CA2460432A1 - Process for the preparation of torsemide and related intermediates - Google Patents
Process for the preparation of torsemide and related intermediates Download PDFInfo
- Publication number
- CA2460432A1 CA2460432A1 CA002460432A CA2460432A CA2460432A1 CA 2460432 A1 CA2460432 A1 CA 2460432A1 CA 002460432 A CA002460432 A CA 002460432A CA 2460432 A CA2460432 A CA 2460432A CA 2460432 A1 CA2460432 A1 CA 2460432A1
- Authority
- CA
- Canada
- Prior art keywords
- torsemide
- alkali
- mixture
- bicarbonate
- organic solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- NGBFQHCMQULJNZ-UHFFFAOYSA-N Torsemide Chemical compound CC(C)NC(=O)NS(=O)(=O)C1=CN=CC=C1NC1=CC=CC(C)=C1 NGBFQHCMQULJNZ-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 229960005461 torasemide Drugs 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title claims description 28
- 239000000543 intermediate Substances 0.000 title description 10
- 238000002360 preparation method Methods 0.000 title description 9
- 239000003513 alkali Substances 0.000 claims abstract description 24
- 239000000203 mixture Substances 0.000 claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 claims abstract description 11
- 239000003960 organic solvent Substances 0.000 claims abstract description 10
- 230000020477 pH reduction Effects 0.000 claims abstract description 10
- GSLTVFIVJMCNBH-UHFFFAOYSA-N 2-isocyanatopropane Chemical compound CC(C)N=C=O GSLTVFIVJMCNBH-UHFFFAOYSA-N 0.000 claims abstract description 9
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims abstract description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 6
- 150000003839 salts Chemical class 0.000 claims abstract description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 24
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 19
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 18
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 12
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical group CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 10
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical group [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 10
- JJYPMNFTHPTTDI-UHFFFAOYSA-N 3-methylaniline Chemical compound CC1=CC=CC(N)=C1 JJYPMNFTHPTTDI-UHFFFAOYSA-N 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 6
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 5
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 4
- 235000011181 potassium carbonates Nutrition 0.000 claims description 4
- 239000003054 catalyst Substances 0.000 claims description 3
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 3
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 3
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 claims description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 claims description 2
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical group [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 claims description 2
- HQRPHMAXFVUBJX-UHFFFAOYSA-M lithium;hydrogen carbonate Chemical compound [Li+].OC([O-])=O HQRPHMAXFVUBJX-UHFFFAOYSA-M 0.000 claims description 2
- 229910000028 potassium bicarbonate Inorganic materials 0.000 claims description 2
- 235000015497 potassium bicarbonate Nutrition 0.000 claims description 2
- 239000011736 potassium bicarbonate Substances 0.000 claims description 2
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 claims description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 claims 1
- 239000007787 solid Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000002904 solvent Substances 0.000 description 6
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 5
- ZXPCUGWAKUIOOF-UHFFFAOYSA-N 4-(3-methylanilino)pyridine-3-sulfonamide Chemical compound CC1=CC=CC(NC=2C(=CN=CC=2)S(N)(=O)=O)=C1 ZXPCUGWAKUIOOF-UHFFFAOYSA-N 0.000 description 4
- DGIINIBYHCODIH-UHFFFAOYSA-N 4-chloropyridine-3-sulfonamide Chemical compound NS(=O)(=O)C1=CN=CC=C1Cl DGIINIBYHCODIH-UHFFFAOYSA-N 0.000 description 4
- 239000008186 active pharmaceutical agent Substances 0.000 description 4
- 239000012065 filter cake Substances 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 229910001385 heavy metal Inorganic materials 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- 150000003927 aminopyridines Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000711 cancerogenic effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 231100000219 mutagenic Toxicity 0.000 description 2
- 230000003505 mutagenic effect Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000011514 reflex Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 1
- 208000006820 Arthralgia Diseases 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 208000000112 Myalgia Diseases 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- -1 [(3-methylphenyl)amino]-3-pyridinesulfonamide hydrochloride Chemical compound 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 208000020832 chronic kidney disease Diseases 0.000 description 1
- 208000022831 chronic renal failure syndrome Diseases 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 206010016256 fatigue Diseases 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 230000008376 long-term health Effects 0.000 description 1
- 239000002171 loop diuretic Substances 0.000 description 1
- 208000013465 muscle pain Diseases 0.000 description 1
- AHWALFGBDFAJAI-UHFFFAOYSA-N phenyl carbonochloridate Chemical compound ClC(=O)OC1=CC=CC=C1 AHWALFGBDFAJAI-UHFFFAOYSA-N 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- OVPLZYJGTGDFNB-UHFFFAOYSA-N propan-2-yl carbamate Chemical compound CC(C)OC(N)=O OVPLZYJGTGDFNB-UHFFFAOYSA-N 0.000 description 1
- 238000012776 robust process Methods 0.000 description 1
- 238000010963 scalable process Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000001665 trituration Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/72—Nitrogen atoms
- C07D213/74—Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pyridine Compounds (AREA)
Abstract
A process for preparing torsemide or salts thereof comprising:
a) reacting II with isopropyl isocyanate in the presence of an alkali carbonate or bicarbonate and an organic solvent to form an alkali torsemide mixture, b) recovering the alkali torsemide mixture, and c) if desired, recovering the torsemide by acidification of the alkali torsemide mixture.
