CA2748035A1 - Production of non-woven materials from polyhydroxyalkanoate - Google Patents
Production of non-woven materials from polyhydroxyalkanoate Download PDFInfo
- Publication number
- CA2748035A1 CA2748035A1 CA2748035A CA2748035A CA2748035A1 CA 2748035 A1 CA2748035 A1 CA 2748035A1 CA 2748035 A CA2748035 A CA 2748035A CA 2748035 A CA2748035 A CA 2748035A CA 2748035 A1 CA2748035 A1 CA 2748035A1
- Authority
- CA
- Canada
- Prior art keywords
- hydroxybutyrate
- polymer
- poly
- weight
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 title claims abstract description 315
- 229920000903 polyhydroxyalkanoate Polymers 0.000 title claims abstract description 314
- 239000000463 material Substances 0.000 title abstract description 55
- 238000004519 manufacturing process Methods 0.000 title description 12
- 239000000203 mixture Substances 0.000 claims abstract description 300
- 229920000642 polymer Polymers 0.000 claims abstract description 295
- 239000000835 fiber Substances 0.000 claims abstract description 138
- 239000002667 nucleating agent Substances 0.000 claims abstract description 71
- 239000004014 plasticizer Substances 0.000 claims abstract description 42
- 239000002245 particle Substances 0.000 claims abstract description 37
- 229920000331 Polyhydroxybutyrate Polymers 0.000 claims description 162
- 239000005015 poly(hydroxybutyrate) Substances 0.000 claims description 162
- -1 poly(3-hydroxybutyrate) Polymers 0.000 claims description 117
- 229920001013 poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Polymers 0.000 claims description 82
- QZCLKYGREBVARF-UHFFFAOYSA-N Acetyl tributyl citrate Chemical group CCCCOC(=O)CC(C(=O)OCCCC)(OC(C)=O)CC(=O)OCCCC QZCLKYGREBVARF-UHFFFAOYSA-N 0.000 claims description 37
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical group N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 28
- REKYPYSUBKSCAT-UHFFFAOYSA-N 3-hydroxypentanoic acid Chemical compound CCC(O)CC(O)=O REKYPYSUBKSCAT-UHFFFAOYSA-N 0.000 claims description 26
- 229920000070 poly-3-hydroxybutyrate Polymers 0.000 claims description 25
- 229910052582 BN Inorganic materials 0.000 claims description 23
- 229920000520 poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Polymers 0.000 claims description 23
- SJZRECIVHVDYJC-UHFFFAOYSA-M 4-hydroxybutyrate Chemical compound OCCCC([O-])=O SJZRECIVHVDYJC-UHFFFAOYSA-M 0.000 claims description 22
- 229920001519 homopolymer Polymers 0.000 claims description 22
- HPMGFDVTYHWBAG-UHFFFAOYSA-N 3-hydroxyhexanoic acid Chemical compound CCCC(O)CC(O)=O HPMGFDVTYHWBAG-UHFFFAOYSA-N 0.000 claims description 20
- PHOJOSOUIAQEDH-UHFFFAOYSA-N 5-hydroxypentanoic acid Chemical compound OCCCCC(O)=O PHOJOSOUIAQEDH-UHFFFAOYSA-N 0.000 claims description 12
- 239000007787 solid Substances 0.000 claims description 10
- 230000001186 cumulative effect Effects 0.000 claims description 7
- 229920001020 poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Polymers 0.000 claims 26
- 238000000034 method Methods 0.000 abstract description 51
- 229920001577 copolymer Polymers 0.000 description 54
- 150000001875 compounds Chemical class 0.000 description 51
- 239000007788 liquid Substances 0.000 description 38
- 239000000178 monomer Substances 0.000 description 35
- 239000000155 melt Substances 0.000 description 23
- 238000012545 processing Methods 0.000 description 23
- 238000009472 formulation Methods 0.000 description 21
- 239000004094 surface-active agent Substances 0.000 description 21
- 230000008569 process Effects 0.000 description 20
- 229920003232 aliphatic polyester Polymers 0.000 description 19
- 150000003839 salts Chemical class 0.000 description 18
- 239000004745 nonwoven fabric Substances 0.000 description 17
- 239000004927 clay Substances 0.000 description 16
- 239000002253 acid Substances 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- 229920000728 polyester Polymers 0.000 description 14
- 229920005601 base polymer Polymers 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Chemical class 0.000 description 13
- 150000004767 nitrides Chemical class 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- 238000005227 gel permeation chromatography Methods 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 238000001238 wet grinding Methods 0.000 description 12
- 230000014759 maintenance of location Effects 0.000 description 11
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 10
- 239000000314 lubricant Substances 0.000 description 10
- 239000004593 Epoxy Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 238000000227 grinding Methods 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 238000002425 crystallisation Methods 0.000 description 8
- 230000008025 crystallization Effects 0.000 description 8
- 238000006731 degradation reaction Methods 0.000 description 8
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical class O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 8
- 238000001125 extrusion Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- 235000019198 oils Nutrition 0.000 description 8
- 239000007858 starting material Substances 0.000 description 8
- GPZYYYGYCRFPBU-UHFFFAOYSA-N 6-Hydroxyflavone Chemical compound C=1C(=O)C2=CC(O)=CC=C2OC=1C1=CC=CC=C1 GPZYYYGYCRFPBU-UHFFFAOYSA-N 0.000 description 7
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 7
- ZFOZVQLOBQUTQQ-UHFFFAOYSA-N Tributyl citrate Chemical compound CCCCOC(=O)CC(O)(C(=O)OCCCC)CC(=O)OCCCC ZFOZVQLOBQUTQQ-UHFFFAOYSA-N 0.000 description 7
- 238000007664 blowing Methods 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 7
- 229920001169 thermoplastic Polymers 0.000 description 7
- 239000004416 thermosoftening plastic Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 230000032683 aging Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000003431 cross linking reagent Substances 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 6
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 229920002223 polystyrene Polymers 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229920001634 Copolyester Polymers 0.000 description 5
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Chemical compound CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 229920005692 JONCRYL® Polymers 0.000 description 5
- WHBMMWSBFZVSSR-UHFFFAOYSA-N R3HBA Natural products CC(O)CC(O)=O WHBMMWSBFZVSSR-UHFFFAOYSA-N 0.000 description 5
- 125000001931 aliphatic group Chemical group 0.000 description 5
- 238000000137 annealing Methods 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 238000013329 compounding Methods 0.000 description 5
- 150000002009 diols Chemical class 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 150000002924 oxiranes Chemical group 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 238000006068 polycondensation reaction Methods 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000003549 soybean oil Substances 0.000 description 5
- 235000012424 soybean oil Nutrition 0.000 description 5
- 239000001993 wax Substances 0.000 description 5
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 4
- WHBMMWSBFZVSSR-UHFFFAOYSA-M 3-hydroxybutyrate Chemical compound CC(O)CC([O-])=O WHBMMWSBFZVSSR-UHFFFAOYSA-M 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 4
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 4
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 125000003700 epoxy group Chemical group 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 238000010902 jet-milling Methods 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 239000002480 mineral oil Substances 0.000 description 4
- 235000010446 mineral oil Nutrition 0.000 description 4
- 229910052901 montmorillonite Inorganic materials 0.000 description 4
- 239000012802 nanoclay Substances 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 229920001707 polybutylene terephthalate Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920002959 polymer blend Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 238000004064 recycling Methods 0.000 description 4
- 238000000518 rheometry Methods 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 3
- JJGBFZZXKPWGCW-UHFFFAOYSA-N 2,3-bis[8-[3-[(3-pentyloxiran-2-yl)methyl]oxiran-2-yl]octanoyloxy]propyl 8-[3-[(3-pentyloxiran-2-yl)methyl]oxiran-2-yl]octanoate Chemical compound CCCCCC1OC1CC1C(CCCCCCCC(=O)OCC(COC(=O)CCCCCCCC2C(O2)CC2C(O2)CCCCC)OC(=O)CCCCCCCC2C(O2)CC2C(O2)CCCCC)O1 JJGBFZZXKPWGCW-UHFFFAOYSA-N 0.000 description 3
- CPIVYSAVIPTCCX-UHFFFAOYSA-N 4-methylpentan-2-yl acetate Chemical compound CC(C)CC(C)OC(C)=O CPIVYSAVIPTCCX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 239000005995 Aluminium silicate Substances 0.000 description 3
- 241001474374 Blennius Species 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 239000005639 Lauric acid Substances 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- 235000021314 Palmitic acid Nutrition 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 235000021355 Stearic acid Nutrition 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 229920006397 acrylic thermoplastic Polymers 0.000 description 3
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 235000012211 aluminium silicate Nutrition 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 229920002988 biodegradable polymer Polymers 0.000 description 3
- 239000004621 biodegradable polymer Substances 0.000 description 3
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 3
- 239000006085 branching agent Substances 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 150000007942 carboxylates Chemical group 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000005341 cation exchange Methods 0.000 description 3
- 239000003026 cod liver oil Substances 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 229920005839 ecoflex® Polymers 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 238000010128 melt processing Methods 0.000 description 3
- 239000004750 melt-blown nonwoven Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000010445 mica Substances 0.000 description 3
- 229910052618 mica group Inorganic materials 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 229920002961 polybutylene succinate Polymers 0.000 description 3
- 239000004631 polybutylene succinate Substances 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical class O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000007655 standard test method Methods 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- 229920002725 thermoplastic elastomer Polymers 0.000 description 3
- 239000004636 vulcanized rubber Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- UBOXGVDOUJQMTN-UHFFFAOYSA-N 1,1,2-trichloroethane Chemical compound ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 2
- QMMJWQMCMRUYTG-UHFFFAOYSA-N 1,2,4,5-tetrachloro-3-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=C(Cl)C(Cl)=CC(Cl)=C1Cl QMMJWQMCMRUYTG-UHFFFAOYSA-N 0.000 description 2
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- KVNYFPKFSJIPBJ-UHFFFAOYSA-N 1,2-diethylbenzene Chemical compound CCC1=CC=CC=C1CC KVNYFPKFSJIPBJ-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- SQCZQTSHSZLZIQ-UHFFFAOYSA-N 1-chloropentane Chemical compound CCCCCCl SQCZQTSHSZLZIQ-UHFFFAOYSA-N 0.000 description 2
- HNRMPXKDFBEGFZ-UHFFFAOYSA-N 2,2-dimethylbutane Chemical compound CCC(C)(C)C HNRMPXKDFBEGFZ-UHFFFAOYSA-N 0.000 description 2
- WCOXQTXVACYMLM-UHFFFAOYSA-N 2,3-bis(12-hydroxyoctadecanoyloxy)propyl 12-hydroxyoctadecanoate Chemical compound CCCCCCC(O)CCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCC(O)CCCCCC)COC(=O)CCCCCCCCCCC(O)CCCCCC WCOXQTXVACYMLM-UHFFFAOYSA-N 0.000 description 2
- OJVAMHKKJGICOG-UHFFFAOYSA-N 2,5-hexanedione Chemical compound CC(=O)CCC(C)=O OJVAMHKKJGICOG-UHFFFAOYSA-N 0.000 description 2
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- VQKFNUFAXTZWDK-UHFFFAOYSA-N 2-Methylfuran Chemical compound CC1=CC=CO1 VQKFNUFAXTZWDK-UHFFFAOYSA-N 0.000 description 2
- AFABGHUZZDYHJO-UHFFFAOYSA-N 2-Methylpentane Chemical compound CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 2
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 2
- LVAGMBHLXLZJKZ-UHFFFAOYSA-N 2-o-decyl 1-o-octyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC LVAGMBHLXLZJKZ-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- ALRHLSYJTWAHJZ-UHFFFAOYSA-M 3-hydroxypropionate Chemical compound OCCC([O-])=O ALRHLSYJTWAHJZ-UHFFFAOYSA-M 0.000 description 2
- HCFAJYNVAYBARA-UHFFFAOYSA-N 4-heptanone Chemical compound CCCC(=O)CCC HCFAJYNVAYBARA-UHFFFAOYSA-N 0.000 description 2
- FMHKPLXYWVCLME-UHFFFAOYSA-N 4-hydroxy-valeric acid Chemical compound CC(O)CCC(O)=O FMHKPLXYWVCLME-UHFFFAOYSA-N 0.000 description 2
- REIDAMBAPLIATC-UHFFFAOYSA-N 4-methoxycarbonylbenzoic acid Chemical compound COC(=O)C1=CC=C(C(O)=O)C=C1 REIDAMBAPLIATC-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- 241001133760 Acoelorraphe Species 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 235000017060 Arachis glabrata Nutrition 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- 235000010777 Arachis hypogaea Nutrition 0.000 description 2
- 235000018262 Arachis monticola Nutrition 0.000 description 2
- IRIAEXORFWYRCZ-UHFFFAOYSA-N Butylbenzyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCC1=CC=CC=C1 IRIAEXORFWYRCZ-UHFFFAOYSA-N 0.000 description 2
- 239000004970 Chain extender Substances 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- 229940126062 Compound A Drugs 0.000 description 2
- 241000252867 Cupriavidus metallidurans Species 0.000 description 2
- 239000004803 Di-2ethylhexylphthalate Substances 0.000 description 2
- KCXZNSGUUQJJTR-UHFFFAOYSA-N Di-n-hexyl phthalate Chemical compound CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCC KCXZNSGUUQJJTR-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 2
- 229920003314 Elvaloy® Polymers 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 2
- XINCECQTMHSORG-UHFFFAOYSA-N Isoamyl isovalerate Chemical compound CC(C)CCOC(=O)CC(C)C XINCECQTMHSORG-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 240000006240 Linum usitatissimum Species 0.000 description 2
- 235000004431 Linum usitatissimum Nutrition 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 229920001410 Microfiber Polymers 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 240000007817 Olea europaea Species 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- JKRZOJADNVOXPM-UHFFFAOYSA-N Oxalic acid dibutyl ester Chemical compound CCCCOC(=O)C(=O)OCCCC JKRZOJADNVOXPM-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- PWATWSYOIIXYMA-UHFFFAOYSA-N Pentylbenzene Chemical compound CCCCCC1=CC=CC=C1 PWATWSYOIIXYMA-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- IYFATESGLOUGBX-YVNJGZBMSA-N Sorbitan monopalmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O IYFATESGLOUGBX-YVNJGZBMSA-N 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 150000001279 adipic acids Chemical class 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 125000005037 alkyl phenyl group Chemical group 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- QUKGYYKBILRGFE-UHFFFAOYSA-N benzyl acetate Chemical compound CC(=O)OCC1=CC=CC=C1 QUKGYYKBILRGFE-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 229920000704 biodegradable plastic Polymers 0.000 description 2
- 229920000229 biodegradable polyester Polymers 0.000 description 2
- 239000004622 biodegradable polyester Substances 0.000 description 2
- SCABKEBYDRTODC-UHFFFAOYSA-N bis[2-(2-butoxyethoxy)ethyl] hexanedioate Chemical compound CCCCOCCOCCOC(=O)CCCCC(=O)OCCOCCOCCCC SCABKEBYDRTODC-UHFFFAOYSA-N 0.000 description 2
- QARVLSVVCXYDNA-UHFFFAOYSA-N bromobenzene Chemical compound BrC1=CC=CC=C1 QARVLSVVCXYDNA-UHFFFAOYSA-N 0.000 description 2
- JPOXNPPZZKNXOV-UHFFFAOYSA-N bromochloromethane Chemical compound ClCBr JPOXNPPZZKNXOV-UHFFFAOYSA-N 0.000 description 2
- GZUXJHMPEANEGY-UHFFFAOYSA-N bromomethane Chemical compound BrC GZUXJHMPEANEGY-UHFFFAOYSA-N 0.000 description 2
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- XSIFPSYPOVKYCO-UHFFFAOYSA-N butyl benzoate Chemical compound CCCCOC(=O)C1=CC=CC=C1 XSIFPSYPOVKYCO-UHFFFAOYSA-N 0.000 description 2
- XUPYJHCZDLZNFP-UHFFFAOYSA-N butyl butanoate Chemical compound CCCCOC(=O)CCC XUPYJHCZDLZNFP-UHFFFAOYSA-N 0.000 description 2
- NMJJFJNHVMGPGM-UHFFFAOYSA-N butyl formate Chemical compound CCCCOC=O NMJJFJNHVMGPGM-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 229910052570 clay Inorganic materials 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 2
- 229960001826 dimethylphthalate Drugs 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical compound CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 235000004426 flaxseed Nutrition 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 2
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 2
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 2
- NGAZZOYFWWSOGK-UHFFFAOYSA-N heptan-3-one Chemical compound CCCCC(=O)CC NGAZZOYFWWSOGK-UHFFFAOYSA-N 0.000 description 2
- XMHIUKTWLZUKEX-UHFFFAOYSA-N hexacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O XMHIUKTWLZUKEX-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- MLFHJEHSLIIPHL-UHFFFAOYSA-N isoamyl acetate Chemical compound CC(C)CCOC(C)=O MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.000 description 2
- PQLMXFQTAMDXIZ-UHFFFAOYSA-N isoamyl butyrate Chemical compound CCCC(=O)OCCC(C)C PQLMXFQTAMDXIZ-UHFFFAOYSA-N 0.000 description 2
- XAOGXQMKWQFZEM-UHFFFAOYSA-N isoamyl propanoate Chemical compound CCC(=O)OCCC(C)C XAOGXQMKWQFZEM-UHFFFAOYSA-N 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 239000003658 microfiber Substances 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 2
- UTOPWMOLSKOLTQ-UHFFFAOYSA-N octacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O UTOPWMOLSKOLTQ-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 235000021313 oleic acid Nutrition 0.000 description 2
- 238000000399 optical microscopy Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- HFPZCAJZSCWRBC-UHFFFAOYSA-N p-cymene Chemical compound CC(C)C1=CC=C(C)C=C1 HFPZCAJZSCWRBC-UHFFFAOYSA-N 0.000 description 2
- CFJYNSNXFXLKNS-UHFFFAOYSA-N p-menthane Chemical compound CC(C)C1CCC(C)CC1 CFJYNSNXFXLKNS-UHFFFAOYSA-N 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 235000020232 peanut Nutrition 0.000 description 2
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- QMMOXUPEWRXHJS-UHFFFAOYSA-N pentene-2 Natural products CCC=CC QMMOXUPEWRXHJS-UHFFFAOYSA-N 0.000 description 2
- PGMYKACGEOXYJE-UHFFFAOYSA-N pentyl acetate Chemical compound CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000004629 polybutylene adipate terephthalate Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000010094 polymer processing Methods 0.000 description 2
- 239000002952 polymeric resin Substances 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N propyl acetate Chemical compound CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 150000003504 terephthalic acids Chemical class 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical class CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- VHOCUJPBKOZGJD-UHFFFAOYSA-N triacontanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O VHOCUJPBKOZGJD-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 235000014692 zinc oxide Nutrition 0.000 description 2
- XBUXARJOYUQNTC-UHFFFAOYSA-N ()-3-Hydroxynonanoic acid Chemical compound CCCCCCC(O)CC(O)=O XBUXARJOYUQNTC-UHFFFAOYSA-N 0.000 description 1
- HDUNAIVOFOKALD-RLCYQCIGSA-N (1s,2s)-1-[(4r)-2-(4-methylphenyl)-1,3-dioxolan-4-yl]-2-[(4s)-2-(4-methylphenyl)-1,3-dioxolan-4-yl]ethane-1,2-diol Chemical compound C1=CC(C)=CC=C1C1O[C@@H]([C@@H](O)[C@H](O)[C@H]2OC(OC2)C=2C=CC(C)=CC=2)CO1 HDUNAIVOFOKALD-RLCYQCIGSA-N 0.000 description 1
- HFVMEOPYDLEHBR-UHFFFAOYSA-N (2-fluorophenyl)-phenylmethanol Chemical compound C=1C=CC=C(F)C=1C(O)C1=CC=CC=C1 HFVMEOPYDLEHBR-UHFFFAOYSA-N 0.000 description 1
- OHWBOQAWKNFLRG-UEQSERJNSA-N (3s,4s,5s,6r)-1,8-bis(4-ethylphenyl)octa-1,7-diene-2,3,4,5,6,7-hexol Chemical compound C1=CC(CC)=CC=C1C=C(O)[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=CC1=CC=C(CC)C=C1 OHWBOQAWKNFLRG-UEQSERJNSA-N 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- AFENDNXGAFYKQO-VKHMYHEASA-N (S)-2-hydroxybutyric acid Chemical compound CC[C@H](O)C(O)=O AFENDNXGAFYKQO-VKHMYHEASA-N 0.000 description 1
- FYSSBMZUBSBFJL-VIFPVBQESA-N (S)-3-hydroxydecanoic acid Chemical compound CCCCCCC[C@H](O)CC(O)=O FYSSBMZUBSBFJL-VIFPVBQESA-N 0.000 description 1
- PLELHVCQAULGBH-OUKQBFOZSA-N (e)-1,3-diphenylbut-2-en-1-one Chemical compound C=1C=CC=CC=1C(/C)=C/C(=O)C1=CC=CC=C1 PLELHVCQAULGBH-OUKQBFOZSA-N 0.000 description 1
- RVHSTXJKKZWWDQ-UHFFFAOYSA-N 1,1,1,2-tetrabromoethane Chemical compound BrCC(Br)(Br)Br RVHSTXJKKZWWDQ-UHFFFAOYSA-N 0.000 description 1
- QVLAWKAXOMEXPM-UHFFFAOYSA-N 1,1,1,2-tetrachloroethane Chemical compound ClCC(Cl)(Cl)Cl QVLAWKAXOMEXPM-UHFFFAOYSA-N 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- AJDIZQLSFPQPEY-UHFFFAOYSA-N 1,1,2-Trichlorotrifluoroethane Chemical compound FC(F)(Cl)C(F)(Cl)Cl AJDIZQLSFPQPEY-UHFFFAOYSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- PGEVTVXEERFABN-UHFFFAOYSA-N 1,1-dichloropentane Chemical compound CCCCC(Cl)Cl PGEVTVXEERFABN-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- WQONPSCCEXUXTQ-UHFFFAOYSA-N 1,2-dibromobenzene Chemical compound BrC1=CC=CC=C1Br WQONPSCCEXUXTQ-UHFFFAOYSA-N 0.000 description 1
- PAAZPARNPHGIKF-UHFFFAOYSA-N 1,2-dibromoethane Chemical compound BrCCBr PAAZPARNPHGIKF-UHFFFAOYSA-N 0.000 description 1
- KNKRKFALVUDBJE-UHFFFAOYSA-N 1,2-dichloropropane Chemical compound CC(Cl)CCl KNKRKFALVUDBJE-UHFFFAOYSA-N 0.000 description 1
- WJECKFZULSWXPN-UHFFFAOYSA-N 1,2-didodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1CCCCCCCCCCCC WJECKFZULSWXPN-UHFFFAOYSA-N 0.000 description 1
- FQYVVSNFPLKMNU-UHFFFAOYSA-N 1,2-dipentylbenzene Chemical compound CCCCCC1=CC=CC=C1CCCCC FQYVVSNFPLKMNU-UHFFFAOYSA-N 0.000 description 1
- OZXIZRZFGJZWBF-UHFFFAOYSA-N 1,3,5-trimethyl-2-(2,4,6-trimethylphenoxy)benzene Chemical compound CC1=CC(C)=CC(C)=C1OC1=C(C)C=C(C)C=C1C OZXIZRZFGJZWBF-UHFFFAOYSA-N 0.000 description 1
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical compound C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- RLPSARLYTKXVSE-UHFFFAOYSA-N 1-(1,3-thiazol-5-yl)ethanamine Chemical compound CC(N)C1=CN=CS1 RLPSARLYTKXVSE-UHFFFAOYSA-N 0.000 description 1
- CHLICZRVGGXEOD-UHFFFAOYSA-N 1-Methoxy-4-methylbenzene Chemical compound COC1=CC=C(C)C=C1 CHLICZRVGGXEOD-UHFFFAOYSA-N 0.000 description 1
- HNAGHMKIPMKKBB-UHFFFAOYSA-N 1-benzylpyrrolidine-3-carboxamide Chemical compound C1C(C(=O)N)CCN1CC1=CC=CC=C1 HNAGHMKIPMKKBB-UHFFFAOYSA-N 0.000 description 1
- IBYHHJPAARCAIE-UHFFFAOYSA-N 1-bromo-2-chloroethane Chemical compound ClCCBr IBYHHJPAARCAIE-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- BHNZEZWIUMJCGF-UHFFFAOYSA-N 1-chloro-1,1-difluoroethane Chemical compound CC(F)(F)Cl BHNZEZWIUMJCGF-UHFFFAOYSA-N 0.000 description 1
- IBSQPLPBRSHTTG-UHFFFAOYSA-N 1-chloro-2-methylbenzene Chemical compound CC1=CC=CC=C1Cl IBSQPLPBRSHTTG-UHFFFAOYSA-N 0.000 description 1
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical compound CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- MLRVZFYXUZQSRU-UHFFFAOYSA-N 1-chlorohexane Chemical compound CCCCCCCl MLRVZFYXUZQSRU-UHFFFAOYSA-N 0.000 description 1
- JTPNRXUCIXHOKM-UHFFFAOYSA-N 1-chloronaphthalene Chemical compound C1=CC=C2C(Cl)=CC=CC2=C1 JTPNRXUCIXHOKM-UHFFFAOYSA-N 0.000 description 1
- BPIUIOXAFBGMNB-UHFFFAOYSA-N 1-hexoxyhexane Chemical compound CCCCCCOCCCCCC BPIUIOXAFBGMNB-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- JSZOAYXJRCEYSX-UHFFFAOYSA-N 1-nitropropane Chemical compound CCC[N+]([O-])=O JSZOAYXJRCEYSX-UHFFFAOYSA-N 0.000 description 1
- NVXYNWZJMIFTMV-UHFFFAOYSA-N 10-o-benzyl 1-o-butyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCC1=CC=CC=C1 NVXYNWZJMIFTMV-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- AZUZXLJWMIQRKG-UHFFFAOYSA-N 2-(8-methylnonyl)-2-sulfobutanedioic acid Chemical compound CC(C)CCCCCCCC(S(O)(=O)=O)(C(O)=O)CC(O)=O AZUZXLJWMIQRKG-UHFFFAOYSA-N 0.000 description 1
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 1
- HQLKZWRSOHTERR-UHFFFAOYSA-N 2-Ethylbutyl acetate Chemical compound CCC(CC)COC(C)=O HQLKZWRSOHTERR-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- AVMSWPWPYJVYKY-UHFFFAOYSA-N 2-Methylpropyl formate Chemical compound CC(C)COC=O AVMSWPWPYJVYKY-UHFFFAOYSA-N 0.000 description 1
- YCAJENWBJXXARG-UHFFFAOYSA-N 2-decoxycarbonyl-5-octoxycarbonylbenzoic acid Chemical compound CCCCCCCCCCOC(=O)C1=CC=C(C(=O)OCCCCCCCC)C=C1C(O)=O YCAJENWBJXXARG-UHFFFAOYSA-N 0.000 description 1
- FEFCILUKYGHITK-UHFFFAOYSA-N 2-decoxycarbonylbenzoic acid Chemical compound CCCCCCCCCCOC(=O)C1=CC=CC=C1C(O)=O FEFCILUKYGHITK-UHFFFAOYSA-N 0.000 description 1
- LIAWCKFOFPPVGF-UHFFFAOYSA-N 2-ethyladamantane Chemical compound C1C(C2)CC3CC1C(CC)C2C3 LIAWCKFOFPPVGF-UHFFFAOYSA-N 0.000 description 1
- WOYWLLHHWAMFCB-UHFFFAOYSA-N 2-ethylhexyl acetate Chemical compound CCCCC(CC)COC(C)=O WOYWLLHHWAMFCB-UHFFFAOYSA-N 0.000 description 1
- YDZIJQXINJLRLL-UHFFFAOYSA-N 2-hydroxydodecanoic acid Chemical compound CCCCCCCCCCC(O)C(O)=O YDZIJQXINJLRLL-UHFFFAOYSA-N 0.000 description 1
- BSKHPKMHTQYZBB-UHFFFAOYSA-N 2-methylpyridine Chemical compound CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 description 1
- PZBLUWVMZMXIKZ-UHFFFAOYSA-N 2-o-(2-ethoxy-2-oxoethyl) 1-o-ethyl benzene-1,2-dicarboxylate Chemical compound CCOC(=O)COC(=O)C1=CC=CC=C1C(=O)OCC PZBLUWVMZMXIKZ-UHFFFAOYSA-N 0.000 description 1
- YJERZJLSXBRUDQ-UHFFFAOYSA-N 2-o-(3,4-dihydroxybutyl) 1-o-methyl benzene-1,2-dicarboxylate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OCCC(O)CO YJERZJLSXBRUDQ-UHFFFAOYSA-N 0.000 description 1
- WHHSHXMIKFVAEK-UHFFFAOYSA-N 2-o-benzyl 1-o-octyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCC1=CC=CC=C1 WHHSHXMIKFVAEK-UHFFFAOYSA-N 0.000 description 1
- OMQBXAQAHHFSST-UHFFFAOYSA-N 2-o-decyl 1-o-hexyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCC OMQBXAQAHHFSST-UHFFFAOYSA-N 0.000 description 1
- ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 2-octanone Chemical compound CCCCCCC(C)=O ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 0.000 description 1
- JTXUVHFRSRTSAT-UHFFFAOYSA-N 3,5,5-trimethylhex-1-ene Chemical compound C=CC(C)CC(C)(C)C JTXUVHFRSRTSAT-UHFFFAOYSA-N 0.000 description 1
- ALKCLFLTXBBMMP-UHFFFAOYSA-N 3,7-dimethylocta-1,6-dien-3-yl hexanoate Chemical compound CCCCCC(=O)OC(C)(C=C)CCC=C(C)C ALKCLFLTXBBMMP-UHFFFAOYSA-N 0.000 description 1
- WLVCBAMXYMWGLJ-UHFFFAOYSA-N 3-(chloromethyl)heptane Chemical compound CCCCC(CC)CCl WLVCBAMXYMWGLJ-UHFFFAOYSA-N 0.000 description 1
- MLLAPOCBLWUFAP-UHFFFAOYSA-N 3-Methylbutyl benzoate Chemical compound CC(C)CCOC(=O)C1=CC=CC=C1 MLLAPOCBLWUFAP-UHFFFAOYSA-N 0.000 description 1
- OXSSIXNFGTZQMZ-UHFFFAOYSA-N 3-hydroxyheptanoic acid Chemical compound CCCCC(O)CC(O)=O OXSSIXNFGTZQMZ-UHFFFAOYSA-N 0.000 description 1
- NDPLAKGOSZHTPH-UHFFFAOYSA-N 3-hydroxyoctanoic acid Chemical compound CCCCCC(O)CC(O)=O NDPLAKGOSZHTPH-UHFFFAOYSA-N 0.000 description 1
- WMZNGTSLFSJHMZ-UHFFFAOYSA-N 3-methoxycarbonylbenzoic acid Chemical compound COC(=O)C1=CC=CC(C(O)=O)=C1 WMZNGTSLFSJHMZ-UHFFFAOYSA-N 0.000 description 1
- SIXWIUJQBBANGK-UHFFFAOYSA-N 4-(4-fluorophenyl)-1h-pyrazol-5-amine Chemical compound N1N=CC(C=2C=CC(F)=CC=2)=C1N SIXWIUJQBBANGK-UHFFFAOYSA-N 0.000 description 1
- NPDACUSDTOMAMK-UHFFFAOYSA-N 4-Chlorotoluene Chemical compound CC1=CC=C(Cl)C=C1 NPDACUSDTOMAMK-UHFFFAOYSA-N 0.000 description 1
- OPUDCYYRBATSJD-UHFFFAOYSA-N 4-amino-1-(octadecylamino)-1,4-dioxobutane-2-sulfonic acid;sodium Chemical compound [Na].[Na].CCCCCCCCCCCCCCCCCCNC(=O)C(S(O)(=O)=O)CC(N)=O OPUDCYYRBATSJD-UHFFFAOYSA-N 0.000 description 1
- SJZRECIVHVDYJC-UHFFFAOYSA-N 4-hydroxybutyric acid Chemical compound OCCCC(O)=O SJZRECIVHVDYJC-UHFFFAOYSA-N 0.000 description 1
- VGVHNLRUAMRIEW-UHFFFAOYSA-N 4-methylcyclohexan-1-one Chemical compound CC1CCC(=O)CC1 VGVHNLRUAMRIEW-UHFFFAOYSA-N 0.000 description 1
- KDVYCTOWXSLNNI-UHFFFAOYSA-N 4-t-Butylbenzoic acid Chemical compound CC(C)(C)C1=CC=C(C(O)=O)C=C1 KDVYCTOWXSLNNI-UHFFFAOYSA-N 0.000 description 1
- AWQSAIIDOMEEOD-UHFFFAOYSA-N 5,5-Dimethyl-4-(3-oxobutyl)dihydro-2(3H)-furanone Chemical compound CC(=O)CCC1CC(=O)OC1(C)C AWQSAIIDOMEEOD-UHFFFAOYSA-N 0.000 description 1
- DMIMWGHYIPFAIF-UHFFFAOYSA-N 5-nitro-2-piperidin-1-ylaniline Chemical compound NC1=CC([N+]([O-])=O)=CC=C1N1CCCCC1 DMIMWGHYIPFAIF-UHFFFAOYSA-N 0.000 description 1
- BJIUNQZHYLBUNL-UHFFFAOYSA-N 6-heptoxy-6-oxohexanoic acid Chemical compound CCCCCCCOC(=O)CCCCC(O)=O BJIUNQZHYLBUNL-UHFFFAOYSA-N 0.000 description 1
- IWHLYPDWHHPVAA-UHFFFAOYSA-N 6-hydroxyhexanoic acid Chemical compound OCCCCCC(O)=O IWHLYPDWHHPVAA-UHFFFAOYSA-N 0.000 description 1
- OIUGWVWLEGLAGH-UHFFFAOYSA-N 6-nonoxy-6-oxohexanoic acid Chemical compound CCCCCCCCCOC(=O)CCCCC(O)=O OIUGWVWLEGLAGH-UHFFFAOYSA-N 0.000 description 1
- NWSGBTCJMJADLE-UHFFFAOYSA-N 6-o-decyl 1-o-octyl hexanedioate Chemical compound CCCCCCCCCCOC(=O)CCCCC(=O)OCCCCCCCC NWSGBTCJMJADLE-UHFFFAOYSA-N 0.000 description 1
- IHLDEDLAZNFOJB-UHFFFAOYSA-N 6-octoxy-6-oxohexanoic acid Chemical compound CCCCCCCCOC(=O)CCCCC(O)=O IHLDEDLAZNFOJB-UHFFFAOYSA-N 0.000 description 1
- JSFATNQSLKRBCI-NLORQXDXSA-N 73945-47-8 Chemical compound CCCCCC(O)\C=C\C=C\C\C=C\C\C=C\CCCC(O)=O JSFATNQSLKRBCI-NLORQXDXSA-N 0.000 description 1
- LPEKGGXMPWTOCB-UHFFFAOYSA-N 8beta-(2,3-epoxy-2-methylbutyryloxy)-14-acetoxytithifolin Natural products COC(=O)C(C)O LPEKGGXMPWTOCB-UHFFFAOYSA-N 0.000 description 1
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 241000607534 Aeromonas Species 0.000 description 1
- 241000193033 Azohydromonas lata Species 0.000 description 1
- 241000589151 Azotobacter Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- AXPZDYVDTMMLNB-UHFFFAOYSA-N Benzyl ethyl ether Chemical compound CCOCC1=CC=CC=C1 AXPZDYVDTMMLNB-UHFFFAOYSA-N 0.000 description 1
- ZNSMNVMLTJELDZ-UHFFFAOYSA-N Bis(2-chloroethyl)ether Chemical compound ClCCOCCCl ZNSMNVMLTJELDZ-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- MRABAEUHTLLEML-UHFFFAOYSA-N Butyl lactate Chemical compound CCCCOC(=O)C(C)O MRABAEUHTLLEML-UHFFFAOYSA-N 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- RBWVABQACVAXTP-UHFFFAOYSA-N C(=O)(O)C(CC(=O)O)N(C(C(CC(=O)N)S(=O)(=O)O)=O)CCCCCCCCCCCCCCCCCC.[Na].[Na].[Na].[Na] Chemical compound C(=O)(O)C(CC(=O)O)N(C(C(CC(=O)N)S(=O)(=O)O)=O)CCCCCCCCCCCCCCCCCC.[Na].[Na].[Na].[Na] RBWVABQACVAXTP-UHFFFAOYSA-N 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 241000589519 Comamonas Species 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- YYLLIJHXUHJATK-UHFFFAOYSA-N Cyclohexyl acetate Chemical compound CC(=O)OC1CCCCC1 YYLLIJHXUHJATK-UHFFFAOYSA-N 0.000 description 1
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- VOWAEIGWURALJQ-UHFFFAOYSA-N Dicyclohexyl phthalate Chemical compound C=1C=CC=C(C(=O)OC2CCCCC2)C=1C(=O)OC1CCCCC1 VOWAEIGWURALJQ-UHFFFAOYSA-N 0.000 description 1
- AQZGPSLYZOOYQP-UHFFFAOYSA-N Diisoamyl ether Chemical compound CC(C)CCOCCC(C)C AQZGPSLYZOOYQP-UHFFFAOYSA-N 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- NEHDRDVHPTWWFG-UHFFFAOYSA-N Dioctyl hexanedioate Chemical compound CCCCCCCCOC(=O)CCCCC(=O)OCCCCCCCC NEHDRDVHPTWWFG-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical group C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- KBEBGUQPQBELIU-CMDGGOBGSA-N Ethyl cinnamate Chemical compound CCOC(=O)\C=C\C1=CC=CC=C1 KBEBGUQPQBELIU-CMDGGOBGSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- WEEGYLXZBRQIMU-UHFFFAOYSA-N Eucalyptol Chemical compound C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 description 1
- 239000001293 FEMA 3089 Substances 0.000 description 1
- LTEQMZWBSYACLV-UHFFFAOYSA-N Hexylbenzene Chemical compound CCCCCCC1=CC=CC=C1 LTEQMZWBSYACLV-UHFFFAOYSA-N 0.000 description 1
- 101001035951 Homo sapiens Hyaluronan-binding protein 2 Proteins 0.000 description 1
- 101001072202 Homo sapiens Protein disulfide-isomerase Proteins 0.000 description 1
- 102100039238 Hyaluronan-binding protein 2 Human genes 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- JGFBQFKZKSSODQ-UHFFFAOYSA-N Isothiocyanatocyclopropane Chemical compound S=C=NC1CC1 JGFBQFKZKSSODQ-UHFFFAOYSA-N 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- WRQNANDWMGAFTP-UHFFFAOYSA-N Methylacetoacetic acid Chemical compound COC(=O)CC(C)=O WRQNANDWMGAFTP-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- BNUHAJGCKIQFGE-UHFFFAOYSA-N Nitroanisol Chemical compound COC1=CC=C([N+]([O-])=O)C=C1 BNUHAJGCKIQFGE-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 239000005643 Pelargonic acid Substances 0.000 description 1
- MURWRBWZIMXKGC-UHFFFAOYSA-N Phthalsaeure-butylester-octylester Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC MURWRBWZIMXKGC-UHFFFAOYSA-N 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 102100036352 Protein disulfide-isomerase Human genes 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000232299 Ralstonia Species 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- YYQRGCZGSFRBAM-UHFFFAOYSA-N Triclofos Chemical compound OP(O)(=O)OCC(Cl)(Cl)Cl YYQRGCZGSFRBAM-UHFFFAOYSA-N 0.000 description 1
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- IPTNXMGXEGQYSY-UHFFFAOYSA-N acetic acid;1-methoxybutan-1-ol Chemical compound CC(O)=O.CCCC(O)OC IPTNXMGXEGQYSY-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- JPNZKPRONVOMLL-UHFFFAOYSA-N azane;octadecanoic acid Chemical class [NH4+].CCCCCCCCCCCCCCCCCC([O-])=O JPNZKPRONVOMLL-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- 235000012216 bentonite Nutrition 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- UDEWPOVQBGFNGE-UHFFFAOYSA-N benzoic acid n-propyl ester Natural products CCCOC(=O)C1=CC=CC=C1 UDEWPOVQBGFNGE-UHFFFAOYSA-N 0.000 description 1
