CA2584275C - A method of producing a steel product - Google Patents
A method of producing a steel product Download PDFInfo
- Publication number
- CA2584275C CA2584275C CA2584275A CA2584275A CA2584275C CA 2584275 C CA2584275 C CA 2584275C CA 2584275 A CA2584275 A CA 2584275A CA 2584275 A CA2584275 A CA 2584275A CA 2584275 C CA2584275 C CA 2584275C
- Authority
- CA
- Canada
- Prior art keywords
- steel
- workpiece
- austenite
- shell
- ferrite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21F—PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
- D21F1/00—Wet end of machines for making continuous webs of paper
- D21F1/48—Suction apparatus
- D21F1/50—Suction boxes with rolls
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21F—PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
- D21F3/00—Press section of machines for making continuous webs of paper
- D21F3/02—Wet presses
- D21F3/10—Suction rolls, e.g. couch rolls
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21F—PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
- D21F3/00—Press section of machines for making continuous webs of paper
- D21F3/02—Wet presses
- D21F3/10—Suction rolls, e.g. couch rolls
- D21F3/105—Covers thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Paper (AREA)
- Rolls And Other Rotary Bodies (AREA)
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
- Coating With Molten Metal (AREA)
- Bending Of Plates, Rods, And Pipes (AREA)
- Heat Treatment Of Articles (AREA)
- Compressor (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Adjustment And Processing Of Grains (AREA)
Abstract
The invention relates to a method of producing a steel product, comprising providing a steel workpiece, and working the workpiece by a cutting operation The steel of the workpiece is a stainless ferrite-austenite steel having a micro-structure essentially consisting of 35-65 % by volume of ferrite and 35-65 % by volume of austenite The steel has a composition containing, among other things, 0.005-0.07 C and 0.15-0.30 N, in %
by weight The invention also relates to the steel product being a suction roll shell having a plurality of through holes The steel workpiece has a high strength and good corrosion resistance, but is also suitable for cutting operations, such as turning, milling and drilling, without requiring the addition of sulphur.
by weight The invention also relates to the steel product being a suction roll shell having a plurality of through holes The steel workpiece has a high strength and good corrosion resistance, but is also suitable for cutting operations, such as turning, milling and drilling, without requiring the addition of sulphur.
Description
A METHOD OF PRODUCING A STEEL PRODUCT
FIELD OF THE INVENTION
The invention relates to a steel shell for a suction roll and a method of producing a steel product, in which method a piece of steel material is worked by a cutting operation such as milling, turning and/or drilling.
BACKGROUND OF THE INVENTION
Stainless steel is used in fields in which a high corrosion resistance is necessary. A
high corrosion resistance may be required in environments within off-shore, paper and pulp industry and chemical industry. One example is suction roll shells for paper machines, that are manufactured from stainless steel. One type of stainless steel is the so called duplex steels that contain ferrite and austenite. Duplex steels are known to combine a high mechanical strength and toughness with a good corrosion resistance, in particular in terms of stress corrosion and corrosion fatigue. For corrosion resistance as well as mechanical properties such as weldability, it is important that the steel is well balanced in terms of the essential components austenite and ferrite. In modern development of duplex steels, it is desired to have a micro-structure containing 35-65 % ferrite, the remainder being austenite. In fields requiring high strength and good corrosion resistance, duplex steels are increasingly competing with traditional austenite stainless steels. Such a steel material is described in published US Patent Application No. 2003/0172999. The steel material described in this publication is a ferrite-austenite stainless steel having a micro-structure essentially consisting of 35-65 % by volume ferrite and 35-65 % by volume austenite. The steel in question has a chemical composition containing 0.005-0.07 C, 0.1-2.0 Si, 3-8 Mn, 19-23 Cr, 0.15-0.30 N and 0.5-1.7 Ni, in % by weight. Some other components may also be included.
Nitrogen is of considerable importance to the steel described in US
2003/0172999, since nitrogen is dominant as austenite former and contributes to the strength of the steel as well as to its corrosion resistance. For this reason, it was estimated that the nitrogen content of the steel should be in the range of 0.15-0.30 %, and preferably in the range of 0.20-0.24 %. However, it has been previously shown that steel types of such a high nitrogen content are poor in cuttability.
Most often, a stainless steel intended to be used for a particular product must be subjected to some type of cutting operation, such as milling, turning or drilling. In themselves, , austenite and duplex stainless steels are poor in cuttability and hence various measures are undertaken in order to increase cuttability of the stainless steel. It is previously known that the presence of nitrogen in stainless steel decreases cuttability. In for example US Patent No.
4,769,213, a method is suggested for increasing cuttability of a martensite stainless steel by reducing carbon and nitrogen contents such that the total content of carbon and nitrogen together is not more than 0.05 % by weight. However, compared with duplex steels, martensite steels have a poorer corrosion resistance. For austenite stainless steels, it is suggested in US Patent No. 5,482,674 that the content of carbon and nitrogen should be reduced such that neither the content of carbon nor the content of nitrogen is more than about 0.035 % by weight. It is also known that the addition of sulphur may increase cuttability.
Accordingly, US Patent No. 4,784,828 suggests that sulphur should be added to an austenite stainless steel in order to increase cuttability. It is also stated that the contents of carbon and nitrogen should be very low, in total up to 0.065 % by weight. However, compared with duplex steels, austenite steels have a lower strength.
