[go: up one dir, main page]

CA2801912A1 - Synthese de silice realisee a basse temperature - Google Patents

Synthese de silice realisee a basse temperature Download PDF

Info

Publication number
CA2801912A1
CA2801912A1 CA2801912A CA2801912A CA2801912A1 CA 2801912 A1 CA2801912 A1 CA 2801912A1 CA 2801912 A CA2801912 A CA 2801912A CA 2801912 A CA2801912 A CA 2801912A CA 2801912 A1 CA2801912 A1 CA 2801912A1
Authority
CA
Canada
Prior art keywords
alkoxysilane
substrate
silica
vapor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2801912A
Other languages
English (en)
Inventor
Joanna Aizenberg
Benjamin Hatton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harvard University
Original Assignee
Harvard University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harvard University filed Critical Harvard University
Publication of CA2801912A1 publication Critical patent/CA2801912A1/fr
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/105Intermediate treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/107Post-treatment of applied coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45595Atmospheric CVD gas inlets with no enclosed reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)
  • Silicon Compounds (AREA)
  • Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)
  • Wrappers (AREA)
CA2801912A 2010-06-08 2011-06-08 Synthese de silice realisee a basse temperature Abandoned CA2801912A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US35264310P 2010-06-08 2010-06-08
US61/352,643 2010-06-08
PCT/US2011/039625 WO2011156484A2 (fr) 2010-06-08 2011-06-08 Synthèse de silice réalisée à basse température

Publications (1)

Publication Number Publication Date
CA2801912A1 true CA2801912A1 (fr) 2011-12-15

Family

ID=44645778

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2801912A Abandoned CA2801912A1 (fr) 2010-06-08 2011-06-08 Synthese de silice realisee a basse temperature

Country Status (7)

Country Link
US (1) US8993063B2 (fr)
EP (1) EP2580371A2 (fr)
JP (1) JP5859521B2 (fr)
CN (1) CN103025915B (fr)
AU (1) AU2011264922B2 (fr)
CA (1) CA2801912A1 (fr)
WO (1) WO2011156484A2 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9631275B2 (en) 2012-11-30 2017-04-25 Lg Chem, Ltd. Device for forming a layer
WO2015035066A1 (fr) * 2013-09-04 2015-03-12 President And Fellows Of Harvard College Croissance de films par l'intermédiaire de phases liquide/vapeur séquentielles
WO2015136673A1 (fr) * 2014-03-13 2015-09-17 株式会社日立国際電気 Procédé de fabrication d'un dispositif à semiconducteur, appareil de traitement de substrat et support d'enregistrement
EP3342834B1 (fr) * 2014-06-26 2019-10-09 EV Group E. Thallner GmbH Procédé pour deposer une couche de dioxyde de siliciumun sur un substrat de bois
WO2016055865A1 (fr) * 2014-10-10 2016-04-14 King Abdullah University Of Science And Technology Structures de coquille d'oxyde et procédés de fabrication de structures de coquille d'oxyde
TW201823501A (zh) * 2016-11-16 2018-07-01 美商陶氏全球科技有限責任公司 用於製造膜上之薄塗層之方法
KR102461975B1 (ko) * 2020-10-29 2022-11-02 주식회사 비이아이랩 롤투롤 원자층 증착장치
JP2023090367A (ja) 2021-12-17 2023-06-29 エア・ウォーター株式会社 成膜方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895933A (en) 1993-06-25 1999-04-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for its preparation
US5895757A (en) * 1993-06-30 1999-04-20 Pope; Edward J. A. Encapsulation of living tissue cells in inorganic microspheres prepared from an organosilicon
FI97731C (fi) 1994-11-28 1997-02-10 Mikrokemia Oy Menetelmä ja laite ohutkalvojen valmistamiseksi
US6037277A (en) 1995-11-16 2000-03-14 Texas Instruments Incorporated Limited-volume apparatus and method for forming thin film aerogels on semiconductor substrates
US6090442A (en) 1997-04-14 2000-07-18 University Technology Corporation Method of growing films on substrates at room temperatures using catalyzed binary reaction sequence chemistry
US6335296B1 (en) 1998-08-06 2002-01-01 Alliedsignal Inc. Deposition of nanoporous silica films using a closed cup coater
FI117979B (fi) 2000-04-14 2007-05-15 Asm Int Menetelmä oksidiohutkalvojen valmistamiseksi
US6482733B2 (en) 2000-05-15 2002-11-19 Asm Microchemistry Oy Protective layers prior to alternating layer deposition
US6818250B2 (en) * 2000-06-29 2004-11-16 The Regents Of The University Of Colorado Method for forming SIO2 by chemical vapor deposition at room temperature
JP3820443B2 (ja) * 2001-02-22 2006-09-13 防衛庁技術研究本部長 レーザーアブレーションを利用したSiO2膜の形成法及び装置
US6391803B1 (en) 2001-06-20 2002-05-21 Samsung Electronics Co., Ltd. Method of forming silicon containing thin films by atomic layer deposition utilizing trisdimethylaminosilane
CA2452656C (fr) 2001-07-18 2010-04-13 The Regents Of The University Of Colorado Une methode pour deposer une couche mince inorganique sur un polymere organique
KR100505668B1 (ko) 2002-07-08 2005-08-03 삼성전자주식회사 원자층 증착 방법에 의한 실리콘 산화막 형성 방법
US20050084610A1 (en) 2002-08-13 2005-04-21 Selitser Simon I. Atmospheric pressure molecular layer CVD
US7153754B2 (en) 2002-08-29 2006-12-26 Micron Technology, Inc. Methods for forming porous insulators from “void” creating materials and structures and semiconductor devices including same
US20080071382A1 (en) 2004-01-19 2008-03-20 University Of South Australia Bioactive Coating of Biomedical Implants
US20050172897A1 (en) * 2004-02-09 2005-08-11 Frank Jansen Barrier layer process and arrangement
KR100568448B1 (ko) * 2004-04-19 2006-04-07 삼성전자주식회사 감소된 불순물을 갖는 고유전막의 제조방법
US7300873B2 (en) 2004-08-13 2007-11-27 Micron Technology, Inc. Systems and methods for forming metal-containing layers using vapor deposition processes
US20060213437A1 (en) * 2005-03-28 2006-09-28 Tokyo Electron Limited Plasma enhanced atomic layer deposition system
CN101203581B (zh) * 2005-05-31 2012-09-05 布里斯麦特公司 二氧化硅膜形态的控制
US7947579B2 (en) 2006-02-13 2011-05-24 Stc.Unm Method of making dense, conformal, ultra-thin cap layers for nanoporous low-k ILD by plasma assisted atomic layer deposition
JP2009538989A (ja) * 2006-05-30 2009-11-12 フジフィルム マニュファクチャリング ユーロプ ビー.ブイ. パルス化大気圧グロー放電を使用する堆積の方法及び装置
JP5543203B2 (ja) * 2006-06-16 2014-07-09 フジフィルム マニュファクチャリング ユーロプ ビー.ブイ. 大気圧グロー放電プラズマを使用した原子層堆積の方法及び装置
US7749574B2 (en) * 2006-11-14 2010-07-06 Applied Materials, Inc. Low temperature ALD SiO2
CN100590803C (zh) * 2007-06-22 2010-02-17 中芯国际集成电路制造(上海)有限公司 原子层沉积方法以及形成的半导体器件
US7678709B1 (en) 2007-07-24 2010-03-16 Novellus Systems, Inc. Method of forming low-temperature conformal dielectric films
JP5092624B2 (ja) * 2007-08-24 2012-12-05 大日本印刷株式会社 ガスバリア膜の作製方法及び作製装置
WO2009070574A2 (fr) * 2007-11-27 2009-06-04 North Carolina State University Procédé de modification de polymères, de fibres et de supports textiles
KR20090068179A (ko) 2007-12-21 2009-06-25 에이에스엠 인터내셔널 엔.브이. 실리콘 이산화물을 포함하는 박막의 제조 방법
US9481927B2 (en) * 2008-06-30 2016-11-01 3M Innovative Properties Company Method of making inorganic or inorganic/organic hybrid barrier films
JP2011061007A (ja) * 2009-09-10 2011-03-24 Hitachi Kokusai Electric Inc 半導体デバイスの製造方法及び基板処理装置