- 229940007550 benzyl acetate Drugs 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- ZFMQKOWCDKKBIF-UHFFFAOYSA-N bis(3,5-difluorophenyl)phosphane Chemical compound FC1=CC(F)=CC(PC=2C=C(F)C=C(F)C=2)=C1 ZFMQKOWCDKKBIF-UHFFFAOYSA-N 0.000 description 1
- NMZURFAPYNEBQQ-UHFFFAOYSA-M bis(4-tert-butylphenyl) phosphate Chemical class C1=CC(C(C)(C)C)=CC=C1OP([O-])(=O)OC1=CC=C(C(C)(C)C)C=C1 NMZURFAPYNEBQQ-UHFFFAOYSA-M 0.000 description 1
- ZWYAVGUHWPLBGT-UHFFFAOYSA-N bis(6-methylheptyl) decanedioate Chemical compound CC(C)CCCCCOC(=O)CCCCCCCCC(=O)OCCCCCC(C)C ZWYAVGUHWPLBGT-UHFFFAOYSA-N 0.000 description 1
- CJFLBOQMPJCWLR-UHFFFAOYSA-N bis(6-methylheptyl) hexanedioate Chemical compound CC(C)CCCCCOC(=O)CCCCC(=O)OCCCCCC(C)C CJFLBOQMPJCWLR-UHFFFAOYSA-N 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- RDHPKYGYEGBMSE-UHFFFAOYSA-N bromoethane Chemical compound CCBr RDHPKYGYEGBMSE-UHFFFAOYSA-N 0.000 description 1
- RJCQBQGAPKAMLL-UHFFFAOYSA-N bromotrifluoromethane Chemical compound FC(F)(F)Br RJCQBQGAPKAMLL-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- OBNCKNCVKJNDBV-UHFFFAOYSA-N butanoic acid ethyl ester Natural products CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 description 1
- YFNONBGXNFCTMM-UHFFFAOYSA-N butoxybenzene Chemical compound CCCCOC1=CC=CC=C1 YFNONBGXNFCTMM-UHFFFAOYSA-N 0.000 description 1
- 239000001191 butyl (2R)-2-hydroxypropanoate Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QYMGIIIPAFAFRX-UHFFFAOYSA-N butyl prop-2-enoate;ethene Chemical compound C=C.CCCCOC(=O)C=C QYMGIIIPAFAFRX-UHFFFAOYSA-N 0.000 description 1
- BTMVHUNTONAYDX-UHFFFAOYSA-N butyl propionate Chemical compound CCCCOC(=O)CC BTMVHUNTONAYDX-UHFFFAOYSA-N 0.000 description 1
- PWLNAUNEAKQYLH-UHFFFAOYSA-N butyric acid octyl ester Natural products CCCCCCCCOC(=O)CCC PWLNAUNEAKQYLH-UHFFFAOYSA-N 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical class [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 229960000411 camphor oil Drugs 0.000 description 1
- 239000010624 camphor oil Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- 229930007050 cineol Natural products 0.000 description 1
- 229960005233 cineole Drugs 0.000 description 1
- KBEBGUQPQBELIU-UHFFFAOYSA-N cinnamic acid ethyl ester Natural products CCOC(=O)C=CC1=CC=CC=C1 KBEBGUQPQBELIU-UHFFFAOYSA-N 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 235000012716 cod liver oil Nutrition 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- UCVPKAZCQPRWAY-UHFFFAOYSA-N dibenzyl benzene-1,2-dicarboxylate Chemical compound C=1C=CC=C(C(=O)OCC=2C=CC=CC=2)C=1C(=O)OCC1=CC=CC=C1 UCVPKAZCQPRWAY-UHFFFAOYSA-N 0.000 description 1
- PCYQQSKDZQTOQG-NXEZZACHSA-N dibutyl (2r,3r)-2,3-dihydroxybutanedioate Chemical compound CCCCOC(=O)[C@H](O)[C@@H](O)C(=O)OCCCC PCYQQSKDZQTOQG-NXEZZACHSA-N 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- UMNKXPULIDJLSU-UHFFFAOYSA-N dichlorofluoromethane Chemical compound FC(Cl)Cl UMNKXPULIDJLSU-UHFFFAOYSA-N 0.000 description 1
- HCQHIEGYGGJLJU-UHFFFAOYSA-N didecyl hexanedioate Chemical compound CCCCCCCCCCOC(=O)CCCCC(=O)OCCCCCCCCCC HCQHIEGYGGJLJU-UHFFFAOYSA-N 0.000 description 1
- PUFGCEQWYLJYNJ-UHFFFAOYSA-N didodecyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCCCCC PUFGCEQWYLJYNJ-UHFFFAOYSA-N 0.000 description 1
- WYACBZDAHNBPPB-UHFFFAOYSA-N diethyl oxalate Chemical compound CCOC(=O)C(=O)OCC WYACBZDAHNBPPB-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- HBGGXOJOCNVPFY-UHFFFAOYSA-N diisononyl phthalate Chemical compound CC(C)CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC(C)C HBGGXOJOCNVPFY-UHFFFAOYSA-N 0.000 description 1
- NKDDWNXOKDWJAK-UHFFFAOYSA-N dimethoxymethane Chemical compound COCOC NKDDWNXOKDWJAK-UHFFFAOYSA-N 0.000 description 1
- XTDYIOOONNVFMA-UHFFFAOYSA-N dimethyl pentanedioate Chemical compound COC(=O)CCCC(=O)OC XTDYIOOONNVFMA-UHFFFAOYSA-N 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- HPYNZHMRTTWQTB-UHFFFAOYSA-N dimethylpyridine Natural products CC1=CC=CN=C1C HPYNZHMRTTWQTB-UHFFFAOYSA-N 0.000 description 1
- DROMNWUQASBTFM-UHFFFAOYSA-N dinonyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCC DROMNWUQASBTFM-UHFFFAOYSA-N 0.000 description 1
- RLRMXWDXPLINPJ-UHFFFAOYSA-N dioctan-2-yl benzene-1,2-dicarboxylate Chemical compound CCCCCCC(C)OC(=O)C1=CC=CC=C1C(=O)OC(C)CCCCCC RLRMXWDXPLINPJ-UHFFFAOYSA-N 0.000 description 1
- LERGDXJITDVDBZ-UHFFFAOYSA-N dioctyl benzene-1,3-dicarboxylate Chemical compound CCCCCCCCOC(=O)C1=CC=CC(C(=O)OCCCCCCCC)=C1 LERGDXJITDVDBZ-UHFFFAOYSA-N 0.000 description 1
- OEIWPNWSDYFMIL-UHFFFAOYSA-N dioctyl benzene-1,4-dicarboxylate Chemical compound CCCCCCCCOC(=O)C1=CC=C(C(=O)OCCCCCCCC)C=C1 OEIWPNWSDYFMIL-UHFFFAOYSA-N 0.000 description 1
- MIMDHDXOBDPUQW-UHFFFAOYSA-N dioctyl decanedioate Chemical compound CCCCCCCCOC(=O)CCCCCCCCC(=O)OCCCCCCCC MIMDHDXOBDPUQW-UHFFFAOYSA-N 0.000 description 1
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 1
- XAHVPYNDLCTDTE-UHFFFAOYSA-N dipentyl oxalate Chemical compound CCCCCOC(=O)C(=O)OCCCCC XAHVPYNDLCTDTE-UHFFFAOYSA-N 0.000 description 1
- ASMQGLCHMVWBQR-UHFFFAOYSA-M diphenyl phosphate Chemical compound C=1C=CC=CC=1OP(=O)([O-])OC1=CC=CC=C1 ASMQGLCHMVWBQR-UHFFFAOYSA-M 0.000 description 1
- KUMNEOGIHFCNQW-UHFFFAOYSA-N diphenyl phosphite Chemical compound C=1C=CC=CC=1OP([O-])OC1=CC=CC=C1 KUMNEOGIHFCNQW-UHFFFAOYSA-N 0.000 description 1
- RZMWTGFSAMRLQH-UHFFFAOYSA-L disodium;2,2-dihexyl-3-sulfobutanedioate Chemical compound [Na+].[Na+].CCCCCCC(C([O-])=O)(C(C([O-])=O)S(O)(=O)=O)CCCCCC RZMWTGFSAMRLQH-UHFFFAOYSA-L 0.000 description 1
- YHAIUSTWZPMYGG-UHFFFAOYSA-L disodium;2,2-dioctyl-3-sulfobutanedioate Chemical compound [Na+].[Na+].CCCCCCCCC(C([O-])=O)(C(C([O-])=O)S(O)(=O)=O)CCCCCCCC YHAIUSTWZPMYGG-UHFFFAOYSA-L 0.000 description 1
- YCZJVRCZIPDYHH-UHFFFAOYSA-N ditridecyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCCCCCC YCZJVRCZIPDYHH-UHFFFAOYSA-N 0.000 description 1
- QQVHEQUEHCEAKS-UHFFFAOYSA-N diundecyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCCCC QQVHEQUEHCEAKS-UHFFFAOYSA-N 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 1
- 229920013728 elastomeric terpolymer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000006872 enzymatic polymerization reaction Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- LDLDYFCCDKENPD-UHFFFAOYSA-N ethenylcyclohexane Chemical compound C=CC1CCCCC1 LDLDYFCCDKENPD-UHFFFAOYSA-N 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- ZANNOFHADGWOLI-UHFFFAOYSA-N ethyl 2-hydroxyacetate Chemical compound CCOC(=O)CO ZANNOFHADGWOLI-UHFFFAOYSA-N 0.000 description 1
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000004401 flow injection analysis Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000011874 heated mixture Substances 0.000 description 1
- VHHHONWQHHHLTI-UHFFFAOYSA-N hexachloroethane Chemical compound ClC(Cl)(Cl)C(Cl)(Cl)Cl VHHHONWQHHHLTI-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 150000001261 hydroxy acids Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 1
- 229940117955 isoamyl acetate Drugs 0.000 description 1
- 229940094941 isoamyl butyrate Drugs 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 1
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 1
- 229940011051 isopropyl acetate Drugs 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000031852 maintenance of location in cell Effects 0.000 description 1
- SHOJXDKTYKFBRD-UHFFFAOYSA-N mesityl oxide Natural products CC(C)=CC(C)=O SHOJXDKTYKFBRD-UHFFFAOYSA-N 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- IMXBRVLCKXGWSS-UHFFFAOYSA-N methyl 2-cyclohexylacetate Chemical compound COC(=O)CC1CCCCC1 IMXBRVLCKXGWSS-UHFFFAOYSA-N 0.000 description 1
- 229940095102 methyl benzoate Drugs 0.000 description 1
- 229940102396 methyl bromide Drugs 0.000 description 1
- 229940057867 methyl lactate Drugs 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- OLXYLDUSSBULGU-UHFFFAOYSA-N methyl pyridine-4-carboxylate Chemical compound COC(=O)C1=CC=NC=C1 OLXYLDUSSBULGU-UHFFFAOYSA-N 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002362 mulch Substances 0.000 description 1
- UUIQMZJEGPQKFD-UHFFFAOYSA-N n-butyric acid methyl ester Natural products CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- MCSAJNNLRCFZED-UHFFFAOYSA-N nitroethane Chemical compound CC[N+]([O-])=O MCSAJNNLRCFZED-UHFFFAOYSA-N 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical class OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 1
- 229920000847 nonoxynol Polymers 0.000 description 1
- ZWLPBLYKEWSWPD-UHFFFAOYSA-N o-toluic acid Chemical compound CC1=CC=CC=C1C(O)=O ZWLPBLYKEWSWPD-UHFFFAOYSA-N 0.000 description 1
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- YAFOVCNAQTZDQB-UHFFFAOYSA-N octyl diphenyl phosphate Chemical compound C=1C=CC=CC=1OP(=O)(OCCCCCCCC)OC1=CC=CC=C1 YAFOVCNAQTZDQB-UHFFFAOYSA-N 0.000 description 1
- IIGMITQLXAGZTL-UHFFFAOYSA-N octyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCC IIGMITQLXAGZTL-UHFFFAOYSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- YPNZYYWORCABPU-UHFFFAOYSA-N oxiran-2-ylmethyl 2-methylprop-2-enoate;styrene Chemical compound C=CC1=CC=CC=C1.CC(=C)C(=O)OCC1CO1 YPNZYYWORCABPU-UHFFFAOYSA-N 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 229930004008 p-menthane Natural products 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- 235000019809 paraffin wax Nutrition 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- BNIXVQGCZULYKV-UHFFFAOYSA-N pentachloroethane Chemical compound ClC(Cl)C(Cl)(Cl)Cl BNIXVQGCZULYKV-UHFFFAOYSA-N 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- HPUOAJPGWQQRNT-UHFFFAOYSA-N pentoxybenzene Chemical compound CCCCCOC1=CC=CC=C1 HPUOAJPGWQQRNT-UHFFFAOYSA-N 0.000 description 1
- GXOHBWLPQHTYPF-UHFFFAOYSA-N pentyl 2-hydroxypropanoate Chemical compound CCCCCOC(=O)C(C)O GXOHBWLPQHTYPF-UHFFFAOYSA-N 0.000 description 1
- MOQRZWSWPNIGMP-UHFFFAOYSA-N pentyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCC MOQRZWSWPNIGMP-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- DLRJIFUOBPOJNS-UHFFFAOYSA-N phenetole Chemical compound CCOC1=CC=CC=C1 DLRJIFUOBPOJNS-UHFFFAOYSA-N 0.000 description 1
- MTZWHHIREPJPTG-UHFFFAOYSA-N phorone Chemical compound CC(C)=CC(=O)C=C(C)C MTZWHHIREPJPTG-UHFFFAOYSA-N 0.000 description 1
- 229930193351 phorone Natural products 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- JQCXWCOOWVGKMT-UHFFFAOYSA-N phthalic acid diheptyl ester Natural products CCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC JQCXWCOOWVGKMT-UHFFFAOYSA-N 0.000 description 1
- 125000001557 phthalyl group Chemical group C(=O)(O)C1=C(C(=O)*)C=CC=C1 0.000 description 1
- 239000010665 pine oil Substances 0.000 description 1
- 239000010773 plant oil Chemical class 0.000 description 1
- 229920000071 poly(4-hydroxybutyrate) Polymers 0.000 description 1
- 229920002755 poly(epichlorohydrin) Polymers 0.000 description 1
- 229920002791 poly-4-hydroxybutyrate Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical group 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910000275 saponite Inorganic materials 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- DCKVNWZUADLDEH-UHFFFAOYSA-N sec-butyl acetate Chemical compound CCC(C)OC(C)=O DCKVNWZUADLDEH-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910021647 smectite Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical group [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- NTWXWSVUSTYPJH-UHFFFAOYSA-M sodium;1,4-bis(2-methylpropoxy)-1,4-dioxobutane-2-sulfonate Chemical compound [Na+].CC(C)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(C)C NTWXWSVUSTYPJH-UHFFFAOYSA-M 0.000 description 1
- UELAIMNOXLAYRW-UHFFFAOYSA-M sodium;1,4-dicyclohexyloxy-1,4-dioxobutane-2-sulfonate Chemical compound [Na+].C1CCCCC1OC(=O)C(S(=O)(=O)[O-])CC(=O)OC1CCCCC1 UELAIMNOXLAYRW-UHFFFAOYSA-M 0.000 description 1
- RUQIYMSRQQCKIK-UHFFFAOYSA-M sodium;2,3-di(propan-2-yl)naphthalene-1-sulfonate Chemical compound [Na+].C1=CC=C2C(S([O-])(=O)=O)=C(C(C)C)C(C(C)C)=CC2=C1 RUQIYMSRQQCKIK-UHFFFAOYSA-M 0.000 description 1
- LLHSEQCZSNZLRI-UHFFFAOYSA-M sodium;3,5-bis(methoxycarbonyl)benzenesulfonate Chemical compound [Na+].COC(=O)C1=CC(C(=O)OC)=CC(S([O-])(=O)=O)=C1 LLHSEQCZSNZLRI-UHFFFAOYSA-M 0.000 description 1
- HIEHAIZHJZLEPQ-UHFFFAOYSA-M sodium;naphthalene-1-sulfonate Chemical compound [Na+].C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 HIEHAIZHJZLEPQ-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002847 sound insulator Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- GINSRDSEEGBTJO-UHFFFAOYSA-N thietane 1-oxide Chemical compound O=S1CCC1 GINSRDSEEGBTJO-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 150000004992 toluidines Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229960001147 triclofos Drugs 0.000 description 1
- WEAPVABOECTMGR-UHFFFAOYSA-N triethyl 2-acetyloxypropane-1,2,3-tricarboxylate Chemical compound CCOC(=O)CC(C(=O)OCC)(OC(C)=O)CC(=O)OCC WEAPVABOECTMGR-UHFFFAOYSA-N 0.000 description 1
- 239000001069 triethyl citrate Substances 0.000 description 1
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 1
- 235000013769 triethyl citrate Nutrition 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- JNXDCMUUZNIWPQ-UHFFFAOYSA-N trioctyl benzene-1,2,4-tricarboxylate Chemical compound CCCCCCCCOC(=O)C1=CC=C(C(=O)OCCCCCCCC)C(C(=O)OCCCCCCCC)=C1 JNXDCMUUZNIWPQ-UHFFFAOYSA-N 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- 239000000326 ultraviolet stabilizing agent Substances 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/62—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
- D01F6/625—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters derived from hydroxy-carboxylic acids, e.g. lactones
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/78—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
- D01F6/84—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0016—Plasticisers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/11—Esters; Ether-esters of acyclic polycarboxylic acids
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Textile Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Biological Depolymerization Polymers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Artificial Filaments (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
Methods and compositions for making non-woven materials from polyhydroxyalkanoate polymers are provided. In certain aspects, the invention pertains to an extruded fiber comprising a polyhydroxyalkanoate polymer, a wet milled nucleating agent and a plasticizer, wherein the average particle size of the wet-milled nucleating agent is about 20 microns and is dispersed in the polymer.
Description
PRODUCTION OF NON-WOVEN MATERIALS FROM
POLYHYDROXYALKANOATE
RELATED APPLICATION
[0001] This application claims the benefit of U.S. Provisional Application No.
61/203,542, filed on December 23, 2008.
POLYHYDROXYALKANOATE
RELATED APPLICATION
[0001] This application claims the benefit of U.S. Provisional Application No.
61/203,542, filed on December 23, 2008.
[0002] This application also claims priority to International Application No.
PCT/US2009/041023, which designated the United States and was filed on April 17, 2009 and published in English. The entire teachings of the above applications are incorporated herein by reference.
BACKGROUND
PCT/US2009/041023, which designated the United States and was filed on April 17, 2009 and published in English. The entire teachings of the above applications are incorporated herein by reference.
BACKGROUND
[0003] Biodegradable plastics are of increasing industrial interest as replacements or supplements for non-biodegradable plastics in a wide range of applications. One class of biodegradable polymers is the polyhydroxyalkanoates (PHAs). These polymers are synthesized by soil microbes for use as intracellular storage material. Articles made from the polymers are generally recognized by soil microbes as a food source. There has therefore been a great deal of interest in the commercial development of these polymers, particularly for disposable consumer items. To date, however, PHAs have seen limited commercial availability, with only the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) being available in development quantities.
[0004] Although various PHAs are capable of being processed on conventional processing equipment, many problems have been found with the polymers. These include lack of processability in some situations, which can limit the commercial applications available for use of the polymer. Molecular weight can be difficult to maintain, and a loss of molecular weight can lead to brittleness of the final product.
In addition, the crystallization kinetics of the polymer are poorly understood, and long cycle times are often required during processing of these polymers, further limiting their commercial acceptance. This especially limits the use of the polymers in applications involving non-woven materials. A need exists for addressing these problems.
SUMMARY
In addition, the crystallization kinetics of the polymer are poorly understood, and long cycle times are often required during processing of these polymers, further limiting their commercial acceptance. This especially limits the use of the polymers in applications involving non-woven materials. A need exists for addressing these problems.
SUMMARY
[0005] The invention pertains to fiber compositions for use in making polymeric non-woven materials. In certain embodiments, the extruded melt-blown fibers comprise a polyhydroxyalkanoate polymer, a wet milled nucleating agent and a plasticizer. In certain embodiments, the nucleating agent is boron nitride. In other embodiments, the nucleating agent is in a nucleating composition. In other embodiments, the average particle size of the wet-milled nucleating agent is about 20 microns. In yet other embodiments, the plasticizer is acetyl tri-n-butyl citrate. In certain embodiments, the fiber is melt-blown. In certain embodiments, the basis weight is from about 20 to about 160 GSM (grams per square meter). In certain embodiments, the fibers comprise about 75% to about 95% by weight polyhydroxyalkanoate polymer. In other embodiments, the fiber diameter is about 0.1 to about 50 microns.
[0006] The invention also pertains to a fiber comprising a polymer, a plasticizer and a nucleating agent, wherein the nucleating agent is dispersed in the polymer and wherein at least 5% of the cumulative solid volume of the nucleating agent exists as particles with a particle size of 5 microns or less.
[0007] Disclosed herein is an extruded melt-blown fiber that includes a biologically-produced polyhydroxyalkanoate, a wet-milled nucleating agent and a plasticizer, where the fiber has a weight-average molecular weight of at least about 150 kg/mol. In other embodiments, the weight-average molecular weight is at least about 200 kg/ml, at least about 250 kg/ml.
[0008] In a particular embodiment, the fiber contains between about 75% and about 95% by weight biologically-produced polyhydroxybutyrate and between about 5% and about 15% acetyl tri-n-butyl citrate. In certain embodiment, the fiber contains between about 0.1 % to about 10 % nucleating agent or nucleating composition by weight of the total composition, for example, between about 1 %
to about 10% nucleating agent.
[0010] In certain embodiment, the molecular weight of the fibers is about 150 kg/mol to about 250 kg/mol. In any of the embodiments disclosed herein, the fiber has a molecular weight of at least about 150 kg/mol, for example, about 160 kg/mol, about 170 kg/mol, about 180 kg/mol. The fiber can have a molecular weight of at least about 200 kg/mol. In particular embodiments, the fiber can have a molecular weight of about 160 kg/mol to about 170 kg/mol, such as 166 kg/mol, 167 kg/mol, 168 kg/mol, 169 kg/mol. In other embodiments, the fiber can have a molecular weight of at least about 250 kg/mol.
[0011] Another embodiment discloses a non-woven web the includes any of the fibers disclosed herein.
[0012] Also disclosed is a disposable article that includes any of the fibers disclosed herein.
[0013] Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014] FIG. 1 is a diagram showing the general melt blowing process.
[0015] FIG. 2 is a graph showing the Universal non-woven tensile strength /
elongation curve for six samples of 90% PHB and 10% CITROFLEX A4 plasticizer.
[0016] FIG. 3 is a photomicrograph showing fibers made from 90% PHB and 10% CITROFLEX A4 plasticizer.
[0017] FIG. 4 is a graph showing the Universal non-woven tensile strength for six samples of 90% PHB and 10% CITROFLEX A4 plasticizer.
[0018] FIG. 5 is a graph showing apparent melt viscosity (pa-s) versus dwell time of the fibers made in Example 5.
[0019] FIG. 6 is a photomicrograph showing fibers made in Example 5.
DETAILED DESCRIPTION
[0020] The invention provides non-woven materials made from biologically produced polyhydroxyalkanoate (PHA) polyesters. The non-woven material can optionally include other polymers, including biodegradable or non-biodegradable polymers.
[0021] The fibers produced by the methods described herein, in particular, melt blown fibers, have reduced brittleness and improved physical properties, such as resiliency, strength and elasticity.
[0022] Many physical properties and rheological properties of polymeric materials depend on the molecular weight and distribution of the polymer.
Molecular weight is calculated in a number of different ways. Unless otherwise indicated, "molecular weight" refers to weight average molecular weight.
[0023] "Weight average molecular weight" (Mw) is the sum of the products of the molecular weight of each fraction, multiplied by its weight fraction (YNj Mi2/ NiMi). MW is generally greater than or equal to M. Mz is the Z-average of the molecular weight distribution (YNj Mi3/YNj Mi).
[0024] "Number average molecular weight" (Ma) represents the arithmetic mean of the distribution, and is the sum of the products of the molecular weights of each fraction, multiplied by its mole fraction (YN,M,/YN,).
[0025] "Molecular weight retention" is the weight-average molecular weight of the extruded fibers as a percentage of the weight average molecular weight of the starting material.
[0026] As used herein, "basis weight" is the weight of a unit area of fabric formed by the fibers described herein. It is measured in grams per square meter (GSM).
[0027] "Crystallinity" as used herein refers to the presence of three-dimensional order on the level of atomic dimensions. In polymers, the range of order may be as small as about 2 nm in one (or more) crystallographic direction(s) and is usually below 50 nm in at least one direction. Polymer crystals frequently do not display the perfection that is usual for low-molecular mass substances. Polymer crystals that can be manipulated individually are often called polymer single crystals.
[0028] "Embrittlement," as used herein, is the loss or reduction of toughness, generally caused by the loss of plasticizers by aging or overheating. Fibers become brittle and easily break over time.
[0029] "Elasticity," as used herein is a physical property that corresponds to the flexibility of a fiber or non-woven that has reversible deformation under stress. In other words, after removal of a stress the material has the ability to return to its original state.
[0030] The "thermal stability" of a polymer sample is measured in two different ways. The thermal stability is represented herein by a sample's "k," which shows the change in Mw over time. It can also be measured by melt capillary stability (MCS), which shows the change in the capillary shear viscosity over time.
[0031] Tensile properties are measured according to ASTM D412, Test method A-Standard Test Method for Vulcanized Rubber and Thermoplastic Elastomers as provided by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 USA.
[0032] "Tensile strength" refers to the measure of the ability of a polymer to withstand pulling stresses.
[0033] "Tensile modulus" refer to the ratio of stress to strain for a given material within its proportional limit.
[0034] "Toughness", as used herein, refers to a property of a material by virtue of which it can absorb energy; the actual work per unit volume or unit mass of material that is required to rupture it. Toughness is typically proportional to the area under the load-elongation curve such as the tensile stress-strain curve.
[0035] "Elongation" or "extensibility" of a material means the amount of increase in length resulting from, as an example, the tension to break a specimen. It is expressed usually as a percentage of the original length. When a material is tested for tensile strength it elongates a certain amount before fracture takes place. The two pieces are placed together and the amount of extension is ineaa,suiied against marks made before starting the test and is expressed as a percentage of the original gauge It, It, length. "Peak elongation" refers to the greatest amount of length expanded prior to breakage. "Peak force" refers to the greatest amount of force applied prior to breakage. "Max Load" refers to the total superimposed weight that the specimen (e.g., a fiber) can carry without breaking.
[0036] A nucleating agent is an agent that provides sites for crystal formation in polymer melts. A nucleating composition is a composition that comprises a nucleating agent. A wet-milled nucleating agent is one that has been milled in a liquid carrier to an average particle size of less than 20 microns in diameter. In other embodiments, the nucleating agent has been wet milled to an average particle size of between about 6 microns to about 20 microns in diameter. The wet milled nucleating agent is dispersed (mixed throughout the composition) in the composition or prepared in a nucleating pellet with a carrier polymer and is dispersed in a liquid carrier that is then added to the composition for producing a fiber.
[0037] The nucleating agent of the methods and compositions herein include boron nitride, cyanuric acid or related compounds, carbon black, mica talc, silica, clay, calcium carbonate, synthesized silicic acid and salts, metal salts of organophosphates, kaolin, and other materials. In particular methods and compositions, the nucleating agent is boron nitride. Other nucleating agents known to the skilled person can be used in the compositions and methods of the invention.
[0038] Wet-milling means milling or grinding a composition in a liquid (e.g., liquid carrier) until a desired average particle size is achieved, as distinguished from micronized or air jet milled versions of the composition. For purposes of the present invention, grinding is commonly continued until the average particle size is reduced.
In air jet milling, compressed air is forced through a nozzle to be accelerated to supersonic speeds. At these speeds, it enters the crushing chamber, and fluidizes the powder that has been placed within it. An air jet milling machine usually has several nozzles pointed into the chamber from different angles. The fluidized powder converges at the meeting point of the nozzles, and is subjected to violent collision, shearing and grinding. Fine particles are transported by updraft to a sorting area where they are classified by centrifugal force, while coarser materials remain in the grinding chamber. For example, this process can be used for reducing a nucleating agent from 50-250 microns in size down to less than 20 microns.
[0039] In certain aspects of the invention, after wet-milling the average particle size is less that 20 microns. In other aspects of the invention, after wet-milling at least 5 % of the cumulative solid volume of the nucleating agents exists as particles with an average particle size of 5 microns or less, in other embodiments, at least 10% of the cumulative solid volume of the nucleating agent exists as particles with an average particle size of 5 microns or less. In other aspects, at least 20%
of the cumulative solid volume of the nucleating agent exists as particles with an average particle size of 5 microns. In still other aspects, at least 30% of the cumulative solid volume of the nucleating agent exists as particles with an average particle size of 5 microns. In yet other aspects, at least 40% or at least 50% of the cumulative solid volume of the nucleating agent exists as particles with an average particle size of 5 microns. In the forgoing aspects, the nucleating agent has an average particle size of 20 microns or less or 1 micron or less.
[0040] Nucleating agents dispersed as fine particles, with reduced agglomeration of the particles into larger particle sizes, or degradation of the polymer during the compounding step are obtained for use in the methods and compositions of the invention.
[0041] "Non-woven" as generally used herein refers to a manufactured construct that is made of a randomly aligned collection of fibers that are bonded by cohesion and/or adhesion, as opposed to knitted or woven constructs in which the fibers or threads are wrapped around one another in a regular fashion.
[0042] "Melt processing," as generally used herein, refers to a thermal process in which a material is melted, formed into a shape and then cooled to retain a desired shape. For example, typical melt processing techniques include melt extrusion and injection molding.
[0043] Melt blowing is a process for producing fibrous webs directly from polymeric resins using high velocity air to attenuate the filaments. The general scheme of the process is presented in FIG. 1. The melt blown process is a one step process in which high velocity air blows a molten thermoplastic resin from the extruder die tip onto a conveyor or take up screen to form a fine fibrous and self bonded web. A typical process consists of the following elements: an extruder, metering pumps, die assembly, web formation and winding.
[0044] The melt blowing process is one of the newer non-woven processes and is growing in popularity. This process is unique because it is used almost exclusively to produce microfibers rather than fibers the size of normal textile fibers.
Melt blown fibers have a diameter of about 0.1 to about 50 microns. Melt blown microfibers generally have diameters in the range of about 2 to about 4 microns and may be as small as about 0.1 micron and as large as about 15 microns.
Differences between melt blown nonwoven fabrics and other non-woven fabrics, such as degree of softness, opacity and porosity can be generally traced to the differences in filament size.
[0045] General properties of non wovens include but are not limited to: random fiber orientation; lower to moderate web strength, generally high opacity (having a high cover factor); basis weight ranges from about 8 to about 350 g/m2;
typically about 20 to about 200 g/m2; high surface area for good insulation and filtration characteristics; produce webs that are layered or shingled in construction with the number of layers increasing with basis weight; able to be layered with other nonwoven structures and or films, able to produce multicomponent melt blown nonwovens by co-extruding different polymers through different dies.
[0046] The market for meltblown fibers is vast, and the fibers are used in products such as wipes, barrier products and filtration products.
Polyhydroxyalkanoates (PHAs) are suitable for the melt blown technology and for the formation of different web types, and are attracting the interest of many manufacturers because of their biodegradability and biobased source.
[0047] POLYHYDROXYALKANOATES (PHAS) [0048] The polymers (e.g., base and/or carrier polymers) for use in the methods and compositions described herein are polyhydroxyalkanoate (hereinafter referred to as PHAs). Polyhydroxyalkanoates are biological polyesters synthesized by a broad range of natural and genetically engineered bacteria as well as genetically engineered plant crops (Braunegg et al., (1998), J. Biotechnology 65: 127-161;
Madison and Huisman, 1999, Microbiology and Molecular Biology Reviews, 63: 21-53; Poirier, 2002, Progress in Lipid Research 41: 131-155). These polymers are biodegradable thermoplastic materials, produced from renewable resources, with the potential for use in a broad range of industrial applications (Williams &
Peoples, CHEMTECH 26:38-44 (1996)). Useful microbial strains for producing PHAs, include Alcaligenes eutrophus (renamed as Ralstonia eutropha), Alcaligenes latus, Azotobacter, Aeromonas, Comamonas, Pseudomonads, and genetically engineered organisms including genetically engineered microbes such as Pseudomonas, Ralstonia and Escherichia coli.
[0049] In general, a PHA is formed by enzymatic polymerization of one or more monomer units inside a living cell. Over 100 different types of monomers have been incorporated into the PHA polymers (Steinbuchel and Valentin, FEMS Microbiol.
Lett. 128; 219-228 (1995)). Examples of monomer units incorporated in PHAs include 2-hydroxybutyrate, lactic acid, glycolic acid, 3-hydroxybutyrate (hereinafter referred to as 3HB), 3-hydroxypropionate (hereinafter referred to as 3HP), 3-hydroxyvalerate (hereinafter referred to as 3HV), 3-hydroxyhexanoate (hereinafter referred to as 3HH), 3-hydroxyheptanoate (hereinafter referred to as 3HHep), 3-hydroxyoctanoate (hereinafter referred to as 3H0), 3-hydroxynonanoate (hereinafter referred to as 3HN), 3-hydroxydecanoate (hereinafter referred to as 3HD), 3-
to about 10% nucleating agent.
