[go: up one dir, main page]

CA2167163C - Detergent-package combination - Google Patents

Detergent-package combination

Info

Publication number
CA2167163C
CA2167163C CA002167163A CA2167163A CA2167163C CA 2167163 C CA2167163 C CA 2167163C CA 002167163 A CA002167163 A CA 002167163A CA 2167163 A CA2167163 A CA 2167163A CA 2167163 C CA2167163 C CA 2167163C
Authority
CA
Canada
Prior art keywords
units
combination
composition
group
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002167163A
Other languages
French (fr)
Other versions
CA2167163A1 (en
Inventor
Thomas Edward Cook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27235605&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2167163(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from EP94304555A external-priority patent/EP0634484B1/en
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of CA2167163A1 publication Critical patent/CA2167163A1/en
Application granted granted Critical
Publication of CA2167163C publication Critical patent/CA2167163C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

The present invention elates to detergent compositions containing selected moisture-sensitive ingredients; it provides a combination between such compositions and a packaging system containing them, such a combination providing optimum protection against moisture to said selected ingredients, and thus excellent storage stability to the finished compositions.

Description

.4 WO 95/02681 ' 1 ~ ~ ~ ~ s) PCT/US94/07833 DETERGENT-PACKAGE COMBINATION
The present invention relates to detergent compositions containing selected moisture-sensitive ingredients; it provides a combination between such compositions and a packaging system containing them, such a combination providing optimum protection against moisture to said selected ingredients, and thus excellent storage stability to the finished compositions.
Background of the Invention The problem of the negative interaction of moisture on detergent ingredients during storage, and in particular during prolonged storage has been known for a long time to the detergent manufacturer. Such an interaction is either due to the direct action of water on certain ingredients, resulting in their decomposition and/or loss of activity, or to the action on other ingredients of the decomposition products of certain moisture-sensitive ingredients, also leading to decomposition SUBS'T1TUTE SHEfT (RULE 26) 216713 ~:~
and/or loss of activity. Numerous technologies have been proposed, and many implemented, which call for addition of special ingredients, or modification of the existing ingredients, in order to protect the finished composition against moisture.
Relatively little attention however has been given to the packaging systems containing detergent compositions, in relation to the above problem.
The present invention is based on the finding that the selection of a particular packaging system, in combination with a careful control of the humidity level in the composition, can surprisingly solve the storage stability problem described above, for a series of particularly moisture-sensitive ingredients which are identified herein.
The present invention thus provides the combination of a granular detergent composition containing at least one moisture-sensitive ingredient selected from the group consisting of polyhydroxy fatty acid amides nonionic surfactants, choline ester cationic surfactants, bleach activators selected from alkanoyloxybenzene-sulfonates, amido derived species, benzoxazin-type species, quaternary substituted species, and mixtures thereof, polymers selected from polyamine N-oxides, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinyloxazoli-dones and polyvinylimidazoles, polyaspartate, polyglutamate, maleic/acrylic acids/vinyl alcohol terpolymers, sulfonated polyethoxy/propoxy end-capped ester oligomers and mixtures thereof, peroxidase enzymes, amylase enzymes, ethylenediamine disuccinic acid chelating agent, perfume encapsulates and mixtures thereof, with a packaging system containing said composition, characterized in that said composition has an Equilibrium Relative Humidity below about 30% at 35°C, and that the packaging system contains at least one unit having a Moisture Vapour Transfer Rate of less than about 20 g/m2/day.
Detailed description of the invention The detergent composition By the term detergent composition herein is meant preferably laundry detergent compositions, although automatic dishwashing compositions and laundry additive compositions are also encompassed.
Equilibrium Relative Humidity The present compositions are characterized by their Equilibrium Relative Humidity, of no more than 30% by weight at 35°C.
For the purposes of the presen t invention, Equilibrium Relat'_ve Hu.~nidity is measured as follows . 300 g of product is place in a 1 liter container made of a water impermeable material and fitted with a lid capable of sealing the containers. The lid is provided with a sealable hole adapted to allow insertion of a probe into the container interior. The container and contents are maintained at a temperature of 35°C
for 24 hours to allow temperature equilibration. A solid state Hygrometer (HygrotestTM 6100, marketed by Testoterm Ltd, Old Flour Mill, Queen Street. Emsworth, Hampshire, England) is used to measure the water vapour pressure in the space over the products. Whilst the container is maintained at 35°C, the probe is inserted through the hole in the lid and measurements of the water vapour pressure has equilibrated, as evidenced by no change in two successive readings. The instrument converts the water vapour pressure measurement into a direct read-out of the Equilibrium Relative Humidity.
The compositions of the present invention can be prepared in a variety of ways so as to display an Equilibrium Relative Humidity of not more than the critical value of 30% at 35°C.
For example, certain of the components of laundry detergent compositions which contain intrinsic moisture such as surfactant agglomerates or spray dried components, can be dried or further dried prior to mixing: dried zeolite can also be used in the preparation of surfactant agglomerates, as dry add, in spray-dried compositions, or in a final dusting step.
Other ways include the drying of finished product such as described in DE 40 31 910.
Some ways/executions may lead to Equilibrium Relative Humidity values below 25% at 35°C.
The selected moisture sensitive ingredients herein are described in detail hereinafter.
Q
1) Polyhydroxy fatty acid amides Polyhydroxy fatty acid amides may be produced by reacting a fatty acid ester and an N-alkyl polyhydroxy amine. The preferred amine for use in the present invention is N-(R1)-CH2(CH20H)4-CH2-OH and the preferred ester is a C12-C20 fatty acid methyl ester. Most preferred is the reaction product of N-methyl glucamine with C12-C20 fatty acid methyl ester.
Methods of manufacturing polyhydroxy fatty acid amides have been described in WO 92 6073, published on 16th April, 1992.
This application describes the preparation of polyhydroxy fatty acid amides in the presence of solvents. In a highly preferred embodiment of the invention N-methyl glucamine is reacted with a C12-C20 methyl ester. It also says that the formulator of granular detergent compositions may find it convenient to run the amidation reaction in the presence of solvents which comprise alkoxylated, especially ethoxylated (EO 3-8) C12-C14 alcohols (page 15, lines 22-27). This directly yields nonionic surfactant systems which are preferred in the present invention, such as those comprising N-methyl glucamide and C12-C14 alcohols with an average of 3 ethoxylate groups per molecule.
Nonionic surfactant systems, and granular detergents made from such systems have been described in WO 92 6160, published on 16th April, 1992. This application describes (example 15) a granular detergent composition prepared by fine dispersion mixing in an Eirich RV02 mixer which comprises N-methyl glucamide (10$), nonionic surfactant (10$).
Both of these patent applications describe nonionic surfactant systems together with suitable manufacturing processes for their synthesis, which have been found to be suitable for use in the present invention.
SUBSTITUTE SHEET (RUtE 26~

The polyhydroxy fatty acid amide may be present in compositions of the present invention at a level of from 0 o to 40°s by weight of the detergent component or composition, preferably from to to 30o by weight, even more preferably from to to 20o by weight .
2) Choline esters Preferred choline ester derivatives having the following formula:
CHg 1- ~~ I
R C - 0 CH2CH2 N+--~H3X-wherein R is a CS to C3o straight chain or branched chain alkyl or alkenyl, group and X is an anion, which makes the compound at least water-dispersible, preferably selected from the group consisting of halide, methyl sulfate, sulfate, and nitrate, preferably methyl sulfate, chloride, bromide or iodide.
as well as those wherein the ester linkage in the above formula is replaced with a reverse ester, amide or reverse amide linkage.
Particularly preferred examples of this type of cationic surfactant include stearoyl choline ester quaternary ammonium halides (R1=C1., alkyl) , palmitoyl choline ester quaternary ammonium halides (Rl=Cls alkyl) , mystiroyl choline ester quaternary ammonium halides (R1=C13 alkyl), lauroyl choline ester ammonium halides R1=C11 alkyl), as well as coconut and tallow choline ester quaternary ammonium halides (R1=C15_Cl., alkyl and C19_C13 alkyl, respectively).

Additional preferred cationic compnents of the choline ester variety are given by the structural formulas below, wherein p may be f rom 0 to 2 0 .

n - ~~
I .
R1- 0 C - (CH2) C - 0 -CH2CH2 N;- CH3X-X CH3 - N~ CH2-CH2 - 0 - C - (CH2 ) . C -~ 0 - CH2- CH2 -N+ CH3X+

The preferred choline-derivative cationic substances, discussed above, may be prepared by the direct esterification of a fatty acid of the desired chain length with dimethylaminoethanol, in the presence of an acid catalyst. The reaction product is then quaternized with a methyl halide, forming the desired cationic material.
The choline-derived cationic materials may also be prepared by the direct esterification of a long chain fatty acid of the desired chain length together with 2-haloethanol, in the presence of an acid catalyst material. The reaction product is then used quaternize.
Trimethylamine, forming the desired cationic component.

Other suitable choline esters for use herein have the formula 0 ~H3 R1-0 (CH CH 0) - (CH )-~~ -0 2 2 y 2 CH2 -CH2 _N - CEf3X-R 0 (CH2CH20) y- C - CH2- N+-CH3X' CFi 3 R1- 0-~ CHCH20 ) p--- C CH2 - N~ CH3X+

CH3 0 CH3 .

R 0 (CHCHZO) Y (CH2) -C - 0 -CH2 . CH2 -Nt-CH3X' 0 p CH3 1- _. _ _ +
R 0 (CH2CH20) y-C (CH2 ~- C 0 CHZCH2 -N - CH3X-O .H H O CH3 ~II- IsI_II_ - 1 R - 0 ~CHZCH20) y C C C C 0 CH2CH2 N+.. CH3X-R1_ o ccH cH cH II _ +
2 2 2CH20) y ., CH2 _ N .- CH3X-. I
R1- 0 (CH2CH2CH2CH20) y- ICH2 ) - C - O -CH2CH2 - N~- CHgX-wherein t is 0 or 1, y is from 1 to 20, and R and X are as defined above.
The choline esters herein can be present at levels of from Oo to 50% by weight of the compositions, preferably from 1o to 304 by weight, even more preferably from 1% to 20% by weight.
Bleach activators - The bleach activators herein, are selected from the following species or mixture thereof:
Alkanovloxybenzenesulfonates - Suitable alkanoyloxybenzene-sulfonate bleach activators which can be employed in the present invention are of the formula:

.. WO 95/02681 216 716 3 pCT/US94107833 R~ C-0 O S03M
wherein R1-C(0)- contains from about 8 to about 12, preferably from about 8 to about 11, carbon atoms and M is a suitable cation, such as an alkali metal, ammonium, or substituted ammonium cation, with sodium and potassium being most preferred.
Highly preferred hydrophobic alkanoyloxybenzenesulfonates are selected from the group consisting of nonanoyl-oxybenzenesulfonate, 3.5,5-trimethylhexanoyl-oxybenzene-sulfonate, 2-ethylhexanoyloxybenzenesulfonate, octanoyloxy-benzenesulfonate, decanoyloxybenzenesulfonate, dodecanoyloxy-benzenesulfonate, and mixtures thereof.
Amido Derived Bleach Activators - The amido derived bleach activators which can be employed in the present invention are amide substituted compounds of the general formulas:

R'~-C-N-R2-C-L, R~-N-C-R2-C-l I I
Rs Rs or mixtures thereof, wherein R1 is an alkyl, aryl, or alkaryl group containing from about 1 to about 14 carbon atoms. R2 is an alkylene, arylene or alkarylene group containing from about 1 to about 14 carbon atoms. R5 is H or an alkyl, aryl, or alkaryl group containing from about 1 to about 10 carbon atoms, and L is essentially any suitable leaving group. A
leaving group is any group that is displaced from the bleaching activator as a consequence of the nucleophilic attack on the bleach activator by the perhydroxide anion.
This, the perhydrolysis reaction, results in the formation of the peroxycarboxylic acid. Generally, for a group to be a suitable leaving group it must exert an electron attracting effect. It should also form a stable entity so that the rate of the back reaction is negligible. This facilitates the nucleophilic attack by the perhydroxide anion.
sues~nn~ sH~r tRU~ 2s~

