CA2413269A1 - Injection system for gene delivery - Google Patents
Injection system for gene delivery Download PDFInfo
- Publication number
- CA2413269A1 CA2413269A1 CA002413269A CA2413269A CA2413269A1 CA 2413269 A1 CA2413269 A1 CA 2413269A1 CA 002413269 A CA002413269 A CA 002413269A CA 2413269 A CA2413269 A CA 2413269A CA 2413269 A1 CA2413269 A1 CA 2413269A1
- Authority
- CA
- Canada
- Prior art keywords
- ultrasound
- distal end
- catheter
- location
- injection needle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000002347 injection Methods 0.000 title claims abstract description 39
- 239000007924 injection Substances 0.000 title claims abstract description 39
- 238000001476 gene delivery Methods 0.000 title description 3
- 238000002604 ultrasonography Methods 0.000 claims abstract description 81
- 230000001225 therapeutic effect Effects 0.000 claims abstract description 28
- 239000000463 material Substances 0.000 claims abstract description 22
- 230000035515 penetration Effects 0.000 claims abstract description 17
- 239000000126 substance Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 26
- 210000000056 organ Anatomy 0.000 claims description 26
- 230000008569 process Effects 0.000 claims description 21
- 239000002872 contrast media Substances 0.000 claims description 17
- 239000013078 crystal Substances 0.000 claims description 10
- 210000001367 artery Anatomy 0.000 claims description 7
- 238000003745 diagnosis Methods 0.000 claims description 4
- 238000003780 insertion Methods 0.000 claims description 4
- 230000037431 insertion Effects 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 3
- 238000012795 verification Methods 0.000 claims description 2
- 238000001415 gene therapy Methods 0.000 abstract description 6
- 230000033115 angiogenesis Effects 0.000 abstract description 5
- 210000001835 viscera Anatomy 0.000 abstract description 2
- 210000004165 myocardium Anatomy 0.000 description 9
- 230000002107 myocardial effect Effects 0.000 description 8
- 239000012530 fluid Substances 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 210000002216 heart Anatomy 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 102000009027 Albumins Human genes 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 208000031481 Pathologic Constriction Diseases 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 238000002679 ablation Methods 0.000 description 2
- 238000002399 angioplasty Methods 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000002961 echo contrast media Substances 0.000 description 2
- 238000002001 electrophysiology Methods 0.000 description 2
- 230000007831 electrophysiology Effects 0.000 description 2
- 210000001174 endocardium Anatomy 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 208000037804 stenosis Diseases 0.000 description 2
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006427 angiogenic response Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000002608 intravascular ultrasound Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000107 myocyte Anatomy 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000000250 revascularization Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/481—Diagnostic techniques involving the use of contrast agents, e.g. microbubbles introduced into the bloodstream
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
- A61B17/22012—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Clinical applications
- A61B8/0833—Clinical applications involving detecting or locating foreign bodies or organic structures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Clinical applications
- A61B8/0833—Clinical applications involving detecting or locating foreign bodies or organic structures
- A61B8/0841—Clinical applications involving detecting or locating foreign bodies or organic structures for locating instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/00234—Surgical instruments, devices or methods for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00243—Type of minimally invasive operation cardiac
- A61B2017/00247—Making holes in the wall of the heart, e.g. laser Myocardial revascularization
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22082—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance
- A61B2017/22088—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance ultrasound absorbing, drug activated by ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00345—Vascular system
- A61B2018/00351—Heart
- A61B2018/00392—Transmyocardial revascularisation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/378—Surgical systems with images on a monitor during operation using ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0067—Catheters; Hollow probes characterised by the distal end, e.g. tips
- A61M25/0082—Catheter tip comprising a tool
- A61M25/0084—Catheter tip comprising a tool being one or more injection needles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/1785—Syringes comprising radioactive shield means
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Radiology & Medical Imaging (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Hematology (AREA)
- Mechanical Engineering (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Vascular Medicine (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Surgical Instruments (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
An injection catheter is provided with a piezoelectric ultrasound emitting device atits distal end, capable of emitting ultrasound of different energy levels. It can be used toimage the location of penetration of an internal organ of a patient by the catheter needle,by supply of echocontrast material through the needle and analysis of the ultrasoundreflections therefrom. It can also be used to cause tissue perturbation or disruption at theimaged location, e.g. to initiate tissue angiogenesis, by choice of suitable ultrasoundenergy level of emission, and for delivery of therapeutic substances such as DNA to thedisrupted tissue, for better uptake in gene therapy.
Description
INJECTION SYSTEM FOR GENE DELIVERY
FIELD OF THE INVENTION
This invention relates to catheters, and to medical diagnostic and therapeutic systems utilizing catheters. More specifically, it relates to methods of diagnosing and treating disorders of internal organs of mammalian patients, and catheter apparatus specifically designed for use in such methods.
BACKGROUND OF THE INVENTION AND PRIOR ART.
ZO Injection catheters are known, for delivery of therapeutic substances to internal body organs, by insertion of the catheter through an artery in the patient's body to the vicinity of the organ which it is desired to treat.
For example, injection catheters are known for administering treatment to the heart. Such a catheter has a relatively long, flexible tube equipped at its distal end with an injection needle, and at its proximal end with an operating means to operate the injection needle. The catheter is introduced through a puncture in the patient's artery and advanced, with the injection needle in a retracted position, until the vicinity of the organ to be treated, e.g. the myocardium, is reached by its distal end. Then the operating means, outside the patient's body, is actuated so that the injection needle is made to extend beyond the distal end of the catheter tube and info the organ. A further actuation of the operating means may cause discharge of therapeutic fluid, e.g. from a reservoir thereof contained in the catheter tube, or from a syringe attached to the external port of the needle assembly, to be discharged through the needle and into the organ, at the location of tissue penetration. An example of such a catheter is described and illustrated in United States patent 6,004,295 Langer and Stewart, issued December 21,1999, the entire disclosure of which is incorporated herein by reference.
One application for injection catheters of the above type is in the delivery of extremely small quantities of therapeutic substances to precise locations of an organ or vessel. This can arise, for example, in treatment of a SUBSTITUTE SHEET (RULE 26)
FIELD OF THE INVENTION
This invention relates to catheters, and to medical diagnostic and therapeutic systems utilizing catheters. More specifically, it relates to methods of diagnosing and treating disorders of internal organs of mammalian patients, and catheter apparatus specifically designed for use in such methods.
BACKGROUND OF THE INVENTION AND PRIOR ART.
ZO Injection catheters are known, for delivery of therapeutic substances to internal body organs, by insertion of the catheter through an artery in the patient's body to the vicinity of the organ which it is desired to treat.
For example, injection catheters are known for administering treatment to the heart. Such a catheter has a relatively long, flexible tube equipped at its distal end with an injection needle, and at its proximal end with an operating means to operate the injection needle. The catheter is introduced through a puncture in the patient's artery and advanced, with the injection needle in a retracted position, until the vicinity of the organ to be treated, e.g. the myocardium, is reached by its distal end. Then the operating means, outside the patient's body, is actuated so that the injection needle is made to extend beyond the distal end of the catheter tube and info the organ. A further actuation of the operating means may cause discharge of therapeutic fluid, e.g. from a reservoir thereof contained in the catheter tube, or from a syringe attached to the external port of the needle assembly, to be discharged through the needle and into the organ, at the location of tissue penetration. An example of such a catheter is described and illustrated in United States patent 6,004,295 Langer and Stewart, issued December 21,1999, the entire disclosure of which is incorporated herein by reference.
One application for injection catheters of the above type is in the delivery of extremely small quantities of therapeutic substances to precise locations of an organ or vessel. This can arise, for example, in treatment of a SUBSTITUTE SHEET (RULE 26)
-2-patient's endocardium with a therapeutic fluid such as a DNA solution, in gene therapy. Localized treatment of the endocardium, or other portions of the heart such as the myocardium, to repair focal damage, requires very precise control over the location and delivery of the therapeutic DNA fluid, and knowledge on the part of the operator of the precise location at which the therapeutic fluid delivery is being made.
Mukherjee, Debabrata et. al.. " Ten-fold Augmentation of Endothelial Uptake of Vascular Endothelial Growth Factor with Ultrasound After Systemic Administration", Journal of the American College of Cardiology, Vo1.25, No. 6, May 2000, pp1678-86, describe perfluorocarbon-exposed sonicated dextrose albumin (PESDA) and its use as ultrasound contrast microbubbles to enhance the uptake of VEGF by the myocardium. PESDA is a solution of microbubbles containing perfluorocarbon (-~6pm in diameter) enveloped in an albumin shell, and is produced by sonicating a solution of dextrose containing alkiumin and perfluorocarbon gas. The microbubbles act as an ultrasound reflector, so that on application to the vicinity of the microbubble injection, of ultrasound of an appropriate energy level, a reflection of ultrasound from the microbubbles can be detected e.g. with a transducer, and the reflection analyzed to determine the location and distribution of the microbubbles. At higher acoustic energies, the microbubbles burst in situ, and release their contents to their environment.
SUMMARY OF THE INVENTION
The present invention, from one aspect, provides a catheter having a catheter tube and equipped with means for delivering echocontrast medium and, at its distal end, not only with an injection needle but also with a piezoelectric ultrasound device, capable of emitting ultrasound at two or more energy levels. Other aspects of the invention are various processes, diagnostic and therapeutic, in which such a catheter may be used. The catheter can be introduced into the patient's body e.g. advanced through an artery, to abut the
Mukherjee, Debabrata et. al.. " Ten-fold Augmentation of Endothelial Uptake of Vascular Endothelial Growth Factor with Ultrasound After Systemic Administration", Journal of the American College of Cardiology, Vo1.25, No. 6, May 2000, pp1678-86, describe perfluorocarbon-exposed sonicated dextrose albumin (PESDA) and its use as ultrasound contrast microbubbles to enhance the uptake of VEGF by the myocardium. PESDA is a solution of microbubbles containing perfluorocarbon (-~6pm in diameter) enveloped in an albumin shell, and is produced by sonicating a solution of dextrose containing alkiumin and perfluorocarbon gas. The microbubbles act as an ultrasound reflector, so that on application to the vicinity of the microbubble injection, of ultrasound of an appropriate energy level, a reflection of ultrasound from the microbubbles can be detected e.g. with a transducer, and the reflection analyzed to determine the location and distribution of the microbubbles. At higher acoustic energies, the microbubbles burst in situ, and release their contents to their environment.
SUMMARY OF THE INVENTION
The present invention, from one aspect, provides a catheter having a catheter tube and equipped with means for delivering echocontrast medium and, at its distal end, not only with an injection needle but also with a piezoelectric ultrasound device, capable of emitting ultrasound at two or more energy levels. Other aspects of the invention are various processes, diagnostic and therapeutic, in which such a catheter may be used. The catheter can be introduced into the patient's body e.g. advanced through an artery, to abut the
-3-internal organ to be treated, e.g. to abut the myocardium. Then, with the injection needle eifiher adjacenfi to or extending into the tissue of the organ, low energy ultrasound is delivered to the tissue by the ultrasound crystal. An ultrasound contrast agent such as PESDA is delivered to the tissue by the needle. The low energy ultrasound is reflected and imaged by use of an appropriate transducer, so that the exacfi location of the injection needle's penetration can be determined by the operator. Subsequently, e.g. when the location of penetration has been verified, the ultrasound energy is raised to a second level, at which it causes focal tissue perturbation or even disruption.
This can, for example, be focal myocardial disruption so as to stimulate angiogenesis at the location (e.g. direct myocardial revascularization). As another example, it may be used to ablate conduction tissue during an electrophysiology procedure to lock conduction in an accessory pathway.
Thus according to a first aspect of the invention, there is provided an injection catheter system comprising:
an extended flexible catheter tube for insertion and extension along a patient's artery, said tube having a distal end and a proximal end;
an injection needle at the distal end of the catheter tube capable of being extended beyond the distal end of the catheter tube;
a piezoelectric ultrasound emitting device at the distal end of the catheter tube, said device being capable of emitting ultrasound at a first, lower energy for detection of reflections thereof, and at a second, higher energy for localized disruption of adjacent tissue;
means for delivering ultrasound contrast material through the injection needle;
and means for analyzing reflections of the ultrasound emitted by the ultrasound emitting device and reflected by the ultrasound contrast material.
According to another aspect of the invention, there is provided a process for the diagnosis and/or treatment of localized internal body organ
This can, for example, be focal myocardial disruption so as to stimulate angiogenesis at the location (e.g. direct myocardial revascularization). As another example, it may be used to ablate conduction tissue during an electrophysiology procedure to lock conduction in an accessory pathway.
Thus according to a first aspect of the invention, there is provided an injection catheter system comprising:
an extended flexible catheter tube for insertion and extension along a patient's artery, said tube having a distal end and a proximal end;
an injection needle at the distal end of the catheter tube capable of being extended beyond the distal end of the catheter tube;
a piezoelectric ultrasound emitting device at the distal end of the catheter tube, said device being capable of emitting ultrasound at a first, lower energy for detection of reflections thereof, and at a second, higher energy for localized disruption of adjacent tissue;
means for delivering ultrasound contrast material through the injection needle;
and means for analyzing reflections of the ultrasound emitted by the ultrasound emitting device and reflected by the ultrasound contrast material.
According to another aspect of the invention, there is provided a process for the diagnosis and/or treatment of localized internal body organ
-4-disorders in a mammalian patient, which comprises:
introducing a catheter into the vicinity of the internal body organ surface so that the distal end thereof is adjacent to the surface of the organ;
projecting an injection needle from the distal end of the catheter to penetrate the organ surface;
delivering ultrasound contrast material through the injection needle into the organ surface at the location of penetration;
transmitting ultrasound signals of a first, energy from the distal end of the catheter to the location of penetration of the organ surface and collecting reflected ultrasound signals from said ultrasound contrast material;
analyzing said reflected signals to determine the precise location of penetration of the organ surface by the injection needle;
and transmitting ultrasound signals of a second, tissue-perturbing energy level from the distal end of the catheter following verification of the location of penetration.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
In addition, in a further embodiment in which a catheter as defined above may, if desired, be used, the invention provides a treatment process whereby a therapeutic substance such as DNA is delivered along with the ultrasound contrast material. The ultrasound, at the same or at a different energy level, causes perturbation, possibly disruption, of the tissue to promote action of the therapeutic substance on the tissue and perhaps to separate it from the contrast material, but at the same time allows the operator to visualize the therapeutic biologics! and the contrast material as it enters the tissue.
Accordingly its location within the tissue can be confirmed. This is a major advantage, especially when treating the myocardium, for example, since it allows the operator to know that indeed intramyocardial agent delivery was accomplished, a difficult determination with other myocardial injection procedures and apparatus. This significantly reduces the risk that injectate might leak back, or even be delivered directly into the circulation.
introducing a catheter into the vicinity of the internal body organ surface so that the distal end thereof is adjacent to the surface of the organ;
projecting an injection needle from the distal end of the catheter to penetrate the organ surface;
delivering ultrasound contrast material through the injection needle into the organ surface at the location of penetration;
transmitting ultrasound signals of a first, energy from the distal end of the catheter to the location of penetration of the organ surface and collecting reflected ultrasound signals from said ultrasound contrast material;
analyzing said reflected signals to determine the precise location of penetration of the organ surface by the injection needle;
and transmitting ultrasound signals of a second, tissue-perturbing energy level from the distal end of the catheter following verification of the location of penetration.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
In addition, in a further embodiment in which a catheter as defined above may, if desired, be used, the invention provides a treatment process whereby a therapeutic substance such as DNA is delivered along with the ultrasound contrast material. The ultrasound, at the same or at a different energy level, causes perturbation, possibly disruption, of the tissue to promote action of the therapeutic substance on the tissue and perhaps to separate it from the contrast material, but at the same time allows the operator to visualize the therapeutic biologics! and the contrast material as it enters the tissue.
Accordingly its location within the tissue can be confirmed. This is a major advantage, especially when treating the myocardium, for example, since it allows the operator to know that indeed intramyocardial agent delivery was accomplished, a difficult determination with other myocardial injection procedures and apparatus. This significantly reduces the risk that injectate might leak back, or even be delivered directly into the circulation.
-5-Another embodiment of the invention contemplates the delivery in this manner of echo contrast material with or without a tissue-affecting substance to the location of desired tissue perturbation or disruption. Once the correct location of the contrast material has been confirmed by ultrasonic imaging, a graduated increase in ultrasound energy can be delivered to cause a focal disruption of tissue at carefully predetermined locations of a body organ or vessel such as the heart. Energy levels can be chosen to result in reversible damage, for example to an accessory electrical pathway, to confirm that a desired therapeutic result can be achieved, and then permanent ablation of the offending tissue can be accomplished with high energy ultrasound.
Another embodiment of the invention, in which the device defined above can also, if desired, be used, combines the benefits of therapeutic substance delivery in combination with echocontrast material, allowing visualization of the focal delivery of the therapeutic material as described above, with the benefits of focal tissue perturbation by ultrasound emission. Once the location of penetration of the organ by the injection needle has been verified by analysis of the ultrasound reflections at the first, lower energy level, the ultrasound energy level from the ultrasound emitting device can be adjusted if necessary to a second level at which it disrupts any combination of the therapeutic material and the echocontrast material, and then adjusted again, if necessary, to raise it to a level at which it causes focal tissue disruption. In this way, the therapeutic substance is delivered to the tissue and transferred to the myocardium in the precise location required to be treated.
The ultrasound and the penetration of the injection needle combine to render the tissue and cells at the treatment location physically more receptive to accept the therapeutic substance, e.g. by tissue perturbation or even tissue disruption, for a gene therapy process of enhanced efficiency, and at the same time augment the angiogenic response by eliciting a trigger mechanism for angiogenesis, e.g. tissue injury.
Another preferred application of the catheter and process of the
Another embodiment of the invention, in which the device defined above can also, if desired, be used, combines the benefits of therapeutic substance delivery in combination with echocontrast material, allowing visualization of the focal delivery of the therapeutic material as described above, with the benefits of focal tissue perturbation by ultrasound emission. Once the location of penetration of the organ by the injection needle has been verified by analysis of the ultrasound reflections at the first, lower energy level, the ultrasound energy level from the ultrasound emitting device can be adjusted if necessary to a second level at which it disrupts any combination of the therapeutic material and the echocontrast material, and then adjusted again, if necessary, to raise it to a level at which it causes focal tissue disruption. In this way, the therapeutic substance is delivered to the tissue and transferred to the myocardium in the precise location required to be treated.
The ultrasound and the penetration of the injection needle combine to render the tissue and cells at the treatment location physically more receptive to accept the therapeutic substance, e.g. by tissue perturbation or even tissue disruption, for a gene therapy process of enhanced efficiency, and at the same time augment the angiogenic response by eliciting a trigger mechanism for angiogenesis, e.g. tissue injury.
Another preferred application of the catheter and process of the
-6-invention is in the diagnosis and treatment of vascular disorders such as stenosis, for example in combination with balloon angioplasty. The delivery of echocontrast material and the imaging of ultrasound reflections into the precise location can be accomplished using modifications of angioplasty balloon catheters to incorporate the ability to inject this material directly into the media of the arterial vesel. As before, the localization of the echo contrast material can be confirmed using standard intravascular ultrasound imaging approaches.
Perturbation or even disruption of the tissue at that locafiion can beachieved by the delivery of ultrasound of an appropriate energy level can be used to assist in the repair of the damage. Therapeutic material to counteract tendency to re-stenosis may be administered to the tissue along with this perturbation-causing ultrasound, which can result in increased gene transfer efficiency as described above, The preferred echocontrast material is the aforementioned PESDA in microbubble form, although it is by no means limited thereto. Other ultrasound echocontrast materials used for internal imaging in medical applications may be used as well. When a microbubble form of echocontast material is used, the therapeutic material is preferably delivered while enclosed within the microbubbles. The ultrasound, at a higher energy level, causes disruption of the microbubbles to release the therapeutic material, at the precise, accurately visualized delivery location. The disruption of the microbubbles by the ultrasound may cause transient perturbation of myocyte cell membranes, when the process is, as is preferred, applied to treatment of ZS the myocardium with gene therapy, opening pores and allowing genetic material to enter the cells. This may result in increased transfection efficiency.
The piezoelectric ultrasound emitting device which is used in the process and apparatus of the invention is suitably one more piezoelectric crystals, e.g. arranged in an array. The same or different ones of the crystals may both emit ultrasound and receive the reflected ultrasound. Different crystals may be used to transmit the ultrasound of different energy levels, or a _7_ single crystal my be arranged to emit a variable ultrasound energy level. The ultrasound emitting and receiving crystals) are connected to a stand ultrasound machine for analsis of reflected signals and supply of apptopriate power.
BRIEF REFERENCE TO THE DRAWINGS
Figure 1 of the accompanying drawings is a diagrammatic illustration, with parts cut away, of a form of catheter according to the present invention, and useful in the processes of the invention;
Figures 2, 3 and 4 are diagrammatic illustrations of the operation of the distal end of a catheter as generally illustrated in Figure 1, in conducting a process according to a preferred embodiment of the present invention.
One form of catheter for use in a system according to the invention is diagrammatically illustrated in Figure 1 of the accompanying drawings. It comprises an elongated flexible catheter tube 10 having at its proximal end 12 a syringe 14 with a plunger 16. A "nitinol" type long injection needle 24, in fluid communication with the syringe 14, extends the length of the catheter 10.
A piezoelectric ultrasound emitting and receiving device 32 is provided at the distal end of the catheter tube 10. The device 32 may comprise a plurality or array of piezoelectric crystals, of known type, and is connected via connector 26 to a standard ultrasound machine 33 for supply of power and for reception and analysis of reflected ultrasound signals.
In operation to treat the myocardium of a patient, the catheter 10 is moved within the artery to the position shown diagrammatically in Figure 2, with its distal end against the myocardial wall 34 of the patient, and the injection needle 24 extending beyond the distal end of the catheter 10 to penetrate the _g_ myocardial wall 34. This causes some degree of disturbance and perturbation of the tissue of the myocardial wall, as indicated at 36.
Next, the syringe 14, 16 on the end of the catheter, is operated so that microbubbles 38 of ultrasound contrast material containing therapeutic DNA are delivered from the syringe 14 and discharged from the injection needle 24 into the tissue of the myocardial wall 34. This is the position shown in Figure 3 of the accompanying drawings. Ultrasound is now emitted, at a first energy level, from piezoelectric device 32. The frequency of the ultrasound may be adjusted to improve the image received - higher frequencies tend to give shallow penetrations of the ultrasound (which is all that is normally required in the process of the present invention). The reflections of the ultrasound are detected and analyzed, by ultrasound machine 33, to crest an image and to determine the exact location of penetration of the injection needle 24 into the myocardial wall 34. ' When this location has been verified, the power of the ultrasound emitted by the piezoelectric device 32 is increased, as indicated in Figure 4, so that the microbubbles 38 are disrupted and release their therapeutic DNA
contents, to the location of penetration. This increased ultrasound power also causes additional tissue and cell perturbation and disruption of the location, for easier acceptance of the DNA material therein, and for triggering angiogenesis in the myocardium at the location of treatment.
The process and apparatus according to the invention provides a means not only for accurate location and positioning of an injection catheter for delivery of therapeutics such as DNA material in gene therapy, but also a process and means for enhancing the uptake of the therapeutic material, by ultrasound perturbation or disruption of cells and tissues at the location to be treated. Very small amounts of therapeutic material, e.g. volumes of the order of 100 microliters can be delivered this way. The material is both visualized and delivered in an advantageous manner by the process and apparatus of the present invention. The process and apparatus allows the operator to know exactly where the gene delivery is taking place, to improve the gene transfer process, and to verify that the delivery and transfer has taken place.
It will be understood that the apparatus and process described herein is by way of example only, and that variations of the apparatus and technique can be made_within the scope of the present invention. It is of general application to diagnosis and treatment of internal body organs, vessels and the like, where precise knowledge of the location to be treated is required to be established, and where precise control of the internal location of tissue perturbation or disruption, for imitation of angiogenesis, subsequent delivery of therapeutics such as gene therapy, or subsequent application during electrophysiology to produce ablation of electrical or the like is to be undertaken.
Perturbation or even disruption of the tissue at that locafiion can beachieved by the delivery of ultrasound of an appropriate energy level can be used to assist in the repair of the damage. Therapeutic material to counteract tendency to re-stenosis may be administered to the tissue along with this perturbation-causing ultrasound, which can result in increased gene transfer efficiency as described above, The preferred echocontrast material is the aforementioned PESDA in microbubble form, although it is by no means limited thereto. Other ultrasound echocontrast materials used for internal imaging in medical applications may be used as well. When a microbubble form of echocontast material is used, the therapeutic material is preferably delivered while enclosed within the microbubbles. The ultrasound, at a higher energy level, causes disruption of the microbubbles to release the therapeutic material, at the precise, accurately visualized delivery location. The disruption of the microbubbles by the ultrasound may cause transient perturbation of myocyte cell membranes, when the process is, as is preferred, applied to treatment of ZS the myocardium with gene therapy, opening pores and allowing genetic material to enter the cells. This may result in increased transfection efficiency.
The piezoelectric ultrasound emitting device which is used in the process and apparatus of the invention is suitably one more piezoelectric crystals, e.g. arranged in an array. The same or different ones of the crystals may both emit ultrasound and receive the reflected ultrasound. Different crystals may be used to transmit the ultrasound of different energy levels, or a _7_ single crystal my be arranged to emit a variable ultrasound energy level. The ultrasound emitting and receiving crystals) are connected to a stand ultrasound machine for analsis of reflected signals and supply of apptopriate power.
BRIEF REFERENCE TO THE DRAWINGS
Figure 1 of the accompanying drawings is a diagrammatic illustration, with parts cut away, of a form of catheter according to the present invention, and useful in the processes of the invention;
Figures 2, 3 and 4 are diagrammatic illustrations of the operation of the distal end of a catheter as generally illustrated in Figure 1, in conducting a process according to a preferred embodiment of the present invention.
One form of catheter for use in a system according to the invention is diagrammatically illustrated in Figure 1 of the accompanying drawings. It comprises an elongated flexible catheter tube 10 having at its proximal end 12 a syringe 14 with a plunger 16. A "nitinol" type long injection needle 24, in fluid communication with the syringe 14, extends the length of the catheter 10.
A piezoelectric ultrasound emitting and receiving device 32 is provided at the distal end of the catheter tube 10. The device 32 may comprise a plurality or array of piezoelectric crystals, of known type, and is connected via connector 26 to a standard ultrasound machine 33 for supply of power and for reception and analysis of reflected ultrasound signals.
In operation to treat the myocardium of a patient, the catheter 10 is moved within the artery to the position shown diagrammatically in Figure 2, with its distal end against the myocardial wall 34 of the patient, and the injection needle 24 extending beyond the distal end of the catheter 10 to penetrate the _g_ myocardial wall 34. This causes some degree of disturbance and perturbation of the tissue of the myocardial wall, as indicated at 36.
Next, the syringe 14, 16 on the end of the catheter, is operated so that microbubbles 38 of ultrasound contrast material containing therapeutic DNA are delivered from the syringe 14 and discharged from the injection needle 24 into the tissue of the myocardial wall 34. This is the position shown in Figure 3 of the accompanying drawings. Ultrasound is now emitted, at a first energy level, from piezoelectric device 32. The frequency of the ultrasound may be adjusted to improve the image received - higher frequencies tend to give shallow penetrations of the ultrasound (which is all that is normally required in the process of the present invention). The reflections of the ultrasound are detected and analyzed, by ultrasound machine 33, to crest an image and to determine the exact location of penetration of the injection needle 24 into the myocardial wall 34. ' When this location has been verified, the power of the ultrasound emitted by the piezoelectric device 32 is increased, as indicated in Figure 4, so that the microbubbles 38 are disrupted and release their therapeutic DNA
contents, to the location of penetration. This increased ultrasound power also causes additional tissue and cell perturbation and disruption of the location, for easier acceptance of the DNA material therein, and for triggering angiogenesis in the myocardium at the location of treatment.
The process and apparatus according to the invention provides a means not only for accurate location and positioning of an injection catheter for delivery of therapeutics such as DNA material in gene therapy, but also a process and means for enhancing the uptake of the therapeutic material, by ultrasound perturbation or disruption of cells and tissues at the location to be treated. Very small amounts of therapeutic material, e.g. volumes of the order of 100 microliters can be delivered this way. The material is both visualized and delivered in an advantageous manner by the process and apparatus of the present invention. The process and apparatus allows the operator to know exactly where the gene delivery is taking place, to improve the gene transfer process, and to verify that the delivery and transfer has taken place.
It will be understood that the apparatus and process described herein is by way of example only, and that variations of the apparatus and technique can be made_within the scope of the present invention. It is of general application to diagnosis and treatment of internal body organs, vessels and the like, where precise knowledge of the location to be treated is required to be established, and where precise control of the internal location of tissue perturbation or disruption, for imitation of angiogenesis, subsequent delivery of therapeutics such as gene therapy, or subsequent application during electrophysiology to produce ablation of electrical or the like is to be undertaken.
Claims (9)
1. An injection catheter system comprising:
an extended flexible catheter tube for insertion and extension along a patient's artery, said tube having a distal end and a proximal end;
an injection needle at the distal end of the catheter tube capable of being extended beyond the distal end of the catheter tube;
a piezoelectric ultrasound emitting device at the distal end of the catheter tube;
means for delivering ultrasound contrast material through the injection needle;
and means for analyzing reflections of the ultrasound emitted by the ultrasound emitting device and reflected by the ultrasound contrast material;
characterized in that the piezoelectric ultrasound emitting device is capable of emitting ultrasound at a first, low energy for detection of reflections thereof, and at a second, higher energy for localized, perturbation or disruption of adjacent tissue.
an extended flexible catheter tube for insertion and extension along a patient's artery, said tube having a distal end and a proximal end;
an injection needle at the distal end of the catheter tube capable of being extended beyond the distal end of the catheter tube;
a piezoelectric ultrasound emitting device at the distal end of the catheter tube;
means for delivering ultrasound contrast material through the injection needle;
and means for analyzing reflections of the ultrasound emitted by the ultrasound emitting device and reflected by the ultrasound contrast material;
characterized in that the piezoelectric ultrasound emitting device is capable of emitting ultrasound at a first, low energy for detection of reflections thereof, and at a second, higher energy for localized, perturbation or disruption of adjacent tissue.
2. An injection catheter system according to claim 1, further characterized in that the piezoelectric ultrasound emitting device comprises of plurality of piezoelectric crystals, different crystals thereof being utilized to transmit ultrasound of said first, lower energy and to transmit ultrasound of said second, higher energy.
3 An injection catheter system according to claim 1, further characterized in that the piezoelectric ultrasound emitting device includes a single piezoelectric crystal to transmit said first lower energy and said second higher energy.
4. Use in the assembly of an injection catheter system for treatment of localized internal body organ disorders in an mammalian patient, and comprising an extended flexible catheter tube for insertion and extension along a patient artery, said tube having a distal end and an proximal end;
an injection needle at the distal end of the catheter tube capable of being extended beyond the distal end of the catheter tube;
means for delivering ultrasound contract material through the injection needle;
and means for analyzing reflections of the ultrasound emitted by the ultrasound emitting device and reflected by the ultrasound contrast material;
of a piezoelectric sound emitting device for mounting at the distal end of the cathetertube, said device being capable of emitting ultrasound at a first, lower energy for detection of reflections thereof, and at a second, higher energy for localized perturbation or disruption of adjacent tissue.
an injection needle at the distal end of the catheter tube capable of being extended beyond the distal end of the catheter tube;
means for delivering ultrasound contract material through the injection needle;
and means for analyzing reflections of the ultrasound emitted by the ultrasound emitting device and reflected by the ultrasound contrast material;
of a piezoelectric sound emitting device for mounting at the distal end of the cathetertube, said device being capable of emitting ultrasound at a first, lower energy for detection of reflections thereof, and at a second, higher energy for localized perturbation or disruption of adjacent tissue.
5. A process for the diagnosis and/or treatment of localized internal body organ disorders in a mammalian patient, which comprises:
introducing a catheter into the vicinity of the internal body organ surface so that the distal end thereof is adjacent to the surface of the organ;
projecting an injection needle from the distal end of the catheterto penetrate the organ surface;
delivering ultrasound contrast material through the injection needle into the organ surface at the location of penetration;
and collecting reflected ultrasound signals from said ultrasound contrast material;
characterized in that ultrasound signals of a first energy are transmitted from the distal end of the catheter to the location of penetration of the organ surface and reflected ultrasound signals are collected from said ultrasound contrast material, then said reflected signals are analyzed to determine the precise location of penetration of the organ surface by the injection needle, and then ultrasound signal of a second, tissue-perturbing energy level are transmitted from the distal end of the catheter following verification of the location of penetration.
introducing a catheter into the vicinity of the internal body organ surface so that the distal end thereof is adjacent to the surface of the organ;
projecting an injection needle from the distal end of the catheterto penetrate the organ surface;
delivering ultrasound contrast material through the injection needle into the organ surface at the location of penetration;
and collecting reflected ultrasound signals from said ultrasound contrast material;
characterized in that ultrasound signals of a first energy are transmitted from the distal end of the catheter to the location of penetration of the organ surface and reflected ultrasound signals are collected from said ultrasound contrast material, then said reflected signals are analyzed to determine the precise location of penetration of the organ surface by the injection needle, and then ultrasound signal of a second, tissue-perturbing energy level are transmitted from the distal end of the catheter following verification of the location of penetration.
6. The process of claim 6 further charaterized in that the delivered echocontrast material is delivered in association with therapeutic substance.
7. The process of claim 5 or claim 6 further characterized in that the echocontrast material is in the form of microbubbles.
8. The process of claim 6' or claim 7 further characterized in that the echocontrast material is in the form of microbubbles enveloping said therapeutic substance.
9. The process of any of claims 5-8 further characterized in that the therapeutic substance comprises DNA.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA002413269A CA2413269A1 (en) | 2000-06-22 | 2001-06-22 | Injection system for gene delivery |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA002312142A CA2312142A1 (en) | 2000-06-22 | 2000-06-22 | Injection system for gene delivery |
| CA2,312,142 | 2000-06-22 | ||
| PCT/CA2001/000953 WO2001097698A1 (en) | 2000-06-22 | 2001-06-22 | Injection system for gene delivery |
| CA002413269A CA2413269A1 (en) | 2000-06-22 | 2001-06-22 | Injection system for gene delivery |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CA2413269A1 true CA2413269A1 (en) | 2001-12-27 |
Family
ID=25681897
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA002413269A Abandoned CA2413269A1 (en) | 2000-06-22 | 2001-06-22 | Injection system for gene delivery |
Country Status (1)
| Country | Link |
|---|---|
| CA (1) | CA2413269A1 (en) |
-
2001
- 2001-06-22 CA CA002413269A patent/CA2413269A1/en not_active Abandoned
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20040030250A1 (en) | Injection system for gene delivery | |
| US6464680B1 (en) | Ultrasonic enhancement of drug injection | |
| US5078144A (en) | System for applying ultrasonic waves and a treatment instrument to a body part | |
| US6746401B2 (en) | Tissue ablation visualization | |
| US6656136B1 (en) | Use of focused ultrasound for vascular sealing | |
| JP3930052B2 (en) | Catheter-based surgery | |
| US6066096A (en) | Imaging probes and catheters for volumetric intraluminal ultrasound imaging and related systems | |
| US6106517A (en) | Surgical instrument with ultrasound pulse generator | |
| US8012092B2 (en) | Method of using a combination imaging and therapy transducer to dissolve blood clots | |
| US20030040698A1 (en) | Ultrasonic surgical instrument for intracorporeal sonodynamic therapy | |
| US20030009153A1 (en) | Ultrasonic enhancement of drug injection | |
| AU2002316433A1 (en) | An ultrasonic surgical instrument for intracorporeal sonodynamic therapy | |
| EP1107702A1 (en) | Ultrasonic enhancement of drug injection | |
| WO2008143998A1 (en) | Pulsed cavitational ultrasound therapy | |
| EP2217150A1 (en) | Ultrasonic visualization of percutaneous needles, intravascular catheters and other invasive devices | |
| US9198680B2 (en) | Combination imaging and therapy transducer with therapy transducer amplifier | |
| US20080319316A1 (en) | Combination Imaging and Therapy Transducer | |
| CA2413269A1 (en) | Injection system for gene delivery | |
| WO1996010367A1 (en) | Systems and methods for ablating body tissue | |
| KR20250036050A (en) | Systems, devices and methods for targeted tissue treatment | |
| WO2020175601A1 (en) | Treatment method and treatment system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FZDE | Discontinued |