a) reacting II with isopropyl isocyanate in the presence of an alkali carbonate or bicarbonate and an organic solvent to form an alkali torsemide mixture, b) recovering the alkali torsemide mixture, and c) if desired, recovering the torsemide by acidification of the alkali torsemide mixture.
Description
TITLE OF INVENTION
Process for the Preparation of Torsemide and Related Intermediates.
FIELD OF INVENTION
The present invention relates to an improved process for making torsemide and intermediates useful in the preparation of torsemide.
BACKGROUND OF THE INVENTION
Torsemide, chemically named N-[[(1-methylethyl)amino]carbonyl]-4-[(3-methylphenyl)amino]-3-pyridinesulfonamide III, is a loop diuretic which has been found to be particularly effective for the treatment of edema associated with chronic renal failure.
The synthesis of torsemide is described in prior art documents including:
Delarge et al, Ann. Pharm. Fr. 31, 467-474 (1973); Delarge et al, Mem. Aced. R. Med. Bel~., 47(3), 131-210 (1994); US 2,516,025; US 4,244,950; US 6,674,794; US RE 30,633; and WO
03/097603 all of which are incorporated herein by reference.
A common process for the preparation of the torsemide III from 4-chloro-3-pyridinesulfonamide I, via intermediate 4-[(3-methylphenyl)amino]-3-pyridinesulfonamide II is depicted in scheme 1 below.
Scheme 1 w CI O ~ I I i H
g--NH2 N' O 'N' p H H
NH2 / S~ H2 I ~ I 'O O
V
Process for the Preparation of Torsemide and Related Intermediates.
FIELD OF INVENTION
The present invention relates to an improved process for making torsemide and intermediates useful in the preparation of torsemide.
BACKGROUND OF THE INVENTION
Torsemide, chemically named N-[[(1-methylethyl)amino]carbonyl]-4-[(3-methylphenyl)amino]-3-pyridinesulfonamide III, is a loop diuretic which has been found to be particularly effective for the treatment of edema associated with chronic renal failure.
The synthesis of torsemide is described in prior art documents including:
Delarge et al, Ann. Pharm. Fr. 31, 467-474 (1973); Delarge et al, Mem. Aced. R. Med. Bel~., 47(3), 131-210 (1994); US 2,516,025; US 4,244,950; US 6,674,794; US RE 30,633; and WO
03/097603 all of which are incorporated herein by reference.
A common process for the preparation of the torsemide III from 4-chloro-3-pyridinesulfonamide I, via intermediate 4-[(3-methylphenyl)amino]-3-pyridinesulfonamide II is depicted in scheme 1 below.
Scheme 1 w CI O ~ I I i H
g--NH2 N' O 'N' p H H
NH2 / S~ H2 I ~ I 'O O
V
2 US RE 30,633 (1981, A. Christiaens Societe Anonyme, Belgium) disclose such a synthetic route to torsemide III and an intermediate II. For the preparation of II, the reaction is carried out in the presence of copper powder and at elevated temperature. The purification procedure of II is laborious as well in United States RE 30,633. Generally, it is disadvantageous to employ a heavy metal (such as copper) in the later stages of active pharmaceutical ingredient (API) production. Additional purification steps may be required to remove residual traces of the heavy metal from the API or its precursor.
