycosaminoglycanases such as chondroitinases.
[0235] Exemplary lyophilized antibody formulations are described in US Patent No.
6,267,958. Aqueous antibody formulations include those described in US Patent No.
6,171,586 and W02006/044908, the latter formulations including a histidine-acetate buffer.
6,267,958. Aqueous antibody formulations include those described in US Patent No.
6,171,586 and W02006/044908, the latter formulations including a histidine-acetate buffer.
[0236] The formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. For instance, the formulation may further comprise another antibody or a chemotherapeutic agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.
[0237] The active ingredients may also be entrapped in microcapsule prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsule and poly-(methylmethacylate) microcapsule, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions.
Such techniques are disclosed in Remington's Pharmaceutical Sciences 16th edition, Osol, A.
Ed. (1980).
Such techniques are disclosed in Remington's Pharmaceutical Sciences 16th edition, Osol, A.
Ed. (1980).
[0238] The formulations to be used for in vivo administration must be sterile.
This is readily accomplished by filtration through sterile filtration membranes.
This is readily accomplished by filtration through sterile filtration membranes.
[0239] Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsule. Examples of sustained-releabe matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat.
No. 3,773,919), copolymers of L-glutamic acid and y ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON
DEPOTTm (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(¨)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37 C., resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S¨S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.
IV. Non-Therapeutic Uses for the Antibody [0240] The antibody of the invention may be used as an affinity purification agent. In this process, the antibody is immobilized on a solid phase such a SephadexTM resin or filter paper, using methods well known in the art. The immobilized antibody is contacted with a sample containing the antigen to be purified, and thereafter the support is washed with a suitable solvent that will remove substantially all the material in the sample except the antigen to be purified, which is bound to the immobilized antibody. Finally, the support is washed with another suitable solvent, such as glycine buffer, pH 5.0, that will release the antigen from the antibody.
No. 3,773,919), copolymers of L-glutamic acid and y ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON
DEPOTTm (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(¨)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37 C., resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S¨S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.
IV. Non-Therapeutic Uses for the Antibody [0240] The antibody of the invention may be used as an affinity purification agent. In this process, the antibody is immobilized on a solid phase such a SephadexTM resin or filter paper, using methods well known in the art. The immobilized antibody is contacted with a sample containing the antigen to be purified, and thereafter the support is washed with a suitable solvent that will remove substantially all the material in the sample except the antigen to be purified, which is bound to the immobilized antibody. Finally, the support is washed with another suitable solvent, such as glycine buffer, pH 5.0, that will release the antigen from the antibody.
[0241] The antibody may also be useful in diagnostic assays, e.g., for detecting expression of an antigen of interest in specific cells, tissues, or serum. For diagnostic applications, the antibody typically will be labeled with a detectable moiety.
Numerous labels are available which can be generally grouped into the following categories:
(a) Radioisotopes, such as 355 , 140, 1251, 3H, and 1311. The antibody can be labeled with the radioisotope using the techniques described in Current Protocols in Immunology, Volumes 1 and 2, Coligen et al., Ed. Wiley-lnterscience, New York, N.Y., Pubs. (1991), for example, and radioactivity can be measured using scintillation counting.
(b) Fluorescent labels such as rare earth chelates (europium chelates) or fluorescein and its derivatives, rhodamine and its derivatives, dansyl, Lissamine, phycoerythrin and Texas Red are available. The fluorescent labels can be conjugated to the antibody using the techniques disclosed in Current Protocols in Immunology, supra, for example.
Fluorescence can be quantified using a fluorimeter.
(c) Various enzyme-substrate labels are available and U.S. Pat. No. 4,275,149 provides a review of some of these. The enzyme generally catalyzes a chemical alteration of the chromogenic substrate that can be measured using various techniques. For example, the enzyme may catalyze a color change in a substrate, which can be measured spectrophotometrically. Alternatively, the enzyme may alter the fluorescence or chemiluminescence of the substrate. Techniques for quantifying a change in fluorescence are described above. The chemiluminescent substrate becomes electronically excited by a chemical reaction and may then emit light that can be measured (using a chemiluminometer, for example) or donates energy to a fluorescent acceptor. Examples of enzymatic labels include luciferases (e.g., firefly luciferase and bacterial luciferase; U.S.
Pat. No. 4,737,456), luciferin, 2,3-dihydrophthalazinediones, malate dehydrogenase, urease, peroxidase such as horseradish peroxidase (HRPO), alkaline phosphatase, B-galactosidase, glucoamylase, lysozyme, saccharide oxidases (e.g., glucose oxidase, galactose oxidase, and glucose-6-phosphate dehydrogenase), heterocyclic oxidases (such as uricase and xanthine oxidase), lactoperoxidase, microperoxidase, and the like. Techniques for conjugating enzymes to antibodies are described in O'Sullivan et al., Methods for the Preparation of Enzyme-Antibody Conjugates for use in Enzyme Immunoassay, in Methods in Enzym. (ed J. Langone and H.
Van Vunakis), Academic press, New York, 73:147-166 (1981).
Numerous labels are available which can be generally grouped into the following categories:
(a) Radioisotopes, such as 355 , 140, 1251, 3H, and 1311. The antibody can be labeled with the radioisotope using the techniques described in Current Protocols in Immunology, Volumes 1 and 2, Coligen et al., Ed. Wiley-lnterscience, New York, N.Y., Pubs. (1991), for example, and radioactivity can be measured using scintillation counting.
(b) Fluorescent labels such as rare earth chelates (europium chelates) or fluorescein and its derivatives, rhodamine and its derivatives, dansyl, Lissamine, phycoerythrin and Texas Red are available. The fluorescent labels can be conjugated to the antibody using the techniques disclosed in Current Protocols in Immunology, supra, for example.
Fluorescence can be quantified using a fluorimeter.
(c) Various enzyme-substrate labels are available and U.S. Pat. No. 4,275,149 provides a review of some of these. The enzyme generally catalyzes a chemical alteration of the chromogenic substrate that can be measured using various techniques. For example, the enzyme may catalyze a color change in a substrate, which can be measured spectrophotometrically. Alternatively, the enzyme may alter the fluorescence or chemiluminescence of the substrate. Techniques for quantifying a change in fluorescence are described above. The chemiluminescent substrate becomes electronically excited by a chemical reaction and may then emit light that can be measured (using a chemiluminometer, for example) or donates energy to a fluorescent acceptor. Examples of enzymatic labels include luciferases (e.g., firefly luciferase and bacterial luciferase; U.S.
Pat. No. 4,737,456), luciferin, 2,3-dihydrophthalazinediones, malate dehydrogenase, urease, peroxidase such as horseradish peroxidase (HRPO), alkaline phosphatase, B-galactosidase, glucoamylase, lysozyme, saccharide oxidases (e.g., glucose oxidase, galactose oxidase, and glucose-6-phosphate dehydrogenase), heterocyclic oxidases (such as uricase and xanthine oxidase), lactoperoxidase, microperoxidase, and the like. Techniques for conjugating enzymes to antibodies are described in O'Sullivan et al., Methods for the Preparation of Enzyme-Antibody Conjugates for use in Enzyme Immunoassay, in Methods in Enzym. (ed J. Langone and H.
Van Vunakis), Academic press, New York, 73:147-166 (1981).
[0242] Examples of enzyme-substrate combinations include, for example:
1) Horseradish peroxidase (HRPO) utilizes hydrogen peroxide to oxidize a dye precursor (e.g., orthophenylene diamine (OPD) or 3,3',5,5'-tetramethyl benzidine hydrochloride (TMB));
2) alkaline phosphatase (AP) with para-Nitrophenyl phosphate as chromogenic substrate; and 3) B-D-galactosidase (B-D-Gal) with a chromogenic substrate (e.g., p-nitrophenyl-B-D-galactosidase) or fluorogenic substrate 4-methylumbelliferyl-13-D-galactosidase.
1) Horseradish peroxidase (HRPO) utilizes hydrogen peroxide to oxidize a dye precursor (e.g., orthophenylene diamine (OPD) or 3,3',5,5'-tetramethyl benzidine hydrochloride (TMB));
2) alkaline phosphatase (AP) with para-Nitrophenyl phosphate as chromogenic substrate; and 3) B-D-galactosidase (B-D-Gal) with a chromogenic substrate (e.g., p-nitrophenyl-B-D-galactosidase) or fluorogenic substrate 4-methylumbelliferyl-13-D-galactosidase.
[0243] Numerous other enzyme-substrate combinations are available to those skilled in the art. For a general review of these, see U.S. Pat. Nos. 4,275,149 and 4,318,980.
[0244] Sometimes, the label is indirectly conjugated with the antibody. The skilled artisan will be aware of various techniques for achieving this. For example, the antibody can be conjugated with biotin and any of the three broad categories of labels mentioned above can be conjugated with avidin, or vice versa. Biotin binds selectively to avidin and thus, the label can be conjugated with the antibody in this indirect manner. Alternatively, to achieve indirect conjugation of the label with the antibody, the antibody is conjugated with a small hapten (e.g., digoxin) and one of the different types of labels mentioned above is conjugated with an anti-hapten antibody (e.g., anti-digoxin antibody). Thus, indirect conjugation of the label with the antibody can be achieved.
[0245] In another embodiment of the invention, the antibody need not be labeled, and the presence thereof can be detected using a labeled antibody which binds to the antibody.
[0246] The antibody of the present invention may be employed in any known assay method, such as competitive binding assays, direct and indirect sandwich assays, and immunoprecipitation assays. Zola, Monoclonal Antibodies: A Manual of Techniques, pp. 47-158 (CRC Press, Inc. 1987).
[0247] The antibody may also be used for in vivo diagnostic assays.
Generally, the antibody is labeled with a radionuclide (such as 1111n, 99TC, 140, , .-, or 35S) so that the antigen or cells expressing it can be localized using immunoscintiography.
V. In Vivo Uses for the Antibody [0248] In another embodiment, the anti-IL-113 and/or anti-IL-18 antibody/antibodies of the present invention is co-administered with a therapeutic agent to enhance the function of the therapeutic agent. For example, anti-FcyRIIB is administered to a mammal to block IgG
binding to FcyRIIB, thereby preventing FcyRIIB-mediated inhibition of an immune response.
This results in enhanced cytoxicity of an IgG therapeutic antibody. For example, where a therapeutic antibody is specific for a tumor antigen, co-administration of anti-FcyRIIB of the invention with the anti-tumor antigen antibody enhances cytoxicity of the anti-tumor antigen antibody.
Generally, the antibody is labeled with a radionuclide (such as 1111n, 99TC, 140, , .-, or 35S) so that the antigen or cells expressing it can be localized using immunoscintiography.
V. In Vivo Uses for the Antibody [0248] In another embodiment, the anti-IL-113 and/or anti-IL-18 antibody/antibodies of the present invention is co-administered with a therapeutic agent to enhance the function of the therapeutic agent. For example, anti-FcyRIIB is administered to a mammal to block IgG
binding to FcyRIIB, thereby preventing FcyRIIB-mediated inhibition of an immune response.
This results in enhanced cytoxicity of an IgG therapeutic antibody. For example, where a therapeutic antibody is specific for a tumor antigen, co-administration of anti-FcyRIIB of the invention with the anti-tumor antigen antibody enhances cytoxicity of the anti-tumor antigen antibody.
[0249] Therapeutic antibodies, a number of which are described above, have been developed and approved for treatment of a variety of diseases, including cancer. For example, RITUXANO (Rituximab) (IDEC Pharm/Genentech, Inc.) is used to treat B
cell lymphomas, AVASTIN TM (bevacizumab) (Genentech, Inc.) is used to treat metastatic colorectal cancer and HERCEPTINO (Trastumab) (Genentech, Inc.) is a humanized anti-HER2 monoclonal antibody used to treat metastatic breast cancer. Although, the mechanisms for treatment of cancer by all monoclonal antibodies developed for such treatment may not be completely understood, at least in some cases, a portion of the effectiveness of antibody therapy can be attributed to the recruitment of immune effector function (Houghton et al., 2000, Nature Medicine, 6:373-374; Clynes et al., 2000, Nature Medicine, 6:433-446).