The L group must be sufficiently reactive for the reaction to cccur within the optimum time frame (e. g., a wash cycle).
However, if L is too reactive, this activator will be difficult to stabilize for use in a bleaching composition.
These characteristics are generally paralleled by the pKa of the conjugate acid of the leaving group, although exceptions to this convention are known. Ordinarily, leaving groups that exhibit such behavior are those in which their conjugate acid has a pKa in the range of from about 4 to about 13, preferably from about 6 to about 11 and most preferably from about 8 to about 11.
Preferred bleach activators are those of the above general formula wherein L is selected from the group consisting of:

-O ~ , ~ Y , aid -0 wherein R3 is as defined above and Y is -S03 M+ or -C02 M+
wherein M is an alkali metal, ammonium. or substituted ammonium cation, with sodium and potassium being most preferred Preferred examples of bleach activators of the above formulae include (6-octanamido-caproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxybenzenesulfonate, (6-decanamido-caproyl)oxybenzenesulfonate, and mixtures thereof as described in U.S. Patent 4,639,551, - Henzoxazin-type~activators, such as disclosed by Hodge et al in U.S. Patent 4, 966, 723, issued October 30, 1990. A highly preferred activator of the benzoxazin-type is:
O
() C
N
- Acyl lactam activators, especially acyl caprolactams and acyl valerolactams of the formulae:
B

m n s-0 C-CH2-CH2~
R C-NwCH2-CH2 CHZ
O

R C N~
CH -2 f~2 wherein R6 is H, an alkyl, aryl, alkoxyaryl, or alkaryl group containing from 1 to about 12 carbon atoms, or a substituted phenyl group containing from about 6 to about 18 carbons. See copending Canadian application No. 2,161,214 filed May 12, 1994 and EP 705,326 which disclose substituted benzoyl lactams. Highly preferred lactam activators include benzoyl caprolactam, octanoyl caprolactam, 3,5,5-trimethylhexanoyl caprolactam, nonanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, benzoyl valerolactam, octanoyl valerolactam, decanoyl valerolactam, undecenoyl valerolactam, nonanoyl valerolactam, 3,5,5-trimethylhexanoyl valerolactam and mixtures thereof. See also U.S. Patent 4,545,784, issued to Sanderson, October 8, 1985 which discloses acyl caprolactams, including benzoyl caprolactam, adsorbed into sodium perborate.
- Quaternary Substituted Bleach Activators (QSBA) - QSHA's herein typically have the formula E-(Z)n-C(0)-L wherein group E
is referred to as the "head", group Z is referred to as the "spacer" (n is 0 or 1, i.e., this group may be present or absent, though its presence is generally preferred) and L is referred to as the "leaving group". These compounds generally contain at least one quaternary substituted nitrogen moiety, which can be contained in E, Z or L. More preferably, a single quaternary nitrogen is present and it is located in group E or group Z. In general, L is a leaving group, the pKa of the corresponding carbon acid (HL) of which can lie in the general 2~s~~s3 r i2 range from about S to about 30, more preferably, from about to about 20, depending upon the hydrophilicity of the QSBA.
pKa's of leaving groups are further defined in U.S. Pat. ~lo, 4,283,301.
Preferred QSHA's herein are, on one hand, water-soluble, but on the other hand, have a tendency to partition to a definite extent into surfactant micelles, especially into micelles of nonionic surfactants.
Leaving groups and solub'ilizing tendencies of quaternary moieties which can be present in the QSBA's are further illustrated in U.S. 4,539,130, Sept. 3, 1985. This patent also illustrates QSBA's in which the quarternary moiety is present in the leaving group L.
British Pat. 1,382,599, published Feb. 5, 1975, discloses a~
class of QSHA's found suitable for use herein. In these compounds, Z is a poly(methylene) or oligo(methylene) moiety, i.e., the spacer is aliphatic, and the quaternary moiety is E.
U.S. 4,818,426 issued Apr. 4., 1989 discloses another class of QSBA's suitable for use herein. These compounds are quaternary ammonium carbonate esters wherein, with reference to the above formula, the moiety Z is attached to E via a carbon atom but is attached to the carbonyl moiety through a linking oxygen atom.
These compounds are thus quaternary ammonium carbonate esters.
The homologous compounds wherein the linking oxygen atom is absent from Z are likewise known and are useful herein. See, for example, U.S. 5,093,022 issued March 3, 1992 and U.S.
4,904,406, issued Feb. 27, 1990.
Additionally, QSHA's are described in EP 552,812 A1 published July 28. 1993. and in EP 540,090 A2,~ published May S, 1993.
Particularly preferred QSBA's nave a caprolactam or valerolactam leaving group.
B

. WO 95/02681 216 71 b 3 PCT/US94/07833 i3 Preferred embodiments of QSBA's useful in the present invention can be synthesized as follows:
O
COzH C-CI N (CH2~
CI
S~
CHZCI CH=CI

0 ~ II
Et3N+CHI
C1CHZ O ~N (CH2~ Et3 ~ CI- ~N (CHI
The following describes the synthesis in more detail.
PREPARATION OF N-[4-(TRIETHYLAN1NIONIOMETHYL)BENZOYL~ CAPROLACTAM, CHLORIDE SALT
4-chloromethyl benzoyl acid chloride - A 1-neck round bottom flask is fitted with an addition funnel. gas inlet and magnetic stirring and charged with 4-chloromethyl benzoic acid (0.5 mol), toluene (1.0 mol acid/350 ml) and a boiling stone under Argon.
Thionyl chloride (1.0 mol) is added dropwise via an addition funnel. A reflux condenser is substituted for the additional funnel and the reaction is heated to toluene reflux for 4 hours under Argon. The reaction is cooled to room temperature. The solvent is evaporated.
4-chloromethyl benzoyl caprolactam - A 3-neck round bottom flask is fitted with mechanical stirring, reflux condenser, addition funnel, and gas inlet and is charged with caprolactam (0.5 mol), triethylamine (0.75 mol) and 75~ of the required toluene (1.0 mol caprolactam/1.5 liters) under Argon. The SUBSTITUTE SHEET (RULE 26) solution is heated to tolue.~.e reflux. ~-chloromethyl benzoyi acid chloride (0.5 mol) suspended in remaining toluene is added in a slow stream. The reaction is stirred under Argon at toluene reflux for 6 hours, cooled slightly and filtered. The collected solids, triethylamine hydrochloride, is discarded and the filtrate is refrigerated to precipitate product. The product is collected by vacuum filtration, washed and dried.
N-[4-(triethylammoniomethyl)benzoyl] caprolactam, chloride salt - A 1-neck round. bottom flask is fitted with magnetic stirring, addition funnel and gas inlet.and is charged with 9-chloromethyl benzoyl caprolactam (0.5 mol) and acetonitrile (1 mole caprolactam/1.5 liters) under Argon. Triethylamine (1.0 mol) is added dropwise. A reflux condenser is substituted for the addition funnel and the reaction is heated to acetonitrile reflux for 4 hours under Argon. The reaction is cooled to room temperature and solvent is evaporated. Excess acetone is added to the flask with magnetic stirring to break apart the product.
The mixture is heated to acetone reflux briefly then cooled to room temperature. The product is vacuum filtered, washed and dried.
The above synthesis may be repeated, but with substitution of valerolactam for caprolactam. The synthesis may also be repeated with. for example, the substitution of trimethylamine for triethylamine. In each instance, the corresponding cationic bleach activator is secured.
While the foregoing QSBA's include preferred embodiments presented for the purposes of better illustating the invention, their specific recital should not be taken as limiting. Other QSHA's known in the art may be substituted. Examples include modifications of the above structures in which groups E or Z
form part of a.heterocyclic ring or modifications in which the leaving group L has a hydrolytically resistant covalent bond to either group E or group Z; in the latter instance, L is considered a "tethered" leaving group as in either of the structures:
E(Z)nC(O)L ar E(Z)nC(O)L

and upon perhydrolysis, still "leaves" the E(Z)nC(01 moiety and forms a peracid, such as one having either of the structures:
E ( Z ) nC00H or E ( Z ) nC00H
i n i n Moreover, in further examples of known QSBA's, leaving groups are not connected to the moiety E(Z)nC(0) via a neutral nitrogen atom, but rather, are connected via an oxygen atom as in the common leaving group OBS (oxybenzenesulfonate). Examples of such variations have been documented in the literature, including above-referenced patents.
The bleach activators herein are preferably incorporated at a level of from 1% to 20% by weight, more preferably from 2% to 10% by weight, most preferably from 3% to 5% by weight of the compositions.
Polymers - Polymers for use herein, are selected from the group of :polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinyloxazolidones, polyvinylimidazoles, polyaspartates, polyglutamates, or mixtures thereof, having molecular weights around 10,000, terpolymers of maleic/acyclic acid and vinyl alcohols, having a molecular weight ranging from 3000 to 70,000, and a percentage of vinyl alcohol of from 5 to 608 - soil release agents, selected agents are sulfonated poly-ethoxy/propoxy end-capped ester oligomer and mixtures thereof. The above polymers are used at levels ranging from 0.01 to 20% of the composition.
The sulfonated poly-ethoxy/propoxy end-capped ester oligomer herein are described in US Patent No. 5,415,807 issued May 16, 1995 and EP 707,627.
The esters herein can be simply characterized as oligomers which comprise a substantially linear ester "backbone" and end-capping units which are derived from sulfonated monohydroxy polyethoxy/propoxy monomers, especially 2-(2-hydroxyethoxy)ethanesulfonate. Proper selection of the Z~ 6~~6~
..
~v structural units which comprise the ester backbone and use of sufficient amounts of the sulfonated end-capping units results in the desired soil-release properties of these materials. The integration of stabilizers into the oligomer reduces the crystallization of the oligomer during manufacture and when introduced into the wash liquor, thereby enhancing the dissolution/dispersion and the soil release performance of the esters.
The ester oligomer used herein preferably comprises . (i) from about 1 to about 2 moles of sulfonated poly-ethoxy/propoxy end-capping units of the formula (M03S ) CH2 ) m (CH2 ) m (CH2CH20) (RO) n- wherein M is a salt forming cation selection from the group consisting of sodium and tetraalkylammonium, m is 0 or 1, R is ethylene, propylene or a mixture thereof, and n is from 0 to 2; (ii) from about 0.5 to about 66 moles of units selected from the group consisting of .
a) oxyethyleneoxy units; b) a mixture of oxyethyleneoxy and oxy-1,2-propyleneoxy units wherein said oxyethyleneoxy units are present in an oxyethyleneoxy to oxy-1,2-propyleneoxy mole ratio ranging from 0.5:1 to about 10:1: and c) a mixture of a) or b) with poly(oxyethylene)oxy units wherein said poly(oxyethylene) oxy units have a degree of polymerization of from 2 to 4;
provided that when said poly(oxyethylene)oxy units have a degree of polymerization of 2, the mole ratio of poly(oxyethylene)oxy units to total group ii) units ranges from 0:1 to about 0.33:1;
and when said poly(oxyethylene)oxy units have a degree of polymerization of 3, the mole ratio of poly(oxyethylene)oxy units to total group ii) units ranges from 0:1 to about 0.22:1;
and when said poly(oxyethylene)oxy units have a degree of polymerization of 4, the mole ratio of poly(oxyethylene)oxy units to total group ii) units ranges from 0:1 to about 0.14:1;
iii)from about 1.5 to about 40 moles of terephthaloyl units; and iv) from 0 to about 26 moles of 5-sulfoisophthaloyl units of the formula -(0)C(C6H3)(S03M)C(0)- wherein M is a salt forming cation.
SUBSTITUTE SHEET (RULE 26) -~ WO 95/02681 2 ~ 6 7 ~ ~ ~ PCT/US94/07833 1 '%
Oligomeric Esters - It is to be understood that the soil release compositions herein are not resinous, high molecular weight, macromolecular or fiber-forming polyesters but, instead, are relatively low molecular weight and contain species more appropriately described as oligomers rather than as polymers.
Individual ester molecules herein, including the end-capping units, can have molecular weights ranging from about 500 to about 8,000. Relevant for purposes of comparison with glycol -terephthalate fibrous polyesters (typicall avaraging 15,000 or more in molecular weight) is the molecular weight range from about 500 to about 5,000, within which molecules of the preferred esters of the invention which incorporate the essential units and 5-sulfoisophthalate are generally found.
Accordingly, the soil release agents used in the detergent composition of this invention are referred to as "oligomeric esters" rather than "polyester" in the colloquial sense of that term as commonly used to denote high polymers such as fibrous polyesters.
Molecular Geometry - The esters employed herein are all "substantially linear" in the sense that they are not significantly branched or crosslinked by virtue of the incorporation into their structure of units having more than two ester-bond forming sites. (By contrast, a typical example of polyester branching or crosslinking of the type excluded in defining esters of the present invention, see Sinker et al, U.S.
Patent 4,554,328, issued November 19, 1985.) Furthermore, no cyclic esters are essential for the purposes of the soil release agent used herein but may be present in the detergent compositions of the invention at low levels as a result of side-reactions during ester synthesis. Preferably, cyclic esters will not exceed about 2$ by weight, of the compositions; most preferably, they will be entirely absent from the compositions.
Contrasting with the above, the term "substantially linear"
as applied to the esters herein does, however, expressly encompass materials which contain side-chains which are SU85TITUTE SHEET (RULE 26) unreactive in ester-forming or transesterification reaction_ Thus, oxy-1,2-propyleneoxy units are of an unsymmetrically substituted type; their methyl groups do not constitute what is conventionally regarded as "branching" in polymer technology (see Odian, Principles of Polymerization, Wiley, N.Y., 1981, pages 18-19, the disclosure of which is incorporated herein by reference and with which the present definitions are fully consistent) and are unreactive in ester-forming reactions. Optional units in the esters of the soil release agent used herein can likewise have side-chains, provided that they conform with the same nonreactivity criterion.
Molecular Structures - The following structures are illustrative of structures of ester molecules falling within the foregoing preferred embodiments, and demonstrate how the units are connecte d:
a) doubly end-capped ester molecule comprised of the essential units i) , ii) , and iii) ;
0 0 q o t1a03SCH2CHZOCHZCH=-0-C~C~0-CH=CHZ-0-C O ~-0-CHZCHZ--O-C~~-C-.0-CHZCHZ-0-C O C-0-CH=CHZOCNZCHZS0311a b) singly end-capped ester molecule comprised of essential units i), ii), iii);