[0010] In certain embodiment, the molecular weight of the fibers is about 150 kg/mol to about 250 kg/mol. In any of the embodiments disclosed herein, the fiber has a molecular weight of at least about 150 kg/mol, for example, about 160 kg/mol, about 170 kg/mol, about 180 kg/mol. The fiber can have a molecular weight of at least about 200 kg/mol. In particular embodiments, the fiber can have a molecular weight of about 160 kg/mol to about 170 kg/mol, such as 166 kg/mol, 167 kg/mol, 168 kg/mol, 169 kg/mol. In other embodiments, the fiber can have a molecular weight of at least about 250 kg/mol.
[0011] Another embodiment discloses a non-woven web the includes any of the fibers disclosed herein.
[0012] Also disclosed is a disposable article that includes any of the fibers disclosed herein.
[0013] Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014] FIG. 1 is a diagram showing the general melt blowing process.
[0015] FIG. 2 is a graph showing the Universal non-woven tensile strength /
elongation curve for six samples of 90% PHB and 10% CITROFLEX A4 plasticizer.
[0016] FIG. 3 is a photomicrograph showing fibers made from 90% PHB and 10% CITROFLEX A4 plasticizer.
[0017] FIG. 4 is a graph showing the Universal non-woven tensile strength for six samples of 90% PHB and 10% CITROFLEX A4 plasticizer.
[0018] FIG. 5 is a graph showing apparent melt viscosity (pa-s) versus dwell time of the fibers made in Example 5.
[0019] FIG. 6 is a photomicrograph showing fibers made in Example 5.
DETAILED DESCRIPTION
[0020] The invention provides non-woven materials made from biologically produced polyhydroxyalkanoate (PHA) polyesters. The non-woven material can optionally include other polymers, including biodegradable or non-biodegradable polymers.
[0021] The fibers produced by the methods described herein, in particular, melt blown fibers, have reduced brittleness and improved physical properties, such as resiliency, strength and elasticity.
[0022] Many physical properties and rheological properties of polymeric materials depend on the molecular weight and distribution of the polymer.
Molecular weight is calculated in a number of different ways. Unless otherwise indicated, "molecular weight" refers to weight average molecular weight.
[0023] "Weight average molecular weight" (Mw) is the sum of the products of the molecular weight of each fraction, multiplied by its weight fraction (YNj Mi2/ NiMi). MW is generally greater than or equal to M. Mz is the Z-average of the molecular weight distribution (YNj Mi3/YNj Mi).
[0024] "Number average molecular weight" (Ma) represents the arithmetic mean of the distribution, and is the sum of the products of the molecular weights of each fraction, multiplied by its mole fraction (YN,M,/YN,).
[0025] "Molecular weight retention" is the weight-average molecular weight of the extruded fibers as a percentage of the weight average molecular weight of the starting material.
[0026] As used herein, "basis weight" is the weight of a unit area of fabric formed by the fibers described herein. It is measured in grams per square meter (GSM).
[0027] "Crystallinity" as used herein refers to the presence of three-dimensional order on the level of atomic dimensions. In polymers, the range of order may be as small as about 2 nm in one (or more) crystallographic direction(s) and is usually below 50 nm in at least one direction. Polymer crystals frequently do not display the perfection that is usual for low-molecular mass substances. Polymer crystals that can be manipulated individually are often called polymer single crystals.
[0028] "Embrittlement," as used herein, is the loss or reduction of toughness, generally caused by the loss of plasticizers by aging or overheating. Fibers become brittle and easily break over time.
[0029] "Elasticity," as used herein is a physical property that corresponds to the flexibility of a fiber or non-woven that has reversible deformation under stress. In other words, after removal of a stress the material has the ability to return to its original state.
[0030] The "thermal stability" of a polymer sample is measured in two different ways. The thermal stability is represented herein by a sample's "k," which shows the change in Mw over time. It can also be measured by melt capillary stability (MCS), which shows the change in the capillary shear viscosity over time.
[0031] Tensile properties are measured according to ASTM D412, Test method A-Standard Test Method for Vulcanized Rubber and Thermoplastic Elastomers as provided by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 USA.
[0032] "Tensile strength" refers to the measure of the ability of a polymer to withstand pulling stresses.
[0033] "Tensile modulus" refer to the ratio of stress to strain for a given material within its proportional limit.
[0034] "Toughness", as used herein, refers to a property of a material by virtue of which it can absorb energy; the actual work per unit volume or unit mass of material that is required to rupture it. Toughness is typically proportional to the area under the load-elongation curve such as the tensile stress-strain curve.
[0035] "Elongation" or "extensibility" of a material means the amount of increase in length resulting from, as an example, the tension to break a specimen. It is expressed usually as a percentage of the original length. When a material is tested for tensile strength it elongates a certain amount before fracture takes place. The two pieces are placed together and the amount of extension is ineaa,suiied against marks made before starting the test and is expressed as a percentage of the original gauge It, It, length. "Peak elongation" refers to the greatest amount of length expanded prior to breakage. "Peak force" refers to the greatest amount of force applied prior to breakage. "Max Load" refers to the total superimposed weight that the specimen (e.g., a fiber) can carry without breaking.
[0036] A nucleating agent is an agent that provides sites for crystal formation in polymer melts. A nucleating composition is a composition that comprises a nucleating agent. A wet-milled nucleating agent is one that has been milled in a liquid carrier to an average particle size of less than 20 microns in diameter. In other embodiments, the nucleating agent has been wet milled to an average particle size of between about 6 microns to about 20 microns in diameter. The wet milled nucleating agent is dispersed (mixed throughout the composition) in the composition or prepared in a nucleating pellet with a carrier polymer and is dispersed in a liquid carrier that is then added to the composition for producing a fiber.
[0037] The nucleating agent of the methods and compositions herein include boron nitride, cyanuric acid or related compounds, carbon black, mica talc, silica, clay, calcium carbonate, synthesized silicic acid and salts, metal salts of organophosphates, kaolin, and other materials. In particular methods and compositions, the nucleating agent is boron nitride. Other nucleating agents known to the skilled person can be used in the compositions and methods of the invention.
[0038] Wet-milling means milling or grinding a composition in a liquid (e.g., liquid carrier) until a desired average particle size is achieved, as distinguished from micronized or air jet milled versions of the composition. For purposes of the present invention, grinding is commonly continued until the average particle size is reduced.
In air jet milling, compressed air is forced through a nozzle to be accelerated to supersonic speeds. At these speeds, it enters the crushing chamber, and fluidizes the powder that has been placed within it. An air jet milling machine usually has several nozzles pointed into the chamber from different angles. The fluidized powder converges at the meeting point of the nozzles, and is subjected to violent collision, shearing and grinding. Fine particles are transported by updraft to a sorting area where they are classified by centrifugal force, while coarser materials remain in the grinding chamber. For example, this process can be used for reducing a nucleating agent from 50-250 microns in size down to less than 20 microns.
[0039] In certain aspects of the invention, after wet-milling the average particle size is less that 20 microns. In other aspects of the invention, after wet-milling at least 5 % of the cumulative solid volume of the nucleating agents exists as particles with an average particle size of 5 microns or less, in other embodiments, at least 10% of the cumulative solid volume of the nucleating agent exists as particles with an average particle size of 5 microns or less. In other aspects, at least 20%
of the cumulative solid volume of the nucleating agent exists as particles with an average particle size of 5 microns. In still other aspects, at least 30% of the cumulative solid volume of the nucleating agent exists as particles with an average particle size of 5 microns. In yet other aspects, at least 40% or at least 50% of the cumulative solid volume of the nucleating agent exists as particles with an average particle size of 5 microns. In the forgoing aspects, the nucleating agent has an average particle size of 20 microns or less or 1 micron or less.
[0040] Nucleating agents dispersed as fine particles, with reduced agglomeration of the particles into larger particle sizes, or degradation of the polymer during the compounding step are obtained for use in the methods and compositions of the invention.
[0041] "Non-woven" as generally used herein refers to a manufactured construct that is made of a randomly aligned collection of fibers that are bonded by cohesion and/or adhesion, as opposed to knitted or woven constructs in which the fibers or threads are wrapped around one another in a regular fashion.
[0042] "Melt processing," as generally used herein, refers to a thermal process in which a material is melted, formed into a shape and then cooled to retain a desired shape. For example, typical melt processing techniques include melt extrusion and injection molding.
[0043] Melt blowing is a process for producing fibrous webs directly from polymeric resins using high velocity air to attenuate the filaments. The general scheme of the process is presented in FIG. 1. The melt blown process is a one step process in which high velocity air blows a molten thermoplastic resin from the extruder die tip onto a conveyor or take up screen to form a fine fibrous and self bonded web. A typical process consists of the following elements: an extruder, metering pumps, die assembly, web formation and winding.
[0044] The melt blowing process is one of the newer non-woven processes and is growing in popularity. This process is unique because it is used almost exclusively to produce microfibers rather than fibers the size of normal textile fibers.
Melt blown fibers have a diameter of about 0.1 to about 50 microns. Melt blown microfibers generally have diameters in the range of about 2 to about 4 microns and may be as small as about 0.1 micron and as large as about 15 microns.
Differences between melt blown nonwoven fabrics and other non-woven fabrics, such as degree of softness, opacity and porosity can be generally traced to the differences in filament size.
[0045] General properties of non wovens include but are not limited to: random fiber orientation; lower to moderate web strength, generally high opacity (having a high cover factor); basis weight ranges from about 8 to about 350 g/m2;
typically about 20 to about 200 g/m2; high surface area for good insulation and filtration characteristics; produce webs that are layered or shingled in construction with the number of layers increasing with basis weight; able to be layered with other nonwoven structures and or films, able to produce multicomponent melt blown nonwovens by co-extruding different polymers through different dies.
[0046] The market for meltblown fibers is vast, and the fibers are used in products such as wipes, barrier products and filtration products.
Polyhydroxyalkanoates (PHAs) are suitable for the melt blown technology and for the formation of different web types, and are attracting the interest of many manufacturers because of their biodegradability and biobased source.
[0047] POLYHYDROXYALKANOATES (PHAS) [0048] The polymers (e.g., base and/or carrier polymers) for use in the methods and compositions described herein are polyhydroxyalkanoate (hereinafter referred to as PHAs). Polyhydroxyalkanoates are biological polyesters synthesized by a broad range of natural and genetically engineered bacteria as well as genetically engineered plant crops (Braunegg et al., (1998), J. Biotechnology 65: 127-161;
Madison and Huisman, 1999, Microbiology and Molecular Biology Reviews, 63: 21-53; Poirier, 2002, Progress in Lipid Research 41: 131-155). These polymers are biodegradable thermoplastic materials, produced from renewable resources, with the potential for use in a broad range of industrial applications (Williams &
Peoples, CHEMTECH 26:38-44 (1996)). Useful microbial strains for producing PHAs, include Alcaligenes eutrophus (renamed as Ralstonia eutropha), Alcaligenes latus, Azotobacter, Aeromonas, Comamonas, Pseudomonads, and genetically engineered organisms including genetically engineered microbes such as Pseudomonas, Ralstonia and Escherichia coli.
[0049] In general, a PHA is formed by enzymatic polymerization of one or more monomer units inside a living cell. Over 100 different types of monomers have been incorporated into the PHA polymers (Steinbuchel and Valentin, FEMS Microbiol.
Lett. 128; 219-228 (1995)). Examples of monomer units incorporated in PHAs include 2-hydroxybutyrate, lactic acid, glycolic acid, 3-hydroxybutyrate (hereinafter referred to as 3HB), 3-hydroxypropionate (hereinafter referred to as 3HP), 3-hydroxyvalerate (hereinafter referred to as 3HV), 3-hydroxyhexanoate (hereinafter referred to as 3HH), 3-hydroxyheptanoate (hereinafter referred to as 3HHep), 3-hydroxyoctanoate (hereinafter referred to as 3H0), 3-hydroxynonanoate (hereinafter referred to as 3HN), 3-hydroxydecanoate (hereinafter referred to as 3HD), 3-
9 hydroxydodecanoate (hereinafter referred to as 3HDd), 4-hydroxybutyrate (hereinafter referred to as 4HB), 4-hydroxyvalerate (hereinafter referred to as 4HV), 5-hydroxyvalerate (hereinafter referred to as 5HV), and 6-hydroxyhexanoate (hereinafter referred to as 6HH). 3-hydroxyacid monomers incorporated into PHAs are the (D) or (R) 3-hydroxyacid isomer with the exception of 3HP which does not have a chiral center.
[0050] In some embodiments, the PHA can be a homopolymer (where all monomer units are the same). Examples of PHA homopolymers include poly 3-hydroxyalkanoates (e.g., poly 3-hydroxypropionate (hereinafter referred to as P3HP), poly 3-hydroxybutyrate (hereinafter referred to as PHB) and poly 3-hydroxyvalerate), poly 4-hydroxyalkanoates (e.g., poly 4-hydroxybutyrate (hereinafter referred to as P4HB), or poly 4-hydroxyvalerate (hereinafter referred to as P4HV)) and poly 5-hydroxyalkanoates (e.g., poly 5-hydroxyvalerate (hereinafter referred to as P5HV)).
[0051] In certain embodiments, the PHA can be a copolymer (containing two or more different monomer units) in which the different monomers are randomly distributed in the polymer chain. Examples of PHA copolymers include poly 3-hydroxybutyrate-co-3-hydroxypropionate (hereinafter referred to as PHB3HP), poly 3-hydroxybutyrate-co-4-hydroxybutyrate (hereinafter referred to as PHB4HB), poly 3-hydroxybutyrate-co-4-hydroxyvalerate (hereinafter referred to as PHB4HV), poly 3-hydroxybutyrate-co-3-hydroxyvalerate (hereinafter referred to as PHB3HV), poly 3-hydroxybutyrate-co-3-hydroxyhexanoate (hereinafter referred to as PHB3HH) and poly 3-hydroxybutyrate-co-5-hydroxyvalerate (hereinafter referred to as PHB5HV).
[0052] By selecting the monomer types and controlling the ratios of the monomer units in a given PHA copolymer a wide range of material properties can be achieved. Although examples of PHA copolymers having two different monomer units have been provided, the PHA can have more than two different monomer units (e.g., three different monomer units, four different monomer units, five different monomer units, six different monomer units). An example of a PHA
having 4 different monomer units would be PHB-co-3HH-co-3H0-co-3HD or PHB-co-3-HO-co-3HD-co-3HDd (these types of PHA copolymers are hereinafter referred to as PHB3HX). Typically where the PHB3HX has 3 or more monomer units the 3HB monomer is at least 70% by weight of the total monomers, preferably 85% by weight of the total monomers, most preferably greater than 90% by weight of the total monomers for example 92%, 93%, 94%, 95%, 96% by weight of the copolymer and the HX comprises one or more monomers selected from 3HH, 3H0, 3HD, 3HDd.
[0053] The homopolymer (where all monomer units are identical) PHB and 3-hydroxybutyrate copolymers (PHB3HP, PHB4HB, PHB3HV, PHB4HV, PHB5HV, PHB3HHP, hereinafter referred to as PHB copolymers) containing 3-hydroxybutyrate and at least one other monomer are of particular interest for commercial production and applications. It is useful to describe these copolymers by reference to their material properties as follows. Type 1 PHB copolymers typically have a glass transition temperature (Tg) in the range of 6 C to -10 C, and a melting temperature TM of between 80 C to 180 C. Type 2 PHB copolymers typically have a Tg of -20 C to-50 C and TM of 55 C to 90 C.
[0054] Preferred Type 1 PHB copolymers have two monomer units have a majority of their monomer units being 3-hydroxybutyrate monomer by weight in the copolymer, for example, greater than 78% 3-hydroxybutyrate monomer. Preferred PHB copolymers for this invention are biologically produced from renewable resources and are selected from the following group of PHB copolymers:
[0055] PHB3HV is a Type 1 PHB copolymer where the 3HV content is in the range of 3% to 22% by weight of the polymer and preferably in the range of 4%
to 15% by weight of the copolymer for example: 4% 3HV; 5% 3HV; 6% 3HV; 7%
3HV; 8% 3HV; 9% 3HV; 10% 3HV; 11% 3HV; 12% 3HV 13% 3HV; 14% 3HV;
15% 3HV.
[0056] PHB3HP is a Type 1 PHB copolymer where the 3HP content is in the range of 3% to 15% by weight of the copolymer and preferably in the range of 4% to 15% by weight of the copolymer for example: 4% 3HP; 5% 3HP; 6% 3HP; 7%
3HP; 8% 3HP; 9% 3HP; 10% 3HP; 11% 3HP; 12% 3HP, 13% 3HP; 14% 3HP;
15% 3HP.
[0057] PHB4HB is a Type 1 PHB copolymer where the 4HB content is in the range of 3% to 15% by weight of the copolymer and preferably in the range of 4% to 15% by weight of the copolymer for example: 4% 4HB; 5% 4HB; 6% 4HB; 7%
4HB; 8% 4HB; 9% 4HB; 10% 4HB; 11% 4HB; 12% 4HB; 13% 4HB; 14% 4HB;
15% 4HB.
[0058] PHB4HV is a Type 1 PHB copolymer where the 4HV content is in the range of 3% to 15% by weight of the copolymer and preferably in the range of 4% to 15% by weight of the copolymer for example: 4% 4HV; 5% 4HV; 6% 4HV; 7%
4HV; 8% 4HV; 9% 4HV; 10% 4HV; 11% 4HV; 12% 4HV; 13% 4HV; 14% 4HV;
15% 4HV.
[0059] PHB5HV is a Type 1 PHB copolymer where the 5HV content is in the range of 3% to 15% by weight of the copolymer and preferably in the range of 4% to 15% by weight of the copolymer for example: 4% 5HV; 5% 5HV; 6% 5HV; 7%
5HV; 8% 5HV; 9% 5HV; 10% 5HV; 11% 5HV; 12% 5HV; 13% 5HV; 14% 5HV;
15% 5HV.
[0060] PHB3HH is a Type 1 PHB copolymer where the 3HH content is in the range of 3% to 15% by weight of the copolymer and preferably in the range of 4% to 15% by weight of the copolymer for example: 4% 3HH; 5% 3HH; 6% 3HH; 7%
3HH; 8% 3HH; 9% 3HH; 10% 3HH; 11% 3HH; 12% 3HH; 13% 3HH; 14% 3HH;
15% 3HH.
[0061] PHB3HX is a Type 1 PHB copolymer where the 3HX content is comprised of 2 or more monomers selected from 3HH, 3HO, 3HD and 3HDd and the 3HX content is in the range of 3% to 12% by weight of the copolymer and preferably in the range of 4% to 10% by weight of the copolymer for example:
4%
3HX; 5% 3HX; 6% 3HX; 7% 3HX; 8% 3HX; 9% 3HX; 10% 3HX by weight of the copolymer.
[0062] Type 2 PHB copolymers have a 3HB content of between 80% and 5% by weight of the copolymer, for example: 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%,20%, 15%, 10%, 5% by weight of the copolymer.
[0063] PHB4HB is a Type 2 PHB copolymer where the 4HB content is in the range of 20% to 60% by weight of the copolymer and preferably in the range of 25%
to 50% by weight of the copolymer for example: 25% 4HB; 30% 4HB; 35% 4HB;
40% 4HB; 45% 4HB; 50% 4HB by weight of the copolymer.
[0064] PHB5HV is a Type 2 PHB copolymer where the 5HV content is in the range of 20% to 60% by weight of the copolymer and preferably in the range of 25%
to 50% by weight of the copolymer for example: 25% 5HV; 30% 5HV; 35% 5HV;
40% 5HV; 45% 5HV; 50% 5HV by weight of the copolymer.
[0065] PHB3HH is a Type 2 PHB copolymer where the 3HH is in the range of 35% to 95% by weight of the copolymer and preferably in the range of 40% to 80%
by weight of the copolymer for example: 40% 3HH; 45% 3HH; 50% 3HH; 55%
3HH; 60% 3HH; 65% 3HH; 70% 3HH; 75% 3HH, 80% 3HH by weight of the copolymer.
[0066] PHB3HX is a Type 2 PHB copolymer where the 3HX content is comprised of 2 or more monomers selected from 3HH, 3HO, 3HD and 3HDd and the 3HX content is in the range of 30% to 95% by weight of the copolymer and preferably in the range of 35% to 90% by weight of the copolymer for example:
35% 3HX; 40% 3HX; 45% 3HX; 50% 3HX; 55% 3HX; 60% 3HX; 65% 3HX; 70%
3HX; 75% 3HX; 80% 3HX; 85% 3HX; 90% 3HX by weight of the copolymer.
[0067] PHAs for use in the methods, compositions and pellets described in this invention are selected from: PHB or a Type 1 PHB copolymer; a PHA blend of PHB
with a Type 1 PHB copolymer where the PHB content by weight of PHA in the PHA blend is in the range of 5% to 95% by weight of the PHA in the PHA blend;
a PHA blend of PHB with a Type 2 PHB copolymer where the PHB content by weight of the PHA in the PHA blend is in the range of 5% to 95% by weight of the PHA in the PHA blend; a PHA blend of a Type 1 PHB copolymer with a different Type 1 PHB copolymer and where the content of the first Type 1 PHB copolymer is in the range of 5% to 95 % by weight of the PHA in the PHA blend; a PHA blend of a Type 1 PHB copolymer with a Type 2 PHA copolymer where the content of the Type 1 PHB copolymer is in the range of 30% to 95% by weight of the PHA in the PHA blend; a PHA blend of PHB with a Type 1 PHB copolymer and a Type 2 PHB
copolymer where the PHB content is in the range of 10% to 90% by weight of the PHA in the PHA blend, where the Type 1 PHB copolymer content is in the range of 5% to 90% by weight of the PHA in the PHA blend and where the Type 2 PHB
copolymer content is in the range of 5% to 90% by weight of the PHA in the PHA
blend.
[0068] The PHA blend of PHB with a Type 1 PHB copolymer can be a blend of PHB with PHB3HP where the PHB content in the PHA blend is in the range of 5%
to 90 % by weight of the PHA in the PHA blend and the 3HP content in the PHB3HP is in the range of 7% to 15% by weight of the PHB3HP.
[0069] The PHA blend of PHB with a Type 1 PHB copolymer can be a blend of PHB with PHB3HV where the PHB content of the PHA blend is in the range of 5%
to 90 % by weight of the PHA in the PHA blend and the 3HV content in the PHB3HV is in the range of 4% to 22% by weight of the PHB3HV.
[0070] The PHA blend of PHB with a Type 1 PHB copolymer can be a blend of PHB with PHB4HB where the PHB content of the PHA blend is in the range of 5%
to 90 % by weight of the PHA in the PHA blend and the 4HB content in the PHB4HB is in the range of 4% to 15% by weight of the PHB4HB.
[0071] The PHA blend of PHB with a Type 1 PHB copolymer can be a blend of PHB with PHB4HV where the PHB content of the PHA blend is in the range of 5%
to 90 % by weight of the PHA in the PHA blend and the 4HV content in the PHB4HV is in the range of 4% to 15% by weight of the PHB4HV.
[0072] The PHA blend of PHB with a Type 1 PHB copolymer can be a blend of PHB with PHB5HV where the PHB content of the PHA blend is in the range of 5%
to 90 % by weight of the PHA in the PHA blend and the 5HV content in the PHB5HV is in the range of 4% to 15% by weight of the PHB5HV.
[0073] The PHA blend of PHB with a Type 1 PHB copolymer can be a blend of PHB with PHB3HH where the PHB content of the PHA blend is in the range of 5%
to 90 % by weight of the PHA in the PHA blend and the 3HH content in the PHB3HH is in the range of 4% to 15% by weight of the PHB3HH.
[0074] The PHA blend of PHB with a Type 1 PHB copolymer can be a blend of PHB with PHB3HX where the PHB content of the PHA blend is in the range of 5%
to 90 % by weight of the PHA in the PHA blend and the 3HX content in the PHB3HX is in the range of 4% to 15% by weight of the PHB3HX.
[0075] The PHA blend can be a blend of a Type 1 PHB copolymer selected from the group PHB3HV, PHB3HP, PHB4HB, PHBV, PHV4HV, PHB5HV, PHB3HH
and PHB3HX with a second Type 1 PHB copolymer which is different from the first Type 1 PHB copolymer and is selected from the group PHB3HV, PHB3HP, PHB4HB, PHBV, PHV4HV, PHB5HV, PHB3HH and PHB3HX where the content of the First Type 1 PHB copolymer in the PHA blend is in the range of 10% to 90 %
by weight of the total PHA in the blend.
[0076] The PHA blend of PHB with a Type 2 PHB copolymer can be a blend of PHB with PHB4HB where the PHB content in the PHA blend is in the range of 30%
to 95 % by weight of the PHA in the PHA blend and the 4HB content in the PHB4HB is in the range of 20% to 60% by weight of the PHB4HB.
[0077] The PHA blend of PHB with a Type 2 PHB copolymer can be a blend of PHB with PHB5HV where the PHB content in the PHA blend is in the range of 30%
to 95 % by weight of the PHA in the PHA blend and the 5HV content in the PHB5HV is in the range of 20% to 60% by weight of the PHB5HV.
[0078] The PHA blend of PHB with a Type 2 PHB copolymer can be a blend of PHB with PHB3HH where the PHB content in the PHA blend is in the range of 35%
to 95 % by weight of the PHA in the PHA blend and the 3HH content in the PHB3HH is in the range of 35% to 90% by weight of the PHB3HX.
[0079] The PHA blend of PHB with a Type 2 PHB copolymer can be a blend of PHB with PHB3HX where the PHB content in the PHA blend is in the range of 30%
to 95 % by weight of the PHA in the PHA blend and the 3HX content in the PHB3HX is in the range of 35% to 90% by weight of the PHB3HX.
[0080] The PHA blend can be a blend of PHB with a Type 1 PHB copolymer and a Type 2 PHB copolymer where the PHB content in the PHA blend is in the range of 10% to 90 % by weight of the PHA in the PHA blend, the Type 1 PHB
copolymer content of the PHA blend is in the range of 5% to 90% by weight of the PHA in the PHA blend and the Type 2 PHB copolymer content in the PHA blend is in the range of 5% to 90% by weight of the PHA in the PHA blend.
[0081] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB3HV
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 3HV content in the PHB3HV is in the range of 3% to 22% by weight of the PHB3HV, and a PHBHX content in the PHA blend in the range of 5%
to 90% by weight of the PHA in the PHA blend where the 3HX content in the PHBHX is in the range of 35% to 90% by weight of the PHBHX.
[0082] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB3HV
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 3HV content in the PHB3HV is in the range of 3% to 22% by weight of the PHB3HV, and a PHB4HB content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend where the 4HB content in the PHB4HB is in the range of 20% to 60% by weight of the PHB4HB.
[0083] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB3HV
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 3HV content in the PHB3HV is in the range of 3% to 22% by weight of the PHB3HV, and a PHB5HV content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend where the 5HV content in the PHB5HV is in the range of 20% to 60% by weight of the PHB5HV.
[0084] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB4HB
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 4HB content in the PHB4HB is in the range of 4% to 15% by weight of the PHB4HB, and a PHB4HB content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend where the 4HB content in the PHB4HB is in the range of 20% to 60% by weight of the PHB4HB.
[0085] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB4HB
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 4HB content in the PHB4HB is in the range of 4% to 15% by weight of the PHB4HB, and a PHB5HV content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend and where the 5HV content in the PHB5HV is in the range of 30% to 90% by weight of the PHB5HV.
[0086] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB4HB
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 4HB content in the PHB4HB is in the range of 4% to 15% by weight of the PHB4HB, and a PHB3HX content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend and where the 3HX content in the PHB3HX is in the range of 35% to 90% by weight of the PHB3HX.
[0087] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB4HV
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 4HV content in the PHB4HV is in the range of 3% to 15% by weight of the PHB4HV, and a PHB5HV content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend where the 5HV content in the PHB5HV is in the range of 30% to 90% by weight of the PHB5HV.
[0088] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB3HH
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 3HH content in the PHB3HH is in the range of 3% to 15% by weight of the PHB3HH, and a PHB4HB content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend where the 4HB content in the PHB4HB is in the range of 20% to 60% by weight of the PHB4HB.
[0089] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB3HH
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 3HH content in the PHB3HH is in the range of 3% to 15% by weight of the PHB3HH, and a PHB5HV content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend where the 5HV content in the PHB5HV is in the range of 20% to 60% by weight of the PHB5HV.
[0090] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB3HH
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 3HH content in the PHB3HH is in the range of 3% to 15% by weight of the PHB3HH, and a PHB3HX content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend where the 3HX content in the PHB3HX is in the range of 35% to 90% by weight of the PHB3HX.
[0091] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB3HX
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 3HX content in the PHB3HX is in the range of 3% to 12% by weight of the PHB3HX, and a PHB3HX content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend where the 3HX content in the PHB3HX is in the range of 35% to 90% by weight of the PHB3HX.
[0092] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB3HX
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 3HX content in the PHB3HX is in the range of 3% to 12% by weight of the PHB3HX, and a PHB4HB content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend where the 4HB content in the PHB4HB is in the range of 20% to 60% by weight of the PHB4HB.
[0093] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB3HX
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 3HX content in the PHB3HX is in the range of 3% to 12% by weight of the PHB3HX, and a PHB5HV content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend where the 5HV content in the PHB5HV is in the range of 20% to 60% by weight of the PHB5HV.
[0094] The PHA blend can be a blend as disclosed in U.S. Published Application No. US 2004/0220355, by Whitehouse, published November 4, 2004, which is incorporated herein by reference in its entirety.
[0095] Microbial systems for producing the PHB copolymer PHBV are disclosed in U.S. Patent No. 4,477,654 to Holmes. PCT Patent Publication No.
WO
02/08428, by Skraly and Sholl describes useful systems for producing the PHB
copolymer PHB4HB. Useful processes for producing the PHB copolymer PHB3HH
have been described (Lee et at., Biotechnology and Bioengineering, 67: 240-244 (2000); Park et at., Biomacromolecules, 2: 248-254 (2001)). Processes for producing the PHB copolymers PHB3HX have been described by Matsusaki et. at., (Biomacromolecules, 1: 17-22(2000)).
[0096] In determining the molecular weight techniques such as gel permeation chromatography (GPC) can be used. In the methodology, a polystyrene standard is utilized. The PHA can have a polystyrene equivalent weight average molecular weight (in daltons) of at least 500, at least 10,000, or at least 50,000 and/or less than 2,000,000, less than 1,000,000, less than 1,500,000, and less than 800,000. In certain embodiments, preferably, the PHAs generally have a weight-average molecular weight in the range of 100,000 to 700,000. For example, the molecular weight range for PHB and Type 1 PHB copolymers for use in this application are in the range of 400,000 daltons to 1.5 million daltons as determined by GPC
method and the molecular weight range for Type 2 PHB copolymers for use in the application 100,000 to 1.5 million daltons.
[0097] In certain embodiments, when the nucleating agent additionally contains a polymer, the carrier polymer and/or base polymer or polymer if applicable is each independently PHB or a Type 1 PHB copolymer such as PHBP, PHB4HB, PHB3HV, PHB4HV, PHB5HV, PHB3HH or PHB3HX.
[0098] In more particular embodiments, the carrier polymer, and/or base polymer, or polymer if applicable is each independently PHB, PHB3HV where the 3HV content is in the range of 2% to 22% by weight of the polymer, PHB3HP
where the 3HP content is in the range of 3% to 15% by weight of the polymer, PHB4HB where the 4HB content is in the range of 3% to 15% by weight of the polymer, PHB4HV where the 4HV content is in the range of 3% to 15% by weight of the polymer, PHB3HH where the 3HH content is in the range of 3% to 15% by weight of the polymer or PHB3HX where the 3HX content is in the range of 3% to 12% by weight of the polymer. The percent range indicated is the percent weight of monomer relative to the total weight of the polymer. For example, in PHB4HB
with 3% to 15% 4HB content, 3% to 15 % of the total PHB4HB polymer weight is 4-hydroxybutyrate.
[0099] In certain embodiments, the carrier polymer, and/or base polymer or polymer if applicable is each independently PHB blended with a Type 1 PHB
copolymer selected from the group: PHB3HV where the 3HV content is in the range of 2% to 22% by weight of the polymer, PHB3HP where the 3HP content is in the range of 3% to 15% by weight of the polymer, PHB4HB where the 4HB content is in the range of 3% to 15% by weight of the polymer, PHB4HV where the 4HV
content is in the range of 3% to 15% by weight of the polymer, PHB3HH where the 3HH content is in the range of 3% to 15% by weight of the polymer or PHB3HX
where the 3HX content is in the range of 3% to 12% by weight of the polymer.
[00100] In certain embodiments, the carrier polymer, and/or base polymer or polymer if applicable is each independently PHB blended with a Type 2 PHB
copolymer selected from the group: PHB4HB where the 4HB content is in the range of 20% to 60% by weight of the polymer, PHB3HH where the 3HH content is in the range of 35% to 90% by weight of the polymer, PHB5HV where the 5HV content is in the range 20% to 60% by weight of the copolymer or PHB3HX where the 3HX
content is in the range of 30% to 90% by weight of the copolymer.
[00101] In more particular embodiments, the carrier polymer, and/or base polymer or polymer if applicable is each independently a) PHB blended with b) a PHB4HB with a 5% to 15% 4HB content; a) PHB blended with b) a PHB3HV with a 5% to 22% 3HV content; a) PHB blended with b) a PHB3HH with a 3% to 15%
3HH content; a) PHB blended with b) a PHB3HX with a 3% to 12% 3H content; a) PHB blended with b) a PHB5HV with a 3% to 15% 5HV content; a) a PHB4HB
with a 5% to 15% 4HB content blended with b) a PHB3HV) with a 5% to 22%
3HVcontent; a) a PHB4HB with 5% to 15% 4HB content blended with b) a PHB3HH with a 3% to 15% 3HHcontent or a) a PHB3HV with a 5% to 22% 3-hydroxyvalerate content blended with b) a po1yPHB3HV with a 3% to 15% 3HH
content.
[00102] In other particular embodiments, the carrier polymer, and/or base polymer or polymer if applicable is each independently a) PHB blended with b) a PHB4HB and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) PHB blended with b) a PHB3HV and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b);
a) PHB blended to with b) PHB3HH and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) PHB4HB blended with b) a PHB3HV and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a PHB4HB blended with b) a PHB3HH and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); or a) a PHB3HV blended with b) a PHB3HH and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b).
[00103] In yet other particular embodiments, the carrier polymer, and/or base polymer or polymer if applicable is each independently a) PHB blended with b) a PHB4HB with a 20-60% 4-HB content; a) PHB blended with b) a PHB5HV with a 20% to 60% 5HH content; a) PHB blended with b) a PHB3HH having a 35%-95%
3-HH content; a) PHB4HB with a 3% to 15% 4HB content blended with b) a PHB4HB with a 20-60% 4HB; a) PHB4HB with a 3% to 15% 4-hydroxybutyrate content blended with b) aPHB5HV with a 20% to 60% 5HV content; a) a PHB4HB
with 3% to 15% 4HB content blended with b) a PHB3HX having a 30%-90% 3HX
content; a) a PHB3HVwith a 3% to 22% 3HV content blended with b) PHB4HB
with a 20-60% 4HB content; a) a PHB3HV with a 3% to 22% 3HV content blended with b) PHB5HV with a 20% to 60% 5HV content; a) a PHB3HV with a 3% to 22%
3HV content blended with b) a PHB3HH having a 35%-90% 3-HH content; a) a PHB3HH with a 3% to 15% 3HH content blended with b) a PHB4HB with a 20-60% 4HB content; a) a PHB3HXwith a 3% to 12% 3HX content blended with b) a PHB4HB with a 20-60% 4HB content; a) a PHB3HX with a 3% to 12% 3H content blended with b) a PHB5HV with a 20-60% 5HV content; a) a PHB3HH with a 3%
to 15% 3HH content blended with b) a PHB5HV with a 20% to 60% 5-HV; a) a PHB3HH with a 3% to 15% 3HH content blended with b) a PHB3HX with a 30% to 90% 3HX content or a) a PHB3HH with a 3% to 15% 3HH content blended with b) a PHB3HH having a 3HH content of 35%-90%.
[00104] In more particular embodiments, the carrier polymer, and/or base polymer or polymer if applicable is each independently PHB blended with a Type PHB copolymer and a Type 2 PHB copolymer where the PHB content in the PHA
blend is in the range of 10% to 90 % by weight of the PHA in the PHA blend, the Type 1 PHB copolymer content of the PHA blend is in the range of 5% to 90% by weight of the PHA in the PHA blend and the Type 2 PHB copolymer content in the PHA blend is in the range of 5% to 90% by weight of the PHA in the PHA blend.
[00105] In the embodiments described in the immediately preceding paragraphs describing blends of polymer a) and b) or two polymer components, the copolymer blend comprises polymer a) and polymer b), wherein the weight of polymer a) is 20 % to 60% of the combined weight of polymer a) and polymer b) and the weight of polymer b is 40% to 80% of the combined weight of polymer a) and polymer b).