XOLAIRO (Omalizumab) (Genentech, Inc.) is an anti-IgE antibody used to treat allergies.
cell lymphomas, AVASTIN TM (bevacizumab) (Genentech, Inc.) is used to treat metastatic colorectal cancer and HERCEPTINO (Trastumab) (Genentech, Inc.) is a humanized anti-HER2 monoclonal antibody used to treat metastatic breast cancer. Although, the mechanisms for treatment of cancer by all monoclonal antibodies developed for such treatment may not be completely understood, at least in some cases, a portion of the effectiveness of antibody therapy can be attributed to the recruitment of immune effector function (Houghton et al., 2000, Nature Medicine, 6:373-374; Clynes et al., 2000, Nature Medicine, 6:433-446).
XOLAIRO (Omalizumab) (Genentech, Inc.) is an anti-IgE antibody used to treat allergies.
[0250] The therapeutic potential for such a bifunctional antibody would include attenuation of signals involved in inflammation and/or allergy. For example, when activated by IgE and allergen (via the FcFR), mast cells and basophils secrete inflammatory mediators and cytokines that act on vascular and muscular cells and recruit inflammatory cells. The inflammatory cells in turn secrete inflammatory mediators and recruit inflammatory cells, in a continuing process resulting in long-lasting inflammation. Consequently, means of controlling IgE induced mast cell activation provides a therapeutic approach to treating allergic diseases by interrupting the initiation of the inflammatory response. As described above, a bifunctional antibody comprises an antibody, or fragment thereof that selectively binds IL-113 and comprising an antibody, or fragment thereof, that selectively binds IL-18.
[0251] Additional bifunctional antibody examples (e.g, bispecific antibodies) comprise combinations of an antibody or fragment thereof that selectively binds IL-113, and a second antibody or fragment thereof, that selectively binds IL-18. In some embodiments, the antibody of the present invention is used to activate inhibitory FcyRIIB
receptors in a mammal treated with the antibody so as to inhibit pro-inflammatory signals and/or B
cell activation mediated by activating receptors. Hence, the antibody is used to treat inflammatory disorders and/or autoimmune diseases such as those identified above.
receptors in a mammal treated with the antibody so as to inhibit pro-inflammatory signals and/or B
cell activation mediated by activating receptors. Hence, the antibody is used to treat inflammatory disorders and/or autoimmune diseases such as those identified above.
[0252] For the prevention or treatment of disease, the appropriate dosage of antibody will depend on the type of disease to be treated, the severity and course of the disease, whether the antibody is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the antibody, and the discretion of the attending physician. The antibody is suitably administered to the patient at one time or over a series of treatments.
[0253] Depending on the type and severity of the disease, about 1 pg/kg to 15 mg/kg (e.g., 0.1-20 mg/kg) of antibody is an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion. A
typical daily dosage might range from about 1 pg/kg to 100 mg/kg or more, depending on the factors mentioned above. For repeated administrations over several days or longer, depending on the condition, the treatment is sustained until a desired suppression of disease symptoms occurs. However, other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques and assays.
typical daily dosage might range from about 1 pg/kg to 100 mg/kg or more, depending on the factors mentioned above. For repeated administrations over several days or longer, depending on the condition, the treatment is sustained until a desired suppression of disease symptoms occurs. However, other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques and assays.
[0254] The antibody composition should be formulated, dosed, and administered in a fashion consistent with good medical practice. Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the agent, the method of administration, the scheduling of administration, and other factors known to medical practitioners. The "therapeutically effective amount" of the antibody to be administered will be governed by such considerations, and is the minimum amount necessary to prevent, ameliorate, or treat a disease or disorder. The antibody need not be, but is optionally formulated with one or more agents currently used to prevent or treat the disorder in question. The effective amount of such other agents depends on the amount of antibody present in the formulation, the type of disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as used hereinbefore or about from 1 to 99% of the heretofore employed dosages.
[0255] For example, for treating autoimmune diseases where there is the involvement of an inflammatory cell (e.g., leukocyte) adhesion, migration and activation, such as rheumatoid arthritis and lupus, the antibody herein can be co-administered with, e.g., anti-LFA-1 antibody (such as an anti-CD11a or anti-CD18 antibody) or an anti-ICAM antibody such as ICAM-1, -2, or -3. Additional agents for treating rheumatoid arthritis in combination with the antibody herein include EnbrelTM, DMARDS, e.g., methotrexate, and NSAIDs (non-steroidal anti-inflammatory drugs). More than one of such other active agents than the antibody herein may also be employed. Additionally, insulin can be used for treating diabetes, anti-IgE for asthma, anti-CD lla for psoriasis, anti-alpha4beta7 and growth hormone (GH) for inflammatory bowel disease.
[0256] Furthermore, the formulation is suitably administered along with an effective amount of a hypoglycemic agent. For purposes herein, the term "hypoglycemic agent" refers to compounds that are useful for regulating glucose metabolism, preferably oral agents. More preferred herein for human use are insulin and the sulfonylurea class of oral hypoglycemic agents, which cause the secretion of insulin by the pancreas. Examples include glyburide, glipizide, and gliclazide. In addition, agents that enhance insulin sensitivity or are insulin sensitizing, such as biguanides (including metformin and phenformin) and thiazolidenediones such as REZULINTM (troglitazone) brand insulin-sensitizing agent, and other compounds that bind to the PPAR-gamma nuclear receptor, are within this definition, and also are preferred.
[0257] The hypoglycemic agent is administered to the mammal by any suitable technique including parenterally, intranasally, orally, or by any other effective route.
Most preferably, the administration is by the oral route. For example, MICRONASETM tablets (glyburide) marketed by Upjohn in 1.25, 2.5, and 5 mg tablet concentrations are suitable for oral administration.
The usual maintenance dose for Type II diabetics, placed on this therapy, is generally in the range of from or about 1.25 to 20 mg per day, which may be given as a single dose or divided throughout the day as deemed appropriate. Physician's Desk Reference, 2563-2565 (1995).
Other examples of glyburide-based tablets available for prescription include GLYNASETM
brand drug (Upjohn) and DIABETATm brand drug (Hoechst-Roussel). GLUCOTROLTm (Pratt) is the trademark for a glipizide (1-cyclohexy1-3-(p-(2-(5-methylpyrazine carboxamide)ethyl)phenyl)sulfonyl)urea) tablet available in both 5- and 10-mg strengths and is also prescribed to Type II diabetics who require hypoglycemic therapy following dietary control or in patients who have ceased to respond to other sulfonylureas.
Physician's Desk Reference, 1902-1903 (1995). Other hypoglycemic agents than sulfonylureas, such as the biguanides (e.g., metformin and phenformin) or thiazolidinediones (e.g., troglitozone), or other drugs affecting insulin action may also be employed. If a thiazolidinedione is employed with the peptide, it is used at the same level as currently used or at somewhat lower levels, which can be adjusted for effects seen with the peptide alone or together with the dione. The typical dose of troglitazone (REZULIN Tm) employed by itself is about 100-1000 mg per day, more preferably 200-800 mg/day, and this range is applicable herein. See, for example, Ghazzi et al., Diabetes, 46: 433-439 (1997). Other thiazolidinediones that are stronger insulin-sensitizing agents than troglitazone would be employed in lower doses.
VI. Articles of Manufacture [0258] In another aspect of the invention, an article of manufacture containing materials useful for the treatment, prevention and/or diagnosis of the disorders described above is provided. The article of manufacture comprises a container and a label or package insert on or associated with the container. Suitable containers include, for example, bottles, vials, syringes, IV solution bags, etc. The containers may be formed from a variety of materials such as glass or plastic. The container holds a composition which is by itself or combined with another composition effective for treating, preventing and/or diagnosing the condition and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). At least one active agent in the composition is an antibody of the invention. The label or package insert indicates that the composition is used for treating the condition of choice. Moreover, the article of manufacture may comprise (a) a first container with a composition contained therein, wherein the composition comprises an antibody of the invention; and (b) a second container with a composition contained therein, wherein the composition comprises a further cytotoxic or otherwise therapeutic agent. The article of manufacture in this embodiment of the invention may further comprise a package insert indicating that the compositions can be used to treat a particular condition. Alternatively, or additionally, the article of manufacture may further comprise a second (or third) container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (SWF!), phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.
Most preferably, the administration is by the oral route. For example, MICRONASETM tablets (glyburide) marketed by Upjohn in 1.25, 2.5, and 5 mg tablet concentrations are suitable for oral administration.
The usual maintenance dose for Type II diabetics, placed on this therapy, is generally in the range of from or about 1.25 to 20 mg per day, which may be given as a single dose or divided throughout the day as deemed appropriate. Physician's Desk Reference, 2563-2565 (1995).
Other examples of glyburide-based tablets available for prescription include GLYNASETM
brand drug (Upjohn) and DIABETATm brand drug (Hoechst-Roussel). GLUCOTROLTm (Pratt) is the trademark for a glipizide (1-cyclohexy1-3-(p-(2-(5-methylpyrazine carboxamide)ethyl)phenyl)sulfonyl)urea) tablet available in both 5- and 10-mg strengths and is also prescribed to Type II diabetics who require hypoglycemic therapy following dietary control or in patients who have ceased to respond to other sulfonylureas.
Physician's Desk Reference, 1902-1903 (1995). Other hypoglycemic agents than sulfonylureas, such as the biguanides (e.g., metformin and phenformin) or thiazolidinediones (e.g., troglitozone), or other drugs affecting insulin action may also be employed. If a thiazolidinedione is employed with the peptide, it is used at the same level as currently used or at somewhat lower levels, which can be adjusted for effects seen with the peptide alone or together with the dione. The typical dose of troglitazone (REZULIN Tm) employed by itself is about 100-1000 mg per day, more preferably 200-800 mg/day, and this range is applicable herein. See, for example, Ghazzi et al., Diabetes, 46: 433-439 (1997). Other thiazolidinediones that are stronger insulin-sensitizing agents than troglitazone would be employed in lower doses.
VI. Articles of Manufacture [0258] In another aspect of the invention, an article of manufacture containing materials useful for the treatment, prevention and/or diagnosis of the disorders described above is provided. The article of manufacture comprises a container and a label or package insert on or associated with the container. Suitable containers include, for example, bottles, vials, syringes, IV solution bags, etc. The containers may be formed from a variety of materials such as glass or plastic. The container holds a composition which is by itself or combined with another composition effective for treating, preventing and/or diagnosing the condition and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). At least one active agent in the composition is an antibody of the invention. The label or package insert indicates that the composition is used for treating the condition of choice. Moreover, the article of manufacture may comprise (a) a first container with a composition contained therein, wherein the composition comprises an antibody of the invention; and (b) a second container with a composition contained therein, wherein the composition comprises a further cytotoxic or otherwise therapeutic agent. The article of manufacture in this embodiment of the invention may further comprise a package insert indicating that the compositions can be used to treat a particular condition. Alternatively, or additionally, the article of manufacture may further comprise a second (or third) container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (SWF!), phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.
[0259] Therapeutic antibody compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
[0260] The invention further provides an article of manufacture and kit containing materials useful for the treatment of cancer or a disease, for example. The article of manufacture comprises a container with a label. Suitable containers include, for example, bottles, vials, and test tubes. The containers may be formed from a variety of materials such as glass or plastic. The container holds a composition comprising the antibody described herein. The active agent in the composition is the particular antibody. The label on the container indicates that the composition is used for the treatment or prevention of a particular disease or disorder, and may also indicate directions for in vivo, such as those described above.
[0261] The kit of the invention comprises the container described above and a second container comprising a buffer. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for use.