Also Published As

Publication number Publication date
JP5859521B2 (ja) 2016-02-10
CN103025915A (zh) 2013-04-03
EP2580371A2 (fr) 2013-04-17
AU2011264922B2 (en) 2015-11-26
WO2011156484A2 (fr) 2011-12-15
US8993063B2 (en) 2015-03-31
JP2014505783A (ja) 2014-03-06
US20130236641A1 (en) 2013-09-12
WO2011156484A3 (fr) 2012-01-26
AU2011264922A1 (en) 2013-01-10
CN103025915B (zh) 2015-08-05

Similar Documents

Publication Publication Date Title
US8993063B2 (en) Low-temperature synthesis of silica
CN102782179B (zh) 包括在其上具有保形层的多孔基底的制品
Spagnola et al. Surface and sub-surface reactions during low temperature aluminium oxide atomic layer deposition on fiber-forming polymers
Waldman et al. Janus membranes via diffusion‐controlled atomic layer deposition
Losic et al. Controlled pore structure modification of diatoms by atomic layer deposition of TiO 2
Arl et al. SiO 2 thin film growth through a pure atomic layer deposition technique at room temperature
KR101996684B1 (ko) 적층체, 가스 배리어 필름, 및 이들의 제조 방법
WO2009102363A2 (fr) Matériaux ultraminces microporeux/hybrides
KR20150135341A (ko) 적층체 및 가스 배리어 필름
CN112592508B (zh) 用于制备光纤的方法
Nadargi et al. Synthesis and characterization of transparent hydrophobic silica thin films by single step sol–gel process and dip coating
Triani et al. Nanostructured TiO 2 membranes by atomic layer deposition
Hatton et al. Low-temperature synthesis of nanoscale silica multilayers–atomic layer deposition in a test tube
Karg et al. Atomic layer deposition of silica on carbon nanotubes
KR102414751B1 (ko) 폴리페놀-실리카 하이브리드 코팅막 및 이의 제조 방법
Liu et al. Uniform coating of TiO 2 on high aspect ratio substrates with complex morphology by vertical forced-flow atomic layer deposition
US20190345397A1 (en) Janus membranes via atomic layer deposition
US8372928B2 (en) Hard, impermeable, flexible and conformal organic coatings
Forte et al. a Suitable Substrate for ALD?: A Re-view. Polymers 2021, 13, 1346
Santoso et al. Robust surface-subsurface modification of PDMS through atmospheric pressure atomic layer deposition
Sundberg Atomic/molecular layer deposition of hybrid inorganic-organic thin films
Nijboer Microporous ceramic nanofiltration membranes using atmospheric pressure atomic-and molecular layer deposition
Guo et al. Suppressing the Photocatalytic Activity of TiO 2 Nanoparticles by Extremely Thin Al 2 O 2 Films Grown by Gas-Phase Deposition at Ambient Conditions.
WO2024095441A1 (fr) Récipient de transport de galette en semiconducteur et son procédé de fabrication
Gutu et al. Electron Microscopy Analysis of CdS Coated Diatom Cell Walls

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20160608

FZDE Discontinued

Effective date: 20190212