[00106] In other embodiments, the polymer blends described herein (e.g., blends comprising polymer a) and polymer b) or which otherwise describe two polymer components) comprise a third polymer, polymer c) which is a PHB4HB
with a 20% to 60% 4HB content.
[00107] In other embodiments the polymer blends described herein (e.g., blends comprising polymer a) and polymer b) or which otherwise describe two polymer components) comprise a third polymer, polymer c) which is a PHB5HV
with a 20% to 60% 5HV content.
[00108] In other embodiments, the polymer blends described herein (e.g., blends comprising polymer a) and polymer b) or which otherwise describe two polymer components) comprise a third polymer, polymer c) which is a PHB3HH
with a 5% to 50% 3HH content.
[00109] In other embodiments, the copolymer blend comprises polymer a), polymer b) and polymer c). In particular embodiments, wherein the weight of polymer c) is 5% to 95% of the combined polymer weight of polymer a), polymer b) and polymer c). In yet other embodiments, the weight of polymer c) is 5% to 40%
of the combined polymer weight of polymer a), polymer b) and polymer c).
Biodegradable Aromatic-Aliphatic Polyesters [00110] The PHA can be combined with another polymer, or several other polymers. For instance, the PHA can be combined with one or more biodegradable aromatic-aliphatic polyesters. Such blends are discussed in, for example, U.S.
Provisional Application No. 61/050,896 ("Biodegradable Polyester Blends"), filed May 6, 2008, and PCT Patent Publication No. WO 2009/137058 the entire teachings of which are incorporated herein by reference.
[00111] Aromatic polyesters, which are not biodegradable, are synthesized by the polycondensation of aliphatic diols and aromatic dicarboxylic acids. The aromatic ring is resistant to hydrolysis, preventing biodegradability. Polyethylene terephthalate (PET) and polybutylene terephthalate (PBT) are formed by the polycondensation of aliphatic glycols and terephthalic acid. The biodegradability of aromatic polyesters can be modified by the addition of monomers that are not resistant to hydrolysis, aliphatic diol or diacid groups. The addition of such hydrolysis-sensitive monomers creates weak spots for hydrolysis to occur.
[00112] Aromatic-aliphatic polyesters are also made by polycondensation of aliphatic diols, but with a mixture of aromatic and aliphatic dicarboxylic acids. For instance, modification of PBT by addition of aliphatic dicarboxylic acids can produce polybutylene succinate terephthalate (PBST) (butane diol as the aliphatic diol and succinic and terephthalic acid). Another example is the family of polyesters sold under the trade name BIOMAX (du Pont), the members of which are polymerized from PET and a variety of aliphatic acid monomers such as dimethylglutarate and diethylene glycol. In the synthesis of polybutylene adipate terephthalate (PBAT), butanediol is the diol, and the acids are adipic and terephthalic acids. Commercial examples include ECOFLEX (BASF) and Eastar Bio (Eastman). ECOFLEX has a melt temperature (TM) of about 110 C to about 120 C, as measured by differential scanning calorimetry (DSC). Another example is polytetramethylene adipate terephthalate (PTMAT) is synthesized from tetramethylene glycol and adipic and terephthalic acids.
[00113] Biodegradable polymers therefore include polyesters containing aliphatic components. Among the polyesters are ester polycondensates containing aliphatic constituents and poly(hydroxycarboxylic) acid. The ester polycondensates can include diacids/diol aliphatic polyesters such as polybutylene succinate, polybutylene succinate co-adipate, aliphatic/aromatic polyesters such as terpolymers made of butylenes diol, adipic acid and terephtalic acid. The poly(hydroxycarboxylic) acids include lactic acid based homopolymers and copolymers, polyhydroxybutyrate (PHB), or other polyhydroxyalkanoate homopolymers and copolymers. Such polyhydroxyalkanoates include copolymers of PHB with higher chain length monomers, such as C6-C12, and higher.
[00114] Examples of biodegradable aromatic-aliphatic polyesters therefore include, but are not limited to, various copolyesters of PET and PBT with aliphatic diacids, diols, or hydroxy acids incorporated into the polymer backbone to render the copolyesters biodegradable or compostable; and various aliphatic polyesters and copolyesters derived from dibasic acids, e.g., succinic acid, glutaric acid, adipic acid, sebacic acid, azealic acid, or their derivatives, e.g., alkyl esters, acid chlorides, or their anhydrides; diols such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, or 1,4-cyclohexanedimethanol.
[00115] An example of a suitable commercially available diacid/diol aliphatic polyester is the polybutylene succinate/adipate copolymers sold as BIONOLLE
1000 and BIONOLLE 3000 from the Showa High Polymer Company, Ltd. (Tokyo, Japan). An example of a suitable commercially available aromatic-aliphatic copolyester is the poly(tetramethylene adipate-co-terephthalate) sold as EASTAR
BIO Copolyester from Eastman Chemical or ECOFLEX from BASF.
[00116] The biodegradable aromatic-aliphatic polyester can be a co-polyester.
It can also itself be a blend of such polyesters or co-polyesters.
Blends of PHAs and Biodegradable Aromatic-Aliphatic Polyesters [00117] PHAs and biodegradable aromatic-aliphatic polyesters can be combined to make blends of the polymers. Such blends are discussed in, for example, U.S.
Provisional Application No. 61/050,896 ("Biodegradable Polyester Blends"), filed May 6, 2008 and PCT Patent Publication No. WO 2009/137058, the entire teachings of which are incorporated herein by reference.
[00118] The amount of PHA in the overall blend can be about I% by weight, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 99% by weight.
The selection and amount of each polymer will effect the softness, stiffness, texture, toughness, and other properties of the final product as will be understood by those of ordinary skill in the art. Typically, the PHA component is present in the blend in an amount of from about 10% to 95%, preferably from about 15% to about 85%, more preferably from about 20% to about 80%, by total weight of the total polymer components.
[00119] Each polymer component can contain a single polymer species or a blend of two or more species. For instance, and PHA component can in turn be a blend of PHA species as described above. Likewise, the biodegradable aromatic-aliphatic polyester component can be a mixture or blend of biodegradable aromatic-aliphatic polyesters.
[00120] Methods for making and using thermoplastic compositions are well known to those of skill in the art, and skilled practitioners will appreciate that the biodegradable blends of the present invention can be used in a wide range of applications and further, as is known to skilled practitioners, can contain one or more additive, e.g., a plasticizer, nucleating agent, filler, antioxidant, ultraviolet stabilizer, lubricant, slip/antiblock, pigment, flame retardant, and/or antistatic agent.
Production and Processing of Biodegradable Blend Compositions [00121] Biodegradable blend compositions can be produced using any art-known method that includes adding a biodegradable aromatic-aliphatic polyesters to a thermoplastic. The biodegradable aromatic-aliphatic polyesters can be added to a thermoplastic as a dry biodegradable aromatic-aliphatic polyesters composition and/or as a biodegradable aromatic-aliphatic polyesters formulation.
[00122] Optimal amounts to be added will depend on various factors known to skilled practitioners, e.g., cost, desired physical characteristics of the thermoplastic (e.g., mechanical strength), and the type of processing to being performed (raising, e.g., considerations of line speeds, cycle times, and other processing parameters).
Also to be considered is whether the thermoplastic composition includes other additives, e.g., plasticizers, stabilizers, pigments, fillers, reinforcing agents, and/or mold release agents. In general, however, a biodegradable aromatic-aliphatic polyesters can be included in a thermoplastic composition such that the composition contains about 5% to about 95%, e.g., about 5% to about 90%, about 20% to about 80% biodegradable aromatic-aliphatic polyesters, based on the total weight of the composition. In certain embodiments of the present invention, the composition contains about 1% to about 10%, e.g., about 1% to about 5% biodegradable aromatic-aliphatic polyesters.
Branched Polyhydroxyalkanoates
[0050] In some embodiments, the PHA can be a homopolymer (where all monomer units are the same). Examples of PHA homopolymers include poly 3-hydroxyalkanoates (e.g., poly 3-hydroxypropionate (hereinafter referred to as P3HP), poly 3-hydroxybutyrate (hereinafter referred to as PHB) and poly 3-hydroxyvalerate), poly 4-hydroxyalkanoates (e.g., poly 4-hydroxybutyrate (hereinafter referred to as P4HB), or poly 4-hydroxyvalerate (hereinafter referred to as P4HV)) and poly 5-hydroxyalkanoates (e.g., poly 5-hydroxyvalerate (hereinafter referred to as P5HV)).
[0051] In certain embodiments, the PHA can be a copolymer (containing two or more different monomer units) in which the different monomers are randomly distributed in the polymer chain. Examples of PHA copolymers include poly 3-hydroxybutyrate-co-3-hydroxypropionate (hereinafter referred to as PHB3HP), poly 3-hydroxybutyrate-co-4-hydroxybutyrate (hereinafter referred to as PHB4HB), poly 3-hydroxybutyrate-co-4-hydroxyvalerate (hereinafter referred to as PHB4HV), poly 3-hydroxybutyrate-co-3-hydroxyvalerate (hereinafter referred to as PHB3HV), poly 3-hydroxybutyrate-co-3-hydroxyhexanoate (hereinafter referred to as PHB3HH) and poly 3-hydroxybutyrate-co-5-hydroxyvalerate (hereinafter referred to as PHB5HV).
[0052] By selecting the monomer types and controlling the ratios of the monomer units in a given PHA copolymer a wide range of material properties can be achieved. Although examples of PHA copolymers having two different monomer units have been provided, the PHA can have more than two different monomer units (e.g., three different monomer units, four different monomer units, five different monomer units, six different monomer units). An example of a PHA
having 4 different monomer units would be PHB-co-3HH-co-3H0-co-3HD or PHB-co-3-HO-co-3HD-co-3HDd (these types of PHA copolymers are hereinafter referred to as PHB3HX). Typically where the PHB3HX has 3 or more monomer units the 3HB monomer is at least 70% by weight of the total monomers, preferably 85% by weight of the total monomers, most preferably greater than 90% by weight of the total monomers for example 92%, 93%, 94%, 95%, 96% by weight of the copolymer and the HX comprises one or more monomers selected from 3HH, 3H0, 3HD, 3HDd.
[0053] The homopolymer (where all monomer units are identical) PHB and 3-hydroxybutyrate copolymers (PHB3HP, PHB4HB, PHB3HV, PHB4HV, PHB5HV, PHB3HHP, hereinafter referred to as PHB copolymers) containing 3-hydroxybutyrate and at least one other monomer are of particular interest for commercial production and applications. It is useful to describe these copolymers by reference to their material properties as follows. Type 1 PHB copolymers typically have a glass transition temperature (Tg) in the range of 6 C to -10 C, and a melting temperature TM of between 80 C to 180 C. Type 2 PHB copolymers typically have a Tg of -20 C to-50 C and TM of 55 C to 90 C.
[0054] Preferred Type 1 PHB copolymers have two monomer units have a majority of their monomer units being 3-hydroxybutyrate monomer by weight in the copolymer, for example, greater than 78% 3-hydroxybutyrate monomer. Preferred PHB copolymers for this invention are biologically produced from renewable resources and are selected from the following group of PHB copolymers:
[0055] PHB3HV is a Type 1 PHB copolymer where the 3HV content is in the range of 3% to 22% by weight of the polymer and preferably in the range of 4%
to 15% by weight of the copolymer for example: 4% 3HV; 5% 3HV; 6% 3HV; 7%
3HV; 8% 3HV; 9% 3HV; 10% 3HV; 11% 3HV; 12% 3HV 13% 3HV; 14% 3HV;
15% 3HV.
[0056] PHB3HP is a Type 1 PHB copolymer where the 3HP content is in the range of 3% to 15% by weight of the copolymer and preferably in the range of 4% to 15% by weight of the copolymer for example: 4% 3HP; 5% 3HP; 6% 3HP; 7%
3HP; 8% 3HP; 9% 3HP; 10% 3HP; 11% 3HP; 12% 3HP, 13% 3HP; 14% 3HP;
15% 3HP.
[0057] PHB4HB is a Type 1 PHB copolymer where the 4HB content is in the range of 3% to 15% by weight of the copolymer and preferably in the range of 4% to 15% by weight of the copolymer for example: 4% 4HB; 5% 4HB; 6% 4HB; 7%
4HB; 8% 4HB; 9% 4HB; 10% 4HB; 11% 4HB; 12% 4HB; 13% 4HB; 14% 4HB;
15% 4HB.
[0058] PHB4HV is a Type 1 PHB copolymer where the 4HV content is in the range of 3% to 15% by weight of the copolymer and preferably in the range of 4% to 15% by weight of the copolymer for example: 4% 4HV; 5% 4HV; 6% 4HV; 7%
4HV; 8% 4HV; 9% 4HV; 10% 4HV; 11% 4HV; 12% 4HV; 13% 4HV; 14% 4HV;
15% 4HV.
[0059] PHB5HV is a Type 1 PHB copolymer where the 5HV content is in the range of 3% to 15% by weight of the copolymer and preferably in the range of 4% to 15% by weight of the copolymer for example: 4% 5HV; 5% 5HV; 6% 5HV; 7%
5HV; 8% 5HV; 9% 5HV; 10% 5HV; 11% 5HV; 12% 5HV; 13% 5HV; 14% 5HV;
15% 5HV.
[0060] PHB3HH is a Type 1 PHB copolymer where the 3HH content is in the range of 3% to 15% by weight of the copolymer and preferably in the range of 4% to 15% by weight of the copolymer for example: 4% 3HH; 5% 3HH; 6% 3HH; 7%
3HH; 8% 3HH; 9% 3HH; 10% 3HH; 11% 3HH; 12% 3HH; 13% 3HH; 14% 3HH;
15% 3HH.
[0061] PHB3HX is a Type 1 PHB copolymer where the 3HX content is comprised of 2 or more monomers selected from 3HH, 3HO, 3HD and 3HDd and the 3HX content is in the range of 3% to 12% by weight of the copolymer and preferably in the range of 4% to 10% by weight of the copolymer for example:
4%
3HX; 5% 3HX; 6% 3HX; 7% 3HX; 8% 3HX; 9% 3HX; 10% 3HX by weight of the copolymer.
[0062] Type 2 PHB copolymers have a 3HB content of between 80% and 5% by weight of the copolymer, for example: 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%,20%, 15%, 10%, 5% by weight of the copolymer.
[0063] PHB4HB is a Type 2 PHB copolymer where the 4HB content is in the range of 20% to 60% by weight of the copolymer and preferably in the range of 25%
to 50% by weight of the copolymer for example: 25% 4HB; 30% 4HB; 35% 4HB;
40% 4HB; 45% 4HB; 50% 4HB by weight of the copolymer.
[0064] PHB5HV is a Type 2 PHB copolymer where the 5HV content is in the range of 20% to 60% by weight of the copolymer and preferably in the range of 25%
to 50% by weight of the copolymer for example: 25% 5HV; 30% 5HV; 35% 5HV;
40% 5HV; 45% 5HV; 50% 5HV by weight of the copolymer.
[0065] PHB3HH is a Type 2 PHB copolymer where the 3HH is in the range of 35% to 95% by weight of the copolymer and preferably in the range of 40% to 80%
by weight of the copolymer for example: 40% 3HH; 45% 3HH; 50% 3HH; 55%
3HH; 60% 3HH; 65% 3HH; 70% 3HH; 75% 3HH, 80% 3HH by weight of the copolymer.
[0066] PHB3HX is a Type 2 PHB copolymer where the 3HX content is comprised of 2 or more monomers selected from 3HH, 3HO, 3HD and 3HDd and the 3HX content is in the range of 30% to 95% by weight of the copolymer and preferably in the range of 35% to 90% by weight of the copolymer for example:
35% 3HX; 40% 3HX; 45% 3HX; 50% 3HX; 55% 3HX; 60% 3HX; 65% 3HX; 70%
3HX; 75% 3HX; 80% 3HX; 85% 3HX; 90% 3HX by weight of the copolymer.
[0067] PHAs for use in the methods, compositions and pellets described in this invention are selected from: PHB or a Type 1 PHB copolymer; a PHA blend of PHB
with a Type 1 PHB copolymer where the PHB content by weight of PHA in the PHA blend is in the range of 5% to 95% by weight of the PHA in the PHA blend;
a PHA blend of PHB with a Type 2 PHB copolymer where the PHB content by weight of the PHA in the PHA blend is in the range of 5% to 95% by weight of the PHA in the PHA blend; a PHA blend of a Type 1 PHB copolymer with a different Type 1 PHB copolymer and where the content of the first Type 1 PHB copolymer is in the range of 5% to 95 % by weight of the PHA in the PHA blend; a PHA blend of a Type 1 PHB copolymer with a Type 2 PHA copolymer where the content of the Type 1 PHB copolymer is in the range of 30% to 95% by weight of the PHA in the PHA blend; a PHA blend of PHB with a Type 1 PHB copolymer and a Type 2 PHB
copolymer where the PHB content is in the range of 10% to 90% by weight of the PHA in the PHA blend, where the Type 1 PHB copolymer content is in the range of 5% to 90% by weight of the PHA in the PHA blend and where the Type 2 PHB
copolymer content is in the range of 5% to 90% by weight of the PHA in the PHA
blend.
[0068] The PHA blend of PHB with a Type 1 PHB copolymer can be a blend of PHB with PHB3HP where the PHB content in the PHA blend is in the range of 5%
to 90 % by weight of the PHA in the PHA blend and the 3HP content in the PHB3HP is in the range of 7% to 15% by weight of the PHB3HP.
[0069] The PHA blend of PHB with a Type 1 PHB copolymer can be a blend of PHB with PHB3HV where the PHB content of the PHA blend is in the range of 5%
to 90 % by weight of the PHA in the PHA blend and the 3HV content in the PHB3HV is in the range of 4% to 22% by weight of the PHB3HV.
[0070] The PHA blend of PHB with a Type 1 PHB copolymer can be a blend of PHB with PHB4HB where the PHB content of the PHA blend is in the range of 5%
to 90 % by weight of the PHA in the PHA blend and the 4HB content in the PHB4HB is in the range of 4% to 15% by weight of the PHB4HB.
[0071] The PHA blend of PHB with a Type 1 PHB copolymer can be a blend of PHB with PHB4HV where the PHB content of the PHA blend is in the range of 5%
to 90 % by weight of the PHA in the PHA blend and the 4HV content in the PHB4HV is in the range of 4% to 15% by weight of the PHB4HV.
[0072] The PHA blend of PHB with a Type 1 PHB copolymer can be a blend of PHB with PHB5HV where the PHB content of the PHA blend is in the range of 5%
to 90 % by weight of the PHA in the PHA blend and the 5HV content in the PHB5HV is in the range of 4% to 15% by weight of the PHB5HV.
[0073] The PHA blend of PHB with a Type 1 PHB copolymer can be a blend of PHB with PHB3HH where the PHB content of the PHA blend is in the range of 5%
to 90 % by weight of the PHA in the PHA blend and the 3HH content in the PHB3HH is in the range of 4% to 15% by weight of the PHB3HH.
[0074] The PHA blend of PHB with a Type 1 PHB copolymer can be a blend of PHB with PHB3HX where the PHB content of the PHA blend is in the range of 5%
to 90 % by weight of the PHA in the PHA blend and the 3HX content in the PHB3HX is in the range of 4% to 15% by weight of the PHB3HX.
[0075] The PHA blend can be a blend of a Type 1 PHB copolymer selected from the group PHB3HV, PHB3HP, PHB4HB, PHBV, PHV4HV, PHB5HV, PHB3HH
and PHB3HX with a second Type 1 PHB copolymer which is different from the first Type 1 PHB copolymer and is selected from the group PHB3HV, PHB3HP, PHB4HB, PHBV, PHV4HV, PHB5HV, PHB3HH and PHB3HX where the content of the First Type 1 PHB copolymer in the PHA blend is in the range of 10% to 90 %
by weight of the total PHA in the blend.
[0076] The PHA blend of PHB with a Type 2 PHB copolymer can be a blend of PHB with PHB4HB where the PHB content in the PHA blend is in the range of 30%
to 95 % by weight of the PHA in the PHA blend and the 4HB content in the PHB4HB is in the range of 20% to 60% by weight of the PHB4HB.
[0077] The PHA blend of PHB with a Type 2 PHB copolymer can be a blend of PHB with PHB5HV where the PHB content in the PHA blend is in the range of 30%
to 95 % by weight of the PHA in the PHA blend and the 5HV content in the PHB5HV is in the range of 20% to 60% by weight of the PHB5HV.
[0078] The PHA blend of PHB with a Type 2 PHB copolymer can be a blend of PHB with PHB3HH where the PHB content in the PHA blend is in the range of 35%
to 95 % by weight of the PHA in the PHA blend and the 3HH content in the PHB3HH is in the range of 35% to 90% by weight of the PHB3HX.
[0079] The PHA blend of PHB with a Type 2 PHB copolymer can be a blend of PHB with PHB3HX where the PHB content in the PHA blend is in the range of 30%
to 95 % by weight of the PHA in the PHA blend and the 3HX content in the PHB3HX is in the range of 35% to 90% by weight of the PHB3HX.
[0080] The PHA blend can be a blend of PHB with a Type 1 PHB copolymer and a Type 2 PHB copolymer where the PHB content in the PHA blend is in the range of 10% to 90 % by weight of the PHA in the PHA blend, the Type 1 PHB
copolymer content of the PHA blend is in the range of 5% to 90% by weight of the PHA in the PHA blend and the Type 2 PHB copolymer content in the PHA blend is in the range of 5% to 90% by weight of the PHA in the PHA blend.
[0081] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB3HV
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 3HV content in the PHB3HV is in the range of 3% to 22% by weight of the PHB3HV, and a PHBHX content in the PHA blend in the range of 5%
to 90% by weight of the PHA in the PHA blend where the 3HX content in the PHBHX is in the range of 35% to 90% by weight of the PHBHX.
[0082] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB3HV
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 3HV content in the PHB3HV is in the range of 3% to 22% by weight of the PHB3HV, and a PHB4HB content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend where the 4HB content in the PHB4HB is in the range of 20% to 60% by weight of the PHB4HB.
[0083] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB3HV
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 3HV content in the PHB3HV is in the range of 3% to 22% by weight of the PHB3HV, and a PHB5HV content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend where the 5HV content in the PHB5HV is in the range of 20% to 60% by weight of the PHB5HV.
[0084] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB4HB
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 4HB content in the PHB4HB is in the range of 4% to 15% by weight of the PHB4HB, and a PHB4HB content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend where the 4HB content in the PHB4HB is in the range of 20% to 60% by weight of the PHB4HB.
[0085] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB4HB
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 4HB content in the PHB4HB is in the range of 4% to 15% by weight of the PHB4HB, and a PHB5HV content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend and where the 5HV content in the PHB5HV is in the range of 30% to 90% by weight of the PHB5HV.
[0086] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB4HB
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 4HB content in the PHB4HB is in the range of 4% to 15% by weight of the PHB4HB, and a PHB3HX content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend and where the 3HX content in the PHB3HX is in the range of 35% to 90% by weight of the PHB3HX.
[0087] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB4HV
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 4HV content in the PHB4HV is in the range of 3% to 15% by weight of the PHB4HV, and a PHB5HV content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend where the 5HV content in the PHB5HV is in the range of 30% to 90% by weight of the PHB5HV.
[0088] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB3HH
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 3HH content in the PHB3HH is in the range of 3% to 15% by weight of the PHB3HH, and a PHB4HB content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend where the 4HB content in the PHB4HB is in the range of 20% to 60% by weight of the PHB4HB.
[0089] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB3HH
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 3HH content in the PHB3HH is in the range of 3% to 15% by weight of the PHB3HH, and a PHB5HV content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend where the 5HV content in the PHB5HV is in the range of 20% to 60% by weight of the PHB5HV.
[0090] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB3HH
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 3HH content in the PHB3HH is in the range of 3% to 15% by weight of the PHB3HH, and a PHB3HX content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend where the 3HX content in the PHB3HX is in the range of 35% to 90% by weight of the PHB3HX.
[0091] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB3HX
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 3HX content in the PHB3HX is in the range of 3% to 12% by weight of the PHB3HX, and a PHB3HX content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend where the 3HX content in the PHB3HX is in the range of 35% to 90% by weight of the PHB3HX.
[0092] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB3HX
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 3HX content in the PHB3HX is in the range of 3% to 12% by weight of the PHB3HX, and a PHB4HB content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend where the 4HB content in the PHB4HB is in the range of 20% to 60% by weight of the PHB4HB.
[0093] For example, a PHA blend can have a PHB content in the PHA blend in the range of 10% to 90% by weight of the PHA in the PHA blend, a PHB3HX
content in the PHA blend in the range 5% to 90% by weight of the PHA in the PHA
blend, where the 3HX content in the PHB3HX is in the range of 3% to 12% by weight of the PHB3HX, and a PHB5HV content in the PHA blend in the range of 5% to 90% by weight of the PHA in the PHA blend where the 5HV content in the PHB5HV is in the range of 20% to 60% by weight of the PHB5HV.
[0094] The PHA blend can be a blend as disclosed in U.S. Published Application No. US 2004/0220355, by Whitehouse, published November 4, 2004, which is incorporated herein by reference in its entirety.
[0095] Microbial systems for producing the PHB copolymer PHBV are disclosed in U.S. Patent No. 4,477,654 to Holmes. PCT Patent Publication No.
WO
02/08428, by Skraly and Sholl describes useful systems for producing the PHB
copolymer PHB4HB. Useful processes for producing the PHB copolymer PHB3HH
have been described (Lee et at., Biotechnology and Bioengineering, 67: 240-244 (2000); Park et at., Biomacromolecules, 2: 248-254 (2001)). Processes for producing the PHB copolymers PHB3HX have been described by Matsusaki et. at., (Biomacromolecules, 1: 17-22(2000)).
[0096] In determining the molecular weight techniques such as gel permeation chromatography (GPC) can be used. In the methodology, a polystyrene standard is utilized. The PHA can have a polystyrene equivalent weight average molecular weight (in daltons) of at least 500, at least 10,000, or at least 50,000 and/or less than 2,000,000, less than 1,000,000, less than 1,500,000, and less than 800,000. In certain embodiments, preferably, the PHAs generally have a weight-average molecular weight in the range of 100,000 to 700,000. For example, the molecular weight range for PHB and Type 1 PHB copolymers for use in this application are in the range of 400,000 daltons to 1.5 million daltons as determined by GPC
method and the molecular weight range for Type 2 PHB copolymers for use in the application 100,000 to 1.5 million daltons.
[0097] In certain embodiments, when the nucleating agent additionally contains a polymer, the carrier polymer and/or base polymer or polymer if applicable is each independently PHB or a Type 1 PHB copolymer such as PHBP, PHB4HB, PHB3HV, PHB4HV, PHB5HV, PHB3HH or PHB3HX.
[0098] In more particular embodiments, the carrier polymer, and/or base polymer, or polymer if applicable is each independently PHB, PHB3HV where the 3HV content is in the range of 2% to 22% by weight of the polymer, PHB3HP
where the 3HP content is in the range of 3% to 15% by weight of the polymer, PHB4HB where the 4HB content is in the range of 3% to 15% by weight of the polymer, PHB4HV where the 4HV content is in the range of 3% to 15% by weight of the polymer, PHB3HH where the 3HH content is in the range of 3% to 15% by weight of the polymer or PHB3HX where the 3HX content is in the range of 3% to 12% by weight of the polymer. The percent range indicated is the percent weight of monomer relative to the total weight of the polymer. For example, in PHB4HB
with 3% to 15% 4HB content, 3% to 15 % of the total PHB4HB polymer weight is 4-hydroxybutyrate.
[0099] In certain embodiments, the carrier polymer, and/or base polymer or polymer if applicable is each independently PHB blended with a Type 1 PHB
copolymer selected from the group: PHB3HV where the 3HV content is in the range of 2% to 22% by weight of the polymer, PHB3HP where the 3HP content is in the range of 3% to 15% by weight of the polymer, PHB4HB where the 4HB content is in the range of 3% to 15% by weight of the polymer, PHB4HV where the 4HV
content is in the range of 3% to 15% by weight of the polymer, PHB3HH where the 3HH content is in the range of 3% to 15% by weight of the polymer or PHB3HX
where the 3HX content is in the range of 3% to 12% by weight of the polymer.
[00100] In certain embodiments, the carrier polymer, and/or base polymer or polymer if applicable is each independently PHB blended with a Type 2 PHB
copolymer selected from the group: PHB4HB where the 4HB content is in the range of 20% to 60% by weight of the polymer, PHB3HH where the 3HH content is in the range of 35% to 90% by weight of the polymer, PHB5HV where the 5HV content is in the range 20% to 60% by weight of the copolymer or PHB3HX where the 3HX
content is in the range of 30% to 90% by weight of the copolymer.
[00101] In more particular embodiments, the carrier polymer, and/or base polymer or polymer if applicable is each independently a) PHB blended with b) a PHB4HB with a 5% to 15% 4HB content; a) PHB blended with b) a PHB3HV with a 5% to 22% 3HV content; a) PHB blended with b) a PHB3HH with a 3% to 15%
3HH content; a) PHB blended with b) a PHB3HX with a 3% to 12% 3H content; a) PHB blended with b) a PHB5HV with a 3% to 15% 5HV content; a) a PHB4HB
with a 5% to 15% 4HB content blended with b) a PHB3HV) with a 5% to 22%
3HVcontent; a) a PHB4HB with 5% to 15% 4HB content blended with b) a PHB3HH with a 3% to 15% 3HHcontent or a) a PHB3HV with a 5% to 22% 3-hydroxyvalerate content blended with b) a po1yPHB3HV with a 3% to 15% 3HH
content.
[00102] In other particular embodiments, the carrier polymer, and/or base polymer or polymer if applicable is each independently a) PHB blended with b) a PHB4HB and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) PHB blended with b) a PHB3HV and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b);
a) PHB blended to with b) PHB3HH and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) PHB4HB blended with b) a PHB3HV and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a PHB4HB blended with b) a PHB3HH and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); or a) a PHB3HV blended with b) a PHB3HH and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b).
[00103] In yet other particular embodiments, the carrier polymer, and/or base polymer or polymer if applicable is each independently a) PHB blended with b) a PHB4HB with a 20-60% 4-HB content; a) PHB blended with b) a PHB5HV with a 20% to 60% 5HH content; a) PHB blended with b) a PHB3HH having a 35%-95%
3-HH content; a) PHB4HB with a 3% to 15% 4HB content blended with b) a PHB4HB with a 20-60% 4HB; a) PHB4HB with a 3% to 15% 4-hydroxybutyrate content blended with b) aPHB5HV with a 20% to 60% 5HV content; a) a PHB4HB
with 3% to 15% 4HB content blended with b) a PHB3HX having a 30%-90% 3HX
content; a) a PHB3HVwith a 3% to 22% 3HV content blended with b) PHB4HB
with a 20-60% 4HB content; a) a PHB3HV with a 3% to 22% 3HV content blended with b) PHB5HV with a 20% to 60% 5HV content; a) a PHB3HV with a 3% to 22%
3HV content blended with b) a PHB3HH having a 35%-90% 3-HH content; a) a PHB3HH with a 3% to 15% 3HH content blended with b) a PHB4HB with a 20-60% 4HB content; a) a PHB3HXwith a 3% to 12% 3HX content blended with b) a PHB4HB with a 20-60% 4HB content; a) a PHB3HX with a 3% to 12% 3H content blended with b) a PHB5HV with a 20-60% 5HV content; a) a PHB3HH with a 3%
to 15% 3HH content blended with b) a PHB5HV with a 20% to 60% 5-HV; a) a PHB3HH with a 3% to 15% 3HH content blended with b) a PHB3HX with a 30% to 90% 3HX content or a) a PHB3HH with a 3% to 15% 3HH content blended with b) a PHB3HH having a 3HH content of 35%-90%.
[00104] In more particular embodiments, the carrier polymer, and/or base polymer or polymer if applicable is each independently PHB blended with a Type PHB copolymer and a Type 2 PHB copolymer where the PHB content in the PHA
blend is in the range of 10% to 90 % by weight of the PHA in the PHA blend, the Type 1 PHB copolymer content of the PHA blend is in the range of 5% to 90% by weight of the PHA in the PHA blend and the Type 2 PHB copolymer content in the PHA blend is in the range of 5% to 90% by weight of the PHA in the PHA blend.
[00105] In the embodiments described in the immediately preceding paragraphs describing blends of polymer a) and b) or two polymer components, the copolymer blend comprises polymer a) and polymer b), wherein the weight of polymer a) is 20 % to 60% of the combined weight of polymer a) and polymer b) and the weight of polymer b is 40% to 80% of the combined weight of polymer a) and polymer b).
[00106] In other embodiments, the polymer blends described herein (e.g., blends comprising polymer a) and polymer b) or which otherwise describe two polymer components) comprise a third polymer, polymer c) which is a PHB4HB
with a 20% to 60% 4HB content.
[00107] In other embodiments the polymer blends described herein (e.g., blends comprising polymer a) and polymer b) or which otherwise describe two polymer components) comprise a third polymer, polymer c) which is a PHB5HV
with a 20% to 60% 5HV content.
[00108] In other embodiments, the polymer blends described herein (e.g., blends comprising polymer a) and polymer b) or which otherwise describe two polymer components) comprise a third polymer, polymer c) which is a PHB3HH
with a 5% to 50% 3HH content.
[00109] In other embodiments, the copolymer blend comprises polymer a), polymer b) and polymer c). In particular embodiments, wherein the weight of polymer c) is 5% to 95% of the combined polymer weight of polymer a), polymer b) and polymer c). In yet other embodiments, the weight of polymer c) is 5% to 40%
of the combined polymer weight of polymer a), polymer b) and polymer c).
Biodegradable Aromatic-Aliphatic Polyesters [00110] The PHA can be combined with another polymer, or several other polymers. For instance, the PHA can be combined with one or more biodegradable aromatic-aliphatic polyesters. Such blends are discussed in, for example, U.S.
Provisional Application No. 61/050,896 ("Biodegradable Polyester Blends"), filed May 6, 2008, and PCT Patent Publication No. WO 2009/137058 the entire teachings of which are incorporated herein by reference.
[00111] Aromatic polyesters, which are not biodegradable, are synthesized by the polycondensation of aliphatic diols and aromatic dicarboxylic acids. The aromatic ring is resistant to hydrolysis, preventing biodegradability. Polyethylene terephthalate (PET) and polybutylene terephthalate (PBT) are formed by the polycondensation of aliphatic glycols and terephthalic acid. The biodegradability of aromatic polyesters can be modified by the addition of monomers that are not resistant to hydrolysis, aliphatic diol or diacid groups. The addition of such hydrolysis-sensitive monomers creates weak spots for hydrolysis to occur.
[00112] Aromatic-aliphatic polyesters are also made by polycondensation of aliphatic diols, but with a mixture of aromatic and aliphatic dicarboxylic acids. For instance, modification of PBT by addition of aliphatic dicarboxylic acids can produce polybutylene succinate terephthalate (PBST) (butane diol as the aliphatic diol and succinic and terephthalic acid). Another example is the family of polyesters sold under the trade name BIOMAX (du Pont), the members of which are polymerized from PET and a variety of aliphatic acid monomers such as dimethylglutarate and diethylene glycol. In the synthesis of polybutylene adipate terephthalate (PBAT), butanediol is the diol, and the acids are adipic and terephthalic acids. Commercial examples include ECOFLEX (BASF) and Eastar Bio (Eastman). ECOFLEX has a melt temperature (TM) of about 110 C to about 120 C, as measured by differential scanning calorimetry (DSC). Another example is polytetramethylene adipate terephthalate (PTMAT) is synthesized from tetramethylene glycol and adipic and terephthalic acids.
[00113] Biodegradable polymers therefore include polyesters containing aliphatic components. Among the polyesters are ester polycondensates containing aliphatic constituents and poly(hydroxycarboxylic) acid. The ester polycondensates can include diacids/diol aliphatic polyesters such as polybutylene succinate, polybutylene succinate co-adipate, aliphatic/aromatic polyesters such as terpolymers made of butylenes diol, adipic acid and terephtalic acid. The poly(hydroxycarboxylic) acids include lactic acid based homopolymers and copolymers, polyhydroxybutyrate (PHB), or other polyhydroxyalkanoate homopolymers and copolymers. Such polyhydroxyalkanoates include copolymers of PHB with higher chain length monomers, such as C6-C12, and higher.
[00114] Examples of biodegradable aromatic-aliphatic polyesters therefore include, but are not limited to, various copolyesters of PET and PBT with aliphatic diacids, diols, or hydroxy acids incorporated into the polymer backbone to render the copolyesters biodegradable or compostable; and various aliphatic polyesters and copolyesters derived from dibasic acids, e.g., succinic acid, glutaric acid, adipic acid, sebacic acid, azealic acid, or their derivatives, e.g., alkyl esters, acid chlorides, or their anhydrides; diols such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, or 1,4-cyclohexanedimethanol.
