CA2000991C - Method for sorbing metal values from a slurry containing the same - Google Patents
Method for sorbing metal values from a slurry containing the sameInfo
- Publication number
- CA2000991C CA2000991C CA002000991A CA2000991A CA2000991C CA 2000991 C CA2000991 C CA 2000991C CA 002000991 A CA002000991 A CA 002000991A CA 2000991 A CA2000991 A CA 2000991A CA 2000991 C CA2000991 C CA 2000991C
- Authority
- CA
- Canada
- Prior art keywords
- slurry
- sorbent
- pulp
- vessel
- screening system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002002 slurry Substances 0.000 title claims abstract description 102
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 48
- 239000002184 metal Substances 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 45
- 239000002594 sorbent Substances 0.000 claims abstract description 84
- 238000012216 screening Methods 0.000 claims abstract description 72
- 238000002156 mixing Methods 0.000 claims abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 52
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 15
- 229910052737 gold Inorganic materials 0.000 claims description 15
- 239000010931 gold Substances 0.000 claims description 15
- 230000001965 increasing effect Effects 0.000 claims description 8
- 238000013019 agitation Methods 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims description 6
- 150000004696 coordination complex Chemical class 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 5
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 claims description 4
- 238000002386 leaching Methods 0.000 claims description 4
- 238000005086 pumping Methods 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 2
- 238000001179 sorption measurement Methods 0.000 abstract description 18
- 239000007788 liquid Substances 0.000 abstract description 5
- 229910052799 carbon Inorganic materials 0.000 description 35
- 239000007787 solid Substances 0.000 description 10
- 150000002739 metals Chemical class 0.000 description 9
- 239000003463 adsorbent Substances 0.000 description 8
- 238000009434 installation Methods 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- -1 cyanide metal complex Chemical class 0.000 description 6
- 230000000274 adsorptive effect Effects 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000009021 linear effect Effects 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000010970 precious metal Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 241000894007 species Species 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 241001417527 Pempheridae Species 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- MFIHOCAEOJNSOL-UHFFFAOYSA-N [Ag]C#N Chemical class [Ag]C#N MFIHOCAEOJNSOL-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 1
- 239000003830 anthracite Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- KXZJHVJKXJLBKO-UHFFFAOYSA-N chembl1408157 Chemical compound N=1C2=CC=CC=C2C(C(=O)O)=CC=1C1=CC=C(O)C=C1 KXZJHVJKXJLBKO-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Treatment Of Liquids With Adsorbents In General (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
A method for sorbing metal values from a slurry containing the same is disclosed. The slurry is advanced through a plurality of vessels arranged in series while countercurrently directing a sorbent through the vessels.
Metal values are sorbed from the slurry in each of the vessels by mixing the pulp to achieve homogeneity with the pulp being maintained at a predetermined level in the vessel. A portion of the homogeneous pulp is directed into an interstage screening system disposed within the vessel and at least partially submerged beneath the predetermined pulp level, whereby the sorbent is separated from the slurry. The separated sorbent is primarily returned to the vessel while a portion of the sorbent is removed from the interstage screening system. The invention also relates to a sorption vessel including a tank for retaining a pulp of an aqueous slurry and a sorbent at a predetermined liquid pulp level therein; and an interstage screening system disposed within the tank and at least partially submerged beneath the predetermined pulp level. The interstage screening system includes a housing for isolating the system from the pulp, thereby providing a hydraulic differential between the predetermined pulp level and the screening system; a conduit for selectively introducing the pulp onto the screen member, the pulp being urged through the conduit by the hydraulic differential; and at least one screen member disposed within the housing for selectively and continuously separating the sorbent from the pulp.
Metal values are sorbed from the slurry in each of the vessels by mixing the pulp to achieve homogeneity with the pulp being maintained at a predetermined level in the vessel. A portion of the homogeneous pulp is directed into an interstage screening system disposed within the vessel and at least partially submerged beneath the predetermined pulp level, whereby the sorbent is separated from the slurry. The separated sorbent is primarily returned to the vessel while a portion of the sorbent is removed from the interstage screening system. The invention also relates to a sorption vessel including a tank for retaining a pulp of an aqueous slurry and a sorbent at a predetermined liquid pulp level therein; and an interstage screening system disposed within the tank and at least partially submerged beneath the predetermined pulp level. The interstage screening system includes a housing for isolating the system from the pulp, thereby providing a hydraulic differential between the predetermined pulp level and the screening system; a conduit for selectively introducing the pulp onto the screen member, the pulp being urged through the conduit by the hydraulic differential; and at least one screen member disposed within the housing for selectively and continuously separating the sorbent from the pulp.
Description
Z000991.
METHOD FOR SORBING METAL VALUES FROM
A SLURRY CONTAINING THE SAME
BACKGROUND OF THE INVENTION
Field of the Invention The present invention relates to a method for sorbing metal values from a metal-containing slurry. A
particularly preferred application of the present method 10 involves sorbing gold values from a slurry containing the same.
Description of the Background Art Precious metals, such as gold and silver, and 15 other metals, such as copper, iron and nickel, are typically contained in ore materials when mined. Metal-containing ores are typically processed in accordance with one or more known techniques so that the metals, especially precious metals, can be separated and extracted from the mined ore.
One known method of recovering precious metals or other metals from metal-containing ores occurs in a carbon-in-pulp system wherein activated carbon, usually in the form of activated charcoal, is mixed with a slurry of the ore in a cyanide solution. The carbon remains in contact with the slurry for a time sufficient to permit the gold and silver to become adsorbed by the carbon and, thereafter, the carbon is separated from the residue, typically by some type of interstage screen assembly. The carbon particles are generally larger than the finely ground ore particles which 30 permits the screening step to be accomplished with relative ease. A carbon-in-pulp system utilizes a plurality of mechanically or pneumatically agitated tanks arranged in series, usually 4 to 6. Each tank generally contains activated carbon having a different amount of gold adsorbed 35 thereon; with the first tank having the highest and the last 2000991.
, -2--tank having the lowest. A slurry of a finely ground ore and the alkaline cyanide metal complex solution, is introduced into the first tank, while the carbon is advanced countercurrently to the flow of slurry from the last tank to 5 the first tank. The slurry is agitated with the carbon adsorbent in the tank and the carbon adsorbs the cyanide metal complex as the slurry and the carbon adsorbent, i.e., the pulp, is agitated. The pulp is sequentially passed through the series of the pneumatically or mechanically 10 agitated tanks so that most of the cyanide metal complex is adsorbed by the carbon.
After passing through the series of tanks, the processed tailings are discarded. As stated above, the carbon containing the adsorbed cyanide metal complex can be 15 sequenced through the tanks in reverse order from the ore slurry. After the adsorbent has passed completely through the system, it has become "loaded" with the adsorbed metal complex. The loaded adsorbent is then chemically processed to remove most of the metal. The stripped adsorbent is then 20 reactivated and then returned to the carbon-in-pulp system.
Another known method of recovering metals from metal-containing ores occurs in a carbon-in-leach system.
The carbon-in-leach system is similar to the carbon-in-pulp system. The primary difference between the carbon-in-pulp 25 system and carbon-in-leach system is that in the former, there are mixing tanks for cyanidation leaching prior to the carbon adsorption stage. In a carbon-in-leach system, cyanidation is conducted in the presence of carbon.
A further method of recovering metals from 30 metal-containing ores occurs in a resin-in-pulp system.
Generally, in a resin in pulp system, a leached metal-containing ore pulp is exposed to a resin, typically employed as moderately coarse particles, in a series of agitator tanks. The particular resin is, thereafter, ZOOO991.
~ -3-.
separated from the pulp with the metal complex adsorbed thereon and, ultimately, the metal complex is removed from the resin to recover quantities of the particular metal present in the ore.
A detailed review of the screening systems currently in use for separating either the carbon or resin adsorbents from the slurry of a pulp can be found in the following art: P.A. Laxen, "Interstage Screens On The Adsorption Circuit Of An 'In-Pulp' Process" and Gold &
10 Silver Recovery Innovations, "CIP Interstage Screens", Phase III, Vol. 7, Ch. 42, pp. 4079-4184. Initial carbon-in-pulp ("CIP") plants utilized external vibrating screens over which the pulp with entrained carbon was pumped by air lifts from the bottom of the adsorption tanks. Each tank utilized 15 a number of external vibrating screens to which external air lifts on the side of each tank lifted pulp plus carbon onto the screens. The screen pulp then would flow by gravity to the next tank while the carbon on the screen flows back to the tank from which it came except periodically when it is 20 diverted to the next tank countercurrent to the pulp flow.