US RE 30,633 further provides for the preparation of torsemide III by the subsequent reaction of 4-[(3-methylphenyl)amino]-3-pyridinesulfonamide II with isopropyl isocyanate in the presence of triethylamine. The solvent system used in RE 30,633 is dichloromethane, dioxane or neat (i.e. no solvent added). After evaporative removal of the solvent, the mixture is clarified in aqueous sodium carbonate and further addition of acetic acid to furnish torsemide III.
Under such conditions the desired product, torsemide III is isolated in low yields with a high percentage of impurities, thus requiring additional purification steps.
US 6,635,765 (Teva, 2001 ) discloses a process for preparing torsemide III
comprising the step of reacting 3-sulfonamide-4-(3'-methylphenyl)aminopyridine II with isopropyl isocyanate in the presence of triethylamine in a solvent selected from the group consisting of acetonitrile, acetone, ethyl acetate, butyl acetate and mixtures thereof. Upon reaction completion, the pH is adjusted to 4.3 using aqueous hydrogen chloride solution and the precipitated product is isolated by filtration. It is then further purified by trituration in a mixture of acetonitrile and water. Thus, crude torsemide III is obtained with a purity of more than 98%
and a chemical yield of 81.5%. In this process, once acidified, a large amount of water has to be
US RE 30,633 further provides for the preparation of torsemide III by the subsequent reaction of 4-[(3-methylphenyl)amino]-3-pyridinesulfonamide II with isopropyl isocyanate in the presence of triethylamine. The solvent system used in RE 30,633 is dichloromethane, dioxane or neat (i.e. no solvent added). After evaporative removal of the solvent, the mixture is clarified in aqueous sodium carbonate and further addition of acetic acid to furnish torsemide III.
Under such conditions the desired product, torsemide III is isolated in low yields with a high percentage of impurities, thus requiring additional purification steps.
US 6,635,765 (Teva, 2001 ) discloses a process for preparing torsemide III
comprising the step of reacting 3-sulfonamide-4-(3'-methylphenyl)aminopyridine II with isopropyl isocyanate in the presence of triethylamine in a solvent selected from the group consisting of acetonitrile, acetone, ethyl acetate, butyl acetate and mixtures thereof. Upon reaction completion, the pH is adjusted to 4.3 using aqueous hydrogen chloride solution and the precipitated product is isolated by filtration. It is then further purified by trituration in a mixture of acetonitrile and water. Thus, crude torsemide III is obtained with a purity of more than 98%
and a chemical yield of 81.5%. In this process, once acidified, a large amount of water has to be
3 added to precipitate the product III. However, many other organic impurities, including the toxic and difficult to remove N,N'-isopropyl urea (from the isopropyl isocyanate), precipitate out as well.
WO 031097603 (Finetech Laboratories Ltd., 2003) discloses a process for manufacturing torsemide III. However, the process includes the use of isopropyl carbamate.
This is not a commercially available compound and is prepared from the toxic and difficult to handle reagent, phenylchloroformate.
Furthermore, excessive exposure to carbarnates has been shown to cause fatigue, joint and muscle pain and headaches. Additionally, laboratory experiments indicate that some carbamates have mutagenic or carcinogenic properties.
Furthermore, although WO 03/097603 describes a synthesis for the manufacture of the intermediate II where copper is absent, based on Example 11 the solvent used is methyl ethyl ketone and the reaction does not go to completion. The yield is 91.4% and the purity is only 99.0%, with 0.5% of the 4-chloro-3-pyridine sulfonamide starting material still present.
1 S Once again, the torsemide III is isolated in low yields with an impurity level of toxic material that is difficult to remove.