[00115] An example of a suitable commercially available diacid/diol aliphatic polyester is the polybutylene succinate/adipate copolymers sold as BIONOLLE
1000 and BIONOLLE 3000 from the Showa High Polymer Company, Ltd. (Tokyo, Japan). An example of a suitable commercially available aromatic-aliphatic copolyester is the poly(tetramethylene adipate-co-terephthalate) sold as EASTAR
BIO Copolyester from Eastman Chemical or ECOFLEX from BASF.
[00116] The biodegradable aromatic-aliphatic polyester can be a co-polyester.
It can also itself be a blend of such polyesters or co-polyesters.
Blends of PHAs and Biodegradable Aromatic-Aliphatic Polyesters [00117] PHAs and biodegradable aromatic-aliphatic polyesters can be combined to make blends of the polymers. Such blends are discussed in, for example, U.S.
Provisional Application No. 61/050,896 ("Biodegradable Polyester Blends"), filed May 6, 2008 and PCT Patent Publication No. WO 2009/137058, the entire teachings of which are incorporated herein by reference.
[00118] The amount of PHA in the overall blend can be about I% by weight, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 99% by weight.
The selection and amount of each polymer will effect the softness, stiffness, texture, toughness, and other properties of the final product as will be understood by those of ordinary skill in the art. Typically, the PHA component is present in the blend in an amount of from about 10% to 95%, preferably from about 15% to about 85%, more preferably from about 20% to about 80%, by total weight of the total polymer components.
[00119] Each polymer component can contain a single polymer species or a blend of two or more species. For instance, and PHA component can in turn be a blend of PHA species as described above. Likewise, the biodegradable aromatic-aliphatic polyester component can be a mixture or blend of biodegradable aromatic-aliphatic polyesters.
[00120] Methods for making and using thermoplastic compositions are well known to those of skill in the art, and skilled practitioners will appreciate that the biodegradable blends of the present invention can be used in a wide range of applications and further, as is known to skilled practitioners, can contain one or more additive, e.g., a plasticizer, nucleating agent, filler, antioxidant, ultraviolet stabilizer, lubricant, slip/antiblock, pigment, flame retardant, and/or antistatic agent.
Production and Processing of Biodegradable Blend Compositions [00121] Biodegradable blend compositions can be produced using any art-known method that includes adding a biodegradable aromatic-aliphatic polyesters to a thermoplastic. The biodegradable aromatic-aliphatic polyesters can be added to a thermoplastic as a dry biodegradable aromatic-aliphatic polyesters composition and/or as a biodegradable aromatic-aliphatic polyesters formulation.
[00122] Optimal amounts to be added will depend on various factors known to skilled practitioners, e.g., cost, desired physical characteristics of the thermoplastic (e.g., mechanical strength), and the type of processing to being performed (raising, e.g., considerations of line speeds, cycle times, and other processing parameters).
Also to be considered is whether the thermoplastic composition includes other additives, e.g., plasticizers, stabilizers, pigments, fillers, reinforcing agents, and/or mold release agents. In general, however, a biodegradable aromatic-aliphatic polyesters can be included in a thermoplastic composition such that the composition contains about 5% to about 95%, e.g., about 5% to about 90%, about 20% to about 80% biodegradable aromatic-aliphatic polyesters, based on the total weight of the composition. In certain embodiments of the present invention, the composition contains about 1% to about 10%, e.g., about 1% to about 5% biodegradable aromatic-aliphatic polyesters.
Branched Polyhydroxyalkanoates
[0010] Branched compositions of PHA used in the methods and compositions described herein improve the melt strength of PHAs, a desirable property for many polymer product applications. Melt strength is a rheological property that can be measured a number of ways. One measure is G'. G' is the polymer storage modulus measured at melt processing temperatures. Exemplary branched PHAs and methods of making them are provided in U.S. Patent Nos. 6,096,810 and 6,201,083, and in International Application Nos. PCT/US09/003687 and PCT/US09/003675, both filed on June 19, 2009, all of which are incorporated by reference herein in their entirety.
[00123] In certain embodiments, branched polyhydroxyalkanoate polymers are used to make the non-woven materials as described herein. Such branched polyhydroxyalkanoates have better thermal stability than unbranched polyhydroxyalkanoate polymers.
[00124] Polyhydroxyalkanoate polymers are branched using a cross-linking agent, also referred to as co-agents containing two or more reactive functional groups such as epoxides or double bonds. These cross-linking agents modify the properties of the polymer. These properties include, but are not limited to, melt strength or toughness.
[00125] One type of cross-linking agent is an "epoxy functional compound." As used herein, "epoxy functional compound" is meant to include compounds with two or more epoxide groups capable of increasing the melt strength of polyhydroxyalkanoate polymers by branching, e.g., end branching as described above. When an epoxy functional compound is used as the cross-linking agent in the disclosed methods, a branching agent is optional. As such one embodiment of branching includes reacting a starting polyhydroxyalkanoate polymer (PHA) with an epoxy functional compound. Alternatively, another method of branching includes reacting a starting polyhydroxyalkanoate polymer, a branching agent and an epoxy functional compound. Alternatively, another branching method includes reacting a starting PHA, and an epoxy functional compound in the absence of a branching agent.
[00126] Such epoxy functional compounds can include epoxy-functional, styrene-acrylic polymers (such as, but not limited to, e.g., JONCRYL ADR-4368 (BASF), or MP-40 (Kaneka)), acrylic and/or polyolefin copolymers and oligomers containing glycidyl groups incorporated as side chains (such as, but not limited to, e.g., LOTADER (Arkema), poly(ethylene-glycidyl methacrylate-co-methacrylate)), and epoxidized oils (such as, but not limited to, e.g., epoxidized soybean, olive, linseed, palm, peanut, coconut, seaweed, cod liver oils, or mixtures thereof, e.g., MERGINAT ESBO (Hobum, Hamburg, Germany)and EDENOL B 316 (Cognis, Dusseldorf, Germany)).
[00127] For example, reactive acrylics or functional acrylics cross-linking agents are used to increase the molecular weight of the polymer in the branched polymer compositions described herein. Such cross-linking agents are sold commercially.
BASF, for instance, sells multiple compounds under the trade name "JONCRYL ", which are described in U.S. Patent No. 6,984,694 to Blasius et at., "Oligomeric chain extenders for processing, post-processing and recycling of condensation polymers, synthesis, compositions and applications", incorporated herein by reference in its entirety. One such compound is JONCRYL ADR-4368CS, which is styrene glycidyl methacrylate and is discussed below. Another is MP-40 (Kaneka). And still another is "Petra" line from Honeywell, see for example, U.S.
Patent No. 5,723,730. Such polymers are often used in plastic recycling (e.g., in recycling of polyethylene terephthalate) to increase the molecular weight (or to mimic the increase of molecular weight) of the polymer being recycled. Such polymers often have the general structure:
[cCRiR2 C - CR1R2 C [cRlR2]
X ~ y I
Z
\ C \
O O O o 1 \CH2 R3 \CH'O
R1 and R2 are independently H or alkyl R3 is alkyl X and Y are 1-20 Z is 2-20 alkyl is C1-Cg [00128] Without wishing to be bound by theory, it is believed that the epoxy-functional polymeric acrylics are capable of branching polyesters, and effectively repair the damage (in particular, loss of melt strength G') that occurs to the molecular weight of the polyester in the extruder. The epoxy-functional compounds may also improve thermal stability of polyhydroxyalkanoate polymers by preventing beta scission.
[00129] E.I. du Pont de Nemours & Company sells multiple reactive compounds under the trade name Elvaloy , which are ethylene copolymers, such as acrylate copolymers, elastomeric terpolymers, and other copolymers. One such compound is Elvaloy PTW, which is a copolymer of ethylene-n-butyl acrylate and glycidyl methacrylate. Omnova sells similar compounds under the trade names "SX64053,"
"SX64055," and "SX64056." Other entities also supply such compounds commercially.
[00130] Specific polyfunctional polymeric compounds with reactive epoxy groups are the styrene-acrylic copolymers and oligomers containing glycidyl groups incorporated as side chains. Several useful examples are described in U.S.
Patent No. 6,984,694 to Blasius et at., "Oligomeric chain extenders for processing, post-processing and recycling of condensation polymers, synthesis, compositions and applications", which is incorporated herein by reference in its entirety.
These materials are based on oligomers with styrene and acrylate building blocks that have glycidyl groups incorporated as side chains. A high number of epoxy groups per oligomer chain can be used, for example at least 10, greater than 15, or greater than 20. These polymeric materials generally have a molecular weight greater than 3000, specifically greater than 4000, and more specifically greater than 6000. These are commercially available from Johnson Polymer, LLC (now owned by BASF) under the trade name JONCRYL , ADR 4368 material. Other types of polyfunctional polymer materials with multiple epoxy groups are acrylic and/or polyolefin copolymers and oligomers containing glycidyl groups incorporated as side chains.
A further example of a such polyfunctional carboxy-reactive material is a co-or ter-polymer including units of ethylene and glycidyl methacrylate (GMA), available under the trade name LOTADER resin, sold by Arkema. These materials can further comprise methacrylate unites that are not glycidyl. An example of this type is poly(ethylene-glycidyl methacrylate-co-methacrylate).
[00131] Fatty acid esters or naturally occurring oils containing epoxy groups (epoxidized) can also be used. Examples of naturally occurring oils are olive oil, linseed oil, soybean oil, palm oil, peanut oil, coconut oil, seaweed oil, cod liver oil, or a mixture of these compounds. Particular preference is given to epoxidized soybean oil (e.g., Merginat ESBO from Hobum, Hamburg, or Edenol B 316 from Cognis, Dusseldorf), but others may also be used.
[00132] As used herein, "epoxy functional compound" is meant to include compounds with epoxide groups capable of increasing the melt strength of polyhydroxyalkanoate polymers by end chain branching as described above. Such epoxy functional compounds can include epoxy-functional, styrene-acrylic polymers (such as, but not limited to, e.g., JONCRYL ADR-4368 (BASF), or MP-40 (Kaneka)), acrylic and/or polyolefin copolymers and oligomers containing glycidyl groups incorporated as side chains (such as, but not limited to, e.g., LOTADER
(Arkema), poly(ethylene-glycidyl methacrylate-co-methacrylate)), and epoxidized oils (such as, but not limited to, e.g., epoxidized soybean, olive, linseed, palm, peanut, coconut, seaweed, cod liver oils, or mixtures thereof, e.g., Merginat ESBO
(Hobum, Hamburg, Germany) and Edenol B 316 (Cognis, Dusseldorf, Germany)).
[00133] In general, it appears that compounds with terminal epoxides may perform better than those with epoxide groups located elsewhere on the molecule.
Nucleating Agents [00134] The nucleating agent of the methods and compositions herein is selected from boron nitride, cyanuric acid or related compounds, carbon black, mica talc, silica, clay, calcium carbonate, synthesized silicic acid and salts, metal salts of organophosphates, kaolin, and possibly other materials. In particular compositions and methods, the nucleating agent is boron nitride.
[00135] In preferred embodiments, the nucleating agent is wet-milled. Wet milling the nucleating agent in a liquid carrier produces a nucleating agent with a particle size well below that obtained via standard air jet milling. In certain embodiments, the nucleating agent is wet-milled to an average particle size of less than 20 microns.
[00136] Wet grinding can be done, for instance, in a model KD5 Dyno Mill, which is a horizontal mill with a 1.5 liter mixing volume capacity. Any equivalent mill can be used. The KD5 Dyno Mill can be used in either a batch cycle or continuous loop mode. The mixing horizontal chamber contains a central horizontal shaft onto which are attached 5-7 polyurethane paddles stators which provided the circumventional driving velocity to agitate the grinding media (typically from, e.g., 0.4mm to 1.2mm ceramic beads, with narrow size distribution range). As described herein, the mixing chamber can be filled with 0.6-0.8mm zirconia beads to about 80-85% volume fill capacity. The shaft speed can be set to, e.g., 2400 rpm. The liquid media (carrier) can be pumped through the chamber while the beads are agitated.
This effects a grinding action. The residence time is controlled by the external flow rate of the liquid media. Grinding efficiency is controlled by the size of the beads, shaft rpm and residence time of the material in the chamber (i.e., as a function of flow rate). The liquid exits the mill through a angular slot die which is small enough to retain the grinding media (the beads) while allowing the liquid to flow through the gap, typically, e.g., <50% -25% of the grinding media diameter.
[00137] Nucleating agents for various polymers can include simple substances, metal compounds including composite oxides, for example, carbon black, calcium carbonate, synthesized silicic acid and salts, silica, zinc white, clay, kaolin, basic magnesium carbonate, mica, talc, quartz powder, diatomite, dolomite powder, titanium oxide, zinc oxide, antimony oxide, barium sulfate, calcium sulfate, alumina, calcium silicate, metal salts of organophosphates, and boron nitride; low-molecular organic compounds having a metal carboxylate group, for example, metal salts of such as octylic acid, toluic acid, heptanoic acid, pelargonic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, cerotic acid, montanic acid, melissic acid, benzoic acid, p-tert-butylbenzoic acid, terephthalic acid, terephthalic acid monomethyl ester, isophthalic acid, and isophthalic acid monomethyl ester;
high-molecular organic compounds having a metal carboxylate group, for example, metal salts of such as: carboxyl-group-containing polyethylene obtained by oxidation of polyethylene; carboxyl-group-containing polypropylene obtained by oxidation of polypropylene; copolymers of olefins, such as ethylene, propylene and butene-1, with acrylic or methacrylic acid; copolymers of styrene with acrylic or methacrylic acid; copolymers of olefins with maleic anhydride; and copolymers of styrene with maleic anhydride; high-molecular organic compounds, for example: alpha-olefins branched at their 3-position carbon atom and having no fewer than 5 carbon atoms, such as 3,3 dimethylbutene-1,3-methylbutene-1,3-methylpentene-1,3-methylhexene-1, and 3,5,5-trimethylhexene-1; polymers of vinylcycloalkanes such as vinylcyclopentane, vinylcyclohexane, and vinylnorbomane; polyalkylene glycols such as polyethylene glycol and polypropylene glycol; poly(glycolic acid);
cellulose;
cellulose esters; and cellulose ethers; phosphoric or phosphorous acid and its metal salts, such as diphenyl phosphate, diphenyl phosphite, metal salts of bis(4-tert-butylphenyl) phosphate, and methylene bis-(2,4-tert-butylphenyl)phosphate;
sorbitol derivatives such as bis(p-methylbenzylidene) sorbitol and bis(p-ethylbenzylidene) sorbitol; and thioglycolic anhydride, p-toluenesulfonic acid and its metal salts. The above nucleating agents may be used either alone or in combinations with each other. In certain embodiments, the nucleating agent can also be another polymer (e.g., polymeric nucleating agents such as PHB).
[00138] The amount of nucleating agent in liquid carrier is from 5% to 50% by weight of the nucleating agent-liquid carrier composition, preferably from 20%
to 45% by weight, more preferably 30% to 40% by weight, and most preferably 40%
by weight of the combined weight of the nucleating agent and liquid carrier.
[00139] A liquid carrier is typically used in combination with the nucleating agent. The liquid carrier allows the nucleating agent to be wet milled.
[00140] Once the nucleating agent has been wet milled in the liquid carrier, and an appropriate amount of the liquid carrier plus nucleating agent is then added to the polymer to be processed. One of ordinary skill in the art of polymer compounding can therefore plan the nucleant and liquid carrier ratio to suit their specific needs, knowing by experience what amount of nucleant and liquid carrier (i.e., plasticizer, surfactant, lubricant, etc.) are appropriate to use.
[00141] Choice of the liquid carrier is important as the carrier becomes an integral component in the polymer formulation when the nucleant is added. In poly-3-hydroxybutyrate compositions, for example, plasticizers are often used to change the glass transition temperature and modulus of the composition, but surfactants may also be used. Lubricants may also be used, e.g., in injection molding applications.
[00142] Plasticizers, surfactants and lubricants may all therefore be used as the liquid carrier for the milling of the nucleating agent.
[00143] The liquid carrier for wet milling the nucleant can be a plasticizer.
Examples of plasticizers include but are not limited to phthalic compounds (including, but not limited to, dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dihexyl phthalate, di-n-octyl phthalate, di-2-ethylhexyl phthalate, diisooctyl phthalate, dicapryl phthalate, dinonyl phthalate, diisononyl phthalate, didecyl phthalate, diundecyl phthalate, dilauryl phthalate, ditridecyl phthalate, dibenzyl phthalate, dicyclohexyl phthalate, butyl benzyl phthalate, octyl decyl phthalate, butyl octyl phthalate, octyl benzyl phthalate, n-hexyl n-decyl phthalate, n-octyl phthalate, and n-decyl phthalate), phosphoric compounds (including, but not limted to, tricresyl phosphate, trioctyl phosphate, triphenyl phosphate, octyl diphenyl phosphate, cresyl diphenyl phosphate, and trichloroethyl phosphate), adipic compounds (including, but not limited to, dibutoxyethoxyethyl adipate (DBEEA), dioctyl adipate, diisooctyl adipate, di-n-octyl adipate, didecyl adipate, diisodecyl adipate, n-octyl n-decyl adipate, n-heptyl adipate, and n-nonyl adipate), sebacic compounds (including, but not limited to, dibutyl sebacate, dioctyl sebacate, diisooctyl sebacate, and butyl benzyl sebacate), azelaic compounds, citric compounds (including, but not limited to, triethyl citrate, acetyl triethyl citrate, tributyl citrate, acetyl tributyl citrate, and acetyl trioctyl citrate), glycolic compounds (including, but not limited to, methyl phthalyl ethyl glycolate, ethyl phthalyl ethyl glycolate, and butyl phthalyl ethyl glycolate), trimellitic compounds (including, but not limited to, trioctyl trimellitate and tri-n-octyl n-decyl trimellitate), phthalic isomer compounds (including, but not limited to, dioctyl isophthalate and dioctyl terephthalate), ricinoleic compounds (including, but not limited to, methyl acetyl, recinoleate and butyl acetyl recinoleate), polyester compounds (including, but not limited to, polypropylene adipate and polypropylene sebacate), epoxidized soy bean oil, epoxidized butyl stearate, epoxidized octyl stearate, chlorinated paraffins, chlorinated fatty acid esters, fatty acid compounds, plant oils, pigments, and acrylic compounds. The plasticizers may be used either alone respectively or in combinations with each other.
[00144] In certain embodiments, the liquid carrier for wet milling the nucleating agent can be a surfactant. Surfactants are generally used to de-dust, lubricate, reduce surface tension, and/or densify. Examples of surfactants include, but are not limited to mineral oil, castor oil, and soybean oil. One mineral oil surfactant is Drakeol 34, available from Penreco (Dickinson, Texas, USA). Maxsperse W-6000 and W-3000 solid surfactants are available from Chemax Polymer Additives (Piedmont, South Carolina, USA). Surfactants can also include detergents such as Triton X-100, TWEEN -20, TWEEN -65, Span-40 and Span 86.
[00145] Anionic surfactants include: aliphatic carboxylic acids such as lauric acid, myristic acid, palmitic acid, stearic acid, and oleic acid; fatty acid soaps such as sodium salts or potassium salts of the above aliphatic carboxylic acids; N-acyl-N-methylglycine salts, N-acyl-N-methyl-beta-alanine salts, N-acylglutamic acid salts, polyoxyethylene alkyl ether carboxylic acid salts, acylated peptides, alkylbenzenesulfonic acid salts, alkylnaphthalenesulfonic acid salts, naphthalenesulfonic acid salt-formalin polycondensation products, melaminesulfonic acid salt-formalin polycondensation products, dialkylsulfosuccinic acid ester salts, alkyl sulfosuccinate disalts, polyoxyethylene alkylsulfosuccinic acid disalts, alkylsulfoacetic acid salts, (alpha-olefinsulfonic acid salts, N-acylmethyltaurine salts, sodium dimethyl 5-sulfoisophthalate, sulfated oil, higher alcohol sulfuric acid ester salts, polyoxyethylene alkyl ether sulfuric acid salts, secondary higher alcohol ethoxysulfates, polyoxyethylene alkyl phenyl ether sulfuric acid salts, monoglysulfate, sulfuric acid ester salts of fatty acid alkylolamides, polyoxyethylene alkyl ether phosphoric acid salts, polyoxyethylene alkyl phenyl ether phosphoric acid salts, alkyl phosphoric acid salts, sodium alkylamine oxide bistridecylsulfosuccinates, sodium dioctylsulfosuccinate, sodium dihexylsulfosuccinate, sodium dicyclohexylsulfosuccinate, sodium diamylsulfosuccinate, sodium diisobutylsulfosuccinate, alkylamine guanidine polyoxyethanol, disodium sulfosuccinate ethoxylated alcohol half esters, disodium sulfosuccinate ethoxylated nonylphenol half esters, disodium isodecylsulfosuccinate, disodium N-octadecylsulfosuccinamide, tetrasodium N-(1,2-dicarboxyethyl)-N-octadecylsulfosuccinamide, disodium mono- or didodecyldiphenyl oxide disulfonates, sodium diisopropylnaphthalenesulfonate, and neutralized condensed products from sodium naphthalenesulfonate.
[00146] In other embodiments, the liquid carrier is a lubricant. For example, a lubricant normally used in polymer processing can also be used as the liquid carrier for wet milling the nucleant. Lubricants are normally used to reduce sticking to hot processing metal surfaces and can include polyethylene, paraffin oils, and paraffin waxes in combination with metal stearates. Other lubricants include stearic acid, amide waxes, ester waxes, metal carboxylates, and carboxylic acids. Lubricants are normally added to polymers in the range of about 0.1 percent to about 1 percent by weight, generally from about 0.7 percent to about 0.8 percent by weight of the compound. Solid lubricants can be warmed and melted during the wet milling.
[00147] In yet other embodiments, the liquid carrier is a volatile or organic solvent. In these embodiments, a volatile solvent will flash off during subsequent compounding of the polymer, leaving behind the nucleating agent. Volatile liquid carriers that can be used in the invention include, alcohols (e.g., ethanol, propanol, isopropanol, etc.
[00148] Examples of organic solvents for use in the methods and compositions of the invention include but are not limited to: n-pentane, n-hexane, isohexane, n-heptane, n-octane, isooctane, n-decane, 2,2-dimethylbutane, petroleum ether, petroleum benzine, ligroin, gasoline, kerosine, petroleum spirit, petroleum naphtha, 2-pentene, mixed pentene, cyclohexane, methylcyclohexane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, isopropylbenzene, amylbenzene, diamylbenzene, triamylbenzene, tetraamylbenzene, dodecylbenzene, didodecylbenzene, amyltoluene, coal tar naphtha, solvent naphtha, p-cymene, naphthalene, tetralin, decalin, biphenyl, dipentene, turpentine oil, pinene, p-menthane, pine oil, camphor oil, methyl chloride, methylene chloride, chloroform, carbon tetrachloride, ethyl chloride, ethylene chloride, ethylidene chloride, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, pentachloroethane, hexachloroethane, vinylidene chloride, 1,2-dichloropropane, butyl chloride, amyl chloride, mixed amyl chloride, dichloropentane, hexyl chloride, 2-ethylhexyl chloride, methyl bromide, ethyl bromide, ethylene bromide, tetrabromoethane, chlorobromomethane, ethylene chlorobromide, chlorobenzene, o-dichlorobenzene, 1,2,4-trichlorobenzene, bromobenzene, o-dibromobenzene, o-chlorotoluene, p-chlorotoluene, alpha-chloronaphthalene, chlorinated naphthalene, fluorodichloromethane, dichlorodifluoromethane, fluorotrichloromethane, trifluoromonobromomethane, difluorochloroethane, 1,1,2-trichloro-1,2,2-trifluoroethane, ethyl ether, dichloroethyl ether, isopropyl ether, n-butyl ether, diisoamyl ether, n-hexyl ether, methyl phenyl ether, ethyl phenyl ether, n-butyl phenyl ether, amyl phenyl ether, o, m, p-cresyl methyl ether, p-t-amylphenyl n-amyl ether, ethyl benzyl ether, 1,4-dioxane, trioxane, furan, furfural, dioxolane, 2-methylfuran, tetrahydrofuran, cineol, methylal, diethyl acetal, acetone, methylacetone, methyl ethyl ketone, methyl n-propyl ketone, methyl n-butyl ketone, methyl isobutyl ketone, methyl n-amyl ketone, methyl n-hexyl ketone, diethyl ketone, ethyl n-butyl ketone, di-n-propyl ketone, diisobutyl ketone, 2,6,8-trimethylnonanone-4, acetone oil, acetonylacetone, mesityl oxide, phorone, isophorone, cyclohexanone, methylcyclohexanone, acetophenone, dypnone, camphor, methyl formate, ethyl formate, propyl formate, n-butyl formate, isobutyl formate, methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, sec-butyl acetate, n-amyl acetate, isoamyl acetate, methylisoamyl acetate, methoxybutyl acetate, sec-hexyl acetate, 2-ethylbutyl acetate, methylisobutylcarbinol acetate, 2-ethylhexyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, benzyl acetate, methyl propionate, ethyl propionate, n-butyl propionate, isoamyl propionate, methyl butyrate, ethyl butyrate, n-butyl butyrate, isoamyl butyrate, ethyl oxyisobutyrate, butyl stearate, amyl stearate, methyl acetoacetate, ethyl acetoacetate, isoamyl isovalerate, methyl lactate, ethyl lactate, butyl lactate, amyl lactate, methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, isoamyl benzoate, benzyl benzoate, ethyl cinnamate, methyl salicylate, octyl adipate, diethyl oxalate, dibutyl oxalate, diamyl oxalate, diethyl malonate, dibutyl tartrate, tributyl citrate, dioctyl sebacate, dimethyl phthalate, diethyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, nitromethane, nitroethane, nitropropane, nitrobenzene, nitroanisole, monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, aniline, toluidine, acetoamide, acetonitrile, benzonitrile, pyridine, picoline, lutidine, quinoline, morpholine, carbon disulfide, dimethyl sulfoxide, propanesulfone, triethyl phosphate, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and polyepichlorohydrin. These organic solvents may be used either alone respectively or in combinations with each other.
[00149] An advantage of using a volatile liquid is that the liquid will flash off during processing in the extruder, and can be removed. This can be advantageous for applications where little plasticizer or surfactant is desired in the finished polymer product.
[00150] In still another embodiments, the liquid carrier for wet milling the nucleating agent is water. An advantage of using water is that it, like the volatile solvents, will also flash off during processing. Additionally, no residue behind is left behind, and minimal or no effect on the chemistry of the polymer itself is found.
[00151] In yet other embodiments, the liquid carrier for wet milling the nucleating agent can be a mixture of any of the above. For instance, the liquid carrier can be a mixture of one or more plasticizers, one or more surfactants, one or more volatile liquid carriers, or water. The liquid carrier can also be a mixture of one or more plasticizers, surfactants, volatile liquid carriers, or water.
[00152] One of ordinary skill in the polymer processing arts can therefore compose the overall liquid carrier with consideration for the later processing of the polymer. For instance, if the polymer application calls for only a small amount of plasticizer or surfactant, then one can compose a liquid carrier with a small amount of plasticizer or surfactant, with the balance of the carrier being a volatile liquid that will flash off during processing.
[00153] In certain embodiments, the nucleating agent is wet-milled as described in PCT Patent Publication No. WO 2009/129499, incorporated herein by reference in its entirety.
[00154] In certain embodiments, the nucleating agent further include a polymer and is then referred to as a nucleating composition. In these embodiments, the polymer in the nucleating composition is referred to a "carrier polymer" to differentiate from the polymer in the fiber or web, referred to as a "base polymer"
when the carrier polymer is also present in the composition. A carrier polymer is a polymer included in compositions for dispersing a nucleating agent. In certain aspects, the carrier polymer is combined with the nucleating agent and a liquid carrier under conditions to form a nucleating pellet. A nucleating pellet is a composition distributed within a base polymer to facilitate crystallization. A
base polymer or polymer as used in the methods and compositions of the invention is a polymer used in compositions for making the fibers and non-wovens.
[00155] In certain embodiments, a base polymer and a carrier polymer is the same polymer. In other embodiments, the base polymer and the carrier polymer are different.
Melt Viscosity of Polymer Compositions [00156] In general, it has been found that the melt viscosity of the polyhydroxyalkanoate polymer should be maintained. Preferably the melt viscosity of the starting material is about 800 to about 1100 Pa.sec. Melt viscosity, as the term is used herein, is measured by test ASTM D3835 (ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 USA).
[00157] While it may be preferable to having starting material with a melt viscosity of about 800 to about 1100 Pa/second, the weight average molecular weight of the fibers after extrusion is also highly critical to achieving a non-woven material with soft fibers, i.e., fibers with reduced brittleness. Extruded fibers with a molecular weight under 100 kg/mol were found to be brittle. Preferably, the fibers after extrusion have a molecular weight of at least about 150 kg/mol, more preferably at least about 180 kg/mol, even more preferably at least about 200 kg/mol, and most preferably at least about 250 kg/mol.
[00158] For instance, polyhydroxybutyrate, combined with plasticizer, was found to have the following "hand" (a subjective determination of softness) in relation to the following degrees of molecular weight retention:
Table 1. Hand of Polyhydroxyalkanoate Non-Wovens as a Function of Molecular Weight Mw, g/mol Percent Mw Retention Hand 81,936 18.6 very brittle 83,047 18.9 very brittle 101,874 23.2 brittle 123,682 29.1 not very soft 157,045 35.7 softer 167,148 38.0 soft 158,795 36.1 soft [00159] The relationship between the molecular weight of the starting material and the extruded fibers can also be expressed in terms of molecular weight retention, i.e., the weight-average molecular weight of the extruded fibers as a percentage of the weight average molecular weight of the starting material, e.g., extruded fibers with a molecular weight of 235 kg/mol, which were made from starting material with a molecular weight of 420 kg/mol, can be said to have a molecular weight retention of 56%. However, starting material with a very high molecular weight can have a low molecular weight retention and still produce soft fibers, if the molecular weight of the extruded fibers is sufficiently high. Likewise, if the starting material has a relatively low molecular weight, the molecular weight retention would need to be relatively high in order to produce fibers with a sufficiently high molecular weight. Understanding the relationship between these variables is necessary for one to understand how much "play" one has in controlling the residence time and temperature in the extruder. The wet-milled nucleating agent does not change the fiber retained molecular weight.
[00160] It has been found that the viscosity is related to producing soft non-wovens with reduced brittleness. Others have attempted to decrease viscosity in order to be better able to push the polymer formulation through the fine holes in the die. One way to do this is to decrease the molecular weight of the polymer, e.g., by increasing the thermal degradation of the polymer.
[00161] However, it has been discovered that an increase in the thermal degradation, or a decrease in the molecular weight, while making it easier to extrude the polymer through the die, has the added effect of producing brittle fibers, or no fibers at all.
[00162] Instead, as described herein, addition of a plasticizer, and maintenance of melt viscosity (or, at least, reduction of thermal degradation) increases the viscosity, allowing for extrusion through a fine die, but still produces fibers that are soft, and reduces their brittleness.
[00163] In certain embodiments, the particular plasticizer is acetyl tri-n-butyl citrate (CITROFLEX A4). Another plasticizer known to be useful in the invention is diisononyl adipate (DINA).
[00164] Examples of other plasticizers include those plasticizers described above.
The plasticizers may be used either alone respectively or in combinations with each other.
[00165] The biodegradable non-woven materials described in the present invention can be produced using any art-known method for producing non-wovens.
[00166] For instance, the non-wovens can be made by melt blowing, as is described in Example 1, below. Operation and adjustment of such equipment is well within the knowledge of those of ordinary skill in the art of making non-woven materials.
[00167] For instance, screen packs can contribute to the back pressure and shear heat. For melt blown processes, it is common to use high mesh size screens.
However, it has been found that coarser screens work better, e.g., 60 mesh or mesh, or 110 or 130 or even 90 mesh.
[00168] The die hole size can be around 250 um. The compressed air can be heated, e.g., to 220 C. Line speed can be increased by heating the collector belt or take up roll. The machinery should be purged, e.g., with polypropylene.
[00169] For instance, the polymeric composition can also include an optional nucleating agent to aid in crystallization of the polymeric composition.
However, due to the small diameter of the fibers, a particulate nucleating agent should not be used.
[00170] In poly-3-hydroxybutyrate compositions, for example, plasticizers are often used to change the glass transition temperature and modulus of the composition, but surfactants, such as those described above may also be used.
Additives [00171] The non woven compositions and fibers described herein can further included additives, for example, surfactants and clays. The polymeric composition can include one or more surfactants.
[00172] Surfactants are generally used to de-dust, lubricate, reduce surface tension, and/or densify. Examples of surfactants include, but are not limited to mineral oil, castor oil, and soybean oil. One mineral oil surfactant is Drakeol 34, available from Penreco (Dickinson, Texas, USA). Maxsperse W-6000 and W-3000 solid surfactants are available from Chemax Polymer Additives (Piedmont, South Carolina, USA). Nionic ionic surfactants with HLB values ranging from about 2 to about 16 can be used examples being TWEEN-20, TWEEN-65, Span-40 and Span 86.
[00173] Anionic surfactants include aliphatic carboxylic acids such as lauric acid, myristic acid, palmitic acid, stearic acid, and oleic acid; fatty acid soaps Another optional functional component is a nanoclay or organically modified clay.
There are several types of clays used in polymeric compositions, including cationic or medium or high cation exchange capacity. The cation exchange capacity is generally reported as the number of milliequivalents of exchangeable base which can be exchanged per 100 grams of clay. The cation exchange capacity varies from about 50 to about 150 depending on the type of clay. Examples of clays which can be organically modified include sepiolite, attapulgite, montmorillonites, bentonites, saponite and nentronite.
[00174] Organically modified clays are known in the art and are also described in U.S. Patent No. 2,531,440. Examples include montmorillonite clay modified with ternary or quaternary ammonunium salts. Nanoclays are commercially available from Southern Clay Products, Inc. of Gonzales, Texas, USA (such as, but not limited to, CLOISITE NA+ (a natural montmorillonite), CLOISITE 93A & 30B (a natural montmorillonite modified with ternary ammonium salts), and CLOISITE 1OA, 15A, 20A, and 25A (a natural montmorillonite modified with quaternary ammonium salts).
[00175] Montmorillonite clay is the most common member of the smectite family of nanoclays. Smectites have a unique morphology, featuring one dimension in the nanometer range. The montmorillonite clay particle is often called a platelet, which is a sheet-like structure where the dimensions in two directions far exceed the particle's thickness. The length and breadth of the particles range from 1.5 microns down to a few tenths of a micrometer. However, the thickness is only about a nanometer. These dimensions result in extremely high average aspect ratios (on the order of 200 - 500). Moreover, the very small size and thickness mean that a single gram of clay can contain over a million individual particles.
[00176] The clay initially comprises agglomerates of platelet layers. Nanoclay becomes commercially useful if processed into an intercalate, which separates (exfoliates) the platelets in the agglomerates. In an intercalate, the clay is mixed with an intercalate under conditions which cause the platelets to separate and the intercalate to enter into the spaces between the platelets. The intercalant is often an organic or semi-organic chemical capable of entering the montmorillonite clay gallery and bonding to the surface of the platelets. An intercalate is therefore a clay-chemical complex wherein the clay gallery spacing has increased, due to the process of surface modification by the substance (the intercalant). Under the proper conditions of temperature and shear, the platelet agglomerates are capable of exfoliating (separating), allowing the intercalant to enter between them, separating and exfoliating them.
[00177] The platelets can be exfoliated (separated) by a number of processes.
In one exfoliation procedure, described in U.S. Patent No. 6,699,320, the process utilizes a dispersant to enter between the layers of clay platelets and separate them.
In this process, the clay is mixed with a dispersant (e.g., castor wax), and then heated in the barrel of an extruder to a temperature above the melting point of the dispersant (e.g., 82 C - 104 C in the case of castor wax). The heated mixture is then agitated, e.g., with a deep flighted screw. This heating and agitating disperses the platelet layers and delaminates the platelets from neighboring layers, by allowing molecules of dispersant to enter between the layers. The layers are considered "exfoliated" when the separation between the platelet layers is large enough such that there is no longer sufficient attraction between layers to cause uniform spacing between the layers.
[00178] In the process described in U.S. Patent No. 6,699,320, the screw within the extruder moves the clay-wax mixture out of an extrusion die opening in the form of a hot slurry. Two chilled chrome-plated rollers are then used to calender the mixture to a predetermined thickness that is determined by the spacing between the rollers. The mixture is cooled to solidify the wax. The clay-wax mixture is then scraped off the rollers and falls as flakes onto a conveyer belt. The flakes can be tumbled to further reduce their size, and used immediately, or stored.
[00179] Because of the very small size of the clay particles, nanoclays are difficult to handle, and may pose health risks. They are therefore sometimes processed into "masterbatches," in which the clay is dispersed into a polymer resin at a high concentration. Portions of the masterbatch are then added in measured quantities to polymer that does not contain nanoclay, to produce a polymer containing a precise amount of the nanoclay.