[0262] It is understood that any of the above articles of manufacture may include an immunoconjugate of the invention in place of or in addition to an IL-1[3 and/or IL-18 antibody/antibodies.
EXAMPLES
EXAMPLES
[0263] The following are examples of methods and compositions of the invention, and are provided herein for illustrative purposes, and are not intended to limit the scope of the present invention. It is understood that various other embodiments may be practiced, given the general description provided herein. The disclosures of all patent and scientific literatures cited herein are expressly incorporated in their entirety by reference.
[0264] Commercially available reagents referred to in the examples were used according to manufacturer's instructions unless otherwise indicated. The source of those cells identified in the following examples, and throughout the specification, by ATCC accession numbers is the American Type Culture Collection, Manassas, VA.
Methods Dextran sodium sulfate (DSS)-induced colitis [0265] Age and sex-matched wild-type and knock-out mice between 19-25 grams in weight will remain untreated or receive 3.5 % DSS in their drinking water ad lib for 5 days.
The mice will be scored daily for weight loss starting on day 4 and sacrificed on day 8. The colons will then be collected, scored, and used for organ culture or histopathology. Scoring of colons for degree of inflammation was done as follows: After removal of the feces by extensive flushing, the colons are scored based on the extent of wall thickening. The score ranges from 0 to 4, with normal colons scored as 0 and colons with thickened wall covering the entire length as 4.
Colon culture for cytokine profiling [0266] Colons from mice are cleaned, opened longitudinally, and placed in RPM!
medium containing 1% penicillin/streptomycin solution. After overnight incubation at 37 C, the culture medium is collected and clarified prior to cytokine analysis by xMAP-based technology (Luminex) using BioRad Bio-Plex single or 23-plex assays.
AAV2/5 subretinal injection [0267] Animals were anesthetized by intraperitoneal injection of ketamine/xylazine (80mg/kg:15 mg/kg). Under a dissecting microscope, a 30g insulin needle was used to create a puncture through the sclera, allowing for subretinal injection of 1 pl of 1 x 1012 AAV2/5 genomic particles/ml (Genedetect, Bradenton, FL) using a 33-gauge Hamilton needle and a micro-auto-injector (World Precision Instruments, Sarasota, FL). Formation of a subretinal bubble indicated a successful injection.
Western Blots [0268] Ten week old Balbc mice were injected subretinally with 1 pl of 1x109 1L113 or AAV2/5 empty control virus (Genedetect). After 4 months infection, some mice underwent intense light exposure (ILE, 8000 lux) for 3.5 hours then placed in the dark for 48 hours. Eyes were dissected and eye cups (eye minus cornea and lens) were minced in cell lysis buffer (Cell Signaling Technologies, Danvers, MA) containing protease inhibitors (Protease Inhibitor Cocktail set 1, Calbiochem, Gibbstown, NJ) for 1 hr and frozen at -80 C.
BCA assay (Thermo/Pierce, Rockford, IL) quantified protein in samples. Ten ug protein boiled 3 minutes in Lammeli's buffer plus b-mercaptoethanol was loaded per lane in 10-20% tris-glycine gel (lnvitrogen, Carlsbad, CA) and run at 125 mW for 1.5 hours.
Proteins transferred to 0.2 um pore nitrocellulose membrane in transfer buffer (Invitrogen) 25 mW
for 1 hour.
Blots were blocked with 5% milk in PBS/0.1% Tween-20 (PBST) 1 hour and 0.2 ug/ml goat-anti-IL-113 (R&D cat# AF-401-NA) or 0.5 ug/mIrat-anti-caspase-1 (Genentech, clone 464.2) added in 1% milk/PBST 1 hour. Blots were washed 4x5 minutes in PBST. Anti-goat-HRP
(1:5000 R&D) or anti-rat-HRP (Thermo/Pierce) was added for 45 minutes and washed 5x5 minutes in PBST. Blots were developed with ECL Plus and hyperfilm (GE
Healthcare, Buckinghamshire, UK).
Immunohistochemistry [0269] Ten week old Balbc mice were injected subretinally with 1 pl of 1x109 1L113 or AAV2/5 empty control virus (Genedetect). After 7 weeks infection, whole eye was removed and fixed in 10% neutral buffered formalin overnight at room temperature. Sections were processed and embedded in paraffin then stained with anti-CD45 and visualized with DAB.
Fluorescence Angiography (FA) [0270] Animals were anesthetized by intraperitoneal injection of ketamine/xylazine (80mg/kg:15 mg/kg) and eyes dilated with 1% tropicamide (Bausch and Lomb, Rochester, NY). Eyes were kept moist with artificial tears. Mice were injected intraperitoneally with 100 p110% AK-Fluor injectable fluorescein (Akorn, Buffalo Grove, IL). Images were acquired with a Heidelberg Spectralis HRA/OCT camera (Heidelberg Engineering, Vista, CA).
Optical Coherence Tomography (OCT) [0271] Animals were anesthetized by intraperitoneal injection of ketamine/xylazine (80mg/kg:15 mg/kg) and eyes dilated with 1% tropicamide (Bausch and Lomb, Rochester, NY). Eyes were kept moist with artificial tears. Images were acquired with a Heidelberg Spectralis HRA/OCT camera (Heidelberg Engineering, Vista, CA). Measurements are an average thickness of 19 sections over a 15.2 mm2 area of retina. Thickness includes retinal and choroid.
Electroretino gram (ERG) recordings [0272] Mice were dark adapted for 24 hours before ERG to equilibrate retinal responses.
Once dark adapted, all subsequent procedures will be performed in the dark with only a red light for illumination. Animals were anesthetized with intraperitoneal injection of Ketamine and Xylazine (75-80 mg/kg :7.5-15 mg/kg). Mouse body temperature was maintained at using a homeothermic heating plate connected to its control unit. Pupils were dilated with 1%
atropine and the corneal surface was anesthetized with a drop of 0.5%
proparacaine HCI.
ERGs from both eyes were recorded simultaneously using an Espion E2 (Diagnosys LLC, Lowell, MA) visual electrophysiology system. Mice were placed on a platform and a reference electrode was inserted subcutaneously in the forehead and a ground electrode was inserted at the base of the tail. Gonak hypermellose solution was placed on the cornea to establish an electrical contact between the cornea and the platinum electrode and protected eyes from drying during the experiment. A mouse was placed in the ColorDome full field desktop Ganzfeld stimulator and were stimulated with white light: 3 flash intensities ranging 1x10-5-5 cd/m2, allowing 2 minutes between flashes in order to reestablish baseline response. Signals were band pass-filtered at 0.15-1000 Hz and sampled at 2 kHz.
Methods for phage panning IL-10 [0273] Several phage display synthetic antibody libraries were panned against immobilized human IL-113. Enrichment of antibody displaying phage pools specific for IL-113 was determined at round three and subsequent rounds by measuring the ratio of recovered pools of phage clones specific for IL-1[3 over those specific for binding bovine serum albumin.
Construction of the synthetic naïve antibody phage display libraries is described elsewhere (Sidhu et al., 2004). After several rounds of panning, phage clones displaying antibody variable heavy and light chain domains specific for IL-113 were identified.
The DNA sequences of the variable heavy and chain were determined and reformatted into human IgG1 expression vectors to allow transient antibody expression in mammalian cells.
Antibody from the cell culture growth media was purified using Protein A for subsequent testing in soluble protein binding affinity determination assays, receptor-ligand inhibition assays and functional cell based assays.
Competitive inhibition of human IL-10 binding to human IL-1 RI or IL-1 RhI
Methods Dextran sodium sulfate (DSS)-induced colitis [0265] Age and sex-matched wild-type and knock-out mice between 19-25 grams in weight will remain untreated or receive 3.5 % DSS in their drinking water ad lib for 5 days.
The mice will be scored daily for weight loss starting on day 4 and sacrificed on day 8. The colons will then be collected, scored, and used for organ culture or histopathology. Scoring of colons for degree of inflammation was done as follows: After removal of the feces by extensive flushing, the colons are scored based on the extent of wall thickening. The score ranges from 0 to 4, with normal colons scored as 0 and colons with thickened wall covering the entire length as 4.
Colon culture for cytokine profiling [0266] Colons from mice are cleaned, opened longitudinally, and placed in RPM!
medium containing 1% penicillin/streptomycin solution. After overnight incubation at 37 C, the culture medium is collected and clarified prior to cytokine analysis by xMAP-based technology (Luminex) using BioRad Bio-Plex single or 23-plex assays.
AAV2/5 subretinal injection [0267] Animals were anesthetized by intraperitoneal injection of ketamine/xylazine (80mg/kg:15 mg/kg). Under a dissecting microscope, a 30g insulin needle was used to create a puncture through the sclera, allowing for subretinal injection of 1 pl of 1 x 1012 AAV2/5 genomic particles/ml (Genedetect, Bradenton, FL) using a 33-gauge Hamilton needle and a micro-auto-injector (World Precision Instruments, Sarasota, FL). Formation of a subretinal bubble indicated a successful injection.
Western Blots [0268] Ten week old Balbc mice were injected subretinally with 1 pl of 1x109 1L113 or AAV2/5 empty control virus (Genedetect). After 4 months infection, some mice underwent intense light exposure (ILE, 8000 lux) for 3.5 hours then placed in the dark for 48 hours. Eyes were dissected and eye cups (eye minus cornea and lens) were minced in cell lysis buffer (Cell Signaling Technologies, Danvers, MA) containing protease inhibitors (Protease Inhibitor Cocktail set 1, Calbiochem, Gibbstown, NJ) for 1 hr and frozen at -80 C.
BCA assay (Thermo/Pierce, Rockford, IL) quantified protein in samples. Ten ug protein boiled 3 minutes in Lammeli's buffer plus b-mercaptoethanol was loaded per lane in 10-20% tris-glycine gel (lnvitrogen, Carlsbad, CA) and run at 125 mW for 1.5 hours.
Proteins transferred to 0.2 um pore nitrocellulose membrane in transfer buffer (Invitrogen) 25 mW
for 1 hour.
Blots were blocked with 5% milk in PBS/0.1% Tween-20 (PBST) 1 hour and 0.2 ug/ml goat-anti-IL-113 (R&D cat# AF-401-NA) or 0.5 ug/mIrat-anti-caspase-1 (Genentech, clone 464.2) added in 1% milk/PBST 1 hour. Blots were washed 4x5 minutes in PBST. Anti-goat-HRP
(1:5000 R&D) or anti-rat-HRP (Thermo/Pierce) was added for 45 minutes and washed 5x5 minutes in PBST. Blots were developed with ECL Plus and hyperfilm (GE
Healthcare, Buckinghamshire, UK).
Immunohistochemistry [0269] Ten week old Balbc mice were injected subretinally with 1 pl of 1x109 1L113 or AAV2/5 empty control virus (Genedetect). After 7 weeks infection, whole eye was removed and fixed in 10% neutral buffered formalin overnight at room temperature. Sections were processed and embedded in paraffin then stained with anti-CD45 and visualized with DAB.
Fluorescence Angiography (FA) [0270] Animals were anesthetized by intraperitoneal injection of ketamine/xylazine (80mg/kg:15 mg/kg) and eyes dilated with 1% tropicamide (Bausch and Lomb, Rochester, NY). Eyes were kept moist with artificial tears. Mice were injected intraperitoneally with 100 p110% AK-Fluor injectable fluorescein (Akorn, Buffalo Grove, IL). Images were acquired with a Heidelberg Spectralis HRA/OCT camera (Heidelberg Engineering, Vista, CA).
Optical Coherence Tomography (OCT) [0271] Animals were anesthetized by intraperitoneal injection of ketamine/xylazine (80mg/kg:15 mg/kg) and eyes dilated with 1% tropicamide (Bausch and Lomb, Rochester, NY). Eyes were kept moist with artificial tears. Images were acquired with a Heidelberg Spectralis HRA/OCT camera (Heidelberg Engineering, Vista, CA). Measurements are an average thickness of 19 sections over a 15.2 mm2 area of retina. Thickness includes retinal and choroid.
