CA2168995A1 - Recording sheets for ink jet printing - Google Patents
Recording sheets for ink jet printingInfo
- Publication number
- CA2168995A1 CA2168995A1 CA 2168995 CA2168995A CA2168995A1 CA 2168995 A1 CA2168995 A1 CA 2168995A1 CA 2168995 CA2168995 CA 2168995 CA 2168995 A CA2168995 A CA 2168995A CA 2168995 A1 CA2168995 A1 CA 2168995A1
- Authority
- CA
- Canada
- Prior art keywords
- ink jet
- recording sheet
- jet recording
- sheet according
- gelatine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000007641 inkjet printing Methods 0.000 title claims abstract description 11
- 239000000976 ink Substances 0.000 claims abstract description 96
- 150000003839 salts Chemical class 0.000 claims abstract description 55
- 229910052751 metal Inorganic materials 0.000 claims abstract description 40
- 239000002184 metal Substances 0.000 claims abstract description 40
- 238000000576 coating method Methods 0.000 claims abstract description 30
- 239000011248 coating agent Substances 0.000 claims abstract description 25
- 229920000642 polymer Polymers 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 150000002739 metals Chemical class 0.000 claims abstract description 13
- 230000000737 periodic effect Effects 0.000 claims abstract description 10
- 150000002500 ions Chemical class 0.000 claims abstract description 6
- 229920001477 hydrophilic polymer Polymers 0.000 claims abstract 7
- 229920000159 gelatin Polymers 0.000 claims description 31
- 235000019322 gelatine Nutrition 0.000 claims description 31
- 239000001828 Gelatine Substances 0.000 claims description 29
- 229920001577 copolymer Polymers 0.000 claims description 24
- -1 Praseodynium Chemical compound 0.000 claims description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 19
- 150000001875 compounds Chemical class 0.000 claims description 17
- 239000000178 monomer Substances 0.000 claims description 16
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 12
- 239000002585 base Substances 0.000 claims description 12
- 239000000945 filler Substances 0.000 claims description 12
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 12
- 229920001519 homopolymer Polymers 0.000 claims description 10
- 239000002253 acid Substances 0.000 claims description 9
- 229920000728 polyester Polymers 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 8
- 229910052746 lanthanum Inorganic materials 0.000 claims description 8
- 239000000049 pigment Substances 0.000 claims description 8
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 8
- 229910052684 Cerium Inorganic materials 0.000 claims description 7
- 229920003169 water-soluble polymer Polymers 0.000 claims description 7
- 229910052727 yttrium Inorganic materials 0.000 claims description 7
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 7
- 229920000858 Cyclodextrin Polymers 0.000 claims description 6
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 6
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 6
- 229920002472 Starch Polymers 0.000 claims description 6
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 6
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims description 6
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 6
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 229920002635 polyurethane Polymers 0.000 claims description 6
- 239000004814 polyurethane Substances 0.000 claims description 6
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 6
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 6
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 6
- 239000008107 starch Substances 0.000 claims description 6
- 235000019698 starch Nutrition 0.000 claims description 6
- 229920002554 vinyl polymer Polymers 0.000 claims description 6
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 5
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 5
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052779 Neodymium Inorganic materials 0.000 claims description 4
- 239000004952 Polyamide Substances 0.000 claims description 4
- 150000001735 carboxylic acids Chemical class 0.000 claims description 4
- 239000003431 cross linking reagent Substances 0.000 claims description 4
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 claims description 4
- 229920002647 polyamide Polymers 0.000 claims description 4
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 3
- 229910052693 Europium Inorganic materials 0.000 claims description 3
- 229920000084 Gum arabic Polymers 0.000 claims description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 3
- 241000978776 Senegalia senegal Species 0.000 claims description 3
- 239000000205 acacia gum Substances 0.000 claims description 3
- 235000010489 acacia gum Nutrition 0.000 claims description 3
- 239000005018 casein Substances 0.000 claims description 3
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 claims description 3
- 235000021240 caseins Nutrition 0.000 claims description 3
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims description 3
- 239000011976 maleic acid Substances 0.000 claims description 3
- 229920005615 natural polymer Polymers 0.000 claims description 3
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 3
- 150000007524 organic acids Chemical class 0.000 claims description 3
- 235000005985 organic acids Nutrition 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 235000010413 sodium alginate Nutrition 0.000 claims description 3
- 239000000661 sodium alginate Substances 0.000 claims description 3
- 229940005550 sodium alginate Drugs 0.000 claims description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 3
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 claims description 3
- 102000009027 Albumins Human genes 0.000 claims description 2
- 108010088751 Albumins Proteins 0.000 claims description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 2
- 229920002873 Polyethylenimine Polymers 0.000 claims description 2
- 210000000988 bone and bone Anatomy 0.000 claims description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 2
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 claims description 2
- 229940015043 glyoxal Drugs 0.000 claims description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 claims description 2
- 239000011707 mineral Substances 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 229920005989 resin Polymers 0.000 claims description 2
- 239000000454 talc Substances 0.000 claims description 2
- 229910052623 talc Inorganic materials 0.000 claims description 2
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 claims description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims 5
- 229910052692 Dysprosium Inorganic materials 0.000 claims 2
- 229910052691 Erbium Inorganic materials 0.000 claims 2
- 229910052688 Gadolinium Inorganic materials 0.000 claims 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Inorganic materials [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 claims 2
- 239000001768 carboxy methyl cellulose Substances 0.000 claims 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims 2
- 239000004927 clay Substances 0.000 claims 2
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 claims 2
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims 2
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims 2
- 229920000620 organic polymer Polymers 0.000 claims 2
- 125000003011 styrenyl group Chemical class [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 claims 2
- 229920001169 thermoplastic Polymers 0.000 claims 2
- 239000004416 thermosoftening plastic Substances 0.000 claims 2
- FCTDKZOUZXYHNA-UHFFFAOYSA-N 1,4-dioxane-2,2-diol Chemical compound OC1(O)COCCO1 FCTDKZOUZXYHNA-UHFFFAOYSA-N 0.000 claims 1
- RJFZHPDNWXGSMU-UHFFFAOYSA-N 5,6-dichloro-1h-triazin-4-one Chemical compound OC1=NN=NC(Cl)=C1Cl RJFZHPDNWXGSMU-UHFFFAOYSA-N 0.000 claims 1
- ZBMQFNIZRGSPQX-UHFFFAOYSA-N OC1=C(C(=NN=N1)O)Cl Chemical compound OC1=C(C(=NN=N1)O)Cl ZBMQFNIZRGSPQX-UHFFFAOYSA-N 0.000 claims 1
- 150000007513 acids Chemical class 0.000 claims 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims 1
- 229940051236 barium carbonate Drugs 0.000 claims 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Inorganic materials [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 claims 1
- 229960003563 calcium carbonate Drugs 0.000 claims 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Inorganic materials [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N diethyl ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 claims 1
- 239000001095 magnesium carbonate Substances 0.000 claims 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 claims 1
- 235000014380 magnesium carbonate Nutrition 0.000 claims 1
- 229960001708 magnesium carbonate Drugs 0.000 claims 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 claims 1
- 235000019341 magnesium sulphate Nutrition 0.000 claims 1
- 235000010755 mineral Nutrition 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 14
- 229910001868 water Inorganic materials 0.000 description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- 239000000463 material Substances 0.000 description 16
- 239000000975 dye Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 12
- 239000004094 surface-active agent Substances 0.000 description 11
- 239000011230 binding agent Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000000654 additive Substances 0.000 description 8
- 238000007639 printing Methods 0.000 description 8
- 239000006185 dispersion Substances 0.000 description 7
- 239000002202 Polyethylene glycol Substances 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 239000006096 absorbing agent Substances 0.000 description 5
- 229910002651 NO3 Inorganic materials 0.000 description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- 229920006317 cationic polymer Polymers 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 3
- 239000005995 Aluminium silicate Substances 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 235000012211 aluminium silicate Nutrition 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 239000000834 fixative Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 150000002823 nitrates Chemical class 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229910052777 Praseodymium Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 238000005282 brightening Methods 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000008199 coating composition Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 150000002603 lanthanum Chemical class 0.000 description 2
- 239000004611 light stabiliser Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920002717 polyvinylpyridine Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 2
- 238000001454 recorded image Methods 0.000 description 2
- 229930182490 saponin Natural products 0.000 description 2
- 150000007949 saponins Chemical class 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 150000003440 styrenes Chemical class 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- XBZYWSMVVKYHQN-MYPRUECHSA-N (4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-hydroxy-2,2,6a,6b,9,12a-hexamethyl-9-[(sulfooxy)methyl]-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid Chemical compound C1C[C@H](O)[C@@](C)(COS(O)(=O)=O)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CCC(C)(C)C[C@H]5C4=CC[C@@H]3[C@]21C XBZYWSMVVKYHQN-MYPRUECHSA-N 0.000 description 1
- LKLLNYWECKEQIB-UHFFFAOYSA-N 1,3,5-triazinane Chemical compound C1NCNCN1 LKLLNYWECKEQIB-UHFFFAOYSA-N 0.000 description 1
- SLYRGJDSFOCAAI-UHFFFAOYSA-N 1,3-thiazolidin-2-one Chemical compound O=C1NCCS1 SLYRGJDSFOCAAI-UHFFFAOYSA-N 0.000 description 1
- YLVACWCCJCZITJ-UHFFFAOYSA-N 1,4-dioxane-2,3-diol Chemical compound OC1OCCOC1O YLVACWCCJCZITJ-UHFFFAOYSA-N 0.000 description 1
- SIQZJFKTROUNPI-UHFFFAOYSA-N 1-(hydroxymethyl)-5,5-dimethylhydantoin Chemical compound CC1(C)N(CO)C(=O)NC1=O SIQZJFKTROUNPI-UHFFFAOYSA-N 0.000 description 1
- SAVMNSHHXUMFRQ-UHFFFAOYSA-N 1-[bis(ethenylsulfonyl)methoxy-ethenylsulfonylmethyl]sulfonylethene Chemical compound C=CS(=O)(=O)C(S(=O)(=O)C=C)OC(S(=O)(=O)C=C)S(=O)(=O)C=C SAVMNSHHXUMFRQ-UHFFFAOYSA-N 0.000 description 1
- YKUDHBLDJYZZQS-UHFFFAOYSA-N 2,6-dichloro-1h-1,3,5-triazin-4-one Chemical compound OC1=NC(Cl)=NC(Cl)=N1 YKUDHBLDJYZZQS-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical class O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical class [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical class OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 description 1
- 206010065042 Immune reconstitution inflammatory syndrome Diseases 0.000 description 1
- 229910002339 La(NO3)3 Inorganic materials 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 229910009253 Y(NO3)3 Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000008360 acrylonitriles Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000007754 air knife coating Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001346 alkyl aryl ethers Chemical class 0.000 description 1
- 125000005599 alkyl carboxylate group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 239000005030 aluminium foil Substances 0.000 description 1
- PZZYQPZGQPZBDN-UHFFFAOYSA-N aluminium silicate Chemical compound O=[Al]O[Si](=O)O[Al]=O PZZYQPZGQPZBDN-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- 229910001864 baryta Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- JBIROUFYLSSYDX-UHFFFAOYSA-M benzododecinium chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 JBIROUFYLSSYDX-UHFFFAOYSA-M 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical class C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- VQLYBLABXAHUDN-UHFFFAOYSA-N bis(4-fluorophenyl)-methyl-(1,2,4-triazol-1-ylmethyl)silane;methyl n-(1h-benzimidazol-2-yl)carbamate Chemical compound C1=CC=C2NC(NC(=O)OC)=NC2=C1.C=1C=C(F)C=CC=1[Si](C=1C=CC(F)=CC=1)(C)CN1C=NC=N1 VQLYBLABXAHUDN-UHFFFAOYSA-N 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- SXDBWCPKPHAZSM-UHFFFAOYSA-M bromate Chemical class [O-]Br(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-M 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium nitrate Inorganic materials [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- OIDPCXKPHYRNKH-UHFFFAOYSA-J chrome alum Chemical compound [K]OS(=O)(=O)O[Cr]1OS(=O)(=O)O1 OIDPCXKPHYRNKH-UHFFFAOYSA-J 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- WYYQVWLEPYFFLP-UHFFFAOYSA-K chromium(3+);triacetate Chemical compound [Cr+3].CC([O-])=O.CC([O-])=O.CC([O-])=O WYYQVWLEPYFFLP-UHFFFAOYSA-K 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 125000000332 coumarinyl group Chemical group O1C(=O)C(=CC2=CC=CC=C12)* 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 125000005594 diketone group Chemical group 0.000 description 1
- 150000002012 dioxanes Chemical class 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 150000004693 imidazolium salts Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 150000004715 keto acids Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 229910001960 metal nitrate Inorganic materials 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- YLGXILFCIXHCMC-JHGZEJCSSA-N methyl cellulose Chemical compound COC1C(OC)C(OC)C(COC)O[C@H]1O[C@H]1C(OC)C(OC)C(OC)OC1COC YLGXILFCIXHCMC-JHGZEJCSSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- PZYDAVFRVJXFHS-UHFFFAOYSA-N n-cyclohexyl-2-pyrrolidone Chemical compound O=C1CCCN1C1CCCCC1 PZYDAVFRVJXFHS-UHFFFAOYSA-N 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000003901 oxalic acid esters Chemical class 0.000 description 1
- 150000002916 oxazoles Chemical class 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- QUBQYFYWUJJAAK-UHFFFAOYSA-N oxymethurea Chemical compound OCNC(=O)NCO QUBQYFYWUJJAAK-UHFFFAOYSA-N 0.000 description 1
- 229950005308 oxymethurea Drugs 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 125000002270 phosphoric acid ester group Chemical group 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000002924 primary amino group Chemical class [H]N([H])* 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- UGZVCHWAXABBHR-UHFFFAOYSA-O pyridin-1-ium-1-carboxamide Chemical class NC(=O)[N+]1=CC=CC=C1 UGZVCHWAXABBHR-UHFFFAOYSA-O 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 1
- 239000000985 reactive dye Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000011122 softwood Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 150000001629 stilbenes Chemical class 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- BXJPTTGFESFXJU-UHFFFAOYSA-N yttrium(3+);trinitrate Chemical compound [Y+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O BXJPTTGFESFXJU-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Ink Jet Recording Methods And Recording Media Thereof (AREA)
Abstract
A recording sheet for ink jet printing comprising a support having coated onto said support one or more layers receptive for aqueous inks, said coating comprising at least one film forming, hydrophilic polymer or a mixture of film forming hydrophilic polymers and imbedded in this film at least one trivalent salt of a metal of the Group IIIb series of the periodic table of elements or complexes which comprise trivalent ions of the metals of Group IIIb of the periodic table of the elements. In another embodiment the salts or complexes of Group IIIb elements are coated directly on the substrate surface without the presence of the film forming polymer.