[00180] One montmorillonite clay is Cloisite 25A, which can be obtained from Southern Clay Products of Gonzales, Texas, USA. A typical dry particle size distribution of Cloisite 25A is 10% less than 2 microns, 50% less than 6 microns, and 90% less than 13 microns.
[00181] Other nanoclays are identified in U.S. Patent No. 6,414,070 (Kausch et al.), which is incorporated herein by reference in its entirety, and PCT
Patent Publication Nos. WO 00/66657 and WO 00/68312.
Annealing [00182] Post-fabrication heat treating (e.g., annealing) of compositions described herein produces a composition with improved physical properties, such toughness.
[00183] For instance, the PHA compositions are treated for about 10 to about 120 minutes at temperatures of about 80 C to about 120 C. Such treatment improves the toughness of the fibers or nonwovens. Another physical property improved is that physical aging of the fiber is reduced by the annealing temperature as compared without the treatment.
[00184] Although various PHAs are capable of being processed on conventional processing equipment, many problems have been found with the polymers that impede their commercial acceptance. These include brittleness and age-related brittleness. For instance the mechanical properties of articles made from polyhydroxyalkanoate polymers are known to change over time, during storage at ambient conditions. Specifically, the impact toughness and tensile elongation at break (Eb) are known to decrease systematically over time. The exact reasons for this decrease are not known. This age-related increase in brittleness limits the commercial applications available for use of the polymer. In addition, the crystallization kinetics of the polymer are poorly understood, and longer cycle times (relative to polyethylene and polypropylene) are often required during processing of these polymers, further limiting their commercial acceptance. Post-fabrication heat treating (e.g., annealing) provides benefits to the mechanical properties of the PHA
compositions.
[00185] As disclosed herein, "annealing" and "heat treatment" means a treatment where the polyhydroxyalkanoate polymer processed to a product in is subsequently (i.e., after the fiber or web is formed) heated for a period of time. This has been found to provide surprising and unexpected properties of toughness. Preferably the fiber or web is heated to about 80 C to about 140 C for about 5 seconds to about 90 minutes, more preferably to about 90 C to about 130 C for about 10 minutes to about 70 minutes, and most preferably to about 110 C to about 125 C for about minutes to about 60 minutes.
[00186] This is accomplished, for instance, in-line by forming the fiber or web in any of a variety of ways, and then running the fiber or web through an oven that is maintained at the appropriate temperature. The oven is long enough so that between entering and exiting the oven, the composition is exposed to the heat for the appropriate amount of time. Alternatively, the composition is "snaked" through the oven, e.g., back and forth on a series of rollers within the oven, so that the fiber or web is exposed to the heat for the appropriate amount of time before exiting the oven.
[00187] For the fabrication of useful articles, a polymeric composition described herein is created at a temperature above the crystalline melting point of the thermoplastic but below the decomposition point of any of the ingredients of the composition. Alternatively, a pre-made blend composition of the present invention is simply heated to such temperature. Such processing can be performed using any art-known technique used to make non-woven materials.
[00188] The polymeric compositions of the present invention can be used to create, without limitation, a wide variety of useful products, e.g., automotive, consumer, durable, construction, electrical, medical, and packaging products.
For instance, the polymeric compositions can be used to make, without limitation, non-wovens and articles made from non-woven materials, such as filters, insulation materials and disposable clothing and wipes.
[00189] The invention will be further described in the following examples, which do not limit the scope of the invention defined by the claims.
EXAMPLES
TESTING METHODS
Measurement of Molecular Weight of Polymers [00190] Molecular weight (either weight-average molecular weight (Mw) or number-average molecular weight (Mn)) of PHA is estimated by gel permeation chromatography (GPC) using, e.g., a Waters Alliance HPLC System equipped with a refractive index detector. The column set is, for example, a series of three PLGe1 micrometer Mixed-B (Polymer Labs, Amherst, MA) columns with chloroform as mobile phase pumped at 1 ml/min. The column set is calibrated with narrow distribution polystyrene standards. Unless otherwise indicated, "molecular weight,"
as used herein, refers to weight average molecular weight.
[00191] The PHA sample is dissolved in chloroform at a concentration of 2.0 mg/ml at 60C. The sample is filtered with a 0.2 micrometer Teflon syringe filter. A
50 microliter injection volume is used for the analysis.
[00192] The chromatogram is analyzed with, for example, Waters Empower GPC
Analysis software. Molecular weights and PD are reported as polystyrene equivalent molecular weights.
[00193] The GPC method become inaccurate when measuring molecular weights over about one million. For polymers with such high molecular weights, the weight average molecular weight is estimated by flow injection polymer analysis (FIPA) system (commercially available from, e.g., Viscotek Corp, Houston, TX) The polymer solution is eluted through a single, low volume size exclusion to separate polymer, solvent and impurities. The detection system consists of a refractive index, light scattering and viscosity group.
[00194] The polymer sample is dissolved in chloroform at a concentration of 2.0 mg/ml at 60C. The sample is filtered with a 0.2 micrometer Teflon syringe filter.
The FIPA unit operates at 45 C with tetrahydrofuran mobile phase at a flow rate of 1.0 ml/min. A 100 microliter injection volume is used for the analysis.
[00195] The chromatogram is analyzed with, e.g., Viscotek Omni-Sec software.
The absolute Mw is reported in grams/mole.
[00196] For PHA polymers, the absolute Mw (as measured by FIPA) is related to the Mw (as measured by GPC in polystyrene equivalents) by dividing the GPC
value by approximately 1.3.
Measurement of Thermal Stability [00197] The thermal stability of a polymer sample is measured in two different ways. The thermal stability is represented herein by a sample's "k," which shows the change in Mw over time. It can also be measured by melt capillary stability (MCS), which shows the change in the capillary shear viscosity over time.
[00198] To measure the thermal stability ("k") of a sample, a polymer specimen (e.g., 2 mg) is exposed to 170 C in a DSC test chamber (e.g., a TA Instrument Q-2000), and the specimen heated for 0, 5 and 10 minutes. The cooled sample cup is unsealed and the sample dissolved in chloroform to the concentration required for gel permeation chromatography (GPC). GPC is used to measure Mw, Mn and Mz molecular weight averages of polymers, relative to a 900K polystyrene control.
[00199] The slope of the best-fit straight line of reciprocal weight-average molecular weight (1/Mw) versus time is the thermal stability of the sample in moles per gram per minute. A smaller "k" translates to better thermal stability.
[00200] The thermal stability of a sample is measured using a capillary rheometry test. Capillary rheometers are generally used to measure the melt viscosity of plastics as a function of shear rate (typically from about 0.1 to 10,000 sec').
However, measuring the melt viscosity of PHA polymers is complicated, because the molecular weight degradation reaction occurs at the test conditions themselves, which results in decreasing viscosity as a function of melt dwell time.
[00201] This obstacle is overcome by measuring the melt viscosity at various dwell times and extrapolating back to zero time (this is described in ASTM
08, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 USA). In the tests used herein, measurements are performed at 180 C. The material is preheated for 240 seconds (4 minutes) before the testing is commenced, and a capillary die of 0.75 mm diameter and 30 mm length is used. The measured apparent viscosity (as calculated from pressure and rate) decreases with increasing dwell time in the rheometer. When measured apparent viscosity (at an apparent shear rate of 100 sec') is plotted as a function of time, the slope of this best-fit straight line is used as another indicator of thermal stability. This slope is referred to as "melt capillary stability," or MCS.
The MCS
number is negative, because viscosity decreases with time, and a larger magnitude (i. e., a smaller number) corresponds to poorer thermal stability. In other words, a negative number closer to zero is more desirable, and a larger negative number is less desirable.
Measuring G' Using Torsional Melt Rheometry [00202] Torsional rheometry is used to measure the melt strength of a polymer.
For purposes of simplicity, G' will be used herein, measured at an imposed frequency of 0.25 rad/s as a measure of "melt strength" (unless otherwise indicated).
Higher G' translates to higher melt strength.
[00203] All oscillatory rheology measurements are performed using a TA
Instruments AR2000 rheometer employing a strain amplitude of 1%. First, dry pellets (or powder) are molded into 25 mm diameter discs that are about 1200 microns in thickness. The disc specimens are molded in a compression molder set at about 165 C, with the molding time of about 30 seconds. These molded discs are then placed in between the 25 mm parallel plates of the AR2000 rheometer, equilibrated at 180 C, and subsequently cooled to 160 C for the frequency sweep test. A gap of 800-900 microns is used, depending on the normal forces exerted by the polymer. The melt density of PHB is determined to be about 1.10 g/cm3 at C; this value is used in all the calculations.
[00204] Specifically, the specimen disc is placed between the platens of the parallel plate rheometer set at 180 C. After the final gap is attained, excess material from the sides of the platens is scraped. The specimen is then cooled to 160 C
where the frequency scan (from 625 rad/s to 0.10 rad/s) is then performed;
frequencies lower than 0.1 rad/s are avoided because of considerable degradation over the long time it takes for these lower frequency measurements. The specimen loading, gap adjustment and excess trimming, all carried out with the platens set at 180 C, takes about 21/2 minutes. This is controlled to within 10 seconds to minimize variability and sample degradation. Cooling from 180 C to 160 C
(test temperature) is accomplished in about four minutes. Exposure to 180 C ensures a completely molten polymer, while testing at 160 C ensures minimal degradation during measurement.
[00205] During the frequency sweep performed at 160 C, the following data are collected as a function of measurement frequency: Irk * 1 or complex viscosity, G' or elastic modulus (elastic or solid-like contribution to the viscosity) and G"
or loss modulus (viscous or liquid-like contribution to the viscosity).
[00206] As used herein, G' measured at an imposed frequency of 0.25 rad/s (unless otherwise indicated) is used as a measure of "melt strength." Higher G' translates to higher melt strength.
[00207] Melt viscosity is measured by ASTM D3835 (ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 USA).
[00208] Tensile properties were measure according to ASTM D412-Test Method A-Standard Test Method for Vulcanized Rubber and Thermoplastic Elastomers (ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 USA).
Example 1. Production of Soft Non-Woven Fibers From PHB and CITROFLEX
A4 Plasticizer [00209] A 6 inch melt blowing line that was used to produce in general PHA
fabrics was used to produce the PHB non-woven materials in this example. The line used a die with 0.025 inch die hole diameter (120 holes).
Table 2. Other parameters of the melt blowing line.
Design horizontal line Die-to collector distance 23-25 inches Extruder screw compression ratio 3 Extruder screw metering section channel depth 10 ratio to barrel diameter Extruder screw diameter 1.25"
Extruder screw design 3 zones Typical material usage 8 lb/hr Typical melt residence time 7 minutes Melt filtration No Take up speed Can vary from 5 sec to 2 min [00210] A resin formulation of 90% PHB and 10% of plasticizer CITROFLEX
A4 (acetyl tri-n-butyl citrate) was fed into the extruder. The resin formulation had a melt viscosity after 5 minutes exposure at 180 C of 924 Pa.s as measured by D3835 (ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 USA), and a weight-average molecular weight of 420 kg/mol. Two screen packs of 60 and 180 mesh sizes were used and the die was a 121 hole die of 0.010 inch (250 gm) holes. The air gap was set to 0.060 inch.
[00211] The conditions used are shown in Table 3, below.
Table 3. Conditions used to make non-woven web.
Control Point Settings* Running conditions Screw Zone 1 150 C 170 C
Screw Zone 2 155 C 165 C
Screw Zone 3 120 C 145 C
C Zone 145 C 150 C
Die Zone 1 NA NA
Die Zone 2 155 C 160 C
Die Zone 3 155 C 160 C
Die Zone 4 155 C 160 C
Screw Speed (rpm) 26-30 Pressure (psi) 350-400 Air Temp 400-415 F (204-213 C) Air Rate 5-8 psi Throughput 4.5 g/min Distance die/collector belt 85 cm [00212] A soft continuous web was obtained with the fiber diameter ranging from 2 to 5 microns and basis weight from 20 to 160 GSM. The residual Mw of the polymer was 235 kg/mol, providing a molecular weight retention of 56%. The residual crystallinity was 51 %.
[00213] Samples from six identical runs were tested for strength, and the tensile/elongation curve is presented in FIG. 2. A summary of the mechanical properties is presented in Table 4.
Table 4. Mechanical Properties of Six Samples of Non-Wovens.
Thickness (millimeters) Mean 1.52 SD 0.08 Air Permeability (cfm) Mean 25.90 SD 2.70 PMI (microns) Bubble 29.91 Mean 15.71 Basis Weight (grams/sq. meter) Mean 141.20 SD 8.42 Fiber diameter (microns) Mean 2.14 SD 5.11 Penetration by alcohol Rating No. 1 Peak Force (machine direction) Lbs. 1.98 Peak Elongation (machine direction) % 3.39 [00214] A photograph of the fiber structure is presented in FIG. 3.
Example 2. Effect of Increased Temperature Exposure on Production of Non-Woven Fibers From PHB and CITROFLEX A4 Plasticizer [00215] A resin formulation of 90% polyhydroxybutyrate and 10% of CITROFLEX A4 (acetyl tri-n-butyl citrate) was used to make non-wovens. The formulation had a melt viscosity of 924 Pa.s after 5 minutes at 180 C, and a weight-average molecular weight of 420 kg/mol. The onset of crystallization was 102 C
and the temperature of peak crystallization was 93.5 C.
[00216] The material was fed into the same extruder as used in Example 1. Two screen packs of 60 and 180 mesh sizes were used and the die was a 121-hole die with 0.010 inch (250 m) holes. The air gap was set to 0.060 inch. The processing conditions used are provided in Table 5, below.
Table 5. Processing conditions for 90% PHB : 10% CITROFLEX A4.
Control Point Settings Run Conditions Screw Zone 1 160 C 161 C
Screw Zone 2 160 C 160 C
Screw Zone 3 155 C 170 C
C Zone 155 C 157 C
Die Zone 1 NA 169 C
Die Zone 2 155 C 154 C
Die Zone 3 155 C 156 C
Die Zone 4 160 C 162 C
Screw Speed (rpm) 18 Pressure (psi) 312 Air Temp 395 F
Air Rate 8 psi Throughput 4.5 g/min [00217] These higher temperature exposure and longer residence time (the screw rpm was 18), the fibers started to become much rougher and more brittle.
Molecular weight retention dropped to less than 40%. The molecular weight of three samples of the extruded fibers was 167, 159 and 157 kg/mol.
[00218] Samples from six identical runs were tested for strength, and the tensile/elongation curve is presented in FIG. 4. The basis weight for the tested samples is 30 GSM. The peak force in the machine direction was 0.77 lbs., and the peak elongation was 1.65%. The mean fiber diameter was 2 microns, with a standard deviation of 9 microns. The fiber felt rough.
Example 3. Production of Non-Woven Fibers From PHB and DINA
[00219] A formulation of 85% polyhydroxybutyrate and 15% DINA (diisononyl adipate) was used to make non-wovens. The formulation had a melt viscosity after 5 minutes at 180 C of 1058 Pa.s. The peak crystallization of this formulation at 10 C
per minute was 83 C, and the temperature of onset of crystallization was 98 C.
[00220] Two screen packs of 60 and 180 mesh sizes were used and the die was a 121-hole die with 0.010 inch (250 gm) holes and an air gap of 0.060 inch. The processing conditions used were as follows.
Table 6. Processing Conditions for 85% PHB : 15% DINA.
Control Point Settings Run Conditions Screw Zone 1 150 C 148 C
Screw Zone 2 1550 C 154 C
Screw Zone 3 120 C 128 C
C Zone 145 C 147 C
Die Zone 1 NA 128 C
Die Zone 2 155 C 158 C
Die Zone 3 155 C 153 C
Die Zone 4 145 C 145 C
Screw Speed (rpm) 30 Pressure (psi) 182 Air Temp 420 F
Air Rate 5 psi [00221] The fibers made from this formulation were more brittle, and lost their softness.
Example 4. Effect of Processing Conditions on Production of Non-Woven Fibers From PHB Copolymer and CITROFLEX A4 Plasticizer [00222] A resin formulation of 90% polyhydroxyalkanoate copolymer and 10%
of CITROFLEX A4 (acetyl tri-n-butyl citrate) was used to make non-wovens. The polyhydroxyalkanoate copolymer was 60% polyhydroxybutyrate and 40% poly(3-hydroxybutyrate-co-4-hydroxybutyrate). The formulation had a weight-average molecular weight of 92.855 kg/mol.
[00223] The material was fed into the same extruder as used in Example 1. One 200 mesh screen packs and the die was a 121-hole die with 0.025 inch holes.
The air gap was set to 0.030 inch. The processing conditions used are provided in Table 7, below.
Table 7. Processing conditions for 90% PHB : 10% CITROFLEX A4.
Control Point Settings Run Conditions Screw Zone 1 170 C 179 C
Screw Zone 2 170 C 168 C
Screw Zone 3 170 C 181 C
C Zone 170 C 169 C
Die Zone 1 NA NA
Die Zone 2 170 C 171 C
Die Zone 3 170 C 170 C
Die Zone 4 170 C 171 C
Screw Speed (rpm) 200 Pressure (psi) 107 Air Temp 330 F
Air Rate 11 psi [00224] The processing temperatures and back pressure were very high, relative to Examples 1 and 2. Coarse and brittle fibers were produced. The molecular weight retention was 22%.
Example 5. PHA blend with Wet-Milled Nucleating agent and Plasticizer [00225] The compound was based on PHA resin with the following composition:
36% P3HB, 24% (3HB-1 1%4HB), 40% (3HB-30%4HB). The wet milled boron nitride (BN) (dispersion D218, 18% BN in acetyl tri-n-butyl citrate, Citraflex A4, Vertellus) was mixed with acetyl tri-n-butyl citrate, Citraflex A4, dryblended and added to the resin. The average particle size of the BN were found to be below microns (based on optical microscopy data).
[00226] The compound's formulation is presented in Table 8.
Table 8. Composition of the compound for the non-woven material.
Ingredients %
acetyl tri-n-butyl citrate 9 Wet milled Boron Nitride (BN) dispersed 5 in acetyl tri-n-butyl citrate, 18% BN
[00227] The compounding was done on a 27 mm MAXX Leistritz twin-screw extruder using the following temperature profile: 10 zones set at 170 / 170 /
165 / 165 / 160 / 160 / 160 / 160 / 155 C. The extrusion rate was set at 60 lbs/hr and the extruder was operated at 200 rpm.
[00228] The compound had the following melt viscosity at 180 C: after 5 minutes 284 Pa sec, after 10 minutes 198 Pa sec, melt stability -0.0723 (see FIG. 5).
[00229] To prepare the melt blown non-woven, the compound was extruded on a single screw extruder with the screw diameter of 50mm and L/D ratio of 30. The die holes were of 300 micron in diameter. The screw temperatures were 185 C, transition temperature was 180 C and the die temperature was 180 C. The attenuation was done with hot air at the temperatures 200-220 C under the pressure of 0.37 kg/cm2. The distance from the die to the collector was 60-65 cm, the through put was 70g/minute. The fiber network is found to be less brittle and embrittlement is not noticeable after 4 months of ambient storage. The fibers were not annealed.
[00230] At these conditions, a fiber network was built (average fiber diameter microns) (see FIG. 6).
Example 6. P3HB polymer with Wet-Milled Nucleating Agent and Plasticizer.
[00231] The compound was based on P3HB resin. The wet milled boron nitride (dispersion D218, 16% BN in acetyl tri-n-butyl citrate, Citraflex A4, Vertellus, average particle size below 20 microns in diameter) was mixed with acetyl tri-n-butyl citrate, Citraflex A4, dryblended and added to the resin.
[00232] The formulation is presented in Table 9, below.
Table 9. Composition of the compound for the non-woven material.
Ingredients %
acetyl tri-n-butyl citrate 20 Wet milled BN dispersed in acetyl 5 tri-n-butyl citrate, 16% BN
[00233] The compounding was done on a 27 mm MAXX Leistritz twin-screw extruder using the following temperature profile: 10 zones set at 175 / 175 /
175 / 170 / 170 / 170 / 170 / 180 / 180 C. The extrusion rate was set at 60 lbs/hr and the extruder was operated at 100 rpm.
[00234] The compound had the following melt viscosity at 180C: after 5 minutes 517 Pa sec, after 10 minutes 278 Pa sec, melt stability -0.124.
[00235] The melt blowing conditions were identical to those described in Example 5. The fibers were much stiffer and more brittle than in Example 5.
RESULTS
[00236] The improvement of the melt blown fibers was due to the combination of the newly developed wet milling and dispersion of boron nitride particles in a citrate based plasticizer. The incorporation of the nucleating agent enabled lower crystallinity PHA polymers to be introduced to the melt blown process. These PHA
resins provided better physical properties to the fibers and their networks.
The improvements included that they were shown to become less stiff, less prone to the aging related embrittlement, were more elastic and much stronger (tougher).
Example 7. Comparison of PHA Compositions: Soft non-woven described in Example 1.
[00237] Compound A containing 90% PHB and 10% of Citraflex A4 (acetyl tri-n-butyl citrate) was fed into the extruder with L/D=27, screw compression ratio of 3, 2 screen packs of 60 and 180 mesh sizes and the die containing 121 holes of 0.010 inch (250 gm) in diameter. Air gap was set to 0.060 inch.
Table 10. Conditions of extrusion.
Control Point Settings* Running conditions Screw Zone 1 150 C 170 C
Screw Zone 2 155 C 165 C
Screw Zone 3 120 C 145 C
C Zone 145 C 150 C
Die Zone 1 NA NA
Die Zone 2 155 C 160 C
Die Zone 3 155 C 160 C
Die Zone 4 155 C 160 C
Screw Speed rpm 26-30 Pressure psi 350-400 Air Temp 400-415 F
(204-213 C) Air Rate 5-8 psi Throughput 4.5 g/min Distance 85 cm die/collector belt [00238] The tensile data for original fiber vs 3.5 month aged fiber is presented in Table 11, below.
Table 11. Tensile data for fresh vs. aged fiber.
fresh aged, 3.5 mo thickness, mean mm 1.52+/- 0.08 basis weight, GSM 141.2+/- 8.42 Fiber d, um 2.14 +/- 5.11 Peak force MD, lbs 1.98 1.66-1.28 Peak elongation, MD, % 3.39 2.41-1.9 [00239] The data shows that the peak force required to break the fiber network decreases up to 35% after 3.5 months of ambient aging. The peak % of elongation also decreases up to 44%.
[00240] Compound B was prepared with PHA resin with the following composition: 36% P3HB, 24% (3HB-11%4HB), 40% (3HB-30%4HB). The wet milled boron nitride (dispersion D218, 18% BN in acetyl tri-n-butyl citrate, CITROFLEX A4, Vertellus) was mixed with acetyl tri-n-butyl citrate, CITROFLEX A4, dryblended and added to the resin. The average particle size of the BN were found to be below 20 microns (optical microscopy data).
[00241] Compound A is the softest with the smallest fiber diameter (a mean of microns). This compound also formed thick non-wovens of about 1.52mm thickness. Tensile retention is sufficient for such thick materials. These fibers would be useful for applications were softness is a key property, such as wipes.
[00242] The compound's formulation is presented in Table 12.
Table 12 Composition of the compound for the non-woven material.
Ingredients %
acetyl tri-n-butyl citrate 9 Wet milled BN dispersed in acetyl tri- 5 n-butyl citrate, 18% BN
[00243] The compounds below were produced as described in Example 6:
Table 13. Characteristics of fibers produced from Compounds A and B.
PHB, Compound A- Compound 1, aged 4 mo B, aged 4 mo thickness, mean mm 0.26 0.35 basis weight, GSM 100 164 Fiber d, um 40 40 Peak force MD, lbs 0.6 1.9 Peak elongation, 1.74 8.6 MD, %
Max load, N 2.67 8.61 [00244] These fibers have diameters of about 40 microns and are stiffer non-wovens compared to the fibers in Table 12. These fibers would have applications for use in filers, thermal or sound insulators, erosion control and mulch control materials. these fibers form much thinner networks and because they are thicker may be more susceptible to brittleness with aging.
[00245] This data demonstrates that after similar aging and with the same fiber geometry, the Compound B fibers were capable to withstand 8.6 N or force while Compound A-1 breaks at 2.67N. Tensile properties are measured according to ASTM D412, Test method A-Standard Test Method for Vulcanized Rubber and Thermoplastic Elastomers (ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 USA). Tension Die C-half. The rate of extention was 10mm/min. These fibers were made on the same equipment for comparison. The fibers of Compounds A-1 and B are much coarser and much more sensitive to embrittlement.
Example 8: Copolymer Wet-milled Nucleating Compositions for making melt-blown fibers and non-wovens.
[00246] The following formulations and blends of two or more formulations can be useful for producing fibers according the present invention for use in fiber and non-woven applications. The extruded non-woven fibers can be produced by the methods described herein or known in the art.
Table 14. Polymer blends for non-wovens.
Formulation Copolymer Wet-milled Nucleating agent in acetyl tri-n-butyl citrate (18%
BN) la poly(3-hydroxybutyrate-co-4- 1-10% of wet-hydroxybutyrate) 8% 4- milled boron hydroxybutyrate content nitride lb poly(3-hydroxybutyrate-co-4- 1-10% of wet-hydroxybutyrate) 11 % 4- milled boron hydroxybutyrate content nitride lc poly(3-hydroxybutyrate-co-4- 1-10% of wet-hydroxybutyrate) 15% 4- milled boron hydroxybutyrate content nitride 2a poly(3-hydroxybutyrate-co-5- 1-10% of wet-hydroxyvalerate) 8 % 5- milled boron hydroxyvalerate content nitride 2b poly(3-hydroxybutyrate-co-5- 1-10% of wet-hydroxyvalerate) 11% 5- milled boron hydroxyvalerate content nitride 2c poly(3-hydroxybutyrate-co-5- 1-10% of wet-hydroxyvalerate)15% 5- milled boron hydroxyvalerate content nitride 3a poly(3-hydroxybutyrate-co-3- 1-10% of wet-hydroxyvalerate) 8 % 3- milled boron hydroxyvalerate content nitride 3b poly(3-hydroxybutyrate-co-3- 1-10% of wet-hydroxyvalerate) 11% 3- milled boron hydroxyvalerate content nitride 3c poly(3-hydroxybutyrate-co-3- 1-10% of wet-hydroxyvalerate)15% 3- milled boron hydroxyvalerate content nitride 4a poly(3-hydroxybutyrate-co-3- 1-10% of wet-hydroxyhexanoate) 8 % 3- milled boron hydroxyhexanoate content nitride 4b poly(3-hydroxybutyrate-co-3- 1-10% of wet-hydroxyhexanoate) 11% 3- milled boron hydroxyhexanoatecontent nitride 4c poly(3-hydroxybutyrate-co-3- 1-10% of wet-hydroxyhexanoate)15% 3- milled boron hydroxyhexanoate content nitride [00247] Each formulation additionally can contain a plasticizer such as acetyl tri-n-butyl citrate. In addition to the above, two or more component blends of each copolymer of the recited formulations can also be made, for example : the copolymer of la can be blended with poly (3-hydroxybutyrate) or the copolymer of 2a, 2b, 2c, 3a, 3b, 3c, 4a, 4b, or 4c or combinations thereof and the resultant composition further includes 1-10% of wet-milled boron nitride dispersed in acetyl tri-n-butyl citrate (18% BN).
[00248] Other than in the examples herein, or unless otherwise expressly specified, all of the numerical ranges, amounts, values and percentages, such as those for amounts of materials, elemental contents, times and temperatures of reaction, ratios of amounts, and others, in the following portion of the specification and attached claims may be read as if prefaced by the word "about" even though the term "about" may not expressly appear with the value, amount, or range.
Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
[00249] Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains error necessarily resulting from the standard deviation found in its underlying respective testing measurements. Furthermore, when numerical ranges are set forth herein, these ranges are inclusive of the recited range end points (i.e., end points may be used). When percentages by weight are used herein, the numerical values reported are relative to the total weight.
[00250] Also, it should be understood that any numerical range recited herein is intended to include all sub-ranges subsumed therein. For example, a range of "1 to 10" is intended to include all sub-ranges between (and including) the recited minimum value of 1 and the recited maximum value of 10, that is, having a minimum value equal to or greater than 1 and a maximum value of equal to or less than 10. The terms "one," "a," or "an" as used herein are intended to include "at least one" or "one or more," unless otherwise indicated.
[00251] Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
[00252] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
[00253] While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
[00123] In certain embodiments, branched polyhydroxyalkanoate polymers are used to make the non-woven materials as described herein. Such branched polyhydroxyalkanoates have better thermal stability than unbranched polyhydroxyalkanoate polymers.
[00124] Polyhydroxyalkanoate polymers are branched using a cross-linking agent, also referred to as co-agents containing two or more reactive functional groups such as epoxides or double bonds. These cross-linking agents modify the properties of the polymer. These properties include, but are not limited to, melt strength or toughness.
[00125] One type of cross-linking agent is an "epoxy functional compound." As used herein, "epoxy functional compound" is meant to include compounds with two or more epoxide groups capable of increasing the melt strength of polyhydroxyalkanoate polymers by branching, e.g., end branching as described above. When an epoxy functional compound is used as the cross-linking agent in the disclosed methods, a branching agent is optional. As such one embodiment of branching includes reacting a starting polyhydroxyalkanoate polymer (PHA) with an epoxy functional compound. Alternatively, another method of branching includes reacting a starting polyhydroxyalkanoate polymer, a branching agent and an epoxy functional compound. Alternatively, another branching method includes reacting a starting PHA, and an epoxy functional compound in the absence of a branching agent.
[00126] Such epoxy functional compounds can include epoxy-functional, styrene-acrylic polymers (such as, but not limited to, e.g., JONCRYL ADR-4368 (BASF), or MP-40 (Kaneka)), acrylic and/or polyolefin copolymers and oligomers containing glycidyl groups incorporated as side chains (such as, but not limited to, e.g., LOTADER (Arkema), poly(ethylene-glycidyl methacrylate-co-methacrylate)), and epoxidized oils (such as, but not limited to, e.g., epoxidized soybean, olive, linseed, palm, peanut, coconut, seaweed, cod liver oils, or mixtures thereof, e.g., MERGINAT ESBO (Hobum, Hamburg, Germany)and EDENOL B 316 (Cognis, Dusseldorf, Germany)).
[00127] For example, reactive acrylics or functional acrylics cross-linking agents are used to increase the molecular weight of the polymer in the branched polymer compositions described herein. Such cross-linking agents are sold commercially.
BASF, for instance, sells multiple compounds under the trade name "JONCRYL ", which are described in U.S. Patent No. 6,984,694 to Blasius et at., "Oligomeric chain extenders for processing, post-processing and recycling of condensation polymers, synthesis, compositions and applications", incorporated herein by reference in its entirety. One such compound is JONCRYL ADR-4368CS, which is styrene glycidyl methacrylate and is discussed below. Another is MP-40 (Kaneka). And still another is "Petra" line from Honeywell, see for example, U.S.
Patent No. 5,723,730. Such polymers are often used in plastic recycling (e.g., in recycling of polyethylene terephthalate) to increase the molecular weight (or to mimic the increase of molecular weight) of the polymer being recycled. Such polymers often have the general structure:
[cCRiR2 C - CR1R2 C [cRlR2]
X ~ y I
Z
\ C \
O O O o 1 \CH2 R3 \CH'O
R1 and R2 are independently H or alkyl R3 is alkyl X and Y are 1-20 Z is 2-20 alkyl is C1-Cg [00128] Without wishing to be bound by theory, it is believed that the epoxy-functional polymeric acrylics are capable of branching polyesters, and effectively repair the damage (in particular, loss of melt strength G') that occurs to the molecular weight of the polyester in the extruder. The epoxy-functional compounds may also improve thermal stability of polyhydroxyalkanoate polymers by preventing beta scission.
[00129] E.I. du Pont de Nemours & Company sells multiple reactive compounds under the trade name Elvaloy , which are ethylene copolymers, such as acrylate copolymers, elastomeric terpolymers, and other copolymers. One such compound is Elvaloy PTW, which is a copolymer of ethylene-n-butyl acrylate and glycidyl methacrylate. Omnova sells similar compounds under the trade names "SX64053,"
"SX64055," and "SX64056." Other entities also supply such compounds commercially.
[00130] Specific polyfunctional polymeric compounds with reactive epoxy groups are the styrene-acrylic copolymers and oligomers containing glycidyl groups incorporated as side chains. Several useful examples are described in U.S.
Patent No. 6,984,694 to Blasius et at., "Oligomeric chain extenders for processing, post-processing and recycling of condensation polymers, synthesis, compositions and applications", which is incorporated herein by reference in its entirety.
These materials are based on oligomers with styrene and acrylate building blocks that have glycidyl groups incorporated as side chains. A high number of epoxy groups per oligomer chain can be used, for example at least 10, greater than 15, or greater than 20. These polymeric materials generally have a molecular weight greater than 3000, specifically greater than 4000, and more specifically greater than 6000. These are commercially available from Johnson Polymer, LLC (now owned by BASF) under the trade name JONCRYL , ADR 4368 material. Other types of polyfunctional polymer materials with multiple epoxy groups are acrylic and/or polyolefin copolymers and oligomers containing glycidyl groups incorporated as side chains.
A further example of a such polyfunctional carboxy-reactive material is a co-or ter-polymer including units of ethylene and glycidyl methacrylate (GMA), available under the trade name LOTADER resin, sold by Arkema. These materials can further comprise methacrylate unites that are not glycidyl. An example of this type is poly(ethylene-glycidyl methacrylate-co-methacrylate).
[00131] Fatty acid esters or naturally occurring oils containing epoxy groups (epoxidized) can also be used. Examples of naturally occurring oils are olive oil, linseed oil, soybean oil, palm oil, peanut oil, coconut oil, seaweed oil, cod liver oil, or a mixture of these compounds. Particular preference is given to epoxidized soybean oil (e.g., Merginat ESBO from Hobum, Hamburg, or Edenol B 316 from Cognis, Dusseldorf), but others may also be used.
[00132] As used herein, "epoxy functional compound" is meant to include compounds with epoxide groups capable of increasing the melt strength of polyhydroxyalkanoate polymers by end chain branching as described above. Such epoxy functional compounds can include epoxy-functional, styrene-acrylic polymers (such as, but not limited to, e.g., JONCRYL ADR-4368 (BASF), or MP-40 (Kaneka)), acrylic and/or polyolefin copolymers and oligomers containing glycidyl groups incorporated as side chains (such as, but not limited to, e.g., LOTADER
(Arkema), poly(ethylene-glycidyl methacrylate-co-methacrylate)), and epoxidized oils (such as, but not limited to, e.g., epoxidized soybean, olive, linseed, palm, peanut, coconut, seaweed, cod liver oils, or mixtures thereof, e.g., Merginat ESBO
(Hobum, Hamburg, Germany) and Edenol B 316 (Cognis, Dusseldorf, Germany)).
[00133] In general, it appears that compounds with terminal epoxides may perform better than those with epoxide groups located elsewhere on the molecule.
Nucleating Agents [00134] The nucleating agent of the methods and compositions herein is selected from boron nitride, cyanuric acid or related compounds, carbon black, mica talc, silica, clay, calcium carbonate, synthesized silicic acid and salts, metal salts of organophosphates, kaolin, and possibly other materials. In particular compositions and methods, the nucleating agent is boron nitride.
[00135] In preferred embodiments, the nucleating agent is wet-milled. Wet milling the nucleating agent in a liquid carrier produces a nucleating agent with a particle size well below that obtained via standard air jet milling. In certain embodiments, the nucleating agent is wet-milled to an average particle size of less than 20 microns.
[00136] Wet grinding can be done, for instance, in a model KD5 Dyno Mill, which is a horizontal mill with a 1.5 liter mixing volume capacity. Any equivalent mill can be used. The KD5 Dyno Mill can be used in either a batch cycle or continuous loop mode. The mixing horizontal chamber contains a central horizontal shaft onto which are attached 5-7 polyurethane paddles stators which provided the circumventional driving velocity to agitate the grinding media (typically from, e.g., 0.4mm to 1.2mm ceramic beads, with narrow size distribution range). As described herein, the mixing chamber can be filled with 0.6-0.8mm zirconia beads to about 80-85% volume fill capacity. The shaft speed can be set to, e.g., 2400 rpm. The liquid media (carrier) can be pumped through the chamber while the beads are agitated.
This effects a grinding action. The residence time is controlled by the external flow rate of the liquid media. Grinding efficiency is controlled by the size of the beads, shaft rpm and residence time of the material in the chamber (i.e., as a function of flow rate). The liquid exits the mill through a angular slot die which is small enough to retain the grinding media (the beads) while allowing the liquid to flow through the gap, typically, e.g., <50% -25% of the grinding media diameter.