Electroretino gram (ERG) recordings [0272] Mice were dark adapted for 24 hours before ERG to equilibrate retinal responses.
Once dark adapted, all subsequent procedures will be performed in the dark with only a red light for illumination. Animals were anesthetized with intraperitoneal injection of Ketamine and Xylazine (75-80 mg/kg :7.5-15 mg/kg). Mouse body temperature was maintained at using a homeothermic heating plate connected to its control unit. Pupils were dilated with 1%
atropine and the corneal surface was anesthetized with a drop of 0.5%
proparacaine HCI.
ERGs from both eyes were recorded simultaneously using an Espion E2 (Diagnosys LLC, Lowell, MA) visual electrophysiology system. Mice were placed on a platform and a reference electrode was inserted subcutaneously in the forehead and a ground electrode was inserted at the base of the tail. Gonak hypermellose solution was placed on the cornea to establish an electrical contact between the cornea and the platinum electrode and protected eyes from drying during the experiment. A mouse was placed in the ColorDome full field desktop Ganzfeld stimulator and were stimulated with white light: 3 flash intensities ranging 1x10-5-5 cd/m2, allowing 2 minutes between flashes in order to reestablish baseline response. Signals were band pass-filtered at 0.15-1000 Hz and sampled at 2 kHz.
Methods for phage panning IL-10 [0273] Several phage display synthetic antibody libraries were panned against immobilized human IL-113. Enrichment of antibody displaying phage pools specific for IL-113 was determined at round three and subsequent rounds by measuring the ratio of recovered pools of phage clones specific for IL-1[3 over those specific for binding bovine serum albumin.
Construction of the synthetic naïve antibody phage display libraries is described elsewhere (Sidhu et al., 2004). After several rounds of panning, phage clones displaying antibody variable heavy and light chain domains specific for IL-113 were identified.
The DNA sequences of the variable heavy and chain were determined and reformatted into human IgG1 expression vectors to allow transient antibody expression in mammalian cells.
Antibody from the cell culture growth media was purified using Protein A for subsequent testing in soluble protein binding affinity determination assays, receptor-ligand inhibition assays and functional cell based assays.
Competitive inhibition of human IL-10 binding to human IL-1 RI or IL-1 RhI
[0274] NeutrAvidin (Pierce, Rockford, IL) was diluted to 2 pg/mL in phosphate buffered saline (PBS) and coated on ELISA plates (384-well high-bind plates, Nunc, Neptune, New Jersey) during an overnight incubation at 4 C. After washing three times with wash buffer (PBS / 0.05% Tween-20), the plates were blocked with PBS / 0.5% bovine serum albumin (BSA) for 1 to 2 hours. This and all subsequent incubations were performed at room temperature on an orbital shaker. Human IL-113 (R&D Systems, Minneapolis, MN) biotinylated using maleimide-PEG-biotin (Pierce) according to the manufacturer's directions was diluted to 400 ng/ml in assay buffer (PBS / 0.5% BSA / 0.05% Tween-20). The blocked NeutrAvidin plates were washed, and biotinylated human IL-113 was captured onto the plates during a 1 ¨
2 hr incubation. Human IL-1R1 and IL-1R11 (R&D Systems) were labeled with digoxigenin (DIG) using 3-amino-3-deoxydigoxigenin hemisuccinamide succinimidyl ester (Invitrogen, Eugene, OR) according to the manufacturer's directions. The ability of antibodies to block the binding of IL-1R1 and IL-1R11 to IL-1[3 was evaluated by diluting the antibodies over a broad range and mixing them with equal volumes of DIG-labeled human IL-1R1 or IL-1R11 (final concentrations of 1 pg/ml or 60 ng/ml, respectively). The mixtures were added to washed plates and allowed to incubate for 1 ¨ 2 hr. Plate-bound IL-1R1 or IL-1R11 was then detected using a horseradish peroxidase (HRP)-conjugated monoclonal anti-DIG antibody (Jackson ImmunoResearch, West Grove, PA). After a 1 hr incubation and an additional wash step, tetramethyl benzidine (TM B, Kirkegaard & Perry Laboratories, Inc., Gaithersburg, MD) was added, and color was allowed to develop for approximately 10 min. The reaction was stopped by the addition of 1 M phosphoric acid. The optical density was read using a microplate reader (450 nm, 650 nm reference), and antibody concentrations yielding half maximal inhibition of binding were determined using four-parameter fits of the curves (Kaleidagraph, Synergy Software, Reading, PA). See Figure 21.
Competitive inhibition of mouse IL-113 binding to mouse IL-1R1 or IL-1R11 [0275] The ability of antibodies to block binding of mouse IL-1[3 to mouse IL-IRI and IL-1 RII was evaluated using a similar method. Mouse 1L-18 (R&D Systems) was biotinylated using sulfo-NHS-LC-biotin (Pierce) according to the manufacturer's directions and captured onto NeutrAvidin plates at a concentration of 400 ng/ml. Antibodies were diluted over a broad range, mixed with an equal volumes of mouse IL-IRI- or IL-IRII-human IgG1 Fc fusion proteins (R&D Systems; final concentrations of 1 ug/m1 or 60 ng/ml, respectively), and incubated for 1 ¨ 2 hr on the prepared plates. Bound receptor was detected using an HRP-conjugated goat polyclonal anti-human IgG Fc antibody (Jackson ImmunoResearch). Color development and data analysis were performed as described above. See Figure 21.
Competitive inhibition of human IL-18 binding to human IL-18Ra [0276] The overall assay method was essentially the same as described for evaluating inhibition of human IL-1[3/1L-1 R binding. ELISA plates were coated with NeutrAvidin (Pierce), and human IL-18 (R&D Systems) biotinylated using sulfo-NHS-LC-biotin (Pierce) was diluted to 400 ng/ml and captured onto the plates. Human IL-18Ra-human IgG1 Fc (R&D
Systems) was labeled with digoxigenin (DIG) using 3-amino-3-deoxydigoxigenin hemisuccinamide succinimidyl ester (Invitrogen, Eugene, OR). Diluted antibodies were mixed with equal volumes of DIG-IL-18Ra-Fc (final concentration of 1 ug/m1). Bound receptor was detected using an anti-DIG antibody (Jackson ImmunoResearch). Color development and data analysis were performed as described above.
EXAMPLE 1: Combined IL-1[3 and IL-18 blockade in Inflammatory Bowel Disease [0277] In clinical studies, the present inventors have found a significant increase in IL-113 and IL-18-expressing cells in Crohn's disease, as well as significantly increased serum IL-18 levels in Crohn's disease (See Figure 4). In preclinical mouse models of IBD, an increase in IL-113 and IL-18 secretion from the colon in an ex-vivo colon culture was found (see Figure 5).
For IL-1[3, positive cells are at sites of active inflammation with few or no positive cells in areas without evidence of active inflammation (Figures, upper photos). For IL-18, positive cells are morphologically compatible with follicular dendritic cells (arrows) and myeloid dendritic cells in the marginal zone (arrowheads) of the lymphoid follicle (Figure 5, lower photos). IL-18 positive cells are also colon epithelial cells. These results are representative of 21 Crohn's disease patient samples evaluated.
2 hr incubation. Human IL-1R1 and IL-1R11 (R&D Systems) were labeled with digoxigenin (DIG) using 3-amino-3-deoxydigoxigenin hemisuccinamide succinimidyl ester (Invitrogen, Eugene, OR) according to the manufacturer's directions. The ability of antibodies to block the binding of IL-1R1 and IL-1R11 to IL-1[3 was evaluated by diluting the antibodies over a broad range and mixing them with equal volumes of DIG-labeled human IL-1R1 or IL-1R11 (final concentrations of 1 pg/ml or 60 ng/ml, respectively). The mixtures were added to washed plates and allowed to incubate for 1 ¨ 2 hr. Plate-bound IL-1R1 or IL-1R11 was then detected using a horseradish peroxidase (HRP)-conjugated monoclonal anti-DIG antibody (Jackson ImmunoResearch, West Grove, PA). After a 1 hr incubation and an additional wash step, tetramethyl benzidine (TM B, Kirkegaard & Perry Laboratories, Inc., Gaithersburg, MD) was added, and color was allowed to develop for approximately 10 min. The reaction was stopped by the addition of 1 M phosphoric acid. The optical density was read using a microplate reader (450 nm, 650 nm reference), and antibody concentrations yielding half maximal inhibition of binding were determined using four-parameter fits of the curves (Kaleidagraph, Synergy Software, Reading, PA). See Figure 21.
Competitive inhibition of mouse IL-113 binding to mouse IL-1R1 or IL-1R11 [0275] The ability of antibodies to block binding of mouse IL-1[3 to mouse IL-IRI and IL-1 RII was evaluated using a similar method. Mouse 1L-18 (R&D Systems) was biotinylated using sulfo-NHS-LC-biotin (Pierce) according to the manufacturer's directions and captured onto NeutrAvidin plates at a concentration of 400 ng/ml. Antibodies were diluted over a broad range, mixed with an equal volumes of mouse IL-IRI- or IL-IRII-human IgG1 Fc fusion proteins (R&D Systems; final concentrations of 1 ug/m1 or 60 ng/ml, respectively), and incubated for 1 ¨ 2 hr on the prepared plates. Bound receptor was detected using an HRP-conjugated goat polyclonal anti-human IgG Fc antibody (Jackson ImmunoResearch). Color development and data analysis were performed as described above. See Figure 21.
Competitive inhibition of human IL-18 binding to human IL-18Ra [0276] The overall assay method was essentially the same as described for evaluating inhibition of human IL-1[3/1L-1 R binding. ELISA plates were coated with NeutrAvidin (Pierce), and human IL-18 (R&D Systems) biotinylated using sulfo-NHS-LC-biotin (Pierce) was diluted to 400 ng/ml and captured onto the plates. Human IL-18Ra-human IgG1 Fc (R&D
Systems) was labeled with digoxigenin (DIG) using 3-amino-3-deoxydigoxigenin hemisuccinamide succinimidyl ester (Invitrogen, Eugene, OR). Diluted antibodies were mixed with equal volumes of DIG-IL-18Ra-Fc (final concentration of 1 ug/m1). Bound receptor was detected using an anti-DIG antibody (Jackson ImmunoResearch). Color development and data analysis were performed as described above.
EXAMPLE 1: Combined IL-1[3 and IL-18 blockade in Inflammatory Bowel Disease [0277] In clinical studies, the present inventors have found a significant increase in IL-113 and IL-18-expressing cells in Crohn's disease, as well as significantly increased serum IL-18 levels in Crohn's disease (See Figure 4). In preclinical mouse models of IBD, an increase in IL-113 and IL-18 secretion from the colon in an ex-vivo colon culture was found (see Figure 5).
For IL-1[3, positive cells are at sites of active inflammation with few or no positive cells in areas without evidence of active inflammation (Figures, upper photos). For IL-18, positive cells are morphologically compatible with follicular dendritic cells (arrows) and myeloid dendritic cells in the marginal zone (arrowheads) of the lymphoid follicle (Figure 5, lower photos). IL-18 positive cells are also colon epithelial cells. These results are representative of 21 Crohn's disease patient samples evaluated.
[0278] Mouse models studied included DSS-induced colitis (in WT B6 female mice), T-cell adoptive transfer and piroxicam-IL-10 KO (see Figures 6, 7 and 8). The present inventors have demonstrated that blockade of IL-113, IL-18 or both (in the case of ASC
KO studies) reduces inflammatory response (IL-1[3, IL-18, TNFa, IL-17, IL-6) and colon scores in the DSS
model of colitis (see Figures 9-13).