Description
- t 2i 68~95 Description RECORDING SHEETS FOR INK JET PRINTING
Field of Invention This invention relates to recording sheets suitable for use in an ink jet recording process, particularly it relates to ink receiving sheets where images recorded thereon can be observed by both reflected and transmitted light. Ink jet receiving materials used at the present time have a particular need for improvement in physical and handling properties, particularly in waterfastness and light stability as well as for improved image quality. A
preferred embodiment of this invention is therefore directed towards ink jet recording materials with improved handling and performance characteristics, in particular ink receiving materials where the images recorded thereon are resistant to rubbing on the surface or to damage by other physical means, remain intact in contact to water and do not fade when exposed to light even under adverse conditions. The present invention provides a solution towards these problems.
Ink jet printing systems generally are of two types: continuous stream and drop-on-demand. In continuous stream ink jet systems, ink is emitted in a continuous stream under pressure through an orifice or nozzle. The stream is perturbed, causing it to break up into droplets at a fixed distance from the orifice.
At the break-up point, the droplets are charged in accordance with digital data signals and passed through an electric static field which adjusts the trajectory of each droplet in order to direct it to a gutter for recirculation or a specific location on a recording ` -21 6~q95 medium. In drop-on-demand systems, a droplet is expelled from an orifice to a position on a recording medium in accordance with digital data signals. A
droplet is not formed or expelled unless it is to be placed on the recording medium.
Although the main effort in this invention is directed towards the more demanding continuous stream system it is not meant to be restricted to either of the two methods.
Backqround Art The following requirements describe some of the major features of a recording material used in ink jet printing:
1. Sufficient ink absorbing capacity and ink receptivity of the receiving layer to prevent the ink from streaking and from running down during printing, even under conditions where several droplets are deposited in a rapid sequence onto the same spot.
Field of Invention This invention relates to recording sheets suitable for use in an ink jet recording process, particularly it relates to ink receiving sheets where images recorded thereon can be observed by both reflected and transmitted light. Ink jet receiving materials used at the present time have a particular need for improvement in physical and handling properties, particularly in waterfastness and light stability as well as for improved image quality. A
preferred embodiment of this invention is therefore directed towards ink jet recording materials with improved handling and performance characteristics, in particular ink receiving materials where the images recorded thereon are resistant to rubbing on the surface or to damage by other physical means, remain intact in contact to water and do not fade when exposed to light even under adverse conditions. The present invention provides a solution towards these problems.
Ink jet printing systems generally are of two types: continuous stream and drop-on-demand. In continuous stream ink jet systems, ink is emitted in a continuous stream under pressure through an orifice or nozzle. The stream is perturbed, causing it to break up into droplets at a fixed distance from the orifice.
At the break-up point, the droplets are charged in accordance with digital data signals and passed through an electric static field which adjusts the trajectory of each droplet in order to direct it to a gutter for recirculation or a specific location on a recording ` -21 6~q95 medium. In drop-on-demand systems, a droplet is expelled from an orifice to a position on a recording medium in accordance with digital data signals. A
droplet is not formed or expelled unless it is to be placed on the recording medium.
Although the main effort in this invention is directed towards the more demanding continuous stream system it is not meant to be restricted to either of the two methods.
Backqround Art The following requirements describe some of the major features of a recording material used in ink jet printing:
1. Sufficient ink absorbing capacity and ink receptivity of the receiving layer to prevent the ink from streaking and from running down during printing, even under conditions where several droplets are deposited in a rapid sequence onto the same spot.
2. Fast drying of the layer surface after printing of the image leading to prints free from tackiness.
3. Excellent colour rendition, no change of the hue of the picture with time.
4. Surface with high gloss.
5. In the case of transparencies, clear, transparent, scatter free receiving layers.
6. Resistance of the image surface of the image to rubbing.
7. Excellent waterfastness of the produced images.
8. Excellent light fastness of the printed images.
9. Excellent archival stability.
10. Excellent physical and handling properties.
The particular problem of waterfastness has in the past been addressed by a wide variety of techniques.
Thus solutions to the problem have been proposed for by specific formulations of the inks-or alternatively in many cases by specific modifications of the receiving layers. The two approaches have in many cases been combined.
One attempt to improve waterfastness has been the use of reactive dyes. So for instance in US 4 443 223 (Kissling et al.), US 5 098 475 (Winnik et al.), US 5 074 914 (Shirotz et al.), US 5 230 733 (Pawlowski et al.), JSDC (1993) 109, 147 (S.O. Aston et al.) and references cited therein. Although some improvement has been achieved by this technique no satisfactory results can in general be obtained due to the fact that the conditions which are possible in practice in a printing environment are less than optimal and do in general not suffice to achieve reaction of these dyes with given binders. Inks based on colloidal dye dispersions and polymers in inks have been proposed so for in instance in US 5,100,471 (Wink et al.), 5,017,644 (Fuller et al.), 4,990,186 (Jones et al.), US
4,597,794 (Kasha et al.), US 4,210,566 (Murrey), US
4,136,076 (Dennison et al.), US 5,224,987 (Matrick et al.), US 5,180,425 (Matrick et al.) and US 4,246,154 (Yao et al.). Inks based on colloidal dyes as well as on hot melt inks, although yielding images with good waterfastness and good light stability, do in many cases lead to images which are not transparent and therefore less suited to be used for projections.
Often involved modifications of the inks have the tendency to give inks liable to show precipitates upon prolonged storage. Such precipitates subsequently tend to clog the nozzles of ink jet printer.
The major attempt to achieve waterfastness in 21 6~9q5 receiving layers has been via the use of polymers, particular cationic polymers in conjunction with inks containing acidic dyes.
US 4,877,680 describes cationic polymers together with neutral binders. Cationically modified polyvinyl alcohol has been described in US 4,783,376. US
4,575,465 claims quaternised polyvinyl pyridine to achieve waterfastness. US 4,554,181 describes the use of a combination of cationic polymers and polyvalent metal salts since only such combinations and not the single elements tend to provide the sought for properties.
Although good waterfastness can in general be obtained with a wide variety of cationic polymers they tend to show a severe drawback in that they impair the light fastness of the printed images.
The introduction of inorganic pigments, fillers, minerals, metal salts and metal oxides have been proposed. US 4,116,910 (Rudolphy et al.) propose the use of derivatives of metals of Group II of the periodic table together with natural resin. JP 6025 7285 (Nakadsugawa et al.) claims an improvement of light stability by addition of transition metal oxides.
Waterfastness can preferentially be achieved by addition of metal oxides together with cationic pigments or polymers to the receiving layers. US
5,104,730 (Misuda et al.) and US 4,819,166 (Misuda et al.) describe porous recording sheets where the porous layer is mainly made of pseudo boehmite, a colloidal aluminium oxide hydroxide. Although in general satisfactory waterfastness can be achieved the layers obtained by this method are slightly opaque and show severe tendency to become brittle with time and on exposure to light. All the above mentioned solutions fulfil only partly the requirements of image receiving - 2l 6~95 layers for modern ink jet printing. In many cases these solutions lead moreover only to material suitable for quite restricted applications. Improvements incorporated into ink receiving layers, widely applicable to modern ink jet printing technology, are therefore the scope of this invention.
Disclosure of the Invention Accordingly, an object of the present invention is to provide image receiving media for use in ink jet recording which are particularly excellent in water resistance.
Another object of the invention is to provide recording media which achieve waterfastness without affecting the stability of the obtained images against the detrimental effect of light.
A further objective is to obtain recording layers with excellent surface properties showing high resistance to physical damage like for instance scratching, resistance to cracking and moist rubbing on the surface.
Still another objective of the present invention is to provide receiving layers with excellent ink receiving properties.
Another objective of the invention is to obtain recording media which satisfy in sharpness and surface lustre of the recorded image and are free from stickiness of the surface even under highly humid conditions.
A further objective is to provide recording media suitable to be used on ink jet printers of the continuous stream type.
A further object is to provide media which allow the possibility to print images intended to match those on silver halide photographic material.
21 6~995 It is furthermore the objective of this invention to provide clear, scattering free recorded images on transparent base material intended to be projected.
An additional objective of this invention is to obtain a recording medium suitable for office desk top publishing of color graphics which has improved lightfastness.
This invention proposes to achieve above objectives by providing a recording material wherein said receiving material consists of a support, opaque or transparent, onto which has been coated a receiving layer or layers comprising a binder or a mixture of different binders, fillers ! natural or synthetic polymers and wherein are imbedded or coated at least one trivalent salt of the metals of Group IIIb of the periodic table of the elements or complexes which comprise trivalent ions of the metals of Group IIIb of the periodic table of the elements.
To these layers can be added a wide variety of additional elements to further improve the pictorial or/and physical properties of the images obtained when printed on an ink jet printer.
Best Mode of Carryinq Out the Invention The present invention will now be described in detail. The ink receiving sheets according to this invention specifically relate to layers wherein are imbedded or coated trivalent metal salts taken from the Group IIIb or complexes containing trivalent ions of these metals of the periodic table of elements, in particular salts or ions of the metals of atomic number 21, 39, 57 through to 60 and atomic of numbers 63 to 70. Preferred are the salts or complexes of Y, La, Ce, Pr, Nd and Yb. These salts or complexes may be in form of water soluble or in form of water insoluble 2l 68~5 compounds.