Na03SCHZCNZOCHZCHZ~0-C O C-0-CHZCHZ-0-C O C-c) doubly end-capped ester molecule, (termed a "hybrid backbone" ester molecule herein) comprised of essential units i), ii) , and iii) . Units ii) are a mixture of oxyethyleneoxy and oxy-1,2-propyleneoxy units,' in the example shown below at a 2:1 mole ratio (on average, in ester compositions as a whole in contrast to individual molecules such as illustrated here, ratios ranging from about 1:1 to about 0:1 are the most highly preferred when the compositions are based on the units i), ii), and iii);
-( ~. . . .
a~~IZC~O O 0 Gig 0 0 ~ 0 ~
~C O C-0~CNZCN(CN3)'~'~'~'~'~~~~t~0~~'3~
d) doubly end-capped ester molecule comprised of essential units i), ii) and iii), together with an optional unit iv). On average, in ester compositions as a whole in contrast to individual molecules such as illustrated below, the most highly preferred ratios of oxyethyleneoxy to oxy-1,2-propyleneoxy units range from about 0.5:1 to 1:0 when the compositions are based on units i), ii), iii) and iv);

WO 95/02681 ~ ~ ~ ~ ~ ~ PCTlUS94107833 a N~035CH2CHZOCH2CH2-0-C ~ C-0-CHZCH(CH3)-0-C- C C-0--CH(CH3)CHZ-0-C C -C-0-CHICHI-0-~ C-0-CHICHI-0-C

0 0 0 c -0~CH2CHZ-0~C ~ C-O-CHICHI-O-~ O C~0-CHZCHZOCHZCHZS0311a Of the numerous structures disclosed herein, the most preferable soil release polymer has the following general structure .
O
II II II
Nao,s rcH,cH,o~~ ' ~ o. ,~o c ' II II
,~o a I i ,a~=oGt~ot=sO,~a 's0,lfa 1 wherein R is H or CH3 in a ratio of 1.8:1.
In the context of the structures of ester molecules disclosed herein it should be recognized that they encompass not only the arrangement of units at the molecular level but also the gross mixtures of ester which result from the reaction schemes herein and which have the desired range ~f composition and properties.
Accordingly, when the number of mor.cmer units or ratios of units are given, the numbers refer ~o an avarage quantity of monomer units present in oligomers of t::e ccr~position.
SUBSTITUTE SHEET (RULE 26) WO 95/02681 216 l 16 3 PCT/US94/07833 Ester Backbone - As illustrated in the structures shown above, in the esters of the soil release agent used herein, the backbone is formed by oxyethyleneoxy and terephthaloyl units connected in alternation. Optionally, the backbone is formed by 5-sulfoisophthaloyl units, terephthaloyl units, oxyethyleneoxy or mixtures of oxyethyleneoxy, oxypropyleneoxy and poly(oxyethyleneoxy) units connected with alternation of the aryldicarbonyl and oxyalkyleneoxy units.
Groups at the Termini of the Ester Backbone - Likewise, the "esters of the soil release agents used herein" is a phrase which encompasses the novel doubly and singly end-capped compounds disclosed herein, mixtures thereof, and mixtures of said end-capped materials which may unavoidably contain some non-capped species. Although, levels of latter will be zero or at a minimum in all of the highly preferred compositions. Thus, when referring simply to an "ester" herein it is intended to refer, by definition, collectively to the mixture of sulfonated capped and uncapped ester molecules resulting from any single preparation.
Any ester molecules which are present in compositions of the invention which are not fully, i.e. doubly, end-capped by the end-capping units must terminate with units which are nut sulfonated poly-ethoxy/propoxy end-capping units. These termini will typically be hydroxyl groups or other groups attributable tot he unit-forming reactant. For example, in the structure b) above, a chain terminal position to which is attached -H forms of hydroxyl group. In other structures which may be constructed, units such as -(O)CC6HqC(O)-OCH3 may be found in terminal positions. All the most highly preferred ester molecules herein will, however, as indicated above, have two sulfonated end-capping units and no backbone units occupying terminal positions.
Symmetrie - It is to be appreciated that in esters in which oxy-1,2-propyleneoxy units are also present. the oxy-1,2-SUBSTIME SHEfT (RULE 26) WO 95/02681 ~ ~ ~ ~ PCT/US94/07833 propyleneoxy units can have their methyl groups randonly alternating with one of the adjacent -CH2- hydrogen atoms, thereby lowering the symmetry of the ester chain. Thus, the oxy-1,2-propyleneoxy unit can be depicted as having either the -OCH2CH(CH3)0- orientation or as having the opposite -OCH(CH3)CH20- orientation. Carbon atoms in the oxy-1,2-propylene units to which the methyl groups are attached are, furthermore, asymmetric, i.e., chiral; they have four nonequivalent chemical entities attached.
In contrast to the oxy-1,2-propyleneoxy units, oxyethyleneoxy units cannot be used herein as a sole source of oxy-1,2-alkyleneoxy units without the addition of stabilizers since they lack the needed unsymmetrical character. It is the presence of the unsymmetrical units and/or of the stabilizers that inhibit the crystallization of the oligomer during manufacture and later when added to the wash liquor. The use of oxyethyleneoxy units or high ratios of oxyethyleneoxy to oxypropyleneoxy units, therefore, must be~accompanied by the use of the stabilizers to retard the formation of crystals. Accordingly, such compositions herein contain sulfonate-type hydrotropes, linear or branched alkylbenzenesulfonates, paraffin sulfonates, and mixtures thereof integrated into the oligomer composition.
Prefarably, various optional units of a hydrophilicity-enhancing and nonpolyester substantive type can be incorporated into the esters. The pattern of such incorporation will generally be random. Preferred optional units are anionic hydrophiles, such as S-sulfoisophthaloyl or similar units. Such units will, when incorporated into the ester backbone, generally divide it into two or more hydrophobic moieties separated by one or more hydrophilic moieties.
It should be noted that the essential non-charged aryldicarbonyl units herein need not exclusively be terephthaloyl units, provided that the polyester fabric-SUBSTITUTE SHEET (RULE 26) substantively of the ester is not harmed to a significant extent. Thus, for example, minor amounts of isomeric non-charged dicarbonyl units, such as isophthaloyl or the like, are acceptable for incorporation into the esters.
Poly(oxyethylene)oxy Units - The optional poly(oxyethylene) oxy units comprising the esters of the soil release agent used herein have a degree of polymerization of from 2 to 40 and can constitute from 0 to about 25 mole percent of the total oxyalkyleneoxy units present. Preferably, poly(oxyethylene)oxy units ar.e present when the backbone unit comprises 8 or more terephthaloyl units; however, at least some poly(oxyethylene)oxy units may be present in esters with as few as 1.5 terephthaloyl units. The poly(oxyethylene)oxy units, especially in esters with 8 or more terephthaloyl units, aid in the rate of a dissolution of the soil release agent into the wash liquor.
The amount of poly(oxyethylene)oxy units present in the backbone is related to its degree of polymerization. For example, oxyethyleneoxyethyleneoxy units (formed from diethylene glycol), which have a degree of polymerization of two, can constitue from 0 to 25 mole percent of the total oxyalkyleneoxy units in the backbone. The (oxyethylene)3 units (formed from triethylene glycol). which have a degree of polymerization of three, can constitute from 0 to 18 mole percent of the total oxyalkyleneoxy units in the backbone. The (oxyethylene)3 units (formed from tetraethylene glycol), which have a degree of polymerization of four, can constitute from 0 to 12 mole percent of the total oxyalkyleneoxy units present in the backbone.
End-Capping Units - The end-capping units used in the esters of the soil release agents used herein are sulfonated poly-ethoxy/propoxy groups. These end-cap units provide anionic charged sites when the esters are dispersed in aqueous media, such as a laundry liquor. The end-caps serve to assist SUBSTITUTE SHEET (RUtE 26) WO 95/02681 ~ ~ ~ PCT/L1S94/07833 transport in aqueous media and to provide hydrophilic sites on the ester molecules.
It is not intended to exclude the acid form, but most generally the esters herein are used as sodium salts, as salts of other alkali metals, as salts with nitrogen-containing cations (especially tetraalkylammonium), or as the dissociated ions in an aqueous environment. Examples of end-capping groups include sodium isethionate, sodium 2-(2-hydroxyethoxy) ethanesulfonate, sodium 2-(2-(2-hydroxyethoxy)ethoxy]ethane sulfonate, sodium 5-hydroxy-4-methyl-3-oxa-pentanesulfonate sodium alpha-3-sulfopropyl-omega-hydroxy-poly-(oxy-1,2-ethane diyl) (with an average degree of ethoxylation of 1-2), sodium 5-hydroxy-3-oxa-hexanesulfonate, and mixtures thereof.
On a mole basis, the soil release agent herein will preferably comprise from about one to about two moles of the sulfonated end-capping units per mole of the ester. Most preferably, the esters are doubly end-capped; i.e. there will be two moles of end-capping units present per mole of the esters.
From the viewpoint of weight composition, it will be clear that the fractional contribution of end-capping units to the molecular weight of the esters will decrease as teh molecular weight of the ester backbone increases.
Optional Crystalline Reducing Stabilizers - Stabilizers useful in the detergent composition of the invention should be water soluble or water dispersible. The stabilizing agents that are useful herein include sulfonate-type hydrotropes, linear or branched alkylbenzenesulfonates, paraffin sulfonates, and other thermally-stable alkyl sulfonate variations with from about 4 to 20 carbon atoms. Preferred stabilizers include sodium dodecylbenzenesulfonate, sodium cemenesulfonate, sodium toluenesulfonate, sodium xylenesulfonate, and mixtures thereof.
When higher levels of stabilizers are used, mixtures of hydrotropes and/or other stabilizers are preferred over pure SUBSTITUTE SHEET (RULE 26) 21b71b3 components to insure full integration into the oligomer and to reduce the possibility of crystallization of the stabilizer.
In general, the level of such stabilizers should be kept as low as possible while providing the primary benefit. i.e. the reduction in the amount of crystallization that the soil release agent undergoes during manufacture, storage and when introduced to the wash liquor. The composition may comprise from about 0.5$ to about 20$ stabilizer. Most preferably, the ester soil release agents comprise an amount sufficient to reduce the crystallization of the oligomer during manufacture and when introduced to the wash liquor, i.e., at least 3$ by weight.
The stabilizers may be added to the soil release agent in various ways. Preferably, the stabilizers are added to the oligomer reagents in the initial stages prior to full oligomerization. The stabilizers thereby integrate uniformly into the oligomer. Another method would entail first melting the pre-formed oligomer and then uniformly mixing the stabilizer into the molten oligomer. Alkylbenzenesulfonates when used as surfactants in detergent compositions do not provide the stabilizing and crystallization-reducing effect, during dissolution of the soil release agent in the laundry liquor, that the stabilizer does when it is added as directed above.
Dye transfer inhibition polymer Selected polymeric dye transfer inhibiting agents herein are polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinyl-oxazolidones and polyvinylimidazoles or mixtures thereof.
These polymers are used as levels o~ from 0.001 to 10$, preferably from 0.01$ to 2$.
SUBS'T'ITUTE SHEET (RUi.E 26) 2~ X7163 a) Polyamine N-oxide polymers The polyamine N-oxide polymers suitable for use contain units having the following structure formula .
P
I
(I) Ax I
R
wherein P is a polymerisable unit, whereto the R-N-0 group can be attached to or wherein the R-N-0 group forms part of the polymerisable unit or a combination of both.

i~ ~~ ~i A is NC, C0, C, -0-,-S-, -N- ; x is 0 or 1:
R are aliphatic. ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-0 group is part of these groups.
The N-O group can be represented by the following general structures .