[00137] Nucleating agents for various polymers can include simple substances, metal compounds including composite oxides, for example, carbon black, calcium carbonate, synthesized silicic acid and salts, silica, zinc white, clay, kaolin, basic magnesium carbonate, mica, talc, quartz powder, diatomite, dolomite powder, titanium oxide, zinc oxide, antimony oxide, barium sulfate, calcium sulfate, alumina, calcium silicate, metal salts of organophosphates, and boron nitride; low-molecular organic compounds having a metal carboxylate group, for example, metal salts of such as octylic acid, toluic acid, heptanoic acid, pelargonic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, cerotic acid, montanic acid, melissic acid, benzoic acid, p-tert-butylbenzoic acid, terephthalic acid, terephthalic acid monomethyl ester, isophthalic acid, and isophthalic acid monomethyl ester;
high-molecular organic compounds having a metal carboxylate group, for example, metal salts of such as: carboxyl-group-containing polyethylene obtained by oxidation of polyethylene; carboxyl-group-containing polypropylene obtained by oxidation of polypropylene; copolymers of olefins, such as ethylene, propylene and butene-1, with acrylic or methacrylic acid; copolymers of styrene with acrylic or methacrylic acid; copolymers of olefins with maleic anhydride; and copolymers of styrene with maleic anhydride; high-molecular organic compounds, for example: alpha-olefins branched at their 3-position carbon atom and having no fewer than 5 carbon atoms, such as 3,3 dimethylbutene-1,3-methylbutene-1,3-methylpentene-1,3-methylhexene-1, and 3,5,5-trimethylhexene-1; polymers of vinylcycloalkanes such as vinylcyclopentane, vinylcyclohexane, and vinylnorbomane; polyalkylene glycols such as polyethylene glycol and polypropylene glycol; poly(glycolic acid);
cellulose;
cellulose esters; and cellulose ethers; phosphoric or phosphorous acid and its metal salts, such as diphenyl phosphate, diphenyl phosphite, metal salts of bis(4-tert-butylphenyl) phosphate, and methylene bis-(2,4-tert-butylphenyl)phosphate;
sorbitol derivatives such as bis(p-methylbenzylidene) sorbitol and bis(p-ethylbenzylidene) sorbitol; and thioglycolic anhydride, p-toluenesulfonic acid and its metal salts. The above nucleating agents may be used either alone or in combinations with each other. In certain embodiments, the nucleating agent can also be another polymer (e.g., polymeric nucleating agents such as PHB).
[00138] The amount of nucleating agent in liquid carrier is from 5% to 50% by weight of the nucleating agent-liquid carrier composition, preferably from 20%
to 45% by weight, more preferably 30% to 40% by weight, and most preferably 40%
by weight of the combined weight of the nucleating agent and liquid carrier.
[00139] A liquid carrier is typically used in combination with the nucleating agent. The liquid carrier allows the nucleating agent to be wet milled.
[00140] Once the nucleating agent has been wet milled in the liquid carrier, and an appropriate amount of the liquid carrier plus nucleating agent is then added to the polymer to be processed. One of ordinary skill in the art of polymer compounding can therefore plan the nucleant and liquid carrier ratio to suit their specific needs, knowing by experience what amount of nucleant and liquid carrier (i.e., plasticizer, surfactant, lubricant, etc.) are appropriate to use.
[00141] Choice of the liquid carrier is important as the carrier becomes an integral component in the polymer formulation when the nucleant is added. In poly-3-hydroxybutyrate compositions, for example, plasticizers are often used to change the glass transition temperature and modulus of the composition, but surfactants may also be used. Lubricants may also be used, e.g., in injection molding applications.
[00142] Plasticizers, surfactants and lubricants may all therefore be used as the liquid carrier for the milling of the nucleating agent.
[00143] The liquid carrier for wet milling the nucleant can be a plasticizer.
Examples of plasticizers include but are not limited to phthalic compounds (including, but not limited to, dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dihexyl phthalate, di-n-octyl phthalate, di-2-ethylhexyl phthalate, diisooctyl phthalate, dicapryl phthalate, dinonyl phthalate, diisononyl phthalate, didecyl phthalate, diundecyl phthalate, dilauryl phthalate, ditridecyl phthalate, dibenzyl phthalate, dicyclohexyl phthalate, butyl benzyl phthalate, octyl decyl phthalate, butyl octyl phthalate, octyl benzyl phthalate, n-hexyl n-decyl phthalate, n-octyl phthalate, and n-decyl phthalate), phosphoric compounds (including, but not limted to, tricresyl phosphate, trioctyl phosphate, triphenyl phosphate, octyl diphenyl phosphate, cresyl diphenyl phosphate, and trichloroethyl phosphate), adipic compounds (including, but not limited to, dibutoxyethoxyethyl adipate (DBEEA), dioctyl adipate, diisooctyl adipate, di-n-octyl adipate, didecyl adipate, diisodecyl adipate, n-octyl n-decyl adipate, n-heptyl adipate, and n-nonyl adipate), sebacic compounds (including, but not limited to, dibutyl sebacate, dioctyl sebacate, diisooctyl sebacate, and butyl benzyl sebacate), azelaic compounds, citric compounds (including, but not limited to, triethyl citrate, acetyl triethyl citrate, tributyl citrate, acetyl tributyl citrate, and acetyl trioctyl citrate), glycolic compounds (including, but not limited to, methyl phthalyl ethyl glycolate, ethyl phthalyl ethyl glycolate, and butyl phthalyl ethyl glycolate), trimellitic compounds (including, but not limited to, trioctyl trimellitate and tri-n-octyl n-decyl trimellitate), phthalic isomer compounds (including, but not limited to, dioctyl isophthalate and dioctyl terephthalate), ricinoleic compounds (including, but not limited to, methyl acetyl, recinoleate and butyl acetyl recinoleate), polyester compounds (including, but not limited to, polypropylene adipate and polypropylene sebacate), epoxidized soy bean oil, epoxidized butyl stearate, epoxidized octyl stearate, chlorinated paraffins, chlorinated fatty acid esters, fatty acid compounds, plant oils, pigments, and acrylic compounds. The plasticizers may be used either alone respectively or in combinations with each other.
[00144] In certain embodiments, the liquid carrier for wet milling the nucleating agent can be a surfactant. Surfactants are generally used to de-dust, lubricate, reduce surface tension, and/or densify. Examples of surfactants include, but are not limited to mineral oil, castor oil, and soybean oil. One mineral oil surfactant is Drakeol 34, available from Penreco (Dickinson, Texas, USA). Maxsperse W-6000 and W-3000 solid surfactants are available from Chemax Polymer Additives (Piedmont, South Carolina, USA). Surfactants can also include detergents such as Triton X-100, TWEEN -20, TWEEN -65, Span-40 and Span 86.
[00145] Anionic surfactants include: aliphatic carboxylic acids such as lauric acid, myristic acid, palmitic acid, stearic acid, and oleic acid; fatty acid soaps such as sodium salts or potassium salts of the above aliphatic carboxylic acids; N-acyl-N-methylglycine salts, N-acyl-N-methyl-beta-alanine salts, N-acylglutamic acid salts, polyoxyethylene alkyl ether carboxylic acid salts, acylated peptides, alkylbenzenesulfonic acid salts, alkylnaphthalenesulfonic acid salts, naphthalenesulfonic acid salt-formalin polycondensation products, melaminesulfonic acid salt-formalin polycondensation products, dialkylsulfosuccinic acid ester salts, alkyl sulfosuccinate disalts, polyoxyethylene alkylsulfosuccinic acid disalts, alkylsulfoacetic acid salts, (alpha-olefinsulfonic acid salts, N-acylmethyltaurine salts, sodium dimethyl 5-sulfoisophthalate, sulfated oil, higher alcohol sulfuric acid ester salts, polyoxyethylene alkyl ether sulfuric acid salts, secondary higher alcohol ethoxysulfates, polyoxyethylene alkyl phenyl ether sulfuric acid salts, monoglysulfate, sulfuric acid ester salts of fatty acid alkylolamides, polyoxyethylene alkyl ether phosphoric acid salts, polyoxyethylene alkyl phenyl ether phosphoric acid salts, alkyl phosphoric acid salts, sodium alkylamine oxide bistridecylsulfosuccinates, sodium dioctylsulfosuccinate, sodium dihexylsulfosuccinate, sodium dicyclohexylsulfosuccinate, sodium diamylsulfosuccinate, sodium diisobutylsulfosuccinate, alkylamine guanidine polyoxyethanol, disodium sulfosuccinate ethoxylated alcohol half esters, disodium sulfosuccinate ethoxylated nonylphenol half esters, disodium isodecylsulfosuccinate, disodium N-octadecylsulfosuccinamide, tetrasodium N-(1,2-dicarboxyethyl)-N-octadecylsulfosuccinamide, disodium mono- or didodecyldiphenyl oxide disulfonates, sodium diisopropylnaphthalenesulfonate, and neutralized condensed products from sodium naphthalenesulfonate.
[00146] In other embodiments, the liquid carrier is a lubricant. For example, a lubricant normally used in polymer processing can also be used as the liquid carrier for wet milling the nucleant. Lubricants are normally used to reduce sticking to hot processing metal surfaces and can include polyethylene, paraffin oils, and paraffin waxes in combination with metal stearates. Other lubricants include stearic acid, amide waxes, ester waxes, metal carboxylates, and carboxylic acids. Lubricants are normally added to polymers in the range of about 0.1 percent to about 1 percent by weight, generally from about 0.7 percent to about 0.8 percent by weight of the compound. Solid lubricants can be warmed and melted during the wet milling.
[00147] In yet other embodiments, the liquid carrier is a volatile or organic solvent. In these embodiments, a volatile solvent will flash off during subsequent compounding of the polymer, leaving behind the nucleating agent. Volatile liquid carriers that can be used in the invention include, alcohols (e.g., ethanol, propanol, isopropanol, etc.
[00148] Examples of organic solvents for use in the methods and compositions of the invention include but are not limited to: n-pentane, n-hexane, isohexane, n-heptane, n-octane, isooctane, n-decane, 2,2-dimethylbutane, petroleum ether, petroleum benzine, ligroin, gasoline, kerosine, petroleum spirit, petroleum naphtha, 2-pentene, mixed pentene, cyclohexane, methylcyclohexane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, isopropylbenzene, amylbenzene, diamylbenzene, triamylbenzene, tetraamylbenzene, dodecylbenzene, didodecylbenzene, amyltoluene, coal tar naphtha, solvent naphtha, p-cymene, naphthalene, tetralin, decalin, biphenyl, dipentene, turpentine oil, pinene, p-menthane, pine oil, camphor oil, methyl chloride, methylene chloride, chloroform, carbon tetrachloride, ethyl chloride, ethylene chloride, ethylidene chloride, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, pentachloroethane, hexachloroethane, vinylidene chloride, 1,2-dichloropropane, butyl chloride, amyl chloride, mixed amyl chloride, dichloropentane, hexyl chloride, 2-ethylhexyl chloride, methyl bromide, ethyl bromide, ethylene bromide, tetrabromoethane, chlorobromomethane, ethylene chlorobromide, chlorobenzene, o-dichlorobenzene, 1,2,4-trichlorobenzene, bromobenzene, o-dibromobenzene, o-chlorotoluene, p-chlorotoluene, alpha-chloronaphthalene, chlorinated naphthalene, fluorodichloromethane, dichlorodifluoromethane, fluorotrichloromethane, trifluoromonobromomethane, difluorochloroethane, 1,1,2-trichloro-1,2,2-trifluoroethane, ethyl ether, dichloroethyl ether, isopropyl ether, n-butyl ether, diisoamyl ether, n-hexyl ether, methyl phenyl ether, ethyl phenyl ether, n-butyl phenyl ether, amyl phenyl ether, o, m, p-cresyl methyl ether, p-t-amylphenyl n-amyl ether, ethyl benzyl ether, 1,4-dioxane, trioxane, furan, furfural, dioxolane, 2-methylfuran, tetrahydrofuran, cineol, methylal, diethyl acetal, acetone, methylacetone, methyl ethyl ketone, methyl n-propyl ketone, methyl n-butyl ketone, methyl isobutyl ketone, methyl n-amyl ketone, methyl n-hexyl ketone, diethyl ketone, ethyl n-butyl ketone, di-n-propyl ketone, diisobutyl ketone, 2,6,8-trimethylnonanone-4, acetone oil, acetonylacetone, mesityl oxide, phorone, isophorone, cyclohexanone, methylcyclohexanone, acetophenone, dypnone, camphor, methyl formate, ethyl formate, propyl formate, n-butyl formate, isobutyl formate, methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, sec-butyl acetate, n-amyl acetate, isoamyl acetate, methylisoamyl acetate, methoxybutyl acetate, sec-hexyl acetate, 2-ethylbutyl acetate, methylisobutylcarbinol acetate, 2-ethylhexyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, benzyl acetate, methyl propionate, ethyl propionate, n-butyl propionate, isoamyl propionate, methyl butyrate, ethyl butyrate, n-butyl butyrate, isoamyl butyrate, ethyl oxyisobutyrate, butyl stearate, amyl stearate, methyl acetoacetate, ethyl acetoacetate, isoamyl isovalerate, methyl lactate, ethyl lactate, butyl lactate, amyl lactate, methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, isoamyl benzoate, benzyl benzoate, ethyl cinnamate, methyl salicylate, octyl adipate, diethyl oxalate, dibutyl oxalate, diamyl oxalate, diethyl malonate, dibutyl tartrate, tributyl citrate, dioctyl sebacate, dimethyl phthalate, diethyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, nitromethane, nitroethane, nitropropane, nitrobenzene, nitroanisole, monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, aniline, toluidine, acetoamide, acetonitrile, benzonitrile, pyridine, picoline, lutidine, quinoline, morpholine, carbon disulfide, dimethyl sulfoxide, propanesulfone, triethyl phosphate, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and polyepichlorohydrin. These organic solvents may be used either alone respectively or in combinations with each other.
[00149] An advantage of using a volatile liquid is that the liquid will flash off during processing in the extruder, and can be removed. This can be advantageous for applications where little plasticizer or surfactant is desired in the finished polymer product.
[00150] In still another embodiments, the liquid carrier for wet milling the nucleating agent is water. An advantage of using water is that it, like the volatile solvents, will also flash off during processing. Additionally, no residue behind is left behind, and minimal or no effect on the chemistry of the polymer itself is found.
[00151] In yet other embodiments, the liquid carrier for wet milling the nucleating agent can be a mixture of any of the above. For instance, the liquid carrier can be a mixture of one or more plasticizers, one or more surfactants, one or more volatile liquid carriers, or water. The liquid carrier can also be a mixture of one or more plasticizers, surfactants, volatile liquid carriers, or water.
[00152] One of ordinary skill in the polymer processing arts can therefore compose the overall liquid carrier with consideration for the later processing of the polymer. For instance, if the polymer application calls for only a small amount of plasticizer or surfactant, then one can compose a liquid carrier with a small amount of plasticizer or surfactant, with the balance of the carrier being a volatile liquid that will flash off during processing.
[00153] In certain embodiments, the nucleating agent is wet-milled as described in PCT Patent Publication No. WO 2009/129499, incorporated herein by reference in its entirety.
[00154] In certain embodiments, the nucleating agent further include a polymer and is then referred to as a nucleating composition. In these embodiments, the polymer in the nucleating composition is referred to a "carrier polymer" to differentiate from the polymer in the fiber or web, referred to as a "base polymer"
when the carrier polymer is also present in the composition. A carrier polymer is a polymer included in compositions for dispersing a nucleating agent. In certain aspects, the carrier polymer is combined with the nucleating agent and a liquid carrier under conditions to form a nucleating pellet. A nucleating pellet is a composition distributed within a base polymer to facilitate crystallization. A
base polymer or polymer as used in the methods and compositions of the invention is a polymer used in compositions for making the fibers and non-wovens.
[00155] In certain embodiments, a base polymer and a carrier polymer is the same polymer. In other embodiments, the base polymer and the carrier polymer are different.
Melt Viscosity of Polymer Compositions [00156] In general, it has been found that the melt viscosity of the polyhydroxyalkanoate polymer should be maintained. Preferably the melt viscosity of the starting material is about 800 to about 1100 Pa.sec. Melt viscosity, as the term is used herein, is measured by test ASTM D3835 (ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 USA).
[00157] While it may be preferable to having starting material with a melt viscosity of about 800 to about 1100 Pa/second, the weight average molecular weight of the fibers after extrusion is also highly critical to achieving a non-woven material with soft fibers, i.e., fibers with reduced brittleness. Extruded fibers with a molecular weight under 100 kg/mol were found to be brittle. Preferably, the fibers after extrusion have a molecular weight of at least about 150 kg/mol, more preferably at least about 180 kg/mol, even more preferably at least about 200 kg/mol, and most preferably at least about 250 kg/mol.
[00158] For instance, polyhydroxybutyrate, combined with plasticizer, was found to have the following "hand" (a subjective determination of softness) in relation to the following degrees of molecular weight retention:
Table 1. Hand of Polyhydroxyalkanoate Non-Wovens as a Function of Molecular Weight Mw, g/mol Percent Mw Retention Hand 81,936 18.6 very brittle 83,047 18.9 very brittle 101,874 23.2 brittle 123,682 29.1 not very soft 157,045 35.7 softer 167,148 38.0 soft 158,795 36.1 soft [00159] The relationship between the molecular weight of the starting material and the extruded fibers can also be expressed in terms of molecular weight retention, i.e., the weight-average molecular weight of the extruded fibers as a percentage of the weight average molecular weight of the starting material, e.g., extruded fibers with a molecular weight of 235 kg/mol, which were made from starting material with a molecular weight of 420 kg/mol, can be said to have a molecular weight retention of 56%. However, starting material with a very high molecular weight can have a low molecular weight retention and still produce soft fibers, if the molecular weight of the extruded fibers is sufficiently high. Likewise, if the starting material has a relatively low molecular weight, the molecular weight retention would need to be relatively high in order to produce fibers with a sufficiently high molecular weight. Understanding the relationship between these variables is necessary for one to understand how much "play" one has in controlling the residence time and temperature in the extruder. The wet-milled nucleating agent does not change the fiber retained molecular weight.
[00160] It has been found that the viscosity is related to producing soft non-wovens with reduced brittleness. Others have attempted to decrease viscosity in order to be better able to push the polymer formulation through the fine holes in the die. One way to do this is to decrease the molecular weight of the polymer, e.g., by increasing the thermal degradation of the polymer.
[00161] However, it has been discovered that an increase in the thermal degradation, or a decrease in the molecular weight, while making it easier to extrude the polymer through the die, has the added effect of producing brittle fibers, or no fibers at all.
[00162] Instead, as described herein, addition of a plasticizer, and maintenance of melt viscosity (or, at least, reduction of thermal degradation) increases the viscosity, allowing for extrusion through a fine die, but still produces fibers that are soft, and reduces their brittleness.
[00163] In certain embodiments, the particular plasticizer is acetyl tri-n-butyl citrate (CITROFLEX A4). Another plasticizer known to be useful in the invention is diisononyl adipate (DINA).
[00164] Examples of other plasticizers include those plasticizers described above.
The plasticizers may be used either alone respectively or in combinations with each other.
[00165] The biodegradable non-woven materials described in the present invention can be produced using any art-known method for producing non-wovens.
[00166] For instance, the non-wovens can be made by melt blowing, as is described in Example 1, below. Operation and adjustment of such equipment is well within the knowledge of those of ordinary skill in the art of making non-woven materials.
[00167] For instance, screen packs can contribute to the back pressure and shear heat. For melt blown processes, it is common to use high mesh size screens.
However, it has been found that coarser screens work better, e.g., 60 mesh or mesh, or 110 or 130 or even 90 mesh.
[00168] The die hole size can be around 250 um. The compressed air can be heated, e.g., to 220 C. Line speed can be increased by heating the collector belt or take up roll. The machinery should be purged, e.g., with polypropylene.
[00169] For instance, the polymeric composition can also include an optional nucleating agent to aid in crystallization of the polymeric composition.
However, due to the small diameter of the fibers, a particulate nucleating agent should not be used.
[00170] In poly-3-hydroxybutyrate compositions, for example, plasticizers are often used to change the glass transition temperature and modulus of the composition, but surfactants, such as those described above may also be used.
Additives [00171] The non woven compositions and fibers described herein can further included additives, for example, surfactants and clays. The polymeric composition can include one or more surfactants.
[00172] Surfactants are generally used to de-dust, lubricate, reduce surface tension, and/or densify. Examples of surfactants include, but are not limited to mineral oil, castor oil, and soybean oil. One mineral oil surfactant is Drakeol 34, available from Penreco (Dickinson, Texas, USA). Maxsperse W-6000 and W-3000 solid surfactants are available from Chemax Polymer Additives (Piedmont, South Carolina, USA). Nionic ionic surfactants with HLB values ranging from about 2 to about 16 can be used examples being TWEEN-20, TWEEN-65, Span-40 and Span 86.
[00173] Anionic surfactants include aliphatic carboxylic acids such as lauric acid, myristic acid, palmitic acid, stearic acid, and oleic acid; fatty acid soaps Another optional functional component is a nanoclay or organically modified clay.
There are several types of clays used in polymeric compositions, including cationic or medium or high cation exchange capacity. The cation exchange capacity is generally reported as the number of milliequivalents of exchangeable base which can be exchanged per 100 grams of clay. The cation exchange capacity varies from about 50 to about 150 depending on the type of clay. Examples of clays which can be organically modified include sepiolite, attapulgite, montmorillonites, bentonites, saponite and nentronite.
[00174] Organically modified clays are known in the art and are also described in U.S. Patent No. 2,531,440. Examples include montmorillonite clay modified with ternary or quaternary ammonunium salts. Nanoclays are commercially available from Southern Clay Products, Inc. of Gonzales, Texas, USA (such as, but not limited to, CLOISITE NA+ (a natural montmorillonite), CLOISITE 93A & 30B (a natural montmorillonite modified with ternary ammonium salts), and CLOISITE 1OA, 15A, 20A, and 25A (a natural montmorillonite modified with quaternary ammonium salts).
[00175] Montmorillonite clay is the most common member of the smectite family of nanoclays. Smectites have a unique morphology, featuring one dimension in the nanometer range. The montmorillonite clay particle is often called a platelet, which is a sheet-like structure where the dimensions in two directions far exceed the particle's thickness. The length and breadth of the particles range from 1.5 microns down to a few tenths of a micrometer. However, the thickness is only about a nanometer. These dimensions result in extremely high average aspect ratios (on the order of 200 - 500). Moreover, the very small size and thickness mean that a single gram of clay can contain over a million individual particles.
[00176] The clay initially comprises agglomerates of platelet layers. Nanoclay becomes commercially useful if processed into an intercalate, which separates (exfoliates) the platelets in the agglomerates. In an intercalate, the clay is mixed with an intercalate under conditions which cause the platelets to separate and the intercalate to enter into the spaces between the platelets. The intercalant is often an organic or semi-organic chemical capable of entering the montmorillonite clay gallery and bonding to the surface of the platelets. An intercalate is therefore a clay-chemical complex wherein the clay gallery spacing has increased, due to the process of surface modification by the substance (the intercalant). Under the proper conditions of temperature and shear, the platelet agglomerates are capable of exfoliating (separating), allowing the intercalant to enter between them, separating and exfoliating them.
[00177] The platelets can be exfoliated (separated) by a number of processes.
In one exfoliation procedure, described in U.S. Patent No. 6,699,320, the process utilizes a dispersant to enter between the layers of clay platelets and separate them.
In this process, the clay is mixed with a dispersant (e.g., castor wax), and then heated in the barrel of an extruder to a temperature above the melting point of the dispersant (e.g., 82 C - 104 C in the case of castor wax). The heated mixture is then agitated, e.g., with a deep flighted screw. This heating and agitating disperses the platelet layers and delaminates the platelets from neighboring layers, by allowing molecules of dispersant to enter between the layers. The layers are considered "exfoliated" when the separation between the platelet layers is large enough such that there is no longer sufficient attraction between layers to cause uniform spacing between the layers.
[00178] In the process described in U.S. Patent No. 6,699,320, the screw within the extruder moves the clay-wax mixture out of an extrusion die opening in the form of a hot slurry. Two chilled chrome-plated rollers are then used to calender the mixture to a predetermined thickness that is determined by the spacing between the rollers. The mixture is cooled to solidify the wax. The clay-wax mixture is then scraped off the rollers and falls as flakes onto a conveyer belt. The flakes can be tumbled to further reduce their size, and used immediately, or stored.
[00179] Because of the very small size of the clay particles, nanoclays are difficult to handle, and may pose health risks. They are therefore sometimes processed into "masterbatches," in which the clay is dispersed into a polymer resin at a high concentration. Portions of the masterbatch are then added in measured quantities to polymer that does not contain nanoclay, to produce a polymer containing a precise amount of the nanoclay.
[00180] One montmorillonite clay is Cloisite 25A, which can be obtained from Southern Clay Products of Gonzales, Texas, USA. A typical dry particle size distribution of Cloisite 25A is 10% less than 2 microns, 50% less than 6 microns, and 90% less than 13 microns.
[00181] Other nanoclays are identified in U.S. Patent No. 6,414,070 (Kausch et al.), which is incorporated herein by reference in its entirety, and PCT
Patent Publication Nos. WO 00/66657 and WO 00/68312.
Annealing [00182] Post-fabrication heat treating (e.g., annealing) of compositions described herein produces a composition with improved physical properties, such toughness.
[00183] For instance, the PHA compositions are treated for about 10 to about 120 minutes at temperatures of about 80 C to about 120 C. Such treatment improves the toughness of the fibers or nonwovens. Another physical property improved is that physical aging of the fiber is reduced by the annealing temperature as compared without the treatment.
[00184] Although various PHAs are capable of being processed on conventional processing equipment, many problems have been found with the polymers that impede their commercial acceptance. These include brittleness and age-related brittleness. For instance the mechanical properties of articles made from polyhydroxyalkanoate polymers are known to change over time, during storage at ambient conditions. Specifically, the impact toughness and tensile elongation at break (Eb) are known to decrease systematically over time. The exact reasons for this decrease are not known. This age-related increase in brittleness limits the commercial applications available for use of the polymer. In addition, the crystallization kinetics of the polymer are poorly understood, and longer cycle times (relative to polyethylene and polypropylene) are often required during processing of these polymers, further limiting their commercial acceptance. Post-fabrication heat treating (e.g., annealing) provides benefits to the mechanical properties of the PHA
compositions.
[00185] As disclosed herein, "annealing" and "heat treatment" means a treatment where the polyhydroxyalkanoate polymer processed to a product in is subsequently (i.e., after the fiber or web is formed) heated for a period of time. This has been found to provide surprising and unexpected properties of toughness. Preferably the fiber or web is heated to about 80 C to about 140 C for about 5 seconds to about 90 minutes, more preferably to about 90 C to about 130 C for about 10 minutes to about 70 minutes, and most preferably to about 110 C to about 125 C for about minutes to about 60 minutes.
[00186] This is accomplished, for instance, in-line by forming the fiber or web in any of a variety of ways, and then running the fiber or web through an oven that is maintained at the appropriate temperature. The oven is long enough so that between entering and exiting the oven, the composition is exposed to the heat for the appropriate amount of time. Alternatively, the composition is "snaked" through the oven, e.g., back and forth on a series of rollers within the oven, so that the fiber or web is exposed to the heat for the appropriate amount of time before exiting the oven.
[00187] For the fabrication of useful articles, a polymeric composition described herein is created at a temperature above the crystalline melting point of the thermoplastic but below the decomposition point of any of the ingredients of the composition. Alternatively, a pre-made blend composition of the present invention is simply heated to such temperature. Such processing can be performed using any art-known technique used to make non-woven materials.
[00188] The polymeric compositions of the present invention can be used to create, without limitation, a wide variety of useful products, e.g., automotive, consumer, durable, construction, electrical, medical, and packaging products.
For instance, the polymeric compositions can be used to make, without limitation, non-wovens and articles made from non-woven materials, such as filters, insulation materials and disposable clothing and wipes.
[00189] The invention will be further described in the following examples, which do not limit the scope of the invention defined by the claims.
EXAMPLES
TESTING METHODS
Measurement of Molecular Weight of Polymers [00190] Molecular weight (either weight-average molecular weight (Mw) or number-average molecular weight (Mn)) of PHA is estimated by gel permeation chromatography (GPC) using, e.g., a Waters Alliance HPLC System equipped with a refractive index detector. The column set is, for example, a series of three PLGe1 micrometer Mixed-B (Polymer Labs, Amherst, MA) columns with chloroform as mobile phase pumped at 1 ml/min. The column set is calibrated with narrow distribution polystyrene standards. Unless otherwise indicated, "molecular weight,"
as used herein, refers to weight average molecular weight.
[00191] The PHA sample is dissolved in chloroform at a concentration of 2.0 mg/ml at 60C. The sample is filtered with a 0.2 micrometer Teflon syringe filter. A
50 microliter injection volume is used for the analysis.
[00192] The chromatogram is analyzed with, for example, Waters Empower GPC
Analysis software. Molecular weights and PD are reported as polystyrene equivalent molecular weights.
[00193] The GPC method become inaccurate when measuring molecular weights over about one million. For polymers with such high molecular weights, the weight average molecular weight is estimated by flow injection polymer analysis (FIPA) system (commercially available from, e.g., Viscotek Corp, Houston, TX) The polymer solution is eluted through a single, low volume size exclusion to separate polymer, solvent and impurities. The detection system consists of a refractive index, light scattering and viscosity group.
[00194] The polymer sample is dissolved in chloroform at a concentration of 2.0 mg/ml at 60C. The sample is filtered with a 0.2 micrometer Teflon syringe filter.
The FIPA unit operates at 45 C with tetrahydrofuran mobile phase at a flow rate of 1.0 ml/min. A 100 microliter injection volume is used for the analysis.
[00195] The chromatogram is analyzed with, e.g., Viscotek Omni-Sec software.
The absolute Mw is reported in grams/mole.
[00196] For PHA polymers, the absolute Mw (as measured by FIPA) is related to the Mw (as measured by GPC in polystyrene equivalents) by dividing the GPC
value by approximately 1.3.
Measurement of Thermal Stability [00197] The thermal stability of a polymer sample is measured in two different ways. The thermal stability is represented herein by a sample's "k," which shows the change in Mw over time. It can also be measured by melt capillary stability (MCS), which shows the change in the capillary shear viscosity over time.
[00198] To measure the thermal stability ("k") of a sample, a polymer specimen (e.g., 2 mg) is exposed to 170 C in a DSC test chamber (e.g., a TA Instrument Q-2000), and the specimen heated for 0, 5 and 10 minutes. The cooled sample cup is unsealed and the sample dissolved in chloroform to the concentration required for gel permeation chromatography (GPC). GPC is used to measure Mw, Mn and Mz molecular weight averages of polymers, relative to a 900K polystyrene control.
[00199] The slope of the best-fit straight line of reciprocal weight-average molecular weight (1/Mw) versus time is the thermal stability of the sample in moles per gram per minute. A smaller "k" translates to better thermal stability.
[00200] The thermal stability of a sample is measured using a capillary rheometry test. Capillary rheometers are generally used to measure the melt viscosity of plastics as a function of shear rate (typically from about 0.1 to 10,000 sec').
However, measuring the melt viscosity of PHA polymers is complicated, because the molecular weight degradation reaction occurs at the test conditions themselves, which results in decreasing viscosity as a function of melt dwell time.
[00201] This obstacle is overcome by measuring the melt viscosity at various dwell times and extrapolating back to zero time (this is described in ASTM
08, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 USA). In the tests used herein, measurements are performed at 180 C. The material is preheated for 240 seconds (4 minutes) before the testing is commenced, and a capillary die of 0.75 mm diameter and 30 mm length is used. The measured apparent viscosity (as calculated from pressure and rate) decreases with increasing dwell time in the rheometer. When measured apparent viscosity (at an apparent shear rate of 100 sec') is plotted as a function of time, the slope of this best-fit straight line is used as another indicator of thermal stability. This slope is referred to as "melt capillary stability," or MCS.
The MCS
number is negative, because viscosity decreases with time, and a larger magnitude (i. e., a smaller number) corresponds to poorer thermal stability. In other words, a negative number closer to zero is more desirable, and a larger negative number is less desirable.
Measuring G' Using Torsional Melt Rheometry [00202] Torsional rheometry is used to measure the melt strength of a polymer.
For purposes of simplicity, G' will be used herein, measured at an imposed frequency of 0.25 rad/s as a measure of "melt strength" (unless otherwise indicated).
Higher G' translates to higher melt strength.
[00203] All oscillatory rheology measurements are performed using a TA
Instruments AR2000 rheometer employing a strain amplitude of 1%. First, dry pellets (or powder) are molded into 25 mm diameter discs that are about 1200 microns in thickness. The disc specimens are molded in a compression molder set at about 165 C, with the molding time of about 30 seconds. These molded discs are then placed in between the 25 mm parallel plates of the AR2000 rheometer, equilibrated at 180 C, and subsequently cooled to 160 C for the frequency sweep test. A gap of 800-900 microns is used, depending on the normal forces exerted by the polymer. The melt density of PHB is determined to be about 1.10 g/cm3 at C; this value is used in all the calculations.
[00204] Specifically, the specimen disc is placed between the platens of the parallel plate rheometer set at 180 C. After the final gap is attained, excess material from the sides of the platens is scraped. The specimen is then cooled to 160 C
where the frequency scan (from 625 rad/s to 0.10 rad/s) is then performed;
frequencies lower than 0.1 rad/s are avoided because of considerable degradation over the long time it takes for these lower frequency measurements. The specimen loading, gap adjustment and excess trimming, all carried out with the platens set at 180 C, takes about 21/2 minutes. This is controlled to within 10 seconds to minimize variability and sample degradation. Cooling from 180 C to 160 C
(test temperature) is accomplished in about four minutes. Exposure to 180 C ensures a completely molten polymer, while testing at 160 C ensures minimal degradation during measurement.
[00205] During the frequency sweep performed at 160 C, the following data are collected as a function of measurement frequency: Irk * 1 or complex viscosity, G' or elastic modulus (elastic or solid-like contribution to the viscosity) and G"
or loss modulus (viscous or liquid-like contribution to the viscosity).
[00206] As used herein, G' measured at an imposed frequency of 0.25 rad/s (unless otherwise indicated) is used as a measure of "melt strength." Higher G' translates to higher melt strength.
[00207] Melt viscosity is measured by ASTM D3835 (ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 USA).
[00208] Tensile properties were measure according to ASTM D412-Test Method A-Standard Test Method for Vulcanized Rubber and Thermoplastic Elastomers (ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 USA).
Example 1. Production of Soft Non-Woven Fibers From PHB and CITROFLEX
A4 Plasticizer [00209] A 6 inch melt blowing line that was used to produce in general PHA
fabrics was used to produce the PHB non-woven materials in this example. The line used a die with 0.025 inch die hole diameter (120 holes).
Table 2. Other parameters of the melt blowing line.
Design horizontal line Die-to collector distance 23-25 inches Extruder screw compression ratio 3 Extruder screw metering section channel depth 10 ratio to barrel diameter Extruder screw diameter 1.25"
Extruder screw design 3 zones Typical material usage 8 lb/hr Typical melt residence time 7 minutes Melt filtration No Take up speed Can vary from 5 sec to 2 min [00210] A resin formulation of 90% PHB and 10% of plasticizer CITROFLEX
A4 (acetyl tri-n-butyl citrate) was fed into the extruder. The resin formulation had a melt viscosity after 5 minutes exposure at 180 C of 924 Pa.s as measured by D3835 (ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 USA), and a weight-average molecular weight of 420 kg/mol. Two screen packs of 60 and 180 mesh sizes were used and the die was a 121 hole die of 0.010 inch (250 gm) holes. The air gap was set to 0.060 inch.
[00211] The conditions used are shown in Table 3, below.
Table 3. Conditions used to make non-woven web.
Control Point Settings* Running conditions Screw Zone 1 150 C 170 C
Screw Zone 2 155 C 165 C
Screw Zone 3 120 C 145 C
C Zone 145 C 150 C
Die Zone 1 NA NA
Die Zone 2 155 C 160 C
Die Zone 3 155 C 160 C
Die Zone 4 155 C 160 C
Screw Speed (rpm) 26-30 Pressure (psi) 350-400 Air Temp 400-415 F (204-213 C) Air Rate 5-8 psi Throughput 4.5 g/min Distance die/collector belt 85 cm [00212] A soft continuous web was obtained with the fiber diameter ranging from 2 to 5 microns and basis weight from 20 to 160 GSM. The residual Mw of the polymer was 235 kg/mol, providing a molecular weight retention of 56%. The residual crystallinity was 51 %.
[00213] Samples from six identical runs were tested for strength, and the tensile/elongation curve is presented in FIG. 2. A summary of the mechanical properties is presented in Table 4.
Table 4. Mechanical Properties of Six Samples of Non-Wovens.