US Patent No. 4,964,924 suggests use of a martensite stainless steel in a suction roll, in that publication, it is stated that since they are difficult to drill, stainless ferrite-austenite duplex steels are unsuitable as materials for suction rolls. Instead, it is suggested that a stainless steel suitable for a suction roll shell should be of martensite type, among other things containing carbon at a % by weight of more than 0 but not more than 0.06, silicon at a % by weight above 0 but not more than 2, manganese at a % by weight above 0 but not more than
FIELD OF THE INVENTION
The invention relates to a steel shell for a suction roll and a method of producing a steel product, in which method a piece of steel material is worked by a cutting operation such as milling, turning and/or drilling.
BACKGROUND OF THE INVENTION
Stainless steel is used in fields in which a high corrosion resistance is necessary. A
high corrosion resistance may be required in environments within off-shore, paper and pulp industry and chemical industry. One example is suction roll shells for paper machines, that are manufactured from stainless steel. One type of stainless steel is the so called duplex steels that contain ferrite and austenite. Duplex steels are known to combine a high mechanical strength and toughness with a good corrosion resistance, in particular in terms of stress corrosion and corrosion fatigue. For corrosion resistance as well as mechanical properties such as weldability, it is important that the steel is well balanced in terms of the essential components austenite and ferrite. In modern development of duplex steels, it is desired to have a micro-structure containing 35-65 % ferrite, the remainder being austenite. In fields requiring high strength and good corrosion resistance, duplex steels are increasingly competing with traditional austenite stainless steels. Such a steel material is described in published US Patent Application No. 2003/0172999. The steel material described in this publication is a ferrite-austenite stainless steel having a micro-structure essentially consisting of 35-65 % by volume ferrite and 35-65 % by volume austenite. The steel in question has a chemical composition containing 0.005-0.07 C, 0.1-2.0 Si, 3-8 Mn, 19-23 Cr, 0.15-0.30 N and 0.5-1.7 Ni, in % by weight. Some other components may also be included.
Nitrogen is of considerable importance to the steel described in US
2003/0172999, since nitrogen is dominant as austenite former and contributes to the strength of the steel as well as to its corrosion resistance. For this reason, it was estimated that the nitrogen content of the steel should be in the range of 0.15-0.30 %, and preferably in the range of 0.20-0.24 %. However, it has been previously shown that steel types of such a high nitrogen content are poor in cuttability.
Most often, a stainless steel intended to be used for a particular product must be subjected to some type of cutting operation, such as milling, turning or drilling. In themselves, , austenite and duplex stainless steels are poor in cuttability and hence various measures are undertaken in order to increase cuttability of the stainless steel. It is previously known that the presence of nitrogen in stainless steel decreases cuttability. In for example US Patent No.
4,769,213, a method is suggested for increasing cuttability of a martensite stainless steel by reducing carbon and nitrogen contents such that the total content of carbon and nitrogen together is not more than 0.05 % by weight. However, compared with duplex steels, martensite steels have a poorer corrosion resistance. For austenite stainless steels, it is suggested in US Patent No. 5,482,674 that the content of carbon and nitrogen should be reduced such that neither the content of carbon nor the content of nitrogen is more than about 0.035 % by weight. It is also known that the addition of sulphur may increase cuttability.
Accordingly, US Patent No. 4,784,828 suggests that sulphur should be added to an austenite stainless steel in order to increase cuttability. It is also stated that the contents of carbon and nitrogen should be very low, in total up to 0.065 % by weight. However, compared with duplex steels, austenite steels have a lower strength.
US Patent No. 4,964,924 suggests use of a martensite stainless steel in a suction roll, in that publication, it is stated that since they are difficult to drill, stainless ferrite-austenite duplex steels are unsuitable as materials for suction rolls. Instead, it is suggested that a stainless steel suitable for a suction roll shell should be of martensite type, among other things containing carbon at a % by weight of more than 0 but not more than 0.06, silicon at a % by weight above 0 but not more than 2, manganese at a % by weight above 0 but not more than
2, nickel at 3-6 % by weight, chromium at 14-17 % by weight, molybdenum at 1-3 % by weight and copper at a A) by weight of from 0.5 to 1.5.
The present invention aims at providing a solution to the problem of finding a steel material that exhibits a high strength as well as a good corrosion resistance, and that moreover is suitable for cutting operations without having to be subjected to sulphur addition treatment. It is also an object of the invention to provide a suction roll shell with good corrosion resistance, which is easy to manufacture by cutting operations.
SUMMARY OF THE INVENTION
Surprisingly, the present inventors have found that a steel material of the type described in above mentioned US 2003/0172999, not only has a high strength and a good corrosion resistance, but that the material in question also is suitable for cutting operations such as turning, milling and drilling, without the material in question having been treated by addition of sulphur. The inventors have also found that the material in question is particularly suitable as a material for paper machine suction rolls, and that it is advantageous to manufacture a suction roll shell of such a material. Accordingly, the invention relates to a suction roll shell of this material. The invention can also be understood as a method for cutting operations, in particular when manufacturing suction roll shells, but also in manufacturing of other products, e.g. rotating machine parts, such as shafts. The invention can also be defined in terms of a use of said steel as a workpiece in cutting operation of steel.
Hence, the invention relates to a suction roll shell having a plurality of through holes.
The suction roll shell according to the invention is made of a stainless ferrite-austenite steel having a micro-structure essentially consisting of 35-65 % by volume of ferrite and 35-65 %
by volume of austenite. The steel composition will be described in greater detail in the detailed description.
The invention also relates to a suction roll comprising the inventive suction roll shell.