I I
(R1)x -N- (R2)y =N- (R1)x I
(R3) z wherein Rl, R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of SUBSTITUTE SHEfT (RUtE 26) the N-0 group can be attached or wherein the nitrogen of the N-0 group forms part of these groups.
The N-0 group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.
Suitable polyamine N-oxides wherein the N-0 group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups.
One class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-0 group forms part of the R-group. Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyrridine, pyrrole, imidazole, pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.
Another class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-0 group is attached to the R-group.
Other suitable polyamine N-oxides are the polyamine oxides whereto the N-0 group is attached to the polymerisable unit.
Preferred class of these polyamine N-oxides are the polyamine N-oxides having the general formula (I) wherein R is an aromatic.
heterocyclic or alicyclic groups wherein the nitrogen of the N-0 functional. group is part of said R group.
Examples of these classes are polyamine oxides wherein R is a heterocyclic compound such as pyrridine, pyrrole, imidazole and derivatives thereof.
Another preferred class of polyamine N-oxides are the polyamine oxides having the general formula (I) wherein R are aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-0 functional group is attached to said R groups.
Examples of these classes are polyamine oxides wherein R groups can be aromatic such as phenyl.
Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting SUBSTITUTE SHEET (RULE 26) properties. Examples of suitable polymeric backbones are polyvinyls. polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof.
The amine N-oxide polymers of the present invention typically have a ratio of amine to the amine N-oxide of 10:1 to 1:1000000.
However the amount of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by appropriate degree of N-oxidation. Preferably, the ratio of amine to amine N-oxide is from 2:3 to 1:1000000. More preferably from 1:4 to 1:1000000, most preferably from 1:7 to 1:1000000. The polymers of the present invention actually encompass random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is either an amine N-oxide or not. The amine oxide unit of the polyamine N-oxides has a PKa < 10, preferably PKa < 7, more preferred PKa < 6.
The polyamine oxides can be obtained in almost any degree of polymerisation. The degree of polymerisation is not critical provided the material has the desired water-solubility and dye-suspending power.
Typically, the average molecular weight is within the range of 500 to 1000,000; preferably from 1,000 to 50,000, more preferably from 2,000 to 30,000, most preferably from 3,000 to 20,000.
b) Copolymers of N-vinylpyrrolidone and N-vinylimidazole The N-vinylimidazole N-vinylpyrrolidone polymers used in the present invention have an average molecular weight range from 5, 000-1, 000, 000, preferably from 20, 000-200, 000.
Highly pz~eferred polymers for use in detergent compositions according to the present invention comprise a polymer selected from N-vinylimidazole N-vinylpyrrolidone copolymers wherein said polymer has an average molecular weight range from 5,000 to 50,000 more preferably from 8,000 to 30,000, most preferably from 10,000 to 20,000.
sussrirur~ sH~ ~RU~ Zs~

2~s~~s3 ~9 The average ;,iolecular weigh range was determined by light scattering as described in Barth H.G. and Mays J.W. Chemical Analysis Vol 113,"Modern Methods.of Polymer Characterization".
Highly preferred N-vinylimidazole N-vinylpyrrolidone copolymers have an average molecular weight range from 5,000 to 50,000; more preferably from 8,000 to 30,000; most preferably from 10,000 to 20, 000.
The N-vinylimidazole N-vinylpyrrolidone copolymers characterized by having said average molecular weight range provide excellent dye transfer inhibiting properties while not adversely affecting the cleaning perfonaance of detergent compositions formulated therewith.
The N-vinylimidazole N-vinylpyrrolidone copolymer of the present invention has a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 to 0.2, more preferably from 0.8 to 0.3, most preferably from 0.6 to 0.4 .
c) Polyvinyloxazolidone .
The detergent compositions of the present invention may also utilize polyvinyloxazolidone as a polymeric dye transfer inhibiting agent. Said polyvinyloxazolidones have an average molecular weight of from about 2,500 to about 400,000, preferably from about 5,000 to about 200,000, more preferably from about 5,000 to about 50,000, and most preferably from about 5,000 to about 15,000.
d) Polyvinylimidazole .
The detergent compositions of the present invention may also utilize polyvinylimidazole as polymeric dye transfer inhibiting agent. Said polyvinylimidazoles have an average B

.-~- .
~o about 2.500 to about 400,000, preferably from about 5,000 to about 200,000, more preferably from about 5,000 to about 50,000, and most preferably from about 5,000 to about 15,000.

Peroxidase enzymes Peroxidase enzymes are used in combination with oxygen sources, e.g. percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are preferably used for "solution bleaching", i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution, but can also be used as bleaching agents.
Peroxidase enzymes are known in the art, and include, for example, horseardish peroxidase, ligninase, and haloperoxidase~
such as chloro- and bromo-peroxidase. Peroxidase-containing detergent compositions are disclosed. for example, in PCT
International Application W089/099813 and in W091/05839.
When peroxidase is used, the level should be such as to provide an activity in the range of from 0.10 to 1.00 PoDU/ml wash liquor.
The peroxidase will typically be added as a component of ~a laundry detergent composition and may be added in an amount of 0.01 to 100 mg enzyme per liter of wash liquid, preferably in an amount of 0.09 to 0.1 mg enzyme per liter.
Amylase enzymes The composition herein can also comprise an amylase enzyme.
Suitable amylases include, for example, -amylases obtained from a special strain of B. licheniforms, described in more detail in GB-1,296,839 (Novo). Preferred commercially available amylases include for example, RapidaseT'", sold by International Bio-Synthetics Inc. and TermamylT"', sold by Novo Nordisk A/S.
Other suitable amylases are fungal species such as Fungamyl=
commercially available from Novo Nordisk A/S.
B

0.W0 95/02681 2 i 6 716 3 PCT/LTS94/07833 '.
3~
The amylase should be used at levels of from 0.05 to 1.5~ by weight of the detergent composition. When a bacterial amylase such as Termamyl~ is used, the level of amylase should be such as to provide an activity typically in the range of 1 to 500 KNU/100 g of detergent composition (Kilo Novo Units).
When a fungal amylase such as Fungamyl~ is used, the level should be such as to provide an activity in the range of from 1 to 5,000 FAU/100g of detergent composition (Fungal Apha Amylase Unit) .
EDDS chelating agent This chelating agent is ethylenediamine disuccinate ("EDDS"), especially the [S,Sj isomer as described in U.S. Patent 4,704,233, November 3, 1987, to Hartman and Perkins.
The EDDS is typically used at a level of from 0.1$ to 10$ by weight of the compositions herein, preferably from O.I2~ to 5$.
Perfume encapsulates Perfume encapsulates, in form of particles, can be present in the composition herein at levels of from 0.001$ to 10$, preferably 0.1 to 3~.
Perfume encapsulates comprise perfume dispersed in certain carrier materials.
In the context of this specification, the term "perfume"
means any odoriferous material or any material which acts as a malodor counteractant. In general, such materials are characterized by a vapor pressure greater than atmospheric pressure at ambient temperatures. The perfume or deodorant materials employed herein will most often be liquid at ambient temperatures, but also can be solids such as the various tamphoraceous perfumes known in the art. A wide variety of SUBSTITUTE SHEET (RULE 26) WO 95/02681 ~ ~ ~ ~ ~ PCT/US94/07833 chemicals are known for perfumery uses, including materials such as aldehydes, ketones, esters and the like. More commonly, naturally occurring plant and animal oils and exudates comprising complex mixtures of various chemical components are known for use as perfumes, and such materials can be used herein. The perfumes herein can be relatively simple in their composition or can comprise highly sophisticated, complex mixtures of natural and synthetic chemical components, all chosen to provide any desired odor.
Perfumes which are normally solid can also be employed in the present invention. These may be admixed with a liquefying agent such as a solvent prior to incorporation into the particles, or may be simply melted and incorporated, as long as the perfume would not sublime or decompose upon heating.
The invention also encompasses the use of materials which act as malodor counteractants. These materials, although termed "perfumes" hereinafter, may not themselves have a discernible odor but can conceal or reduce any unpleasant odors. Examples of suitable malodor counteractants are disclosed in U.S. Patent No. 3,102,101, issued August 27, 1963, to Hawley et al.
A wide variety of capsules exist which will allow for delivery of perfume effect at various times in the cleaning or conditioning process. The less protection provided results in greater perfume effect in product or washing/conditioning process. More protection results in greater perfume effect during the drying process or even later, after the surface has been treated.
Examples of such capsules with different encapsulated materials are capsules provided by microencapsulation. Here the perfume comprises a capsule core which is coated completely with a material which may be polymeric. U.S. Patent 4,145,184, Brain et al, issued March 20, 1979, and U.S. Patent 4, 234, 627, SU85TITUTE SHEf T (RULE 26) WO 95/02681 216 716 3 pCT~S94/07833 Schilling, issued November 18, 1980, teach using a tough coating material which essentially prohibits the diffusions out of the perfume. The perfume is delivered to fabric via the microcapsules and is then released by rupture of the microcapsules such as would occur with manipulation of the fabric.
Another method involves providing protection of perfume through the wash cycle and release of perfume in the heat-elevated conditions of the dryer. U.S. Patent 4,096,072, Brock et al, issued June 20, 1978, teaches a method for delivering fabric conditioning agents to textiles through the wash and dry cycle via particles containing hydrogenated caster oil and a fatty quaternary ammonium salt. Perfume may be incorporated into these particles.
U.S. Patent 4,152.272, Young, teaches incorporating perfume into wax particles to protect the perfume through storage in dry compositions and enhance the deposition of the particles on the fabrics during the rinse by the concommitant use of a cationic surfactant. The perfume then diffuses through the wax matrix of the particles on the fabric in the heat-elevated conditions of the dryer.
Greater protection can be provided by choice of encapsulating material to be used to form the capsules, ratio of perfume to encapsulation or agglomeration of particles.
The choice of encapsulated material to be used in the perfume particles of the present invention will depend to some degree on the particular perfume to be used. Some perfumes will require a greater amount of protection than others and the encapsulating material to be used therewith can be chosen accordingly.
SUBSTITUTE SHEET (RULE 26) 2~ 6,7163 In general, the encapsulating materials of the perfumed particles can be a water-insoluble or water-soluble encapsulating material.
Nonlimiting examples of useful water-insoluble materials include polyethylenes, polyamides. polystyrenes, polyisoprenes, polycarbonates, polyesters, polyacrylates, vinyl polymers and polyurethanes and mixtures thereof.
Nonlimiting examples of suitable water-soluble coating materials include such substances as methyl cellulose, maltodextrin and gelatin. Such coatings can comprise from about 1$ to about 25~ by weight of the particles.
Especially suitable water soluble encapsulating materials are capsules which consist of a matrix of polysaccharide and polyhydroxy compounds such as described in GB 1,464,616.
Other suitable water soluble or water dispersible encapsulating materials comprise dextrins derived from ungelatinized starch acid-esters of substituted dicarboxylic acids such as described in US 3,455,838. These acid-ester dextrins are, preferably, prepared from such starches as waxy maize, waxy sorghum, sago, tapioca and potato. Suitable examples of said encapsulating materials are N-Lok O, manufactured by National Starch, Narlex ~ (ST and ST2). and Capsul E ~. These encapsulating materials comprise pregelatinised waxy maize starch and, optionally, glucose. The starch is modified by adding monofunctional substituted groups such as octenyl succinic acid anhydride.
Water-soluble encapsulating materials are especially suitable when perfume has to be incorporated into a dry granular or powder product. Such a water-soluble capsule will then protect perfume during storage in product from other SUBSTITUTE SHEET (RULE 26) t'J
2~671s3 conventional laundry composition compounds such as bleach, enzyvnes and clay.
For enhanced protection of the perfume particles in a liquid product, it is more desirable to encapsulate the perfume with a material that is pH sensitive, i.e., a material that will remain as a coating on the particle in one pH environment but which would be removed from the particle in a different pH
environment. For example, such a material could be used to encapsulate the perfume in a liquid fabric softening composition having a pH of about 3. When such a composition is added to the laundry wash water where the pH is greater than 6, the coating material could be stripped away. This would allow for further protection of perfume in liquid compositions over long storage periods, i.e., the perfume would not diffuse out of the particle in the liquid medium as readily. Diffusion o~f the perfume out of the stripped particle would then take place after the particles were brought into contact with a different pH environment.
The perfume may also be encapsulated with a material that makes the particles more substantive to the surface being treated for example, fabric in the laundry process. Such materials help to deliver the particles to the fabric and maximize perfume release directly on the fabric. Generally, these materials. are water-insoluble cationic materials.
Examples of useful material include any of the cationic including imidazolinium> compounds listed in U.S. Patent 3,686,025, Morton, issued August 22, 1972. Such materials are well known in the art and include, for example, the quaternary ammonium salts having at least one, preferably two, Clo-Czo fatty alkyl substituent groups; alkyl imidazolinium salts wherein at least one alkyl group contains a C8-C25 carbon "chain" ; the C12-Czo alkyl pyridinium salts, and the like.