EXAMPLE 2: Combined IL-1(3 and IL-18 blockade in Age-Related Macular Degeneration [0279] Previous studies reported that IL-113 is increased in vitreous fluid of patients with diabetic retinopathy and uveitis. However, no studies have reported on the presence of IL-1[3 and IL-18 in wet or dry AMD. The present studies show that IL-113 levels are increased in vitreous of a subpopulation of AMD patients (see Figure 14). In preclinical mouse studies, the present inventors show that over-expression of IL-113 in the mouse eye induces retinal inflammation, while IL-18 over-expression does not (see Figures 15-18).
Further, the present inventors show that both, IL-113 and IL-18, affect retinal function as measured by ERG
recordings (see Figure 19). Based on these studies, the present inventors conclude that single and combined IL-113 and IL-18 blockade is expected to improve photoreceptor function and CNV/edema (see Figure 20).
EXAMPLE 3: Combined IL-10 and IL-18 blockade in Type 2 Diabetes Mellitus [0280] The present inventors hypothesize that targeting IL-113 may preserve 6-cell functions in patients with type 2 diabetes. IL-113 reportedly decreases insulin secretion by pancreatic 13 cells in vitro and alters various 6-cell functions. Further, treatment with IL-1Ra reportedly may prevent or ameliorate animal models of diabetes, and IL-1Ra is reportedly decreased in 13 cells obtained from patients with type 2 diabetes. See Figure 28.
KO studies) reduces inflammatory response (IL-1[3, IL-18, TNFa, IL-17, IL-6) and colon scores in the DSS
model of colitis (see Figures 9-13).
EXAMPLE 2: Combined IL-1(3 and IL-18 blockade in Age-Related Macular Degeneration [0279] Previous studies reported that IL-113 is increased in vitreous fluid of patients with diabetic retinopathy and uveitis. However, no studies have reported on the presence of IL-1[3 and IL-18 in wet or dry AMD. The present studies show that IL-113 levels are increased in vitreous of a subpopulation of AMD patients (see Figure 14). In preclinical mouse studies, the present inventors show that over-expression of IL-113 in the mouse eye induces retinal inflammation, while IL-18 over-expression does not (see Figures 15-18).
Further, the present inventors show that both, IL-113 and IL-18, affect retinal function as measured by ERG
recordings (see Figure 19). Based on these studies, the present inventors conclude that single and combined IL-113 and IL-18 blockade is expected to improve photoreceptor function and CNV/edema (see Figure 20).
EXAMPLE 3: Combined IL-10 and IL-18 blockade in Type 2 Diabetes Mellitus [0280] The present inventors hypothesize that targeting IL-113 may preserve 6-cell functions in patients with type 2 diabetes. IL-113 reportedly decreases insulin secretion by pancreatic 13 cells in vitro and alters various 6-cell functions. Further, treatment with IL-1Ra reportedly may prevent or ameliorate animal models of diabetes, and IL-1Ra is reportedly decreased in 13 cells obtained from patients with type 2 diabetes. See Figure 28.
[0281] Gene polymorphisms in the IL-16/1L-18 pathway are reportedly associated with central obesity and metabolic syndrome (Carter et al., 2008). Further, IL-1[3 reportedly decreases insulin secretion by pancreatic 13 cells in vitro (Lewis and Dinarello, 2006), and Anakinra (IL-1Ra) reportedly improves glycemia and beta cell secretory function in patients (Larsen et al., 2007). Additionally, increased serum levels of IL-1 and IL-18, reportedly decreased the ratio to IL-1Ra and IL-18BP in T2DM patients, and IL-1Ra and IL-18BP protect against STZ or high-fat induced hyperglycemia in preclinical models (Sandberg et al., 1994).
[0282] Further, Larsen et al. carried out a double-blind clinical trial in patients with type 2 diabetes by administering anakinra once daily for 13 weeks (Larsen et al., 2007). This treatment improved glycemia and 13-cell insulin secretory capacity as well as reduced markers of systemic inflammation. However, there remains a need to determine the possible beneficial effects of anti-IL-1 therapies possessing a more prolonged half-life and administered over a longer period of time on restoration of 13-cell mass and function in patients with type 2 diabetes.
Example 4: Anti-IL-1b and/or anti-1L18 in the piroxicam IL-10K0 IBD model [0283] IL-10-/- mice develop spontaneous colitis. However, the incidence and severity are inconsistent, which make it harder to be used as model for IBD to test our therapeutics.
By feeding the IL-10-/- mice with piroxicam, it is likely that piroxicam will exacerbate the chronic intestinal inflammation in these mice and may synchronize the onset of the colitis as indicated by Berg etal. (2002). Thus, this is a chronic inflammation model of IBD in contrast to the acute DSS model of IBD.
Example 4: Anti-IL-1b and/or anti-1L18 in the piroxicam IL-10K0 IBD model [0283] IL-10-/- mice develop spontaneous colitis. However, the incidence and severity are inconsistent, which make it harder to be used as model for IBD to test our therapeutics.
By feeding the IL-10-/- mice with piroxicam, it is likely that piroxicam will exacerbate the chronic intestinal inflammation in these mice and may synchronize the onset of the colitis as indicated by Berg etal. (2002). Thus, this is a chronic inflammation model of IBD in contrast to the acute DSS model of IBD.
[0284] 6-wk old female IL-10K0 (Genentech) mice were divided into the following treatment groups:
Group Agent Dose Frequency Route 7g: anti-ragweed' 1 mg/mou4:::::::3 times a week::
anti-gp120 1 mg/mouse 2 TNFRII-Fc 300ug/mouse 3 times a week i.p. 12 anti-IL-lb 1 mg/mouse 3 times a week i.p. 12 4 anti-IL-18 1 mg/mouse 3 times a week i.p. 12 6 anti-IL-lb 1 mg/mouse 3 times a week, [0285] Piroxicam powder was mixed with powdered rodent diet at the concentration of 200 ppm using geometric dilution. Briefly, an equivalent amount of mouse diet was added to the piroxicam and then mixed thoroughly. Successive equivalent amounts of the mouse diet were added, mixing well after each dilution, until the entire quantity of the mouse diet was incorporated. After overnight fasting, mice were fed on the piroxicam containing diet for 11 days, and regular diet was put back on Day 12. All treatments were injected at the amount indicated above in 400 pl PBS 3 times a week i.p. for 6 weeks. Animals were weighed daily and sacrificed at the end of the study for analysis. Before the start of prioxicam treatment, 100 pl of blood was collected through tail vein by tail nick for FACS and serum. Then, 100 pl of blood will be collected at week 5 after the start of the experiment. In these studies, treatment effects on visual colon score, colon histology and serum PK were analyzed. See Figure 29.
Group Agent Dose Frequency Route 7g: anti-ragweed' 1 mg/mou4:::::::3 times a week::
anti-gp120 1 mg/mouse 2 TNFRII-Fc 300ug/mouse 3 times a week i.p. 12 anti-IL-lb 1 mg/mouse 3 times a week i.p. 12 4 anti-IL-18 1 mg/mouse 3 times a week i.p. 12 6 anti-IL-lb 1 mg/mouse 3 times a week, [0285] Piroxicam powder was mixed with powdered rodent diet at the concentration of 200 ppm using geometric dilution. Briefly, an equivalent amount of mouse diet was added to the piroxicam and then mixed thoroughly. Successive equivalent amounts of the mouse diet were added, mixing well after each dilution, until the entire quantity of the mouse diet was incorporated. After overnight fasting, mice were fed on the piroxicam containing diet for 11 days, and regular diet was put back on Day 12. All treatments were injected at the amount indicated above in 400 pl PBS 3 times a week i.p. for 6 weeks. Animals were weighed daily and sacrificed at the end of the study for analysis. Before the start of prioxicam treatment, 100 pl of blood was collected through tail vein by tail nick for FACS and serum. Then, 100 pl of blood will be collected at week 5 after the start of the experiment. In these studies, treatment effects on visual colon score, colon histology and serum PK were analyzed. See Figure 29.
[0286] Levels of various cytokines were measured in IL-10 KO mice with and without piroxicam treatment. See Figure 13. As noted, there is an elevation of IL-18 and IL-18 in the piroxicam treatment group (relative to the WT animals) while TNFa, IL-12 and IL-17 were comparable between the groups.
[0287] For histopathologic analyses, tissues were fixed in 10% formalin and subsequently embedded in paraffin for sectioning and haematoxylin and eosin staining.
Histopathology scores were assessed in the proximal, medial and distal colon as well as the rectum and scored on a scale of 1 to 3. The scores for the individual colon segments were summed to yield the total score per animal. The same individual scored all histologic features and had no knowledge of the experimental groups.
Histopathology scores were assessed in the proximal, medial and distal colon as well as the rectum and scored on a scale of 1 to 3. The scores for the individual colon segments were summed to yield the total score per animal. The same individual scored all histologic features and had no knowledge of the experimental groups.
[0288] Results for the visual colon scores as well as the histology scores are shown in Figure 30. Serum levels were elevated for IL-18 and IL-18. Treatment with a combination of anti-IL-113 and anti-IL-18 antibodies resulted in statistically significant reduction of injury to the colon. The combination treatment was as effective as TNFRII-Fc treatment.
These results demonstrate that the combined blockade of IL-1[3 and IL-18 can be an effective therapy for IBD. Combined blockade of IL-113 and IL-18 may also provide a safer treatment than TNF-alpha blockade.
References Arend, W.P., G. Palmer, and C. Gabay. 2008. IL-1, IL-18, and IL-33 families of cytokines.
Immunol Rev. 223:20-38.
Baldassano, R.N., J.P. Bradfield, D.S. Monos, C.E. Kim, J. T. Glessner, T.
Casalunovo, E.C.
Frackelton, F. G. Otieno, S. Kanterakis, J.L. Shaner, R.M. Smith, A. W.
Eckert, L.J. Robinson, C.C. Onyiah, D.J. Abrams, R.M. Chiavacci, R. Skraban, M. Devoto, S.F. Grant, and H.
Hakonarson. 2007. Association of the T300A non-synonymous variant of the ATG16L1 gene with susceptibility to paediatric Crohn's disease. Gut. 56:1171-3.
Cadwell, K., J. Y. Liu, S.L. Brown, H. Miyoshi, J. Loh, J.K. Lennerz, C.
Kishi, W. Kc, J.A.
Carrero, S. Hunt, C.D. Stone, E.M. Brunt, R.J. Xavier, B.P. Sleckman, E. Li, N. Mizushima, T. S. Stappenbeck, and H.W.t. Virgin. 2008. A key role for autophagy and the autophagy gene Atg16I1 in mouse and human intestinal Paneth cells. Nature. 456:259-63.
Carter, K. W., J. Hung, B.L. Powell, S. Wiltshire, B. T. Foo, Y.C. Leow, B.M.
McQuillan, M.
Jennens, P.A. McCaskie, P.L. Thompson, J.P. Beilby, and L.J. Palmer. 2008.
Association of Interleukin-1 gene polymorphisms with central obesity and metabolic syndrome in a coronary heart disease population. Hum Genet. 124:199-206.
Cassel, S.L., S. Joly, and F.S. Sutterwala. 2009. The NLRP3 inflammasome: A
sensor of immune danger signals. Semin Immunol.
Ferrero-Miliani, L., O.H. Nielsen, P.S. Andersen, and S.E. Girardin. 2007.
Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation.
Clin Exp Immunol. 147:227-35.
Kowluru, R.A., and S. Odenbach. 2004. Role of interleukin-1beta in the pathogenesis of diabetic retinopathy. Br J Ophthalmol. 88:1343-7.
Kuballa, P., A. Huett, J.D. Rioux, M.J. Daly, and R.J. Xavier. 2008. Impaired autophagy of an intracellular pathogen induced by a Crohn's disease associated ATG16L1 variant. PLoS One.
3:e3391.
Larsen, C.M., M. Faulenbach, A. Vaag, A. Volund, J.A. Ehses, B. Seifert, T.
Mandrup-Poulsen, and M. Y. Donath. 2007. Interleukin-1-receptor antagonist in type 2 diabetes mellitus.
N Engl J Med. 356:1517-26.