The water soluble metal salts of this invention can be present as halides, salts of most oxo acids, sulphates, nitrates, perchlorates, bromates but also as carbonates, phosphates or hydroxides. Also salts of organic acids can be used.
Often the compounds are present as dissociated hydrated species or aqueous complexes and are in general used as such. The salts of the invention can also be used as mixtures made up of single species.
There is no limitation as far as the ratios of the mixtures are concerned.
The compounds of the invention can be used in form of their double salts containing besides the claimed Group IIIb elements Ca, Mg, Ba, Na, K or the like.
Double salts can be in form of, for instance, sulphates, nitrates, phosphates or in other forms known to those skilled in the art. The use of metal complexes is equally possible under the terms of the invention. Examples of this type are those with chelating ligands like for instance diketones or organic phosphates. Some of the salts of the claimed compounds when readily water-soluble are introduced into the receiving sheets as aqueous solutions. In many instances the claimed metal derivatives are only sparingly soluble in water and have to be applied in colloidal form or in form of fine dispersions.
The salts or complexes of Group IIIb elements coated directly on the substrate or incorporated into the ink receiving layers of the proposed recording material are added in an amount of 0.05 - 3.0g/m2, preferentially in amount of 0.1 to O.9g/m2. In the embodiment where the salts or complexes of Group IIIb elements are coated directly on the substrate, they are preferably applied as 3-5% aqueous solutions on the 2l 68q95 surface of the substrate. After evaporation of the aqueous solution the salts or complexes essentially are absorbed into the substrate surface. In this embodiment a preferred substrate includes a base paper sheet coated with a silica and polyvinyl alcohol matrix prior to application of the coating solution.
The use of the salts or complexes of the group IIIb perform most efficiently when they are imbedded into layers or coated onto substrates which have the ability to rapidly absorb aqueous inks. The absorbing power of the layer is to a great extent a function of the materials used but likewise of the physical properties of the layers and the substrate. The compounds that make up the imbedding matrix include in general water soluble film forming polymers.
These film forming water soluble polymers may include, for example, natural polymers or modified products thereof such as albumin, gelatine, casein, starch, gum arabic, sodium alginate, hydroxyethyl cellulose, carboxylmethyl cellulose, ~ - or y-cyclodextrine and the like; polyvinyl alcohol;
complete or partial saponified, products of copolymers of vinyl acetate and other monomers; homopolymers or copolymers with other monomers of unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid, crotonic acid and the like; homopolymers or copolymers with other vinyl monomers of sulfonated vinyl monomers such as vinylsulfonic acid, sulfonated styrene and the like; homopolymers or copolymers with other vinyl monomers of (meth)acrylamide; homopolymers or copolymers with other monomers of ethylene oxide;
polyurethanes, polyamides having such groups as mentioned above; polyethyleneimine, polyacrylamides, water soluble nylon type polymers, polyvinylpyrrolidone, polyester; and so on. All these ~l 6~995 can also be used in mixtures.
These polymers can be blended with non water soluble natural or synthetic high molecular compounds.
Suitable synthetic polymer materials can be chosen from among poly(vinyllactams, acrylamide`polymers, polyvinyl alcohol and its derivatives, polyvinylacetals, polymers of alkyl and sulfoalkyl acrylates and methacrylates, hydrolyzed polyvinyl acetates, polyamides, polyvinyl pyridines, acrylic acid polymers, maleic anhydride copolymers, polyalkylene oxides, methacrylamide copolymers, polyvinyl oxazolidinones, maleic acid copolymers, vinylamine copolymers, methacrylic acid copolymers, acryloyloxyalkylsulfonic acid copolymers, sulfoalkylacrylamide copolymers, polyalkyleneimine copolymers, polyamines, N,N-diallylaminoalkyl acrylates, vinyl imidazole copolymers, vinyl sulphide copolymers, halogenated styrene polymers, amineacrylamide polymers, polypeptides and the like.
Non-water soluble polymers can also be used in some cases.
In the case where one of the water-soluble polymers is gelatine the types of gelatine suitable for use in the present invention include all kinds of gelatine currently known, for instance acid pigskin or limed bone gelatine, acid or base hydrolysed gelatines, but also derivatised gelatines like for instance phthalated, acetylated or carbamoylated, or gelatine derivatives with trimellytic acid. The preferred gelatine is a gelatine with an isoelectric point between 7 and 9.5.
The polymers mentioned above having reactive groups or groups having the possibility to react with a crosslinking agent can be cross linked to form 35 essentially non water-soluble layers. Such ~l 6~?~995 crosslinking bonds may be either covalent or ionic.
Thus crosslinking allows for the modification of the physical properties of the layers, like for instance in water absorbency of the layer, but also in resistance against physical damage.
Crosslinking agents suitable for this particular use are selected depending on the water-soluble polymer used. They may include for example chromium salts-(such as chrome alum or chromium acetate), aldehydes (such as formaldehyde, glyoxal or glutaraldehyde), N-methylol compounds (such as dimethylolurea or methylol-dimethylhydantoin), dioxane derivatives (such as 2,3-dihydroxydioxane), activated vinyl compounds (such as 1,3,5-triacrylolyl hexahydro-s-triazine or bis(vinylsulfonyl)methyl ether), activated halogen compounds (such as 2,4-dichloro-6-hydroxy-s- triazine), amino or substituted-amino modified triazines, epoxides, carbamoyl-pyridinium compounds or mixtures of two or more of above mentioned crosslinking agents.
The layers and coatings can be modified by addition of fillers. Possible fillers of the kind are for instance kaolin, talcum, Ca- or Ba-carbonate, silica, titanium oxide, chalk, bentonite, zeolite, aluminium silicate, calcium silicate, silicium oxide, colloidal silicium oxide and the like. Likewise the possibility exists to use organic inert particles such as polymer beads. This includes beads made from polyacrylates, polystyrene or different copolymers of acrylates and styrene. These fillers are selected according to the intended use of the printed image.
Some of these compounds cannot be used if the printed image is to be used as a transparency. Alternatively they are of interest in cases where the printed image is to be used as a reflected image. Often the introduction of such filler causes a desired matte 689q5 --ll--surface.
The image recording elements of this invention comprise a support for the ink receiving layer. A wide variety of such supports are known and commonly employed in the art. They include, for example, those supports used in the manufacture of photographic clear films including cellulose esters such as cellulose triacetate, cellulose acetate propionate or cellulose acetate butyrate, polyesters such as poly(ethylene terephthalate), polyamides, polycarbonates, polyimides, polyolefins, poly(vinyl acetals), polyethers, polyvinyl chloride and polysulfonamides. Polyester film supports, and especially poly(ethylene terephthalate) are preferred because of their excellent dimensional stability characteristics.
Likewise the usual supports commonly used in manufacturing of opaque photographic material can be used according to the present invention. They include baryta paper, polyethylene-coated paper, polypropylene synthetic paper, voided polyester as for instance manufactured by ICI under the trade name of MELINEX as well as voided polypropylene polyester likewise manufactured by the same company. Preferred are clear polyester, acetate, voided polyester or resin coated paper. When such support material, in particular polyester, is used a subbing layer is advantageously added first to improve the bonding of the ink receiving layer to the support. Useful subbing compositions for this purpose are well known in the photographic art and include, for example, polymers of vinylidene chloride such as vinylidene chloride/acrylonitrile/acrylic acid terpolymers or vinylidene chloride/methyl acrylate/itaconic acid terpolymers. Also usable are plain paper, comprising a wide variety of sizings, cast-coated papers and aluminium foils.
2l 6aqq5 In certain embodiments of the invention, a preferred substrate includes a base paper sheet coated with a silica and polyvinyl alcohol matrix. When such support material is used an aqueous coating of metal salts or complexes of Group IIIb elements may be coated directly on the substrate surface. The inclusion of a film forming polymer in this coating formulation is optional when the described substrate or a similar one is used. This embodiment provides a recording medium suitable for office desk top publishing of color graphics and has improved lightfastness properties.
The ink-receiving layers or coatings according to this invention are in general coated from aqueous solutions or dispersions containing binders, additives, pigments and the like as well as the metal salts or complexes of use in the present invention. It is in many cases necessary to add surfactants to those coating solutions or dispersions allowing for smooth coating and evenness of the layers.
Examples of suitable surfactants are non-ionic surface active agents such as saponin (steroids), alkylene oxide derivatives (such as polyethylene glycol, polyethylene glycol/polypropylene glycol condensates, polyethylene glycol alkyl or alkylaryl ethers, polyethylene glycol esters, polyethylene glycol sorbitan esters, polyalkylene glycol alkylamine or amides or silicone/polyethylene oxide adducts), glycidol derivatives (such as alkenylsuccinic acid polyglycerides or alkylphenol polyglycerides), aliphatic esters of polyhydric alcohols, alkyl esters of sucrose, urethanes or ethers; a sulfuric acid ester group or a phosphoric acid ester group, such as triterpenoid type saponin, alkylcarboxylates, alkylsulfonates, alkylbenzenesulfonates, alkyl-naphthalenesulfonates, alkyl sulfuric acid esters alkyl ~l 68~q~
phosphoric acid esters, N-acyl-N-alkyltaurines, sulfosuccinates,sulfo-alkylpolyoxyethynenealkylphenyl ethers or polyoxyethylene alkyl-phosphates and cationic surface active agents such as alkylamine salts, aliphatic or aromatic quaternary ammonium salts (such as pyridinium or imidazolium salts) or phosphonium or sulfonium salt containing an aliphatic or heteroxyclic ring. Equally suitable are fluorinated or perfluorin-ated derivatives of the above mentioned compounds.
Specific examples of these surface active agents are those described in, e.g. U.S. Pat. Nos. 2,240,472, 1,831,766, 3,158,484, 3,210,191, 3,294,540 and 3,507,660, British Pat. Nos. 1,012,495, 1,022,878, 1,179,290 and 1,198,450, U.S. Pat. Nos. 2,739,891, 2,823,123, 3,068,101, 3,415,649, 3,666,478 and 3,756,828, British Pat. No. 1,397,218, U.S. Pat. No, 1,397,218, U.S. Pat. Nos. 3,133,816, 3,441,413, 3,475,174, 3,545,974, 3,726,683 and 3,843,368, Belgium Pat. No. 731,126, British Pat. Nos. 1,138,514, 1,159,825 and 1,374,780, 2nd U.S. Pat. Nos. 2,271,623, 2,288,226, 2,944,900, 3,253,919, 3,671,247, 3,772,021, 3,589,906 and 3,754,924, all incorporated by reference.
Besides being necessary for coating purpose surfactants may have an influence on the quality of the generated images and may therefore be selected with this specific goal in mind. There lS in general no limitation to the use of the types of surfactants used as long as they do not interfere with the metal salts and complexes used in the present invention and later with the printing inks used for the production of the image .
Typically the receiving layers according to this invention have a thickness in the range of 0.5 to 30 microns, preferably in the range of 2.0 to 15 microns dry thickness.
~l 6~995 The coating solutions or coating dispersions can be coated onto a support by any number of suitable procedures. Usual coating methods include immersion or dip coating, roll coating, air knife coating, extrusion, doctor blade coating, cascade coating, curtain coating, rod coating, rod and/or blade metering, or by spraying. An ink receiving system can be built up by several layers. These layers can be coated one after the other or simultaneously. It is likewise possible to coat a support on both sides with ink receiving layers. Alternatively the backside may be coated with auxiliary layers like for instance anticurl layers or antistatic layers. The way however by which the claimed receptive layers are produced is 1~ not to be considered limiting for the present invention. In addition to the above mentioned elements ink receiving layers as claimed in this invention can contain additional additives aimed at improving appearance as well as performance of the produced imaging material. It can for instance be beneficial to add brightening agents to the layers of receiving sheets. There is in general no limitation as to the kind of brighteners used. Suitable brightening agents are for instance stilbenes, coumarines, triazines or oxazoles or others known in the art.