Tn summary, some of the disadvantages of the prior art processes include:
i) the purity of the isolated torsemide is low thereby requiring additional steps to obtain pharmaceutically acceptable substance;
ii) the chemical yield of 81.5% for the crude torsemide is low;
iii) because water is introduced to isolate the torsemide during the acidification step, the torsemide is contaminated with N,N'-isopropyl urea;
WO 031097603 (Finetech Laboratories Ltd., 2003) discloses a process for manufacturing torsemide III. However, the process includes the use of isopropyl carbamate.
This is not a commercially available compound and is prepared from the toxic and difficult to handle reagent, phenylchloroformate.
Furthermore, excessive exposure to carbarnates has been shown to cause fatigue, joint and muscle pain and headaches. Additionally, laboratory experiments indicate that some carbamates have mutagenic or carcinogenic properties.
Furthermore, although WO 03/097603 describes a synthesis for the manufacture of the intermediate II where copper is absent, based on Example 11 the solvent used is methyl ethyl ketone and the reaction does not go to completion. The yield is 91.4% and the purity is only 99.0%, with 0.5% of the 4-chloro-3-pyridine sulfonamide starting material still present.
1 S Once again, the torsemide III is isolated in low yields with an impurity level of toxic material that is difficult to remove.
Tn summary, some of the disadvantages of the prior art processes include:
i) the purity of the isolated torsemide is low thereby requiring additional steps to obtain pharmaceutically acceptable substance;
ii) the chemical yield of 81.5% for the crude torsemide is low;
iii) because water is introduced to isolate the torsemide during the acidification step, the torsemide is contaminated with N,N'-isopropyl urea;
4 iv) potential carcinogenic or mutagenic isocarbamate is used;
v) heavy metal usage requires removal thereof, which is difficult.
The yields of the prior art processes are low, highly variable and are unsuitable when transiting to commercial production.
It is therefore necessary to overcome the deficiencies of the prior art and to develop a cost-effective, robust and scalable process to manufacture both torsemide III
and torsemide intermediate II. A further objective is to develop a process for making torsemide III meeting the high purity specifications required for an API.
Further and other objects of the invention will become apparent to a person skilled in the art when reading the following.
SUMMARY OF THE INVENTION
It has been unexpectedly and surprisingly found that the torsemide intermediate II can be prepared by a method that, relative to the processes of the prior art, is facile and straightforward.
We have found unexpectedly that by heating 4-chloro-3-pyridinesulfonamide I
and m-toluidine in n-butanol, in the absence of any copper catalyst, it is possible to generate torsemide intermediate II as its hydrochloride salt in a very high yield (>98 %). Even more conveniently, the product can be easily filtered. The fact that this coupling can be accomplished in the absence of copper is highly desirable in that it avoids any possibility of contamination of torsemide intermediate II and, similarly, torsemide III with a heavy metal such as copper.
In another aspect of this invention, it has been surprisingly found that highly pure torsemide can be prepared in one-step and without the need for additional purification when an inorganic base such as an alkali carbonate or alkali bicarbonate is used in the reaction of 3-sulfonamide-4-(3'-methylphenyl)aminopyridine and isopropyl isocyanate.
Examples include sodium carbonate, lithium carbonate or potassium carbonate. Moreover, we have found that when the above reaction goes to completion, it produces an alkali torsemide mixture that is essentially insoluble in solvents such as acetone or ethyl acetate. This insolubility allows, upon
v) heavy metal usage requires removal thereof, which is difficult.
The yields of the prior art processes are low, highly variable and are unsuitable when transiting to commercial production.
It is therefore necessary to overcome the deficiencies of the prior art and to develop a cost-effective, robust and scalable process to manufacture both torsemide III
and torsemide intermediate II. A further objective is to develop a process for making torsemide III meeting the high purity specifications required for an API.
Further and other objects of the invention will become apparent to a person skilled in the art when reading the following.
SUMMARY OF THE INVENTION
It has been unexpectedly and surprisingly found that the torsemide intermediate II can be prepared by a method that, relative to the processes of the prior art, is facile and straightforward.
We have found unexpectedly that by heating 4-chloro-3-pyridinesulfonamide I
and m-toluidine in n-butanol, in the absence of any copper catalyst, it is possible to generate torsemide intermediate II as its hydrochloride salt in a very high yield (>98 %). Even more conveniently, the product can be easily filtered. The fact that this coupling can be accomplished in the absence of copper is highly desirable in that it avoids any possibility of contamination of torsemide intermediate II and, similarly, torsemide III with a heavy metal such as copper.