Thickness (millimeters) Mean 1.52 SD 0.08 Air Permeability (cfm) Mean 25.90 SD 2.70 PMI (microns) Bubble 29.91 Mean 15.71 Basis Weight (grams/sq. meter) Mean 141.20 SD 8.42 Fiber diameter (microns) Mean 2.14 SD 5.11 Penetration by alcohol Rating No. 1 Peak Force (machine direction) Lbs. 1.98 Peak Elongation (machine direction) % 3.39 [00214] A photograph of the fiber structure is presented in FIG. 3.
Example 2. Effect of Increased Temperature Exposure on Production of Non-Woven Fibers From PHB and CITROFLEX A4 Plasticizer [00215] A resin formulation of 90% polyhydroxybutyrate and 10% of CITROFLEX A4 (acetyl tri-n-butyl citrate) was used to make non-wovens. The formulation had a melt viscosity of 924 Pa.s after 5 minutes at 180 C, and a weight-average molecular weight of 420 kg/mol. The onset of crystallization was 102 C
and the temperature of peak crystallization was 93.5 C.
[00216] The material was fed into the same extruder as used in Example 1. Two screen packs of 60 and 180 mesh sizes were used and the die was a 121-hole die with 0.010 inch (250 m) holes. The air gap was set to 0.060 inch. The processing conditions used are provided in Table 5, below.
Table 5. Processing conditions for 90% PHB : 10% CITROFLEX A4.
Control Point Settings Run Conditions Screw Zone 1 160 C 161 C
Screw Zone 2 160 C 160 C
Screw Zone 3 155 C 170 C
C Zone 155 C 157 C
Die Zone 1 NA 169 C
Die Zone 2 155 C 154 C
Die Zone 3 155 C 156 C
Die Zone 4 160 C 162 C
Screw Speed (rpm) 18 Pressure (psi) 312 Air Temp 395 F
Air Rate 8 psi Throughput 4.5 g/min [00217] These higher temperature exposure and longer residence time (the screw rpm was 18), the fibers started to become much rougher and more brittle.
Molecular weight retention dropped to less than 40%. The molecular weight of three samples of the extruded fibers was 167, 159 and 157 kg/mol.
[00218] Samples from six identical runs were tested for strength, and the tensile/elongation curve is presented in FIG. 4. The basis weight for the tested samples is 30 GSM. The peak force in the machine direction was 0.77 lbs., and the peak elongation was 1.65%. The mean fiber diameter was 2 microns, with a standard deviation of 9 microns. The fiber felt rough.
Example 3. Production of Non-Woven Fibers From PHB and DINA
[00219] A formulation of 85% polyhydroxybutyrate and 15% DINA (diisononyl adipate) was used to make non-wovens. The formulation had a melt viscosity after 5 minutes at 180 C of 1058 Pa.s. The peak crystallization of this formulation at 10 C
per minute was 83 C, and the temperature of onset of crystallization was 98 C.
[00220] Two screen packs of 60 and 180 mesh sizes were used and the die was a 121-hole die with 0.010 inch (250 gm) holes and an air gap of 0.060 inch. The processing conditions used were as follows.
Table 6. Processing Conditions for 85% PHB : 15% DINA.
Control Point Settings Run Conditions Screw Zone 1 150 C 148 C
Screw Zone 2 1550 C 154 C
Screw Zone 3 120 C 128 C
C Zone 145 C 147 C
Die Zone 1 NA 128 C
Die Zone 2 155 C 158 C
Die Zone 3 155 C 153 C
Die Zone 4 145 C 145 C
Screw Speed (rpm) 30 Pressure (psi) 182 Air Temp 420 F
Air Rate 5 psi [00221] The fibers made from this formulation were more brittle, and lost their softness.
Example 4. Effect of Processing Conditions on Production of Non-Woven Fibers From PHB Copolymer and CITROFLEX A4 Plasticizer [00222] A resin formulation of 90% polyhydroxyalkanoate copolymer and 10%
of CITROFLEX A4 (acetyl tri-n-butyl citrate) was used to make non-wovens. The polyhydroxyalkanoate copolymer was 60% polyhydroxybutyrate and 40% poly(3-hydroxybutyrate-co-4-hydroxybutyrate). The formulation had a weight-average molecular weight of 92.855 kg/mol.
[00223] The material was fed into the same extruder as used in Example 1. One 200 mesh screen packs and the die was a 121-hole die with 0.025 inch holes.
The air gap was set to 0.030 inch. The processing conditions used are provided in Table 7, below.
Table 7. Processing conditions for 90% PHB : 10% CITROFLEX A4.
Control Point Settings Run Conditions Screw Zone 1 170 C 179 C
Screw Zone 2 170 C 168 C
Screw Zone 3 170 C 181 C
C Zone 170 C 169 C
Die Zone 1 NA NA
Die Zone 2 170 C 171 C
Die Zone 3 170 C 170 C
Die Zone 4 170 C 171 C
Screw Speed (rpm) 200 Pressure (psi) 107 Air Temp 330 F
Air Rate 11 psi [00224] The processing temperatures and back pressure were very high, relative to Examples 1 and 2. Coarse and brittle fibers were produced. The molecular weight retention was 22%.
Example 5. PHA blend with Wet-Milled Nucleating agent and Plasticizer [00225] The compound was based on PHA resin with the following composition:
36% P3HB, 24% (3HB-1 1%4HB), 40% (3HB-30%4HB). The wet milled boron nitride (BN) (dispersion D218, 18% BN in acetyl tri-n-butyl citrate, Citraflex A4, Vertellus) was mixed with acetyl tri-n-butyl citrate, Citraflex A4, dryblended and added to the resin. The average particle size of the BN were found to be below microns (based on optical microscopy data).
[00226] The compound's formulation is presented in Table 8.
Table 8. Composition of the compound for the non-woven material.
Ingredients %
acetyl tri-n-butyl citrate 9 Wet milled Boron Nitride (BN) dispersed 5 in acetyl tri-n-butyl citrate, 18% BN
[00227] The compounding was done on a 27 mm MAXX Leistritz twin-screw extruder using the following temperature profile: 10 zones set at 170 / 170 /
165 / 165 / 160 / 160 / 160 / 160 / 155 C. The extrusion rate was set at 60 lbs/hr and the extruder was operated at 200 rpm.
[00228] The compound had the following melt viscosity at 180 C: after 5 minutes 284 Pa sec, after 10 minutes 198 Pa sec, melt stability -0.0723 (see FIG. 5).
[00229] To prepare the melt blown non-woven, the compound was extruded on a single screw extruder with the screw diameter of 50mm and L/D ratio of 30. The die holes were of 300 micron in diameter. The screw temperatures were 185 C, transition temperature was 180 C and the die temperature was 180 C. The attenuation was done with hot air at the temperatures 200-220 C under the pressure of 0.37 kg/cm2. The distance from the die to the collector was 60-65 cm, the through put was 70g/minute. The fiber network is found to be less brittle and embrittlement is not noticeable after 4 months of ambient storage. The fibers were not annealed.
[00230] At these conditions, a fiber network was built (average fiber diameter microns) (see FIG. 6).
Example 6. P3HB polymer with Wet-Milled Nucleating Agent and Plasticizer.
[00231] The compound was based on P3HB resin. The wet milled boron nitride (dispersion D218, 16% BN in acetyl tri-n-butyl citrate, Citraflex A4, Vertellus, average particle size below 20 microns in diameter) was mixed with acetyl tri-n-butyl citrate, Citraflex A4, dryblended and added to the resin.
[00232] The formulation is presented in Table 9, below.
Table 9. Composition of the compound for the non-woven material.
Ingredients %
acetyl tri-n-butyl citrate 20 Wet milled BN dispersed in acetyl 5 tri-n-butyl citrate, 16% BN
[00233] The compounding was done on a 27 mm MAXX Leistritz twin-screw extruder using the following temperature profile: 10 zones set at 175 / 175 /
175 / 170 / 170 / 170 / 170 / 180 / 180 C. The extrusion rate was set at 60 lbs/hr and the extruder was operated at 100 rpm.
[00234] The compound had the following melt viscosity at 180C: after 5 minutes 517 Pa sec, after 10 minutes 278 Pa sec, melt stability -0.124.
[00235] The melt blowing conditions were identical to those described in Example 5. The fibers were much stiffer and more brittle than in Example 5.
RESULTS
[00236] The improvement of the melt blown fibers was due to the combination of the newly developed wet milling and dispersion of boron nitride particles in a citrate based plasticizer. The incorporation of the nucleating agent enabled lower crystallinity PHA polymers to be introduced to the melt blown process. These PHA
resins provided better physical properties to the fibers and their networks.
The improvements included that they were shown to become less stiff, less prone to the aging related embrittlement, were more elastic and much stronger (tougher).
Example 7. Comparison of PHA Compositions: Soft non-woven described in Example 1.
[00237] Compound A containing 90% PHB and 10% of Citraflex A4 (acetyl tri-n-butyl citrate) was fed into the extruder with L/D=27, screw compression ratio of 3, 2 screen packs of 60 and 180 mesh sizes and the die containing 121 holes of 0.010 inch (250 gm) in diameter. Air gap was set to 0.060 inch.
Table 10. Conditions of extrusion.
Control Point Settings* Running conditions Screw Zone 1 150 C 170 C
Screw Zone 2 155 C 165 C
Screw Zone 3 120 C 145 C
C Zone 145 C 150 C
Die Zone 1 NA NA
Die Zone 2 155 C 160 C
Die Zone 3 155 C 160 C
Die Zone 4 155 C 160 C
Screw Speed rpm 26-30 Pressure psi 350-400 Air Temp 400-415 F
(204-213 C) Air Rate 5-8 psi Throughput 4.5 g/min Distance 85 cm die/collector belt [00238] The tensile data for original fiber vs 3.5 month aged fiber is presented in Table 11, below.
Table 11. Tensile data for fresh vs. aged fiber.
fresh aged, 3.5 mo thickness, mean mm 1.52+/- 0.08 basis weight, GSM 141.2+/- 8.42 Fiber d, um 2.14 +/- 5.11 Peak force MD, lbs 1.98 1.66-1.28 Peak elongation, MD, % 3.39 2.41-1.9 [00239] The data shows that the peak force required to break the fiber network decreases up to 35% after 3.5 months of ambient aging. The peak % of elongation also decreases up to 44%.
[00240] Compound B was prepared with PHA resin with the following composition: 36% P3HB, 24% (3HB-11%4HB), 40% (3HB-30%4HB). The wet milled boron nitride (dispersion D218, 18% BN in acetyl tri-n-butyl citrate, CITROFLEX A4, Vertellus) was mixed with acetyl tri-n-butyl citrate, CITROFLEX A4, dryblended and added to the resin. The average particle size of the BN were found to be below 20 microns (optical microscopy data).
[00241] Compound A is the softest with the smallest fiber diameter (a mean of microns). This compound also formed thick non-wovens of about 1.52mm thickness. Tensile retention is sufficient for such thick materials. These fibers would be useful for applications were softness is a key property, such as wipes.
[00242] The compound's formulation is presented in Table 12.
Table 12 Composition of the compound for the non-woven material.
Ingredients %
acetyl tri-n-butyl citrate 9 Wet milled BN dispersed in acetyl tri- 5 n-butyl citrate, 18% BN
[00243] The compounds below were produced as described in Example 6:
Table 13. Characteristics of fibers produced from Compounds A and B.
PHB, Compound A- Compound 1, aged 4 mo B, aged 4 mo thickness, mean mm 0.26 0.35 basis weight, GSM 100 164 Fiber d, um 40 40 Peak force MD, lbs 0.6 1.9 Peak elongation, 1.74 8.6 MD, %
Max load, N 2.67 8.61 [00244] These fibers have diameters of about 40 microns and are stiffer non-wovens compared to the fibers in Table 12. These fibers would have applications for use in filers, thermal or sound insulators, erosion control and mulch control materials. these fibers form much thinner networks and because they are thicker may be more susceptible to brittleness with aging.
[00245] This data demonstrates that after similar aging and with the same fiber geometry, the Compound B fibers were capable to withstand 8.6 N or force while Compound A-1 breaks at 2.67N. Tensile properties are measured according to ASTM D412, Test method A-Standard Test Method for Vulcanized Rubber and Thermoplastic Elastomers (ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 USA). Tension Die C-half. The rate of extention was 10mm/min. These fibers were made on the same equipment for comparison. The fibers of Compounds A-1 and B are much coarser and much more sensitive to embrittlement.
Example 8: Copolymer Wet-milled Nucleating Compositions for making melt-blown fibers and non-wovens.
[00246] The following formulations and blends of two or more formulations can be useful for producing fibers according the present invention for use in fiber and non-woven applications. The extruded non-woven fibers can be produced by the methods described herein or known in the art.
Table 14. Polymer blends for non-wovens.
Formulation Copolymer Wet-milled Nucleating agent in acetyl tri-n-butyl citrate (18%
BN) la poly(3-hydroxybutyrate-co-4- 1-10% of wet-hydroxybutyrate) 8% 4- milled boron hydroxybutyrate content nitride lb poly(3-hydroxybutyrate-co-4- 1-10% of wet-hydroxybutyrate) 11 % 4- milled boron hydroxybutyrate content nitride lc poly(3-hydroxybutyrate-co-4- 1-10% of wet-hydroxybutyrate) 15% 4- milled boron hydroxybutyrate content nitride 2a poly(3-hydroxybutyrate-co-5- 1-10% of wet-hydroxyvalerate) 8 % 5- milled boron hydroxyvalerate content nitride 2b poly(3-hydroxybutyrate-co-5- 1-10% of wet-hydroxyvalerate) 11% 5- milled boron hydroxyvalerate content nitride 2c poly(3-hydroxybutyrate-co-5- 1-10% of wet-hydroxyvalerate)15% 5- milled boron hydroxyvalerate content nitride 3a poly(3-hydroxybutyrate-co-3- 1-10% of wet-hydroxyvalerate) 8 % 3- milled boron hydroxyvalerate content nitride 3b poly(3-hydroxybutyrate-co-3- 1-10% of wet-hydroxyvalerate) 11% 3- milled boron hydroxyvalerate content nitride 3c poly(3-hydroxybutyrate-co-3- 1-10% of wet-hydroxyvalerate)15% 3- milled boron hydroxyvalerate content nitride 4a poly(3-hydroxybutyrate-co-3- 1-10% of wet-hydroxyhexanoate) 8 % 3- milled boron hydroxyhexanoate content nitride 4b poly(3-hydroxybutyrate-co-3- 1-10% of wet-hydroxyhexanoate) 11% 3- milled boron hydroxyhexanoatecontent nitride 4c poly(3-hydroxybutyrate-co-3- 1-10% of wet-hydroxyhexanoate)15% 3- milled boron hydroxyhexanoate content nitride [00247] Each formulation additionally can contain a plasticizer such as acetyl tri-n-butyl citrate. In addition to the above, two or more component blends of each copolymer of the recited formulations can also be made, for example : the copolymer of la can be blended with poly (3-hydroxybutyrate) or the copolymer of 2a, 2b, 2c, 3a, 3b, 3c, 4a, 4b, or 4c or combinations thereof and the resultant composition further includes 1-10% of wet-milled boron nitride dispersed in acetyl tri-n-butyl citrate (18% BN).
[00248] Other than in the examples herein, or unless otherwise expressly specified, all of the numerical ranges, amounts, values and percentages, such as those for amounts of materials, elemental contents, times and temperatures of reaction, ratios of amounts, and others, in the following portion of the specification and attached claims may be read as if prefaced by the word "about" even though the term "about" may not expressly appear with the value, amount, or range.
Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
[00249] Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains error necessarily resulting from the standard deviation found in its underlying respective testing measurements. Furthermore, when numerical ranges are set forth herein, these ranges are inclusive of the recited range end points (i.e., end points may be used). When percentages by weight are used herein, the numerical values reported are relative to the total weight.
[00250] Also, it should be understood that any numerical range recited herein is intended to include all sub-ranges subsumed therein. For example, a range of "1 to 10" is intended to include all sub-ranges between (and including) the recited minimum value of 1 and the recited maximum value of 10, that is, having a minimum value equal to or greater than 1 and a maximum value of equal to or less than 10. The terms "one," "a," or "an" as used herein are intended to include "at least one" or "one or more," unless otherwise indicated.
[00251] Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
[00252] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
[00253] While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
Claims (28)
1. An extruded and melt-blown fiber, comprising a polyhydroxyalkanoate polymer, a wet milled nucleating agent and a plasticizer, wherein the average particle size of the wet-milled nucleating agent is below about 20 microns and is dispersed in the polymer.
2. The fiber of Claim 1, wherein the nucleating agent is boron nitride.
3. The fiber of Claim 1 or 2, wherein the fiber comprises about 75% to about 95% by weight polyhydroxyalkanoate polymer.
4. The fiber of Claim 1, 2 or 3 wherein the fiber has a weight-average molecular weight of at least about 150 kg/mol.
5. The fiber of any one of Claims 1 - 4, wherein the plasticizer is acetyl tri-n-butyl citrate.
6. The fiber of any one of Claims 1 - 5, wherein the fiber diameter is about 0.1 to about 50 microns.
7. The fiber any one of Claims 1 - 6, wherein the fiber diameter is about 2 to about 5 microns.
8. The fiber any one of Claims 1 - 7, wherein the nucleating agent is between about 1% to 10 % weight of the total composition.
9. The fiber of claim any one of Claims 1 - 8, wherein the basis weight is from about 20 to about 160 GSM.
10. The fiber of any one of Claims 1 - 9, wherein, the polyhydroxyalkanoate polymer is a poly(3-hydroxybutyrate) homopolymer, a poly(3-hydroxybutyrate-co-4-hydroxybutyrate), a poly(3-hydroxybutyrate-co-3-hydroxyvalerate), a poly(3-hydroxybutyrate-co-5-hydroxyvalerate), or a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate).
11. The fiber of any one of Claims 1 - 9, wherein the polyhydroxyalkanoate polymer is a poly(3-hydroxybutyrate) homopolymer, a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with 5% to 15% 4-hydroxybutyrate content, a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with 5% to 22% 3-hydroxyvalerate content, a poly(3-hydroxybutyrate-co-5-hydroxyvalerate) with 5% to 15% 5-hydroxyvalerate content, or a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with 3% to 15% 3-hydroxyhexanoate content.
12. The fiber of any one of Claims 1 - 9, wherein the polyhydroxyalkanoate is a) a poly(3-hydroxybutyrate) homopolymer blended with b) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate); a) a poly(3-hydroxybutyrate) homopolymer blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate); a) a poly(3-hydroxybutyrate) homopolymer blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate); a) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate); a) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) or a) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate).
13. The fiber of any one of Claims 1 - 9, wherein the polyhydroxyalkanoate is a) a poly(3-hydroxybutyrate) homopolymer blended with b) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 5% to 15% 4-hydroxybutyrate content; a) a poly(3-hydroxybutyrate) homopolymer blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a 5%
to 22% 3-hydroxyvalerate content; a) a poly(3-hydroxybutyrate) homopolymer blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with a 3% to 15% 3-hydroxyhexanoate content; a) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 5% to 15% 4-hydroxybutyrate content blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a 5% to 22% 3-hydroxyvalerate content; a) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with 5% to 15% 4-hydroxybutyrate content blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with a 3% to 15% 3-hydroxyhexanoate content or a) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a 5% to 22% 3-hydroxyvalerate content blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with a 3% to 15% 3-hydroxyhexanoate content.
to 22% 3-hydroxyvalerate content; a) a poly(3-hydroxybutyrate) homopolymer blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with a 3% to 15% 3-hydroxyhexanoate content; a) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 5% to 15% 4-hydroxybutyrate content blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a 5% to 22% 3-hydroxyvalerate content; a) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with 5% to 15% 4-hydroxybutyrate content blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with a 3% to 15% 3-hydroxyhexanoate content or a) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a 5% to 22% 3-hydroxyvalerate content blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with a 3% to 15% 3-hydroxyhexanoate content.
14. The fiber of Claim 12 or 13, wherein the polyhydroxyalkanoate is a) a poly(3-hydroxybutyrate) homopolymer blended with b) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and the weight of polymer a) is 5%
to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate) homopolymer blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate) homopolymer blended to with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and the weight of polymer a) is 5%
to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); or a) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b).
to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate) homopolymer blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate) homopolymer blended to with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and the weight of polymer a) is 5%
to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); or a) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b).
15. The fiber of Claim 12, 13 or 14, wherein the weight of polymer a) is 20 %
to 60% of the combined weight of polymer a) and polymer b) and the weight of polymer b) is 40% to 80% of the combined weight of polymer a) and polymer b).
to 60% of the combined weight of polymer a) and polymer b) and the weight of polymer b) is 40% to 80% of the combined weight of polymer a) and polymer b).
16. The fiber of Claims 1 - 9, wherein the polyhydroxyalkanoate is a) poly(3-hydroxybutyrate) homopolymer blended with b) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 20-50% 4-hydroxybutyrate content; a) a poly(3-hydroxybutyrate) homopolymer blended with b) a poly(3-hydroxybutyrate-co-5-hydroxyvalerate) with a 20% to 50% 5-hydroxyvalerate content; a) a poly(3-hydroxybutyrate) homopolymer blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) having a 5%-50% 3-hydroxyhexanoate content; a) poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 5% to 15% 4-hydroxybutyrate content blended with b) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 20-50% 4-hydroxybutyrate content; a) poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 5% to 15% 4-hydroxybutyrate content blended with b) a poly(3-hydroxybutyrate-co-5-hydroxyvalerate) with a 20% to 50% 5-hydroxyvalerate content; a) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with 5% to 15% 4-hydroxybutyrate content blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) having a 5%-50% 3-hydroxyhexanoate content; a) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a 5% to 22% 3-hydroxyvalerate content blended with b) poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 20-50% 4-hydroxybutyrate content; a) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a 5% to 22% 3-hydroxyvalerate content blended with b) a poly(3-hydroxybutyrate-co-5-hydroxyvalerate) with a 20% to 50% 5-hydroxyvalerate content; a) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a 5% to 22% 3-hydroxyvalerate content blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) having a 5%-50% 3-hydroxyhexanoate content; a) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with a 3% to 15% 3-hydroxyhexanoate content blended with b) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 20-50% 4-hydroxybutyrate content; a) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with a 3% to 15% 3-hydroxyhexanoate content blended with b) a poly(3-hydroxybutyrate-co-5-hydroxyvalerate) with a 20% to 50%
5-hydroxyvalerate; or a) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with a 3% to 15% 3-hydroxyhexanoate content blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) having a 5%-50% 3-hydroxyhexanoate content.
5-hydroxyvalerate; or a) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with a 3% to 15% 3-hydroxyhexanoate content blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) having a 5%-50% 3-hydroxyhexanoate content.
17. The fiber of any one of Claims 1 - 9, wherein the polyhydroxyalkanoate is a) a poly(3-hydroxybutyrate) homopolymer blended with b) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 20-50% 4-hydroxybutyrate content and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate) homopolymer blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a 20%
to 50% 5-hydroxyvalerate content and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate) homopolymer blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) having a 5%-50% 3-hydroxyhexanoate content and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 5% to 15% 4-hydroxybutyrate content blended with b) poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 20-50% 4-hydroxybutyrate content and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 5% to 15% 4-hydroxybutyrate content blended with b) poly(3-hydroxybutyrate-co-5-hydroxyvalerate) with a 20% to 50% 5-hydroxyvalerate and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 5% to 15% 4-hydroxybutyrate content blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) having a 5%-50% 3-hydroxyhexanoate content and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a 5% to 22% 3-hydroxyvalerate content blended with b) poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 20-50% 4-hydroxybutyrate content and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a 5% to 22% 3-hydroxyvalerate content blended with b) a poly(3-hydroxybutyrate-co-5-hydroxyvalerate) with a 20% to 50% 5-hydroxyvalerate and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a 5% to 22% 3-hydroxyvalerate content blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) having a 5%-50% 3-hydroxyhexanoate content and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with a 3% to 15% 3-hydroxyhexanoate content blended with b) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 20-50% 4-hydroxybutyrate content and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with a 3%
to 15% 3-hydroxyhexanoate content blended with b) a poly(3-hydroxybutyrate-co-5-hydroxyvalerate) with a 20% to 50% 5-hydroxyvalerate and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); or a) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with a 3% to 15% 3-hydroxyhexanoate content blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) having a 5%-50%
3-hydroxyhexanoate content and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b).
to 50% 5-hydroxyvalerate content and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate) homopolymer blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) having a 5%-50% 3-hydroxyhexanoate content and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 5% to 15% 4-hydroxybutyrate content blended with b) poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 20-50% 4-hydroxybutyrate content and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 5% to 15% 4-hydroxybutyrate content blended with b) poly(3-hydroxybutyrate-co-5-hydroxyvalerate) with a 20% to 50% 5-hydroxyvalerate and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 5% to 15% 4-hydroxybutyrate content blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) having a 5%-50% 3-hydroxyhexanoate content and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a 5% to 22% 3-hydroxyvalerate content blended with b) poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 20-50% 4-hydroxybutyrate content and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a 5% to 22% 3-hydroxyvalerate content blended with b) a poly(3-hydroxybutyrate-co-5-hydroxyvalerate) with a 20% to 50% 5-hydroxyvalerate and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a 5% to 22% 3-hydroxyvalerate content blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) having a 5%-50% 3-hydroxyhexanoate content and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with a 3% to 15% 3-hydroxyhexanoate content blended with b) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 20-50% 4-hydroxybutyrate content and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); a) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with a 3%
to 15% 3-hydroxyhexanoate content blended with b) a poly(3-hydroxybutyrate-co-5-hydroxyvalerate) with a 20% to 50% 5-hydroxyvalerate and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b); or a) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with a 3% to 15% 3-hydroxyhexanoate content blended with b) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) having a 5%-50%
3-hydroxyhexanoate content and the weight of polymer a) is 5% to 95% of the combined weight of polymer a) and polymer b).
18. The fiber of Claim 16 or 17, wherein the weight of polymer a) is 20 % to 60% of the combined weight of polymer a) and polymer b) and the weight of polymer b is 40% to 80% of the combined weight of polymer a) and polymer b).
19. The fiber of any one of Claims 12 - 18, wherein the polyhydroxyalkanoate is further blended with polymer c) a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with a 20% to 50% 4-hydroxybutyrate content.
20. The fiber of any one of Claims 12 - 18, wherein the polyhydroxyalkanoate is further blended with c) a poly(3-hydroxybutyrate-co-5-hydroxyvalerate) with a 20% to 50% 5-hydroxyvalerate content.
21. The fiber of any one of Claims 12 - 18, wherein the polyhydroxyalkanoate further blended with c) a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with a 5% to 50% 3-hydroxyhexanoate content.
22. The fiber of Claim 19, 20 or 21, wherein the weight of polymer c) is 5% to 95% of the combined polymer weight of polymer a), polymer b) and polymer c).
23. The fiber of Claim 21 wherein the weight of polymer c) is 5% to 40% of the combined polymer weight of polymer a), polymer b) and polymer c).
24. A non-woven web, comprising the fiber of any one of Claims 1 - 23.
25. A disposable article, comprising the fiber of any one of Claims 1 - 23.
26. An extruded melt-blown fiber comprising between about 85% and about 95% by weight biologically-produced polyhydroxybutyrate, between about 5% and about 15% acetyl tri-n-butyl citrate, wherein the fiber has a weight-average molecular weight of at least about 200 kg/mol.
27. An extruded fiber comprising a biologically-produced polyhydroxyalkanoate a plasticizer, and a wet milled nucleating agent wherein the fiber has a weight-average molecular weight of at least about 150 kg/mol.
28. A fiber comprising a polymer, a plasticizer and a nucleating agent, wherein the nucleating agent is dispersed in the polymer and wherein at least 5% of the cumulative solid volume of the nucleating agent exists as particles with a particle size of 5 microns or less.
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US20354208P | 2008-12-23 | 2008-12-23 | |
| US61/203,542 | 2008-12-23 | ||
| USPCT/US2009/0041023 | 2009-04-17 | ||
| PCT/US2009/041023 WO2009129499A1 (en) | 2008-04-17 | 2009-04-17 | Nucleating agents for polyhydroxyalkanoates |
| PCT/US2009/069444 WO2010075530A1 (en) | 2008-12-23 | 2009-12-23 | Production of non-woven materials from polyhydroxyalkanoate |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CA2748035A1 true CA2748035A1 (en) | 2010-07-01 |
Family
ID=41786225
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA2748035A Abandoned CA2748035A1 (en) | 2008-12-23 | 2009-12-23 | Production of non-woven materials from polyhydroxyalkanoate |
Country Status (5)
| Country | Link |
|---|---|
| EP (1) | EP2379618A1 (en) |
| CA (1) | CA2748035A1 (en) |
| IL (1) | IL213684A0 (en) |
| TW (1) | TW201042103A (en) |
| WO (1) | WO2010075530A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024163420A1 (en) * | 2023-01-31 | 2024-08-08 | Danimer Ipco, Llc | Polyhydroxyalkanoate-based fibers |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104245000B (en) * | 2012-03-27 | 2017-05-10 | 国立大学法人名古屋大学 | Three-dimensional structure created from material comprising polyhydroxyalkanoate, kit for preparing bone filling material and intramedullary nail |
| US9475930B2 (en) | 2012-08-17 | 2016-10-25 | Metabolix, Inc. | Biobased rubber modifiers for polymer blends |
| WO2014194220A1 (en) | 2013-05-30 | 2014-12-04 | Metabolix, Inc. | Recyclate blends |
| EP3042987B1 (en) * | 2013-09-02 | 2022-04-20 | Tokyo Institute of Technology | Polyester fiber |
| US10611903B2 (en) | 2014-03-27 | 2020-04-07 | Cj Cheiljedang Corporation | Highly filled polymer systems |
| US20250027244A1 (en) * | 2021-12-06 | 2025-01-23 | Kaneka Corporation | Melt-blown nonwoven fabric and method of producing the same |
| KR102816671B1 (en) * | 2022-10-31 | 2025-06-02 | 씨제이제일제당(주) | Biodegradable resin composition, biodegradable nonwoven fabric and preparation method thereof |
| WO2024104374A1 (en) * | 2022-11-18 | 2024-05-23 | 北京微构工场生物技术有限公司 | Degradable filament, preparation method therefor, and use thereof |
| CN117285807A (en) * | 2023-08-17 | 2023-12-26 | 北京微构工场生物技术有限公司 | Molded body and method for producing same |
| CN117144506A (en) * | 2023-08-23 | 2023-12-01 | 宁波市嘉化新材料科技有限公司 | PHA resin particles and preparation method thereof |
Family Cites Families (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE266116C (en) | ||||
| US2531440A (en) | 1947-03-29 | 1950-11-28 | Nat Lead Co | Lubricants |
| US4477654A (en) | 1981-07-07 | 1984-10-16 | Imperial Chemical Industries Plc | 3-Hydroxybutyrate polymers |
| GB8912388D0 (en) | 1989-05-30 | 1989-07-12 | Ici Plc | 3-hydroxybutyrate polymer composition |
| WO1994008078A1 (en) * | 1992-10-02 | 1994-04-14 | Cargill, Incorporated | A melt-stable lactide polymer fabric and process for manufacture thereof |
| JPH06264305A (en) * | 1993-03-09 | 1994-09-20 | Unitika Ltd | Biodegradable fiber and its production |
| GB9311402D0 (en) * | 1993-06-02 | 1993-07-21 | Zeneca Ltd | Processing of polyesters |
| GB9311399D0 (en) * | 1993-06-02 | 1993-07-21 | Zeneca Ltd | Polyester composition |
| BR9506664A (en) * | 1994-01-28 | 1997-09-16 | Procter & Gamble | Biodegradable copolymers and plastic articles comprising biodegradable copolymers of 3-hydroxyhexanoate |
| DE4416357C2 (en) | 1994-05-09 | 1997-09-18 | Buna Sow Leuna Olefinverb Gmbh | Wound dressing |
| GB9418174D0 (en) | 1994-09-09 | 1994-10-26 | Zeneca Ltd | Polyester composition |
| EP0839170B1 (en) | 1995-07-20 | 2001-10-17 | The Procter & Gamble Company | Nonwoven materials comprising biodegradable copolymers |
| US5723730A (en) | 1996-04-25 | 1998-03-03 | Garst Seed Company | Inbred corn line ZS01595 |
| US6096810A (en) | 1997-09-18 | 2000-08-01 | Monsanto Company | Modified polyhydroxyalkanoates for production of coatings and films |
| CA2371300C (en) | 1999-04-30 | 2011-04-05 | Alcan International Limited | Fire retardant compositions |
| DE19921472A1 (en) | 1999-05-08 | 2000-11-16 | Sued Chemie Ag | Flame retardant polymer composition |
| US6414070B1 (en) | 2000-03-08 | 2002-07-02 | Omnova Solutions Inc. | Flame resistant polyolefin compositions containing organically modified clay |
| US20020164729A1 (en) | 2000-07-21 | 2002-11-07 | Skraly Frank A. | Production of polyhydroxyalkanoates from polyols |
| US6905987B2 (en) * | 2001-03-27 | 2005-06-14 | The Procter & Gamble Company | Fibers comprising polyhydroxyalkanoate copolymer/polylactic acid polymer or copolymer blends |
| US6699320B1 (en) | 2001-04-26 | 2004-03-02 | Polyone Corporation | Low permeability beverage container |
| ES2286405T3 (en) | 2002-02-01 | 2007-12-01 | Basf Corporation | OLIGOMEROUS CHAIN EXTENDERS FOR THE PROCESSING, PROCESSING AND RECYCLING OF CONDENSATION, SYNTHESIS, COMPOSITIONS AND APPLICATIONS POLYMERS. |
| US8283435B2 (en) | 2003-02-21 | 2012-10-09 | Metabolix, Inc. | PHA adhesive compositions |
| ES2315737T3 (en) * | 2003-12-30 | 2009-04-01 | Metabolix, Inc. | NUCLEANT AGENTS. |
| EP1781798B1 (en) | 2004-08-06 | 2010-06-02 | PHB Industrial S.A. | Use of fatty alcohols as plasticizer to improve the physical-mechanical properties and processability of phb and its co-polymers |
| JP2007021428A (en) * | 2005-07-20 | 2007-02-01 | Toray Ind Inc | Filter and its manufacturing method |
| JP5019554B2 (en) * | 2005-09-13 | 2012-09-05 | 国立大学法人東京工業大学 | Biodegradable polyester resin composition |
| US8168550B2 (en) * | 2006-11-30 | 2012-05-01 | The Procter & Gamble Company | Extensible nonwoven webs containing monocomponent nanocomposite fibers |
| EP2285877A1 (en) | 2008-04-17 | 2011-02-23 | Metabolix, Inc. | Nucleating agents for polyhydroxyalkanoates |
| WO2009137058A1 (en) | 2008-05-06 | 2009-11-12 | Metabolix, Inc. | Biodegradable polyester blends |
-
2009
- 2009-12-22 TW TW098144381A patent/TW201042103A/en unknown
- 2009-12-23 EP EP09796908A patent/EP2379618A1/en not_active Withdrawn
- 2009-12-23 WO PCT/US2009/069444 patent/WO2010075530A1/en not_active Ceased
- 2009-12-23 CA CA2748035A patent/CA2748035A1/en not_active Abandoned
-
2011
- 2011-06-21 IL IL213684A patent/IL213684A0/en unknown
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024163420A1 (en) * | 2023-01-31 | 2024-08-08 | Danimer Ipco, Llc | Polyhydroxyalkanoate-based fibers |
| AU2024214591B2 (en) * | 2023-01-31 | 2025-10-16 | Danimer Ipco, Llc | Polyhydroxyalkanoate-based fibers |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2379618A1 (en) | 2011-10-26 |
| IL213684A0 (en) | 2011-07-31 |
| WO2010075530A8 (en) | 2010-09-16 |
| TW201042103A (en) | 2010-12-01 |
| WO2010075530A1 (en) | 2010-07-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2748035A1 (en) | Production of non-woven materials from polyhydroxyalkanoate | |
| EP2285901B1 (en) | Biodegradable polyester blends | |
| EP2417179B1 (en) | Method of improving film processing and injection molding of polyhydroxyalkanoate polymers | |
| US20110256398A1 (en) | Production Of Non-Woven Materials From Polyhydroxyalkanoate | |
| US8487023B2 (en) | Nucleating agents for polyhydroxyalkanoates | |
| EP3360927B1 (en) | Pha compositions comprising pbs and pbsa and method for producing the compositions | |
| US11091632B2 (en) | Polymer blends with controllable biodegradation rates | |
| US20110306693A1 (en) | Production of Polyhydroxyalkanoate Foam | |
| EP2702091A1 (en) | Process for latex production by melt emulsification | |
| US20230312917A1 (en) | Masterbatch of highly loaded amorphous pha dispersed in amorphous or semi-crystalline polymer and method of producing the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FZDE | Discontinued |
Effective date: 20131224 |