The disadvantages associated with this type of system include 1) the capital cost of external vibrating screens, air lifts and compressors for air supply; 2) additional costs of supporting structures for the screens; 3) 25 compressed air and screen maintenance are relatively high for a large scale plant with the system being much more energy intensive than it needs to be; 4) the large amount of air injected into the pulp results in substantial carbon scaling; 5) the efficiency of the system is low since a 30 portion of the carbon is continuously not in contact with pulp and therefore not absorbing metal values therefrom; and 6) excessive operator manpower required on large plants for monitoring the system for ruptures and/or replacement of the screen media.
~4~ 2000991 To offset these disadvantages, systems have been installed which utilize both external and internal screens, with the external screens being used for carbon transfer only. The majority of the pulp (about two-thirds) flows to 5 internal air cleaned screens while the remainder of the pulp is continuously pumped by a submergible pump to the external screens with the carbon either being returned to the leach tanks or transferred to the next tank as required for countercurrent carbon transfer. The pulp from the external 10 screen, again one-third of the total, flows continuously to the next tank.
In about 1982, a new type of screen evolved, these known has the EPAC (equal pressure air cleaned) screens. By damming the pulp flow on the downstream side of 15 the screen, the hydrostatic pressure is equalized on both sides of the screen and is not as readily blinded by carbon particles pinned to the screen surface. This simple technique increases the screen capacity of a screen panel per unit of length by a factor of 10 or more. An 20 illustration of this type screen is shown in U.S. Patent No.
METHOD FOR SORBING METAL VALUES FROM
A SLURRY CONTAINING THE SAME
BACKGROUND OF THE INVENTION
Field of the Invention The present invention relates to a method for sorbing metal values from a metal-containing slurry. A
particularly preferred application of the present method 10 involves sorbing gold values from a slurry containing the same.
Description of the Background Art Precious metals, such as gold and silver, and 15 other metals, such as copper, iron and nickel, are typically contained in ore materials when mined. Metal-containing ores are typically processed in accordance with one or more known techniques so that the metals, especially precious metals, can be separated and extracted from the mined ore.
One known method of recovering precious metals or other metals from metal-containing ores occurs in a carbon-in-pulp system wherein activated carbon, usually in the form of activated charcoal, is mixed with a slurry of the ore in a cyanide solution. The carbon remains in contact with the slurry for a time sufficient to permit the gold and silver to become adsorbed by the carbon and, thereafter, the carbon is separated from the residue, typically by some type of interstage screen assembly. The carbon particles are generally larger than the finely ground ore particles which 30 permits the screening step to be accomplished with relative ease. A carbon-in-pulp system utilizes a plurality of mechanically or pneumatically agitated tanks arranged in series, usually 4 to 6. Each tank generally contains activated carbon having a different amount of gold adsorbed 35 thereon; with the first tank having the highest and the last 2000991.
, -2--tank having the lowest. A slurry of a finely ground ore and the alkaline cyanide metal complex solution, is introduced into the first tank, while the carbon is advanced countercurrently to the flow of slurry from the last tank to 5 the first tank. The slurry is agitated with the carbon adsorbent in the tank and the carbon adsorbs the cyanide metal complex as the slurry and the carbon adsorbent, i.e., the pulp, is agitated. The pulp is sequentially passed through the series of the pneumatically or mechanically 10 agitated tanks so that most of the cyanide metal complex is adsorbed by the carbon.
After passing through the series of tanks, the processed tailings are discarded. As stated above, the carbon containing the adsorbed cyanide metal complex can be 15 sequenced through the tanks in reverse order from the ore slurry. After the adsorbent has passed completely through the system, it has become "loaded" with the adsorbed metal complex. The loaded adsorbent is then chemically processed to remove most of the metal. The stripped adsorbent is then 20 reactivated and then returned to the carbon-in-pulp system.
Another known method of recovering metals from metal-containing ores occurs in a carbon-in-leach system.
The carbon-in-leach system is similar to the carbon-in-pulp system. The primary difference between the carbon-in-pulp 25 system and carbon-in-leach system is that in the former, there are mixing tanks for cyanidation leaching prior to the carbon adsorption stage. In a carbon-in-leach system, cyanidation is conducted in the presence of carbon.
A further method of recovering metals from 30 metal-containing ores occurs in a resin-in-pulp system.
Generally, in a resin in pulp system, a leached metal-containing ore pulp is exposed to a resin, typically employed as moderately coarse particles, in a series of agitator tanks. The particular resin is, thereafter, ZOOO991.
~ -3-.
separated from the pulp with the metal complex adsorbed thereon and, ultimately, the metal complex is removed from the resin to recover quantities of the particular metal present in the ore.
A detailed review of the screening systems currently in use for separating either the carbon or resin adsorbents from the slurry of a pulp can be found in the following art: P.A. Laxen, "Interstage Screens On The Adsorption Circuit Of An 'In-Pulp' Process" and Gold &
10 Silver Recovery Innovations, "CIP Interstage Screens", Phase III, Vol. 7, Ch. 42, pp. 4079-4184. Initial carbon-in-pulp ("CIP") plants utilized external vibrating screens over which the pulp with entrained carbon was pumped by air lifts from the bottom of the adsorption tanks. Each tank utilized 15 a number of external vibrating screens to which external air lifts on the side of each tank lifted pulp plus carbon onto the screens. The screen pulp then would flow by gravity to the next tank while the carbon on the screen flows back to the tank from which it came except periodically when it is 20 diverted to the next tank countercurrent to the pulp flow.
The disadvantages associated with this type of system include 1) the capital cost of external vibrating screens, air lifts and compressors for air supply; 2) additional costs of supporting structures for the screens; 3) 25 compressed air and screen maintenance are relatively high for a large scale plant with the system being much more energy intensive than it needs to be; 4) the large amount of air injected into the pulp results in substantial carbon scaling; 5) the efficiency of the system is low since a 30 portion of the carbon is continuously not in contact with pulp and therefore not absorbing metal values therefrom; and 6) excessive operator manpower required on large plants for monitoring the system for ruptures and/or replacement of the screen media.
~4~ 2000991 To offset these disadvantages, systems have been installed which utilize both external and internal screens, with the external screens being used for carbon transfer only. The majority of the pulp (about two-thirds) flows to 5 internal air cleaned screens while the remainder of the pulp is continuously pumped by a submergible pump to the external screens with the carbon either being returned to the leach tanks or transferred to the next tank as required for countercurrent carbon transfer. The pulp from the external 10 screen, again one-third of the total, flows continuously to the next tank.
In about 1982, a new type of screen evolved, these known has the EPAC (equal pressure air cleaned) screens. By damming the pulp flow on the downstream side of 15 the screen, the hydrostatic pressure is equalized on both sides of the screen and is not as readily blinded by carbon particles pinned to the screen surface. This simple technique increases the screen capacity of a screen panel per unit of length by a factor of 10 or more. An 20 illustration of this type screen is shown in U.S. Patent No.
2,808,928. A wide variety of types, sizes and configura-tions of EPAC screens is known in the prior art. Each of these systems has its own attendant disadvantages mostly relating to the difficulties in keeping the screen clean of 25 carbon build up along with the difficulties of achieving high throughput. In addition, the quantities of air required and the operational aspect for use of such air create further disadvantages for this type system.
One improvement on the EPAC screens is known as 30 KAMBALDA screens. These screens were able to dispense with the air cleaning system by mounting the screen horizontally in an upper portion of the tank and by installing an agitator blade beneath the screen in a manner such that pulp is directed against the screen with the agitation caused by * Trade-mark '~3 the blades continually moving the carbon away from the screen to prevent build up. The screened pulp is removed from the top of the tank and is introduced into the subsequent tank in the lower portion thereof with the 5 mixture in the second tank causing the pulp to flow upwardly and onto the next screen. The agitator blade is known as a sweeper arm and is mounted a few inches away from the bottom of the screen. While the total energy requirements for this type of screen is less than conventional EPAC screens, the 10 disadvantages for this system relate to the extensive amount of structural steel required above the tank to support the agitator with its sweeper, as well as the screens located thereabove.
Another improvement on the EPAC screens was made 15 at North Kalgurli Mines and is known as the NORKAL screen.
This screen consist of a cylindrical screen basket along with pedals which rotate along its circumference to sweep away carbon build up. Screened pulp flowing into the cylindrical screen basket is drained through an out flow and 20 is directed to the next tank. The improvement of this type of arrangement relates to an increase in throughput with a corresponding decrease in energy necessary to achieve that throughput. The disadvantages of such a system are similar to those identified above for the KAMBALDA screens.
As noted in the articles cited above, the shortcomings associated with known interstage screening installations are their energy intensive operational requirements, which are predominantly ascribed to the compressed air requirements; the high maintenance and 30 operational costs, since, in order to advance the adsorptive species on a continuous or semi-continuous basis, as is necessary, the internal launder or mechanical interstage screening system must pump the total pulp (i.e., slurry and carbon); the low throughput per unit area; and the absence * Trade-mark ZOOO991.
-of any separation or concentration of the adsorptive speciesfrom the pulp. Additionally, due to the abrasive nature of the adsorptive species, the conventional wire or cloth interstage screens have a relatively short effective life 5 which necessitates constant inspection and replacement, else the adsorptive species and, hence, the adsorbed metals, remain in the pulp and cannot be recovered.
Other problems associated with prior art installations relate to carbon transfer pumps used in such 10 installations and, more specifically, the deleterious effect they have on the sorbent.
SUMMARY OF THE I~v~llON
Broadly stated, the present invention provides a 15 method for sorbing metal values from a slurry containing same which comprises advancing the slurry through a plurality of vessels arranged in series while simultaneously directing a sorbent through the vessels, thereby creating a pulp in each of the vessels and thereby enabling the sorbent 20 to contact the slurry. Metal values are sorbed from the slurry in each of the vessels by mixing the pulp to achieve homogeneity whereby the sorbent is substantially uniformly distributed within the slurry with the pulp being maintained at a predetermined level in the vessel. A portion of the 25 homogeneous pulp is directed into an interstage screening system disposed within the vessel and at least partially submerged beneath the predetermined pulp level. The system is isolated from the pulp remaining in the vessel, whereby the sorbent and slurry are isolated from the remaining pulp 30 and the sorbent is separated from the slurry. The separated sorbent is primarily returned to the vessel while a portion of the sorbent is removed from the interstage screening system. The isolated slurry is removed from the interstage screening system and at least one of additional sorbent or 2000991.
additional slurry is introduced into the vessel to substantially constantly maintain the predetermined level of the pulp. As the aforedescribed method is practiced, the amount of metal values of slurry is reduced in each vessel 5 in the series while the slurry is advanced through the vessels and the amount of metal values associated with the sorbent is increased in each vessel in the series as the sorbent is simultaneously directed through the vessels.
In a preferred embodiment, the method of the 10 present invention further includes directing the sorbent through the vessels countercurrent to the flow of slurry and directing the portion of the homogeneous pulp into the interstage screening system by way of conduit means having a lower end disposed within the vessel at a position below the predetermined pulp level. Additionally, the portion of the sorbent is intermittently removed from the interstage screening system by urging the sorbent out of the screening system and by advancing pumping means having a reservoir portion from a position removed from the screening system to 20 a position proximate the screening system whereby the sorbent is urged from the screening system into the reservoir portion.
It has advantageously been discovered that the method of the present invention overcomes those shortcomings 25 associated with those conventional installations described hereinabove. Specifically, operational requirements to practice the method of the present invention are not energy intensive. Furthermore, the increased throughput per unit area characteristic of the present method is far superior to 30 those characteristic of the prior art installations.
The invention also relates to a sorption vessel including a tank for holding a pulp including an aqueous slurry and a sorbent, the pulp being maintained at a predetermined level in the tank, and a screening system -- ZOOO991.
disposed with the tank and being at least partially submerged beneath the predetermined pulp level. The screening system includes a housing for isolating the screening system from the pulp, thereby providing a hydraulic differential between 5 the predetermined pulp level and the screening system; at least one screen member disposed within the housing for selectively and continuously separating the sorbent from the slurry; and means for directing the pulp onto the screen member as the pulp is displaced towards the screening system 10 by the hydraulic differential.
This vessel may utilize a pump for removing one of the sorbent or the pulp from the tank. Also, means for agitating the pulp may be used to facilitate contact between the sorbent and the slurry, thereby increasing the degree of 15 sorption of metal values from the slurry by the sorbent.
Advantageously, the vessel has means for introducing one of additional slurry or additional sorbent thereinto the vessel to maintain the pulp at its predetermined level.
In one embodiment, the screening system generally 20 includes a plurality of screen members which are angularly disposed in the housing with respect to the predetermined pulp level, with the screening having means for vibrating the screen members to facilitate separation of the sorbent from the slurry. Alternatively, the screen member may comprise a 25 continuous linear screen. In either case, the pulp directing means further utilizes a valve means for selectively introducing pulp into the screening system, and the tank includes at least one baffle to assist in the direction of movement of the pulp in the tank. If desired, a plurality of 30 screening systems can be used.
A preferred embodiment of the pulp directing means is a conduit, one end of which extends to a lower portion of the tank and directs the pulp to the screening system. The opposite end of the conduit may include a distribution box member for uniformly distributing the pulp into the screening system. The separated slurry removing means generally comprises a drainage member extending from a lower portion of the screening system housing through a wall of the tank.
The vessel itself may utilize means for agitating the pulp to facilitate contact between the sorbent and the aqueous slurry, thereby increasing the degree of sorption of metal values from the slurry by the sorbent. The vessel may also include means for introducing additional slurry, 10 preferably into an upper portion of the tank, while one or more spargers may be used to introduce air into the pulp.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. l is a schematic illustration of one vessel used in accordance with the present invention;
Fig. 2 is a side view of the interstage screening system used in accordance with the present invention with the internal structural components thereof being exposed and illustrating pulp disposed therein;
Fig. 3 is a schematic representation of the cooperative arrangement of the interstage screening system and the pump of the present invention;
Fig. 4 is a perspective view of the pump of the present invention with a portion cut away to expose the 25 agitation means; and Fig. 5 is a side view of the pump of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The general process of recovering gold from a 30 gold bearing ore employing a combined cyanidation and adsorption treatment is described in U.S. Patent No.
4,188,208. While the description in that U.S. Patent relates particularly to gold recovery, as does the -- 2000991.
description provided hereinbelow, the underlying theory is used in processes for recovering silver, iron, copper, nickel and other metals. The recovery of each of these metals from a mined ore is within the scope of the present 5 invention.
An aqueous slurry is prepared by grinding a crushed metal-containing ore to about 50% to about 70% minus 200 mesh and mixing the ground ore with a sufficient amount of water so that it forms a slurry with about 40 to about 10 50% solid in water. Alternatively, the ore can be wet grinded to form the slurry. Preparation of the slurry in this manner is offered as an illustration; however, any of the particular techniques for forming the slurry which are known to those skilled in the art are available for use and are contemplated by the method of this invention.
The ore may optionally be subjected to oxidation treatment prior to cyanidation treatment to enhance the quantities of metal recovery by employing any pre-oxidation tec-hnique known to those skilled in the art.
The slurry is then treated with a substance, such as cyanide, and in a manner such that a metal complex is formed between the particular substance used for treating the slurry and the metal present in the ore, which metal complex is capable of being adsorbed by the particular 25 adsorbent employed. For purposes of this description, a method for recovering gold from a gold-bearing ore in a carbon-in-pulp installation is described. It is to be fully understood, however, that the method and system of this invention are applicable to the recovery of other metals in 30 carbon-in-pulp, carbon-in-leach and resin-in-pulp installations. of course, appropriate substitutions of components which are apparent to those skilled in the art must be considered and, if necessary, implemented. Thus, in a process for recovering gold from an ore containing the -- 2000991.
same, the gold is leached from the slurry in the form of a cyanide complex, specifically, an aurocyanide complex. For instance, sodium hydroxide and sodium cyanide, or potassium hydroxide and potassium cyanide, are added to the aqueous 5 pulp in amounts such that the pulp contains from about O.l to 10% by weight of lime or an alkali metal hydroxide and from about O.l to l.0% by weight of the alkali metal cyanide. In addition, up to about 10% by weight of sodium carbonate or potassium carbonate may also be added to the 10 pulp. A resulting cyanide complex is produced which can be adsorbed by certain adsorbent solids, such as, activated carbon.
The adsorptive properties of activated carbon are ascribed to its large internal surface area, its pore size distribution, and the external surface area. Activated carbon functions by adsorption due to the imbalance of the forces upon the carbon atoms constituting the surface of the pore walls. Carbon is generally selective for gold and silver cyanide complexes, however, other complexes of 20 copper, iron or nickel may be adsorbed. The carbon can be obtained from any conventional source, such as, for instance, dense woods, nut shells, fruit pits or coke derived from anthracite coal or petroleum products, and can be activated in any conventional manner. Preferably, the 25 carbon is soaked in water having a pH of about ll for at least about 4 hours prior to being added to the pulp. For reasons explained hereinbelow, the size of the carbon particulate should be greater than the size of the pores of the screen employed in the interstage screening phase. It 30 is therefore preferable to employ carbon particulate having a mesh size of about 6 to about 16.
While the method of the present invention may be practiced in one stage, that is, in one tank or vessel, it can be practiced in a plurality of tanks arranged in series, ~ ZOOO991.
with each tank having one or more interstage screening systems. Preferably, the invention is carried out in 4 to 6 tanks, with the most preferred being a 6 tank arrangement.
Accordingly, the following description relates to 5 a single sorbent vessel of the present invention, it being fully understood, however, that two or more of the described vessels may be used in accordance with this invention.
Referring now to the drawings, particularly to Fig. 1, illustrated is the sorption vessel of the present 10 invention, which is generally designated as reference numeral 10. Sorbent vessel 10 includes a tank 12 which includes the slurry described hereinabove and a sorbent, such as, the activated carbon described above. The admixture of aqueous slurry and sorbent will hereinafter be referred to as a pulp. It is to be further understood that the slurry includes the cyanidation reagent. Inasmuch as slurry is continuously introduced into tank 12 via slurry entry means 14 and further since sorbent is continuously introduced into tank 12 at the proximity of arrow A the pulp 20 is maintained in the tank at a predetermined level, which level is represented as reference numeral 16. Although not shown, slurry entry means 14 can be a downcomer which has a first end proximate or associated with a source of the slurry and a second end disposed within tank 12.
Sorption vessel 10 further includes agitation means 18 which, when actuated, agitates the pulp to facilitate contact between the sorbent and the slurry, thereby increasing the degree of sorption of metal values from the slurry by the sorbent. In a preferred embodiment, 30 agitation means 18 includes a rotatable shaft 20 and two impeller blades 22a, 22b associated therewith. It is to be understood, however, that other agitation means may be employed to facilitate contact between the sorbent and the slurry.
Sorption vessel 10 can optionally include one or more baffles 25 to direct the movement of the pulp within the tank to desired locations, as will be more clearly understood from the description provided below.
Sorption vessel 10 further includes a screening system 24 that is disposed within tank 12. Referring now to Fig. 2, screening system 24 is illustrated in greater detail and, as shown, is at least partially submerged beneath the predetermined pulp level 16. The extent to which screening 10 device 24 becomes submerged in the pulp is determined by the liquid level of the pulp and the amount of pulp introduced into screening device 24. Screening system 24 isolates pulp disposed therein from the pulp contained within tank 12 by way of a housing 26, which provides a hydraulic differential 15 between the predetermined pulp level 16 and screening system 24. As pulp is continuously introduced into screening system 24, sorbent is selectively and continuously separated from the slurry by way of screen members 28. Screen member 28 can include one or more individual screen panels or, 20 alternatively, screen member 28 can include a continuous linear screen, such as, for example, the one illustrated in U.S. Patent No. 4,692,a40. In a most preferred embodi-ment, ~creen member 28 iB angularly di po~ed with re~-pect to ~ulp level 16. Preferably, screen 28 i~ vib-25 rated by vibration mean~, ~uch a~ the dual motor ar-rangement 30. However, a ~ingle motor arrangement i~
al~o within the ~cope of this invention. Notor~ 30 can al~o be u~ed to impart motion to a continuous lin-ear ~creen in the event that ~uch an embodiment i~
30 opted for.
Screen member 28 has openings ranging in size, for example, from about O.lmm to about lmm, with a preferred size of 0.7mm for separating activated carbon in a CIP
~3 ZOOO991.
installation. Screen member 28 is most preferably fabricated from urethane to avoid the abrasive effect of carbon particulates.
Screening system 24 has developed from this 5 technology and now is available from Derrick Manufacturing Corporation, Buffalo, N.Y. as their Flow Line Cleaner.
Referring once again to Fig. 1, sorption vessel lO further includes means for directing pulp onto screen member 28, whereby the pulp is displaced toward screening 10 system 24 and, hence, screen member 28 by way of the afore-described hydraulic differential. For instance, the means for directing the pulp can include conduit means such as upcomer 32. As illustrated, upcomer 32 has a lower end disposed within tank 12 at a position below pulp level 16, preferably at the bottom portion of tank 12, and further has an upper end disposed within the proximity of screening system 24. Alternatively, a baffle (not shown) can be used to direct pulp into screening system 24. The degree of pulp to be directed onto screen member 28 can be regulated by a 20 feed weir 34 as shown in Fig. 3, it being understood that feed weir 34 can preclude entry of pulp into screening system 24 or can permit entry of pulp by way of valve 36, associated with feed weir 34, which permits the opening and closing of feed weir 34.
Conduit means 32 can further include a distribution box 33 associated with the upper portion thereof and within the proximity of screening system 24 to uniformly distribute pulp into screening system 24.
Additionally, tank 12 can be provided with one or 30 more spargers 27 for introducing air into the pulp for reasons well understood by the skilled artisan.
Referring to Fig. 3, sorption vessel 10 can further include a pump 38 for removing sorbent and/or pulp from tank 12 via screening system 24. Referring now to ZOOO991.
Figs. 3 to 5, pump 38, which is a vertical pump, includes an upper chamber 40 for receiving pulp or, for that matter, any type of solid-liquid dispersion. Upper chamber 40 includes an opening at the top thereof and an opening at the bottom 5 portion to provide fluid communication between upper chamber 40 and intermediate chamber 42. Upper chamber 40 further includes a conduit for directing liquid into pump 38 for forming a dispersion with the solid particulate introduced therein which liquid can be stored in reservoir 41. Upper 10 chamber 40 can further include a second conduit 46 for intermittently delivering solids into upper chamber 40. In a most preferred embodiment, pump 38 is provided with a piston 48, as is best seen in Fig. 3, which provides relative motion between a position adjacent screen system 24 15 and a position removed from the adjacent position whereby solids are prevented from entering upper chamber 40.
Movement of pump 38 between these positions is facilitated by flanged wheels 45, 47 rotatably attached to pump 38 by axles 44,46. Two sets of wheels 45, 45a and 47, 47a are 20 provided on each side of pump 38 as shown in FIG. 3, for rolling movement along a structural beam or rail (not shown). Piston 48 can be either mechanically or pneumatically actuated to move pump 38 to and from the aforedescribed positions. With this arrangement, solids can 25 be delivered directly into reservoir portion 41 by sliding down ramp 29 of screening system 24.
As seen in Fig. 4, intermediate chamber 42 further includes a discharge conduit 50 for discharging the dispersion from pump 38. Still referring to Fig. 4, pump 38 30 further includes a lower chamber 52 which is in fluid communication with intermediate chamber 42. Lower chamber 52 further includes means for inducing a vortex in intermediate chamber 42, such as agitator 54. Agitator 54 further includes impeller blades 56a, 56b which are disposed ZOOO99~
within lower chamber 52. Rotation of impeller blades 56a, 56b within lower chamber 52 induces a vortex within intermediate chamber 42 and which precludes solids from entering lowering chamber 52 and which further causes the 5 solids to be discharged out of pump 38 through discharge conduit 50. In accordance with this arrangement any solids, such as the carbon sorbent used in accordance with the present invention are discharged from pump 38 without being deleteriously affected, inasmuch as the solids are 10 transferred from the pump without ever making contact with impeller blades 56a, 56b.
In a preferred embodiment intermediate chamber 42 includes a curved outer-crossed sectional portion 58 to facilitate the formation and rotation of the vortex and 15 discharge conduit 50 is tangentially disposed with respect to curved portion 58.
In accordance with the method of the present invention, which is best appreciated by collectively referring to Figs. 1, 2, and 3, slurry is first introduced 20 into tank 12 via slurry entry means 14. Sorbent is introduced into tank 12 in any conventional manner, but is preferably introduced at the locus at arrow A, to create a pulp within tank 12 and further to enable the sorbent to contact the slurry.
Metal values are sorbed from the slurry in tank 12 by mixing the pulp, such as by actuating agitation means 18, which assures homogeneity between the sorbent and the slurry and which substantially uniformly distributes the sorbent throughout the slurry, thereby facilitating the 30 sorption of the aurocyanide complex by the sorbent. Because of the continuous introduction of slurry via slurry entry means 14 accompanied by continuous introduction of sorbent, pulp level 16 is substantially maintained at all times.
Z000991.
A portion of the pulp is directed into screening system 24 where it becomes isolated from the pulp remaining in tank 12. After having been passed over screen member 28 the sorbent, now impregnated with metal values, is separated 5 from the slurry by moving upwardly along the screen member 28 due to the vibration imparted thereto by motors 3Oa and 3Ob. The slurry of the pulp passes through the screen openings while the carbon sorbent is retained upon the screen member 28. The vibration urges the sorbent to move 10 upwardly along the screen to ramp 29, where it can slide back into the pulp in tank 12 by the force of gravity.
The separated sorbent is returned into tank 12 on a substantially continuous basis for further adsorption;
however, any portion of the sorbent can be removed from the screening system so that the metal values may be desorbed therefrom or to transfer the sorbent to another tank. It is most preferable to primarily return the separated sorbent into tank 12, while intermittently removing the portion of the sorbent from screening system 24. This is accomplished 20 by urging the sorbent along screen member 28 in the manner hereinbefore described, and out of screening system 24 while pump 38 is advanced from a position removed from screening system 24 to a position proximate to the screening system so that the sorbent can be introduced into pump 38 sliding down 25 ramp 29 due to the force of gravity for direct introduction into reservoir 41.
During the step of separating the sorbent from the slurry, the slurry passes through screen member 28, accumulates within housing 26 where it continues to remain 30 isolated from the pulp in tank 12. The isolated slurry is removed from housing 26 by way of conduit means, such as pipe 60 and is preferably directed to a downstream tank for further treatment, which tank is in fluid communication with the upstream tank via pipe 60. Alternatively, when the gold -- ZOOO991.
values have been substantially adsorbed from the slurry, the slurry can be directed to a storage area, typically referred to as a tailings pond by those skilled in the art.
As the slurry is directed to one or more 5 downstream vessels, the amount of metal values associated with the slurry is reduced inasmuch as the metal values are continuously being adsorbed therefrom. Accordingly, the amount of metal values associated with the sorbent is increased in each of the vessels as it is simultaneously 10 directed therethrough.
In a preferred embodiment, sorbent is countercurrently directed through the vessels with respect to the advancement of slurry therethrough and, as such, the amount of metal values sorbed by the sorbent increases or it is countercurrently advanced from the last tank of the series in a upstream direction toward the first tank.
One improvement on the EPAC screens is known as 30 KAMBALDA screens. These screens were able to dispense with the air cleaning system by mounting the screen horizontally in an upper portion of the tank and by installing an agitator blade beneath the screen in a manner such that pulp is directed against the screen with the agitation caused by * Trade-mark '~3 the blades continually moving the carbon away from the screen to prevent build up. The screened pulp is removed from the top of the tank and is introduced into the subsequent tank in the lower portion thereof with the 5 mixture in the second tank causing the pulp to flow upwardly and onto the next screen. The agitator blade is known as a sweeper arm and is mounted a few inches away from the bottom of the screen. While the total energy requirements for this type of screen is less than conventional EPAC screens, the 10 disadvantages for this system relate to the extensive amount of structural steel required above the tank to support the agitator with its sweeper, as well as the screens located thereabove.
Another improvement on the EPAC screens was made 15 at North Kalgurli Mines and is known as the NORKAL screen.
This screen consist of a cylindrical screen basket along with pedals which rotate along its circumference to sweep away carbon build up. Screened pulp flowing into the cylindrical screen basket is drained through an out flow and 20 is directed to the next tank. The improvement of this type of arrangement relates to an increase in throughput with a corresponding decrease in energy necessary to achieve that throughput. The disadvantages of such a system are similar to those identified above for the KAMBALDA screens.
As noted in the articles cited above, the shortcomings associated with known interstage screening installations are their energy intensive operational requirements, which are predominantly ascribed to the compressed air requirements; the high maintenance and 30 operational costs, since, in order to advance the adsorptive species on a continuous or semi-continuous basis, as is necessary, the internal launder or mechanical interstage screening system must pump the total pulp (i.e., slurry and carbon); the low throughput per unit area; and the absence * Trade-mark ZOOO991.
-of any separation or concentration of the adsorptive speciesfrom the pulp. Additionally, due to the abrasive nature of the adsorptive species, the conventional wire or cloth interstage screens have a relatively short effective life 5 which necessitates constant inspection and replacement, else the adsorptive species and, hence, the adsorbed metals, remain in the pulp and cannot be recovered.
Other problems associated with prior art installations relate to carbon transfer pumps used in such 10 installations and, more specifically, the deleterious effect they have on the sorbent.
SUMMARY OF THE I~v~llON
Broadly stated, the present invention provides a 15 method for sorbing metal values from a slurry containing same which comprises advancing the slurry through a plurality of vessels arranged in series while simultaneously directing a sorbent through the vessels, thereby creating a pulp in each of the vessels and thereby enabling the sorbent 20 to contact the slurry. Metal values are sorbed from the slurry in each of the vessels by mixing the pulp to achieve homogeneity whereby the sorbent is substantially uniformly distributed within the slurry with the pulp being maintained at a predetermined level in the vessel. A portion of the 25 homogeneous pulp is directed into an interstage screening system disposed within the vessel and at least partially submerged beneath the predetermined pulp level. The system is isolated from the pulp remaining in the vessel, whereby the sorbent and slurry are isolated from the remaining pulp 30 and the sorbent is separated from the slurry. The separated sorbent is primarily returned to the vessel while a portion of the sorbent is removed from the interstage screening system. The isolated slurry is removed from the interstage screening system and at least one of additional sorbent or 2000991.
additional slurry is introduced into the vessel to substantially constantly maintain the predetermined level of the pulp. As the aforedescribed method is practiced, the amount of metal values of slurry is reduced in each vessel 5 in the series while the slurry is advanced through the vessels and the amount of metal values associated with the sorbent is increased in each vessel in the series as the sorbent is simultaneously directed through the vessels.
In a preferred embodiment, the method of the 10 present invention further includes directing the sorbent through the vessels countercurrent to the flow of slurry and directing the portion of the homogeneous pulp into the interstage screening system by way of conduit means having a lower end disposed within the vessel at a position below the predetermined pulp level. Additionally, the portion of the sorbent is intermittently removed from the interstage screening system by urging the sorbent out of the screening system and by advancing pumping means having a reservoir portion from a position removed from the screening system to 20 a position proximate the screening system whereby the sorbent is urged from the screening system into the reservoir portion.
It has advantageously been discovered that the method of the present invention overcomes those shortcomings 25 associated with those conventional installations described hereinabove. Specifically, operational requirements to practice the method of the present invention are not energy intensive. Furthermore, the increased throughput per unit area characteristic of the present method is far superior to 30 those characteristic of the prior art installations.
The invention also relates to a sorption vessel including a tank for holding a pulp including an aqueous slurry and a sorbent, the pulp being maintained at a predetermined level in the tank, and a screening system -- ZOOO991.
disposed with the tank and being at least partially submerged beneath the predetermined pulp level. The screening system includes a housing for isolating the screening system from the pulp, thereby providing a hydraulic differential between 5 the predetermined pulp level and the screening system; at least one screen member disposed within the housing for selectively and continuously separating the sorbent from the slurry; and means for directing the pulp onto the screen member as the pulp is displaced towards the screening system 10 by the hydraulic differential.
This vessel may utilize a pump for removing one of the sorbent or the pulp from the tank. Also, means for agitating the pulp may be used to facilitate contact between the sorbent and the slurry, thereby increasing the degree of 15 sorption of metal values from the slurry by the sorbent.
Advantageously, the vessel has means for introducing one of additional slurry or additional sorbent thereinto the vessel to maintain the pulp at its predetermined level.
In one embodiment, the screening system generally 20 includes a plurality of screen members which are angularly disposed in the housing with respect to the predetermined pulp level, with the screening having means for vibrating the screen members to facilitate separation of the sorbent from the slurry. Alternatively, the screen member may comprise a 25 continuous linear screen. In either case, the pulp directing means further utilizes a valve means for selectively introducing pulp into the screening system, and the tank includes at least one baffle to assist in the direction of movement of the pulp in the tank. If desired, a plurality of 30 screening systems can be used.
A preferred embodiment of the pulp directing means is a conduit, one end of which extends to a lower portion of the tank and directs the pulp to the screening system. The opposite end of the conduit may include a distribution box member for uniformly distributing the pulp into the screening system. The separated slurry removing means generally comprises a drainage member extending from a lower portion of the screening system housing through a wall of the tank.
The vessel itself may utilize means for agitating the pulp to facilitate contact between the sorbent and the aqueous slurry, thereby increasing the degree of sorption of metal values from the slurry by the sorbent. The vessel may also include means for introducing additional slurry, 10 preferably into an upper portion of the tank, while one or more spargers may be used to introduce air into the pulp.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. l is a schematic illustration of one vessel used in accordance with the present invention;
Fig. 2 is a side view of the interstage screening system used in accordance with the present invention with the internal structural components thereof being exposed and illustrating pulp disposed therein;
Fig. 3 is a schematic representation of the cooperative arrangement of the interstage screening system and the pump of the present invention;
Fig. 4 is a perspective view of the pump of the present invention with a portion cut away to expose the 25 agitation means; and Fig. 5 is a side view of the pump of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The general process of recovering gold from a 30 gold bearing ore employing a combined cyanidation and adsorption treatment is described in U.S. Patent No.
4,188,208. While the description in that U.S. Patent relates particularly to gold recovery, as does the -- 2000991.
description provided hereinbelow, the underlying theory is used in processes for recovering silver, iron, copper, nickel and other metals. The recovery of each of these metals from a mined ore is within the scope of the present 5 invention.
An aqueous slurry is prepared by grinding a crushed metal-containing ore to about 50% to about 70% minus 200 mesh and mixing the ground ore with a sufficient amount of water so that it forms a slurry with about 40 to about 10 50% solid in water. Alternatively, the ore can be wet grinded to form the slurry. Preparation of the slurry in this manner is offered as an illustration; however, any of the particular techniques for forming the slurry which are known to those skilled in the art are available for use and are contemplated by the method of this invention.
The ore may optionally be subjected to oxidation treatment prior to cyanidation treatment to enhance the quantities of metal recovery by employing any pre-oxidation tec-hnique known to those skilled in the art.
The slurry is then treated with a substance, such as cyanide, and in a manner such that a metal complex is formed between the particular substance used for treating the slurry and the metal present in the ore, which metal complex is capable of being adsorbed by the particular 25 adsorbent employed. For purposes of this description, a method for recovering gold from a gold-bearing ore in a carbon-in-pulp installation is described. It is to be fully understood, however, that the method and system of this invention are applicable to the recovery of other metals in 30 carbon-in-pulp, carbon-in-leach and resin-in-pulp installations. of course, appropriate substitutions of components which are apparent to those skilled in the art must be considered and, if necessary, implemented. Thus, in a process for recovering gold from an ore containing the -- 2000991.
same, the gold is leached from the slurry in the form of a cyanide complex, specifically, an aurocyanide complex. For instance, sodium hydroxide and sodium cyanide, or potassium hydroxide and potassium cyanide, are added to the aqueous 5 pulp in amounts such that the pulp contains from about O.l to 10% by weight of lime or an alkali metal hydroxide and from about O.l to l.0% by weight of the alkali metal cyanide. In addition, up to about 10% by weight of sodium carbonate or potassium carbonate may also be added to the 10 pulp. A resulting cyanide complex is produced which can be adsorbed by certain adsorbent solids, such as, activated carbon.
The adsorptive properties of activated carbon are ascribed to its large internal surface area, its pore size distribution, and the external surface area. Activated carbon functions by adsorption due to the imbalance of the forces upon the carbon atoms constituting the surface of the pore walls. Carbon is generally selective for gold and silver cyanide complexes, however, other complexes of 20 copper, iron or nickel may be adsorbed. The carbon can be obtained from any conventional source, such as, for instance, dense woods, nut shells, fruit pits or coke derived from anthracite coal or petroleum products, and can be activated in any conventional manner. Preferably, the 25 carbon is soaked in water having a pH of about ll for at least about 4 hours prior to being added to the pulp. For reasons explained hereinbelow, the size of the carbon particulate should be greater than the size of the pores of the screen employed in the interstage screening phase. It 30 is therefore preferable to employ carbon particulate having a mesh size of about 6 to about 16.
While the method of the present invention may be practiced in one stage, that is, in one tank or vessel, it can be practiced in a plurality of tanks arranged in series, ~ ZOOO991.
with each tank having one or more interstage screening systems. Preferably, the invention is carried out in 4 to 6 tanks, with the most preferred being a 6 tank arrangement.
Accordingly, the following description relates to 5 a single sorbent vessel of the present invention, it being fully understood, however, that two or more of the described vessels may be used in accordance with this invention.
Referring now to the drawings, particularly to Fig. 1, illustrated is the sorption vessel of the present 10 invention, which is generally designated as reference numeral 10. Sorbent vessel 10 includes a tank 12 which includes the slurry described hereinabove and a sorbent, such as, the activated carbon described above. The admixture of aqueous slurry and sorbent will hereinafter be referred to as a pulp. It is to be further understood that the slurry includes the cyanidation reagent. Inasmuch as slurry is continuously introduced into tank 12 via slurry entry means 14 and further since sorbent is continuously introduced into tank 12 at the proximity of arrow A the pulp 20 is maintained in the tank at a predetermined level, which level is represented as reference numeral 16. Although not shown, slurry entry means 14 can be a downcomer which has a first end proximate or associated with a source of the slurry and a second end disposed within tank 12.
Sorption vessel 10 further includes agitation means 18 which, when actuated, agitates the pulp to facilitate contact between the sorbent and the slurry, thereby increasing the degree of sorption of metal values from the slurry by the sorbent. In a preferred embodiment, 30 agitation means 18 includes a rotatable shaft 20 and two impeller blades 22a, 22b associated therewith. It is to be understood, however, that other agitation means may be employed to facilitate contact between the sorbent and the slurry.
Sorption vessel 10 can optionally include one or more baffles 25 to direct the movement of the pulp within the tank to desired locations, as will be more clearly understood from the description provided below.
Sorption vessel 10 further includes a screening system 24 that is disposed within tank 12. Referring now to Fig. 2, screening system 24 is illustrated in greater detail and, as shown, is at least partially submerged beneath the predetermined pulp level 16. The extent to which screening 10 device 24 becomes submerged in the pulp is determined by the liquid level of the pulp and the amount of pulp introduced into screening device 24. Screening system 24 isolates pulp disposed therein from the pulp contained within tank 12 by way of a housing 26, which provides a hydraulic differential 15 between the predetermined pulp level 16 and screening system 24. As pulp is continuously introduced into screening system 24, sorbent is selectively and continuously separated from the slurry by way of screen members 28. Screen member 28 can include one or more individual screen panels or, 20 alternatively, screen member 28 can include a continuous linear screen, such as, for example, the one illustrated in U.S. Patent No. 4,692,a40. In a most preferred embodi-ment, ~creen member 28 iB angularly di po~ed with re~-pect to ~ulp level 16. Preferably, screen 28 i~ vib-25 rated by vibration mean~, ~uch a~ the dual motor ar-rangement 30. However, a ~ingle motor arrangement i~
al~o within the ~cope of this invention. Notor~ 30 can al~o be u~ed to impart motion to a continuous lin-ear ~creen in the event that ~uch an embodiment i~
30 opted for.
Screen member 28 has openings ranging in size, for example, from about O.lmm to about lmm, with a preferred size of 0.7mm for separating activated carbon in a CIP
~3 ZOOO991.
installation. Screen member 28 is most preferably fabricated from urethane to avoid the abrasive effect of carbon particulates.
Screening system 24 has developed from this 5 technology and now is available from Derrick Manufacturing Corporation, Buffalo, N.Y. as their Flow Line Cleaner.
Referring once again to Fig. 1, sorption vessel lO further includes means for directing pulp onto screen member 28, whereby the pulp is displaced toward screening 10 system 24 and, hence, screen member 28 by way of the afore-described hydraulic differential. For instance, the means for directing the pulp can include conduit means such as upcomer 32. As illustrated, upcomer 32 has a lower end disposed within tank 12 at a position below pulp level 16, preferably at the bottom portion of tank 12, and further has an upper end disposed within the proximity of screening system 24. Alternatively, a baffle (not shown) can be used to direct pulp into screening system 24. The degree of pulp to be directed onto screen member 28 can be regulated by a 20 feed weir 34 as shown in Fig. 3, it being understood that feed weir 34 can preclude entry of pulp into screening system 24 or can permit entry of pulp by way of valve 36, associated with feed weir 34, which permits the opening and closing of feed weir 34.
Conduit means 32 can further include a distribution box 33 associated with the upper portion thereof and within the proximity of screening system 24 to uniformly distribute pulp into screening system 24.
Additionally, tank 12 can be provided with one or 30 more spargers 27 for introducing air into the pulp for reasons well understood by the skilled artisan.
Referring to Fig. 3, sorption vessel 10 can further include a pump 38 for removing sorbent and/or pulp from tank 12 via screening system 24. Referring now to ZOOO991.
Figs. 3 to 5, pump 38, which is a vertical pump, includes an upper chamber 40 for receiving pulp or, for that matter, any type of solid-liquid dispersion. Upper chamber 40 includes an opening at the top thereof and an opening at the bottom 5 portion to provide fluid communication between upper chamber 40 and intermediate chamber 42. Upper chamber 40 further includes a conduit for directing liquid into pump 38 for forming a dispersion with the solid particulate introduced therein which liquid can be stored in reservoir 41. Upper 10 chamber 40 can further include a second conduit 46 for intermittently delivering solids into upper chamber 40. In a most preferred embodiment, pump 38 is provided with a piston 48, as is best seen in Fig. 3, which provides relative motion between a position adjacent screen system 24 15 and a position removed from the adjacent position whereby solids are prevented from entering upper chamber 40.
Movement of pump 38 between these positions is facilitated by flanged wheels 45, 47 rotatably attached to pump 38 by axles 44,46. Two sets of wheels 45, 45a and 47, 47a are 20 provided on each side of pump 38 as shown in FIG. 3, for rolling movement along a structural beam or rail (not shown). Piston 48 can be either mechanically or pneumatically actuated to move pump 38 to and from the aforedescribed positions. With this arrangement, solids can 25 be delivered directly into reservoir portion 41 by sliding down ramp 29 of screening system 24.
As seen in Fig. 4, intermediate chamber 42 further includes a discharge conduit 50 for discharging the dispersion from pump 38. Still referring to Fig. 4, pump 38 30 further includes a lower chamber 52 which is in fluid communication with intermediate chamber 42. Lower chamber 52 further includes means for inducing a vortex in intermediate chamber 42, such as agitator 54. Agitator 54 further includes impeller blades 56a, 56b which are disposed ZOOO99~
within lower chamber 52. Rotation of impeller blades 56a, 56b within lower chamber 52 induces a vortex within intermediate chamber 42 and which precludes solids from entering lowering chamber 52 and which further causes the 5 solids to be discharged out of pump 38 through discharge conduit 50. In accordance with this arrangement any solids, such as the carbon sorbent used in accordance with the present invention are discharged from pump 38 without being deleteriously affected, inasmuch as the solids are 10 transferred from the pump without ever making contact with impeller blades 56a, 56b.
In a preferred embodiment intermediate chamber 42 includes a curved outer-crossed sectional portion 58 to facilitate the formation and rotation of the vortex and 15 discharge conduit 50 is tangentially disposed with respect to curved portion 58.
In accordance with the method of the present invention, which is best appreciated by collectively referring to Figs. 1, 2, and 3, slurry is first introduced 20 into tank 12 via slurry entry means 14. Sorbent is introduced into tank 12 in any conventional manner, but is preferably introduced at the locus at arrow A, to create a pulp within tank 12 and further to enable the sorbent to contact the slurry.
Metal values are sorbed from the slurry in tank 12 by mixing the pulp, such as by actuating agitation means 18, which assures homogeneity between the sorbent and the slurry and which substantially uniformly distributes the sorbent throughout the slurry, thereby facilitating the 30 sorption of the aurocyanide complex by the sorbent. Because of the continuous introduction of slurry via slurry entry means 14 accompanied by continuous introduction of sorbent, pulp level 16 is substantially maintained at all times.
Z000991.
A portion of the pulp is directed into screening system 24 where it becomes isolated from the pulp remaining in tank 12. After having been passed over screen member 28 the sorbent, now impregnated with metal values, is separated 5 from the slurry by moving upwardly along the screen member 28 due to the vibration imparted thereto by motors 3Oa and 3Ob. The slurry of the pulp passes through the screen openings while the carbon sorbent is retained upon the screen member 28. The vibration urges the sorbent to move 10 upwardly along the screen to ramp 29, where it can slide back into the pulp in tank 12 by the force of gravity.
The separated sorbent is returned into tank 12 on a substantially continuous basis for further adsorption;
however, any portion of the sorbent can be removed from the screening system so that the metal values may be desorbed therefrom or to transfer the sorbent to another tank. It is most preferable to primarily return the separated sorbent into tank 12, while intermittently removing the portion of the sorbent from screening system 24. This is accomplished 20 by urging the sorbent along screen member 28 in the manner hereinbefore described, and out of screening system 24 while pump 38 is advanced from a position removed from screening system 24 to a position proximate to the screening system so that the sorbent can be introduced into pump 38 sliding down 25 ramp 29 due to the force of gravity for direct introduction into reservoir 41.
During the step of separating the sorbent from the slurry, the slurry passes through screen member 28, accumulates within housing 26 where it continues to remain 30 isolated from the pulp in tank 12. The isolated slurry is removed from housing 26 by way of conduit means, such as pipe 60 and is preferably directed to a downstream tank for further treatment, which tank is in fluid communication with the upstream tank via pipe 60. Alternatively, when the gold -- ZOOO991.
values have been substantially adsorbed from the slurry, the slurry can be directed to a storage area, typically referred to as a tailings pond by those skilled in the art.
As the slurry is directed to one or more 5 downstream vessels, the amount of metal values associated with the slurry is reduced inasmuch as the metal values are continuously being adsorbed therefrom. Accordingly, the amount of metal values associated with the sorbent is increased in each of the vessels as it is simultaneously 10 directed therethrough.
In a preferred embodiment, sorbent is countercurrently directed through the vessels with respect to the advancement of slurry therethrough and, as such, the amount of metal values sorbed by the sorbent increases or it is countercurrently advanced from the last tank of the series in a upstream direction toward the first tank.
Claims (19)
1. A method for sorbing metal values from a slurry containing same, which comprises:
advancing said slurry through a plurality of vessels arranged in series while simultaneously directing a sorbent through said vessels, thereby creating a pulp in each of said vessels and thereby enabling said sorbent to contact said slurry; and sorbing metal values from said slurry in each of said vessels by:
mixing said pulp to achieve homogeneity whereby said sorbent is substantially uniformly distributed within said slurry with the pulp being maintained at a predetermined level in said vessel;
directing a portion of said homogeneous pulp into an interstage screening system disposed within said vessel and at least partially submerged beneath said predetermined pulp level, said system being isolated from the pulp remaining in said vessel, whereby said sorbent and slurry are isolated from said remaining pulp and said sorbent is separated from said slurry;
primarily returning said separated sorbent to said vessel while removing a portion of said sorbent from said interstage screening system;
removing said isolated slurry from said interstage screening system; and introducing into said vessel at least one of additional sorbent or additional slurry to substantially constantly maintain said predetermined level of said pulp;
whereby the amount of metal values of said slurry is reduced in each vessel in the series while the slurry is advanced through said vessels and the amount of metal values associated with said sorbent is increased in each vessel in the series as the sorbent is simultaneously directed through said vessels.
advancing said slurry through a plurality of vessels arranged in series while simultaneously directing a sorbent through said vessels, thereby creating a pulp in each of said vessels and thereby enabling said sorbent to contact said slurry; and sorbing metal values from said slurry in each of said vessels by:
mixing said pulp to achieve homogeneity whereby said sorbent is substantially uniformly distributed within said slurry with the pulp being maintained at a predetermined level in said vessel;
directing a portion of said homogeneous pulp into an interstage screening system disposed within said vessel and at least partially submerged beneath said predetermined pulp level, said system being isolated from the pulp remaining in said vessel, whereby said sorbent and slurry are isolated from said remaining pulp and said sorbent is separated from said slurry;
primarily returning said separated sorbent to said vessel while removing a portion of said sorbent from said interstage screening system;
removing said isolated slurry from said interstage screening system; and introducing into said vessel at least one of additional sorbent or additional slurry to substantially constantly maintain said predetermined level of said pulp;
whereby the amount of metal values of said slurry is reduced in each vessel in the series while the slurry is advanced through said vessels and the amount of metal values associated with said sorbent is increased in each vessel in the series as the sorbent is simultaneously directed through said vessels.
2. The method of Claim 1 wherein said sorbent is countercurrently directed through said vessels with respect to the advancement of said slurry thereby enabling said sorbent to countercurrently contact said slurry whereby the amount of metal values associated with said sorbent is increased in each vessel in the series as the sorbent is countercurrently advanced through said vessels.
3. The method of Claim 1 wherein said slurry is advanced through said plurality of vessels by way of conduit means which provide fluid communication between a first of said vessels and at least one downstream vessel.
4. The method of Claim 1 wherein said pulp is mixed by agitation means.
5. The method of Claim 1 wherein said portion of said homogeneous pulp is directed into said interstage screening system by way of conduit means having a lower end disposed within said vessel at a position below said predetermined pulp level and an upper end disposed proximate said interstage screening system.
6. The method of Claim 1 wherein said portion of said homogeneous pulp is directed into said interstage screening system by way of a baffle disposed within said vessel in communication with said homogeneous pulp.
7. The method of Claim 1 wherein said separated sorbent is primarily returned to said vessel by urging said sorbent out of said screening system and into said vessel.
8. The method of Claim 1 wherein said portion of said sorbent is intermittently removed from said interstage screening system.
9. The method of Claim 8 wherein said portion is intermittently removed from said interstage screening system by urging said sorbent out of said screening system and by advancing pumping means having a reservoir portion from a position removed from said screening system to a position proximate said screening system whereby said sorbent is urged from said screening system into said reservoir portion.
10. The method of Claim 9 further comprising pumping said sorbent from said reservoir portion.
11. The method of Claim 10 wherein said sorbent is pumped from said reservoir portion to another of said plurality of vessels.
12. The method of Claim 10 wherein said sorbent is pumped from said reservoir portion to a storage tank.
13. The method of Claim 1 wherein said isolated slurry is removed from said interstage screening system by directing said isolated slurry to a downstream vessel through conduit means, said conduit means being associated with said interstage screening system and said downstream tank to provide fluid communication from said interstage screening system to said downstream tank.
14. The method of Claim 1 further comprising introducing said slurry into said vessel by way of a downcomer having a first end proximate a source of said slurry and a second end disposed within said vessel.
15. The method of Claim 1 further comprising treating said slurry with a substance whereby a metal complex is formed in said slurry between said substance and the metal values contained in said slurry thereby leaching said metal values from said slurry.
16. The method of Claim 15 wherein said substance includes a cyanide substance, said metal values are gold values and said complex is an aurocyanide complex.
17. The method of Claim 15 wherein said leaching occurs in a plurality of vessels arranged in series separate from said plurality of vessels through which said slurry is advanced and at a time prior to advancing said slurry through said vessels.
18. The method of Claim 15 wherein said leaching occurs simultaneously with advancing said slurry through said plurality of vessels.
19. The method of Claim 1 wherein said sorbent is activated carbon.
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US07/264,600 | 1988-10-31 | ||
| US07/264,600 US4933078A (en) | 1988-10-31 | 1988-10-31 | Sorption vessel with internal interstage screening vessel |
| US07/265,204 US4981598A (en) | 1988-10-31 | 1988-10-31 | Metal sorption method using interstage screening |
| US07/265,204 | 1988-10-31 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CA2000991A1 CA2000991A1 (en) | 1990-04-30 |
| CA2000991C true CA2000991C (en) | 1996-05-21 |
Family
ID=26950650
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA002000991A Expired - Lifetime CA2000991C (en) | 1988-10-31 | 1989-10-18 | Method for sorbing metal values from a slurry containing the same |
Country Status (2)
| Country | Link |
|---|---|
| AU (1) | AU613534B2 (en) |
| CA (1) | CA2000991C (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU608122B2 (en) * | 1987-11-12 | 1991-03-21 | Anglo Operations Limited | Metal recovery |
| AU663218B2 (en) * | 1992-09-01 | 1995-09-28 | Ridgetune Pty Ltd | Process for recovery of precious metals from carbon bearing materials |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4416774A (en) * | 1982-02-12 | 1983-11-22 | Bechtel International Corporation | Particle separating screen unit for agitation tank |
-
1989
- 1989-10-18 CA CA002000991A patent/CA2000991C/en not_active Expired - Lifetime
- 1989-10-31 AU AU43941/89A patent/AU613534B2/en not_active Expired
Also Published As
| Publication number | Publication date |
|---|---|
| AU613534B2 (en) | 1991-08-01 |
| AU4394189A (en) | 1990-05-03 |
| CA2000991A1 (en) | 1990-04-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4284511A (en) | Process for using magnetically ballasted sorbents | |
| CA2970745C (en) | Rotary interstage screen apparatus | |
| US4816234A (en) | Utilization of oxygen in leaching and/or recovery procedures employing carbon | |
| CA1232142A (en) | Leaching and washing a flocculated slurry having a fiber content | |
| CN104364052A (en) | Device and method for separating grinding oil from grinding slurries | |
| US4981598A (en) | Metal sorption method using interstage screening | |
| US4557905A (en) | Leaching and washing a flocculated slurry having a fiber content | |
| US5385668A (en) | Apparatus for separating particulate material from a liquid medium | |
| US8551330B2 (en) | Carbon retention screen with variable discharge head | |
| US4251352A (en) | Inclined separation screen for agitation tank | |
| US4754953A (en) | Utilization of oxygen in leaching and/or recovery procedures employing carbon | |
| CA2001778C (en) | Sorption vessel with interstage screening vessel | |
| US5229085A (en) | Utilization of oxygen in leaching and/or recovery procedures employing carbon | |
| CA2000991C (en) | Method for sorbing metal values from a slurry containing the same | |
| US1139825A (en) | Method of treating mixtures of liquids and solids. | |
| RS60277B1 (en) | Method and apparatus for liquid/solid separation such as dewatering particulate solids and agitation leaching | |
| US4915836A (en) | Solids dispersion transfer pump with intermediate chamber | |
| CN1030719C (en) | Precious metal recycling | |
| Laxen | Carbon-in-pulp processes in South Africa | |
| CN212700660U (en) | Equipment for extracting lithium from brine by adsorption method | |
| US2476420A (en) | Method of recovery of precious metals | |
| von Michaelis | Innovations in gold and silver recovery | |
| CN210936432U (en) | Heavy metal contaminated soil restoration and purification device | |
| CN115927852A (en) | Method for recovering gold, silver and copper from sulfur concentrate calcine washing waste liquid | |
| CN115957884B (en) | Flotation tailing gravity sulfur separation process based on cyanide tailings |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| EEER | Examination request | ||
| MKEX | Expiry |