Light stability can in general be improved further by adding UV absorbers to the layers. Although UV
absorbers are in general added to the topmost layer of the system there is no limitation as to where within the ink receiving element such light absorbing compounds are added. The amount of UV-absorber can vary from 200-2000 mg/m2, preferably however from 400mg to lOOOmg/m2. Suitable types of absorbers can be for example benztriazoles, benzophenones, derivatives of acrylonitrile, thiazolidone, oxazole and thiazole.
It is further known that images can be protected from degradation by the addition of light stabilizers and antioxidants. Examples of such compounds are among others sterically hindered phenols, sterically hindered amines, chromanols and the like. Above mentioned additives can, if water-soluble, be added as aqueous solutions. In the case where these compounds are not water soluble the above mentioned additives can be incorporated in the ink receiving element by common techniques known in the art. The compound is typically dissolved in a solvent selected from organic solvents compatible with water, such as alcohols, glycols, ketones, esters, amides and the like. Alternatively the compounds can be added to the layer as fine dispersions, as oil emulsions, as cyclodextrine inclusion complex or loaded as fine dispersions on to latex particles. Ultrasound or milling can be used to dissolve or disperse marginally soluble additives.
Inks for ink jet printing are well known. These ink consist in essence of a liquid vehicle and dissolved or suspended therein a dye or pigment. The liquid vehicle of the inks employed for the printing according to the present invention consist in general of water or a mixture of water and a miscible organic component such as ethylene glycol, and higher molecular glycolds, glycerine, dipropylene glycol, polyethylene glycol, amides, polyvinylpyrrolidone, N-methylpyrrolidone, cyclohexylpyrrolidone, carboxylic acids and esters, ethers, alcohols, organosulfoxides, sulfolane, dimethylformamide, dimethylsulfoxyde, cellosolve, polyurethanes, acrylates and the like.
The non water part of the printing ink generally serves as humefactant, cosolvent, viscosity regulating agent, ink penetration additive, levelling agent or drying agents. The organic component has in most cases ` -a boiling point which is higher than that of water. In addition aqueous inks may contain inorganic or organic salts to impart electrical conductivity. Examples of such salts include nitrates, chlorides, phosphates and the like and salts of low molecular, water soluble organic acids like acetates, oxalates and similar. The dyes and pigments suitable for the preparation of inks usable with the receiving sheets of this invention cover practically all classes of known colouring compounds. Dyes or pigments typically used for that purpose are described in EP 0 559 324 (Isganitis et al.).
other additives present in usable inks are for instance surfactants, optical brighteners UV absorbers or light stabilisers, biocides and polymeric additives.
This description of inks is for illustration only and not to be considered as limiting the invention.
The following test procedures were used to evaluate and compare the ink receiving sheets described in the present invention, unless otherwise specified in the examples.
Waterfastness Test sheets prepared according to the described examples were printed on an IRIS ink jet printer model 3024 with standard Iris writing fluids. lcm by lcm uniform patches were printed in cyan, magenta, yellow and black to a density of about 2. After printing and drying under ambient conditions for 12 hrs the density of the individual patches were measured with an X-rite densitometer. The samples were then placed in deionized water at 20C for one minute. After one minute the samples were removed from the water, allowed to drip dry and remeasured. The difference between the densitometer readings was recorded as % loss of optical density and termed waterfastness.
21 6~9q5 Light Stability Printed sample sheets obtained according to the same procedure as needed for the above described water fastness test were measured on the X-rite densitometer and exposed in an Atlas Weather-Ometer with a 2500 W-Xenon lamp under conditions analogue to those set for in ISO norm 10 977. The samples were exposed until a total illumination of 40 kJoule/cm2 was reached. The results were reported as % loss of density as determined by the difference of the readings before and after exposure.
ExamPle 1 18g gelatine with an isoelectric point of over seven (Stoess type 70810) were dissolved in 360ml deionized water. To this solution were added 12g hydroxyethyl cellulose. (Tylose H20, obtained from Hoechst AG) and l.Og of a surfactant (Olin lOG, obtained from Olin Corporation). This solution was divided into twelve equal portions and to each portion was added the amount of metal-nitrate x H20 indicated in Table 1. This amount corresponds to 0.125 mMol nitrate-salt/g total binder. A control sôlution contained no salt. Immediately before coating 0.55g of a 3~ solution of 2-(4-dimethyl-carbamoyl-pyridino)-ethane-sulfonate was added to each portion. These solutions were then coated onto a subbed polyester support using a barcoater. The final dry thickness of the layers were approximately 8~. After drying at room temperature for 12 hours the prepared ink receiving sheets were treated as described in the above testing procedures. The obtained results are reported in Table 1.
- Zl 6~995 Metal Salt x 9/9 Binder Vaterfastness Loss of Density in H2O % of iritial De~sity C M Y K
La~NO~)~ 6H2O 0.054 11 <1 4 8 6 Eu(N3)3 6H2O 0.056 1 <1 4 9 9 rb(NO3)~ SH2O 0.056 1 <1 3 11 5 Ce(N03)3 6H20 0.054 1 <1 3 9 8 Nd(NO3)~ 6H20 0.055 1 <1 5 11 12 Y(NO3)3 SH20 0.046 1 <1 4 7 9 Mg(NO~)2 6H20 0.032* c2 19 17 36 27 Ba(~03)2 0.033~ c 2112 27 27 Ca(NO3)2 4H2O 0.030~ c 27 18 33 27 Zn(N~)2 6H2 0.037~ c 26 20 39 29 Al(NO~)~ 9H?O 0.047 c 45 11 13 29 None 0 c 3620 31 36 KEY: 1 Invention 2: Comparison ~ Coatings ~ith most of the comparative salts ~lere c~oudy and could not possibly be used for transparent ink receiving materia~.
From the results in Table 1 can be seen that excellent waterfastness can be achieved with recording media according to the present invention while appreciable dye bleeding occurred with salts according to the:state of the art.
ExamPle 2 Ink receiving sheets were prepared in an analogous way as described in Example 1. In two cases the metal salts were replaced by cationic polymeric mordants (U.S. 4,575,465) as indicated in Table 2.1 and 2.2.
21 689~5 TABLE 2.1 Metal Salt x 9/9 Binder Uaterfastness Loss in Density X
H20 after nin. in ~ater C M r K
La~N~)3 6H2 0.054 1 <1 5 9 8 Y(N~ )3 5H20 0.056 1 ~1 3 10 8 Ce(N03)~ 6H70 0.054 1 <1 6 9 13 M9(N3)2 6H2 0.032 c2 18 13 31 23 Mordant 1 3 0.8 c 12 30 33 27 I 0 Mordant 2 3 0.8 c 5 12 21 11 None 37 15 29 31 KEr: 1 Invention 2: Comparison 3 US 4,575,465 TABLE 2.2 1 5 Metal Salt x 9/9 Binder Light stability Loss in Density % H20 after ~OkJ At~as C M Y K
La(NO~)1 6H20 0.054 1 1 13 30 39 Y(N03)~ 5H20 0.056 1 4 11 30 40 Ce(NO~)3 6H20 0.054 1 0 13 27 39 2 0 Mg(NO~)2 6H20 0.032 c2 9 13 32 31 Mordant 1 3 0.8 c 9 65 47 65 Mordant 2 3 0.8 c 5 93 50 87 None 9 14 39 37 KEr: 1 Invention 2: Comparison 3 ~'S 4,575,465 From the results given in Table 2.1 the efficacy of the salts claimed in this invention in improving the waterfastness of the dyes in printed images is evident.
It can further-more be, seen from table 2.1 and 2.2 that the efficacy in improving waterfastness by cationic mordants according to the state of the art is considerably lower than with the salts according to this invention. What is however particularly evident is that no deterioration of light stability occurs in - 21689~5 presence of these salts where however the stability against light is completely lost in presence of these mordants.
Example 3 A coating mixture with a solid content of about 20% was prepared as follows, comprising:
1. Gelatine 2.49 (Stoess type 69 426) 2. Polyurethane 3.0g (Daothan 1226 Hoechst, 40% aquous sol.) 3. Kaolin 10.09 4. Olin 10G 0 19 (Surfactant, Olin Corp.) 5. Crosslinker 0.059 (idem Example 1) 6- La(NO3)3~ H20 5 09 7. Uater to 1009 This mixture was bar coated onto an unsized high quality paper in an amount of 1.2g/m2 (sample A). A
control (sample B) was prepared in an analogous way but without the addition of Lanthanum salt. Waterfastness and light stability were determined as described above.
The results are shown in Table 3.1.
TABLE 3.1 25Sample Uaterfastness: % LossLight Stability: % Loss (20 KJ Atlas) (1 Minu-e Uater) C M r K C M r K
A ~1 5 41 <1 3 56 27 27 B 13 25 ô7 31 7 67 50 60 The same samples were prepared but coated onto heavy weight water colour paper. The results are shown in Table 3.2.
21 6~95 TABLE 3.2 Sample Uaterf~st.ess: % LossLight Stability: % Loss (1 Mirute Uater) (20 K~ Atlas) C M Y K C M r K
A ~1 <1 14 <1 3 35 33 33 B 13 32 n 39 6 32 68 66 The results in Table 3.1 and 3.2 clearly show the effect of the Lanthanum-salt on diffusion of the dyes in water, also in the case where the claimed system is applied to plain paper. Light stability is in both cases improved when compared to the sample not containing lanthanum salt.
Example 4 In this example lanthanum nitrate coatings were applied directly to a substrate surface and were evaluated for lightfastness and tendency to fade.
Four samples A, B, C & D were prepared. The substrate used in all samples is a base paper sheet coated with a silica and polyvinyl alcohol matrix.
Particular physical details of the support are as follows:
24 lb base sheet tLock Haven - alkaline wood fiber matrix - 60/40 harduood/softwood) 25X CaC03 filler (precipitated H0/L0); internally sized ~ith ASA; surface sized with starch.
Physical properties of the base sheet include:
Basis Weight 24 lb Caliper (mils O.ûOl inch) 4.0 Moisture (percent) 4.8~.5 Sheffield Smoothness (Sheffield units) 40 Porosity (Gurley) 60 The base sheet has a brightness (GE percent) of 90+ and opacity (percent) of 94.
3 0 Strength properties include: Stiffness (Gurley): 2 mgf; Tear MD & CD both S0~ 9 and Mullen 30~ psi.
Silica coating: fumed silica 30 parts; precipita~ed silica 70 parts; polyvinyl alcohol 40 parts; dispersant and surfactants 3.1 parts. This coating is applied to the base sheet in the range of 3-S lbs/3 000 ft.
21 6~'395 The silica coating is applied to the base sheet in 2 applications using a rod coater. A lanthanum nitrate (water soluble salt of Group IIIb) is applied to the surface of the silica coating in either a 4% (Sample B) or a 3% (Sample C) aqueous solution using a rod coater.
Other Group IIIb metals that may be used include scandium, yttrium, cerium, neodymium, praseodymium, europium and ytterbium. The backside coating of the substrate consists of a 0.5% calcium sterate solution that is used as an anticurl agent and to reduce the coefficient of friction.
The support without any coating (Sample A), and coated with a quartinary amine dye fixative (Sample D), were used as controls. The amine dye fixative coating formulation includes a quarternised amine ester, lauryldimethylbenzyl-ammoniumchloride, a polyamine salt aqueous solution and a silicone derivative.
Liqhtfastness Evaluation The effect of lanthanum nitrate on i-nk jet printing ink color was evaluated before and after lightfastness testing. Hewlett Packard 500 series ink jet printing ink color was used in this example but any other commercially available color inks are also suitable for use in the invention. Samples A, B, C and D were exposed to carbon arc light for periods of 1, 2 and 4 hours. Color readings (L*A*B*) were taken on exposed and unexposed areas. The results are shown in the Table 4.1 below.
21 6~995 TABLE 4.1 EFFECTS Of TOP COATING ON COLOR (L*A*B*) CONDITION COLOR L* A* B*
A - CONTROL BLACK 34.43-12:04 - 6.49 B BLACK 40.70 - 8.31-~8.43 C BLACK 39.69 - 8.89- 7.13 D - CONTROL BLACK 32.43- 6.64 - 8.00 A - CONTROL CYAN 50.85-33.09 -54.05 B CYAN 50.05 -30.65-53.91 C CYAN 51.30 -32.51-53.59 D - CONTROL CYAN 49.71-27.07 -56.35 A - CONTROL YELLOU 89.78- 1.76 104.30 B rELLOU 89.31 - 0.53100.81 1 5 C rELLOU 89.66 - 1.70102.51 D - CONTROL YELLOU 88.28- 0.63 98.58 A - CONTROL MAGENTA 48.88 60.84 -53.20 B MAGENTA 47.56 57.56-54.58 C MAGENTA 47.59 59.24-54.94 D - CONTROL MAGENTA 50.67 59.80 -47.09 KEY: Sample A - Contro~: 2 lanthanum nitrate Samp(e B - 0.651 9/m2 (0.4 lb/3,000 sq.ft.) ~anthanum nitrate Samp~e C - 0.488 g/m (0.3 ~b/3,000 sq.ft.) ~anthanum nitrate Sample D - Contro~: quartinary amine dye fixative The tendency to fade of the coated samples above were also evaluated after exposing treated papers to 1, 2 and 4 hours of carbon arc light. The results are shown in the Table 4.2 below.
3 O TABLE 4.2 THE EFFECTS OF TOP COATING ON FADE
SAMPLE A (CONTROL) 3 5 COLOR1 HR. FADE D.E.2 HR. FADE D.E.4 HR. FADE D.E
BLACK 7.78 10.53 25.64 CYAN 13.91 18.58 34.54 YELLOU 3.10 3.71 6.39 MAGENTA 18.98 30.54 46.80 4 0 AVERAGE FADE - 18.29 2 1 6~9~5 SAMPLE B ~4% La(No3)3) COLOR 1 HR. FADE D.E.2 HR. FADE D.E. 4 HR. FADE D.E.
BLACK 3.79 6.11 11.73 CYAN 18.78 24.33 35.42 YELLOU 2.20 2.70 3.72 MAGENTA 20.13 29.58 44.97 AVERAGE FADE - 16.95 SAMPLE C ~3% La(No3)3) COLOR 1 HR. FADE D.E.2 HR. FADE D.E. 4 HR. FADE D.E.
BLACK 5.28 7.74 16.39 CYAN 16.09 22.19 33.35 1 5 YELLO~ 3.0 3.86 5.78 MAGENTA 20.03 30.88 47.39 A~'ERAGE FADE - 17.66 SAMPLE D ~GONTROL~
2 0 COLOR 1 HR. FADE D.E.2 HR. FADE D.E. 4 HR. FADE D.E.
8LACK 4.03 6.31 17.45 CYAN 27.92 40.03 66.43 YELLO~ 6.32 8.52 22.41 MAGENTA 16.11 28.24 56.36 2 5 AV_RAGE FADE - 25.01 Results show the lanthanum nitrate coated sheets exhibit less fade than the control (sample A) treated with nothing at all. The amine coated support (sample D) shows that the paper actually gets duller faster than no coating (sample A).
Advantageously, the present invention provides image receiving media for use in ink jet recording which has excellant water resistance and lightfastness.
It will be recognized by those skilled in the art that the invention has wide application as a media which allows the possibility to print images intended to match those on silver halide pho.tographic material.
Further advantage is obtained by providing a.recording medium which is suitable for office desk top publishing of color graphics for ink jet printers.
Therefore, although the invention has been described with reference to certain preferred embodiments, it will be appreciated that other composite structures and processes for their fabrication may be devised, which are nevertheless within the scope and spirit of the invention as defined in the claims appended hereto.
The particular problem of waterfastness has in the past been addressed by a wide variety of techniques.
Thus solutions to the problem have been proposed for by specific formulations of the inks-or alternatively in many cases by specific modifications of the receiving layers. The two approaches have in many cases been combined.
One attempt to improve waterfastness has been the use of reactive dyes. So for instance in US 4 443 223 (Kissling et al.), US 5 098 475 (Winnik et al.), US 5 074 914 (Shirotz et al.), US 5 230 733 (Pawlowski et al.), JSDC (1993) 109, 147 (S.O. Aston et al.) and references cited therein. Although some improvement has been achieved by this technique no satisfactory results can in general be obtained due to the fact that the conditions which are possible in practice in a printing environment are less than optimal and do in general not suffice to achieve reaction of these dyes with given binders. Inks based on colloidal dye dispersions and polymers in inks have been proposed so for in instance in US 5,100,471 (Wink et al.), 5,017,644 (Fuller et al.), 4,990,186 (Jones et al.), US
4,597,794 (Kasha et al.), US 4,210,566 (Murrey), US
4,136,076 (Dennison et al.), US 5,224,987 (Matrick et al.), US 5,180,425 (Matrick et al.) and US 4,246,154 (Yao et al.). Inks based on colloidal dyes as well as on hot melt inks, although yielding images with good waterfastness and good light stability, do in many cases lead to images which are not transparent and therefore less suited to be used for projections.
Often involved modifications of the inks have the tendency to give inks liable to show precipitates upon prolonged storage. Such precipitates subsequently tend to clog the nozzles of ink jet printer.
The major attempt to achieve waterfastness in 21 6~9q5 receiving layers has been via the use of polymers, particular cationic polymers in conjunction with inks containing acidic dyes.
US 4,877,680 describes cationic polymers together with neutral binders. Cationically modified polyvinyl alcohol has been described in US 4,783,376. US
4,575,465 claims quaternised polyvinyl pyridine to achieve waterfastness. US 4,554,181 describes the use of a combination of cationic polymers and polyvalent metal salts since only such combinations and not the single elements tend to provide the sought for properties.
Although good waterfastness can in general be obtained with a wide variety of cationic polymers they tend to show a severe drawback in that they impair the light fastness of the printed images.
The introduction of inorganic pigments, fillers, minerals, metal salts and metal oxides have been proposed. US 4,116,910 (Rudolphy et al.) propose the use of derivatives of metals of Group II of the periodic table together with natural resin. JP 6025 7285 (Nakadsugawa et al.) claims an improvement of light stability by addition of transition metal oxides.
Waterfastness can preferentially be achieved by addition of metal oxides together with cationic pigments or polymers to the receiving layers. US
5,104,730 (Misuda et al.) and US 4,819,166 (Misuda et al.) describe porous recording sheets where the porous layer is mainly made of pseudo boehmite, a colloidal aluminium oxide hydroxide. Although in general satisfactory waterfastness can be achieved the layers obtained by this method are slightly opaque and show severe tendency to become brittle with time and on exposure to light. All the above mentioned solutions fulfil only partly the requirements of image receiving - 2l 6~95 layers for modern ink jet printing. In many cases these solutions lead moreover only to material suitable for quite restricted applications. Improvements incorporated into ink receiving layers, widely applicable to modern ink jet printing technology, are therefore the scope of this invention.
Disclosure of the Invention Accordingly, an object of the present invention is to provide image receiving media for use in ink jet recording which are particularly excellent in water resistance.
Another object of the invention is to provide recording media which achieve waterfastness without affecting the stability of the obtained images against the detrimental effect of light.
A further objective is to obtain recording layers with excellent surface properties showing high resistance to physical damage like for instance scratching, resistance to cracking and moist rubbing on the surface.
Still another objective of the present invention is to provide receiving layers with excellent ink receiving properties.
Another objective of the invention is to obtain recording media which satisfy in sharpness and surface lustre of the recorded image and are free from stickiness of the surface even under highly humid conditions.
A further objective is to provide recording media suitable to be used on ink jet printers of the continuous stream type.
A further object is to provide media which allow the possibility to print images intended to match those on silver halide photographic material.
21 6~995 It is furthermore the objective of this invention to provide clear, scattering free recorded images on transparent base material intended to be projected.
An additional objective of this invention is to obtain a recording medium suitable for office desk top publishing of color graphics which has improved lightfastness.
This invention proposes to achieve above objectives by providing a recording material wherein said receiving material consists of a support, opaque or transparent, onto which has been coated a receiving layer or layers comprising a binder or a mixture of different binders, fillers ! natural or synthetic polymers and wherein are imbedded or coated at least one trivalent salt of the metals of Group IIIb of the periodic table of the elements or complexes which comprise trivalent ions of the metals of Group IIIb of the periodic table of the elements.
To these layers can be added a wide variety of additional elements to further improve the pictorial or/and physical properties of the images obtained when printed on an ink jet printer.
Best Mode of Carryinq Out the Invention The present invention will now be described in detail. The ink receiving sheets according to this invention specifically relate to layers wherein are imbedded or coated trivalent metal salts taken from the Group IIIb or complexes containing trivalent ions of these metals of the periodic table of elements, in particular salts or ions of the metals of atomic number 21, 39, 57 through to 60 and atomic of numbers 63 to 70. Preferred are the salts or complexes of Y, La, Ce, Pr, Nd and Yb. These salts or complexes may be in form of water soluble or in form of water insoluble 2l 68~5 compounds.
The water soluble metal salts of this invention can be present as halides, salts of most oxo acids, sulphates, nitrates, perchlorates, bromates but also as carbonates, phosphates or hydroxides. Also salts of organic acids can be used.
Often the compounds are present as dissociated hydrated species or aqueous complexes and are in general used as such. The salts of the invention can also be used as mixtures made up of single species.
There is no limitation as far as the ratios of the mixtures are concerned.
The compounds of the invention can be used in form of their double salts containing besides the claimed Group IIIb elements Ca, Mg, Ba, Na, K or the like.
Double salts can be in form of, for instance, sulphates, nitrates, phosphates or in other forms known to those skilled in the art. The use of metal complexes is equally possible under the terms of the invention. Examples of this type are those with chelating ligands like for instance diketones or organic phosphates. Some of the salts of the claimed compounds when readily water-soluble are introduced into the receiving sheets as aqueous solutions. In many instances the claimed metal derivatives are only sparingly soluble in water and have to be applied in colloidal form or in form of fine dispersions.
The salts or complexes of Group IIIb elements coated directly on the substrate or incorporated into the ink receiving layers of the proposed recording material are added in an amount of 0.05 - 3.0g/m2, preferentially in amount of 0.1 to O.9g/m2. In the embodiment where the salts or complexes of Group IIIb elements are coated directly on the substrate, they are preferably applied as 3-5% aqueous solutions on the 2l 68q95 surface of the substrate. After evaporation of the aqueous solution the salts or complexes essentially are absorbed into the substrate surface. In this embodiment a preferred substrate includes a base paper sheet coated with a silica and polyvinyl alcohol matrix prior to application of the coating solution.
The use of the salts or complexes of the group IIIb perform most efficiently when they are imbedded into layers or coated onto substrates which have the ability to rapidly absorb aqueous inks. The absorbing power of the layer is to a great extent a function of the materials used but likewise of the physical properties of the layers and the substrate. The compounds that make up the imbedding matrix include in general water soluble film forming polymers.
These film forming water soluble polymers may include, for example, natural polymers or modified products thereof such as albumin, gelatine, casein, starch, gum arabic, sodium alginate, hydroxyethyl cellulose, carboxylmethyl cellulose, ~ - or y-cyclodextrine and the like; polyvinyl alcohol;
complete or partial saponified, products of copolymers of vinyl acetate and other monomers; homopolymers or copolymers with other monomers of unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid, crotonic acid and the like; homopolymers or copolymers with other vinyl monomers of sulfonated vinyl monomers such as vinylsulfonic acid, sulfonated styrene and the like; homopolymers or copolymers with other vinyl monomers of (meth)acrylamide; homopolymers or copolymers with other monomers of ethylene oxide;
polyurethanes, polyamides having such groups as mentioned above; polyethyleneimine, polyacrylamides, water soluble nylon type polymers, polyvinylpyrrolidone, polyester; and so on. All these ~l 6~995 can also be used in mixtures.
These polymers can be blended with non water soluble natural or synthetic high molecular compounds.
Suitable synthetic polymer materials can be chosen from among poly(vinyllactams, acrylamide`polymers, polyvinyl alcohol and its derivatives, polyvinylacetals, polymers of alkyl and sulfoalkyl acrylates and methacrylates, hydrolyzed polyvinyl acetates, polyamides, polyvinyl pyridines, acrylic acid polymers, maleic anhydride copolymers, polyalkylene oxides, methacrylamide copolymers, polyvinyl oxazolidinones, maleic acid copolymers, vinylamine copolymers, methacrylic acid copolymers, acryloyloxyalkylsulfonic acid copolymers, sulfoalkylacrylamide copolymers, polyalkyleneimine copolymers, polyamines, N,N-diallylaminoalkyl acrylates, vinyl imidazole copolymers, vinyl sulphide copolymers, halogenated styrene polymers, amineacrylamide polymers, polypeptides and the like.
Non-water soluble polymers can also be used in some cases.
In the case where one of the water-soluble polymers is gelatine the types of gelatine suitable for use in the present invention include all kinds of gelatine currently known, for instance acid pigskin or limed bone gelatine, acid or base hydrolysed gelatines, but also derivatised gelatines like for instance phthalated, acetylated or carbamoylated, or gelatine derivatives with trimellytic acid. The preferred gelatine is a gelatine with an isoelectric point between 7 and 9.5.
The polymers mentioned above having reactive groups or groups having the possibility to react with a crosslinking agent can be cross linked to form 35 essentially non water-soluble layers. Such ~l 6~?~995 crosslinking bonds may be either covalent or ionic.
Thus crosslinking allows for the modification of the physical properties of the layers, like for instance in water absorbency of the layer, but also in resistance against physical damage.
Crosslinking agents suitable for this particular use are selected depending on the water-soluble polymer used. They may include for example chromium salts-(such as chrome alum or chromium acetate), aldehydes (such as formaldehyde, glyoxal or glutaraldehyde), N-methylol compounds (such as dimethylolurea or methylol-dimethylhydantoin), dioxane derivatives (such as 2,3-dihydroxydioxane), activated vinyl compounds (such as 1,3,5-triacrylolyl hexahydro-s-triazine or bis(vinylsulfonyl)methyl ether), activated halogen compounds (such as 2,4-dichloro-6-hydroxy-s- triazine), amino or substituted-amino modified triazines, epoxides, carbamoyl-pyridinium compounds or mixtures of two or more of above mentioned crosslinking agents.
The layers and coatings can be modified by addition of fillers. Possible fillers of the kind are for instance kaolin, talcum, Ca- or Ba-carbonate, silica, titanium oxide, chalk, bentonite, zeolite, aluminium silicate, calcium silicate, silicium oxide, colloidal silicium oxide and the like. Likewise the possibility exists to use organic inert particles such as polymer beads. This includes beads made from polyacrylates, polystyrene or different copolymers of acrylates and styrene. These fillers are selected according to the intended use of the printed image.
Some of these compounds cannot be used if the printed image is to be used as a transparency. Alternatively they are of interest in cases where the printed image is to be used as a reflected image. Often the introduction of such filler causes a desired matte 689q5 --ll--surface.
The image recording elements of this invention comprise a support for the ink receiving layer. A wide variety of such supports are known and commonly employed in the art. They include, for example, those supports used in the manufacture of photographic clear films including cellulose esters such as cellulose triacetate, cellulose acetate propionate or cellulose acetate butyrate, polyesters such as poly(ethylene terephthalate), polyamides, polycarbonates, polyimides, polyolefins, poly(vinyl acetals), polyethers, polyvinyl chloride and polysulfonamides. Polyester film supports, and especially poly(ethylene terephthalate) are preferred because of their excellent dimensional stability characteristics.
Likewise the usual supports commonly used in manufacturing of opaque photographic material can be used according to the present invention. They include baryta paper, polyethylene-coated paper, polypropylene synthetic paper, voided polyester as for instance manufactured by ICI under the trade name of MELINEX as well as voided polypropylene polyester likewise manufactured by the same company. Preferred are clear polyester, acetate, voided polyester or resin coated paper. When such support material, in particular polyester, is used a subbing layer is advantageously added first to improve the bonding of the ink receiving layer to the support. Useful subbing compositions for this purpose are well known in the photographic art and include, for example, polymers of vinylidene chloride such as vinylidene chloride/acrylonitrile/acrylic acid terpolymers or vinylidene chloride/methyl acrylate/itaconic acid terpolymers. Also usable are plain paper, comprising a wide variety of sizings, cast-coated papers and aluminium foils.
2l 6aqq5 In certain embodiments of the invention, a preferred substrate includes a base paper sheet coated with a silica and polyvinyl alcohol matrix. When such support material is used an aqueous coating of metal salts or complexes of Group IIIb elements may be coated directly on the substrate surface. The inclusion of a film forming polymer in this coating formulation is optional when the described substrate or a similar one is used. This embodiment provides a recording medium suitable for office desk top publishing of color graphics and has improved lightfastness properties.
The ink-receiving layers or coatings according to this invention are in general coated from aqueous solutions or dispersions containing binders, additives, pigments and the like as well as the metal salts or complexes of use in the present invention. It is in many cases necessary to add surfactants to those coating solutions or dispersions allowing for smooth coating and evenness of the layers.
Examples of suitable surfactants are non-ionic surface active agents such as saponin (steroids), alkylene oxide derivatives (such as polyethylene glycol, polyethylene glycol/polypropylene glycol condensates, polyethylene glycol alkyl or alkylaryl ethers, polyethylene glycol esters, polyethylene glycol sorbitan esters, polyalkylene glycol alkylamine or amides or silicone/polyethylene oxide adducts), glycidol derivatives (such as alkenylsuccinic acid polyglycerides or alkylphenol polyglycerides), aliphatic esters of polyhydric alcohols, alkyl esters of sucrose, urethanes or ethers; a sulfuric acid ester group or a phosphoric acid ester group, such as triterpenoid type saponin, alkylcarboxylates, alkylsulfonates, alkylbenzenesulfonates, alkyl-naphthalenesulfonates, alkyl sulfuric acid esters alkyl ~l 68~q~
phosphoric acid esters, N-acyl-N-alkyltaurines, sulfosuccinates,sulfo-alkylpolyoxyethynenealkylphenyl ethers or polyoxyethylene alkyl-phosphates and cationic surface active agents such as alkylamine salts, aliphatic or aromatic quaternary ammonium salts (such as pyridinium or imidazolium salts) or phosphonium or sulfonium salt containing an aliphatic or heteroxyclic ring. Equally suitable are fluorinated or perfluorin-ated derivatives of the above mentioned compounds.
Specific examples of these surface active agents are those described in, e.g. U.S. Pat. Nos. 2,240,472, 1,831,766, 3,158,484, 3,210,191, 3,294,540 and 3,507,660, British Pat. Nos. 1,012,495, 1,022,878, 1,179,290 and 1,198,450, U.S. Pat. Nos. 2,739,891, 2,823,123, 3,068,101, 3,415,649, 3,666,478 and 3,756,828, British Pat. No. 1,397,218, U.S. Pat. No, 1,397,218, U.S. Pat. Nos. 3,133,816, 3,441,413, 3,475,174, 3,545,974, 3,726,683 and 3,843,368, Belgium Pat. No. 731,126, British Pat. Nos. 1,138,514, 1,159,825 and 1,374,780, 2nd U.S. Pat. Nos. 2,271,623, 2,288,226, 2,944,900, 3,253,919, 3,671,247, 3,772,021, 3,589,906 and 3,754,924, all incorporated by reference.
Besides being necessary for coating purpose surfactants may have an influence on the quality of the generated images and may therefore be selected with this specific goal in mind. There lS in general no limitation to the use of the types of surfactants used as long as they do not interfere with the metal salts and complexes used in the present invention and later with the printing inks used for the production of the image .
Typically the receiving layers according to this invention have a thickness in the range of 0.5 to 30 microns, preferably in the range of 2.0 to 15 microns dry thickness.
~l 6~995 The coating solutions or coating dispersions can be coated onto a support by any number of suitable procedures. Usual coating methods include immersion or dip coating, roll coating, air knife coating, extrusion, doctor blade coating, cascade coating, curtain coating, rod coating, rod and/or blade metering, or by spraying. An ink receiving system can be built up by several layers. These layers can be coated one after the other or simultaneously. It is likewise possible to coat a support on both sides with ink receiving layers. Alternatively the backside may be coated with auxiliary layers like for instance anticurl layers or antistatic layers. The way however by which the claimed receptive layers are produced is 1~ not to be considered limiting for the present invention. In addition to the above mentioned elements ink receiving layers as claimed in this invention can contain additional additives aimed at improving appearance as well as performance of the produced imaging material. It can for instance be beneficial to add brightening agents to the layers of receiving sheets. There is in general no limitation as to the kind of brighteners used. Suitable brightening agents are for instance stilbenes, coumarines, triazines or oxazoles or others known in the art.
Light stability can in general be improved further by adding UV absorbers to the layers. Although UV
absorbers are in general added to the topmost layer of the system there is no limitation as to where within the ink receiving element such light absorbing compounds are added. The amount of UV-absorber can vary from 200-2000 mg/m2, preferably however from 400mg to lOOOmg/m2. Suitable types of absorbers can be for example benztriazoles, benzophenones, derivatives of acrylonitrile, thiazolidone, oxazole and thiazole.
It is further known that images can be protected from degradation by the addition of light stabilizers and antioxidants. Examples of such compounds are among others sterically hindered phenols, sterically hindered amines, chromanols and the like. Above mentioned additives can, if water-soluble, be added as aqueous solutions. In the case where these compounds are not water soluble the above mentioned additives can be incorporated in the ink receiving element by common techniques known in the art. The compound is typically dissolved in a solvent selected from organic solvents compatible with water, such as alcohols, glycols, ketones, esters, amides and the like. Alternatively the compounds can be added to the layer as fine dispersions, as oil emulsions, as cyclodextrine inclusion complex or loaded as fine dispersions on to latex particles. Ultrasound or milling can be used to dissolve or disperse marginally soluble additives.
Inks for ink jet printing are well known. These ink consist in essence of a liquid vehicle and dissolved or suspended therein a dye or pigment. The liquid vehicle of the inks employed for the printing according to the present invention consist in general of water or a mixture of water and a miscible organic component such as ethylene glycol, and higher molecular glycolds, glycerine, dipropylene glycol, polyethylene glycol, amides, polyvinylpyrrolidone, N-methylpyrrolidone, cyclohexylpyrrolidone, carboxylic acids and esters, ethers, alcohols, organosulfoxides, sulfolane, dimethylformamide, dimethylsulfoxyde, cellosolve, polyurethanes, acrylates and the like.
The non water part of the printing ink generally serves as humefactant, cosolvent, viscosity regulating agent, ink penetration additive, levelling agent or drying agents. The organic component has in most cases ` -a boiling point which is higher than that of water. In addition aqueous inks may contain inorganic or organic salts to impart electrical conductivity. Examples of such salts include nitrates, chlorides, phosphates and the like and salts of low molecular, water soluble organic acids like acetates, oxalates and similar. The dyes and pigments suitable for the preparation of inks usable with the receiving sheets of this invention cover practically all classes of known colouring compounds. Dyes or pigments typically used for that purpose are described in EP 0 559 324 (Isganitis et al.).
other additives present in usable inks are for instance surfactants, optical brighteners UV absorbers or light stabilisers, biocides and polymeric additives.
This description of inks is for illustration only and not to be considered as limiting the invention.
The following test procedures were used to evaluate and compare the ink receiving sheets described in the present invention, unless otherwise specified in the examples.
Waterfastness Test sheets prepared according to the described examples were printed on an IRIS ink jet printer model 3024 with standard Iris writing fluids. lcm by lcm uniform patches were printed in cyan, magenta, yellow and black to a density of about 2. After printing and drying under ambient conditions for 12 hrs the density of the individual patches were measured with an X-rite densitometer. The samples were then placed in deionized water at 20C for one minute. After one minute the samples were removed from the water, allowed to drip dry and remeasured. The difference between the densitometer readings was recorded as % loss of optical density and termed waterfastness.
21 6~9q5 Light Stability Printed sample sheets obtained according to the same procedure as needed for the above described water fastness test were measured on the X-rite densitometer and exposed in an Atlas Weather-Ometer with a 2500 W-Xenon lamp under conditions analogue to those set for in ISO norm 10 977. The samples were exposed until a total illumination of 40 kJoule/cm2 was reached. The results were reported as % loss of density as determined by the difference of the readings before and after exposure.
ExamPle 1 18g gelatine with an isoelectric point of over seven (Stoess type 70810) were dissolved in 360ml deionized water. To this solution were added 12g hydroxyethyl cellulose. (Tylose H20, obtained from Hoechst AG) and l.Og of a surfactant (Olin lOG, obtained from Olin Corporation). This solution was divided into twelve equal portions and to each portion was added the amount of metal-nitrate x H20 indicated in Table 1. This amount corresponds to 0.125 mMol nitrate-salt/g total binder. A control sôlution contained no salt. Immediately before coating 0.55g of a 3~ solution of 2-(4-dimethyl-carbamoyl-pyridino)-ethane-sulfonate was added to each portion. These solutions were then coated onto a subbed polyester support using a barcoater. The final dry thickness of the layers were approximately 8~. After drying at room temperature for 12 hours the prepared ink receiving sheets were treated as described in the above testing procedures. The obtained results are reported in Table 1.
- Zl 6~995 Metal Salt x 9/9 Binder Vaterfastness Loss of Density in H2O % of iritial De~sity C M Y K
La~NO~)~ 6H2O 0.054 11 <1 4 8 6 Eu(N3)3 6H2O 0.056 1 <1 4 9 9 rb(NO3)~ SH2O 0.056 1 <1 3 11 5 Ce(N03)3 6H20 0.054 1 <1 3 9 8 Nd(NO3)~ 6H20 0.055 1 <1 5 11 12 Y(NO3)3 SH20 0.046 1 <1 4 7 9 Mg(NO~)2 6H20 0.032* c2 19 17 36 27 Ba(~03)2 0.033~ c 2112 27 27 Ca(NO3)2 4H2O 0.030~ c 27 18 33 27 Zn(N~)2 6H2 0.037~ c 26 20 39 29 Al(NO~)~ 9H?O 0.047 c 45 11 13 29 None 0 c 3620 31 36 KEY: 1 Invention 2: Comparison ~ Coatings ~ith most of the comparative salts ~lere c~oudy and could not possibly be used for transparent ink receiving materia~.
From the results in Table 1 can be seen that excellent waterfastness can be achieved with recording media according to the present invention while appreciable dye bleeding occurred with salts according to the:state of the art.
ExamPle 2 Ink receiving sheets were prepared in an analogous way as described in Example 1. In two cases the metal salts were replaced by cationic polymeric mordants (U.S. 4,575,465) as indicated in Table 2.1 and 2.2.
21 689~5 TABLE 2.1 Metal Salt x 9/9 Binder Uaterfastness Loss in Density X
H20 after nin. in ~ater C M r K
La~N~)3 6H2 0.054 1 <1 5 9 8 Y(N~ )3 5H20 0.056 1 ~1 3 10 8 Ce(N03)~ 6H70 0.054 1 <1 6 9 13 M9(N3)2 6H2 0.032 c2 18 13 31 23 Mordant 1 3 0.8 c 12 30 33 27 I 0 Mordant 2 3 0.8 c 5 12 21 11 None 37 15 29 31 KEr: 1 Invention 2: Comparison 3 US 4,575,465 TABLE 2.2 1 5 Metal Salt x 9/9 Binder Light stability Loss in Density % H20 after ~OkJ At~as C M Y K
La(NO~)1 6H20 0.054 1 1 13 30 39 Y(N03)~ 5H20 0.056 1 4 11 30 40 Ce(NO~)3 6H20 0.054 1 0 13 27 39 2 0 Mg(NO~)2 6H20 0.032 c2 9 13 32 31 Mordant 1 3 0.8 c 9 65 47 65 Mordant 2 3 0.8 c 5 93 50 87 None 9 14 39 37 KEr: 1 Invention 2: Comparison 3 ~'S 4,575,465 From the results given in Table 2.1 the efficacy of the salts claimed in this invention in improving the waterfastness of the dyes in printed images is evident.
It can further-more be, seen from table 2.1 and 2.2 that the efficacy in improving waterfastness by cationic mordants according to the state of the art is considerably lower than with the salts according to this invention. What is however particularly evident is that no deterioration of light stability occurs in - 21689~5 presence of these salts where however the stability against light is completely lost in presence of these mordants.
Example 3 A coating mixture with a solid content of about 20% was prepared as follows, comprising:
1. Gelatine 2.49 (Stoess type 69 426) 2. Polyurethane 3.0g (Daothan 1226 Hoechst, 40% aquous sol.) 3. Kaolin 10.09 4. Olin 10G 0 19 (Surfactant, Olin Corp.) 5. Crosslinker 0.059 (idem Example 1) 6- La(NO3)3~ H20 5 09 7. Uater to 1009 This mixture was bar coated onto an unsized high quality paper in an amount of 1.2g/m2 (sample A). A
control (sample B) was prepared in an analogous way but without the addition of Lanthanum salt. Waterfastness and light stability were determined as described above.
The results are shown in Table 3.1.
TABLE 3.1 25Sample Uaterfastness: % LossLight Stability: % Loss (20 KJ Atlas) (1 Minu-e Uater) C M r K C M r K
A ~1 5 41 <1 3 56 27 27 B 13 25 ô7 31 7 67 50 60 The same samples were prepared but coated onto heavy weight water colour paper. The results are shown in Table 3.2.
21 6~95 TABLE 3.2 Sample Uaterf~st.ess: % LossLight Stability: % Loss (1 Mirute Uater) (20 K~ Atlas) C M Y K C M r K
A ~1 <1 14 <1 3 35 33 33 B 13 32 n 39 6 32 68 66 The results in Table 3.1 and 3.2 clearly show the effect of the Lanthanum-salt on diffusion of the dyes in water, also in the case where the claimed system is applied to plain paper. Light stability is in both cases improved when compared to the sample not containing lanthanum salt.
Example 4 In this example lanthanum nitrate coatings were applied directly to a substrate surface and were evaluated for lightfastness and tendency to fade.
Four samples A, B, C & D were prepared. The substrate used in all samples is a base paper sheet coated with a silica and polyvinyl alcohol matrix.
Particular physical details of the support are as follows:
24 lb base sheet tLock Haven - alkaline wood fiber matrix - 60/40 harduood/softwood) 25X CaC03 filler (precipitated H0/L0); internally sized ~ith ASA; surface sized with starch.
Physical properties of the base sheet include:
Basis Weight 24 lb Caliper (mils O.ûOl inch) 4.0 Moisture (percent) 4.8~.5 Sheffield Smoothness (Sheffield units) 40 Porosity (Gurley) 60 The base sheet has a brightness (GE percent) of 90+ and opacity (percent) of 94.
3 0 Strength properties include: Stiffness (Gurley): 2 mgf; Tear MD & CD both S0~ 9 and Mullen 30~ psi.
Silica coating: fumed silica 30 parts; precipita~ed silica 70 parts; polyvinyl alcohol 40 parts; dispersant and surfactants 3.1 parts. This coating is applied to the base sheet in the range of 3-S lbs/3 000 ft.
21 6~'395 The silica coating is applied to the base sheet in 2 applications using a rod coater. A lanthanum nitrate (water soluble salt of Group IIIb) is applied to the surface of the silica coating in either a 4% (Sample B) or a 3% (Sample C) aqueous solution using a rod coater.
Other Group IIIb metals that may be used include scandium, yttrium, cerium, neodymium, praseodymium, europium and ytterbium. The backside coating of the substrate consists of a 0.5% calcium sterate solution that is used as an anticurl agent and to reduce the coefficient of friction.
The support without any coating (Sample A), and coated with a quartinary amine dye fixative (Sample D), were used as controls. The amine dye fixative coating formulation includes a quarternised amine ester, lauryldimethylbenzyl-ammoniumchloride, a polyamine salt aqueous solution and a silicone derivative.
Liqhtfastness Evaluation The effect of lanthanum nitrate on i-nk jet printing ink color was evaluated before and after lightfastness testing. Hewlett Packard 500 series ink jet printing ink color was used in this example but any other commercially available color inks are also suitable for use in the invention. Samples A, B, C and D were exposed to carbon arc light for periods of 1, 2 and 4 hours. Color readings (L*A*B*) were taken on exposed and unexposed areas. The results are shown in the Table 4.1 below.
21 6~995 TABLE 4.1 EFFECTS Of TOP COATING ON COLOR (L*A*B*) CONDITION COLOR L* A* B*
A - CONTROL BLACK 34.43-12:04 - 6.49 B BLACK 40.70 - 8.31-~8.43 C BLACK 39.69 - 8.89- 7.13 D - CONTROL BLACK 32.43- 6.64 - 8.00 A - CONTROL CYAN 50.85-33.09 -54.05 B CYAN 50.05 -30.65-53.91 C CYAN 51.30 -32.51-53.59 D - CONTROL CYAN 49.71-27.07 -56.35 A - CONTROL YELLOU 89.78- 1.76 104.30 B rELLOU 89.31 - 0.53100.81 1 5 C rELLOU 89.66 - 1.70102.51 D - CONTROL YELLOU 88.28- 0.63 98.58 A - CONTROL MAGENTA 48.88 60.84 -53.20 B MAGENTA 47.56 57.56-54.58 C MAGENTA 47.59 59.24-54.94 D - CONTROL MAGENTA 50.67 59.80 -47.09 KEY: Sample A - Contro~: 2 lanthanum nitrate Samp(e B - 0.651 9/m2 (0.4 lb/3,000 sq.ft.) ~anthanum nitrate Samp~e C - 0.488 g/m (0.3 ~b/3,000 sq.ft.) ~anthanum nitrate Sample D - Contro~: quartinary amine dye fixative The tendency to fade of the coated samples above were also evaluated after exposing treated papers to 1, 2 and 4 hours of carbon arc light. The results are shown in the Table 4.2 below.
3 O TABLE 4.2 THE EFFECTS OF TOP COATING ON FADE
SAMPLE A (CONTROL) 3 5 COLOR1 HR. FADE D.E.2 HR. FADE D.E.4 HR. FADE D.E
BLACK 7.78 10.53 25.64 CYAN 13.91 18.58 34.54 YELLOU 3.10 3.71 6.39 MAGENTA 18.98 30.54 46.80 4 0 AVERAGE FADE - 18.29 2 1 6~9~5 SAMPLE B ~4% La(No3)3) COLOR 1 HR. FADE D.E.2 HR. FADE D.E. 4 HR. FADE D.E.
BLACK 3.79 6.11 11.73 CYAN 18.78 24.33 35.42 YELLOU 2.20 2.70 3.72 MAGENTA 20.13 29.58 44.97 AVERAGE FADE - 16.95 SAMPLE C ~3% La(No3)3) COLOR 1 HR. FADE D.E.2 HR. FADE D.E. 4 HR. FADE D.E.
BLACK 5.28 7.74 16.39 CYAN 16.09 22.19 33.35 1 5 YELLO~ 3.0 3.86 5.78 MAGENTA 20.03 30.88 47.39 A~'ERAGE FADE - 17.66 SAMPLE D ~GONTROL~
2 0 COLOR 1 HR. FADE D.E.2 HR. FADE D.E. 4 HR. FADE D.E.
8LACK 4.03 6.31 17.45 CYAN 27.92 40.03 66.43 YELLO~ 6.32 8.52 22.41 MAGENTA 16.11 28.24 56.36 2 5 AV_RAGE FADE - 25.01 Results show the lanthanum nitrate coated sheets exhibit less fade than the control (sample A) treated with nothing at all. The amine coated support (sample D) shows that the paper actually gets duller faster than no coating (sample A).
Advantageously, the present invention provides image receiving media for use in ink jet recording which has excellant water resistance and lightfastness.
It will be recognized by those skilled in the art that the invention has wide application as a media which allows the possibility to print images intended to match those on silver halide pho.tographic material.
Further advantage is obtained by providing a.recording medium which is suitable for office desk top publishing of color graphics for ink jet printers.
Therefore, although the invention has been described with reference to certain preferred embodiments, it will be appreciated that other composite structures and processes for their fabrication may be devised, which are nevertheless within the scope and spirit of the invention as defined in the claims appended hereto.
Claims (40)
1. A recording sheet for ink jet printing comprising a support having coated onto said support one or more layers receptive for aqueous inks, said coating comprising at least one film forming, hydrophilic polymer or a mixture of film forming hydrophilic polymers and imbedded in this film at least one trivalent salt of a metal of the Group IIIb series of the periodic table of elements or complexes which comprise trivalent ions of the metals of Group IIIb of the periodic table of the elements.
2. An ink jet recording sheet according to claim 1 where the metal salt of complexes are selected from the group consisting of elements No 21, 39, 57-60 and 62-71.
3. An ink jet recording sheet according to claim 2 where said metal salts or complexes are selected from a group consisting of Yttrium, Lanthanum, Cerium, Praseodynium, Neodymium and Europium, Gadolinium, Dysprosium, Erbium and Ytterbium.
4. An ink jet recording sheet according to claim 1 where said metal derivatives are selected from the group consisting of Yttrium, Lanthanum, Cerium, Neodynium and Ytterbium.
5. An ink jet recording sheet according to claim 1 where said metal derivatives are selected from the group consisting of Yttrium, Lanthanum, Cerium.
6. An ink jet recording sheet according to claim 1 where the hydrophilic film forming polymer is selected from the group comprising natural polymers or modified products selected from albumin, gelatine, casein, starch, gum arabic, sodium alginate, hydroxyethyl cellulose, carboxymethyl cellulose; .alpha.-, .beta.-, , or .gamma.-cyclodextrine, polyvinyl alcohol; complete or partial saponified products of copolymers of vinyl acetate and other monomers; homopolymers or copolymers with monomers of unsaturated carboxylic acids such as (meth)acrylic acid, maleic acid, crotonic acid and the like; homopolymers or copolymers with other vinyl monomers of sulfonated vinyl monomers such as vinylsulfonic acid, sulfonated styrene and the like;
polyamides like polyvinylacrylamide, homopolymers or copolymers with other vinyl monomers of (meth)acrylamide, watersoluble nylon-type polymers;
homopolymers or copolymers with monomers of ethylene oxide; polyethyleneimine; polyvinylpyrrolidone;
polyurethane; polyester or mixtures of these compounds.
polyamides like polyvinylacrylamide, homopolymers or copolymers with other vinyl monomers of (meth)acrylamide, watersoluble nylon-type polymers;
homopolymers or copolymers with monomers of ethylene oxide; polyethyleneimine; polyvinylpyrrolidone;
polyurethane; polyester or mixtures of these compounds.
7. An ink jet recording sheet according to claim 1 where the hydrophilic film forming polymer is selected from the group comprising gelatine, casein, starch, gum arabic, sodium alginate, hydroxyethyl cellulose, carboxymethyl cellulose; .alpha.-, .beta.- or .gamma.-cyclodextrine, polyvinyl alcohol; complete or partial saponified products of copolymers of vinyl acetate and other monomers; homopolymers or copolymers with monomers of unsaturated carboxylic acids such as (meth)acrylic acid, of sulfonated vinyl monomers such as vinylsulfonic acid, sulfonated styrene; homopolymers or copolymers with acrylamide, watersoluble nylon-type polymer, polyvinylpyrrolidone, polyurethane or mixtures of these compounds.
8. An ink jet recording sheet according to claim 1 where the hydrophilic film forming polymer is selected from the group comprising gelatine, starch, hydroxyethyl cellulose, .alpha.-, .beta.- or .gamma.-cyclodextrine, polyvinyl alcohol; copolymers of vinyl acetate and other monomers; acrylamide, watersoluble nylon-type polymer, polyvinylpyrrolidone, polyurethane or mixtures of these compounds.
9. An ink jet recording sheet according to claim 1 where the ink receiving system consists of one or more layers.
10. An ink jet recording sheet according to claim 1 where said ink receiving layer is on both sides of the support.
11. An ink jet recording sheet according to claim 9 where the said layers have different compositions.
12. An ink jet recording sheet according to claim 1 where the layers have a thickness of 0.5 to 25µ.
13. An ink jet recording sheet according to claim I where the hydrophilic polymer in the layer or layers is crosslinked.
14. An ink Jet recording sheet according to claim 13 where the crosslinking agents are selected from the group of formaldehyde, glyoxal, dihydroxydioxane, dichloro-hydroxy-triazine, chlorodihydroxy-triazine, 2-(4-dimethylcarbamoyl-pyridino)-ethane-sulfonate or 2,2' -Bis-(vinylsulfonyl)-diethyl ether.
15. An ink jet recording sheet according to claim 1 where said support is a clear thermoplastic film.
16. An ink jet recording sheet according to claim 1 where said support is an opaque thermoplastic film.
17. An ink jet recording sheet according to claim 1 where said support is a resin coated paper.
18. An ink jet recording sheet according to claim 1 where said support is plain paper.
19. An ink jet recording sheet according to claim 1 where said support is a surface treated plain paper.
20. An ink jet recording sheet according to claim 1 where the amount of said metal salt or complex is present in the range of 0.05 to 3.0g/m2 in the hydrophilic polymer layer.
21. An ink jet recording sheet according to claim 20 where the amount of said metal salt or complex is present in the range of 0.1 to 0.9g/m2.
22. An ink jet recording sheet according to claim where said metal derivatives are present in colloidal form with a particle size 0.5µ.
23. An ink jet recording sheet according to claim 1 where the salts of said metals are salts of mineral acids.
24. An ink jet recording sheet according to claim 1 where the salts of said metals are the salts of organic acids.
25. An ink jet recording sheet according to claim 1 where said film forming polymer is gelatine or gelatine together with one or more water-soluble polymers and where the water-soluble salts or the mixture of water-soluble salts are selected from Yttrium-, Lanthanum- or Cerium- salts or complexes.
26. An ink jet recording sheet according to claim 1 where the said hydrophilic polymer film contain in addition to said metal derivatives one or more non water-soluble fillers or pigments.
27. An ink jet recording sheet according to claim 26 where the fillers or pigments are selected from clay, talc, zeolytes, calcium-, barium- or magnesium-carbonate, calcium-, barium-, or magnesium-sulphate, satin white, silicium oxide or colloidal silicium oxide.
28. An ink jet recording sheet according to claim 26 where the fillers or pigments are selected from satin white, silicium oxide or colloidal silicium oxide.
29. An ink jet recording sheet according to claim 26 where the filler can be a non water-soluble organic polymer.
30. An ink jet recording sheet according to claim 6 where said gelatine is acid pigskin gelatine, limed bone gelatine, acid or base hydrolysed gelatine or derivatised gelatine.
31. An ink jet recording sheet according to claim 6 where the derivatised gelatine is phthalated gelatine, carbamoylated gelatine, acetylated gelatine or trimellytic-acid modified gelatine.
32. An ink jet recording sheet according to claim 6 where the gelatine is a gelatine with an isoelectric point of 7 to 9.5.
33. An ink jet recording sheet according to claim 6 where said gelatine film contains water-soluble salts of trivalent metals of group IIIb and a filler selected from clay, silicium oxide, colloidal silicium oxide, satin-white or an organic polymer.
34. An ink jet recording sheet according to claim 6 where the said gelatine film contains said water-soluble salts of trivalent metals of Group IIIb and a water-soluble polymer or a mixture of water-soluble polymers selected from starch, hydroxyethyl cellulose, .alpha.-, .beta.- or .gamma.-cyclodextrine, polyvinyl alcohol, vinyl acetate, acrylamide, water-soluble nylon-type polymer or polyvinylpyrrolidone.
35. A recording sheet for ink jet printing comprising a support having coated onto said support one or more layers receptive for aqueous inks, said coating comprising at least one trivalent salt of a metal of the Group IIIb series of the periodic table of elements or complexes which comprise trivalent ions of the metals of Group IIIb of the periodic table of the elements.
36. An ink jet recording sheet according to claim 35 where the metal salt of complexes are selected from the group consisting of elements No 21, 39, 57-60 and 62-71.
37. An ink jet recording sheet according to claim 36 where said metal salts or complexes are selected from a group consisting of Yttrium, Lanthanum, Cerium, Praseodynium, Neodymium and Europium, Gadolinium, Dysprosium, Erbium and Ytterbium.
38. An ink jet recording sheet according to claim 35 where said metal derivatives are selected from the group consisting of Yttrium, Lanthanum, Cerium, Neodynium and Ytterbium.
39. An ink jet recording sheet according to claim 35 wherein said support is a base sheet coated with a silica and polyvinyl alcohol matrix.
40. An ink jet recording sheet according to claim 35 wherein said coating is a 3-5% aqueous solution of lanthanum nitrate.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US38541295A | 1995-02-08 | 1995-02-08 | |
| US08/385,412 | 1995-02-08 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CA2168995A1 true CA2168995A1 (en) | 1996-08-09 |
Family
ID=23521274
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA 2168995 Abandoned CA2168995A1 (en) | 1995-02-08 | 1996-02-07 | Recording sheets for ink jet printing |
Country Status (1)
| Country | Link |
|---|---|
| CA (1) | CA2168995A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117841477A (en) * | 2023-12-06 | 2024-04-09 | 开平市天鹰胶粘技术开发有限公司 | A directly printable film and its production process and application |
-
1996
- 1996-02-07 CA CA 2168995 patent/CA2168995A1/en not_active Abandoned
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117841477A (en) * | 2023-12-06 | 2024-04-09 | 开平市天鹰胶粘技术开发有限公司 | A directly printable film and its production process and application |
| CN117841477B (en) * | 2023-12-06 | 2025-10-28 | 开平市天鹰胶粘技术开发有限公司 | A directly printable film and its production process and application |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5916673A (en) | Recording sheets for ink jet printing | |
| US6156419A (en) | Recording sheets for ink jet printing | |
| US6780478B2 (en) | Recording sheets for ink jet printing | |
| EP0286427B1 (en) | Recording medium | |
| EP1095784B1 (en) | Ink jet recording sheet | |
| EP0685344A2 (en) | Ink jet recording sheet and process for its production | |
| EP0869010B1 (en) | Recording sheet for ink jet printing | |
| EP1040934B1 (en) | Recording medium for ink jet printer | |
| EP1484188B1 (en) | Ink jet recording sheet | |
| US7250202B1 (en) | Recording sheets for ink jet printing | |
| US6420016B1 (en) | Recording sheets for ink jet printing | |
| US20060181592A1 (en) | Ink-jet recording medium | |
| WO2004110775A1 (en) | Ink-jet recording medium | |
| US20050053735A1 (en) | Recording sheets for ink jet printing | |
| CA2168995A1 (en) | Recording sheets for ink jet printing | |
| EP1677989B1 (en) | Recording medium | |
| EP1675727B1 (en) | Recording medium | |
| WO2005032834A1 (en) | Recording medium | |
| JP2000203151A (en) | Ink jet recording sheet and ink jet image forming method | |
| US6369750B1 (en) | Inkjet system for printing photoreal prints | |
| WO2005032836A1 (en) | Recording medium | |
| WO2005072970A1 (en) | Recording medium | |
| HK1067102B (en) | Ink jet recording sheet | |
| WO2005032835A1 (en) | Recording medium | |
| KR20060025020A (en) | Recording Media for Inkjet Printers |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FZDE | Dead |