2167163 .y Alternative materials userul for encapsulating materials to make them more fabric substantive are described in U.S. Patent 4,234,627, Schilling, issued November 18, 1980.
The encapsulated perfume particles can be made by mixing the perfume with the encapsulating matrix by spray-drying emulsions containing the encapsulating material and the perfume. In addition, the particle size of the product from the spray-drying tower can be modified. These modifications can comprise specific processing steps such as post-tower agglomeration steps (e. g. fluidised bed) for enlarging the particle size and/or processing steps wherein the surface properties of the encapsulates are modified, e.g. dusting with hydrophobic silica in order to reduce the hygroscopicity of the encapsulates.
A particularly preferred encapsulation process is an emulsification process followed by spray-drying and finally dusting with silica. The emulsion is formed by a) dispersing the starch matrix in water at room temp. in a 1:2 ratio. It is preferred that the starch is pregelatinised so that the emulsion can be carried out at this temperature. This in turn minimises perfume loss. There must be a "low viscosity" starch to achieve high starch concentrations in water and high perfume loadings.
b) the perfume oil is then added to the above mixture in the ratio of 0.8-1.05 : 1: 2, and the mixture is then emulsified using a high shear mixer. The shearing motion must produce oil droplets below 1 micron and the emulsion must be stable in this form for at least 20 rains (the function of the starch is to stabilise the emulsion once its mechanically made).
c) the mixture is spray-dried in a co-current tower fitted with a spinning disk atomiser. The drying air inlet temperature is B

low 150-200°C. This type of spray-drying ensures mini;~um loss of perfume and high drying rate. The granules have a particulate size of 50-150 microns.
d) the resulting dried encapsulates can contain up to 5~
unencapsulated oil at the surface of the granules. To improve the flow characteristics up to 2$ hydrophobic silica can be optionally added to the encapsulates via a ribbon blender.
Other suitable perfume encapsulates include perfumes dispersed in certain carrier materials. Examples of such carrier materials can be clay or zeolite material as described in EP
535 942. Preferred carrier materials include zeolites such as described in CA 2,164,292 filed May 31, 1994 said zeolites have a nominal pore size of at least 6 Angstroms whereby the perfume is absorbed into the pores of the zeolite particles. The particles are then matrixed or coated with a mixture of water-soluble fluid polyol or diol and a solid polyol containing more than 3 hydroxyl moieties.
It may be desirable to add additional perfume to the composition, as is, without protection via the capsules. Such perfume loading would allow for aesthetically pleasing fragrance of the composition itself. Upon opening the package containing the composition and as the product is added to water, this immediate release of fragrance may be desirable.
This perfume would be added via conventional means, e.g., mixing, as is, into a liquid composition or spraying onto dry product compositions.
The laundry additive according to the composition of the present invention can be incorporated into a wide variety of compositions which deliver a perfume to a fabric including detergent and rinse added compositions.
B

