CA2421993C - Method of monitoring conditions of vehicle tires and tires containing a monitoring device therein - Google Patents
Method of monitoring conditions of vehicle tires and tires containing a monitoring device therein Download PDFInfo
- Publication number
- CA2421993C CA2421993C CA002421993A CA2421993A CA2421993C CA 2421993 C CA2421993 C CA 2421993C CA 002421993 A CA002421993 A CA 002421993A CA 2421993 A CA2421993 A CA 2421993A CA 2421993 C CA2421993 C CA 2421993C
- Authority
- CA
- Canada
- Prior art keywords
- tire
- monitoring device
- monitoring
- data
- set forth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000012806 monitoring device Methods 0.000 title claims abstract description 115
- 238000012544 monitoring process Methods 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000004044 response Effects 0.000 claims abstract description 11
- 230000005540 biological transmission Effects 0.000 claims description 13
- 238000004891 communication Methods 0.000 claims description 12
- 239000011324 bead Substances 0.000 claims description 7
- 230000003213 activating effect Effects 0.000 claims description 5
- 239000011343 solid material Substances 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 2
- 230000001143 conditioned effect Effects 0.000 claims 2
- 238000003780 insertion Methods 0.000 claims 1
- 230000037431 insertion Effects 0.000 claims 1
- 239000000853 adhesive Substances 0.000 description 23
- 230000001070 adhesive effect Effects 0.000 description 23
- 238000001723 curing Methods 0.000 description 9
- 229920001971 elastomer Polymers 0.000 description 8
- 239000005060 rubber Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- YRIZYWQGELRKNT-UHFFFAOYSA-N 1,3,5-trichloro-1,3,5-triazinane-2,4,6-trione Chemical compound ClN1C(=O)N(Cl)C(=O)N(Cl)C1=O YRIZYWQGELRKNT-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229920001875 Ebonite Polymers 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229950009390 symclosene Drugs 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- TWVLNKKMSLYUQQ-UHFFFAOYSA-N 1,3,4,6-tetrachloro-3a,6a-dihydroimidazo[4,5-d]imidazole-2,5-dione Chemical compound ClN1C(=O)N(Cl)C2C1N(Cl)C(=O)N2Cl TWVLNKKMSLYUQQ-UHFFFAOYSA-N 0.000 description 1
- CTKZXPQQBVOAGH-UHFFFAOYSA-N 1,3-dichloro-5-methyl-5-(2-methylpropyl)imidazolidine-2,4-dione Chemical compound CC(C)CC1(C)N(Cl)C(=O)N(Cl)C1=O CTKZXPQQBVOAGH-UHFFFAOYSA-N 0.000 description 1
- ISAOUZVKYLHALD-UHFFFAOYSA-N 1-chloro-1,3,5-triazinane-2,4,6-trione Chemical class ClN1C(=O)NC(=O)NC1=O ISAOUZVKYLHALD-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000338118 Dulus Species 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- SOZVEOGRIFZGRO-UHFFFAOYSA-N [Li].ClS(Cl)=O Chemical compound [Li].ClS(Cl)=O SOZVEOGRIFZGRO-UHFFFAOYSA-N 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 150000007973 cyanuric acids Chemical class 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- VRLDVERQJMEPIF-UHFFFAOYSA-N dbdmh Chemical compound CC1(C)N(Br)C(=O)N(Br)C1=O VRLDVERQJMEPIF-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- -1 hexyl hydantoin Chemical compound 0.000 description 1
- 229940091173 hydantoin Drugs 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VBTQNRFWXBXZQR-UHFFFAOYSA-N n-bromoacetamide Chemical compound CC(=O)NBr VBTQNRFWXBXZQR-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000001869 rapid Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical compound FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 230000001702 transmitter Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Arrangements For Transmission Of Measured Signals (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
A method for monitoring various physical conditions of pneumatic tires, and to a tire including a monitoring device.
More particularly, the invention relates to a method of monitor-ing tires which uses an active, self-powered programmable elec-tronic device which is installed in or on the interior surface of a pneumatic tire or on a tire rim. This device can be used for monitoring, storing and telemetering information such as tempera-ture, pressure, tire rotations and/or other operating conditions of a pneumatic tire, along with tire identification information.
The device can be activated by externally transmitted radio fre-quency waves and in response, the device compares or transmits information and provides a warning in the event a preselected limit is exceeded.
More particularly, the invention relates to a method of monitor-ing tires which uses an active, self-powered programmable elec-tronic device which is installed in or on the interior surface of a pneumatic tire or on a tire rim. This device can be used for monitoring, storing and telemetering information such as tempera-ture, pressure, tire rotations and/or other operating conditions of a pneumatic tire, along with tire identification information.
The device can be activated by externally transmitted radio fre-quency waves and in response, the device compares or transmits information and provides a warning in the event a preselected limit is exceeded.
Description
,- CA 02421993 2003-02-28 ~~ ,,;
METHOD OF MONITORING CONDITIONS OF vEBICLE TIRES AND TIRES
CONTAINING A I~dONITORING DEVICE THEREIN
This invention pertains to a methQcl for monitoring various conditions of pneumatic tires and to tires containing a monitoring device. More particularly, the inventi~n relates to a method of monitoring tires which uses an active, self-powered, programmable. electronic device which is generally installed in or on the interior portion of a pneumatic tire - or on a tire rim.
The device can be used for monitoring, storing and telemetering information such as temperature, pressure, tire mileage and/or other operating conditions of a~pneumatic tire, along with tire identification information.
BACKGROUND OF THE INVENTION
It is desirable to monitor the condition of tires as to wear, internal temperature and internal pressure. It is particu-larly advantageous to monitor large truck tired> since these are expensive and must be regularly. maintained to maximize vehicle efficiency.
In the past, such monitoring activities have generally used a passive integrated circuit embedded within the body of the tire and activated by a radio frequency transmission which energizes the circuit by inductive magnetic coupling. Passive devices which rely on inductive magnetic coupling or capacitive coupling generally have. the disadvantage of requiring lengthy coil windings, thus requiring major modifications in the tire construction and assembly process. Another serious disadvantage.
CA 02421993 2003-02-28 '.
with such passive devices is that the interrogator must be posi.-tioned in very close proximity to the tire, usually within a few inches of the tire, in order to allow communication between the tire and the device. Because of the proximity requirements, continuous monitoring is impractical since it would require that an interrogator be mounted at each wheel of the: vehicle. Manual acquisition of data from the passive devices embedded in each of the tires of a parked vehicle is also culnbersome and time consuming because of the proximity requirements.
20 - Other prior art devices used for monitoring tire conditions have comprised self-powered circuits which are positioned 2xternala of the tire, such as at the valve stem.
Externally mounted devices have the disadvantage of being exposed to damage, such as from weather and vandlalism. Another disadvantage with installing devices external of the tire is that the device itself introduces additional sealed joints from which air may leak. Additionally, externally installed devices can easily become disassociated from a particular tare which is being monitored.
Another disadvantage with known tire monitoring and identification devices is that communication transmissions are achieved using conventional radio frequencies> which generally require a relatively large antenna which must be mounted externally or secured to- the tire in- such a manmer which requires relatively major modifications in the tire construction or assembly process.
SLIN~JIAR,Y OF THE INVENTION
In aCCOrdanCe with an aspect Of the ~>resent Invention, a method of monitoring tires is provided in which an activatable monitoring device or tag is mounted within at least one time of a vehicle, on the interior surface thereof, or' on the tire rim.
METHOD OF MONITORING CONDITIONS OF vEBICLE TIRES AND TIRES
CONTAINING A I~dONITORING DEVICE THEREIN
This invention pertains to a methQcl for monitoring various conditions of pneumatic tires and to tires containing a monitoring device. More particularly, the inventi~n relates to a method of monitoring tires which uses an active, self-powered, programmable. electronic device which is generally installed in or on the interior portion of a pneumatic tire - or on a tire rim.
The device can be used for monitoring, storing and telemetering information such as temperature, pressure, tire mileage and/or other operating conditions of a~pneumatic tire, along with tire identification information.
BACKGROUND OF THE INVENTION
It is desirable to monitor the condition of tires as to wear, internal temperature and internal pressure. It is particu-larly advantageous to monitor large truck tired> since these are expensive and must be regularly. maintained to maximize vehicle efficiency.
In the past, such monitoring activities have generally used a passive integrated circuit embedded within the body of the tire and activated by a radio frequency transmission which energizes the circuit by inductive magnetic coupling. Passive devices which rely on inductive magnetic coupling or capacitive coupling generally have. the disadvantage of requiring lengthy coil windings, thus requiring major modifications in the tire construction and assembly process. Another serious disadvantage.
CA 02421993 2003-02-28 '.
with such passive devices is that the interrogator must be posi.-tioned in very close proximity to the tire, usually within a few inches of the tire, in order to allow communication between the tire and the device. Because of the proximity requirements, continuous monitoring is impractical since it would require that an interrogator be mounted at each wheel of the: vehicle. Manual acquisition of data from the passive devices embedded in each of the tires of a parked vehicle is also culnbersome and time consuming because of the proximity requirements.