In another aspect of this invention, it has been surprisingly found that highly pure torsemide can be prepared in one-step and without the need for additional purification when an inorganic base such as an alkali carbonate or alkali bicarbonate is used in the reaction of 3-sulfonamide-4-(3'-methylphenyl)aminopyridine and isopropyl isocyanate.
Examples include sodium carbonate, lithium carbonate or potassium carbonate. Moreover, we have found that when the above reaction goes to completion, it produces an alkali torsemide mixture that is essentially insoluble in solvents such as acetone or ethyl acetate. This insolubility allows, upon
5 cooling, convenient isolation by filtration of the alkali torsemide mixture largely free of organic impurities (generally over 99.5% by HPLC), including N,N'-isopropyl urea. The torsemide is then easily obtained by acidification of the alkali torsemide mixture in a water-based media using a water-soluble acid, such as acetic acid. Fortunately, the isolated torsemide retains the high purity of the alkali torsemide precursor. One skilled in the art will recognize that this process can be used to prepare the various known forms of torsemide known in the prior art under the appropriate conditions.
In another aspect of the invention, it has been found that torsemide can be made in the absence of triethylamine. Triethylamine is a hazardous compound with known short-term and long-term health effects. Thus, avoidance of this compound is beneficial as well.
According to one aspect of the invention, there is provided a process for preparing torsemide or salts thereof comprising:
a) reacting II with isopropyl isocyanate in the presence of an alkali carbonate or bicarbonate and an organic solvent, preferably in the absence of triethylamine to form an alkali torsemide mixture, b) recovering the alkali torsemide mixture, and c) if desired, recovering the torsemide by acidification of the alkali torsemide mixture.
In another aspect of the invention, it has been found that torsemide can be made in the absence of triethylamine. Triethylamine is a hazardous compound with known short-term and long-term health effects. Thus, avoidance of this compound is beneficial as well.
According to one aspect of the invention, there is provided a process for preparing torsemide or salts thereof comprising:
a) reacting II with isopropyl isocyanate in the presence of an alkali carbonate or bicarbonate and an organic solvent, preferably in the absence of triethylamine to form an alkali torsemide mixture, b) recovering the alkali torsemide mixture, and c) if desired, recovering the torsemide by acidification of the alkali torsemide mixture.
6 Preferably, the alkali carbonate is sodium carbonate, potassium carbonate, or lithium carbonate.
Preferably, the alkali bicarbonate is sodium bicarbonate, potassium bicarbonate, or lithium bicarbonate.
Preferably, the organic solvent is selected from the group consisting of acetone, ethyl acetate, acetonitrile, methyl isobutyl ketone and mixtures thereof.
Preferably, the alkali torsemide mixture is converted to torsemide by dissolving in water followed by acidification.
Preferably, the acid used for acidification is a water soluble acid, preferably acetic acid.
According to another aspect of the invention, there is provided a process for preparing II
comprising reacting I with m-toluidine in an organic solvent to form II, wherein said process is carried out in the absence of at least one of the following:
i) a copper catalyst; and/or ii) triethylamine.
1 S Preferably, the organic solvent is a CI-C6 alcohol, preferably n-butanol.
DETAILED DESCRIPTION OF THE INVENTION
Example I, Preparation of 4-((3-methylphenyl)aminoJ-3 pyridinesulfonamide hydrochloride (II):
A 2-L, three-necked flask equipped with mechanical stirrer, thermometer and condenser was charged with 4-chloro-3-pyridinesulfonamide I (300.0 g, 1.56 mol), m-toluidine (200.3 g, 1.87 moI) and 1200 mL n-butanol. The reaction mixture was heated for 2-4 hours and then cooled to room temperature. The solid was filtered and washed with n-butanol.
After drying, 4-
Preferably, the alkali bicarbonate is sodium bicarbonate, potassium bicarbonate, or lithium bicarbonate.
Preferably, the organic solvent is selected from the group consisting of acetone, ethyl acetate, acetonitrile, methyl isobutyl ketone and mixtures thereof.
Preferably, the alkali torsemide mixture is converted to torsemide by dissolving in water followed by acidification.
Preferably, the acid used for acidification is a water soluble acid, preferably acetic acid.
According to another aspect of the invention, there is provided a process for preparing II
comprising reacting I with m-toluidine in an organic solvent to form II, wherein said process is carried out in the absence of at least one of the following:
i) a copper catalyst; and/or ii) triethylamine.
1 S Preferably, the organic solvent is a CI-C6 alcohol, preferably n-butanol.
DETAILED DESCRIPTION OF THE INVENTION
Example I, Preparation of 4-((3-methylphenyl)aminoJ-3 pyridinesulfonamide hydrochloride (II):
A 2-L, three-necked flask equipped with mechanical stirrer, thermometer and condenser was charged with 4-chloro-3-pyridinesulfonamide I (300.0 g, 1.56 mol), m-toluidine (200.3 g, 1.87 moI) and 1200 mL n-butanol. The reaction mixture was heated for 2-4 hours and then cooled to room temperature. The solid was filtered and washed with n-butanol.
After drying, 4-
7 [(3-methylphenyl)amino]-3-pyridinesulfonamide hydrochloride (457.1 g, 98%) was obtained a's pale-yellow solid having a purity of 99.96 % by HPLC.
Example 2, Preparation of N f~(1-Methylethyl)aminoJcarbonylJ-4-~(3-methylphenyl)aminoJ-3 pyridinesulfonamide (torsemide, III):
A 2-L, three-necked flask equipped with mechanical stirrer, thermometer and condenser was charged with 4-[(3-methylphenyl)amino]-3-pyridinesulfonamide II (100.0 g, 0.38 mol), sodium carbonate (40.3 g, 0.38 mol), isopropyl isocyanate (35.6 g, 0.42 mol) and acetone (1-L).
The reaction mixture was heated at reflex until reaction completion (monitored by TLC or 1H-NMR, generally 820 h). The reaction mixture was cooled to room temperature and the solid was isolated by Buchner filtration. The filter cake was washed with 250 mL
acetone to afford sodium torsemide mixture as a white solid. The filter cake was dissolved in 800 mL water and acetic acid (45.5 g, 0.76 mol) was added slowly. The resulting suspension was stirred for 2 h and the solid was filtered, washed with 250 mL water, and dried under vacuum at 50°C for I2~16 h to yield 116.6 g torsemide as white solid (117.8 g, 89% yield, purity of 99.54% by HPLC).
Example 3, Preparation of N ~~(1-Methylethyl)aminoJcarbonylJ-4-~(3-methylphenyl)aminoJ-3 pyridinesulfonamide (torsemide, III):
A 3-L, three-necked flask equipped with mechanical stirrer, thermometer and condenser was charged with 4-[(3-methylphenyl)amino]-3-pyridinesulfonamide II (I00.0 g, 0.38 mol), potassium carbonate (52.4.3 g, 0.38 mol), isopropyl isocyanate (35.6 g, 0.42 mol) and acetone (1.8 L). The reaction mixture was heated at reflex until reaction completion (monitored by TLC
or'H-NMR, generally 820 h) whereupon it was cooled to room temperature and the solid was isolated by Buchner filtration. The filter cake was washed with 250 mL acetone to afford potassium torsemide mixture as white solid. The filter cake was dissolved in 800 mL water and acetic acid (45.5 g, 0.76 mol) was added slowly. The resulting suspension was stirred for 2 h and the solid was filtered, washed with 250 mL water, and dried under vacuum at 50 degree for 1216 h to yield 116.6 g torsemide as white solid (I 16.3 g, 88% yield, purity of 99.61% by HPLC).
While the foregoing provides a detailed description of a preferred embodiment of the invention, it is to be understood that this description is illustrative only of the principles of the invention and not limitative. Furthermore, as many changes can be made to the invention without departing from the scope of the invention, it is intended that all material contained herein I O be interpreted as illustrative of the invention and not in a limiting sense.
Example 2, Preparation of N f~(1-Methylethyl)aminoJcarbonylJ-4-~(3-methylphenyl)aminoJ-3 pyridinesulfonamide (torsemide, III):
A 2-L, three-necked flask equipped with mechanical stirrer, thermometer and condenser was charged with 4-[(3-methylphenyl)amino]-3-pyridinesulfonamide II (100.0 g, 0.38 mol), sodium carbonate (40.3 g, 0.38 mol), isopropyl isocyanate (35.6 g, 0.42 mol) and acetone (1-L).
The reaction mixture was heated at reflex until reaction completion (monitored by TLC or 1H-NMR, generally 820 h). The reaction mixture was cooled to room temperature and the solid was isolated by Buchner filtration. The filter cake was washed with 250 mL
acetone to afford sodium torsemide mixture as a white solid. The filter cake was dissolved in 800 mL water and acetic acid (45.5 g, 0.76 mol) was added slowly. The resulting suspension was stirred for 2 h and the solid was filtered, washed with 250 mL water, and dried under vacuum at 50°C for I2~16 h to yield 116.6 g torsemide as white solid (117.8 g, 89% yield, purity of 99.54% by HPLC).
Example 3, Preparation of N ~~(1-Methylethyl)aminoJcarbonylJ-4-~(3-methylphenyl)aminoJ-3 pyridinesulfonamide (torsemide, III):
A 3-L, three-necked flask equipped with mechanical stirrer, thermometer and condenser was charged with 4-[(3-methylphenyl)amino]-3-pyridinesulfonamide II (I00.0 g, 0.38 mol), potassium carbonate (52.4.3 g, 0.38 mol), isopropyl isocyanate (35.6 g, 0.42 mol) and acetone (1.8 L). The reaction mixture was heated at reflex until reaction completion (monitored by TLC
or'H-NMR, generally 820 h) whereupon it was cooled to room temperature and the solid was isolated by Buchner filtration. The filter cake was washed with 250 mL acetone to afford potassium torsemide mixture as white solid. The filter cake was dissolved in 800 mL water and acetic acid (45.5 g, 0.76 mol) was added slowly. The resulting suspension was stirred for 2 h and the solid was filtered, washed with 250 mL water, and dried under vacuum at 50 degree for 1216 h to yield 116.6 g torsemide as white solid (I 16.3 g, 88% yield, purity of 99.61% by HPLC).
While the foregoing provides a detailed description of a preferred embodiment of the invention, it is to be understood that this description is illustrative only of the principles of the invention and not limitative. Furthermore, as many changes can be made to the invention without departing from the scope of the invention, it is intended that all material contained herein I O be interpreted as illustrative of the invention and not in a limiting sense.
Claims (14)
PRIVILEGE IS CLAIMED ARE AS FOLLOWS:
1. A process for preparing torsemide or salts thereof comprising:
a) reacting II with isopropyl isocyanate in the presence of an alkali carbonate or bicarbonate and an organic solvent to form an alkali torsemide mixture, b) recovering the alkali torsemide mixture, and c) if desired, recovering the torsemide by acidification of the alkali torsemide mixture.
a) reacting II with isopropyl isocyanate in the presence of an alkali carbonate or bicarbonate and an organic solvent to form an alkali torsemide mixture, b) recovering the alkali torsemide mixture, and c) if desired, recovering the torsemide by acidification of the alkali torsemide mixture.
2. The process of claim 1 wherein said process is earned out in the absence of triethylamine.
3. A process for preparing II comprising reacting I with m-toluidine in an organic solvent to form II, wherein said process is carried out in the absence of at least one of the following:
i) a copper catalyst; and/or ii) triethylamine.
i) a copper catalyst; and/or ii) triethylamine.
4. The process of claim 3 wherein the organic solvent is a C1 to C6 alcohol.
5. The process of claim 3 or 4 wherein the organic solvent is n-butanol.
6. The process of claim 1 or 2 wherein the alkali carbonate is sodium carbonate, potassium carbonate, or lithium carbonate.
7. The process of claim 1 or 2 wherein the alkali bicarbonate is sodium bicarbonate, potassium bicarbonate, or lithium bicarbonate.
8. The process of claim 1 or 2 wherein the organic solvent selected from the group consisting of acetone, ethyl acetate, acetonitrile, methyl isobutyl ketone and mixtures thereof.
9. The process of claim 1 or 2 wherein the alkali torsemide mixture is converted to torsemide by dissolving in water followed by acidification.
10. The process of claim 1 or 2 wherein the acid used for acidification is a water soluble acid.
11. The process of claim 1 or 2 wherein the acid used for acidification is acetic acid.
12. The process of claim 1 or 2 wherein the purity of the torsemide is at least about 99.5%.
13. The process of claim 1 or 2 wherein the purity of torsemide is at least 98%.
14. The process of claims 1 or 2 wherein the known polymorphs of torsemide are produced.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA002460432A CA2460432A1 (en) | 2004-03-10 | 2004-03-10 | Process for the preparation of torsemide and related intermediates |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA002460432A CA2460432A1 (en) | 2004-03-10 | 2004-03-10 | Process for the preparation of torsemide and related intermediates |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CA2460432A1 true CA2460432A1 (en) | 2005-09-10 |
Family
ID=34976957
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA002460432A Abandoned CA2460432A1 (en) | 2004-03-10 | 2004-03-10 | Process for the preparation of torsemide and related intermediates |
Country Status (1)
| Country | Link |
|---|---|
| CA (1) | CA2460432A1 (en) |
-
2004
- 2004-03-10 CA CA002460432A patent/CA2460432A1/en not_active Abandoned
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE602004010848T2 (en) | DERIVATIVES OF 1-PIPERAZINE AND 1-HOMOPIPERAZINE CARBOXYLATES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS INHIBITORS OF THE FAAH ENZYME | |
| JPS6327471A (en) | Production of optically active benzenesulfonamide derivative | |
| CA2583920C (en) | Non-peptide bradykinin antagonists and pharmaceutical compositions therefrom | |
| AU2001247592B2 (en) | Novel processes for preparing torsemide intermediate | |
| EP0976742A1 (en) | A synthesis of furan sulfonamide compounds useful in the synthesis of IL-1 inhibitors | |
| US7378527B2 (en) | Process for the preparation of torsemide and related intermediates | |
| AU2001247592A1 (en) | Novel processes for preparing torsemide intermediate | |
| JPH03153689A (en) | Preparation of aqueous solution of 5-methyl- n-(aryl)-1, 2, 4-triazol (1, 5-a) pyrimidine- 2-sulfonamide | |
| US20090253913A1 (en) | Process for the preparation of sorafenib and salts thereof | |
| CA2568700A1 (en) | Process for preparing 2-oxo-1-pyrrolidine derivatives by intramolecular allylation | |
| CA2460432A1 (en) | Process for the preparation of torsemide and related intermediates | |
| JP4097291B2 (en) | Method for producing substituted valinamide derivative | |
| HU202506B (en) | Process for producing benzoxazolone derivatives | |
| JP2000507916A (en) | Process for producing aminophenylsulfonylurea and intermediates for the process | |
| JP2009221185A (en) | Method for producing toluidine compound | |
| CA2367969A1 (en) | Process of preparing 3s-3-amino-3-aryl propionic acid and derivatives thereof | |
| CA2504796A1 (en) | Polymorphs of pantoprazole sodium salt and process for the preparation thereof | |
| CN120943782A (en) | Preparation method of pyrazole ether compound | |
| JP2006512305A (en) | Process for producing 2-amino-4-chloro-6-alkoxypyrimidine | |
| JPH0477474A (en) | Production of 6-amino-3-chloropyridazine | |
| JP3523661B2 (en) | Method for purifying 2-alkyl-4-halogeno-5-formylimidazole | |
| EP0754686B1 (en) | 2-cyanopiperazine and use thereof for the synthesis of biologically active substances | |
| JPH04139170A (en) | Substituted pyridinesufonylcarbamate-based compound, its production and production of substituted pyridinesulfonamide-based compound | |
| JPH10310568A (en) | N-alkoxycarbonyl-L-asparagine | |
| KR100310936B1 (en) | A process for preparing N-(4-methylbenzenesulfonyl)-N'-(3-azabicyclo[3,3,0]octane)urea |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| EEER | Examination request | ||
| FZDE | Dead |
Effective date: 20150310 |