WO 95/02681 -.~-The packaging system The packaging system containing the detergent compositions of the present invention is characterized by it contains at least one unit having a Moisture Vapour Transfer Rate, of less than 20g/m2/day, preferably lg/m2/day to 15g/m2/day.
The Moisture Vapour Transfer Rate can be measured by known methods such as described in ASTM Standard E-96-53T, test for measuring Water Vapor transmission of Materials in Sheet form, and TAPPI Standard T464 m-45, Water Vapor Permeability of Sheet Materials at high temperature and Humidity.
The method used in the context of the present invention is referred to as the procon test, using a Permatran-W TWIN
equipment.
The procedure is as follows .
Equipment - Aluminium test cups with lids (4" and 6" diameter) - Template 1 (for cutting sample) - Template 2 (for applying wax) - Electric hotplate - Laboratory oven with temperature control (accuracy +/- 1 degree C.) - Laboratory cabinet with humidity control (accuracy +/- 2$ R.H.) - Microcrystalline wax (c.g. Mobel Oil Wax 2305 or equivalent) - Calcium chloride, anhydrous, granular, 8 mesh - Petrolatum - Electric vessel with thermostat for melting wax - Cutting pad - Scissors or circular cutting knife - Laboratory balance (i.e. Mettler K-7, Mikrowa type FW-31-6, etc.) with accuracy of +/- 0.05 g.
SUBSTITUTE SHEfT (RULE 26) -- WO 95/02681 21 b 716 3 PCTIUS94/07833 Preparation of materials A 'test sample is cut out from the material to be tested.
Another test sample from uniform protective sheet of material of known MVTR is used as control (e.g. bitumen laminated liner or wax-laminated board).
Test procedure 1) The wax is heated in the electric vessel to 90-110°C. The test cups are heated in the oven or hot plate for 1/2 hour at about 90°C. One test cup is removed from the oven at a time, and the cups are filled with calcium chloride up to 2/3 of cup ring height, petrolatum is applied sparingly to the beveled edge of the template 2. The base of the template 2 is wiped dry where it comes in contact with the test sample. The sample is centered in the cup. The template 2 is placed over the sample and centered with respect to the cup. Melted wax is poured into the annular space formed by the beveled edge of the template 2 and the cup rim. When the wax has solidified, the template 2 is removed using a gentle twisting motion. The cup assembly is weighted to the nearest 0.05 gram before being placed in the test atmosphere. The cups are stored at 35°C/80~ eRH.
2) After being left two days in the humidity cabinet, the cups are weighed every 24 hours interval until a constant weight gain is obtained on three successive weighings (maximum deviation 0.25 gram). The cups are weighed immediately after removal from the humidity cabinet, and are covered with an aluminium lid when moved from cabinet to balance.
SUBSTITUTE SHEET (RULE 26) WO 95/02681 ~ PCT/LJS94I07833 All weighings are recorded and the daily weight gain for each cup is calculated. The MVTR is recorded in g/m2/24 hours and calculated as follows .
a) effective area of sample . 66.6 cm2 (4" diameter cups) x 3600 x g/m2/24 hours Y
b) effective area of sample . 133 cm2 (6" diameter cups) x 1800 x g/m2/24 hours Y
where x = total weight gain in grams y = time in hours (both calculated on the basis of 3 successive periods with a daily constant weight gain) The packaging system herein of at least one unit being the recipient for detergent compositions of the present invention:
such a unit is typically a consumer unit such as a bottle/cannister or a bag/pouch, or a board packet carton or drum containing the composition of the invention and designed to be used/stored as such in the consumer homes.
If such a unit already achieves the Moisture Vapour Transfer Rate characteristics of the present invention, it can be used alone and therefore can constitute the packaging system of the present invention.
It is however possible that the Moisture Vapour Transfer Rate characteristics therein be achieved'via an outer packaging unit protecting the consumer unit, for e.g. shipping purposes. In such a case the packaging system herein may consist of a consumer unit and one or more external units, said external SUBSTITUTE SHEET (RUtE 26) -w--- WO 95102681 216 716 3 pCT/US94/07833 units being made of plastic and/or paper laminates or board.
Those materials are described more in detail herebelow.
The packaging system herein may also consist of plurality of consumer units grouped for shipping convenience in e.g. bundles:
in such a case the external unit will typically be a plastic wrapper combined with a broad tray holding said consumer units together.
Depending on the execution of the present system, the amount of detergent composition contained in the packaging systems herein can vary from 250 g (individual small consumer units) to 20 kg, (bundles consumer units).
The consumer units of the present packaging systems are preferably bags/pouches, and such units are typically used in refill bags.
Refill bags are readily collapsible containers which have been designed in order to reduce the amount of plastic packaging material disposed in the environment;
Refill bags can be used by emptying their content into a permanent package such as plastic or metal cannister or a carton container that the consumer uses, for storing the detergent products:
In such an execution the refill bag is not reclo~able;
however, reclosable bags/pouches are encompassed by the present invention as well.
The bags/pouches herein can be pillow bags or gusseted bags;
either ones, but specifically the gusseted bags, may have reduced or no head space: they can be made either from raw stock of from preformed and/or prefolded material, and can be sealed by various means, e.g. by heat, adhesives/glue, tapes.
The bags/pouches herein are made of films, either monolayer, including coextruded materials, or laminated; such films are typically paper or plastic or combinations of the two; preferred SUBSTITUTE SHEET (RULE 26) 21671 b3 materia'_s for the bags herein are plastic and/or paper laminates. Plastic, meterials are typically polyolefines, and both plastic and paper can be virgin or recycled material; the films herein can be printed in different ways, typically gravure, flexo. offset.
Also encompassed herein are films with moisture barrier properties, obtained by resins, either coextruded or in different laminated layers, or coating by e.g. lacquers.
The consumer units herein can also consist of board cartons/packets/drums, used of either corrugated or laminated materials, or combinations of the two, said materials being either virgin or recycled; or plastic bottles and cannisters.
Said cartons/packets/drums can, if necessary in view of obtaining the derived Moisture Vapour Transfer Rate, be coated either on the inside on to the outisde with a layer of material, typically metal or plastic laminate, providing to the unit the Moisture Vapour Transfer Rate characteristics of the invention.
The cartons/packets/drums herein can be printed as described above, and/or be coated with materials such as lacquers ensuring barrier properties.
Optional ingredients The compositions herein, in addition to the one or more of the selected ingredients listed hereinabove, may also contain other ingredients such as described hereinbelow.
In one embodiment of the present invention, when bleach activators such as described above are used, the granular laundry detergent compositions herein also contain a (non-enzymatic) bleaching agent: however bleach-free granular detergent compositions are also desirable, particular for the treatment of certain fabrics requiring special care; therefore, such bleach-free detergent compositions are also encompassed by the present invention;
SUBSTITUTE SHEET (RULE 26) _. WO 95/02681 , PCT/US94/07833 In such a bleach-free execution, the moisture sensitive selected materials of the present invention, are preferably chosen from the group of choline esters polyaspartate, polyglutamate, maleic/acyclic acids/vinyl alcohol terpolymers, sulfonated polyethoxy/propoxy end-capped ester oligomers, peroxidase enzyme and mixtures thereof Bleaching agent The bleaching agent, if used, is either an inorganic persalt such as perborate, persulfate, percarbonate or a preformaced organic peracid or perimidic acid, such as N,N phtaloylaminoperoxy caproic acid, 2-carboxy-phtaloylaminoperoxy caproic acid, N,N
phtaloylaminoperoxy valeric acid, Nonyl amide of peroxy adipic acid, 1,12 diperoxydodecanedoic acid, Peroxybenzoic acid and ring substituted peroxybenzoic acid, Monoperoxyphtalic acid (magnesium salt, hexhydrate), Diperoxybrassylic acid.
The bleach-containing laundry detergent herein typically contain from 1$ to 40$, preferably from 3~ to 30$ by weight, most preferably from 5$ to 25~ by weight of bleaching agent.
The perborate bleach is usually in the form of its sodium salt, and present in the monohydrate of tetrahydrate form).
The percarbonate bleach is usually in the form of the sodium saltand a mean size from 250 to 900 micrometers, preferably 500 to 700 micrometers. Sodium percarbonate is an addition compound having a formula corresponding to 2Na2C03 3H202. To enhance storage stability the percarbonate bleach can be coated with e.g.
a further mixed salt of an alkali metal sulphate and carbonate.
Such coatings together with coating processes have previously been described in GB-1,466,799, granted to Interox on 9th March 1977.
The weight ratio of the mixed salt coating material to percarbonate lies in the range from 1:2000 to 1:4, more preferably from 1:99 to 1:9, and most preferably from 1:49 to 1:19.
Preferably, the mixed salt is of sodium sulphate and sodium SUBSTITUTE SHEET (RULE 26) 216~~63 carbonate which has tt~.e general formula Na2S04.n.Na2C03 wherein n is from 0.1 to 3, preferably n is from 0.3 to 1.0 and most preferably n is from 0.2 to 0.5.
Other suitable coating materials are sodium silicate, of Si02:Na20 ratio from 1.6:1 to 2.8:1, and magnesium silicate.
Commercially available carbonate/sulphate coated percarbonate bleach may include a low level of a heavy metal sequestrant such as EDTA, 1-hydroxyethylidene 1,1-diphosphonic acid (HEDP) or an aminophosphonate, that is incorporated during the manufacturing process.
Preferred heavy metal sequestrants for incorporation as described herein above include the organic phosphonates and amino alkylene poly(alkylene phosphonates) such as the alkali metal ethane 1-hydroxy diphosphonates, the nitrilo trimethylene phosphonates, the ethylene diamine tetra methylene phosphonates and the diethylene triamine penta methylene phosphonates.
Surfactants The preferred laundry detergent compositions herein contain a surfactant selected from the following species .
Alkyl Sulfate Surfactant Alkyl sulfate surfactants hereof are water soluble salts or acids or the formula ROS03M wherein R preferably is a Clp-C24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a C10-C2p alkyl component, more preferably a C12-Clg alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium), or ammonium or substituted ammonium (e. g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as SUBSTITUTE SHEET (RULE 26) .a:-fVO 95/026$1 216 l 16 3 PCT/US94/07833 tetramethyl-ammonium and dimethyl piperdinium cations and quarternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like). Typically, alkyl chains of 012-16 are preferred for lower wash temperatures (e. g., below about 50°C) and 016-18 alkyl chains are preferred for higher wash temperatures (e. g., above about 50°C).
Alkyl Alkoxylated Sulfate Surfactant Alkyl alkoxylated sulfate surfactants hereof are water soluble salts or acids of the formula RO(A)mSOgM wherein R is an unsubstituted 010-024 alkyl or hydroxyalkyl group having a 010-024 alkyl component, preferably a 012-020 alkyl or hydroxyalkyl, more preferably 012-Clg alkyl or hydroxyalkyl, A
is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0.5 and about 5, and M is H or a cation which can be, for example, a metal cation (e. g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation. Alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein. Specific examples of substituted ammonium cations include methyl-, dimethyl-, trimethyl-ammonium and quaternary ammonium cations, such as tetramethyl-ammonium, dimethyl piperdinium and cations derived from alkanolamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the like. Exemplary surfactants are 012-Clg alkyl polyethoxylate (1.0) sulfate, 012-C18E(1.0)M), 012-Clg alkyl polyethoxylate (2.25) sulfate, 012-ClgE(2.25)M), 012-018 alkyl polyethoxylate (3.0) sulfate 012-C18E(3.0), and 012-Clg alkyl polyethoxylate (4.0) sulfate 012-C18E(4~0)M), wherein M is conveniently selected from sodium and potassium.
SUBSTITUTE SHEfT (RUi_E 26) ~1g7163 Other Anionic Surfactants Other anionic surfactants useful for detersive purposes can also be included in the laundry detergent compositions of the present invention. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, Cg-C20 linear alkylbenzenesulphonates, Cg-C22 primary or secondary alkanesulphonates, Cg-C24 olefinsulphonates, sulphonated polycarboxylic acids prepared by sulphonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No. 1,082,179, Cg-C24 alkylpolyglycolethersullates (containing up to 10 moles o!
ehtylene oxide); acyl glycerol sulfonates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, para!!in sullonates, alkyl phosphates, isethionates such as the, acyl isethionates, N-acyl, taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C12-C1g monoesters) dissters o!
sulfosuccinate (especially saturated and unsaturated C6-C14 diesters), acyl sarcosinates, sulfates of alkylpolysaccharides such as the sulfates o! alkylpolyglucosids (the nonionic nonsulfated compounds being described below), branched primary alkyl sulfates, alkyl polyethoxy carboxylates such as those of the formula RO(CH2CH20)kCH2C00-M+ wherein R is a C8-C22 alkyl, k is an integer from 0 to 10, and M is a soluble salt-forming catfon. ~R~sin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil. Further examples are given :in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A
variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975 to Laughlin, et al. at Column 23, line 58 through Column 29, line 23, _. WO 95/02681 ~ 16 71 b 3 PCT/US94/07833 4~
Preferred surfactants for use in the compositions herein are the alkyl sulfates, alkyl alkoxylated sulfates, and mixtures thereof .
When included therein, the laundry detergent compositions of the present invention typically comprise from about 1 % to about 40 %, preferably from about 3 % to about 20 % by weight of such anionic surfactants.
Nonionic Surfactants The present laundry detergent compositions preferably also comprise a nonionic surfactant.
While any nonionic surfactant may be normally employed in the present invention, two families of nonionics have been found to be particularly useful. These are nonionic surfactants based on alkoxylated (especially ethoxylated) alcohols, and those nonionic surfactants based on amidation products of fatty acid esters and N-alkyl polyhydroxy amine. The amidation products of the esters and the amines are generally referred to herein as polyhydroxy fatty acid amides. Particularly useful in the present invention are mixtures comprising two or more nonionic surfactants wherein at least one nonionic surfactant is selected from each of the groups of alkoxylated alcohols and the polyhydroxy fatty acid amides.
Suitable nonionic surfactants include compounds produced by the condensation of alkylene oxide groups (hydrophilic in nature) with an organic hydrophobic compound, which may be aliphatic or alkyl aromatic in nature. The length of the polyoxyalkylene group which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.
SUBSTITUTE SHEET (RULE 26) 21 G~~ 1 ~3 Particularly preferred for use in the present invention are nonionic surfactants such as the polyethylene oxide condensates of alkyl phenols, e.g., the condensation products of alkyl phenols having an alkyl group containing from about 6 to 16 carbon atoms, in either a straight chain or branched chain configuration, with from about 4 to 25 moles of ethylene oxide per mole of alkyl phenol.
Preferred nonionics are the water-soluble condensation products of aliphatic alcohols containing from 8 to 22 carbon atoms, in either straight chain or branched configuration, with an average of up to 25 moles of ethylene oxide per more of alcohol. Particularly preferred are the condensation products of alcohols having an alkyl group containing from about 9 to 15 carbon atoms with from about 2 to 10 moles of ethylene oxide per mole of alcohol; and condensation products of propylene glycol with ethylene oxide. Most preferred are condensation products of alcohols having an alkyl group containing from about 12 to 15 carbon atoms with an average of about 3 moles of ethylene oxide per mole of alcohol.
Also useful as the nonionic surfactant of the surfactant system of the present invention are the alkylpolysaccharides disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986 having a hydrophobic group containing from about 6 to about 30 carbon atoms, preferably from about 10 to 16 carbon atoms and a polysaccharide, e.g. a polyglycoside hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units. Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties (optionally the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside). The intersaccharide bonds can be, e.g., between the one position of the additional SUBSTITUTE SHE~T (RULE 26) saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
The preferred alkylpolyglucosides have the formula R20(CnH2n0)t (glucosyl)x wherein R2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from about 1o to about 18, preferably from about 12 to about 14, carbon atoms; n is 2 or 3, preferably 2; t is from 0 to about 10, preferably from about 1.3 to about 3, most preferably from 1.3 to about 2.7. The glycosyl is preferably derived from glucose. To prepare these compounds, the alcohol or alkylpolyethoxy alcohol is formed first and then reacted with glucose, or a source of glucose, to form the glucoside (attachment at the 1-position).
The additional glycosyl units can then be attached betweentheir 1-position and the preceding glycosyl units 2-, 3-, 4- and/or 6- position, preferably predominately the 2-position.
Other Surfactants The laundry detergent compositions of the present invention may also contain cationic surfactants, ampholytic, zwitterionic, and semi-polar surfactants, (other than those already described above) and other nonionic surfactants, including the semi-polar nonionic amine oxides described below.
Cationic detersive surfactants suitable for use in the laundry detergent compositions of the present invention are those having one long-chain hydrocarbyl group. Examples of such cationic surfactants include the ammonium surfactants such as alkyldi- or tri-methylammonium compounds, and those surfactants having the formula .
SUBSTITUTE SHEET (RULE 26) SO
(R2 (OR3) YI (R'~ (OR3) y12R5N+X-wherein R2 is an alkyl or alkyl benzyl group having from about 8 to about 18 carbon atoms in the alkyl chain, each R3 is selected from the group consisting of -CH2CH2-, -CH2CH(CH3)-, -CH2CH(CH20H)-, -CH2CH2CH2-, and mixtures thereof: each R4 is selected from the group consisting of C1-C4 alkyl, C1-C4 hydroxyalkyl, benzyl ring structures formed by joining the two R4 groups, -CH2COH-CHOHCOR6CHOHCH20H wherein R6 is any hexose or hexose polymer having a molecular weight less than about 1000, and . hydrogen when y is not 0; R5 is the same as R4 or is an alkyl chain wherein the total number of carbon atoms of R2 plus R5 is' . not more than about 18; each y is from 0 to about 10 and the sum of the y values is from 0 to about 15; and X is any compatible anion.
Other cationic surfactants useful herein are also described in US Patent 4,228,044, Cambre, issued October 14, 1980.
When included therein, the laundry detergent compositions of the present invention typically comprise from 0 $~to about 25 $, preferably form about 3 ~ to about 15 $ by weight of such cationic surfactants.
Ampholytic surfactants are also suitable for use in the laundry detergent compositions of the present invention. These surfactants can be broadly described as aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight- or branched chain. One of the aliphatic substituents contains at least 8 carbon atoms, typically from about 8 to about 18 carbon atoms, and at least one contains an anionic water-solubilizing group e.g. carboxy, s sulfonate, sulfate.. See U.S. Patent No. 3,929,678 to Laughlin et al., issued December 30, 1975 at column 19, lines 18-35 for example of ampholytic surfactants.
When included therein, the laundry detergent compositions of the present invention typically comprise form 0 $ to about 15 $, preferably from about 1 ~ to about 10 $ by weight of such ampholytic surfactants.
Zwitterionic surfactants are also suitable for use in laundry detergent compositions. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivates of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quarternary phosphonium or tertiary sulfonium compounds. See U.S. Patent No. 3,929,678 to Laughlin et al., issued December 30, 1975 at columns 19, line 38 through column 22, line 48 for examples of zwitterionic surfactants.
When included therein, the laundry detergent compositions of the present invention typically comprise'form 0 $ to about 15 $, preferably from about 1 8 to about 10 $ by weight of such zwitterionic surfactants.
Semi-polar nonionic surfactants are a special category of nonionic surfactants Which include water-soluble amine oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydrocyalkyl groups containing form about 1 to about 3 carbon atoms: water-soluble phosphine oxides containing one alkyl moiety of form about 10 to about 18 carbon atoms and 2 moieties selected form the group consisting of -alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms.
s WO 95/02681 PCT/US94/07833 - ..

<<
Semi-polar nonionic detergent surfactants include the amine oxide surfactants having the formula .