Lewis, E.C., and C.A. Dinarello. 2006. Responses of IL-18- and IL-18 receptor-deficient pancreatic islets with convergence of positive and negative signals for the IL-18 receptor.
Proc Natl Acad Sci U SA. 103:16852-7.
Ludwiczek, 0., A. Kaser, D. Novick, C.A. Dinarello, M. Rubinstein, and H.
Tilg. 2005. Elevated systemic levels of free interleukin-18 (IL-18) in patients with Crohn's disease. Eur Cytokine Netw. 16:27-33.
Ludwiczek, 0., E. Vannier, I. Borggraefe, A. Kaser, B. Siegmund, C.A.
Dinarello, and H. Tilg.
2004. Imbalance between interleukin-1 agonists and antagonists: relationship to severity of inflammatory bowel disease. Clin Exp Immunol. 138:323-9.
Monteleone, G., F. Trapasso, T. Parrello, L. Biancone, A. Stella, R. luliano, F. Luzza, A.
Fusco, and F. Pallone. 1999. Bioactive IL-18 expression is up-regulated in Crohn's disease. J
Immunol. 163:143-7.
Perrier, S., F. Darakhshan, and E. Hajduch. 2006. IL-1 receptor antagonist in metabolic diseases: Dr Jekyll or Mr Hyde? FEBS Lett. 580:6289-94.
Saitoh, T., N. Fujita, M.H. Jang, S. Uematsu, B. G. Yang, T. Satoh, H. Omori, T. Noda, N.
Yamamoto, M. Komatsu, K. Tanaka, T. Kawai, T. Tsujimura, 0. Takeuchi, T.
Yoshimori, and S. Akira. 2008. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 456:264-8.
Sandberg, JØ, A. Andersson, D.L. Eizirik, and S. Sandler. 1994. Interleukin-1 receptor antagonist prevents low dose streptozotocin induced diabetes in mice. Biochem Biophys Res Commun. 202:543-8.
Sidhu, S.S., B. Li, Y. Chen, F.A. Fellouse, C. Eigenbrot, and G. Fuh. 2004.
Phage-displayed antibody libraries of synthetic heavy chain complementarity determining regions. J Mol Biol.
338:299-310.
Ten Hove, T., A. Corbaz, H. Amitai, S. Aloni, I. Belzer, P. Graber, P.
Drillenburg, S.J. van Deventer, Y. Chvatchko, and A.A. Te Velde. 2001. Blockade of endogenous IL-18 ameliorates TNBS-induced colitis by decreasing local TNF-alpha production in mice.
Gastroenterology. 121:1372-9.
Villani, A.C., M. Lemire, G. Fortin, E. Louis, M.S. Silverberg, C. Collette, N. Baba, C. Libioulle, J. Belaiche, A. Bitton, D. Gaudet, A. Cohen, D. Lan gelier, P.R. Fortin, J.E.
Wither, M. Sarfati, P. Rutgeerts, J.D. Rioux, S. Vermeire, T.J. Hudson, and D. Franchimont. 2009.
Common variants in the NLRP3 region contribute to Crohn's disease susceptibility. Nat Genet. 41:71-6.
These results demonstrate that the combined blockade of IL-1[3 and IL-18 can be an effective therapy for IBD. Combined blockade of IL-113 and IL-18 may also provide a safer treatment than TNF-alpha blockade.
References Arend, W.P., G. Palmer, and C. Gabay. 2008. IL-1, IL-18, and IL-33 families of cytokines.
Immunol Rev. 223:20-38.
Baldassano, R.N., J.P. Bradfield, D.S. Monos, C.E. Kim, J. T. Glessner, T.
Casalunovo, E.C.
Frackelton, F. G. Otieno, S. Kanterakis, J.L. Shaner, R.M. Smith, A. W.
Eckert, L.J. Robinson, C.C. Onyiah, D.J. Abrams, R.M. Chiavacci, R. Skraban, M. Devoto, S.F. Grant, and H.
Hakonarson. 2007. Association of the T300A non-synonymous variant of the ATG16L1 gene with susceptibility to paediatric Crohn's disease. Gut. 56:1171-3.
Cadwell, K., J. Y. Liu, S.L. Brown, H. Miyoshi, J. Loh, J.K. Lennerz, C.
Kishi, W. Kc, J.A.
Carrero, S. Hunt, C.D. Stone, E.M. Brunt, R.J. Xavier, B.P. Sleckman, E. Li, N. Mizushima, T. S. Stappenbeck, and H.W.t. Virgin. 2008. A key role for autophagy and the autophagy gene Atg16I1 in mouse and human intestinal Paneth cells. Nature. 456:259-63.
Carter, K. W., J. Hung, B.L. Powell, S. Wiltshire, B. T. Foo, Y.C. Leow, B.M.
McQuillan, M.
Jennens, P.A. McCaskie, P.L. Thompson, J.P. Beilby, and L.J. Palmer. 2008.
Association of Interleukin-1 gene polymorphisms with central obesity and metabolic syndrome in a coronary heart disease population. Hum Genet. 124:199-206.
Cassel, S.L., S. Joly, and F.S. Sutterwala. 2009. The NLRP3 inflammasome: A
sensor of immune danger signals. Semin Immunol.
Ferrero-Miliani, L., O.H. Nielsen, P.S. Andersen, and S.E. Girardin. 2007.
Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation.
Clin Exp Immunol. 147:227-35.
Kowluru, R.A., and S. Odenbach. 2004. Role of interleukin-1beta in the pathogenesis of diabetic retinopathy. Br J Ophthalmol. 88:1343-7.
Kuballa, P., A. Huett, J.D. Rioux, M.J. Daly, and R.J. Xavier. 2008. Impaired autophagy of an intracellular pathogen induced by a Crohn's disease associated ATG16L1 variant. PLoS One.
3:e3391.
Larsen, C.M., M. Faulenbach, A. Vaag, A. Volund, J.A. Ehses, B. Seifert, T.
Mandrup-Poulsen, and M. Y. Donath. 2007. Interleukin-1-receptor antagonist in type 2 diabetes mellitus.
N Engl J Med. 356:1517-26.
Lewis, E.C., and C.A. Dinarello. 2006. Responses of IL-18- and IL-18 receptor-deficient pancreatic islets with convergence of positive and negative signals for the IL-18 receptor.
Proc Natl Acad Sci U SA. 103:16852-7.
Ludwiczek, 0., A. Kaser, D. Novick, C.A. Dinarello, M. Rubinstein, and H.
Tilg. 2005. Elevated systemic levels of free interleukin-18 (IL-18) in patients with Crohn's disease. Eur Cytokine Netw. 16:27-33.
Ludwiczek, 0., E. Vannier, I. Borggraefe, A. Kaser, B. Siegmund, C.A.
Dinarello, and H. Tilg.
2004. Imbalance between interleukin-1 agonists and antagonists: relationship to severity of inflammatory bowel disease. Clin Exp Immunol. 138:323-9.
Monteleone, G., F. Trapasso, T. Parrello, L. Biancone, A. Stella, R. luliano, F. Luzza, A.
Fusco, and F. Pallone. 1999. Bioactive IL-18 expression is up-regulated in Crohn's disease. J
Immunol. 163:143-7.
Perrier, S., F. Darakhshan, and E. Hajduch. 2006. IL-1 receptor antagonist in metabolic diseases: Dr Jekyll or Mr Hyde? FEBS Lett. 580:6289-94.
Saitoh, T., N. Fujita, M.H. Jang, S. Uematsu, B. G. Yang, T. Satoh, H. Omori, T. Noda, N.
Yamamoto, M. Komatsu, K. Tanaka, T. Kawai, T. Tsujimura, 0. Takeuchi, T.
Yoshimori, and S. Akira. 2008. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 456:264-8.
Sandberg, JØ, A. Andersson, D.L. Eizirik, and S. Sandler. 1994. Interleukin-1 receptor antagonist prevents low dose streptozotocin induced diabetes in mice. Biochem Biophys Res Commun. 202:543-8.
Sidhu, S.S., B. Li, Y. Chen, F.A. Fellouse, C. Eigenbrot, and G. Fuh. 2004.
Phage-displayed antibody libraries of synthetic heavy chain complementarity determining regions. J Mol Biol.
338:299-310.
Ten Hove, T., A. Corbaz, H. Amitai, S. Aloni, I. Belzer, P. Graber, P.
Drillenburg, S.J. van Deventer, Y. Chvatchko, and A.A. Te Velde. 2001. Blockade of endogenous IL-18 ameliorates TNBS-induced colitis by decreasing local TNF-alpha production in mice.
Gastroenterology. 121:1372-9.
Villani, A.C., M. Lemire, G. Fortin, E. Louis, M.S. Silverberg, C. Collette, N. Baba, C. Libioulle, J. Belaiche, A. Bitton, D. Gaudet, A. Cohen, D. Lan gelier, P.R. Fortin, J.E.
Wither, M. Sarfati, P. Rutgeerts, J.D. Rioux, S. Vermeire, T.J. Hudson, and D. Franchimont. 2009.
Common variants in the NLRP3 region contribute to Crohn's disease susceptibility. Nat Genet. 41:71-6.
Claims (26)
1. A method of treating a disease in a patient, the method comprising administering to said patient an effective amount of:
a. An IL-1.beta./IL-18 bispecific antibody; or b. An antibody that binds IL-1.beta. and IL-18 activity; or c. An antibody that binds IL-1.beta. and an antibody that binds IL-18;
wherein said antibody or antibodies of parts a, b or c is/are capable of neutralizing or blocking IL-1.beta. and IL-18 activity in cells or tissue.
a. An IL-1.beta./IL-18 bispecific antibody; or b. An antibody that binds IL-1.beta. and IL-18 activity; or c. An antibody that binds IL-1.beta. and an antibody that binds IL-18;
wherein said antibody or antibodies of parts a, b or c is/are capable of neutralizing or blocking IL-1.beta. and IL-18 activity in cells or tissue.
2. The method of claim 1, wherein the antibody/antibodies is/are humanized.
3. The method of claim 1, wherein the antibody of part (b) is a dual action antibody.
4. The method of claim 1, wherein at least one antibody of part (c) is monoclonal.
5. The method of claim 1, wherein each antibody of part (c) is monoclonal.
6. The method of claim 1, wherein the antibodies of part (c) are given simultaneously, or consecutively.
7. The method of claim 6, wherein the antibodies are administered within 1 hour.
8. The method of claim 1, wherein the disease is an immune disease or an autoimmune disease or an inflammatory or an autoinflammatory disease.
9. The method of claim 1, wherein the disease is an inflammasome-mediated disease.
10. The method of claim 1, wherein the disease is an IL-1.beta. related disease.
11. The method of claim 1, wherein the disease is an IL-18 related disease.
12. The method of claim 1, wherein the disease is an IL-1.beta./IL-18 related disease.
13. The method of claim 8, wherein said disease is age-related macular degeneration (AMD).
14. The method of claim 8, wherein said disease is type 2 diabetes (T2D).
15. The method of claim 8, wherein said disease is inflammatory bowel disease (IBD).
16. The method of claim 15, wherein said IBD is Crohn's disease (CD).
17. The method of claim 15, wherein said IBD is ulcerative colitis (UC).
18. The method of claim 1, wherein the patient has not responded to anti-TNF
therapy.
therapy.
19. A method of treating disease in a patient, the method comprising administering to said patient an effective amount of a monoclonal antibody that binds IL-16 and a monoclonal antibody that binds IL-18.
20. A method of neutralizing or blocking IL-1.beta. and/or IL-18 activity in cells or tissue, the method comprising contacting said cells or tissue with a monoclonal antibody that binds IL-1.beta. and a monoclonal antibody that binds IL-18, and thereby neutralizing or blocking said activity.
21. The method of claim 19, wherein said monoclonal antibody that binds IL-1.beta. and said monoclonal antibody that binds IL-18 are administered concurrently or consecutively.
22. The method of claim 20, wherein said cells are contacted concurrently or consecutively with said monoclonal antibody that binds IL-1.beta. and said monoclonal antibody that binds IL-18.
23. An antibody that neutralizes or blocks IL-1.beta. and IL-18 activity.
24. An antibody according to claim 1, wherein the antibody is a bispecific antibody.
25. An antibody according to claim 1, wherein the antibody is humanized.
26. An antibody according to claim 1, wherein the antibody binds to IL-1.beta.
and IL-18.
and IL-18.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US37376010P | 2010-08-13 | 2010-08-13 | |
| US61/373,760 | 2010-08-13 | ||
| PCT/US2011/047532 WO2012021773A1 (en) | 2010-08-13 | 2011-08-12 | Antibodies to il-1beta and il-18, for treatment of disease |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CA2808185A1 true CA2808185A1 (en) | 2012-02-16 |
Family
ID=44511598
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA2808185A Abandoned CA2808185A1 (en) | 2010-08-13 | 2011-08-12 | Antibodies to il-1.beta. and il-18, for treatment of disease |
Country Status (9)
| Country | Link |
|---|---|
| EP (1) | EP2603525A1 (en) |
| JP (1) | JP2013537539A (en) |
| KR (1) | KR20130100125A (en) |
| CN (2) | CN103154032A (en) |
| BR (1) | BR112013003279A2 (en) |
| CA (1) | CA2808185A1 (en) |
| MX (1) | MX2013001267A (en) |
| RU (1) | RU2013110844A (en) |
| WO (1) | WO2012021773A1 (en) |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9707235B1 (en) | 2012-01-13 | 2017-07-18 | University Of Kentucky Research Foundation | Protection of cells from degeneration and treatment of geographic atrophy |
| ES2744833T3 (en) | 2013-03-14 | 2020-02-26 | Univ Laval | Electroretinography (ERG) system for the evaluation of psychiatric disorders |
| CN105209643A (en) * | 2013-05-17 | 2015-12-30 | 豪夫迈·罗氏有限公司 | Methods for diagnosing and treating inflammatory bowel disease |
| CN103554264B (en) * | 2013-11-05 | 2015-08-12 | 哈尔滨博翱生物医药技术开发有限公司 | For bi-specific antibody and the application thereof of IL-1 β and IL-17A |
| SG11201703428SA (en) | 2014-11-10 | 2017-05-30 | Hoffmann La Roche | Bispecific antibodies and methods of use in ophthalmology |
| WO2016075034A1 (en) * | 2014-11-10 | 2016-05-19 | F. Hoffmann-La Roche Ag | ANTI-IL-1beta ANTIBODIES AND METHODS OF USE |
| CA2963606A1 (en) | 2014-11-10 | 2016-05-19 | F.Hoffmann-La Roche Ag | Anti-ang2 antibodies and methods of use |
| GB201815045D0 (en) * | 2018-09-14 | 2018-10-31 | Univ Ulster | Bispecific antibody targeting IL-1R1 and NLPR3 |
| CN110251657B (en) * | 2019-06-14 | 2020-11-17 | 中山大学 | Application of EBV BRLF1 and functional small peptide thereof in inhibiting activity of inflammatory corpuscles |
| KR20230003483A (en) | 2020-03-26 | 2023-01-06 | 다이아멘티스 인크. | Systems and methods for processing retinal signal data and identifying conditions |
| CA3201637A1 (en) | 2020-11-18 | 2022-05-27 | Novartis Ag | Bispecific antibodies for use in treatment of nlrc4-gof inflammasomapathy |
| IL308134A (en) * | 2021-06-22 | 2023-12-01 | Novartis Ag | Bispecific antibodies for use in treatment of hidradenitis suppurativa |
Family Cites Families (107)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US577300A (en) | 1897-02-16 | Printing-press | ||
| US3773919A (en) | 1969-10-23 | 1973-11-20 | Du Pont | Polylactide-drug mixtures |
| US4010989A (en) | 1975-10-14 | 1977-03-08 | American Hospital Supply Corporation | Lockable drawer compartment |
| USRE30985E (en) | 1978-01-01 | 1982-06-29 | Serum-free cell culture media | |
| FR2413974A1 (en) | 1978-01-06 | 1979-08-03 | David Bernard | DRYER FOR SCREEN-PRINTED SHEETS |
| US4275149A (en) | 1978-11-24 | 1981-06-23 | Syva Company | Macromolecular environment control in specific receptor assays |
| US4318980A (en) | 1978-04-10 | 1982-03-09 | Miles Laboratories, Inc. | Heterogenous specific binding assay employing a cycling reactant as label |
| US4515893A (en) | 1979-04-26 | 1985-05-07 | Ortho Pharmaceutical Corporation | Hybrid cell line for producing complement-fixing monoclonal antibody to human T cells |
| US4419446A (en) | 1980-12-31 | 1983-12-06 | The United States Of America As Represented By The Department Of Health And Human Services | Recombinant DNA process utilizing a papilloma virus DNA as a vector |
| NZ201705A (en) | 1981-08-31 | 1986-03-14 | Genentech Inc | Recombinant dna method for production of hepatitis b surface antigen in yeast |
| US4601978A (en) | 1982-11-24 | 1986-07-22 | The Regents Of The University Of California | Mammalian metallothionein promoter system |
| US4560655A (en) | 1982-12-16 | 1985-12-24 | Immunex Corporation | Serum-free cell culture medium and process for making same |
| US4657866A (en) | 1982-12-21 | 1987-04-14 | Sudhir Kumar | Serum-free, synthetic, completely chemically defined tissue culture media |
| US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
| DD266710A3 (en) | 1983-06-06 | 1989-04-12 | Ve Forschungszentrum Biotechnologie | Process for the biotechnical production of alkaline phosphatase |
| US4767704A (en) | 1983-10-07 | 1988-08-30 | Columbia University In The City Of New York | Protein-free culture medium |
| US4965199A (en) | 1984-04-20 | 1990-10-23 | Genentech, Inc. | Preparation of functional human factor VIII in mammalian cells using methotrexate based selection |
| US5672347A (en) | 1984-07-05 | 1997-09-30 | Genentech, Inc. | Tumor necrosis factor antagonists and their use |
| US4879231A (en) | 1984-10-30 | 1989-11-07 | Phillips Petroleum Company | Transformation of yeasts of the genus pichia |
| US4737456A (en) | 1985-05-09 | 1988-04-12 | Syntex (U.S.A.) Inc. | Reducing interference in ligand-receptor binding assays |
| GB8516415D0 (en) | 1985-06-28 | 1985-07-31 | Celltech Ltd | Culture of animal cells |
| US4676980A (en) | 1985-09-23 | 1987-06-30 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Target specific cross-linked heteroantibodies |
| SE8505922D0 (en) | 1985-12-13 | 1985-12-13 | Kabigen Ab | CONSTRUCTION OF AN IGG BINDING PROTEIN TO FACILITATE DOWNSTREAM PROCESSING USING PROTEIN ENGINEERING |
| US6548640B1 (en) | 1986-03-27 | 2003-04-15 | Btg International Limited | Altered antibodies |
| US4927762A (en) | 1986-04-01 | 1990-05-22 | Cell Enterprises, Inc. | Cell culture medium with antioxidant |
| GB8610600D0 (en) | 1986-04-30 | 1986-06-04 | Novo Industri As | Transformation of trichoderma |
| IL85035A0 (en) | 1987-01-08 | 1988-06-30 | Int Genetic Eng | Polynucleotide molecule,a chimeric antibody with specificity for human b cell surface antigen,a process for the preparation and methods utilizing the same |
| IL87737A (en) | 1987-09-11 | 1993-08-18 | Genentech Inc | Method for culturing polypeptide factor dependent vertebrate recombinant cells |
| US5770701A (en) | 1987-10-30 | 1998-06-23 | American Cyanamid Company | Process for preparing targeted forms of methyltrithio antitumor agents |
| US5606040A (en) | 1987-10-30 | 1997-02-25 | American Cyanamid Company | Antitumor and antibacterial substituted disulfide derivatives prepared from compounds possessing a methyl-trithio group |
| US5091313A (en) | 1988-08-05 | 1992-02-25 | Tanox Biosystems, Inc. | Antigenic epitopes of IgE present on B cell but not basophil surface |
| US5720937A (en) | 1988-01-12 | 1998-02-24 | Genentech, Inc. | In vivo tumor detection assay |
| WO1989012463A1 (en) | 1988-06-21 | 1989-12-28 | Genentech, Inc. | Method and therapeutic compositions for the treatment of myocardial infarction |
| EP0435911B1 (en) | 1988-09-23 | 1996-03-13 | Cetus Oncology Corporation | Cell culture medium for enhanced cell growth, culture longevity and product expression |
| US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
| FR2646437B1 (en) | 1989-04-28 | 1991-08-30 | Transgene Sa | NOVEL DNA SEQUENCES, THEIR APPLICATION AS A SEQUENCE ENCODING A SIGNAL PEPTIDE FOR THE SECRETION OF MATURE PROTEINS BY RECOMBINANT YEASTS, EXPRESSION CASSETTES, PROCESSED YEASTS AND PROCESS FOR PREPARING THE SAME |
| EP0402226A1 (en) | 1989-06-06 | 1990-12-12 | Institut National De La Recherche Agronomique | Transformation vectors for yeast yarrowia |
| ATE144793T1 (en) | 1989-06-29 | 1996-11-15 | Medarex Inc | BISPECIFIC REAGENTS FOR AIDS THERAPY |
| US5208020A (en) | 1989-10-25 | 1993-05-04 | Immunogen Inc. | Cytotoxic agents comprising maytansinoids and their therapeutic use |
| CA2026147C (en) | 1989-10-25 | 2006-02-07 | Ravi J. Chari | Cytotoxic agents comprising maytansinoids and their therapeutic use |
| US6150584A (en) | 1990-01-12 | 2000-11-21 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
| US6075181A (en) | 1990-01-12 | 2000-06-13 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
| JPH06500011A (en) | 1990-06-29 | 1994-01-06 | ラージ スケール バイオロジー コーポレイション | Production of melanin by transformed microorganisms |
| US5770429A (en) | 1990-08-29 | 1998-06-23 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
| US5122469A (en) | 1990-10-03 | 1992-06-16 | Genentech, Inc. | Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins |
| EP0590058B1 (en) | 1991-06-14 | 2003-11-26 | Genentech, Inc. | HUMANIZED Heregulin ANTIBODy |
| ES2193136T3 (en) | 1991-08-14 | 2003-11-01 | Genentech Inc | IMMUNOGLUBINE VARIANTS FOR SPECIFIC RECEIVERS OF FC EPSILON. |
| WO1993008829A1 (en) | 1991-11-04 | 1993-05-13 | The Regents Of The University Of California | Compositions that mediate killing of hiv-infected cells |
| ATE149570T1 (en) | 1992-08-17 | 1997-03-15 | Genentech Inc | BISPECIFIC IMMUNOADHESINS |
| EP0656789B1 (en) | 1992-08-21 | 1997-12-17 | Genentech, Inc. | Method for treating a lfa-1-mediated disorder |
| US5736137A (en) | 1992-11-13 | 1998-04-07 | Idec Pharmaceuticals Corporation | Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma |
| ES2091684T3 (en) | 1992-11-13 | 1996-11-01 | Idec Pharma Corp | THERAPEUTIC APPLICATION OF CHEMICAL AND RADIO-MARKED ANTIBODIES AGAINST THE RESTRICTED DIFFERENTIATION ANTIGEN OF HUMAN B-LYMPHOCYTES FOR THE TREATMENT OF B-CELL LYMPHOMA. |
| US5635483A (en) | 1992-12-03 | 1997-06-03 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Tumor inhibiting tetrapeptide bearing modified phenethyl amides |
| US5780588A (en) | 1993-01-26 | 1998-07-14 | Arizona Board Of Regents | Elucidation and synthesis of selected pentapeptides |
| US5714338A (en) | 1993-12-10 | 1998-02-03 | Genentech, Inc. | Methods for diagnosis of allergy |
| SE9400088D0 (en) | 1994-01-14 | 1994-01-14 | Kabi Pharmacia Ab | Bacterial receptor structures |
| EP0739214B1 (en) | 1994-01-18 | 1998-03-18 | Genentech, Inc. | A METHOD OF TREATMENT OF PARASITIC INFECTION USING IgE ANTAGONISTS |
| EP0749488A1 (en) | 1994-03-03 | 1996-12-27 | Genentech, Inc. | Anti-il-8 monoclonal antibodies for treatment of inflammatory disorders |
| US5856179A (en) | 1994-03-10 | 1999-01-05 | Genentech, Inc. | Polypeptide production in animal cell culture |
| US5773001A (en) | 1994-06-03 | 1998-06-30 | American Cyanamid Company | Conjugates of methyltrithio antitumor agents and intermediates for their synthesis |
| US5731168A (en) | 1995-03-01 | 1998-03-24 | Genentech, Inc. | Method for making heteromultimeric polypeptides |
| US5840523A (en) | 1995-03-01 | 1998-11-24 | Genetech, Inc. | Methods and compositions for secretion of heterologous polypeptides |
| IL117645A (en) | 1995-03-30 | 2005-08-31 | Genentech Inc | Vascular endothelial cell growth factor antagonists for use as medicaments in the treatment of age-related macular degeneration |
| US5641870A (en) | 1995-04-20 | 1997-06-24 | Genentech, Inc. | Low pH hydrophobic interaction chromatography for antibody purification |
| US5712374A (en) | 1995-06-07 | 1998-01-27 | American Cyanamid Company | Method for the preparation of substantiallly monomeric calicheamicin derivative/carrier conjugates |
| US5714586A (en) | 1995-06-07 | 1998-02-03 | American Cyanamid Company | Methods for the preparation of monomeric calicheamicin derivative/carrier conjugates |
| AU6267896A (en) | 1995-06-07 | 1996-12-30 | Imclone Systems Incorporated | Antibody and antibody fragments for inhibiting the growth oftumors |
| US6267958B1 (en) | 1995-07-27 | 2001-07-31 | Genentech, Inc. | Protein formulation |
| EP1297847A3 (en) | 1996-01-23 | 2003-05-07 | Genentech, Inc. | Anti-CD18 antibodies in stroke |
| US7147851B1 (en) | 1996-08-15 | 2006-12-12 | Millennium Pharmaceuticals, Inc. | Humanized immunoglobulin reactive with α4β7 integrin |
| KR100532178B1 (en) | 1996-11-27 | 2005-12-01 | 제넨테크, 인크. | Humanized Anti-CD11a Antibodies |
| ES2236634T3 (en) | 1997-04-07 | 2005-07-16 | Genentech, Inc. | ANTI-VEGF ANTIBODIES. |
| EP0979281B1 (en) | 1997-05-02 | 2005-07-20 | Genentech, Inc. | A method for making multispecific antibodies having heteromultimeric and common components |
| ES2293682T5 (en) | 1997-05-15 | 2011-11-17 | Genentech, Inc. | ANTI-APO2 ANTIBODY. |
| US6171586B1 (en) | 1997-06-13 | 2001-01-09 | Genentech, Inc. | Antibody formulation |
| US6610833B1 (en) | 1997-11-24 | 2003-08-26 | The Institute For Human Genetics And Biochemistry | Monoclonal human natural antibodies |
| JP4460155B2 (en) | 1997-12-05 | 2010-05-12 | ザ・スクリプス・リサーチ・インステイチユート | Humanization of mouse antibodies |
| US6660843B1 (en) | 1998-10-23 | 2003-12-09 | Amgen Inc. | Modified peptides as therapeutic agents |
| DK1783222T3 (en) | 1998-10-23 | 2012-07-09 | Kirin Amgen Inc | Dimeric thrombopoietic peptidomimetics that bind to MPL receptor and have thrombopoietic activity |
| IL127127A0 (en) | 1998-11-18 | 1999-09-22 | Peptor Ltd | Small functional units of antibody heavy chain variable regions |
| DK1226177T3 (en) | 1999-10-29 | 2008-10-06 | Genentech Inc | Antibody Compositions for Anti-Prostate Stem Cell Antigen (PSCA) and Applications thereof |
| CA2395660A1 (en) | 1999-12-29 | 2001-07-12 | Immunogen, Inc. | Cytotoxic agents comprising modified doxorubicins and daunorubicins and their therapeutic use |
| ES2365600T3 (en) * | 2000-02-21 | 2011-10-07 | Merck Serono Sa | USE OF IL-18 INHIBITORS. |
| DK1272647T3 (en) | 2000-04-11 | 2014-12-15 | Genentech Inc | Multivalent antibodies and uses thereof |
| EP2386575A3 (en) * | 2000-06-29 | 2011-11-30 | Abbott Laboratories | Dual specificity antibodies and methods of making and using |
| US6596541B2 (en) | 2000-10-31 | 2003-07-22 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
| DK1354034T3 (en) | 2000-11-30 | 2008-03-25 | Medarex Inc | Transgenic transchromosomal rodents for the production of human antibodies |
| US8372954B2 (en) | 2000-12-22 | 2013-02-12 | National Research Council Of Canada | Phage display libraries of human VH fragments |
| ES2387546T3 (en) | 2001-05-11 | 2012-09-25 | Amgen Inc. | Peptides and related molecules that bind to TALL-1 |
| US7332474B2 (en) | 2001-10-11 | 2008-02-19 | Amgen Inc. | Peptides and related compounds having thrombopoietic activity |
| US7205275B2 (en) | 2001-10-11 | 2007-04-17 | Amgen Inc. | Methods of treatment using specific binding agents of human angiopoietin-2 |
| US7138370B2 (en) | 2001-10-11 | 2006-11-21 | Amgen Inc. | Specific binding agents of human angiopoietin-2 |
| JP2005289809A (en) | 2001-10-24 | 2005-10-20 | Vlaams Interuniversitair Inst Voor Biotechnologie Vzw (Vib Vzw) | Mutant heavy chain antibody |
| US6919426B2 (en) | 2002-09-19 | 2005-07-19 | Amgen Inc. | Peptides and related molecules that modulate nerve growth factor activity |
| US7871607B2 (en) | 2003-03-05 | 2011-01-18 | Halozyme, Inc. | Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases |
| US20060104968A1 (en) | 2003-03-05 | 2006-05-18 | Halozyme, Inc. | Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminogly ycanases |
| DK1639011T3 (en) | 2003-06-30 | 2009-02-16 | Domantis Ltd | Pegylated Single-Domain Antibodies (dAb) |
| NZ583292A (en) | 2003-11-06 | 2012-03-30 | Seattle Genetics Inc | Monomethylvaline compounds capable of conjugation to ligands |
| CA2561686C (en) | 2004-03-31 | 2014-12-02 | Genentech, Inc. | Humanized anti-tgf-beta antibodies |
| JO3000B1 (en) | 2004-10-20 | 2016-09-05 | Genentech Inc | Antibody Formulations. |
| TWI323734B (en) | 2005-08-19 | 2010-04-21 | Abbott Lab | Dual variable domain immunoglobulin and uses thereof |
| WO2007106790A2 (en) * | 2006-03-15 | 2007-09-20 | Regents Of The University Of Colorado | A gene and pathway and their use in methods and compositions for predicting onset or progression of autoimmune and/or autoinflammatory diseases |
| CA2648223A1 (en) * | 2006-04-14 | 2007-10-25 | Novartis Ag | Use of il-i antibodies for treating ophthalmic disorders |
| ES2399075T3 (en) | 2006-08-30 | 2013-03-25 | Genentech, Inc. | Multispecific Antibodies |
| CA2993565C (en) * | 2007-05-29 | 2019-04-02 | Novartis Ag | New indications for anti-il-1-beta therapy |
| JP2011511777A (en) * | 2008-01-30 | 2011-04-14 | アボット・ラボラトリーズ | Compositions and methods for crystallizing antibody fragments |
| AU2009289547A1 (en) * | 2008-09-05 | 2010-03-11 | Xoma (Us) Llc | Methods for treating or preventing IL-1beta related diseases |
-
2011
- 2011-08-12 RU RU2013110844/10A patent/RU2013110844A/en not_active Application Discontinuation
- 2011-08-12 KR KR1020137006238A patent/KR20130100125A/en not_active Withdrawn
- 2011-08-12 WO PCT/US2011/047532 patent/WO2012021773A1/en not_active Ceased
- 2011-08-12 EP EP11748847.8A patent/EP2603525A1/en not_active Withdrawn
- 2011-08-12 MX MX2013001267A patent/MX2013001267A/en not_active Application Discontinuation
- 2011-08-12 CA CA2808185A patent/CA2808185A1/en not_active Abandoned
- 2011-08-12 JP JP2013524239A patent/JP2013537539A/en active Pending
- 2011-08-12 CN CN2011800493677A patent/CN103154032A/en active Pending
- 2011-08-12 CN CN201410753624.0A patent/CN104474546A/en active Pending
- 2011-08-12 BR BR112013003279A patent/BR112013003279A2/en not_active IP Right Cessation
Also Published As
| Publication number | Publication date |
|---|---|
| RU2013110844A (en) | 2014-09-20 |
| MX2013001267A (en) | 2013-04-10 |
| WO2012021773A1 (en) | 2012-02-16 |
| JP2013537539A (en) | 2013-10-03 |
| CN103154032A (en) | 2013-06-12 |
| CN104474546A (en) | 2015-04-01 |
| KR20130100125A (en) | 2013-09-09 |
| EP2603525A1 (en) | 2013-06-19 |
| BR112013003279A2 (en) | 2016-06-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2808185A1 (en) | Antibodies to il-1.beta. and il-18, for treatment of disease | |
| AU2022231722A1 (en) | Humanized and affinity matured antibodies to FcRH5 and methods of use | |
| JP5729826B2 (en) | Anti-FcγRIIB receptor antibody and use thereof | |
| CN108290946B (en) | anti-TIGIT antibodies and methods of use | |
| US8883975B2 (en) | Antibodies against IL-18R1 and uses thereof | |
| US7655229B2 (en) | Anti-FC-gamma RIIB receptor antibody and uses therefor | |
| US7662926B2 (en) | Anti-Fc-gamma receptor antibodies, bispecific variants and uses therefor | |
| US20240092887A1 (en) | Anti-interleukin-33 antibodies and uses thereof | |
| JP2002530081A (en) | Antibody variants with higher binding affinity than the parent antibody | |
| CN107074942A (en) | The anti-β antibody of IL 1 and application method | |
| CN114341181A (en) | anti-MS 4A4A antibodies and methods of use thereof | |
| CN102264759A (en) | Immunoglobulin variants with altered binding to protein a | |
| CN113950483A (en) | Anti-HLA-DQ2.5 antibody | |
| US20130149308A1 (en) | Antibodies to il-1beta and il-18, for treatment of disease | |
| CN114026119A (en) | Antigen binding molecules that bind PDGF-B and PDGF-D and uses thereof | |
| HK1186194A (en) | Antibodies to il-1beta and il-18, for treatment of disease | |
| HK40065267A (en) | Anti-tigit antibodies and methods of use | |
| WO2024206788A1 (en) | Anti-alpha v beta 8 integrin antibodies and methods of use | |
| HK40062983A (en) | Antigen binding molecules that bind pdgf-b and pdgf-d and uses thereof | |
| HK40063237A (en) | Anti-ms4a4a antibodies and methods of use thereof | |
| HK1258058B (en) | Anti-tigit antibodies and methods of use | |
| HK1179981B (en) | Antibodies against il-18r1 and uses thereof | |
| MX2007002571A (en) | Anti-fc-gamma riib receptor antibody and uses therefor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FZDE | Discontinued |
Effective date: 20170814 |