20 - Other prior art devices used for monitoring tire conditions have comprised self-powered circuits which are positioned 2xternala of the tire, such as at the valve stem.
Externally mounted devices have the disadvantage of being exposed to damage, such as from weather and vandlalism. Another disadvantage with installing devices external of the tire is that the device itself introduces additional sealed joints from which air may leak. Additionally, externally installed devices can easily become disassociated from a particular tare which is being monitored.
Another disadvantage with known tire monitoring and identification devices is that communication transmissions are achieved using conventional radio frequencies> which generally require a relatively large antenna which must be mounted externally or secured to- the tire in- such a manmer which requires relatively major modifications in the tire construction or assembly process.
SLIN~JIAR,Y OF THE INVENTION
In aCCOrdanCe with an aspect Of the ~>resent Invention, a method of monitoring tires is provided in which an activatable monitoring device or tag is mounted within at least one time of a vehicle, on the interior surface thereof, or' on the tire rim.
The device is activated by means of an interrogator signal having a frequency in the microwave range. :In response to the signal, the monitoring device measures and transmits information relating ' to one or more conditions such as the internal pressure and temperature of the tire, the number of rotations of the tire, and tire identification information. Desirably, the tire infor mation is received at a monitoring station where the information can be viewed on a color coded, visual display, and even have an audio signal and/or flashing lights to indicate an undesirable condition with respect to acceptable values. The display can show all the tires of a vehicle sequentially or at the same time.
Alternatively, the monitoring device-can be activated to transmit the various conditions to a host storage device located in a weigh station, a trucking terminal, etc., which thus can record and contain the history of the transmitted cond~.tion values of the individual tires. -The monitoring device includes an active circuit which is powered by a dedicated, long.life, miniature battery and one or more sensors for detecting and .transducing operating condi-tions. The device further includes integrated circuitry; a programmable microprocessor for processing the electrical signals from the sensor and for data storage including tire identifica-tion information! and a microwave receiver/transmitter, for receiving -and telemetering w the processed electrical-- signals f=om --the sensors in response to an electromagnet~.c signal from an.
external interrogator. By using microwave frequency transmis-lions, it is possible to achieve relatively long-range trans-missions using a relatively small antenna. The monitoring device can be installed either on new tires during the manufacturing process or added to existing tires.
The monitoring device is preferably capable of being programmed to remain in, a dormant mode unless a condition ~.imit has been exceeded such that the monitoring device does not respond to routine interrogation unless a condition limit has been exceeded.
The monitoring device can be secured to the tire wall - by means of a pocket or cover which holds the device to the tire.
The cover or pocket can be secured to the tire by utilizing a chemical or heat activatable adhesive. The mon~i.toring device is secured to the tire in such a manner and location as to minimize stress, strain, cyclic fatigue, impact. and vibration.
. e~,xF~° oESC~z~~=oN of T~~ or~.w=NG~s 1 Fig. 1 is a partial cross-sectional view of a pneumatic tire in accordance with the. invention with monitoring devices installed at two alternative locations. within ~:he pressurizable cavity of the pneumatic tiree Fig. 2 is a block diagram of the electrical components and antenna of the monitoring device utilized with the present invention:
Fig. 3 is a side elevation view of an alternate configuration of the electrical components and antenna of the monitoring device shown in Fig. 2;
Fig._ 4 is a block diagram of the micz:o-chip contained in the monitoring device shown in Fig. 2;
Fig. 5 is a block diagram -o~ an interrogator which communicates with and retrieves information from the monitoring devlCe;
Fig. 6 is a cross-sectional. view of an encapsulated electronic monitoring device assembly;
Fig. 7 is a cross-sectional view of a monitoring device assembly which is mounted to the interior wall of a pneumatic tire by means of a cover secured to the interior wall of the pneumatic tire;
CA 02421993 2003-02-28 .
Fig. 8 is a cross-sectional view of a monitoring device assembly which is positioned within a recess on and is mounted to an interior wall of a pneumatic tire by means of a cover secured to the interior wall of the pneumatic tire;
Fig. 9 is a perspective view of the cover securing the monitoring device assembly to the interior wall of the hous-ing;
Fig. 10 is a cross-sectional view o~ a suitable cover formed on the interior wall of a pnetunatic tire for securing a monitoring. device thereto;
Fig. 11 is a sectional view of a pocket assembly in accordance with another embodiment of the invention;
Fig. 12 is a top view of the pocket assembly of Fig.
11;
Fig. 13 is a sectional view of .a tire having a monitoring device assembly embedded in the interior of_the tire.
in the vicinity of the tire crown;
Fig. 14 is a sectional view of .a tire having a monitoring device assembly embedded, in the i:.ire on the tire interior in the vicinity of the tire bead; and Fig. 15 is a sectional view of anotl:~er embodiment of the tire showing the monitoring device assembly attached to the interior of the tire in the vicinity of the tire crown.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In accordance with an embodiment of the invention, a method of monitoring at least one condition of a tire is provided including the steps of providing the tire with an internally mounted monitoring device; sensing and measuring engineering conditions, including but not limited to temperature, pressure, distance, speed, etc. and/or storing the sensed conditions as data with the device pertaining to the monitored condition;
activating the device to cause transmission of the measured data;
and optionally comparing the data to preselected limits and signaling an alert if the limit is exceeded: The phrase "internally mounted'° means that the monitorincr device is built into '-' the tire or mounted on an interioz° surface of a pressurizable cavity formed between the tire and the rim of a tire/rim combination or on the tire rim itselff. The monitoring device is desirably activated by the transmission of a radio frequency interrogation signal when the tire is within a desired range of a signal transmitter. The monitored conditions can include pressure, temperature, or revolution and/or mileage information, and also tire history or. identification information such as serial number, tire size, date and location of manufac ~.5 ture, retread information and the like:
In accordance with another embodiment of the invention, a tire is provided which is preferably a pneumatic tire having a monitoring device internally mounted within the tire at a location as noted in the above paragraph. F:egardless of the monitoring device location, it optionally can. be encased with materials set forth hereinbelow.~ When located in a recess or on the surface of the tire interior, it can optionally be housed within a cover or a pocket. The specific attachment or adhering means can be through the use of a chemical cure adhesive including a room temperature amine curable acLhesive or a heat activatable cure adhesive.
Referring now to the drawings, in Fig. 1 there is shown a partial sectional view of a pneumatic tire 5 having a monitor-ing device 10 or 10° secured to the inner wall of the pneumatic tire 5 at two preferred locations thereof. In practice, a pneumatic tire would generally have or~.ly one electronic monitor-ing device at any interior tire location or on tire rim 12: As apparent from Fig. ~., one preferred location is in the vicinity of the tire bead below the end of the body ply trurn-up where the sidewall bending stiffness is greatest and where the rolling tire stresses are at a minimum. The lower most extent of the tire bead location wherein such properties are obtained is generally the bottom of the tire bead. Tn a spe<~ific tire, for example, a 285/7:5824.5 8299 Truck/Bus Radial ("TEAR"), thi~~ preferred loca-tion is a distance of about one to about two inches above the toe bottom of the tire. Above the noted range, rthe cyclic strain amplitudes grow very quickly. As also shown in Fig. 1, another preferred location of the monitoring device is on the inside of the tire at the center of the tread crown where tire stresses from mounting and dismounting are at a minimum.
The monitoring device 10 is comprised of a microchip 20, an antenna 30, an amplifier 42, a battery 44, a pressure sensor 46, and optional temperature and mileage/distance sensors (not shown) , populating a circuit board. 48 as depicted in Fig. 2 .
While not shown in the embodiment of Fig. 2, it is envisioned that the microchip 20 itself can contain ,all or some of the aforementioned components.
While optional, it is desirable that the monitoring device be contained in a rigid or semi-rig~_d encasement to enhance rigidity and inhibit straining of th.e device. This reinforcing encasement or encapsulation is a solid material, i.e., non=foam compounds;w-which is compatiblew with the tire rubber, such as various urethanes, epoxies;. un;~aturated polyes-ter-styrene resins, and hard rubber compositions. Hard rubber compositions generally refer to any type of rubber or elastomer which is crosslinked and has a Shore A hardness of from about 50 to about 100, and desirably a Shore D hardness o~f from about 5 to ' about 80 and preferably a Shore D hardness from about 40 to about 80. We have found that the solid materials most suitable for use as reinforcement encasement or encapsulation of the device typically have an elastic modulus (Young's Mo~dulus, E) iw the _..... ~ 02421993 2003-02-28 range of about 100 ksi (100,000 pounds per squa~.~e inch) to about 500 (500,000 pounds per square inch) ksi. The actual selected elastic modulus of the solid reinforcement encasement materials used to encase the device are a function of the stiffness of the monitoring device itself.
An example of the monitoring device bEaing encapsulated is shown in Fig. 6, wherein monitoring device 10 is encased within encasement or encapsulating material 16'to form monitoring device assembly l7. As shown in Fig. 6, it is an important aspect of the present invention that the sensor 46, which.
measures pressure, have an opening, aperture, etc., 18 to allow an air path to the sensor so it can measure the internal tire pressure.
Referring now to Figs. 7 and 8, and as noted above, monitoring device assembly 17 can optionally have a flexible housing such as pocket 75 or cover 80. Suitable housing materials which function to hold the monitoring device to the tire include.generally flexible and resilient rubbers such as natural rubber or rubbers made from conjugated dienes having from 4 to 10 carbon atoms such ..as synthetic polyisoprene, polybutadiene, styrene-butadiene-rubber, and the like, flexible polyurethanes, flexible epoxides, and the like, and having a hardness-on-the Shore A hardness scale of from about 50 to about 95', and' preferably from about w55 to -aboutw 75-. w Fig. 9 is a perspective viev~i of Figs. 7 and 8 shovaing the cover 80 secured to the interior' wall 7 of t~Lre 5. The cover 80 has an adhering surface which secures the monitoring device assembly to a surface of the tire, preferably within the pressurizable tire cavity. Slit 84 provides an air passage so that the pressure sensor can appropriately monitor air pressure.
Fig. 7 shows monitoring device assembly 17 secured to tire 5 through cover 80. The cover has a slit 84 to allow a pressure sensor of the device to detect thE, internal tire pressure. Generally, cover 80 is secured to the interior portion of the tire. Except for the opening or slit 84 necessary f~r pressure sensing, the cover 80 surrounds the monitoring device assembly 17 as shown in Fig. 7, and is secured to the interior portion of the tire about the perimeter of the monitoring device assembly.
As apparent from Fig. 8, the monitoring device assembly 17 is located within tire pocket or recess 75~. The tire pocket or recess 75 can be made by inserting a rectangular TEFLON
(PTFE) billet of the appropriate dimensions onto the uncured tire interliner at the location of the desired recess 75. During tire manufacturing, the curing pressure of the mold will press the billet into the tire inner liner and cure in the recess pocket 75 as shown in Fig. 8. Cover 80 is then attached about the perime-ter of the monitoring device assembly to the tire inner liner.
Cover 80 also has a slit 84 therein to allow detection of air pressure. Cover 80 may be co-cured with the green tire or may be attached to the tire after curing by use of various types of adhesives as discussed below.
Referring now to Fig. 10, when a covez° 80 such as shown 'in the configurations of Figs. 7.~and 8 is utilized, a non-adher-ing sheet 86, constructed, for example from '7,EFL~N~ (PTFE) or silicon release materials, can be placed betweer~ the cover 80 and the underlying tire inner wall 7 - to ensure -'t:hat -a wcavity--~is -formed to house the monitoring device assembly. The cover is then adhered to the interior of the tire utilizing a suitable adhesive system. After curing of the adhesive system, the non-adhering sheet 86 is removed. The monitoring device, whether or not encapsulated, can then be inserted through the slot of flexible cover 80. Alternatively, the monitoring device, whether or not encapsulated, can be positioned in an abutting relation-ship with tire 5 and cover 80 installed thereover and adher~,d to tire 5 at the cover perimeter by a su~_table adhesive.
In preferred embodiments as shown in Figs. 11 and 12, the monitoring device is contained within housing pocket 90 which has a slot for mounting the assembly withiru the pocket and through which the antenna of the monitoring device can project after assembly. Further, pocket 90 includes an optional substrate 110 such as to assure adhesion of pocket 90 to tire S.
The housing pocket 90 comprises a top portion or cap 92 having a pocket cavity 94 for receiving and retaining~anonitoring device assembly through opening 96. Pocket cavity 94 is generally of a suitable size and shape t~ snugly mold or ~aecure monitoring device assembly. Pocket 90 also includes band 98 for securing and biasing antenna 30 of the monitoring device assembly to raised portion 102 of pocket 90.
Another manner of securing the monitaring device assembly l7 to tire 5 is to physically embed monitoring device assembly 17 within tire 5 during the manufacture of the tire by placing the device between the tie-gum ply 199 and inner liner ply 200 of the uncured tire. After curing, the device is perma nently contained in the tire structurew Figure 13 illustrates a tire cross section containing an embedded monitoring device assembly 17 positioned in the inner Liner body ply portion 200 located at or in the vicinity of tire crown 202 by this method.
Crown 202 is one of the preferred locations for placement of. the monitoring device. Experience has -shown--that the monitoring w --device should not contact the body ply 204 because such contact may degrade the durability and structural performance of body ply 204. Another preferred location is near tire bead 210 as shown in Figure 14. A small removable dowel 206 is contained in the monitoring device assembly 17 at the time of placement in the green tire. The dowel 206 presses through inner liner ply portion 200 upon the application of curing prE,ssures to form a hole or aperture for air passage to the presstzre~sensor irk the monitor assembly 17. The dowel 206 sl2ould have suitable dimen-signs and a smooth, rounded end to ensure passage through the soft inner liner rubber without damaging the mold bladder (not shown) which is used during the tire curing operation. If desired, the mold bladder can be reinforced at: the location of monitoring device assembly 17 and dowel 206. Dowel 206 is removed after curing of the tire, leaving a finished air hole.
A second embodiment for embedding the :monitoring device assembly is illustrated in Fig. 15. In this method, a dowel 220 is first inserted through an inner liner patch 222, and then into 20 the monitoring device assembly 17. Next, monitoring device assembly 17 is sandwiched between the uncured tire inner liner ply 200 and inner liner patch 222. After curing, the monitoring device assembly 17 is permanently embedded between patch 222 and ply 200. In this procedure, a larger, contoured dowel head 224 can be employed to further reduce trauma to the mold bladder (not shown ) .
The various adhesive systems which can be used to adhere the monitoring device to the tire embrace numerous chemical cure adhesives including ambient temperature amine curable adhesives. Heat cure adhesives can also be used.
Suitable chemical cure adhesives include conventional sulfwr cure systems such as various self vulcanizing elements, various chemical vulcanizing fluids, and the like such as those sold by The Patch Rubber Company-of Roanoke-Rapidse- No~rthwCaroiina. --The room temperature or ambient amine curable adhesive system comprises initially applying a treating agent to the various surfaces to be adhered ( a > g . , tire, cover, etc . ) followed by the application of various amine curable polymers or prepolymers. Suitable treating agents include various N-haloamides, the various N-halohydantoins, the various N-haloimides, and combinations thereof. Examples of various desirable N-halohydantoins include 1,3-dich:Loro-5B5-dimethyl hydantoin; 1,3--dibromo-5,5-dimethyl hydantoin; 1,3-dichloro-5-methyl-5-isobutylhydantoin; and l,3-dichloro-5-methyl-5 hexyl hydantoin. Examples of N-haloamides include N
bromoacetamide and tetrachloroglycoluril. Examples of N
haloimides include N-bromosuccinimide and the various chloro substituted s-triazinetriones, commonly known as mono-, di-, and trichloroisocyanuric acid. A preferred treating composition for use in the practice of the present invention are the various mono-, di-, or tri chloroisocyanuric acids, or combinations thereof.
io Trichloroisocyanuric acid is especially prefE~rred.
The treating agents usually exist in solid form. They are readily soluble in solvents such as acetone and the like and thus can be applied in liquid form. Application of the treating agent generally occurs at ambient temperatures. Application can occur through any conventional manner as through brushing, spraying, and the like. The amount applied is such that the substrate is coated. Preferably, two or more coats of the treating agent or adhesive compound are used to 2o ensure that all the cured rubber substrate surface has been coated.
Said ambient temperature amine curable adhesive systems are known to the art and literature as set forth in U. S. Patent Nos. 4,718,4&9, 4,755,852, arid 4,923,543.
The heat cured adhesion systems generally utilize various adhesives which upon heating to temperatures of at least 100°C and generally from about 115 to about 170°C form an adhesive bond between the tire substrate and directly or indirectly with the monitoring 3o device, it being understood that the curing time required is dependent on temperature, with shorter times required at higher temperatures. Suitable conventional heat cured adhesives are known to the art and include various extruder cements, various retread and vulcanizing cements,; and the like, for example, those sold by The, Patch Rubber Company of Roanoke Rapids, North. Carolina.
D-94a10o2 The adhesive may be directly applied to the monitoring device, to the encased or encapsulated monitoring device assembly, to the cover or pocket for the monitoring device, or any combination thereof . Alternativel~T, the monitoring device or monitoring device assembly can be attached to the tire rim with a suitable adhesive. When a cover or pocket is utilized, an intermediate layer such as a cushion gum layer is optionally but desirably contained between the adhesive applied to the cover or pocket on one hand and the adhesive applied to the tire interior on the other hand to insure better adhesion of a monitoring device to the tire. Desirably, both the tire and the cover or pocket have previously been buffed and cleaned with a solvent and coated with an adhesive.
Referring now to ; he monitoring device or tag 10, it includes a board made of a suitable material to hold the various components, one of which is an integrated circuit~or micro chip as is shown in the block diagram of Fig. 4. The integrated circuit preferably includes one or more analog to digital converters for digitally coding internal and or external analog 20 signals. Suitable integrated circuits for use with the invention are commercially available and/or care be fabricated. One such commercially available . circuit. 20 which has been found to be particularly well suited for use with the invention is an RFID
"Micron°° chip available from'Micron Communications, Inc. ~ofw---Boise, Idaho. Fig. 4 is a block diagram of the "Micronu chip which is suitable for use with the invention.
The chip 20 contains a central processing unit for processing commands, a 256 byte random access memory and micro wave radio circuitry for transmission andn:eception of data. The center frequency of transmission is 2.45 GHz. Circuitry for low and high frequency transmission bands are tz'tilized by the chip to wake up or turn off to outside transmissions (instructiqns), according to a scheme developed by Micron and defined in their ' , CA 02421993 2003-02-28 protocol publication of July 22, 1993, pre-release Ver. 0.95.
Internal sensors for monitoring tem~>eratTare, supply voltage, magnetic field strength and ambient light intensity are contained in the chip. The chip also h.as communication ports supporting digital and analog input/output functions. The analog port can be prbgrammed to source up to 2 milliamps of current. Analog input voltages from 0 to 2.5 volts can be read for monitoring external sensors. Up to 256 analog ports pan be sampled by multiplexing. The chip can execute up to 30 predefined commands sent by radio transmission. These commands include functions dealing with tag identification, memory read/writes, I/0 port read/writes, alarm threshold settings, password/security and enable/disable commands.
The integrated circuit 20 a.~.so preferably includes the already discussed internal sensors and/or. one or more external analog ports for receiving an analog szgnal.from one- or more external sensors. The device.optiona)_ly but preferably includes a pressure transducer which is preferably a solid state device such as a piezo-resistive pressure sensor. Suitable piezo-resis tive pressure sensors are available from Lucas NovaSensor.
Particularly preferred are Lucas NovaSensor's NPC-103 series sensors.
The temperature sensor can a~_so generally be any conventional sensor such as l~Iode1 No . LM 3 5 CAZ made by Nationah "
Semiconductor. The tire mileage detector can give out a readout signal in miles, kilometers, etc., arid preferably may be in the form of a mild magnetic detector .responsive to an external magnetic field which field is sensed by the detector upon each full revolution of a tire. Alternatively, a detector may detec t each up or down cycle of the tire and produce a signal which is counted. This counted number can then be sued to calculate tire mileage.. An additional sensor which can be utilized is a speed sensor which monitors the speed of the vehicle.
The electronic monitoring device or tag 10 contains_ various components for receiving and transferring information to the interrogator. A specific component is the amplifier 42 which is used to boost the analog signal received from various sensors and transmit the same to the chip and subsequently to the interrogator. The amplifier can be connected to an external analog port of the microchip 20. The electronic monitoring device is active inasmuch as it contains a. power source such as a battery and thus is self-powered. ~?~ny conventional long life alkaline~battery 44 can be utilized such as a 0.07 amp hour, lithium thionyl chloride battery, type °J-10 made by Battery Engineering, Inc., of Hyde Park, MA.
Monitor 10 also includes a :micrcswave antenna 30 which can be located either adjacent to the moni~:oring device shown in 15' Fig. 2 or alternatively on the backside thereof as shown in Fig.
3. The antenna 30 can be a suitable conducting means such as a single serpentine narrow wire or a thin sheet of a-metal foil, for example; copper, so long as it has a resonance frequency .similar to the microwave transmission frequency. Generally, any microwave frequency can be utilized such as from about 1 x 109 to about 5 x 109 hertz with a suitable frequency being from about 2.40 to about 2.49 x 109 hertz.
Another embodiment, not shown, utilizes sensors exterior of-monitoring device 10 as in the-form of decals having lead lines running to the monitoring chip.
Fig. 5 is a block diagram of a generic type interrogator 60 which can be used to communicate with and retrieve digitally coded information from the electronic monitoring device. The interrogator inclucdes microwave transmit-ter and receive circuits for communicating with the micro chip.
The RF transmitter. utilizes dual frequency bands so that only tags (i.a. monitoring devices) programmed to respond to a certain band will be activated, leaving the others dormant and conserving ~15 battery power. This is called "data band switching" and is defined as part of the public domain Micron protocol. The interrogator includes circuitry to receive and transmit using spread spectrum modulation as defined in the Micron protocol and as required by the FCC for microwave communication devices. The power=level of transmission is user selectable and either one or two antennas can be employed by the interrogator to improve reception. The interrogator includes :C/0 communications hardware to support interaction with a host computer via parallel, serial RS-232, RS-485 and.Ethernet-links. A commercially-manufactured interrogator of the type described is available from Unisys Corp., Salt Lake City, Utah. The int~,rrogator can be interfaced with a computer 70 to allow downloading, archiving, and analysis - of data transmitted from the electronic monitoring device 10.
Moreover, different interrogators or a plurality thereof can be utilized with respect to different interrogation situations.
The interrogator can be remotely located in a vehicle, e.g., a truck, te~ permit intermittent monitoring at regular intervals such as every thirty minutes, to alert the driver of the vehicle of any imminent or impending problems such as over or Under inflation or abnormally high ternperatures. Alternatively, the interrogator can be located at a vehicle service stop, e.g., fuel station, trucking terminal, or at any other convenient location for archival,w and/or current sensor readouts-°-ofwtire- -pressure and tire revolutions, etc., as through visual readouts, flashing lights, etc., as noted above. they monitoring devices in each tire can be interrogated for information at regular or arbitrary intervals and the data can be stored on a computer interfaced to the interrogator. The monitoring device 10 can' also be programmed to act as an alarm system to warn of extreme temperature or pressure conditions, or i.t may be used to log pressure and/or temperature histories daring tire operatGion.
CA 02421993 2003-02-28~
Such data can be used, for example, to evaluate the retreadability of truck tires.
The interrogator includes various features such as software protocol for sorting, identifying and communicating with multiple monitoring devices without ambiguity, thus enabling a signal interrogator to quickly sort and retrieve information from a plurality of monitoring devices associated with individual tires on a vehicle or on multiple vehicles. The broadcast range, from within a tire can vary, such as in excess of fifty feet, thus permitting a stationary interrogator to quickly query all tire chips on a vehicle which is passing by the interrogator or from an on board vehicle location.
In accordance with the preferred griode of the invention, a tire is provided with a self-powered monitoring~device on the ~15 interior or within. the tire or on the tire material. Th.e monitoring device includes means to sense and store data regarding a tire condition, such as temperature or pressure. In response to a triggering signal, the power source of the monitoring device is activated and the device transits the condi-Lion data. For example, the monitoring device may be identified by having the interrogator read the identification code associat-ed with the tire to which the monitoring device is affixed. The identification code can, for example, be stored as a 20 byte number, - the first 4 bytes containing a -standard international classification (SIC) code, the ne~a 2 bytes containing a specialty code, and the last 4 bytes identifying the particular tire. Further in accordance with the preferred mode of the invention, the monitoring devices 10 include low to high data band switching for selective communication between multiple 3'0 interrogators and multiple monitoring devices. The low band can correspond to a dormant mode wherein battery power is conserved.
Monitoring device ~.O will remain dormant unless an interrogator broadcasts a low band instruction to activate the device. The ~ CA 02421993 2003-02-28 '..
monitoring device and interrogator frequencies can be switched upon command. This allows for selective groups of monitoring devices to become active and respond to an interrogatar broadcast while others remain dormant. The monitoring device frequency can be switched by an externally measured event which is being monitored by a sensing device (e.g. temperature) so that it activates in response to an interrogator upon a preset limit to a monitored condition being exceeded. Higi~ and low sensor thresholds can be programmed to determine when frequency switching occurs, thus enabling the monitoring devices to operate in an alarm mode.
Also in accordance with a preferred mode of the invention, communications between multiple ritonitoring devices and an interrogator or multiple interrogators is facilitated by means of an arbitration method, thereby permitting unambiguous communications. The interrogator, monitoring device, and data communication protocol preferably allow various commands to be transmitted from the interrogator to the monitoring device.
Examples of desired commands include functions dealing with tire identification, memory, digital and analog port read/writes, alarm threshold settings, password and security data and enable and disable commands . These commands determine the functionality of the monitoring device and permit customization of operation for different applications. ~'or example, through software cow- -Z5 wands a monitoring device can be set to ignore inquiries from an interrogator unless a tire temperature exceeds a certain thresh-old or an air pressure falls below a given set point. Alterna-tively, the monitoring. device could be set to respond to an on board vehicle interrogator request for periodic readings of 3Q temperature and pressure during tire operation in the field.
Battery life would dictate the frequency and duration of communications tha'~ are possible.
3.8 While in accordance writh the patent statutes the best mode and preferred emb~diment has been set. forth, the scope of the invention is not~limited thereto, but rather by the scope of the attached claims..
This application is a divisional application of application Serial No. 2,150,865, filed June 2, 1995.
Alternatively, the monitoring device-can be activated to transmit the various conditions to a host storage device located in a weigh station, a trucking terminal, etc., which thus can record and contain the history of the transmitted cond~.tion values of the individual tires. -The monitoring device includes an active circuit which is powered by a dedicated, long.life, miniature battery and one or more sensors for detecting and .transducing operating condi-tions. The device further includes integrated circuitry; a programmable microprocessor for processing the electrical signals from the sensor and for data storage including tire identifica-tion information! and a microwave receiver/transmitter, for receiving -and telemetering w the processed electrical-- signals f=om --the sensors in response to an electromagnet~.c signal from an.
external interrogator. By using microwave frequency transmis-lions, it is possible to achieve relatively long-range trans-missions using a relatively small antenna. The monitoring device can be installed either on new tires during the manufacturing process or added to existing tires.
The monitoring device is preferably capable of being programmed to remain in, a dormant mode unless a condition ~.imit has been exceeded such that the monitoring device does not respond to routine interrogation unless a condition limit has been exceeded.
The monitoring device can be secured to the tire wall - by means of a pocket or cover which holds the device to the tire.
The cover or pocket can be secured to the tire by utilizing a chemical or heat activatable adhesive. The mon~i.toring device is secured to the tire in such a manner and location as to minimize stress, strain, cyclic fatigue, impact. and vibration.
. e~,xF~° oESC~z~~=oN of T~~ or~.w=NG~s 1 Fig. 1 is a partial cross-sectional view of a pneumatic tire in accordance with the. invention with monitoring devices installed at two alternative locations. within ~:he pressurizable cavity of the pneumatic tiree Fig. 2 is a block diagram of the electrical components and antenna of the monitoring device utilized with the present invention:
Fig. 3 is a side elevation view of an alternate configuration of the electrical components and antenna of the monitoring device shown in Fig. 2;
Fig._ 4 is a block diagram of the micz:o-chip contained in the monitoring device shown in Fig. 2;
Fig. 5 is a block diagram -o~ an interrogator which communicates with and retrieves information from the monitoring devlCe;
Fig. 6 is a cross-sectional. view of an encapsulated electronic monitoring device assembly;
Fig. 7 is a cross-sectional view of a monitoring device assembly which is mounted to the interior wall of a pneumatic tire by means of a cover secured to the interior wall of the pneumatic tire;
CA 02421993 2003-02-28 .
Fig. 8 is a cross-sectional view of a monitoring device assembly which is positioned within a recess on and is mounted to an interior wall of a pneumatic tire by means of a cover secured to the interior wall of the pneumatic tire;
Fig. 9 is a perspective view of the cover securing the monitoring device assembly to the interior wall of the hous-ing;
Fig. 10 is a cross-sectional view o~ a suitable cover formed on the interior wall of a pnetunatic tire for securing a monitoring. device thereto;
Fig. 11 is a sectional view of a pocket assembly in accordance with another embodiment of the invention;
Fig. 12 is a top view of the pocket assembly of Fig.
11;
Fig. 13 is a sectional view of .a tire having a monitoring device assembly embedded in the interior of_the tire.
in the vicinity of the tire crown;
Fig. 14 is a sectional view of .a tire having a monitoring device assembly embedded, in the i:.ire on the tire interior in the vicinity of the tire bead; and Fig. 15 is a sectional view of anotl:~er embodiment of the tire showing the monitoring device assembly attached to the interior of the tire in the vicinity of the tire crown.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In accordance with an embodiment of the invention, a method of monitoring at least one condition of a tire is provided including the steps of providing the tire with an internally mounted monitoring device; sensing and measuring engineering conditions, including but not limited to temperature, pressure, distance, speed, etc. and/or storing the sensed conditions as data with the device pertaining to the monitored condition;
activating the device to cause transmission of the measured data;
and optionally comparing the data to preselected limits and signaling an alert if the limit is exceeded: The phrase "internally mounted'° means that the monitorincr device is built into '-' the tire or mounted on an interioz° surface of a pressurizable cavity formed between the tire and the rim of a tire/rim combination or on the tire rim itselff. The monitoring device is desirably activated by the transmission of a radio frequency interrogation signal when the tire is within a desired range of a signal transmitter. The monitored conditions can include pressure, temperature, or revolution and/or mileage information, and also tire history or. identification information such as serial number, tire size, date and location of manufac ~.5 ture, retread information and the like:
In accordance with another embodiment of the invention, a tire is provided which is preferably a pneumatic tire having a monitoring device internally mounted within the tire at a location as noted in the above paragraph. F:egardless of the monitoring device location, it optionally can. be encased with materials set forth hereinbelow.~ When located in a recess or on the surface of the tire interior, it can optionally be housed within a cover or a pocket. The specific attachment or adhering means can be through the use of a chemical cure adhesive including a room temperature amine curable acLhesive or a heat activatable cure adhesive.
Referring now to the drawings, in Fig. 1 there is shown a partial sectional view of a pneumatic tire 5 having a monitor-ing device 10 or 10° secured to the inner wall of the pneumatic tire 5 at two preferred locations thereof. In practice, a pneumatic tire would generally have or~.ly one electronic monitor-ing device at any interior tire location or on tire rim 12: As apparent from Fig. ~., one preferred location is in the vicinity of the tire bead below the end of the body ply trurn-up where the sidewall bending stiffness is greatest and where the rolling tire stresses are at a minimum. The lower most extent of the tire bead location wherein such properties are obtained is generally the bottom of the tire bead. Tn a spe<~ific tire, for example, a 285/7:5824.5 8299 Truck/Bus Radial ("TEAR"), thi~~ preferred loca-tion is a distance of about one to about two inches above the toe bottom of the tire. Above the noted range, rthe cyclic strain amplitudes grow very quickly. As also shown in Fig. 1, another preferred location of the monitoring device is on the inside of the tire at the center of the tread crown where tire stresses from mounting and dismounting are at a minimum.
The monitoring device 10 is comprised of a microchip 20, an antenna 30, an amplifier 42, a battery 44, a pressure sensor 46, and optional temperature and mileage/distance sensors (not shown) , populating a circuit board. 48 as depicted in Fig. 2 .
While not shown in the embodiment of Fig. 2, it is envisioned that the microchip 20 itself can contain ,all or some of the aforementioned components.
While optional, it is desirable that the monitoring device be contained in a rigid or semi-rig~_d encasement to enhance rigidity and inhibit straining of th.e device. This reinforcing encasement or encapsulation is a solid material, i.e., non=foam compounds;w-which is compatiblew with the tire rubber, such as various urethanes, epoxies;. un;~aturated polyes-ter-styrene resins, and hard rubber compositions. Hard rubber compositions generally refer to any type of rubber or elastomer which is crosslinked and has a Shore A hardness of from about 50 to about 100, and desirably a Shore D hardness o~f from about 5 to ' about 80 and preferably a Shore D hardness from about 40 to about 80. We have found that the solid materials most suitable for use as reinforcement encasement or encapsulation of the device typically have an elastic modulus (Young's Mo~dulus, E) iw the _..... ~ 02421993 2003-02-28 range of about 100 ksi (100,000 pounds per squa~.~e inch) to about 500 (500,000 pounds per square inch) ksi. The actual selected elastic modulus of the solid reinforcement encasement materials used to encase the device are a function of the stiffness of the monitoring device itself.
An example of the monitoring device bEaing encapsulated is shown in Fig. 6, wherein monitoring device 10 is encased within encasement or encapsulating material 16'to form monitoring device assembly l7. As shown in Fig. 6, it is an important aspect of the present invention that the sensor 46, which.
measures pressure, have an opening, aperture, etc., 18 to allow an air path to the sensor so it can measure the internal tire pressure.
Referring now to Figs. 7 and 8, and as noted above, monitoring device assembly 17 can optionally have a flexible housing such as pocket 75 or cover 80. Suitable housing materials which function to hold the monitoring device to the tire include.generally flexible and resilient rubbers such as natural rubber or rubbers made from conjugated dienes having from 4 to 10 carbon atoms such ..as synthetic polyisoprene, polybutadiene, styrene-butadiene-rubber, and the like, flexible polyurethanes, flexible epoxides, and the like, and having a hardness-on-the Shore A hardness scale of from about 50 to about 95', and' preferably from about w55 to -aboutw 75-. w Fig. 9 is a perspective viev~i of Figs. 7 and 8 shovaing the cover 80 secured to the interior' wall 7 of t~Lre 5. The cover 80 has an adhering surface which secures the monitoring device assembly to a surface of the tire, preferably within the pressurizable tire cavity. Slit 84 provides an air passage so that the pressure sensor can appropriately monitor air pressure.
Fig. 7 shows monitoring device assembly 17 secured to tire 5 through cover 80. The cover has a slit 84 to allow a pressure sensor of the device to detect thE, internal tire pressure. Generally, cover 80 is secured to the interior portion of the tire. Except for the opening or slit 84 necessary f~r pressure sensing, the cover 80 surrounds the monitoring device assembly 17 as shown in Fig. 7, and is secured to the interior portion of the tire about the perimeter of the monitoring device assembly.
As apparent from Fig. 8, the monitoring device assembly 17 is located within tire pocket or recess 75~. The tire pocket or recess 75 can be made by inserting a rectangular TEFLON
(PTFE) billet of the appropriate dimensions onto the uncured tire interliner at the location of the desired recess 75. During tire manufacturing, the curing pressure of the mold will press the billet into the tire inner liner and cure in the recess pocket 75 as shown in Fig. 8. Cover 80 is then attached about the perime-ter of the monitoring device assembly to the tire inner liner.
Cover 80 also has a slit 84 therein to allow detection of air pressure. Cover 80 may be co-cured with the green tire or may be attached to the tire after curing by use of various types of adhesives as discussed below.
Referring now to Fig. 10, when a covez° 80 such as shown 'in the configurations of Figs. 7.~and 8 is utilized, a non-adher-ing sheet 86, constructed, for example from '7,EFL~N~ (PTFE) or silicon release materials, can be placed betweer~ the cover 80 and the underlying tire inner wall 7 - to ensure -'t:hat -a wcavity--~is -formed to house the monitoring device assembly. The cover is then adhered to the interior of the tire utilizing a suitable adhesive system. After curing of the adhesive system, the non-adhering sheet 86 is removed. The monitoring device, whether or not encapsulated, can then be inserted through the slot of flexible cover 80. Alternatively, the monitoring device, whether or not encapsulated, can be positioned in an abutting relation-ship with tire 5 and cover 80 installed thereover and adher~,d to tire 5 at the cover perimeter by a su~_table adhesive.
In preferred embodiments as shown in Figs. 11 and 12, the monitoring device is contained within housing pocket 90 which has a slot for mounting the assembly withiru the pocket and through which the antenna of the monitoring device can project after assembly. Further, pocket 90 includes an optional substrate 110 such as to assure adhesion of pocket 90 to tire S.
The housing pocket 90 comprises a top portion or cap 92 having a pocket cavity 94 for receiving and retaining~anonitoring device assembly through opening 96. Pocket cavity 94 is generally of a suitable size and shape t~ snugly mold or ~aecure monitoring device assembly. Pocket 90 also includes band 98 for securing and biasing antenna 30 of the monitoring device assembly to raised portion 102 of pocket 90.
Another manner of securing the monitaring device assembly l7 to tire 5 is to physically embed monitoring device assembly 17 within tire 5 during the manufacture of the tire by placing the device between the tie-gum ply 199 and inner liner ply 200 of the uncured tire. After curing, the device is perma nently contained in the tire structurew Figure 13 illustrates a tire cross section containing an embedded monitoring device assembly 17 positioned in the inner Liner body ply portion 200 located at or in the vicinity of tire crown 202 by this method.
Crown 202 is one of the preferred locations for placement of. the monitoring device. Experience has -shown--that the monitoring w --device should not contact the body ply 204 because such contact may degrade the durability and structural performance of body ply 204. Another preferred location is near tire bead 210 as shown in Figure 14. A small removable dowel 206 is contained in the monitoring device assembly 17 at the time of placement in the green tire. The dowel 206 presses through inner liner ply portion 200 upon the application of curing prE,ssures to form a hole or aperture for air passage to the presstzre~sensor irk the monitor assembly 17. The dowel 206 sl2ould have suitable dimen-signs and a smooth, rounded end to ensure passage through the soft inner liner rubber without damaging the mold bladder (not shown) which is used during the tire curing operation. If desired, the mold bladder can be reinforced at: the location of monitoring device assembly 17 and dowel 206. Dowel 206 is removed after curing of the tire, leaving a finished air hole.
A second embodiment for embedding the :monitoring device assembly is illustrated in Fig. 15. In this method, a dowel 220 is first inserted through an inner liner patch 222, and then into 20 the monitoring device assembly 17. Next, monitoring device assembly 17 is sandwiched between the uncured tire inner liner ply 200 and inner liner patch 222. After curing, the monitoring device assembly 17 is permanently embedded between patch 222 and ply 200. In this procedure, a larger, contoured dowel head 224 can be employed to further reduce trauma to the mold bladder (not shown ) .
The various adhesive systems which can be used to adhere the monitoring device to the tire embrace numerous chemical cure adhesives including ambient temperature amine curable adhesives. Heat cure adhesives can also be used.
Suitable chemical cure adhesives include conventional sulfwr cure systems such as various self vulcanizing elements, various chemical vulcanizing fluids, and the like such as those sold by The Patch Rubber Company-of Roanoke-Rapidse- No~rthwCaroiina. --The room temperature or ambient amine curable adhesive system comprises initially applying a treating agent to the various surfaces to be adhered ( a > g . , tire, cover, etc . ) followed by the application of various amine curable polymers or prepolymers. Suitable treating agents include various N-haloamides, the various N-halohydantoins, the various N-haloimides, and combinations thereof. Examples of various desirable N-halohydantoins include 1,3-dich:Loro-5B5-dimethyl hydantoin; 1,3--dibromo-5,5-dimethyl hydantoin; 1,3-dichloro-5-methyl-5-isobutylhydantoin; and l,3-dichloro-5-methyl-5 hexyl hydantoin. Examples of N-haloamides include N
bromoacetamide and tetrachloroglycoluril. Examples of N
haloimides include N-bromosuccinimide and the various chloro substituted s-triazinetriones, commonly known as mono-, di-, and trichloroisocyanuric acid. A preferred treating composition for use in the practice of the present invention are the various mono-, di-, or tri chloroisocyanuric acids, or combinations thereof.
io Trichloroisocyanuric acid is especially prefE~rred.
The treating agents usually exist in solid form. They are readily soluble in solvents such as acetone and the like and thus can be applied in liquid form. Application of the treating agent generally occurs at ambient temperatures. Application can occur through any conventional manner as through brushing, spraying, and the like. The amount applied is such that the substrate is coated. Preferably, two or more coats of the treating agent or adhesive compound are used to 2o ensure that all the cured rubber substrate surface has been coated.
Said ambient temperature amine curable adhesive systems are known to the art and literature as set forth in U. S. Patent Nos. 4,718,4&9, 4,755,852, arid 4,923,543.
The heat cured adhesion systems generally utilize various adhesives which upon heating to temperatures of at least 100°C and generally from about 115 to about 170°C form an adhesive bond between the tire substrate and directly or indirectly with the monitoring 3o device, it being understood that the curing time required is dependent on temperature, with shorter times required at higher temperatures. Suitable conventional heat cured adhesives are known to the art and include various extruder cements, various retread and vulcanizing cements,; and the like, for example, those sold by The, Patch Rubber Company of Roanoke Rapids, North. Carolina.
D-94a10o2 The adhesive may be directly applied to the monitoring device, to the encased or encapsulated monitoring device assembly, to the cover or pocket for the monitoring device, or any combination thereof . Alternativel~T, the monitoring device or monitoring device assembly can be attached to the tire rim with a suitable adhesive. When a cover or pocket is utilized, an intermediate layer such as a cushion gum layer is optionally but desirably contained between the adhesive applied to the cover or pocket on one hand and the adhesive applied to the tire interior on the other hand to insure better adhesion of a monitoring device to the tire. Desirably, both the tire and the cover or pocket have previously been buffed and cleaned with a solvent and coated with an adhesive.
Referring now to ; he monitoring device or tag 10, it includes a board made of a suitable material to hold the various components, one of which is an integrated circuit~or micro chip as is shown in the block diagram of Fig. 4. The integrated circuit preferably includes one or more analog to digital converters for digitally coding internal and or external analog 20 signals. Suitable integrated circuits for use with the invention are commercially available and/or care be fabricated. One such commercially available . circuit. 20 which has been found to be particularly well suited for use with the invention is an RFID
"Micron°° chip available from'Micron Communications, Inc. ~ofw---Boise, Idaho. Fig. 4 is a block diagram of the "Micronu chip which is suitable for use with the invention.
The chip 20 contains a central processing unit for processing commands, a 256 byte random access memory and micro wave radio circuitry for transmission andn:eception of data. The center frequency of transmission is 2.45 GHz. Circuitry for low and high frequency transmission bands are tz'tilized by the chip to wake up or turn off to outside transmissions (instructiqns), according to a scheme developed by Micron and defined in their ' , CA 02421993 2003-02-28 protocol publication of July 22, 1993, pre-release Ver. 0.95.
Internal sensors for monitoring tem~>eratTare, supply voltage, magnetic field strength and ambient light intensity are contained in the chip. The chip also h.as communication ports supporting digital and analog input/output functions. The analog port can be prbgrammed to source up to 2 milliamps of current. Analog input voltages from 0 to 2.5 volts can be read for monitoring external sensors. Up to 256 analog ports pan be sampled by multiplexing. The chip can execute up to 30 predefined commands sent by radio transmission. These commands include functions dealing with tag identification, memory read/writes, I/0 port read/writes, alarm threshold settings, password/security and enable/disable commands.
The integrated circuit 20 a.~.so preferably includes the already discussed internal sensors and/or. one or more external analog ports for receiving an analog szgnal.from one- or more external sensors. The device.optiona)_ly but preferably includes a pressure transducer which is preferably a solid state device such as a piezo-resistive pressure sensor. Suitable piezo-resis tive pressure sensors are available from Lucas NovaSensor.
Particularly preferred are Lucas NovaSensor's NPC-103 series sensors.
The temperature sensor can a~_so generally be any conventional sensor such as l~Iode1 No . LM 3 5 CAZ made by Nationah "
Semiconductor. The tire mileage detector can give out a readout signal in miles, kilometers, etc., arid preferably may be in the form of a mild magnetic detector .responsive to an external magnetic field which field is sensed by the detector upon each full revolution of a tire. Alternatively, a detector may detec t each up or down cycle of the tire and produce a signal which is counted. This counted number can then be sued to calculate tire mileage.. An additional sensor which can be utilized is a speed sensor which monitors the speed of the vehicle.
The electronic monitoring device or tag 10 contains_ various components for receiving and transferring information to the interrogator. A specific component is the amplifier 42 which is used to boost the analog signal received from various sensors and transmit the same to the chip and subsequently to the interrogator. The amplifier can be connected to an external analog port of the microchip 20. The electronic monitoring device is active inasmuch as it contains a. power source such as a battery and thus is self-powered. ~?~ny conventional long life alkaline~battery 44 can be utilized such as a 0.07 amp hour, lithium thionyl chloride battery, type °J-10 made by Battery Engineering, Inc., of Hyde Park, MA.
Monitor 10 also includes a :micrcswave antenna 30 which can be located either adjacent to the moni~:oring device shown in 15' Fig. 2 or alternatively on the backside thereof as shown in Fig.
3. The antenna 30 can be a suitable conducting means such as a single serpentine narrow wire or a thin sheet of a-metal foil, for example; copper, so long as it has a resonance frequency .similar to the microwave transmission frequency. Generally, any microwave frequency can be utilized such as from about 1 x 109 to about 5 x 109 hertz with a suitable frequency being from about 2.40 to about 2.49 x 109 hertz.
Another embodiment, not shown, utilizes sensors exterior of-monitoring device 10 as in the-form of decals having lead lines running to the monitoring chip.
Fig. 5 is a block diagram of a generic type interrogator 60 which can be used to communicate with and retrieve digitally coded information from the electronic monitoring device. The interrogator inclucdes microwave transmit-ter and receive circuits for communicating with the micro chip.
The RF transmitter. utilizes dual frequency bands so that only tags (i.a. monitoring devices) programmed to respond to a certain band will be activated, leaving the others dormant and conserving ~15 battery power. This is called "data band switching" and is defined as part of the public domain Micron protocol. The interrogator includes circuitry to receive and transmit using spread spectrum modulation as defined in the Micron protocol and as required by the FCC for microwave communication devices. The power=level of transmission is user selectable and either one or two antennas can be employed by the interrogator to improve reception. The interrogator includes :C/0 communications hardware to support interaction with a host computer via parallel, serial RS-232, RS-485 and.Ethernet-links. A commercially-manufactured interrogator of the type described is available from Unisys Corp., Salt Lake City, Utah. The int~,rrogator can be interfaced with a computer 70 to allow downloading, archiving, and analysis - of data transmitted from the electronic monitoring device 10.
Moreover, different interrogators or a plurality thereof can be utilized with respect to different interrogation situations.
The interrogator can be remotely located in a vehicle, e.g., a truck, te~ permit intermittent monitoring at regular intervals such as every thirty minutes, to alert the driver of the vehicle of any imminent or impending problems such as over or Under inflation or abnormally high ternperatures. Alternatively, the interrogator can be located at a vehicle service stop, e.g., fuel station, trucking terminal, or at any other convenient location for archival,w and/or current sensor readouts-°-ofwtire- -pressure and tire revolutions, etc., as through visual readouts, flashing lights, etc., as noted above. they monitoring devices in each tire can be interrogated for information at regular or arbitrary intervals and the data can be stored on a computer interfaced to the interrogator. The monitoring device 10 can' also be programmed to act as an alarm system to warn of extreme temperature or pressure conditions, or i.t may be used to log pressure and/or temperature histories daring tire operatGion.
CA 02421993 2003-02-28~
Such data can be used, for example, to evaluate the retreadability of truck tires.
The interrogator includes various features such as software protocol for sorting, identifying and communicating with multiple monitoring devices without ambiguity, thus enabling a signal interrogator to quickly sort and retrieve information from a plurality of monitoring devices associated with individual tires on a vehicle or on multiple vehicles. The broadcast range, from within a tire can vary, such as in excess of fifty feet, thus permitting a stationary interrogator to quickly query all tire chips on a vehicle which is passing by the interrogator or from an on board vehicle location.
In accordance with the preferred griode of the invention, a tire is provided with a self-powered monitoring~device on the ~15 interior or within. the tire or on the tire material. Th.e monitoring device includes means to sense and store data regarding a tire condition, such as temperature or pressure. In response to a triggering signal, the power source of the monitoring device is activated and the device transits the condi-Lion data. For example, the monitoring device may be identified by having the interrogator read the identification code associat-ed with the tire to which the monitoring device is affixed. The identification code can, for example, be stored as a 20 byte number, - the first 4 bytes containing a -standard international classification (SIC) code, the ne~a 2 bytes containing a specialty code, and the last 4 bytes identifying the particular tire. Further in accordance with the preferred mode of the invention, the monitoring devices 10 include low to high data band switching for selective communication between multiple 3'0 interrogators and multiple monitoring devices. The low band can correspond to a dormant mode wherein battery power is conserved.
Monitoring device ~.O will remain dormant unless an interrogator broadcasts a low band instruction to activate the device. The ~ CA 02421993 2003-02-28 '..
monitoring device and interrogator frequencies can be switched upon command. This allows for selective groups of monitoring devices to become active and respond to an interrogatar broadcast while others remain dormant. The monitoring device frequency can be switched by an externally measured event which is being monitored by a sensing device (e.g. temperature) so that it activates in response to an interrogator upon a preset limit to a monitored condition being exceeded. Higi~ and low sensor thresholds can be programmed to determine when frequency switching occurs, thus enabling the monitoring devices to operate in an alarm mode.
Also in accordance with a preferred mode of the invention, communications between multiple ritonitoring devices and an interrogator or multiple interrogators is facilitated by means of an arbitration method, thereby permitting unambiguous communications. The interrogator, monitoring device, and data communication protocol preferably allow various commands to be transmitted from the interrogator to the monitoring device.
Examples of desired commands include functions dealing with tire identification, memory, digital and analog port read/writes, alarm threshold settings, password and security data and enable and disable commands . These commands determine the functionality of the monitoring device and permit customization of operation for different applications. ~'or example, through software cow- -Z5 wands a monitoring device can be set to ignore inquiries from an interrogator unless a tire temperature exceeds a certain thresh-old or an air pressure falls below a given set point. Alterna-tively, the monitoring. device could be set to respond to an on board vehicle interrogator request for periodic readings of 3Q temperature and pressure during tire operation in the field.
Battery life would dictate the frequency and duration of communications tha'~ are possible.
3.8 While in accordance writh the patent statutes the best mode and preferred emb~diment has been set. forth, the scope of the invention is not~limited thereto, but rather by the scope of the attached claims..
This application is a divisional application of application Serial No. 2,150,865, filed June 2, 1995.
Claims (22)
1. A method of monitoring at least one engineering condition of a tire, comprising the steps of:
providing the tire with a monitoring device mounted internally within the tire, which senses the engineering condition, said monitoring device including a battery having an active mode and a dormant mode;
activating said monitoring device to cause said device to electronically transmit a signal indicative of said condition, said monitoring device being activated by receiving a remotely transmitted microwave frequency impulse; and wherein said step of activating further includes switching said battery from said dormant mode to said active mode to activate said monitoring device in response to said transmitted microwave frequency impulse, and switching said battery from said active mode to said dormant mode after said monitoring device has completed electronically transmitting.
providing the tire with a monitoring device mounted internally within the tire, which senses the engineering condition, said monitoring device including a battery having an active mode and a dormant mode;
activating said monitoring device to cause said device to electronically transmit a signal indicative of said condition, said monitoring device being activated by receiving a remotely transmitted microwave frequency impulse; and wherein said step of activating further includes switching said battery from said dormant mode to said active mode to activate said monitoring device in response to said transmitted microwave frequency impulse, and switching said battery from said active mode to said dormant mode after said monitoring device has completed electronically transmitting.
2. The method as set forth in claim 1, including the further step of storing said sensed engineering condition by said monitoring device as data.
3. The method as set forth in claim 2, wherein said method further includes comparing said data to preselected limits and causing said device to transmit a signal as a warning when said data exceeds said limits.
4. The method as set forth in claim 2, wherein the step of activating further includes receiving said signal by a monitoring station having means for comparing said data transmitted as a signal indicative of said condition to preselected limits, comparing said data to said limits, and emitting a warning signal when said condition exceeds said limits.
5. A tire having means for monitoring at least one engineering condition of the tire, comprising:
the tire mounted on a rim defining a pressurizable cavity between the tire and said rim;
a monitoring device, said monitoring device in fluid communication with said pressurizable cavity and located on a boundary of said pressurizable cavity, said monitoring device including a power source having an active mode and a dormant mode, at least one sensor for sensing each engineering condition, means for storing each of said sensed conditions as data, means for receiving a signal, means for activating said power source in response to said received signal, and means for transmitting said data in response to a transmission order while the power source is in the active mode;
and a circuit for data band switching means for energizing the circuit for data band switching to activate the power source from the dormant mode to the active mode, and means for energizing the circuit for data band switching to deactivate the power source from the active mode to the dormant mode after transmitting the data.
the tire mounted on a rim defining a pressurizable cavity between the tire and said rim;
a monitoring device, said monitoring device in fluid communication with said pressurizable cavity and located on a boundary of said pressurizable cavity, said monitoring device including a power source having an active mode and a dormant mode, at least one sensor for sensing each engineering condition, means for storing each of said sensed conditions as data, means for receiving a signal, means for activating said power source in response to said received signal, and means for transmitting said data in response to a transmission order while the power source is in the active mode;
and a circuit for data band switching means for energizing the circuit for data band switching to activate the power source from the dormant mode to the active mode, and means for energizing the circuit for data band switching to deactivate the power source from the active mode to the dormant mode after transmitting the data.
6. The tire having means for monitoring as set forth in claim 5, wherein said signal is a microwave frequency signal.
7. The tire having means for monitoring as set forth in claim 6, wherein said means for receiving includes an antenna.
8. The tire having means for monitoring as set forth in claim 5, wherein said power source is a battery.
9. The tire having means for monitoring as set forth in claim 5, wherein said monitoring device includes means for comparing the sensed engineering condition with a preselected limit and means for transmitting the sensed engineering condition as a signal when the condition exceeds said preselected limit.
10. The tire having means for monitoring as set forth in claim 5, wherein said monitoring device is located in a center portion of a tread crown below a body ply.
11. The tire having means for monitoring as set forth in claim 5, wherein said monitoring device is located in the vicinity of a tire bead below a body ply.
12. An apparatus for monitoring an engineering condition of a tire comprising:
a flexible housing having a hardness of from 50 to 95 on the Shore A scale, said housing including a first surface which can be adhered to a second surface located within a pressurizable cavity of a tire;
a monitoring device positioned within said housing, said monitoring device including a power source, sensors for sensing the engineering condition, means for converting said sensed condition to data, and means for transmitting said data responsive to a signal; and said monitoring device including a circuit board, a microchip mounted on said circuit board which receives said sensed condition and conditions said sensed condition as a signal, an amplifier for amplifying said conditioned signal in response to an external signal, an antenna for transmitting said amplified, conditioned signal, said power source powering said microchip and said amplifier.
a flexible housing having a hardness of from 50 to 95 on the Shore A scale, said housing including a first surface which can be adhered to a second surface located within a pressurizable cavity of a tire;
a monitoring device positioned within said housing, said monitoring device including a power source, sensors for sensing the engineering condition, means for converting said sensed condition to data, and means for transmitting said data responsive to a signal; and said monitoring device including a circuit board, a microchip mounted on said circuit board which receives said sensed condition and conditions said sensed condition as a signal, an amplifier for amplifying said conditioned signal in response to an external signal, an antenna for transmitting said amplified, conditioned signal, said power source powering said microchip and said amplifier.
13. The apparatus as set forth in claim 12, wherein said device includes means for storing said data.
14. The apparatus as set forth in claim 12, wherein said device includes means for receiving a microwave frequency signal, and means for transmitting said data in response to said microwave frequency signal.
15. The apparatus as set forth in claim 14, wherein said power source is a battery having an active mode and a dormant mode, and the device further includes means for switching said battery from said dormant mode to said active mode to activate said monitoring device in response to said transmitted microwave frequency signal, and means for switching said battery from said active mode to said dormant mode after said monitoring device has completed transmitting said data.
16. The apparatus of claim 12, wherein said monitoring device is encapsulated by a solid material having a Shore D Hardness from 5 to 80 and an elastic modulus of from 100 ksi to 500 ksi, to form a monitoring device assembly.
17. The apparatus as set forth in claim 12, wherein said housing includes a recess molded into the second tire surface, and a cover positioned over said recess, said cover including a slot for insertion of said monitoring device into said housing.
18. The apparatus as set forth in claim 17, wherein said monitoring device includes an antenna and said housing includes a band for retaining said antenna in a position exterior to said housing.
19. The apparatus as set forth in claim 12, wherein said monitoring device housed in said housing is positioned in a tire in the vicinity of a tire bead below a body ply.
20. The apparatus as set forth in claim 12, wherein said monitoring device housed in said housing is positioned in a tire in the vicinity of a center portion of a tread crown below a body ply.
21. The apparatus as set forth in claim 12, wherein the power source has an active mode and a dormant mode, the apparatus further comprising a circuit for data band switching means for energizing the circuit for data band switching to activate the power source from the dormant mode to the active mode and means for energizing the circuit for data band switching to deactivate the power source from the active mode to the dormant mode after transmitting the data.
22. The apparatus as set forth in claim 21, wherein the means for transmitting said data responsive to a signal transmits while the power source is in the active mode.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/253,885 | 1994-06-03 | ||
| US08/253,885 US5500065A (en) | 1994-06-03 | 1994-06-03 | Method for embedding a monitoring device within a tire during manufacture |
| CA002150865A CA2150865C (en) | 1994-06-03 | 1995-06-02 | Tires containing a monitoring device therein |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA002150865A Division CA2150865C (en) | 1994-06-03 | 1995-06-02 | Tires containing a monitoring device therein |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CA2421993A1 CA2421993A1 (en) | 1995-12-04 |
| CA2421993C true CA2421993C (en) | 2005-01-25 |
Family
ID=25677994
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA002421993A Expired - Lifetime CA2421993C (en) | 1994-06-03 | 1995-06-02 | Method of monitoring conditions of vehicle tires and tires containing a monitoring device therein |
Country Status (1)
| Country | Link |
|---|---|
| CA (1) | CA2421993C (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1754037A1 (en) * | 2004-05-25 | 2007-02-21 | Tirestamp Inc. | A universal tire pressure monitoring system and wireless receiver |
| WO2019140020A1 (en) | 2018-01-11 | 2019-07-18 | Bridgestone Americas Tire Operations, Llc | Post-cure read range enhancement of rfid tire tags |
-
1995
- 1995-06-02 CA CA002421993A patent/CA2421993C/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| CA2421993A1 (en) | 1995-12-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2150865C (en) | Tires containing a monitoring device therein | |
| CA2183235C (en) | Active integrated circuit transponder and sensor apparatus for transmitting vehicle tire parameter data | |
| CA2646758C (en) | Method and apparatus for transmitting stored data and engineering conditions of a tire to a remote location | |
| US5483827A (en) | Active integrated circuit transponder and sensor apparatus for sensing and transmitting vehicle tire parameter data | |
| CA2256878C (en) | Method and apparatus for monitoring conditions of a vehicle tire using a monitoring device capable of transmitting data relating to an engineering condition of the tire | |
| CA2214700C (en) | Transponder and sensor apparatus for sensing and transmitting vehicle tire parameter data | |
| US6724301B2 (en) | Tire to wheel data transfer system | |
| US5877679A (en) | Sensor for a pneumatic tire | |
| EP1875551B1 (en) | Rfid transmitter for tires and method of manufacture | |
| EP1037754B1 (en) | Pressure sensor for a tire and method therefor | |
| JP2003503679A (en) | Apparatus and method for detecting component status | |
| CA2421993C (en) | Method of monitoring conditions of vehicle tires and tires containing a monitoring device therein | |
| AU703974B2 (en) | Method of monitoring conditions of vehicle tires and tires containing a monitoring device therein | |
| NZ330238A (en) | Fixing pressure sensor transmitter to inner surface of tire | |
| MXPA00005599A (en) | Pressure sensor for a tire and method therefor | |
| MXPA96003557A (en) | Transponder of active integrated circuit and sensor device for transmitting parameter data from the rim of a vehic |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| EEER | Examination request | ||
| MKEX | Expiry |
Effective date: 20150602 |