R3(OR4)xN(RS)2 Builder The preferred laundry detergent compositions contain a builder, preferably non-phosphate detergent builders, although phosphate-containing species are not excluded in the content of the present invention. These can include, but are not restricted to alkali metal carbonates, bicarbonates, silicates, aluminosilicates, carboxylates and mixtures of any of the foregoing. The builder system is present in an amount of from 1$ to 80$ by weight of the composition, typically preferable from 20$ to 60$ by weight in granular laundry detergent compositions herein, and from 1$ to 30$ in liquid laundry detergent compositions herein.
Suitable silicates are those having an Si02 . Na20 ratio in the range from 1.6 to 3.4, the so-called amorphous silicates of Si02 . Na20 ratios from 2.0 to 2.8 being preferred.
Within the silicate class, highly preferred materials are crystalline layered sodium silicates of general formula NaMSix02x + 1~yH20 wherein M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20. Crystalline layered sodium silicates of this type are disclosed. in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043. For the purposes of the present invention, x in the general formula above has a value of 2,3 or 4 and is preferably ~ More preferably M is sodium and y is 0 and preferred SUB~fITUTE SHEET (RULE 26) ~- WO 95/02681 ~ ~ ~ ~ ~ PCT/US94/07833 examples of this formula comprise the form of Na2Si205. These materials are available from Hoechst AG FRG as respectively NaSKS-5, NaSKS-~. NaSKS-11 and NaSKS-6. The most preferred material is -Na2Si205, NaSKS-6. Crystalline layered silicates are incorporated either as dry mixed solids, or as solid components of agglomerates with other components.
Whist a range of aluminosilicate ion exchange materials can be used, preferred sodium aluminosilicate zeolites have the unit cell formula Naz[(A102)z~(Si02)y]~xH20 wherein z and y are at least about 6, the molar ratio of z to y is from about 1.0 to about 0.4 and z is from about 10 to about 264. Amorphous hydrated aluminosilicate materials useful herein have the empirical formula Mz(zA102~ySi02) wherein M is sodium, potassium, ammonium or substituted ammonium, z is from about 0.5 to about 2 and y is 1, said material having a magnesium ion exchange capacity of at least about 50 milligram equivalents of CaC03 hardness per gram of anhydrous aluminosilicate. Hydrated sodium Zeolite A arith a particle size of from about 1 to 10 microns is preferred.
The aluminosilicate ion exchange builder materials herein are in hydrated form and contain from about 10$ to about 28$ of water by weight if crystalline, and potentially even higher amounts of water if amorphous. Highly preferred crystalline aluminosilicate ion exchange materials contain from about 18$ to about 22$ water in their crystal matrix. The crystalline aluminosilicate ion exchange materials are further characterized by a particle size diameter of from about 0.1 micron to about 10 microns. Amorphous materials are often smaller, e.g., down to SUBSTITUTE SHEET (RULE 26) less than about O.D1 micron. Preferred ion exchange materials have a particle size diameter of from about 0.2 micron to about 4 microns. The term "particle size diameter" herein represents the average particle size diameter by weight of a given ion exchange material as determined by conventional analytical techniques such as, for example, microscopic determination utilizing a scanning electron microscope.
Aluminosilicate ion exchange materials useful in the practice of this invention are commercially available. The aluminosilicates useful in this invention can be crystalline or amorphous in structure and can be naturally occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is discussed in U.S. Pat. No. 3, 985, 669, Krummel et al., issued Oct. 12, 1976.
Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite X, P and MAP, the latter species being described in EPA 384070. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange material is a Zeolite A having the formula Nal2((A102)l2tSi02)l2l~xH20 wherein x is from about 20 to about 30, especially about 27 and has a particle size generally less than about 5 microns.
Suitable carboxylate builders containing one carboxy group include lactic acid, glycollic acid and ether derivatives thereof as disclosed in Belgian Patent Nos. 831,368, 821,369 and 821,370. Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, malefic acid, diglycollic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates described in German Offenlegenschrift _. 216~16~
..
2, 446, 686 and 2, 446, 687 and U.S. Patent No. 3, 935, 257 and the sulfinyl carboxylates described in Belgian Patent No. 840,623.
Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No.
1,379,241, lactoxysuccinates described in Canadian Patent No.
973,771 and the oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxylates described in British Patent No. 1,387,447.
Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261.829,1, and the 1,2,2-ethane tetracarboxylates ,1,1,3,3-propane tetra-carboxylates and 1,1,2,3-propane tetracarboxylates. Poly-carboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos.
1,398,421 and 1,398,422 and in US Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in Hritish Patent No.
1,082,179, while polycarboxylates containing phosphone substituents are disclosed in British Patent No. 1,439,000.
Alicyclic and heterocyclic polycarboxylates include cyclopentane-cis,cis,cis-tetracarboxylates, cyclopentadienide pentacarboxylates, 2,3,4,5-tetrahydrofuran - cis,cis,cis-tetracarboxylates, 2,5-tetrahydrofuran -cis- dicarboxylates, 2, 2, 5, 5, -tetrahydrofuran - tetracarboxylates, 1, 2, 3, 4, 5, 6-hexane hexacarboxylates and carbxoymethyl derivatives of polyhydric alcohols such as sorbitol, mannitol and xylitol. Aromatic polycarboxylates include mellitic acid, pyromellitic acid and the phtalic acid derivates disclosed in British Patent No.
1,425,343.

WO 95102681 2 ~ 6 7 ~ ~ ~ PCT/US94/07833 ~6 J
Other optional ingredients Other ingredients which are known for use in detergent compositions may also be used as optional ingredients in the various embodiments of the present invention, such as other bleach activators, other chelating agents, other enzymes, suds suppressing agents, fabric softening agents, in particular fabric softening clay, as well as dyes, fillers, optical brighteners, pH
adjusting agents, non builder alkanity sources, enzyme stability agents, hydrotopes, solvents, perfumes.
Other Bleach activators Other bleach activator include N-,N,N'N' tetra acetylated compounds of the formula CHgC CCH3 N- ( CH2 ) x -N

where x can be 0 or an integer between 1 and 6.
Examples include tetra acetyl methylene diamine (TAMD) in which x=1, tetra acetyl ethylene diamine (TAED) in which x=2 and Tetraacetvl hexylene diamine (TAHD) in which x=6. These and sua~nn~ sH~r ~~u~ Zs~

2~~~1,63 analogous compounds are described in GB-A-907 356. The most preferred peroxyacid bleach activator as an additional bleaching component is TAED.
Another class of other suitable peroxyacid bleach compounds are the amide substituted compounds of the following general formulae .
R1 - C - N-R2 - C - L or R1 - N - C-R2 - C - L