According to an aspect of the invention, there is provided a method of producing a steel product, which method comprises providing a steel workpiece, and working of the workpiece by cutting operation including drilling, wherein the steel of the workpiece is a stainless ferrite-austenite steel having a micro-structure consisting of 35-65 % by volume of ferrite and 35-65 % by volume of austenite, and having a chemical composition containing 0.005-0.07 C, 0.1-2.0 Si, 3-8 Mn, 19-23 Cr, 0.5-1.7 Ni, 0.15-0.30 N, in % by weight.
In a preferred embodiment, the cutting operation comprises drilling of at least one through hole, and preferably drilling of a plurality of holes. In a particularly advantageous embodiment, the method comprises drilling of hundreds of thousands of holes. A
corresponding drilled length is several kilometres. The cutting operation may also comprise turning of outside and inside faces of the shell.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 shows the bending of a blank for a suction roll shell.
Fig. 2 shows a blank having been bent and welded together to form a shell.
Fig. 3 shows schematically a first step of working the shell shown in Fig. 2.
Fig. 4 shows a second step of working the shell.
Fig. 5 shows a completed suction roll shell.
Figs. 6-9 show the result of comparative tests in which the steel used according to the invention is compared with other steels in terms of cuttability.
The present invention aims at providing a solution to the problem of finding a steel material that exhibits a high strength as well as a good corrosion resistance, and that moreover is suitable for cutting operations without having to be subjected to sulphur addition treatment. It is also an object of the invention to provide a suction roll shell with good corrosion resistance, which is easy to manufacture by cutting operations.
SUMMARY OF THE INVENTION
Surprisingly, the present inventors have found that a steel material of the type described in above mentioned US 2003/0172999, not only has a high strength and a good corrosion resistance, but that the material in question also is suitable for cutting operations such as turning, milling and drilling, without the material in question having been treated by addition of sulphur. The inventors have also found that the material in question is particularly suitable as a material for paper machine suction rolls, and that it is advantageous to manufacture a suction roll shell of such a material. Accordingly, the invention relates to a suction roll shell of this material. The invention can also be understood as a method for cutting operations, in particular when manufacturing suction roll shells, but also in manufacturing of other products, e.g. rotating machine parts, such as shafts. The invention can also be defined in terms of a use of said steel as a workpiece in cutting operation of steel.
Hence, the invention relates to a suction roll shell having a plurality of through holes.
The suction roll shell according to the invention is made of a stainless ferrite-austenite steel having a micro-structure essentially consisting of 35-65 % by volume of ferrite and 35-65 %
by volume of austenite. The steel composition will be described in greater detail in the detailed description.
The invention also relates to a suction roll comprising the inventive suction roll shell.
According to an aspect of the invention, there is provided a method of producing a steel product, which method comprises providing a steel workpiece, and working of the workpiece by cutting operation including drilling, wherein the steel of the workpiece is a stainless ferrite-austenite steel having a micro-structure consisting of 35-65 % by volume of ferrite and 35-65 % by volume of austenite, and having a chemical composition containing 0.005-0.07 C, 0.1-2.0 Si, 3-8 Mn, 19-23 Cr, 0.5-1.7 Ni, 0.15-0.30 N, in % by weight.
In a preferred embodiment, the cutting operation comprises drilling of at least one through hole, and preferably drilling of a plurality of holes. In a particularly advantageous embodiment, the method comprises drilling of hundreds of thousands of holes. A
corresponding drilled length is several kilometres. The cutting operation may also comprise turning of outside and inside faces of the shell.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 shows the bending of a blank for a suction roll shell.
Fig. 2 shows a blank having been bent and welded together to form a shell.
Fig. 3 shows schematically a first step of working the shell shown in Fig. 2.
Fig. 4 shows a second step of working the shell.
Fig. 5 shows a completed suction roll shell.
Figs. 6-9 show the result of comparative tests in which the steel used according to the invention is compared with other steels in terms of cuttability.
-3-DETAILED DESCRIPTION OF THE INVENTION
In the following, the manufacturing of suction roll shells is schematically described.
With reference to Fig. 1, a first step in the manufacturing of a suction roll shell is shown. As is shown in Fig. 1, an essentially planar blank 1 is roller bent between two rollers 2, 3, as is known as such and need not be described in greater detail herein. After bending to an essentially circular shape, the ends of the blank 1 are welded together such that a weld joint
In the following, the manufacturing of suction roll shells is schematically described.
With reference to Fig. 1, a first step in the manufacturing of a suction roll shell is shown. As is shown in Fig. 1, an essentially planar blank 1 is roller bent between two rollers 2, 3, as is known as such and need not be described in greater detail herein. After bending to an essentially circular shape, the ends of the blank 1 are welded together such that a weld joint
4 unites the blank 1 to form a segment 9. A plurality of segments are then united by circular joints to form a shell that is heat treated after the welding. Fig. 3 shows how the thus achieved shell 9 can be subjected to a working operation, such as turning. Fig. 3 shows a turning tool
5 acting on the face of the shell 9. The object of the turning operation is to ensure that the face of the shell 9 is smooth and regular. Fig. 4 shows schematically a subsequent step in the manufacturing process, in which the shell 9 is drilled by a drill 6, whereby the shell is provided with a number of through holes 7. Fig. 5 shows the completed suction roll shell 8 with its circular cylindrical shell 9 and the through holes 7 thereof. Fig. 5 also shows schematically that the ends of the suction roll shell 8 can be closed by side covers 10. When the suction roll shell 8 is used, its interior will be connected to a vacuum source (not shown), which results in air being drawn from the outside and in via the through holes 7. Only a few holes are shown in the drawings. It should be realised however that in real applications the number of holes can be very large, such as 100,000 holes or more. Suction roll shells have previously been manufactured from a material sold under the name 3RE60 Avesta SRG. This steel is a stainless ferrite-austenite steel that has been improved in respect of cuttability by sulphur treatment and that has the following typical composition in % by weight.
0.02 Si 1.50 Cr 18.5 Ni 4.90 Mo 2.80 0.08 0.02 With good results, steel 3RE60 has been used for about 30 years for the manufacturing of suction roll shells, and about 10 years ago it was provided with an additive for improved cuttability and its name was changed to 3RE60 SRG. Nowadays, the steel is called 3RE60 Avesta SRG.
It has now been surprisingly shown that another ferrite-austenite steel exists that has in addition a high nitrogen content, and that has equally good or in some respects even better cuttability than the cuttability-improved 3RE60 Avesta SRG. This steel has a microstructure essentially consisting of 35-65 % by volume of ferrite and 35-65 % by volume of austenite, and its chemical composition contains in % by weight:
0.005 Si 0.1-2.0 Mn 3-8 Cr 19-23 Ni 0.5-1.7 0.15-0.3 A steel that is particularly suitable for this application suitably contains:
optionally Mo and/or W at a total content of no more than 1.0 (Mo + W/2), optionally Cu up to a maximum of 1.0 Cu, balance being iron and impurities. For the ferrite and austenite formers in the alloy, i.e. chromium and nickel equivalents, the following conditions should preferably be true:
< Creeq < 24.5 10 < Nieq, where Creq = Cr + 1.5 Si + Mo + 2 Ti + 0.5 Nb Nieq = Ni + 0.5 Mn + 30 (C+N) + 0.5 (Cu + Co).
20 In an advantageous embodiment, the steel contains 0.02-0.05 C.
Suitably, the steel contains 0.18-0.26 N and advantageously 20-23 Cr. In a preferred embodiment, the steel contains 0.8-1.70 Ni, and even more preferred 1.35-1.7 Ni.
A steel of this composition is described in published US Patent Application No.
2003/0172999.
In a particularly advantageous embodiment of the invention, the steel contains 0.22 N, 21.5 Cr, 1.5 Ni, 0.3 Mo, 5 Mn and not more than 0.04 C. Such a steel is sold by Outokumpu Stainless AB, Box 74, SE-774 22, AVESTA. This steel is sold by Outokumpu under the name LDX 21010. The name is a trademark registered in the European Union.
Accordingly, the LDX
2101 steel is particularly suitable to be used in a suction roll shell.
Particularly suitable contents of copper and silicon are 0.3 Cu and 0.7 Si, respectively. The guideline values 0.3 Cu and 0.7 Si (in % by weight) are used for LDX 21010.
Compared with e.g. steel 3RE60 Avesta SRG, the steel of the type mentioned above has a relatively high nitrogen content. As it is known that nitrogen tends to impair cuttability, it would be expected that cuttability is poorer. However, it has been surprisingly shown that the cuttability of the steel used according to the present invention is considerably higher than expected.
Fig. 6 shows the results of a comparative test in which an LDX 21010 steel were compared with two other, cuttability-improved, austenite steels called 304L
PRODECO and 316L PRODECO, respectively. The steel 304L PRODECO has the following composition in % by weight:
C 0.02 Si 0.5 Mn 1.5 Cr 18.2 Ni 8.4 Mo essentially none N 0.07 S 0.02 The steel 316L PRODECO has the following composition:
C 0.02 Si 0.5 Mn 1.5 Cr 17.2 Ni 11.2 Mo 2.3 N 0.05 S 0.02 As the nitrogen content of both cuttability-improved austenite steels 304L
an 316L PRODEC0 is considerably lower than in an LDX 21010 steel, it would normally be expected for these steels to be better in cuttability than an LDX 2101 steel.
In turning tests it was however shown that for an LDX 21010 steel, working time 30 minutes, high-speed steel tools being used, a considerably higher cutting speed was possible as compared with the other two steels, which is shown in Fig. 6.
Fig. 7 shows the results of an additional comparative test between an LDX
21010 steel and steels 304L PRODEC0 and 316L PRODECO. Fig. 7 shows a test with a working time of 15 minutes, in which turning was made by a cutting edge of hard metal. Under these circumstances, a cutting speed was achieved for an LDX 21020 steel that was somewhat lower in comparison with the other two steels. The difference is however marginal.
0.02 Si 1.50 Cr 18.5 Ni 4.90 Mo 2.80 0.08 0.02 With good results, steel 3RE60 has been used for about 30 years for the manufacturing of suction roll shells, and about 10 years ago it was provided with an additive for improved cuttability and its name was changed to 3RE60 SRG. Nowadays, the steel is called 3RE60 Avesta SRG.
It has now been surprisingly shown that another ferrite-austenite steel exists that has in addition a high nitrogen content, and that has equally good or in some respects even better cuttability than the cuttability-improved 3RE60 Avesta SRG. This steel has a microstructure essentially consisting of 35-65 % by volume of ferrite and 35-65 % by volume of austenite, and its chemical composition contains in % by weight:
0.005 Si 0.1-2.0 Mn 3-8 Cr 19-23 Ni 0.5-1.7 0.15-0.3 A steel that is particularly suitable for this application suitably contains:
optionally Mo and/or W at a total content of no more than 1.0 (Mo + W/2), optionally Cu up to a maximum of 1.0 Cu, balance being iron and impurities. For the ferrite and austenite formers in the alloy, i.e. chromium and nickel equivalents, the following conditions should preferably be true:
< Creeq < 24.5 10 < Nieq, where Creq = Cr + 1.5 Si + Mo + 2 Ti + 0.5 Nb Nieq = Ni + 0.5 Mn + 30 (C+N) + 0.5 (Cu + Co).
20 In an advantageous embodiment, the steel contains 0.02-0.05 C.
Suitably, the steel contains 0.18-0.26 N and advantageously 20-23 Cr. In a preferred embodiment, the steel contains 0.8-1.70 Ni, and even more preferred 1.35-1.7 Ni.
A steel of this composition is described in published US Patent Application No.
2003/0172999.
In a particularly advantageous embodiment of the invention, the steel contains 0.22 N, 21.5 Cr, 1.5 Ni, 0.3 Mo, 5 Mn and not more than 0.04 C. Such a steel is sold by Outokumpu Stainless AB, Box 74, SE-774 22, AVESTA. This steel is sold by Outokumpu under the name LDX 21010. The name is a trademark registered in the European Union.
Accordingly, the LDX
2101 steel is particularly suitable to be used in a suction roll shell.
Particularly suitable contents of copper and silicon are 0.3 Cu and 0.7 Si, respectively. The guideline values 0.3 Cu and 0.7 Si (in % by weight) are used for LDX 21010.
Compared with e.g. steel 3RE60 Avesta SRG, the steel of the type mentioned above has a relatively high nitrogen content. As it is known that nitrogen tends to impair cuttability, it would be expected that cuttability is poorer. However, it has been surprisingly shown that the cuttability of the steel used according to the present invention is considerably higher than expected.
Fig. 6 shows the results of a comparative test in which an LDX 21010 steel were compared with two other, cuttability-improved, austenite steels called 304L
PRODECO and 316L PRODECO, respectively. The steel 304L PRODECO has the following composition in % by weight:
C 0.02 Si 0.5 Mn 1.5 Cr 18.2 Ni 8.4 Mo essentially none N 0.07 S 0.02 The steel 316L PRODECO has the following composition:
C 0.02 Si 0.5 Mn 1.5 Cr 17.2 Ni 11.2 Mo 2.3 N 0.05 S 0.02 As the nitrogen content of both cuttability-improved austenite steels 304L
an 316L PRODEC0 is considerably lower than in an LDX 21010 steel, it would normally be expected for these steels to be better in cuttability than an LDX 2101 steel.
In turning tests it was however shown that for an LDX 21010 steel, working time 30 minutes, high-speed steel tools being used, a considerably higher cutting speed was possible as compared with the other two steels, which is shown in Fig. 6.
Fig. 7 shows the results of an additional comparative test between an LDX
21010 steel and steels 304L PRODEC0 and 316L PRODECO. Fig. 7 shows a test with a working time of 15 minutes, in which turning was made by a cutting edge of hard metal. Under these circumstances, a cutting speed was achieved for an LDX 21020 steel that was somewhat lower in comparison with the other two steels. The difference is however marginal.
-6-Fig. 8 shows another test in which the steel LDX 21010 is compared with a conventional duplex steel sold under the name 2205. This steel, which is more highly alloyed than LDX 21010, is standardized (EN 1.4462) and is used in a great number of applications.
It has no cuttability-improving additives and is not used for this type of suction roll shells. 2205 has the following composition:
0.02 Si 0.4 Mn 1.5 Cr 22.2 Ni 5.7 Mo 3.1 0.17 0.001 In the test, a comparison was made in terms of the useful life of the tool when milling with a cutting edge of hard metal. As is evident from Fig. 8, the useful life of the tool was considerably longer when working an LDX 21010 steel as compared with working of the steel 2005.
Finally, yet another test is shown in Fig. 9. In the test shown in Fig. 9, an steel was compared with three other steel types used for suction roll shells, i.e. 2304 Avesta SRG, 3RE60 Avesta SRG and 2205 Avesta SRG. All steels designated SRG (Suction Roll Grade) are cuttability-improved by sulphur addition. The steel 2304 Avesta SRG
has the following typical composition:
0.02 Si 0.8 Mn 1.5 Cr 22.7 Ni 4.7 Mo 0.3 0.09 S 0.02 The steel 2205 Avesta SRG has the following typical composition:
It has no cuttability-improving additives and is not used for this type of suction roll shells. 2205 has the following composition:
0.02 Si 0.4 Mn 1.5 Cr 22.2 Ni 5.7 Mo 3.1 0.17 0.001 In the test, a comparison was made in terms of the useful life of the tool when milling with a cutting edge of hard metal. As is evident from Fig. 8, the useful life of the tool was considerably longer when working an LDX 21010 steel as compared with working of the steel 2005.
Finally, yet another test is shown in Fig. 9. In the test shown in Fig. 9, an steel was compared with three other steel types used for suction roll shells, i.e. 2304 Avesta SRG, 3RE60 Avesta SRG and 2205 Avesta SRG. All steels designated SRG (Suction Roll Grade) are cuttability-improved by sulphur addition. The steel 2304 Avesta SRG
has the following typical composition:
0.02 Si 0.8 Mn 1.5 Cr 22.7 Ni 4.7 Mo 0.3 0.09 S 0.02 The steel 2205 Avesta SRG has the following typical composition:
-7-0.017 Si 0.6 Mn 1.35 Cr 22.0 Ni 5.7 Mo 2.9 0.13 0.02 In the test shown in Fig. 9, a comparison was made in respect of the cutting speed that can be achieved for a drilled length of 1000 mm without tool failure, in different materials. As is evident from Fig. 9, LDX 2101 is considerably better than the cuttability-improved steels 2205 Avesta SRG and 2304 Avesta SRG, and in this respect it is equally good as the cuttability-improved steel 3RE60 Avesta SRG, despite the fact that LDX 2101 contains considerably more nitrogen than the steel 3RE60 Avesta SRG. It is a clear technical advantage if cuttability of the material can be achieved without so called cuttability-improving additives such as sulphur, as these lead to a number of drawbacks such as impaired rollability and impaired corrosion resistance.
It is to be understood that although the invention has been described in terms of a suction roll shell and a method, those are just different aspects of one and the same invention, as the method according to the invention is suited to be used for manufacturing of the suction roll shell according to the invention.
By the invention, the advantage is obtained, among other things, that the completed roll shell achieves a very good corrosion resistance.
It is to be understood that although the invention has been described in terms of a suction roll shell and a method, those are just different aspects of one and the same invention, as the method according to the invention is suited to be used for manufacturing of the suction roll shell according to the invention.
By the invention, the advantage is obtained, among other things, that the completed roll shell achieves a very good corrosion resistance.
-8-
Claims (6)
1. A method of producing a suction roll shell having a plurality of holes, the method comprising:
providing a steel workpiece, and working of the workpiece by a turning and cutting operation, wherein the essentially planar workpiece is bent to an essentially circular shape, and the ends of the blank workpiece are welded together in order to form a segment, a plurality of segments are united to form a shell which is heat treated after welding, and the heat treated shell is subjected to a working by turning and cutting, wherein the turning and cutting operation comprises drilling a plurality of through holes in the shell, wherein the steel of the workpiece is a ferrite-austenite stainless steel having a microstructure essentially consisting of 35-65 % by volume of ferrite and 35-% by volume of austenite, and having a chemical composition containing 0.005-0.07 C, 0.1-2.0 Si, 3-8 Mn, 19-23 Cr, 0.5-1.7 Ni, 0.15-0.30 N, in % by weight, optionally Mo and/or W at a total content of no more than 1.0 (Mo + W/2), optionally Cu up to a maximum of 1.0 Cu, balance being iron and impurities, and that for the ferrite and austenite formers in the alloy, i.e. the chromium and nickel equivalents, the following conditions are true: 20 < Cr eq < 24.5, 10 <
Ni eq, where Cr eq = Cr + 1.5 Si + Mo + 2 Ti + 0.5 Nb, Ni eq = Ni + 0.5 Mn + 30 (C+N) +
0.5 (Cu + Co).
providing a steel workpiece, and working of the workpiece by a turning and cutting operation, wherein the essentially planar workpiece is bent to an essentially circular shape, and the ends of the blank workpiece are welded together in order to form a segment, a plurality of segments are united to form a shell which is heat treated after welding, and the heat treated shell is subjected to a working by turning and cutting, wherein the turning and cutting operation comprises drilling a plurality of through holes in the shell, wherein the steel of the workpiece is a ferrite-austenite stainless steel having a microstructure essentially consisting of 35-65 % by volume of ferrite and 35-% by volume of austenite, and having a chemical composition containing 0.005-0.07 C, 0.1-2.0 Si, 3-8 Mn, 19-23 Cr, 0.5-1.7 Ni, 0.15-0.30 N, in % by weight, optionally Mo and/or W at a total content of no more than 1.0 (Mo + W/2), optionally Cu up to a maximum of 1.0 Cu, balance being iron and impurities, and that for the ferrite and austenite formers in the alloy, i.e. the chromium and nickel equivalents, the following conditions are true: 20 < Cr eq < 24.5, 10 <
Ni eq, where Cr eq = Cr + 1.5 Si + Mo + 2 Ti + 0.5 Nb, Ni eq = Ni + 0.5 Mn + 30 (C+N) +
0.5 (Cu + Co).
2. The method according to claim 1, wherein steel contains 0.02-0.05 C.
3. The method according to claim 1 or 2, wherein the steel contains 0.18-0.26 N.
4. The method according to any one of claims 1 to 3, wherein the steel contains 20-23 Cr.
5. The method according to any one of claims 1 o 4, wherein the steel contains 0.8-1.70 Ni.
6. The method according to claim 1, wherein the steel contains 0.22 N, 21.5 Cr, 1.5 Ni, 0.3 Mo, 5 Mn and no more than 0.04 C.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE0402141-6 | 2004-09-07 | ||
| SE0402141A SE528375C2 (en) | 2004-09-07 | 2004-09-07 | A suction roll sheath made of steel as well as a method for producing a suction roll sheath |
| PCT/SE2005/001220 WO2006041344A1 (en) | 2004-09-07 | 2005-08-19 | A steel shell for a suction roll and a method of producing a steel product |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CA2584275A1 CA2584275A1 (en) | 2006-04-20 |
| CA2584275C true CA2584275C (en) | 2016-11-15 |
Family
ID=33308722
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA2584275A Expired - Lifetime CA2584275C (en) | 2004-09-07 | 2005-08-19 | A method of producing a steel product |
Country Status (16)
| Country | Link |
|---|---|
| US (2) | US20070248484A1 (en) |
| EP (1) | EP1786975B1 (en) |
| JP (1) | JP4758430B2 (en) |
| KR (1) | KR20070110246A (en) |
| CN (2) | CN101018908B (en) |
| AT (1) | ATE444394T1 (en) |
| BR (1) | BRPI0514969B1 (en) |
| CA (1) | CA2584275C (en) |
| DE (1) | DE602005016943D1 (en) |
| EA (1) | EA010540B1 (en) |
| ES (1) | ES2333737T3 (en) |
| PL (1) | PL1786975T3 (en) |
| SE (1) | SE528375C2 (en) |
| SI (1) | SI1786975T1 (en) |
| TW (1) | TWI393788B (en) |
| WO (1) | WO2006041344A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110270798A (en) * | 2019-06-27 | 2019-09-24 | 福建维普斯厨卫科技有限公司 | A kind of Multifunctional faucet and its production technology |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FI125458B (en) | 2008-05-16 | 2015-10-15 | Outokumpu Oy | Stainless steel product, use of product and process for its manufacture |
| FI121340B (en) * | 2008-12-19 | 2010-10-15 | Outokumpu Oy | Duplex stainless steel |
| CN102864380A (en) * | 2012-09-05 | 2013-01-09 | 忻峰 | Low-nickel stainless steel alloy and preparation method thereof |
| CN102864381A (en) * | 2012-09-05 | 2013-01-09 | 陈敏 | Low-nickel stainless steel alloy material |
| CN102864386A (en) * | 2012-09-05 | 2013-01-09 | 陈敏 | Low-nickel stainless steel alloy material and preparation method |
| CN102851618A (en) * | 2012-09-05 | 2013-01-02 | 徐琼 | Low nickel stainless steel alloy material and preparation method thereof |
| CN102864385A (en) * | 2012-09-05 | 2013-01-09 | 忻峰 | Low-nickel stainless steel alloy |
| CN102851602A (en) * | 2012-09-05 | 2013-01-02 | 徐琼 | Low nickel stainless steel alloy material |
| FI125734B (en) * | 2013-06-13 | 2016-01-29 | Outokumpu Oy | Duplex ferritic austenitic stainless steel |
| JP6520327B2 (en) * | 2015-04-08 | 2019-05-29 | 株式会社大林組 | Manufacturing method of joint fitting for segment and joint fitting for segment |
| CN111910117B (en) * | 2020-07-15 | 2022-04-29 | 丁国旺 | Carbon and nitrogen alloying method for smelting high-strength stainless steel |
| CN113025891B (en) * | 2021-02-08 | 2022-07-22 | 江阴兴澄特种钢铁有限公司 | Duplex stainless steel S32101 steel plate and manufacturing method thereof |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3111455A (en) * | 1961-05-29 | 1963-11-19 | Sandusky Foundry & Machine Com | Suction roll shell and method of making same |
| US3736131A (en) * | 1970-12-23 | 1973-05-29 | Armco Steel Corp | Ferritic-austenitic stainless steel |
| US4832765A (en) * | 1983-01-05 | 1989-05-23 | Carpenter Technology Corporation | Duplex alloy |
| CN1052036C (en) * | 1994-05-21 | 2000-05-03 | 朴庸秀 | Duplex stainless steel with high corrosion resistance |
| JPH09202943A (en) * | 1996-01-25 | 1997-08-05 | Kubota Corp | High corrosion resistance, high strength and high toughness duplex stainless steel and suction roll body members for paper machines |
| JPH09256109A (en) * | 1996-03-18 | 1997-09-30 | Kubota Corp | High toughness and high corrosion fatigue strength duplex stainless steel with excellent drill workability |
| US5746891A (en) * | 1996-07-25 | 1998-05-05 | Withers; William David | Wear indicators for seal strip of a suction roll of a paper making machine |
| FR2765243B1 (en) * | 1997-06-30 | 1999-07-30 | Usinor | AUSTENOFERRITIC STAINLESS STEEL WITH VERY LOW NICKEL AND HAVING A STRONG ELONGATION IN TRACTION |
| US6033497A (en) * | 1997-09-05 | 2000-03-07 | Sandusky International, Inc. | Pitting resistant duplex stainless steel alloy with improved machinability and method of making thereof |
| JP3621818B2 (en) * | 1998-01-09 | 2005-02-16 | 三菱重工業株式会社 | Cast stainless steel |
| FI103829B1 (en) * | 1998-05-14 | 1999-09-30 | Valmet Corp | Suction roll |
| JP2000248339A (en) * | 1999-02-26 | 2000-09-12 | Nisshin Steel Co Ltd | Austenitic free cutting stainless steel excellent in workability and corrosion resistance |
| JP3508095B2 (en) * | 1999-06-15 | 2004-03-22 | 株式会社クボタ | Ferrite-austenite duplex stainless steel with excellent heat fatigue resistance, corrosion fatigue resistance, drillability, etc. and suction roll body for papermaking |
| JP3720223B2 (en) * | 1999-10-15 | 2005-11-24 | 株式会社クボタ | Duplex stainless steel excellent in heat fatigue resistance, corrosion fatigue resistance, drilling workability, etc. |
| SE517449C2 (en) * | 2000-09-27 | 2002-06-04 | Avesta Polarit Ab Publ | Ferrite-austenitic stainless steel |
| SE526603C3 (en) * | 2003-01-24 | 2005-11-16 | Sandvik Intellectual Property | Coated cemented carbide insert |
| EP1609883B1 (en) * | 2004-06-24 | 2017-09-20 | Sandvik Intellectual Property AB | Coated metal cutting tool |
-
2004
- 2004-09-07 SE SE0402141A patent/SE528375C2/en not_active IP Right Cessation
-
2005
- 2005-08-18 TW TW094128142A patent/TWI393788B/en not_active IP Right Cessation
- 2005-08-19 ES ES05774806T patent/ES2333737T3/en not_active Expired - Lifetime
- 2005-08-19 CA CA2584275A patent/CA2584275C/en not_active Expired - Lifetime
- 2005-08-19 PL PL05774806T patent/PL1786975T3/en unknown
- 2005-08-19 JP JP2007531111A patent/JP4758430B2/en not_active Expired - Lifetime
- 2005-08-19 CN CN2005800300058A patent/CN101018908B/en not_active Expired - Lifetime
- 2005-08-19 EP EP05774806A patent/EP1786975B1/en not_active Expired - Lifetime
- 2005-08-19 AT AT05774806T patent/ATE444394T1/en active
- 2005-08-19 KR KR1020077005421A patent/KR20070110246A/en not_active Ceased
- 2005-08-19 BR BRPI0514969-0A patent/BRPI0514969B1/en active IP Right Grant
- 2005-08-19 WO PCT/SE2005/001220 patent/WO2006041344A1/en not_active Ceased
- 2005-08-19 EA EA200700421A patent/EA010540B1/en not_active IP Right Cessation
- 2005-08-19 US US11/574,266 patent/US20070248484A1/en not_active Abandoned
- 2005-08-19 SI SI200530843T patent/SI1786975T1/en unknown
- 2005-08-19 DE DE602005016943T patent/DE602005016943D1/en not_active Expired - Lifetime
- 2005-08-19 CN CN2010101506807A patent/CN101806009B/en not_active Expired - Lifetime
-
2015
- 2015-05-22 US US14/719,760 patent/US20150252529A1/en not_active Abandoned
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110270798A (en) * | 2019-06-27 | 2019-09-24 | 福建维普斯厨卫科技有限公司 | A kind of Multifunctional faucet and its production technology |
Also Published As
| Publication number | Publication date |
|---|---|
| TW200609363A (en) | 2006-03-16 |
| PL1786975T3 (en) | 2010-03-31 |
| US20070248484A1 (en) | 2007-10-25 |
| CN101806009A (en) | 2010-08-18 |
| ES2333737T3 (en) | 2010-02-26 |
| ATE444394T1 (en) | 2009-10-15 |
| SE0402141L (en) | 2006-03-08 |
| CA2584275A1 (en) | 2006-04-20 |
| DE602005016943D1 (en) | 2009-11-12 |
| JP4758430B2 (en) | 2011-08-31 |
| WO2006041344A8 (en) | 2007-05-31 |
| EA010540B1 (en) | 2008-10-30 |
| CN101806009B (en) | 2012-08-22 |
| EP1786975B1 (en) | 2009-09-30 |
| BRPI0514969B1 (en) | 2018-05-15 |
| WO2006041344A1 (en) | 2006-04-20 |
| KR20070110246A (en) | 2007-11-16 |
| CN101018908B (en) | 2012-11-07 |
| US20150252529A1 (en) | 2015-09-10 |
| SI1786975T1 (en) | 2010-01-29 |
| TWI393788B (en) | 2013-04-21 |
| JP2008512579A (en) | 2008-04-24 |
| SE0402141D0 (en) | 2004-09-07 |
| CN101018908A (en) | 2007-08-15 |
| EA200700421A1 (en) | 2007-10-26 |
| SE528375C2 (en) | 2006-10-31 |
| EP1786975A1 (en) | 2007-05-23 |
| BRPI0514969A (en) | 2008-07-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20150252529A1 (en) | Steel shell for a suction roll and a method of producing a steel product | |
| KR101141828B1 (en) | Turbine rotor and manufacturing method of turbine rotor | |
| EP0864663B1 (en) | High-strength welded steel structures having excellent corrosion resistance | |
| US20100172785A1 (en) | Ferritic-austenitic stainless steel | |
| US20080314481A1 (en) | High-Strength Steel for Seamless, Weldable Steel Pipes | |
| JP7252761B2 (en) | Precipitation hardening steel and its manufacture | |
| WO2006068610A1 (en) | Precipitation hardenable martensitic stainless steel | |
| US5482674A (en) | Free-machining austenitic stainless steel | |
| AU621729B2 (en) | Precipitation hardenable martensitic steel | |
| JPH0841599A (en) | Martensitic stainless steel with excellent corrosion resistance in the weld | |
| JPH04247851A (en) | High mn austenitic steel | |
| US20090246065A1 (en) | Alloy, shaft made therefrom, and motor with shaft | |
| JPH06145903A (en) | High corrosion fatigue strength stainless steel | |
| JPS5852464A (en) | High corrosion fatigue strength duplex stainless steel | |
| JP2740595B2 (en) | Duplex stainless steel with excellent drillability | |
| JP2889020B2 (en) | High Mn non-magnetic steel with excellent machinability | |
| CA1299071C (en) | Method of making a duplex stainless steel and duplex stainless steel product with improved mechanical properties | |
| JP2740597B2 (en) | Duplex stainless steel with excellent drillability | |
| JPS63169363A (en) | Free cutting austenitic stainless steel | |
| JP2023081506A (en) | Shaft component with horizontal hole, and steel material for producing the same | |
| JPH01198448A (en) | Two-phase stainless steel having excellent drill workability | |
| JP2006299303A (en) | Free-cutting stainless steel | |
| JPH03281754A (en) | High mn non-magnetic steel excellent in local deformability | |
| WO2000065120A1 (en) | Free-machining austenitic stainless steel | |
| JPH0770702A (en) | Duplex stainless steel with high corrosion fatigue strength and good drillability |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| EEER | Examination request |