wherein R1 is an aryl or alkaryl group with from about 1 to about 14 carbon atoms, R2 is an alkylene, arylene, and alkarylene group containing from about 1 to about 14 carbon atoms, and RS is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms and L can be essentially any leaving group. R1 preferably contains from about 6 to 12 carbon atoms . R2 preferably contains from about 4 to 8 carbon atoms .
R1 may be straight chain or branched alkyl, substituted aryl or alkylaryl containing branching, substitution, or both and may be sourced from either synthetic sources or natural sources including for example, tallow fat. Analogous structural variations are penaissible for R2. The substitution can include alkyl, aryl, halogen, nitrogen, sulphur and other typical substituent groups or organic compounds. RS is preferably H or methyl. R1 and RS should not contain more than 18 carbon atoms total. Amide substituted bleach activator compounds of this type are described in EP-A-0170386.
Other chelating agents The detergent compositions herein may contain other iron and/or manganese chelating agents than EDDS. Such chelating agents can be selected from the group consisting of amino carboxylates. amino SUBSTITUTE SHEET (RUtE 26) phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures therein, all as hereinafter defined. Without intending to be bound by theory, it is believed that the benefit of these materials is due in part to their exceptional ability to remove iron and manganese ions from washing solutions by formation of soluble chelates.
Amino carboxylates useful as optional chelating agents include ethylenediaminetetracetates, N-hydroxyethylethylenediaminetri-acetates, nitrilotriacetates, ethylenediamine tetraprionates, triethylenetetraamine-hexacetates, diethylenetriaminepenta-acetates, and ethanoldiglycines, alkali metal, ammonium, and substituted ammonium salts therein and mixtures therein.
Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at least low levels of total phosphorous are permitted in detergent compositors, and include ethylenediaminetetrakis (methylenephosphonates) as DEQUEST. Preferred, these amino phosphonates do not contain alkyl or alkenyl groups with more than about 6 carbon atoms.
Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions herein. See U.S. Patent 3,812,049, issued May 21, 1974, to Connor et al. Preferred compounds of this type in acid fona are dihydroxydisulfobenzenes such as 1,2-dihydroxy-3,5-disulfobenzene.
Other Enzymes Other enzymatic materials than peroxidase and amylase can be incorporated into the detergent compositions herein. Suitable are proteases, lipases, cellulases, and mixtures thereof.
A suitable lipase enzyme is manufactured and sold by Novo Industries A/S (Denmark) under the trade name Lipolase and SUBSTITUTE SHEfT (RULE 26) mentioned along ,w.ith other suitable lipases in EP-A-0258068 (Novo Nordisk) .
Suitable cellulases are described in e.g. WO-91/17243 and WO
91/17244 (Novo Nordisk).
Preferred commercially available protease enzymes include those sold under the trade marks Alcalase and Savinase by Novo Industries A/S (Denmark) and Maxatase by International Bio-Synthetics, Inc. (The Netherlands).
Other proteases include Protease A (see European Patent Application 130 756, published January 9, 1985) and Protease B
(see EP 251,446 published January 7, 1988 and European Patent Application 130 756, Bott et al, published January 9, 1985).
Preferred process for making the laundry detergent composition herein.
In a preferred process for making the laundry detergent compositions of the present invention, in particular when a high bulk density is desired, part or all of the surfactant contained in the finished composition is incorporated in the form of separate particles: said particles may take the form of flakes, prills, marumes, noodles, ribbons, but preferably take the form of granules. The most preferred way to process the particles is by agglomerating powders (such as e.g.
aluminosilicate, carbonate) with high active surfactant pastes and to control the particle size of the resultant agglomerates within specified limits. Such a process involves mixing an effective amount of powder with a high active surfactant paste in one or more agglomerators such as a pan agglomerator, a Z-blade mixer or more preferably an in-line mixer such as those manufactured by Schugi (Holland) BV, 29 Chroomstraat 8211 AS, Lelystad, Netherlands, and Gebruder Lodige Maschinenbau GmbH, D-4790 Paderborn 1, Elsenerstrasse 7-9, Postfach 2050, Germany.

~~~7163 Most preferably a high shear mixer is used, such as a Lodige CB
(Trade Name).
A high active surfactant paste comprising from 50~ by weight to 95~ by weight, preferably 70~ by weight to 85~ by weight of surfactant is used. The surfactant system may comprise any of the groups of anionic, nonionic, cationic, amphoteric, and zwitterionic surfactants, or mixtures of these. The paste may be pumped into the agglomerator at a temperature high enough to maintain a pumpable viscosity, but low enough to avoid degradation of the anionic surfactants used. An operating temperature of the paste of 50°C to 80°C is typical.
A particularly suitable process of making surfactant particles from high active surfactant pastes is more fully described in EP
510 746, published on 28th October, 1992.
The free-flowing surfactant particles made by the process described above are then mixed with other detergent components, in order to produce a finished detergent composition.
This mixing may take place in any suitable piece of equipment.
Liquid detergents such as nonionic surfactant and perfume may be sprayed on to the surface of one or more of the constituent granules, or onto the finished composition.
5u~'iITUTE SHEEP (RUtE 26) 2~e~~s3 E

Additional detergent compositions according to the invention were prepared .
Ingredient alas 1 2 3 4 I S ~ 6 7 8 -Zes Linear Alkyl Suphonate 7 0 0 0 0 0 0 0 Tallow Alkyl Sulphate 3 0 0 0 0 0 0 0 Alkyl Sulphate 0 9 6 9 12 12 9 6 Alkyl Ethoxylate 0.2 2 1 2 2 3 3 3 Sulphate Coconut Choline ester 0 0 0 0 0 0 0 Alkyl Ethoxylate 4 5 10 6 4 7 8 12 (5 of 7 times ethox lated) Alkyl-N-Methyl 0 2 3 3 1 3.5 3.5 3.5 Glucosamide Perborate 22 0 0 0 0 0 0 0 Percarbonate 0 22 19 22 24 0 0 0 (6-ocanamido-capryol) 0 5 0 0 0 0 0 0 ox benzene sulfonate Henzyol Caprolactam 0 0 2 5 0 0 0 0 N-(4-(trimethyl 0 0 0 0 _ 0 0 0 ammonium ethyl benzoyl) 4 caprolactam, chloride salt N,N,N,N-Tetra acetyl 5 0 2 5 0 0 0 0 ethylene diataine S,S-Ethylene-di- 0 0 0.5 0.5 0.5 0 0 0 succinic acid Peroxidase 1 PODU 0 0.4 0 0.3 0.1 0.2 0 0.1 Termamyl 60 F4~1t.1 0.6 0.3 0 0.2 0.5 0.8 0.2 0.2 Fungamyl 1600 FAU 0 0.125 0.2 0.2 0 0 0.3 0.3 LipolaseT"' 165 KLU 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 B

WO 95/02681 ~ ~~' ~ ~ PCT/US94I07833 .._.....

Graaulmr Laundry De tergen to lea -Cellulase 1000 cew 0.1 0.2 0.3 0. 0. 0.2 0.2 0.2 Endoglucanase 5000 0 0.1 0.1 0. 0.1 0.1 0.1 0.1 s-cew Protease(Savinase) 0.4 0.5 0.7 0.7 0.5 0.7 0.7 0.7 13F~1PU

Alumino Silicate 21 13 15 15 18 19 21 23 (zeolite A) Layered Silicate 0 12 11 11 9 9 11 7 Sodium Citrate 6 5 4 4 3 11 9 8 .

Sodium Carbonate 16 8 7 7 7 11 11 9 Sodium Silicate 3 0 0 0 0 4 6 8 Sulphate 4 0.6 0.6 0.6 0.6 0 0 0 Soil Release Polymer 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 *

Polyvinyl-N-oxide 0.3 0 0.5 0.2 0.2 0.4 0.3 (PVNO) PVPVI 0 0.05 0 0 0.2 0.5 0.1 Terpolymer malefic/ 0 0 - 3 4 0 3 0 0 acyclic vinylalcohol Polyaspartate 0 0 0 0 0 4 2 Perfume encapsulates 0 0 0.2 0 0 0 0 0.4 Minors up to *as described above When the above compositions are' stored in a 35°C/80~ eRH
environment in plastic or polyethylene laminate refill bags with a measured MVTR of Sg/m2/day, or plastic cannisters of a measured MVTR of O,Sg/m2/day, the composition showed excellent SUBSTITUTE SHEEP (RUtE 26) stability after 4 weeks of storage, the eRFi measured at 35°C of the composition ranging from 10 after packing to 28 after 4 weeks of storage.
sus~nrurE sH~r ~RU~ Zs~

Claims (11)

Claims:
1. The combination of a granular detergent composition containing at least one moisture-sensitive ingredient selected from the group consisting of polyhydroxy fatty acid amides nonionic surfactants, choline ester cationic surfactants, bleach activators selected from alkanoyloxybenzene-sulfonates, amido derived species, benzoxazin-type species, quaternary substituted species, and mixtures thereof, polymers selected from polyamine N-oxides, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinyloxazoli-dones and polyvinylimidazoles, polyaspartate, polyglutamate, maleic/acrylic acids/vinyl alcohol terpolymers, sulfonated polyethoxy/propoxy end-capped ester oligomers and mixtures thereof, peroxidase enzymes, amylase enzymes, ethylenediamine disuccinic acid chelating agent, perfume encapsulates and mixtures thereof, with a packaging system containing said composition, characterized in that said composition has an Equilibrium Relative Humidity below about 30% at 35°C, and that the packaging system contains at least one unit having a Moisture Vapour Transfer Rate of less than about 20 g/m2/day.
2. The combination of claim 1 wherein said unit in said packaging system has a Moisture Vapour Transfer Rate of from about 1 g/m2/day to about 20 g/m2/day.
3. The combination of claim 2 wherein said unit in said packaging system has a Moisture Vapour Transfer Rate of from about 1 g/m2/day to about 15 g/m2/day.
4. The combination of claim 2 wherein at least one unit of said packaging system consists of a bag or pouch made of monolayer or laminated paper and/or plastic film.
5. The combination of claim 4 wherein said packaging system consists of such a bag or pouch.
6. The combination of claim 4 to 5 wherein said bag or pouch is a refill bag.
7. The combination of claim 1 wherein the granular detergent composition is a laundry detergent composition containing a surface active agent and a builder.
8. The composition of claim 7 wherein said composition has a bulk density above about 650 g/l.
9. The combination of claim 8 wherein at least part of the surfactant in said composition is delivered via an agglomerate or an extrudate.
10. The combination of claim 7 wherein said composition contains a peroxygen or peroxyacid bleaching agent.
11. The combination of claim 7 wherein said composition is bleach free and, the moisture sensitive ingredient is selected from the group consisting of choline ester cationic surfactants, polymers selected from polyaspartate, polyglutamate, maleic/acrylic acids/vinyl alcohol terpolymers and sulfonated polyethoxy/propoxy end-capped ester oligomers, peroxidase enzymes and mixtures thereof.
CA002167163A 1993-07-14 1994-07-13 Detergent-package combination Expired - Fee Related CA2167163C (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
EP93870141 1993-07-14
EP94304555A EP0634484B1 (en) 1993-07-14 1994-06-23 Detergent-package combination
EP93870141.4 1994-06-30
EP19940304781 EP0634485B1 (en) 1993-07-14 1994-06-30 Detergent-package combination
EP94304555.9 1994-06-30
EP94304781.1 1994-06-30
PCT/US1994/007833 WO1995002681A1 (en) 1993-07-14 1994-07-13 Detergent-package combination

Publications (2)

Publication Number Publication Date
CA2167163A1 CA2167163A1 (en) 1995-01-26
CA2167163C true CA2167163C (en) 1999-11-23

Family

ID=27235605

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002167163A Expired - Fee Related CA2167163C (en) 1993-07-14 1994-07-13 Detergent-package combination

Country Status (11)

Country Link
EP (1) EP0634485B1 (en)
JP (1) JPH09500170A (en)
AU (1) AU7220794A (en)
BR (1) BR9407273A (en)
CA (1) CA2167163C (en)
CZ (1) CZ289726B6 (en)
EG (1) EG20794A (en)
HU (1) HU218571B (en)
MA (1) MA23267A1 (en)
TR (1) TR27893A (en)
WO (1) WO1995002681A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9507659D0 (en) 1995-04-13 1995-05-31 Ass Octel Alkylation process
DE19542571C2 (en) * 1995-11-15 1998-02-26 Henkel Kgaa Process for packaging mixtures of substances
EP0778342A1 (en) 1995-12-06 1997-06-11 The Procter & Gamble Company Detergent compositions
GB9704776D0 (en) * 1997-03-07 1997-04-23 Unilever Plc Detergent - packaging combination
US6245731B1 (en) * 1997-09-01 2001-06-12 The Procter & Gamble Company Detergent tablets-package combination
WO1999055819A1 (en) * 1998-04-23 1999-11-04 The Procter & Gamble Company Encapsulated perfume particles and detergent compositions containing said particles
DE19848457A1 (en) * 1998-10-21 2000-04-27 Henkel Kgaa Combination of laundry or other detergent moldings containing percarbonate bleach and packaging system has packaging with low water vapor transmission rate
WO2001016283A1 (en) * 1999-08-31 2001-03-08 Henkel Kommanditgesellschaft Auf Aktien Detergent constituent
DE19949981A1 (en) * 1999-10-16 2001-04-19 Henkel Kgaa Detergent for use in washing machines or mechanical dishwashers, comprises wash-active agent enclosed in polymer, includes disintegrating agent activated by moisture to facilitate opening of the polymer material
WO2001034752A1 (en) * 1999-11-09 2001-05-17 The Procter & Gamble Company Detergent compositions comprising a fragrant reaction product
US6906012B1 (en) 1999-11-09 2005-06-14 Procter & Gamble Company Detergent compositions comprising a fragrant reaction product
WO2001040428A1 (en) * 1999-11-30 2001-06-07 The Procter & Gamble Company Process for making a detergent composition
GB0128946D0 (en) * 2001-12-03 2002-01-23 Unilever Plc Package for a water-soluble capsule
DE102005042053A1 (en) * 2005-09-02 2007-03-08 Henkel Kgaa Zeolite and perfume containing particles with improved fragrance properties
EP2270123A1 (en) * 2009-06-30 2011-01-05 The Procter and Gamble Company Packaged particulate bleaching compositions
JP2017536437A (en) 2014-09-25 2017-12-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Polyetheramines based on 1,3-dialcohol
CA3083390A1 (en) * 2017-11-29 2019-06-06 Basf Se Storage-stable enzyme preparations, their production and use
CN115066484A (en) * 2020-01-29 2022-09-16 联合利华知识产权控股有限公司 Laundry detergent product

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741856A (en) * 1986-06-02 1988-05-03 The Procter & Gamble Company Packaged perfumed granular detergent
US4721580A (en) * 1987-01-07 1988-01-26 The Procter & Gamble Company Anionic end-capped oligomeric esters as soil release agents in detergent compositions
US5078301A (en) * 1987-10-02 1992-01-07 Ecolab Inc. Article comprising a water soluble bag containing a multiple use amount of a pelletized functional material and methods of its use
US4806261A (en) * 1988-04-11 1989-02-21 Colgate-Palmolive Co. Detersive article
DE3813773A1 (en) * 1988-04-23 1989-11-02 Henkel Kgaa DETERGENT PRODUCTS
JP2603535B2 (en) * 1989-03-13 1997-04-23 第一工業製薬株式会社 Unit packaging detergent
TR24867A (en) * 1989-08-23 1992-07-01 Unilever Nv CAMASIR TREATMENT PRODUCT
GB9011618D0 (en) * 1990-05-24 1990-07-11 Unilever Plc Bleaching composition
NL9001651A (en) * 1990-07-19 1992-02-17 Sara Lee De Nv PACKAGING CONTAINING A POWDER DETERGENT.
GB9021761D0 (en) * 1990-10-06 1990-11-21 Procter & Gamble Detergent compositions
JPH04202600A (en) * 1990-11-30 1992-07-23 Lion Corp detergent packaging

Also Published As

Publication number Publication date
TR27893A (en) 1995-10-11
BR9407273A (en) 1996-10-01
AU7220794A (en) 1995-02-13
EP0634485B1 (en) 2001-09-05
MA23267A1 (en) 1995-04-01
CA2167163A1 (en) 1995-01-26
EP0634485A1 (en) 1995-01-18
CZ341295A3 (en) 1996-09-11
EG20794A (en) 2000-03-29
CZ289726B6 (en) 2002-03-13
WO1995002681A1 (en) 1995-01-26
HUT73039A (en) 1996-06-28
HU218571B (en) 2000-10-28
HU9503864D0 (en) 1996-02-28
JPH09500170A (en) 1997-01-07

Similar Documents

Publication Publication Date Title
CA2167163C (en) Detergent-package combination
JP4121556B2 (en) Delivery system
DE69428170T2 (en) Combination of detergent and packaging
EP0591203B1 (en) Detergent compositions
US5795854A (en) Detergent composition containing cylindrically-shaped bleach activator extrudates
CZ80798A3 (en) Particles for washing and granulated detergent preparation containing thereof
JP4303789B2 (en) Delivery system
JPH06507197A (en) Granular detergent composition
HUP9902766A2 (en) Detergent composition
US6207632B1 (en) Detergent composition comprising a cationic surfactant and a hydrophobic peroxyacid bleaching system
JP2000502718A (en) Cationic detergent compound
EP0789746A1 (en) Laundry washing method using a dispensing means for a solid bleaching detergent
US5516449A (en) Detergent compositions
CA2167159C (en) Granular laundry detergent compositions containing stabilised percarbonate bleach particles
JP3534755B2 (en) EDDS stabilized layered silicate builder and percarbonate-containing detergent bleaching composition
EP0633922B1 (en) Concentrated laundry detergent containing stable amide peroxyacid bleach
CA2311378C (en) Detergent composition containing optimally sized bleach activator particles
JP2000501447A (en) Detergent composition
JP2002508786A (en) Detergent granules
JPH11514041A (en) Detergent composition
JP3773540B2 (en) Detergent composition
JPH11500779A (en) Detergent composition without phosphate
JPH11514042A (en) Detergent manufacturing method and detergent composition
MXPA98007234A (en) Compounds detergents cationi
MXPA99003629A (en) A detergent composition

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed