AU2018267539A1 - Silk fibroin systems for antibiotic delivery - Google Patents
Silk fibroin systems for antibiotic delivery Download PDFInfo
- Publication number
- AU2018267539A1 AU2018267539A1 AU2018267539A AU2018267539A AU2018267539A1 AU 2018267539 A1 AU2018267539 A1 AU 2018267539A1 AU 2018267539 A AU2018267539 A AU 2018267539A AU 2018267539 A AU2018267539 A AU 2018267539A AU 2018267539 A1 AU2018267539 A1 AU 2018267539A1
- Authority
- AU
- Australia
- Prior art keywords
- antibiotic
- silk
- silk fibroin
- scaffold
- loaded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000003115 biocidal effect Effects 0.000 title claims abstract description 169
- 108010022355 Fibroins Proteins 0.000 title claims abstract description 134
- 239000003242 anti bacterial agent Substances 0.000 claims abstract description 80
- 239000000203 mixture Substances 0.000 claims abstract description 74
- 229940088710 antibiotic agent Drugs 0.000 claims abstract description 71
- 239000004005 microsphere Substances 0.000 claims abstract description 67
- 238000000034 method Methods 0.000 claims abstract description 45
- 238000011109 contamination Methods 0.000 claims abstract description 29
- 239000007943 implant Substances 0.000 claims abstract description 28
- 230000000813 microbial effect Effects 0.000 claims abstract description 28
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 21
- 208000035143 Bacterial infection Diseases 0.000 claims abstract description 3
- 208000022362 bacterial infectious disease Diseases 0.000 claims abstract description 3
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 claims description 96
- 229930182566 Gentamicin Natural products 0.000 claims description 96
- 229960002518 gentamicin Drugs 0.000 claims description 96
- 229960001139 cefazolin Drugs 0.000 claims description 91
- MLYYVTUWGNIJIB-BXKDBHETSA-N cefazolin Chemical compound S1C(C)=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)CN3N=NN=C3)[C@H]2SC1 MLYYVTUWGNIJIB-BXKDBHETSA-N 0.000 claims description 91
- 239000000243 solution Substances 0.000 claims description 61
- 229930182555 Penicillin Natural products 0.000 claims description 44
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 claims description 42
- 229940049954 penicillin Drugs 0.000 claims description 42
- 239000003814 drug Substances 0.000 claims description 41
- 229940079593 drug Drugs 0.000 claims description 35
- 208000031650 Surgical Wound Infection Diseases 0.000 claims description 27
- 229960000723 ampicillin Drugs 0.000 claims description 21
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 claims description 21
- 102000004169 proteins and genes Human genes 0.000 claims description 19
- 108090000623 proteins and genes Proteins 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 238000000576 coating method Methods 0.000 claims description 15
- 239000013543 active substance Substances 0.000 claims description 14
- 230000000845 anti-microbial effect Effects 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 13
- 238000002156 mixing Methods 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 9
- 239000003102 growth factor Substances 0.000 claims description 8
- 150000001413 amino acids Chemical class 0.000 claims description 7
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 7
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 7
- 229940088597 hormone Drugs 0.000 claims description 6
- 239000005556 hormone Substances 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 102000004190 Enzymes Human genes 0.000 claims description 5
- 108090000790 Enzymes Proteins 0.000 claims description 5
- MINDHVHHQZYEEK-UHFFFAOYSA-N (E)-(2S,3R,4R,5S)-5-[(2S,3S,4S,5S)-2,3-epoxy-5-hydroxy-4-methylhexyl]tetrahydro-3,4-dihydroxy-(beta)-methyl-2H-pyran-2-crotonic acid ester with 9-hydroxynonanoic acid Natural products CC(O)C(C)C1OC1CC1C(O)C(O)C(CC(C)=CC(=O)OCCCCCCCCC(O)=O)OC1 MINDHVHHQZYEEK-UHFFFAOYSA-N 0.000 claims description 4
- 108090000695 Cytokines Proteins 0.000 claims description 4
- 102000004127 Cytokines Human genes 0.000 claims description 4
- 241000588747 Klebsiella pneumoniae Species 0.000 claims description 4
- 108091093037 Peptide nucleic acid Proteins 0.000 claims description 4
- 241000607715 Serratia marcescens Species 0.000 claims description 4
- 241000193996 Streptococcus pyogenes Species 0.000 claims description 4
- 239000002246 antineoplastic agent Substances 0.000 claims description 4
- 239000003963 antioxidant agent Substances 0.000 claims description 4
- AEUTYOVWOVBAKS-UWVGGRQHSA-N ethambutol Chemical compound CC[C@@H](CO)NCCN[C@@H](CC)CO AEUTYOVWOVBAKS-UWVGGRQHSA-N 0.000 claims description 4
- 239000012634 fragment Substances 0.000 claims description 4
- 229960003350 isoniazid Drugs 0.000 claims description 4
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 claims description 4
- 229960003907 linezolid Drugs 0.000 claims description 4
- TYZROVQLWOKYKF-ZDUSSCGKSA-N linezolid Chemical compound O=C1O[C@@H](CNC(=O)C)CN1C(C=C1F)=CC=C1N1CCOCC1 TYZROVQLWOKYKF-ZDUSSCGKSA-N 0.000 claims description 4
- 229960000282 metronidazole Drugs 0.000 claims description 4
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 claims description 4
- 229960003128 mupirocin Drugs 0.000 claims description 4
- 229930187697 mupirocin Natural products 0.000 claims description 4
- DDHVILIIHBIMQU-YJGQQKNPSA-L mupirocin calcium hydrate Chemical compound O.O.[Ca+2].C[C@H](O)[C@H](C)[C@@H]1O[C@H]1C[C@@H]1[C@@H](O)[C@@H](O)[C@H](C\C(C)=C\C(=O)OCCCCCCCCC([O-])=O)OC1.C[C@H](O)[C@H](C)[C@@H]1O[C@H]1C[C@@H]1[C@@H](O)[C@@H](O)[C@H](C\C(C)=C\C(=O)OCCCCCCCCC([O-])=O)OC1 DDHVILIIHBIMQU-YJGQQKNPSA-L 0.000 claims description 4
- 102000039446 nucleic acids Human genes 0.000 claims description 4
- 108020004707 nucleic acids Proteins 0.000 claims description 4
- 150000007523 nucleic acids Chemical class 0.000 claims description 4
- 239000002773 nucleotide Substances 0.000 claims description 4
- 125000003729 nucleotide group Chemical group 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 claims description 4
- 229920001184 polypeptide Polymers 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- 231100000765 toxin Toxicity 0.000 claims description 4
- 239000011782 vitamin Substances 0.000 claims description 4
- 235000013343 vitamin Nutrition 0.000 claims description 4
- 229940088594 vitamin Drugs 0.000 claims description 4
- 229930003231 vitamin Natural products 0.000 claims description 4
- 108091023037 Aptamer Proteins 0.000 claims description 3
- 229930186147 Cephalosporin Natural products 0.000 claims description 3
- 241000194032 Enterococcus faecalis Species 0.000 claims description 3
- 241000588770 Proteus mirabilis Species 0.000 claims description 3
- 241000295644 Staphylococcaceae Species 0.000 claims description 3
- 239000004098 Tetracycline Substances 0.000 claims description 3
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 3
- 239000003443 antiviral agent Substances 0.000 claims description 3
- 229930184125 bacitracin Natural products 0.000 claims description 3
- 229940124587 cephalosporin Drugs 0.000 claims description 3
- 150000001780 cephalosporins Chemical class 0.000 claims description 3
- 229960005091 chloramphenicol Drugs 0.000 claims description 3
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229940127089 cytotoxic agent Drugs 0.000 claims description 3
- 150000003384 small molecules Chemical class 0.000 claims description 3
- 235000019364 tetracycline Nutrition 0.000 claims description 3
- 150000003522 tetracyclines Chemical class 0.000 claims description 3
- 239000003053 toxin Substances 0.000 claims description 3
- 108700012359 toxins Proteins 0.000 claims description 3
- IEDVJHCEMCRBQM-UHFFFAOYSA-N trimethoprim Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 IEDVJHCEMCRBQM-UHFFFAOYSA-N 0.000 claims description 3
- 229960001082 trimethoprim Drugs 0.000 claims description 3
- 241001515965 unidentified phage Species 0.000 claims description 3
- 241001541756 Acinetobacter calcoaceticus subsp. anitratus Species 0.000 claims description 2
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 claims description 2
- 108010002069 Defensins Proteins 0.000 claims description 2
- 102000000541 Defensins Human genes 0.000 claims description 2
- 241000588914 Enterobacter Species 0.000 claims description 2
- IECPWNUMDGFDKC-UHFFFAOYSA-N Fusicsaeure Natural products C12C(O)CC3C(=C(CCC=C(C)C)C(O)=O)C(OC(C)=O)CC3(C)C1(C)CCC1C2(C)CCC(O)C1C IECPWNUMDGFDKC-UHFFFAOYSA-N 0.000 claims description 2
- 108010015899 Glycopeptides Proteins 0.000 claims description 2
- 102000002068 Glycopeptides Human genes 0.000 claims description 2
- OJMMVQQUTAEWLP-UHFFFAOYSA-N Lincomycin Natural products CN1CC(CCC)CC1C(=O)NC(C(C)O)C1C(O)C(O)C(O)C(SC)O1 OJMMVQQUTAEWLP-UHFFFAOYSA-N 0.000 claims description 2
- 108060003100 Magainin Proteins 0.000 claims description 2
- 108010053775 Nisin Proteins 0.000 claims description 2
- NVNLLIYOARQCIX-MSHCCFNRSA-N Nisin Chemical compound N1C(=O)[C@@H](CC(C)C)NC(=O)C(=C)NC(=O)[C@@H]([C@H](C)CC)NC(=O)[C@@H](NC(=O)C(=C/C)/NC(=O)[C@H](N)[C@H](C)CC)CSC[C@@H]1C(=O)N[C@@H]1C(=O)N2CCC[C@@H]2C(=O)NCC(=O)N[C@@H](C(=O)N[C@H](CCCCN)C(=O)N[C@@H]2C(NCC(=O)N[C@H](C)C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCSC)C(=O)NCC(=O)N[C@H](CS[C@@H]2C)C(=O)N[C@H](CC(N)=O)C(=O)N[C@H](CCSC)C(=O)N[C@H](CCCCN)C(=O)N[C@@H]2C(N[C@H](C)C(=O)N[C@@H]3C(=O)N[C@@H](C(N[C@H](CC=4NC=NC=4)C(=O)N[C@H](CS[C@@H]3C)C(=O)N[C@H](CO)C(=O)N[C@H]([C@H](C)CC)C(=O)N[C@H](CC=3NC=NC=3)C(=O)N[C@H](C(C)C)C(=O)NC(=C)C(=O)N[C@H](CCCCN)C(O)=O)=O)CS[C@@H]2C)=O)=O)CS[C@@H]1C NVNLLIYOARQCIX-MSHCCFNRSA-N 0.000 claims description 2
- YJQPYGGHQPGBLI-UHFFFAOYSA-N Novobiocin Natural products O1C(C)(C)C(OC)C(OC(N)=O)C(O)C1OC1=CC=C(C(O)=C(NC(=O)C=2C=C(CC=C(C)C)C(O)=CC=2)C(=O)O2)C2=C1C YJQPYGGHQPGBLI-UHFFFAOYSA-N 0.000 claims description 2
- 108091034117 Oligonucleotide Proteins 0.000 claims description 2
- KYGZCKSPAKDVKC-UHFFFAOYSA-N Oxolinic acid Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC2=C1OCO2 KYGZCKSPAKDVKC-UHFFFAOYSA-N 0.000 claims description 2
- 241000589517 Pseudomonas aeruginosa Species 0.000 claims description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 claims description 2
- 229930183665 actinomycin Natural products 0.000 claims description 2
- 229940126575 aminoglycoside Drugs 0.000 claims description 2
- 229940121375 antifungal agent Drugs 0.000 claims description 2
- 239000000427 antigen Substances 0.000 claims description 2
- 108091007433 antigens Proteins 0.000 claims description 2
- 102000036639 antigens Human genes 0.000 claims description 2
- 229940121357 antivirals Drugs 0.000 claims description 2
- 239000003781 beta lactamase inhibitor Substances 0.000 claims description 2
- 229940126813 beta-lactamase inhibitor Drugs 0.000 claims description 2
- 229940041011 carbapenems Drugs 0.000 claims description 2
- 229960002227 clindamycin Drugs 0.000 claims description 2
- KDLRVYVGXIQJDK-AWPVFWJPSA-N clindamycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@H](C)Cl)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 KDLRVYVGXIQJDK-AWPVFWJPSA-N 0.000 claims description 2
- 229960004287 clofazimine Drugs 0.000 claims description 2
- WDQPAMHFFCXSNU-BGABXYSRSA-N clofazimine Chemical compound C12=CC=CC=C2N=C2C=C(NC=3C=CC(Cl)=CC=3)C(=N/C(C)C)/C=C2N1C1=CC=C(Cl)C=C1 WDQPAMHFFCXSNU-BGABXYSRSA-N 0.000 claims description 2
- 229960000860 dapsone Drugs 0.000 claims description 2
- 239000000975 dye Substances 0.000 claims description 2
- 229940032049 enterococcus faecalis Drugs 0.000 claims description 2
- 229960000285 ethambutol Drugs 0.000 claims description 2
- 229960000308 fosfomycin Drugs 0.000 claims description 2
- YMDXZJFXQJVXBF-STHAYSLISA-N fosfomycin Chemical compound C[C@@H]1O[C@@H]1P(O)(O)=O YMDXZJFXQJVXBF-STHAYSLISA-N 0.000 claims description 2
- 229960004675 fusidic acid Drugs 0.000 claims description 2
- IECPWNUMDGFDKC-MZJAQBGESA-N fusidic acid Chemical compound O[C@@H]([C@@H]12)C[C@H]3\C(=C(/CCC=C(C)C)C(O)=O)[C@@H](OC(C)=O)C[C@]3(C)[C@@]2(C)CC[C@@H]2[C@]1(C)CC[C@@H](O)[C@H]2C IECPWNUMDGFDKC-MZJAQBGESA-N 0.000 claims description 2
- 239000003667 hormone antagonist Substances 0.000 claims description 2
- OJMMVQQUTAEWLP-KIDUDLJLSA-N lincomycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@@H](C)O)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 OJMMVQQUTAEWLP-KIDUDLJLSA-N 0.000 claims description 2
- 229960005287 lincomycin Drugs 0.000 claims description 2
- 230000002101 lytic effect Effects 0.000 claims description 2
- 239000003120 macrolide antibiotic agent Substances 0.000 claims description 2
- 229940041033 macrolides Drugs 0.000 claims description 2
- 229940041009 monobactams Drugs 0.000 claims description 2
- 239000004309 nisin Substances 0.000 claims description 2
- 235000010297 nisin Nutrition 0.000 claims description 2
- 229960002950 novobiocin Drugs 0.000 claims description 2
- YJQPYGGHQPGBLI-KGSXXDOSSA-N novobiocin Chemical compound O1C(C)(C)[C@H](OC)[C@@H](OC(N)=O)[C@@H](O)[C@@H]1OC1=CC=C(C(O)=C(NC(=O)C=2C=C(CC=C(C)C)C(O)=CC=2)C(=O)O2)C2=C1C YJQPYGGHQPGBLI-KGSXXDOSSA-N 0.000 claims description 2
- 229960004236 pefloxacin Drugs 0.000 claims description 2
- FHFYDNQZQSQIAI-UHFFFAOYSA-N pefloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCN(C)CC1 FHFYDNQZQSQIAI-UHFFFAOYSA-N 0.000 claims description 2
- 150000002960 penicillins Chemical class 0.000 claims description 2
- 229940002612 prodrug Drugs 0.000 claims description 2
- 239000000651 prodrug Substances 0.000 claims description 2
- 229960005206 pyrazinamide Drugs 0.000 claims description 2
- IPEHBUMCGVEMRF-UHFFFAOYSA-N pyrazinecarboxamide Chemical compound NC(=O)C1=CN=CC=N1 IPEHBUMCGVEMRF-UHFFFAOYSA-N 0.000 claims description 2
- 150000007660 quinolones Chemical class 0.000 claims description 2
- 229960005442 quinupristin Drugs 0.000 claims description 2
- WTHRRGMBUAHGNI-LCYNINFDSA-N quinupristin Chemical compound N([C@@H]1C(=O)N[C@@H](C(N2CCC[C@H]2C(=O)N(C)[C@@H](CC=2C=CC(=CC=2)N(C)C)C(=O)N2C[C@@H](CS[C@H]3C4CCN(CC4)C3)C(=O)C[C@H]2C(=O)N[C@H](C(=O)O[C@@H]1C)C=1C=CC=CC=1)=O)CC)C(=O)C1=NC=CC=C1O WTHRRGMBUAHGNI-LCYNINFDSA-N 0.000 claims description 2
- 108700028429 quinupristin Proteins 0.000 claims description 2
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 claims description 2
- 229960001225 rifampicin Drugs 0.000 claims description 2
- 239000012266 salt solution Substances 0.000 claims description 2
- 229940124530 sulfonamide Drugs 0.000 claims description 2
- 150000003456 sulfonamides Chemical class 0.000 claims description 2
- 229940040944 tetracyclines Drugs 0.000 claims description 2
- 229960003053 thiamphenicol Drugs 0.000 claims description 2
- OTVAEFIXJLOWRX-NXEZZACHSA-N thiamphenicol Chemical compound CS(=O)(=O)C1=CC=C([C@@H](O)[C@@H](CO)NC(=O)C(Cl)Cl)C=C1 OTVAEFIXJLOWRX-NXEZZACHSA-N 0.000 claims description 2
- 241001495410 Enterococcus sp. Species 0.000 claims 1
- 229960000321 oxolinic acid Drugs 0.000 claims 1
- 238000012377 drug delivery Methods 0.000 abstract description 16
- 230000002265 prevention Effects 0.000 abstract description 8
- 238000011282 treatment Methods 0.000 abstract description 7
- 230000000087 stabilizing effect Effects 0.000 abstract description 5
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 37
- 238000011068 loading method Methods 0.000 description 30
- 238000009472 formulation Methods 0.000 description 24
- 239000000463 material Substances 0.000 description 23
- 239000000499 gel Substances 0.000 description 20
- 239000012620 biological material Substances 0.000 description 19
- 210000001519 tissue Anatomy 0.000 description 18
- 229920001817 Agar Polymers 0.000 description 17
- 239000008272 agar Substances 0.000 description 17
- 230000000694 effects Effects 0.000 description 17
- 235000018102 proteins Nutrition 0.000 description 17
- 210000004027 cell Anatomy 0.000 description 15
- 238000002360 preparation method Methods 0.000 description 15
- 238000009792 diffusion process Methods 0.000 description 14
- 230000001186 cumulative effect Effects 0.000 description 12
- 230000001580 bacterial effect Effects 0.000 description 11
- 230000005764 inhibitory process Effects 0.000 description 11
- 230000008685 targeting Effects 0.000 description 11
- 239000004599 antimicrobial Substances 0.000 description 9
- 238000000338 in vitro Methods 0.000 description 9
- 239000003446 ligand Substances 0.000 description 9
- 230000009885 systemic effect Effects 0.000 description 9
- -1 followed by a slow Substances 0.000 description 8
- 230000000069 prophylactic effect Effects 0.000 description 8
- 238000011321 prophylaxis Methods 0.000 description 8
- 238000001356 surgical procedure Methods 0.000 description 8
- 241000255789 Bombyx mori Species 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- 208000015181 infectious disease Diseases 0.000 description 7
- 230000007774 longterm Effects 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 6
- 241001360526 Escherichia coli ATCC 25922 Species 0.000 description 6
- 230000036760 body temperature Effects 0.000 description 6
- 210000000988 bone and bone Anatomy 0.000 description 6
- 230000002950 deficient Effects 0.000 description 6
- 239000012153 distilled water Substances 0.000 description 6
- 150000002632 lipids Chemical class 0.000 description 6
- 239000002120 nanofilm Substances 0.000 description 6
- 238000005057 refrigeration Methods 0.000 description 6
- 235000001014 amino acid Nutrition 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 230000001172 regenerating effect Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000013268 sustained release Methods 0.000 description 5
- 239000012730 sustained-release form Substances 0.000 description 5
- 230000017423 tissue regeneration Effects 0.000 description 5
- 230000029663 wound healing Effects 0.000 description 5
- 108010035532 Collagen Proteins 0.000 description 4
- 102000008186 Collagen Human genes 0.000 description 4
- 206010011409 Cross infection Diseases 0.000 description 4
- 206010052428 Wound Diseases 0.000 description 4
- 208000027418 Wounds and injury Diseases 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229920001436 collagen Polymers 0.000 description 4
- 238000013270 controlled release Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 229940088598 enzyme Drugs 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 239000000017 hydrogel Substances 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 238000012856 packing Methods 0.000 description 4
- 244000052769 pathogen Species 0.000 description 4
- ZWLUXSQADUDCSB-UHFFFAOYSA-N phthalaldehyde Chemical compound O=CC1=CC=CC=C1C=O ZWLUXSQADUDCSB-UHFFFAOYSA-N 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000000527 sonication Methods 0.000 description 4
- 230000002792 vascular Effects 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 3
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 229920001872 Spider silk Polymers 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 238000009635 antibiotic susceptibility testing Methods 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 210000002744 extracellular matrix Anatomy 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 210000003041 ligament Anatomy 0.000 description 3
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 150000003431 steroids Chemical class 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 229960000707 tobramycin Drugs 0.000 description 3
- NLVFBUXFDBBNBW-PBSUHMDJSA-N tobramycin Chemical compound N[C@@H]1C[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N NLVFBUXFDBBNBW-PBSUHMDJSA-N 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- WZRJTRPJURQBRM-UHFFFAOYSA-N 4-amino-n-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide;5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidine-2,4-diamine Chemical compound O1C(C)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1.COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 WZRJTRPJURQBRM-UHFFFAOYSA-N 0.000 description 2
- 108010001478 Bacitracin Proteins 0.000 description 2
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 2
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000194033 Enterococcus Species 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229920000954 Polyglycolide Polymers 0.000 description 2
- 108010013296 Sericins Proteins 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000000692 Student's t-test Methods 0.000 description 2
- 108010009583 Transforming Growth Factors Proteins 0.000 description 2
- 102000009618 Transforming Growth Factors Human genes 0.000 description 2
- 230000003187 abdominal effect Effects 0.000 description 2
- 206010000269 abscess Diseases 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 238000000540 analysis of variance Methods 0.000 description 2
- 239000012984 antibiotic solution Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229960003071 bacitracin Drugs 0.000 description 2
- CLKOFPXJLQSYAH-ABRJDSQDSA-N bacitracin A Chemical compound C1SC([C@@H](N)[C@@H](C)CC)=N[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]1C(=O)N[C@H](CCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2N=CNC=2)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCCCC1 CLKOFPXJLQSYAH-ABRJDSQDSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229920000249 biocompatible polymer Polymers 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 238000013132 cardiothoracic surgery Methods 0.000 description 2
- 210000000845 cartilage Anatomy 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 210000001612 chondrocyte Anatomy 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 229940047766 co-trimoxazole Drugs 0.000 description 2
- 238000010878 colorectal surgery Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000001647 drug administration Methods 0.000 description 2
- 230000002526 effect on cardiovascular system Effects 0.000 description 2
- MMXKVMNBHPAILY-UHFFFAOYSA-N ethyl laurate Chemical compound CCCCCCCCCCCC(=O)OCC MMXKVMNBHPAILY-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 102000034240 fibrous proteins Human genes 0.000 description 2
- 108091005899 fibrous proteins Proteins 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- 229920002674 hyaluronan Polymers 0.000 description 2
- 229960003160 hyaluronic acid Drugs 0.000 description 2
- 238000010255 intramuscular injection Methods 0.000 description 2
- 239000007927 intramuscular injection Substances 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 230000000399 orthopedic effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 description 2
- 239000004633 polyglycolic acid Substances 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 229960003989 tocilizumab Drugs 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- 238000007631 vascular surgery Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- SGKRLCUYIXIAHR-NLJUDYQYSA-N (4r,4ar,5s,5ar,6r,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1=CC=C2[C@H](C)[C@@H]([C@H](O)[C@@H]3[C@](C(O)=C(C(N)=O)C(=O)[C@@H]3N(C)C)(O)C3=O)C3=C(O)C2=C1O SGKRLCUYIXIAHR-NLJUDYQYSA-N 0.000 description 1
- FFTVPQUHLQBXQZ-KVUCHLLUSA-N (4s,4as,5ar,12ar)-4,7-bis(dimethylamino)-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1C2=C(N(C)C)C=CC(O)=C2C(O)=C2[C@@H]1C[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O FFTVPQUHLQBXQZ-KVUCHLLUSA-N 0.000 description 1
- WDLWHQDACQUCJR-ZAMMOSSLSA-N (6r,7r)-7-[[(2r)-2-azaniumyl-2-(4-hydroxyphenyl)acetyl]amino]-8-oxo-3-[(e)-prop-1-enyl]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)/C=C/C)C(O)=O)=CC=C(O)C=C1 WDLWHQDACQUCJR-ZAMMOSSLSA-N 0.000 description 1
- XUBOMFCQGDBHNK-JTQLQIEISA-N (S)-gatifloxacin Chemical compound FC1=CC(C(C(C(O)=O)=CN2C3CC3)=O)=C2C(OC)=C1N1CCN[C@@H](C)C1 XUBOMFCQGDBHNK-JTQLQIEISA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- SNKAWJBJQDLSFF-NVKMUCNASA-N 1,2-dioleoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC SNKAWJBJQDLSFF-NVKMUCNASA-N 0.000 description 1
- RTQWWZBSTRGEAV-PKHIMPSTSA-N 2-[[(2s)-2-[bis(carboxymethyl)amino]-3-[4-(methylcarbamoylamino)phenyl]propyl]-[2-[bis(carboxymethyl)amino]propyl]amino]acetic acid Chemical compound CNC(=O)NC1=CC=C(C[C@@H](CN(CC(C)N(CC(O)=O)CC(O)=O)CC(O)=O)N(CC(O)=O)CC(O)=O)C=C1 RTQWWZBSTRGEAV-PKHIMPSTSA-N 0.000 description 1
- MJZJYWCQPMNPRM-UHFFFAOYSA-N 6,6-dimethyl-1-[3-(2,4,5-trichlorophenoxy)propoxy]-1,6-dihydro-1,3,5-triazine-2,4-diamine Chemical compound CC1(C)N=C(N)N=C(N)N1OCCCOC1=CC(Cl)=C(Cl)C=C1Cl MJZJYWCQPMNPRM-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- GSDSWSVVBLHKDQ-UHFFFAOYSA-N 9-fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid Chemical compound FC1=CC(C(C(C(O)=O)=C2)=O)=C3N2C(C)COC3=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- WZPBZJONDBGPKJ-UHFFFAOYSA-N Antibiotic SQ 26917 Natural products O=C1N(S(O)(=O)=O)C(C)C1NC(=O)C(=NOC(C)(C)C(O)=O)C1=CSC(N)=N1 WZPBZJONDBGPKJ-UHFFFAOYSA-N 0.000 description 1
- 108700042778 Antimicrobial Peptides Proteins 0.000 description 1
- 102000044503 Antimicrobial Peptides Human genes 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 description 1
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 102000000905 Cadherin Human genes 0.000 description 1
- 108050007957 Cadherin Proteins 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- GNWUOVJNSFPWDD-XMZRARIVSA-M Cefoxitin sodium Chemical compound [Na+].N([C@]1(OC)C(N2C(=C(COC(N)=O)CS[C@@H]21)C([O-])=O)=O)C(=O)CC1=CC=CS1 GNWUOVJNSFPWDD-XMZRARIVSA-M 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- HZZVJAQRINQKSD-UHFFFAOYSA-N Clavulanic acid Natural products OC(=O)C1C(=CCO)OC2CC(=O)N21 HZZVJAQRINQKSD-UHFFFAOYSA-N 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 241000660443 Encyclops Species 0.000 description 1
- 102400001047 Endostatin Human genes 0.000 description 1
- 108010079505 Endostatins Proteins 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 1
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000001828 Gelatine Substances 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108010026389 Gramicidin Proteins 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 229920001499 Heparinoid Polymers 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 1
- UETNIIAIRMUTSM-UHFFFAOYSA-N Jacareubin Natural products CC1(C)OC2=CC3Oc4c(O)c(O)ccc4C(=O)C3C(=C2C=C1)O UETNIIAIRMUTSM-UHFFFAOYSA-N 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- 108010029541 Laccase Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- GSDSWSVVBLHKDQ-JTQLQIEISA-N Levofloxacin Chemical compound C([C@@H](N1C2=C(C(C(C(O)=O)=C1)=O)C=C1F)C)OC2=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-JTQLQIEISA-N 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 239000006142 Luria-Bertani Agar Substances 0.000 description 1
- 239000006137 Luria-Bertani broth Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 244000038458 Nepenthes mirabilis Species 0.000 description 1
- 241000238902 Nephila clavipes Species 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000007072 Nerve Growth Factors Human genes 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 1
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920000805 Polyaspartic acid Polymers 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 108010093965 Polymyxin B Proteins 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 102000003800 Selectins Human genes 0.000 description 1
- 108090000184 Selectins Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 206010072170 Skin wound Diseases 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 102000013275 Somatomedins Human genes 0.000 description 1
- 206010041925 Staphylococcal infections Diseases 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 229940126624 Tacatuzumab tetraxetan Drugs 0.000 description 1
- 108010053950 Teicoplanin Proteins 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- XYVNHPYNSPGYLI-UUOKFMHZSA-N [(2r,3s,4r,5r)-5-(2-amino-6-oxo-3h-purin-9-yl)-4-hydroxy-2-(phosphonooxymethyl)oxolan-3-yl] dihydrogen phosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H]1O XYVNHPYNSPGYLI-UUOKFMHZSA-N 0.000 description 1
- 229960000446 abciximab Drugs 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 229960002964 adalimumab Drugs 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- HAXFWIACAGNFHA-UHFFFAOYSA-N aldrithiol Chemical compound C=1C=CC=NC=1SSC1=CC=CC=N1 HAXFWIACAGNFHA-UHFFFAOYSA-N 0.000 description 1
- 229960000548 alemtuzumab Drugs 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- 229950009106 altumomab Drugs 0.000 description 1
- 229940126574 aminoglycoside antibiotic Drugs 0.000 description 1
- 239000002647 aminoglycoside antibiotic agent Substances 0.000 description 1
- 229960003022 amoxicillin Drugs 0.000 description 1
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 230000001772 anti-angiogenic effect Effects 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 230000003409 anti-rejection Effects 0.000 description 1
- 229960005475 antiinfective agent Drugs 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 229950005725 arcitumomab Drugs 0.000 description 1
- IVRMZWNICZWHMI-UHFFFAOYSA-N azide group Chemical group [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 description 1
- 229960004099 azithromycin Drugs 0.000 description 1
- MQTOSJVFKKJCRP-BICOPXKESA-N azithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)N(C)C[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 MQTOSJVFKKJCRP-BICOPXKESA-N 0.000 description 1
- WZPBZJONDBGPKJ-VEHQQRBSSA-N aztreonam Chemical compound O=C1N(S([O-])(=O)=O)[C@@H](C)[C@@H]1NC(=O)C(=N/OC(C)(C)C(O)=O)\C1=CSC([NH3+])=N1 WZPBZJONDBGPKJ-VEHQQRBSSA-N 0.000 description 1
- 229960003644 aztreonam Drugs 0.000 description 1
- 230000010065 bacterial adhesion Effects 0.000 description 1
- 210000004082 barrier epithelial cell Anatomy 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 229960004669 basiliximab Drugs 0.000 description 1
- 229950003269 bectumomab Drugs 0.000 description 1
- 229960003270 belimumab Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- 229950010559 besilesomab Drugs 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229960000397 bevacizumab Drugs 0.000 description 1
- 229950001303 biciromab Drugs 0.000 description 1
- 210000000013 bile duct Anatomy 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000012867 bioactive agent Substances 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 239000003131 biological toxin Substances 0.000 description 1
- 230000033558 biomineral tissue development Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000002798 bone marrow cell Anatomy 0.000 description 1
- 239000004067 bulking agent Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 229960001838 canakinumab Drugs 0.000 description 1
- 229940034605 capromab pendetide Drugs 0.000 description 1
- JSVCEVCSANKFDY-SFYZADRCSA-N carbacephem Chemical compound C1CC(C)=C(C(O)=O)N2C(=O)[C@@H](NC(=O)C)[C@H]21 JSVCEVCSANKFDY-SFYZADRCSA-N 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229960000419 catumaxomab Drugs 0.000 description 1
- 229960005361 cefaclor Drugs 0.000 description 1
- QYIYFLOTGYLRGG-GPCCPHFNSA-N cefaclor Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CS[C@@H]32)C(O)=O)=O)N)=CC=CC=C1 QYIYFLOTGYLRGG-GPCCPHFNSA-N 0.000 description 1
- 229960004841 cefadroxil Drugs 0.000 description 1
- NBFNMSULHIODTC-CYJZLJNKSA-N cefadroxil monohydrate Chemical compound O.C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=C(O)C=C1 NBFNMSULHIODTC-CYJZLJNKSA-N 0.000 description 1
- 229960003719 cefdinir Drugs 0.000 description 1
- RTXOFQZKPXMALH-GHXIOONMSA-N cefdinir Chemical compound S1C(N)=NC(C(=N\O)\C(=O)N[C@@H]2C(N3C(=C(C=C)CS[C@@H]32)C(O)=O)=O)=C1 RTXOFQZKPXMALH-GHXIOONMSA-N 0.000 description 1
- 229960004069 cefditoren Drugs 0.000 description 1
- KMIPKYQIOVAHOP-YLGJWRNMSA-N cefditoren Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1\C=C/C=1SC=NC=1C KMIPKYQIOVAHOP-YLGJWRNMSA-N 0.000 description 1
- 229960004261 cefotaxime Drugs 0.000 description 1
- AZZMGZXNTDTSME-JUZDKLSSSA-M cefotaxime sodium Chemical compound [Na+].N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 AZZMGZXNTDTSME-JUZDKLSSSA-M 0.000 description 1
- 229960002682 cefoxitin Drugs 0.000 description 1
- 229960002580 cefprozil Drugs 0.000 description 1
- VOAZJEPQLGBXGO-SDAWRPRTSA-N ceftobiprole Chemical compound S1C(N)=NC(C(=N\O)\C(=O)N[C@@H]2C(N3C(=C(\C=C/4C(N([C@H]5CNCC5)CC\4)=O)CS[C@@H]32)C(O)=O)=O)=N1 VOAZJEPQLGBXGO-SDAWRPRTSA-N 0.000 description 1
- 229950004259 ceftobiprole Drugs 0.000 description 1
- 229960001668 cefuroxime Drugs 0.000 description 1
- JFPVXVDWJQMJEE-IZRZKJBUSA-N cefuroxime Chemical compound N([C@@H]1C(N2C(=C(COC(N)=O)CS[C@@H]21)C(O)=O)=O)C(=O)\C(=N/OC)C1=CC=CO1 JFPVXVDWJQMJEE-IZRZKJBUSA-N 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229960003115 certolizumab pegol Drugs 0.000 description 1
- 229960005395 cetuximab Drugs 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- DDTDNCYHLGRFBM-YZEKDTGTSA-N chembl2367892 Chemical compound CC(=O)N[C@H]1[C@@H](O)[C@H](O)[C@H](CO)O[C@H]1O[C@@H]([C@H]1C(N[C@@H](C2=CC(O)=CC(O[C@@H]3[C@H]([C@H](O)[C@H](O)[C@@H](CO)O3)O)=C2C=2C(O)=CC=C(C=2)[C@@H](NC(=O)[C@@H]2NC(=O)[C@@H]3C=4C=C(O)C=C(C=4)OC=4C(O)=CC=C(C=4)[C@@H](N)C(=O)N[C@H](CC=4C=C(Cl)C(O5)=CC=4)C(=O)N3)C(=O)N1)C(O)=O)=O)C(C=C1Cl)=CC=C1OC1=C(O[C@H]3[C@H]([C@@H](O)[C@H](O)[C@H](CO)O3)NC(C)=O)C5=CC2=C1 DDTDNCYHLGRFBM-YZEKDTGTSA-N 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- 229960002626 clarithromycin Drugs 0.000 description 1
- AGOYDEPGAOXOCK-KCBOHYOISA-N clarithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@](C)([C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)OC)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 AGOYDEPGAOXOCK-KCBOHYOISA-N 0.000 description 1
- 229960003324 clavulanic acid Drugs 0.000 description 1
- HZZVJAQRINQKSD-PBFISZAISA-N clavulanic acid Chemical compound OC(=O)[C@H]1C(=C/CO)/O[C@@H]2CC(=O)N21 HZZVJAQRINQKSD-PBFISZAISA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000599 controlled substance Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229960002806 daclizumab Drugs 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 229960001251 denosumab Drugs 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-O diazynium Chemical compound [NH+]#N IJGRMHOSHXDMSA-UHFFFAOYSA-O 0.000 description 1
- YFAGHNZHGGCZAX-JKIFEVAISA-N dicloxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=C(Cl)C=CC=C1Cl YFAGHNZHGGCZAX-JKIFEVAISA-N 0.000 description 1
- 229960001585 dicloxacillin Drugs 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical group C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 229960002224 eculizumab Drugs 0.000 description 1
- 229960001776 edrecolomab Drugs 0.000 description 1
- 229960000284 efalizumab Drugs 0.000 description 1
- 229950002209 efungumab Drugs 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001523 electrospinning Methods 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- IDYZIJYBMGIQMJ-UHFFFAOYSA-N enoxacin Chemical compound N1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 IDYZIJYBMGIQMJ-UHFFFAOYSA-N 0.000 description 1
- 229960002549 enoxacin Drugs 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 230000004890 epithelial barrier function Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 229950008579 ertumaxomab Drugs 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229950009569 etaracizumab Drugs 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000013265 extended release Methods 0.000 description 1
- 229940093443 fanolesomab Drugs 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 229940126864 fibroblast growth factor Drugs 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 229950004923 fontolizumab Drugs 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229960003923 gatifloxacin Drugs 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229960000578 gemtuzumab Drugs 0.000 description 1
- 229960003297 gemtuzumab ozogamicin Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- 229960001743 golimumab Drugs 0.000 description 1
- 229960004905 gramicidin Drugs 0.000 description 1
- ZWCXYZRRTRDGQE-SORVKSEFSA-N gramicidina Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@H](NC(=O)[C@H](C)NC(=O)CNC(=O)[C@@H](NC=O)C(C)C)CC(C)C)C(=O)NCCO)=CNC2=C1 ZWCXYZRRTRDGQE-SORVKSEFSA-N 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000003709 heart valve Anatomy 0.000 description 1
- 230000002439 hemostatic effect Effects 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 239000002554 heparinoid Substances 0.000 description 1
- 229940025770 heparinoids Drugs 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002433 hydrophilic molecules Chemical class 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 239000003326 hypnotic agent Substances 0.000 description 1
- 230000000147 hypnotic effect Effects 0.000 description 1
- 230000002267 hypothalamic effect Effects 0.000 description 1
- 229960001001 ibritumomab tiuxetan Drugs 0.000 description 1
- 229950002200 igovomab Drugs 0.000 description 1
- 229950007354 imciromab Drugs 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 229960000598 infliximab Drugs 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 229950000518 labetuzumab Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 229940089519 levaquin Drugs 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229960005108 mepolizumab Drugs 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229940100630 metacresol Drugs 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000001089 mineralizing effect Effects 0.000 description 1
- 229960004023 minocycline Drugs 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 230000000921 morphogenic effect Effects 0.000 description 1
- 229960001521 motavizumab Drugs 0.000 description 1
- 229960003816 muromonab-cd3 Drugs 0.000 description 1
- 210000003098 myoblast Anatomy 0.000 description 1
- 229960000210 nalidixic acid Drugs 0.000 description 1
- MHWLWQUZZRMNGJ-UHFFFAOYSA-N nalidixic acid Chemical compound C1=C(C)N=C2N(CC)C=C(C(O)=O)C(=O)C2=C1 MHWLWQUZZRMNGJ-UHFFFAOYSA-N 0.000 description 1
- 229960005027 natalizumab Drugs 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 229950010203 nimotuzumab Drugs 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229960002450 ofatumumab Drugs 0.000 description 1
- 229960001699 ofloxacin Drugs 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 229960000470 omalizumab Drugs 0.000 description 1
- 229950007283 oregovomab Drugs 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 210000002997 osteoclast Anatomy 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- UWYHMGVUTGAWSP-JKIFEVAISA-N oxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=CC=CC=C1 UWYHMGVUTGAWSP-JKIFEVAISA-N 0.000 description 1
- 229960001019 oxacillin Drugs 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 description 1
- 229960000402 palivizumab Drugs 0.000 description 1
- 229960001972 panitumumab Drugs 0.000 description 1
- 230000000849 parathyroid Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 229960005570 pemtumomab Drugs 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 229940067082 pentetate Drugs 0.000 description 1
- 229940043138 pentosan polysulfate Drugs 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 229960002087 pertuzumab Drugs 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229960002292 piperacillin Drugs 0.000 description 1
- WCMIIGXFCMNQDS-IDYPWDAWSA-M piperacillin sodium Chemical compound [Na+].O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC=CC=1)C(=O)N[C@@H]1C(=O)N2[C@@H](C([O-])=O)C(C)(C)S[C@@H]21 WCMIIGXFCMNQDS-IDYPWDAWSA-M 0.000 description 1
- 230000001817 pituitary effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229940116406 poloxamer 184 Drugs 0.000 description 1
- 229940044519 poloxamer 188 Drugs 0.000 description 1
- 229920001432 poly(L-lactide) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 108010064470 polyaspartate Proteins 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920000903 polyhydroxyalkanoate Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920000024 polymyxin B Polymers 0.000 description 1
- 229960005266 polymyxin b Drugs 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229940068977 polysorbate 20 Drugs 0.000 description 1
- 229940068968 polysorbate 80 Drugs 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- AAEVYOVXGOFMJO-UHFFFAOYSA-N prometryn Chemical compound CSC1=NC(NC(C)C)=NC(NC(C)C)=N1 AAEVYOVXGOFMJO-UHFFFAOYSA-N 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 230000012743 protein tagging Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000012217 radiopharmaceutical Substances 0.000 description 1
- 229940121896 radiopharmaceutical Drugs 0.000 description 1
- 230000002799 radiopharmaceutical effect Effects 0.000 description 1
- 229960003876 ranibizumab Drugs 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 229960004641 rituximab Drugs 0.000 description 1
- 229950009092 rovelizumab Drugs 0.000 description 1
- 229950005374 ruplizumab Drugs 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 210000003079 salivary gland Anatomy 0.000 description 1
- 239000000932 sedative agent Substances 0.000 description 1
- 229940125723 sedative agent Drugs 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 108010064995 silkworm fibroin Proteins 0.000 description 1
- 210000002363 skeletal muscle cell Anatomy 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- FKENQMMABCRJMK-RITPCOANSA-N sulbactam Chemical compound O=S1(=O)C(C)(C)[C@H](C(O)=O)N2C(=O)C[C@H]21 FKENQMMABCRJMK-RITPCOANSA-N 0.000 description 1
- 229960005256 sulbactam Drugs 0.000 description 1
- 229950010708 sulesomab Drugs 0.000 description 1
- SEEPANYCNGTZFQ-UHFFFAOYSA-N sulfadiazine Chemical compound C1=CC(N)=CC=C1S(=O)(=O)NC1=NC=CC=N1 SEEPANYCNGTZFQ-UHFFFAOYSA-N 0.000 description 1
- 229960004306 sulfadiazine Drugs 0.000 description 1
- 229960001940 sulfasalazine Drugs 0.000 description 1
- NCEXYHBECQHGNR-QZQOTICOSA-N sulfasalazine Chemical compound C1=C(O)C(C(=O)O)=CC(\N=N\C=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-QZQOTICOSA-N 0.000 description 1
- NCEXYHBECQHGNR-UHFFFAOYSA-N sulfasalazine Natural products C1=C(O)C(C(=O)O)=CC(N=NC=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-UHFFFAOYSA-N 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000013269 sustained drug release Methods 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229950000864 technetium (99mtc) nofetumomab merpentan Drugs 0.000 description 1
- 229950001788 tefibazumab Drugs 0.000 description 1
- 229960001608 teicoplanin Drugs 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 229960005267 tositumomab Drugs 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 229960000575 trastuzumab Drugs 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 239000001974 tryptic soy broth Substances 0.000 description 1
- 108010050327 trypticase-soy broth Proteins 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 210000001635 urinary tract Anatomy 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 229960003824 ustekinumab Drugs 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
- 229950004393 visilizumab Drugs 0.000 description 1
- 229950003511 votumumab Drugs 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 230000037314 wound repair Effects 0.000 description 1
- 229950008250 zalutumumab Drugs 0.000 description 1
- 229950009002 zanolimumab Drugs 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Materials For Medical Uses (AREA)
- Medicinal Preparation (AREA)
Abstract
The present invention provides for silk fibroin-based compositions comprising one or more antibiotic agents for prevention or treatment of microbial contamination, methods of making antibiotic-containing silk scaffold, methods of stabilizing antibiotics in silk scaffolds, and methods for preventing or treating microbial contamination using the antibiotic-containing compositions. Various methods may be used to embed the antibiotic(s) into the silk fibroin-based compositions. The antibiotic-containing compositions of the invention are particular useful for stabilizing antibiotics, preventing bacterial infections, and for medical implants, tissue engineering, drug delivery systems, or other pharmaceutical or medical applications. WO 2010/141133 PCT/US2010/026190 / 4-Y -- ----- 0. G -- S- M icrospheres in Scaffold - Layered on Scaffold -v Emrbedded in Scaffold -- Layered on Siik M1Iat CO 20 40 60 so 100 120 14 0 16O0 18 Time (Hours) Figure 1 0 AS - ;C .4- -7-k 4y --- Microspheres n Scaffold -- '- Layered on Scaffold -v- Layered on Sik Mat - 7- Eimbedded in Scaffold 0 20 40 60 80 10C 120 140 160 180 Time (Hours) Figure 2
Description
CROSS REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of priority under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 61/157,366 filed March 4, 2009, the contents of which are incorporated herein by reference in its entirety.
GOVERNMENT SUPPORT [0002] This invention was made with government support under EB002520 awarded by the National Institutes of Health, and W911NF-07-1-0618 awarded by the United States Army. The government has certain rights in the invention.
FIELD OF THE INVENTION [0003] This invention relates to compositions for preventing or treating microbial contamination, and methods of preventing or treating microbial contamination using such compositions. The compositions of the invention exhibit superior stability, and may be used in medical implants, tissue engineering, drug delivery systems, or other pharmaceutical or medical applications. The reference to any prior art in this specification is not, and should not be taken as an acknowledgement or any form of suggestion that such art forms part of the common general knowledge.
BACKGROUND OF THE INVENTION [0004] Biomaterials have been developed for a variety of applications including cardiovascular and musculoskeletal implants, as substrates for tissue engineered cartilage, bone and ligaments, as viable media for cellular proliferation and drug delivery, and for directing the appropriate differentiation of human mesenchymal stem cells into specific tissues.
[0005] In evaluating the efficacy of biomaterial compositions for use in implants, tissue engineering, drug delivery or regenerative medicine, a major limitation concerns the susceptibility of these applications to microbial contamination, particularly caused by surgical site infection. Surgical site infections are the second-most common cause of nosocomial infections. Patients that develop surgical site infections are more likely to be admitted to an intensive care unit or be readmitted to the hospital, and more likely to die, than patients avoiding surgical site infection.
[0006] Antimicrobial prophylaxis provides a common and effective method of preventing microbial contamination following surgery. Current antimicrobial options have significant systemic side effects and limitations, however. For example, there are numerous inconsistencies regarding the appropriate selection, timing, and duration of administration of prophylactic antimicrobials. Additionally, the antimicrobial should be administered as near to the incision or implant area as possible to achieve the lowest surgical site infection rates.
2018267539 19 Nov 2018
Moreover, a systemic antimicrobial approach to infection prevention often results in insufficient local concentrations of antibiotic and significantly increases the risk for surgical site infection.
[0007] For example, typical treatment of an infected abscess is draining of the wound, packing with gauze, and systemic administration of antibiotics. Abscesses formed in the presence of Staphylococcus aureus infections, however, typically develop an epithelial barrier or shell through which antibiotics fail to penetrate. Current non-degradable surgical packing materials require surgical retrieval and have no inherent antibiotic activity. Moreover, in these patients heavy systemic doses of antibiotics may damage the liver, and waste large amounts of drug. A simple system for antibiotic delivery is needed that also stabilizes the incorporated drug, restricts delivery to a specific target site to minimize cost and side-effects, while maximizing efficacy and biodegrades to avoid surgical retrieval.
[0008] Hence, there remains a need for compositions comprising a natural polymeric medium that not only offers a medically-relevant, biocompatible, and mechanically viable structure for implants, tissue repair or drug delivery systems, but also locally directs the administration of antimicrobial to the incision, implant, or the target delivery area to effectively prevent or treat an infection. Throughout this specification and the claims, unless the context requires otherwise, the word “comprise” and its variations, such as “comprises” and “comprising,” will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
SUMMARY OF THE INVENTION [0009] The present invention provides for silk fibroin-based compositions for medical implants, tissue engineering, or drug delivery systems to prevent and/or treat microbial contamination. The invention further provides methods for preventing and/or treating microbial contamination by using the compositions of the invention. More specifically, the antibioticloaded silk fibroin systems of the present invention are biocompatible, safe, FDA-approved and degrade in vivo to nontoxic products. Antibiotic-loaded silk biomaterials can be applied to or injected into target sites, delivering antibiotics locally or regionally and avoiding systemic sideeffects from large doses of antibiotics. Unlike some current surgical packing materials (e.g., gauze), silk degrades naturally over time, so surgical removal is unnecessary. Moreover, the present invention provides for remarkable antibiotic stability at a wide range of relevant temperatures. For example, antibiotic-loaded silk compositions of the present invention can be stored at room temperature, then applied or injected for sustained release at the site of infection where they subsequently biodegrade. The compositions of the present invention may be designed to deliver a large preliminary “burst” dose of antibiotics, followed by a slow, sustained release of a lower maintenance dose.
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 [0010] One embodiment of the invention relates to a composition comprising a silk fibroin scaffold and at least one antibiotic agent. In particular embodiments, the silk fibroinbased scaffold comprises antibiotic-loaded microspheres embedded in a porous silk fibroin matrix or gel. In some embodiments, the silk fibroin scaffold may comprise a film, slab, or comprise a three-dimensional structure such as a matrix or gel. In particular embodiments, the silk scaffold is a coating on a substrate suitable for use, for example, as a bandage or an implant. Example antibiotics in particular embodiments include cefazolin, gentamicin, penicillin, and ampicillin. In some embodiments, the antibiotic-loaded silk fibroin composition may include at least one additional agent, such as a biologic or drug. The compositions of the invention may be used for medical implants, tissue engineering, regenerative medicine, or drug delivery systems to prevent and/or treat microbial contamination. The compositions can be formulated to deliver the at least one antibiotic agent at levels exceeding the minimum inhibitory concentration (MIC) for organisms commonly found to be the cause of such microbial contamination.
[0011] Various methods may be employed to embed at least one antibiotic agent into the silk structure. For example, the antibiotic may be added to a silk fibroin solution before forming a silk scaffold (i.e., antibiotic is incorporated directly into a silk film, gel, or porous matrix); silk fibroin microspheres comprising antibiotic may be prepared, then these antibiotic-loaded microspheres may be mixed with silk solution to form silk scaffolds (such as a gel or porous matrix) into which the microspheres are embedded; or one or more antibiotic-loaded layers can be coated on silk scaffolds. The methods of the present invention may also include the step of adding an additional agent to the antibiotic-containing scaffold.
[0012] The present invention also provides for the long term storage of antibiotics and/or other agents in a silk-fibroin composition. For example, a method for preparing a long-term antibiotic storage composition comprises selecting an antibiotic, incorporating the antibiotic into a silk-fibroin solution, and forming a scaffold from the solution. The solution may be an aqueous solution or a hydrated lipid solution. An additional agent, such as a drug or biologic, may be added to the solution. The scaffold may be formed by pouring the solution onto a surface to yield a film or slab. Alternatively, the scaffold may be formed by pouring the solution into a mold or container and then dried to form a three-dimensional porous matrix. A solution may be treated to create antibiotic-containing nanoparticles or microspheres. The solution may be sonicated to form a gel. Additionally, the antibiotic-loaded microspheres may be added to another silk fibroin solution and then formed into gel or matrix. Antibiotic prepared by these methods maintain at least 75% residual activity for at least 60 days when stored at 4°C, 25°C, or 37°C.
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 [0013] Another embodiment of this invention relates to a method of preventing and/or treating microbial contamination at a region of an object or subject for medical implants, tissue engineering, regenerative medicine, or dmg delivery systems. The method comprises contacting the region of the object or subject with a composition comprising a three-dimensional silk fibroin-based silk scaffold and at least one antibiotic agent. The contacting may be achieved by a bandage, sponge, or surgical packing material. The composition may be formulated to deliver the at least one antibiotic agent at levels exceeding the MIC for organisms such as those commonly found to be the cause of microbial contamination. For example, possible microbial contamination may be associated with a surgical site infection. In one embodiment, the surgical prophylactics such as cefazolin, gentamicin, penicillin, ampicillin, or a combination thereof, may be incorporated into the silk fibroin to prevent or treat surgical site infections.
DESCRIPTION OF THE DRAWINGS [0014] Figure 1 depicts cumulative in vitro release of gentamicin in 100 μΐ of water from silk fibroin scaffolds embedded with antibiotic-loaded microspheres, layered with antibiotic, embedded with antibiotic directly in the scaffold stmcture, and from electrospun silk fibroin mats layered with the antibiotic. Mean + SD.
[0015] Figure 2 depicts cumulative in vitro release of cefazolin in 100 μΐ of water from silk fibroin scaffolds embedded with antibiotic loaded microspheres, layered with antibiotic, embedded with antibiotic directly in the scaffold stmcture, and from electrospun silk fibroin mats layered with the antibiotic. Mean + SD.
[0016] Figure 3 depicts cumulative in vitro release of gentamicin (in panel 3A); and cefazolin (in panel 3B), in combination in 100 μΐ of water from silk fibroin scaffolds embedded with antibiotic-loaded microspheres; layered with antibiotics; embedded with antibiotics directly in the scaffold stmcture; or from electrospun silk fibroin mats layered with the antibiotics. Mean + SD.
[0017] Figure 4 depicts mean zones of clearance of Escherichia coli ATCC 25922 around gentamicin-loaded silk fibroin scaffolds embedded with loaded microspheres; layered with antibiotic; embedded with antibiotic in the scaffold stmcture; or electrospun silk mats layered with the antibiotic; on Mueller-Hinton agar plates after 24 hr at 37°C. Controls included clearance by a 10 pg gentamicin Sensi-Disc™ antibiotic disc (Becton Dickenson) and an antibiotic-deficient scaffold. Mean + SD.
[0018] Figure 5 depicts mean zones of clearance of Staphylococcus aureus ATCC 25923 around gentamicin-loaded silk fibroin scaffolds embedded with loaded microspheres; layered with antibiotic; embedded with antibiotic in the scaffold stmcture; or electrospun silk mats
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 layered with the antibiotic, on Mueller-Hinton agar plates after 24 hr at 37°C. Controls included clearance by a 10 pg gentamicin Sensi-Disc™ disc and an antibiotic-deficient scaffold.
Mean + SD.
[0019] Figure 6 depicts mean zones of clearance of E. coli ATCC 25922 around cefazolin-loaded silk fibroin scaffolds embedded with loaded microspheres; layered with antibiotic; embedded with antibiotic in the scaffold structure; or electrospun silk mats layered with the antibiotic, on Mueller-Hinton agar plates after 24 hr at 37°C. Controls included clearance by a 10 pg cefazolin Sensi-Disc™ antibiotic disc and an antibiotic-deficient scaffold. Mean + SD.
[0020] Figure 7 depicts mean zones of clearance of S. aureus ATCC 25923 around cefazolin-loaded silk fibroin scaffolds embedded with loaded microspheres; layered with antibiotic; embedded with antibiotic in the scaffold structure; or electrospun silk mats layered with the antibiotic, on Mueller-Hinton agar plates after 24 hr at 37°C. Controls included clearance by a 30 pg cefazolin Sensi-Disc™ disc and an antibiotic-deficient scaffold.
Mean + SD.
[0021] Figure 8 depicts mean zones of clearance of E. coli ATCC 25922 around gentamicin/cefazolin-loaded silk fibroin scaffolds embedded with loaded microspheres; layered with antibiotic; embedded with antibiotic in the scaffold structure; or electrospun silk mats layered with the antibiotics, on Mueller-Hinton agar plates after 24 hr at 37°C. Controls included clearance by a 10 pg gentamicin/30 pg cefazolin Sensi-Disc™ disc and an antibiotic-deficient scaffold. Summation of right-set Y-axes represents estimated total antibiotic release. Right set Y-axes cannot be applied to Sensi-Disc™ antibiotic discs. Mean + SD.
[0022] Figure 9 depicts mean zones of clearance of S. aureus ATCC 25923 around gentamicin/ cefazolin-loaded silk fibroin scaffolds embedded with loaded microspheres; layered with antibiotic; embedded with antibiotic in the scaffold structure; or electrospun silk mats layered with the antibiotics, on Mueller-Hinton agar plates after 24 hr at 37°C. Controls included clearance by a 10 pg gentamicin/30 pg cefazolin Sensi-Disc™ disc and an antibiotic-deficient scaffold. Summation of right-set Y-axes represents estimated total antibiotic release. Right set Y-axes cannot be applied to Sensi-Disc™ antibiotic discs. Mean + SD.
[0023] Figure 10 shows the optical density of S. aureus and E. coli liquid cultures at 600 nm relative to the concentration of penicillin used in the preparation of antibioticcontaining silk film scaffolds.
[0024] Figure 11 shows S. aureus inhibition from penicillin loaded silk gels over 4 days, prepared from either 4% or 8% (w/v) silk solution either bulk loaded with penicillin by mixing
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 penicillin into the silk solution prior to sonication (bulk) or loaded with microspheres by mixing penicillin silk microspheres into the silk solution prior to sonication (spheres).
[0025] Figure 12 presents S. aureus inhibition from ampicillin loaded 8% (w/v) silk gels over 4 days Silk hydrogels are either bulk loaded with ampicillin by mixing ampicillin into the silk solution prior to gelling (bulk loading) or loaded with microspheres by mixing ampicillin silk microspheres into the silk solution just after sonication.
[0026] Figure 13 demonstrates stability over 140 days (5 months) of penicillin stored in solution or in 8% (w/v) silk films at 4°C (refrigeration), 25°C (room temperature), and 37°C (body temperature). N=3, error bars represent standard deviations.
[0027] Figure 14 shows a comparison of stability for penicillin stored in 8% (w/v) silk films, in solution and as dry powder at 4°C (refrigeration), 25°C (room temperature), and 37°C (body temperature). N=3, error bars represent standard deviations. All x-axis are in days.
[0028] Figure 15 presents a comparison of stability for penicillin stored in 8% (w/v) silk films against 8% (w/v) collagen films at 4°C (refrigeration), 25°C (room temperature), and 37°C (body temperature). N=3, error bars represent standard deviations.
[0029] Figure 16 shows the cumulative release of gentamicin from nanofilm-coated porous silk scaffolds on S. aureus and E. coll lawns (note the close agreement between the gentamicin values determined for the two different bacteria).
[0030] Figure 17 shows the cumulative release of cefazolin from nanofilm coated porous silk scaffolds on S. aureus lawns.
DETAILED DESCRIPTION [0031] It should be understood that this invention is not limited to the particular methodology, protocols, and reagents, etc., described herein and as such may vary. The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention, which is defined solely by the claims.
[0032] As used herein and in the claims, the singular forms include the plural reference and vice versa unless the context clearly indicates otherwise. Other than in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingredients or reaction conditions used herein should be understood as modified in all instances by the term “about.” [0033] All patents and other publications identified are expressly incorporated herein by reference for the purpose of describing and disclosing, for example, the methodologies described in such publications that might be used in connection with the present invention. These publications are provided solely for their disclosure prior to the filing date of the present
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 application. Nothing in this regard should be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention or for any other reason. All statements as to the date or representation as to the contents of these documents is based on the information available to the applicants and does not constitute any admission as to the correctness of the dates or contents of these documents.
[0034] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as those commonly understood to one of ordinary skill in the art to which this invention pertains. Although any known methods, devices, and materials may be used in the practice or testing of the invention, the methods, devices, and materials in this regard are described herein.
[0035] The present invention provides for a natural polymeric medium, based on silk fibroin, that comprises a three-dimensional (3-D) silk fibroin scaffold-based formulation of silk protein and at least one antibiotic agent. Such biomaterial compositions offer a unique, medically-relevant, biocompatible structure for medical implants, tissue engineering such as tissue repair, or drug delivery systems to prevent and/or treat microbial contamination. The silkbased compositions of the invention may be formulated to deliver the at least one antibiotic agent at levels exceeding the minimum inhibitory concentration for organisms commonly found to be the cause of such microbial contamination. Various methods may be employed to embed (i.e., incorporate, absorb, or load) at least one antibiotic agent into the silk fibroin scaffolds. For example, the antibiotic may be incorporated directly into silk scaffold by mixing the antibiotic with the silk fibroin solution before scaffold formation; the agent may be loaded in silk microspheres which are then embedded into silk scaffolds (such as porous matrices or gels); or one or more antibiotic-loaded layers are coated on to silk scaffolds. In particular embodiments, silk fibroin microspheres are prepared in the presence of antibiotic to form antibiotic-loaded microspheres, which are then mixed with silk fibroin solution that is formed into a scaffold (e.g., a porous matrix or gel), resulting in antibiotic-loaded microspheres embedded in the silk fibroin scaffold. In other embodiments, the compositions are a coating on a bandage or an implant.
[0036] The compositions of the present invention may be used to prevent or treat various microbial contaminations, particularly those caused by surgical site infections. In one embodiment, the common surgical prophylactics such as cefazolin, gentamicin, penicillin, ampicillin, or a combination thereof, may be incorporated into the silk fibroin scaffold to prevent or treat surgical site infections. For example, the drug-embedded silk fibroin scaffolds of the present invention are evaluated for drug release and bacterial clearance of gram-negative E. coll and gram-positive S. aureus, two of the most prevalent pathogens isolated from surgical site infections according to the Centers for Disease Control. The present invention relates to the
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 pharmaceutical utility of silk fibroin scaffolds embedded with antibiotics in providing effective local concentrations of antimicrobial for an appropriate duration of time. Furthermore, silk fibroin based drug delivery or medical implants represents a good medical substitute to systemic prophylaxis for surgery. When combined with the versatile material formats achievable with silk, the mechanically robust nature of these materials, the biocompatibility of this protein, and its controllable proteolytic degradation, antibiotic-functionalized silk biomaterials are an intriguing option for use for many medical needs, as well as for applications in biofilm control in general.
[0037] The 3-D porous silk fibroin-based biomaterials of the present invention offer a supportive medium for tissue engineering. Silk fibroin scaffolds are biocompatible, biodegradable, and biochemically versatile. Silks have been employed for applications in biomedical and biotechnological fields. See Sofia et al., 54 J. Biomed. Mater. Res. 139-48 (2001); Sohn et al., 5 Biomacromol. 751-57 (2004); Um et al., 29 Int. J. Biol. Macromol. 91-97 (2001); Kaplan et al., in ACS Symposium Series, Vol. 544, 2-16 (McGrath & Kaplan, eds., Birkhauser, Boston, MA, 1994). Silk is popular because of its availability, the ease of purification (Sofia et al., 2001; Sohn et al., 2004; Um et al., 2001), and its attractive properties. See Kaplan et al., 1994; Kaplan et al., Protein Based Mats. 103-31 (McGrath & Kaplan, eds., Birkhauser, Boston, MA, 1998); Wang et al., 27 Biomats. 6064-82 (2006).
[0038] Silk has an unusual amino acid sequence: the bulk of the silk fibroin protein is organized into hydrophobic domains that are rich of alanine and glycine residues, and amino acids with large side chains that are clustered in chain-end hydrophilic blocks. See Bini et al., 335 J. Mol. Biol. 27-40 (2004). Structurally, the hydrophobic blocks assemble into crystalline regions while the hydrophilic blocks form less ordered regions. Zhou et al., 44 Proteins: Struct. Funct. Bioinf. 119-22 (2001). The large hydrophobic regions of silk fibroin are capable of assembling into crystalline β-sheet structures via intra- and inter-molecular hydrogen bonding and hydrophobic interactions, thus conferring unique features to the silk fibroin protein.
[0039] Silk fibroin-based materials promote cellular migration and adherence, the formation of new extracellular matrix, and foster the transport of metabolic wastes and nutrients. Kim et al., 26 Biomats. 2775-85 (2005); Hofmann et al., Ill J. Contr. Rel. 219-27 (2006); Kluge et al., 26 Trends Biotechnol. 244-51 (2008). Silkworm silk from Bombyx mori is composed of the structural protein fibroin and water-soluable glue-like sericins that bind the fibroin fibers together. Magoshi et al., Silk fiber formation, multiple spinning mechanisms, in Polymeric Mats. Encyclop. (Salamone, ed., CRC Press, NY, 1996). Fibroin primarily consists of the amino acids glycine, alanine and serine, which form antiparallel, crystalline β-sheet stacks by hydrogen bonding and hydrophobic interactions, forming the basis for the
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 mechanical stability, tensile strength, and toughness of the silk material. Altman et al., 23 Biomats. 4131-41 (2002); Altman et al., 24 Biomats. 401-16 (2003); Kim et al., 2005.
[0040] Silk fibroin has been explored as a biomaterial for cardiovascular and musculoskeletal implants, substrates for tissue engineered cartilage, bone, and ligaments; and also in directing the appropriate differentiation of human mesenchymal stem cells into specific tissues. Meinel et al., 88 Biotechnol. Bioeng. 379-91 (2004); Meinel et al. 37 Bone 688-98 (2005); Hofmann et al., 2006. Silk scaffolds provide a viable medium for cellular proliferation and drug delivery, supplying signals such as growth factors and cytokines through proteinrelease to guide mesenchymal stem cell differentiation. Meinel et al., 2004; Meinel et al., 37 Bone 688-98 (2005); Hofmann et al., 2006. Many synthetic metallic implants and polymers do not degrade under biologically-relevant conditions, and biodegradable synthetic polymers (e.g. polyglycolic acid, poly-L-lactic acid, polyhydroxy-alkanoates, and polyethylene glycol) rapidly lose mechanical strength and fail to foster the production of stable extracellular matrix. Wake et al., 5 Cell Transplant. 465-73 (1996); Kim et al., 251 Exp. Cell. Res. 318-28 (1999); Zhang et al., 29 Biomats. 2217-27 (2008). The utilization of silk in tissue engineering can produce a functional and mechanically effective implant material, stabilizing and releasing bioactive proteins for control of appropriate cellular differentiation and/or growth through controlled drug delivery. Hofmann et al., 2006; Wang et al., 29 Biomats. 894-903 (2008).
[0041] In evaluating the efficacy of engineered silk fibroin scaffolds for use in implant or regenerative medicine, a major limitation concerns the susceptibility of the application to microbial contamination. Surgical site infections are the second most common cause of nosocomial infections. Burke 348 N. Engl. J. Med. 651-56 (2003); Bratzler & Houck, 38 Clin. Infect. Dis. 1706-15 (2004). Patients that develop surgical site infections are 60% more likely to be admitted to an intensive care unit, five times more likely to be readmitted to the hospital, and twice more likely to die than patients without surgical site infection. Bratzler & Houck, 2004. Furthermore, patient healthcare costs significantly increase with the incidence of surgical site infection. Kirkland et al., 20 Infect. Control. Hosp. Epidemiol. 725-30 (1999); Hollenbeak et al., 23 Infect. Contr. Hosp. Epidemiol. 177-82 (2002). The National Nosocomial Infections Surveillance (NNIS) system, authorized by the U.S. Centers for Disease Control and Prevention (CDC), established that the distribution of pathogens isolated from surgical site infections has remained constant during the last decade. S. aureus, coagulase-negative staphylococci, Enterococcus species and E. coli are the most frequently isolated pathogens from surgical site infections. NNIS, 27 Am. J. Infect. Contr. 520-32 (1999).
[0042] A pervasive and effective method of preventing microbial contamination following surgery is antimicrobial prophylaxis. According to the Surgical Infection Prevention
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018
Guideline Writers Workgroup from the Centers for Medicare and Medicaid Services and the CDC, appropriate prophylactics for gynecologic, obstetrical, abdominal, orthopedic, cardiothoracic, vascular, and colorectal surgery often include the first generation cephalosporin antibiotic cefazolin and the aminoglycoside antibiotic gentamicin. Optimal prophylaxis warrants adequate concentrations of appropriate antimicrobials in the serum, tissue, and wound, during surgery and periods of high risk for bacterial contamination. Bratzler & Houck, 2004. There are numerous inconsistencies, however, regarding the appropriate selection, timing, and duration of administration of prophylactic antimicrobials. Id.; Mangram et al., 27 Am. J. Infect. Contr. 132-34 (1999). Additionally, the antimicrobial agent should be administered as near to the incision or implant area as possible to achieve the lowest surgical site infection rates. Classen et al., 326 N. Engl. J. Med. 281-86 (1992); Burke, 348 N. Engl. J.
Med. 651-6 (2003); Bratzler & Houck, 2004. Moreover, a systemic antimicrobial approach to infection prevention often results in insufficient local concentrations of antibiotic and significantly increases the risk for surgical site infection. Park et al., 25 Biomats. 3689-98 (2004); Bratzler & Houck, 2004.
[0043] One embodiment of the invention relates to a composition comprising a 3-D silk fibroin scaffold-based formulation of silk protein and at least one antibiotic agent. The biomaterial of the invention may be used for medical implants, tissue engineering, regenerative medicine, or drug delivery systems to prevent and/or treat microbial contamination. The composition may be formulated to deliver the at least one antibiotic agent at levels exceeding the MIC for organisms commonly found to be the cause of such microbial contamination. The MIC for a particular antimicrobial agent and a particular microorganism is defined as the minimum concentration of that antimicrobial agent that must be present in an otherwise suitable growth medium for that microorganism, in order to render the growth medium unsuitable for that microorganism, i.e., the minimum concentration to inhibit growth of that microorganism.
[0044] As used herein, the term “fibroin” includes silkworm fibroin and insect or spider silk protein. See e.g., Lucas et al., 13 Adv. Protein Chem. 107-242 (1958). Silk fibroin may be obtained from a solution containing a dissolved silkworm silk or spider silk. The silkworm silk protein is obtained, for example, from Bombyx mori, and the spider silk is obtained from Nephila clavipes. In the alternative, the silk proteins suitable for use in the present invention can be obtained from a solution containing a genetically engineered silk, such as from bacteria, yeast, mammalian cells, transgenic animals, or transgenic plants. See, e.g., WO 97/08315; U.S. Patent No. 5,245,012.
[0045] Various methods may be employed to embed at least one antibiotic agent into the silk fibroin scaffolds. In one embodiment, the antibiotic agent(s) is directly incorporated into a
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 silk fibroin scaffold, which may be a 3-D scaffold. In another embodiment, the antibiotic agent(s) is mixed with silk fibroin solution, then a silk fibroin scaffold is coated with one or more antibiotic agent(s)-loaded layers by dipping the silk fibroin scaffold in an antibiotic-loaded silk fibroin solution and drying the resulting structure. In another embodiment, the steps of preparing the antibiotic-containing composition comprise preparing silk microspheres that incorporate at least one antibiotic agent; mixing the antibiotic-loaded silk microspheres with a silk fibroin aqueous salt solution; and removing the salt and water from the solution to form a 3-D silk fibroin scaffold embedded with the antibiotic-loaded silk microspheres. In yet another embodiment, the steps of preparing the biomaterial comprise preparing silk microspheres loaded with at least one antibiotic agent; mixing the antibiotic-loaded silk microspheres with a silk fibroin solution; and sonicating the solution to form a 3-D silk fibroin gel scaffold embedded with antibiotic-loaded silk microspheres. In another embodiment, the antibiotic-containing silk composition is used as a coating on a substrate, such as a bandage or implant.
[0046] The present invention also encompasses other methods of embedding antibiotic agents into the silk fibroin scaffolds commonly used in drug delivery. Silk fibroin matrix may be prepared from an aqueous silk fibroin solution, which may be prepared from the silkworm cocoons using techniques known in the art. See, e.g., U.S. Patent Application Ser.
No. 11/247,358; WO/2005/012606; WO/2008/127401. The silk aqueous solution can then be processed into silk fibroin matrices using a variety of processing techniques, such as electrospinning (Jin et al., 3 Biomacromol. 1233-39 (2002)), sonication (Wang et al., 29 Biomats. 1054-64 (2008)), or chemical modification through covalent binding (Murphy et al., 29 Biomats. 2829-38 (2008)). These processes yield silk biomaterials that are formed and/or stabilized through β-sheet assembly, with the mechanical properties and enzymatic degradation rates of silks depending on the size and distribution of these crystalline β-sheet regions. See, e.g., Asakura et al., 42 Magn. Reson. Chem. 258-66 (2004). For example, the silk scaffold may comprise a porous silk fibroin material made by freeze-drying, salt leaching or gas foaming. See WO 2004/062697.
[0047] Antibiotic agents that can be embedded to the biomaterials of the present invention include, but are not limited to, actinomycin; aminoglycosides (e.g., neomycin, gentamicin, tobramycin); beta-lactamase inhibitors (e.g., clavulanic acid, sulbactam); glycopeptides (e.g., vancomycin, teicoplanin, polymixin); ansamycins; bacitracin; carbacephem; carbapenems; cephalosporins (e.g., cefazolin, cefaclor, cefditoren, ceftobiprole, cefuroxime, cefotaxime, cefipeme, cefadroxil, cefoxitin, cefprozil, cefdinir); gramicidin; isoniazid; linezolid; macrolides (e.g., erythromycin, clarithromycin, azithromycin); mupirocin; penicillins (e.g., amoxicillin, ampicillin, cioxacillin, dicloxacillin, flucioxacillin, oxacillin, piperacillin); oxolinic
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 acid; polypeptides (e.g., bacitracin, polymyxin B); quinolones (e.g., ciprofloxacin, nalidixic acid, enoxacin, gatifloxacin, levaquin, ofloxacin, etc.); sulfonamides (e.g., sulfasalazine, trimethoprim, trimethoprim-sulfamethoxazole (co-trimoxazole), sulfadiazine); tetracyclines (e.g., doxycyline, minocycline, tetracycline, etc.); monobactams such as aztreonam; chloramphenicol; lincomycin; clindamycin; ethambutol; mupirocin; metronidazole; pefloxacin; pyrazinamide; thiamphenicol; rifampicin; thiamphenicl; dapsone; clofazimine; quinupristin; metronidazole; linezolid; isoniazid; piracil; novobiocin; trimethoprim; fosfomycin; fusidic acid; or other topical antibiotics. Optionally, the antibiotic agents may also be antimicrobial peptides such as defensins, magainin and nisin; or lytic bacteriophage. The antibiotic agents can also be the combinations of any of the agents listed above. In one embodiment of the invention, the antibiotic agent is cefazolin, gentamicin, or a combination thereof.
[0048] Additionally, the antibiotic-loaded scaffolds of the present invention may comprise other components such as at least one active agent. The agent may be embedded in the scaffold or immobilized on the scaffold. More specifically, embedding an additional active agent in the composition may be achieved by introducing the active agent to silk fibroin-based solutions prior to or when mixing the antibiotic. Alternatively, the active agent may be introduced to the silk fibroin-based composition after the formation of the antibiotic-containing scaffold structure.
[0049] The variety of active agents that can be used in conjunction with the silk fibroinbased scaffolds of the present invention is vast. For example, the active agent may be a therapeutic agent or biological material, such as cells, proteins, peptides, nucleic acid analogues, nucleotides, oligonucleotides, nucleic acids (DNA, RNA, siRNA), peptide nucleic acids, aptamers, antibodies or fragments or portions thereof, antigens or epitopes, hormones, hormone antagonists, growth factors or recombinant growth factors and fragments and variants thereof, cell attachment mediators (such as RGD), cytokines, enzymes, anti-inflammation agent, antifungals, antivirals, toxins, prodrugs, chemotherapeutic agents, small molecules, drugs (e.g., drugs, dyes, amino acids, vitamins, antioxidants), other antimicrobial compounds, and combinations thereof. See, e.g., PCT/US09/44117; U.S. Patent Application Ser. No. 61/224,618.
[0050] In some embodiments, the active agent may also be an organism such as a fungus, plant or animal, or a virus (including bacteriophage). Moreover, the active agent may include neurotransmitters, hormones, intracellular signal transduction agents, pharmaceutically active agents, toxic agents, agricultural chemicals, chemical toxins, biological toxins, microbes, and animal cells such as neurons, liver cells, and immune system cells. The active agents may also include therapeutic compounds, such as pharmacological materials, vitamins, sedatives, hypnotics, prostaglandins and radiopharmaceuticals.
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 [0051] Exemplary cells suitable for use herein may include, but are not limited to, progenitor cells or stem cells, smooth muscle cells, skeletal muscle cells, cardiac muscle cells, epithelial cells, endothelial cells, urothelial cells, fibroblasts, myoblasts, oscular cells, chondrocytes, chondroblasts, osteoblasts, osteoclasts, keratinocytes, kidney tubular cells, kidney basement membrane cells, integumentary cells, bone marrow cells, hepatocytes, bile duct cells, pancreatic islet cells, thyroid, parathyroid, adrenal, hypothalamic, pituitary, ovarian, testicular, salivary gland cells, adipocytes, and precursor cells. See also WO 2008/106485; PCT/US2009/059547; WO 2007/103442.
[0052] Exemplary antibodies include, but are not limited to, abciximab, adalimumab, alemtuzumab, basiliximab, bevacizumab, cetuximab, certolizumab pegol, daclizumab, eculizumab, efalizumab, gemtuzumab, ibritumomab tiuxetan, infliximab, muromonab-CD3, natalizumab, ofatumumab omalizumab, palivizumab, panitumumab, ranibizumab, rituximab, tositumomab, trastuzumab, altumomab pentetate, arcitumomab, atlizumab, bectumomab, belimumab, besilesomab, biciromab, canakinumab, capromab pendetide, catumaxomab, denosumab, edrecolomab, efungumab, ertumaxomab, etaracizumab, fanolesomab, fontolizumab, gemtuzumab ozogamicin, golimumab, igovomab, imciromab, labetuzumab, mepolizumab, motavizumab, nimotuzumab, nofetumomab merpentan, oregovomab, pemtumomab, pertuzumab, rovelizumab, ruplizumab, sulesomab, tacatuzumab tetraxetan, tefibazumab, tocilizumab, ustekinumab, visilizumab, votumumab, zalutumumab, and zanolimumab.
[0053] Additional active agents include cell growth media, such as Dulbecco’s Modified Eagle Medium, fetal bovine serum, non-essential amino acids and antibiotics; growth and morphogenic factors such as fibroblast growth factor, transforming growth factors, vascular endothelial growth factor, epidermal growth factor, platelet derived growth factor, insulin-like growth factors), bone morphogenetic growth factors, bone morphogenetic-like proteins, transforming growth factors, nerve growth factors, and related proteins (growth factors are known in the art, see, e.g., Rosen & Thies, Cellular & Molecular Basis Bone Formation & Repair (R.G. Landes Co.); anti-angiogenic proteins such as endostatin, and other naturally derived or genetically engineered proteins; polysaccharides, glycoproteins, or lipoproteins; antiinfectives such as antibiotics and antiviral agents, chemotherapeutic agents (i.e., anticancer agents), anti-rejection agents, analgesics and analgesic combinations, anti-inflammatory agents, and steroids.
[0054] Exemplary enzymes suitable for use herein include, but are not limited to, peroxidase, lipase, amylose, organophosphate dehydrogenase, ligases, restriction endonucleases, ribonucleases, DNA polymerases, glucose oxidase, laccase, and the like. Interactions between
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 components may also be used to functionalize silk fibroin through, for example, specific interaction between avidin and biotin. See U.S. Patent Application Ser. No. Ser. No. 61/226,801. [0055] The embodiments of the present invention may also include suitable biocompatible material in the silk fibroin scaffolds, such as polyethylene oxide (see, e.g., U.S. Patent Application Ser. No. 61/225,335), polyethylene glycol (see PCT/US09/64673), collagen, fibronectin, keratin, polyaspartic acid, polylysine, alginate, chitosan, chitin, hyaluronic acid, pectin, polycaprolactone, polylactic acid, polyglycolic acid, polyhydroxyalkanoates, dextrans, polyanhydrides, glycerol (see PCT/US2009/060135), and other biocompatible polymers, see WO 2004/0000915. Additionally, some or all of the silk scaffold may be coated with an inorganic material by forming an anionic polymer interface on the silk fibroin and contacting the interface with a mineralizing substance, see WO 2005/000483. Alternatively, the silk may be mixed with hydroxyapatite particles, see PCT/US08/82487. As noted herein, the silk fibroin may be of recombinant origin, which provides for further modification of the silk such as the inclusion of a fusion polypeptide comprising a fibrous protein domain and a mineralization domain, which are used to form an organic-inorganic composite. These organic-inorganic composites can be constructed from the nano- to the macro-scale depending on the size of the fibrous protein fusion domain used, see WO 2006/076711. See also U.S. Patent Application Ser. No. 12/192,588.
[0056] Additional silk-based stmctures may be included in, or otherwise comprise, the antibiotic scaffolds of the present invention. For example, the scaffolds may include grooves (WO 2008/106485); or microchannels (WO 2006/042287; WO 2008/127403;
WO 2008/127405); or tubes (WO 2009/023615); or other stmcture (PCT/US2009/039870); and, optionally, cells within these structured scaffolds, see also WO/2008/108838 .The scaffolds of the present invention may comprise an immobilized agent gradient or contain gradient of antibiotic- or agent-loaded microspheres. See, e.g., Wang et al., 134 J. Contr. Release 81-90 (2009). The silk scaffold may be activated in homogenous or gradient fashion using, e.g., carbodiimide chemistry (see U.S. Patent Application Pub. No. 2007/0212730), diazonium coupling reaction (see, e.g., U.S. Patent Application Ser. No. 12/192,588), or and pegylation with a chemically active or activated derivatives of the PEG polymer (see, e.g., PCT/US09/64673). Additional components or active agents may be loaded layer-by-layer on the silk scaffolds as described herein and, for example, WO 2007/016524. Silk microfluidic scaffolds may be of particular use in wound healing, see PCT/US09/067006.
[0057] The silk fibroin scaffolds for antibiotic delivery of the present invention may also comprise an identifying mark such as a photonic imprint (e.g., a hologram) (see PCT/US08/82487; PCT/US09/47751); or be incorporated into or otherwise comprise a silk12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 based biopolymer optical device having a nanopattemed surface (.see WO 2008/127404; WO 2008/118211; WO 2008/127402; WO 2008/140562), biodegradable electronic device (see WO/2008/085904), or reflective surface (see U.S. Patent Application Ser. No. 61/226,801). For example, an antibiotic-containing silk scaffold may be marked with an expiration date and/or manufacturer’s label to indicate authenticity. See PCT/US09/47751.
[0058] The present invention also provides for compositions and methods for long term storage and stabilizing antibiotics by incorporating them into silk scaffolds. For example, dating back to Fleming’s original 1929 paper on penicillin, the literature reports that penicillin is unstable in solution, breaking down within weeks at room temperature (25°C) and within 24 hr at 37°C. See, e.g., Benedict et al., 49 J. Bacteriol. 85-95 (1945). Breakdown of penicillin at body temperature represents a serious problem for any implantable delivery system designed to release over a time period longer than 24 hours. Additionally, instability of antibiotics at temperatures >25°C represents a problem in transporting and storing antibiotics (particularly in places where refrigeration is limited). Surprisingly, when incorporated in the silk scaffolds of the present invention, penicillin is stable (i.e., maintaining at least 50% of residual activity) for at least 30 days at room temperature (25°C) and body temperature (37°C). Hence, temperaturesensitive antibiotics be stored in silk fibroin scaffolds without refrigeration. Importantly, temperature-sensitive antibiotics can be delivered into the body in silk scaffolds and maintain activity for a longer period of time than previously imagined.
[0059] The present invention also relates to a method of preventing and/or treating microbial contamination at a region of a subject for medical implants, tissue engineering, or drug delivery. The method comprises contacting said region of the subject with a material including a silk fibroin scaffold comprising at least one antibiotic. The compositions of the invention may be formulated to deliver at least one antibiotic agent at levels exceeding the MIC for an organism commonly found to be the cause of such microbial contamination. Thus, for example, the antibiotic-containing scaffold has a therapeutic or prophylactic effect (as well as agents that have positive pharmacological effects) on the expression of the extracellular matrix. In this regard, for example the bioactive agent can enhance wound healing (e.g., at a vascular site).
[0060] Indeed, the antibiotic scaffolds of the present invention may be used in a variety of medical applications, such as a drug (e.g., small molecule, protein, or nucleic acid) delivery device, including controlled release systems, wound closure systems, including vascular wound repair devices, hemostatic dressings, bandages, patches and glues, sutures, and in tissue engineering applications, such as, for example, scaffolds for tissue regeneration, ligament
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 prosthetic devices and in products for long-term or bio-degradable implantation into an animal or human body.
[0061] Controlled release of the antibiotic and/or additional active agent from the silk composition may be designed to occur over time, for example, for greater than about 12 hour or 24 hour, inclusive; greater than one month or two months or five months, inclusive. The time of release may be selected, for example, to occur over a time period of about 12 hour to 24 hour, or about 12 hour to 1 week. In another embodiment, release may occur for example on the order of about 1 month to 2 months, inclusive. The controlled release time may be selected based on the condition treated. For example, a particular release profile may be more effective for wound healing or where consistent release and high local dosage are desired.
[0062] Methods of prevention and/or treatment of microbial contamination, particularly those caused by surgical site infection are encompassed by the present invention. Surgical site infections are one of the most common causes of nosocomial infections and represent an enormous problem for patient safety and public health. Surgical site infections that may be treated or prevented by using the biomaterials of the present invention include, but not limited to, the bacterial infections such as Streptococcus pyogenes (S. pyogenes), Pseudomonas aeruginosa (P. aeruginosa), Enterococcus faecalis (E faecalis), Proteus mirabilis (P. mirabilis), Serratia marcescens (S. marcescens), Enterobacter clocae (E. clocae), Acetinobacter anitratus (A. anitratus), Klebsiella pneumoniae (K. pneumonia), E. coli,
S. aureus, coagulase-negative Staphylococci, and Enterococcus spp, and so forth. The methods of the invention are effective for any surgical site infection including, but not limited to, gynecologic, obstetrical, abdominal, orthopedic, cardiothoracic, vascular, and colorectal surgeries. The target regions of a mammalian body, in particular human, for preventing or treating microbial contamination include, but not limited to, regions such as skin, lung, bone, joint, stomach, blood, heart valve, urinary tract or other regions that may have microbial contaminations, or may be particularly prone to surgical site infections.
[0063] The formulation can be administered to a patient in need of the antibiotic that has been encapsulated in the composition. The pharmaceutical formulation may be administered by a variety of routes known in the art including topical, oral, ocular, nasal, transdermal or parenteral (including intravenous, intraperitoneal, intramuscular and subcutaneous injection as well as intranasal or inhalation administration) and implantation. The delivery may be regional or local. Additionally, the delivery may be intrathecal, e.g., for CNS delivery.
[0064] When desired, the antibiotic-containing silk scaffold may include a targeting ligand or precursor targeting ligand. Targeting ligand refers to any material or substance which may promote targeting of a pharmaceutical formulation to tissues and/or receptors in vivo and/or
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 in vitro. The targeting ligand may be synthetic, semi-synthetic, or naturally-occurring. Materials or substances which may serve as targeting ligands include, for example, proteins, including antibodies, antibody fragments, hormones, hormone analogues, glycoproteins and lectins, peptides, polypeptides, amino acids, sugars, saccharides, including monosaccharides and polysaccharides, carbohydrates, vitamins, steroids, steroid analogs, hormones, cofactors, and genetic material, including nucleosides, nucleotides, nucleotide acid constructs, peptide nucleic acids (PNA), aptamers, and polynucleotides. Other targeting ligands in the present invention include cell adhesion molecules (CAM), among which are, for example, cytokines, integrins, cadherins, immunoglobulins and selectin. A precursor to a targeting ligand refers to any material or substance which may be converted to a targeting ligand. Such conversion may involve, for example, anchoring a precursor to a targeting ligand. Exemplary targeting precursor moieties include maleimide groups, disulfide groups, such as ortho-pyridyl disulfide, vinylsulfone groups, azide groups, and iodo acetyl groups.
[0065] In preparation for in vivo application, the silk-based scaffolds of the present invention may be formulated to include excipients. Exemplary excipients include diluents, solvents, buffers, or other liquid vehicle, solubilizers, dispersing or suspending agents, isotonic agents, viscosity controlling agents, binders, lubricants, surfactants, preservatives, stabilizers and the like, as suited to particular dosage form desired. The formulations may also include bulking agents, chelating agents, and antioxidants. Where parenteral formulations are used, the formulation may additionally or alternately include sugars, amino acids, or electrolytes.
[0066] More specifically, examples of materials which can serve as pharmaceutically acceptable carriers include, but are not limited to, sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatine; talc; oils such as peanut oil, cottonseed oil; safflower oil, sesame oil; olive oil; com oil and soybean oil; esters such as ethyl oleate and ethyl laurate; agar; non-toxic compatible lubricants such as sodium lauryl sulfate and magnesium stearate; polyols, for example, of a molecular weight less than about 70,000 kD, such as trehalose, mannitol, and polyethylene glycol. See, e.g., U.S. Patent No. 5,589,167. Exemplary surfactants include nonionic surfactants, such as Tween surfactants, polysorbates, such as polysorbate 20 or 80, etc., and the poloxamers, such as poloxamer 184 or 188, pluronic polyols, and other ethylene/polypropylene block polymers, etc. Suitable buffers include Tris, citrate, succinate, acetate, or histidine buffers. Suitable preservatives include phenol, benzyl alcohol, metacresol, methyl paraben, propyl paraben, benzalconium chloride, and benzethonium chloride. Other additives include carboxymethylcellulose, dextran, and gelatin. Suitable stabilizing agents include heparin,
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 pentosan polysulfate and other heparinoids, and divalent cations such as magnesium and zinc. Coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the composition, according to the judgment of the formulator.
[0067] Some embodiments of the present invention relate to the utility of silk fibroin based biomaterials as antibiotic drug delivery systems for potential utility in medical implants, tissue repairs and for medical device coatings. In particular, the common surgical prophylactic antibiotics such as cefazolin and gentamicin, or a combination thereof, are embedded into silk scaffolds using a variety of methods. Drug embedded silk scaffolds may be evaluated for drug release kinetics and bacterial clearance of, for example, E. coli and S. aureus, prevalent pathogens isolated from surgical site infections.
[0068] The primary objective of antimicrobial drug therapy is to maximize the therapeutic benefits while minimizing adverse side-effects such as bacterial resistance and toxicity. Domb et al., 3 Polym. Adv. Technol. 279-92 (1993). Drug administration via intravenous or intramuscular injections, oral dosing, and other routes of dispensation, result in a generalized and systemic distribution of the antibiotic to various organs and tissues perfused with blood, with a small, undefined amount reaching the target. Domb et al., (1993); Park et al., 52 J. Contr. Release 179-89 (1998). The present invention provides for natural, biocompatible, and biodegradable polymers such as silk fibroin for application such as medical implants that allow for effective local drug release at controlled rates. This result can possibly eliminate the need for antibacterial prophylaxis and continued drug administration following surgery.
[0069] Figures 1 to 3 demonstrate the in vitro antibiotic release profiles of gentamicin, cefazolin, and combination of gentamicin and cefazolin from silk fibroin based scaffold embedded with these antibiotics through different methods, including embedding the antibiotic agent(s) directly into silk scaffold, embedding the antibiotic loaded-silk microspheres into silk scaffolds, coating the silk scaffold with one or more antibiotic-loaded layers, or coating the electrospun silk fibroin mats with the antibiotic-loaded layers. Figures 4 to 9 demonstrate the in vitro bacterial clearance profiles of E. coli ATCC 25922 and S. aureus ATCC 25923 by using gentamicin, cefazolin, and combination of gentamicin and cefazolin loaded silk materials using the embedding methods discussed herein.
[0070] The antibiotic release profiles of gentamicin from silk fibroin structures, as shown in Figure 1, are different depending on the drug-silk scaffold formulation. All drug loadings displayed an initial burst of gentamicin release within 24 hours followed by a rapid decrease of the release rate to near zero, with the treatment of embedding the gentamicin loaded12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 silk microspheres into silk scaffolds exhibiting the smallest burst in release. After 24 hours, the spectrophotometrically detected in vitro release profile of gentamicin for the silk scaffolds embedded with gentamicin-loaded silk microspheres (0.136 pg ± 0.017 pg; p< 0.05) was significantly lower than the silk scaffolds layered with gentamicin (0.577 pg + 0.016 pg), the silk scaffolds embedded with gentamicin directly in the fibroin structure (0.471 pg + 0.017 pg), and the electrospun silk fibroin mats layered with the antibiotic (0.770 pg ± 0.020 pg).
[0071] Spectrophotometrically detected in vitro antibiotic release profiles of cefazolin, as shown in Figure 2, are different depending on the drug-silk scaffold formulation. As was observed with the gentamicin-release profiles, all drug loadings displayed an initial burst of antibiotic release within 24 hours followed by a sharp decrease in the release rate. Coating the silk scaffold with agent-loaded layers yielded a rate of release that became essentially zero after the 24 hour burst. In contrast, antibiotics embedded directly in scaffolds or entrapped in silk microspheres in the scaffolds exhibited the smallest burst in release, but continued to release drug at a low rate throughout the testing period. The cefazolin release after 24 hours was lower for the formulations of cefazolin embedded directly into silk scaffolds (0.235 pg ± 0.001 pg; p< 0.05) and cefazolin-loaded silk microspheres embedded into silk scaffold (0.382 pg ± 0.005 pg; p< 0.05), than for the formulations of silk scaffolds layered with cefazolin (0.637 pg ± 0.050 pg) and the electrospun silk fibroin mats layered with antibiotic (0.770 pg ± 0.019 pg).
[0072] The in vitro antibiotic release profiles of gentamicin/cefazolin combination, as shown in Figure 3, are different depending on the drug-silk scaffold formulation. All drug loadings displayed an initial burst of antibiotic release within 24 hours followed by a levelingoff of the release rate. Spectrophotometrically detected antibiotic release after 24 hours was significantly lower from silk scaffolds embedded with gentamicin/cefazolin-loaded silk microspheres (0.136 pg ± 0.017 pg; p< 0.05) than scaffolds layered with gentamicin/cefazolin (0.577 pg + 0.016 pg), scaffolds with gentamicin/cefazolin embedded directly in the fibroin structure (0.471 pg + 0.017 pg), and electrospun fibroin mats layered with the antibiotics (0.770 pg + 0.020 pg).
[0073] Disc diffusion of gentamicin represented as mean zones of clearance of E. coli ATCC 25922, as shown in Figure 4, after 24 hours was significantly lower from silk scaffolds with gentamicin embedded directly in the silk fibroin structure (14.0 mm + 2.30 mm; p< 0.05) and from silk scaffolds embedded with gentamicin-loaded silk microspheres (2.00 mm + 2.67 mm; p< 0.05) than all other drug-silk formulations. Scaffolds layered with gentamicin (28.0 mm + 2.33 mm) and electrospun fibroin mats layered with the antibiotics (30.0 mm + 1.67 mm) cleared E. coli with a zone similar to the 10 pg gentamicin Sensi-Disc™ disc (27.0 mm + 1.00 mm). Sensi-Disc™ antibiotic disc zone of clearance values did not statistically
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 differ from values established by the NCCLS Document M100-S13 (M2): Disc Diffusion Supplemental Tables (NCCLS, Wayne, PA, 2003) (hereinafter NCCLS, 2003), verifying the validity of the present results (p> 0.05). Based on zones of clearance by Sensi-Disc™ antibiotic disc controls, gentamicin release for each drug-silk formulation was estimated (Figure 4).
[0074] Disc diffusion of gentamicin represented as mean zones of clearance of S. aureus ATCC 25923, as shown in Figure 5, after 24 hours was lower from silk scaffolds embedded with gentamicin directly in the silk fibroin structure (10.0 mm + 2.67 mm; p< 0.05) and from silk scaffolds embedded with gentamicin-loaded silk microspheres (13.0 mm + 2.67 mm; p< 0.05) than all other drug-silk formulations. Scaffolds layered with gentamicin (27.0 mm + 2.33 mm) and electrospun fibroin mats layered with the antibiotic (28.0 mm + 1.33 mm) cleared S. aureus similar to the 10 pg gentamicin Sensi-Disc™ disc (28.0 mm + 1.33 mm). Zone of clearance values obtained from Sensi-Disc™ antibiotic disc diffusion did not statistically differ from values established by NCCLS, 2003, verifying the validity of the present results (p> 0.05). Based on zones of clearance by Sensi-Disc™ antibiotic disc controls, gentamicin release for each drug-silk formulation was estimated (Figure 5).
[0075] Disc diffusion of cefazolin represented as mean zones of clearance of E. coll ATCC 25922, as shown in Figure 6, after 24 hours was significantly lower from silk scaffolds embedded with cefazolin directly in the silk fibroin structure (6.00 mm + 3.67 mm; p< 0.05) than all other drug-silk formulations. Silk scaffolds embedded with cefazolin-loaded silk microspheres (19.0 mm + 2.67 mm), layered with cefazolin (21.0 mm + 3.33 mm), and electrospun fibroin mats layered with the antibiotic (25.0 mm + 2.33 mm) cleared E. coll similar to the 30 pg cefazolin Sensi-Disc™ disc (27.0 mm + 0.67 mm). Sensi-Disc™ antibiotic disc zone of clearance values did not statistically differ from values established by the NCCLS, 2003, verifying the validity of the present results (p> 0.05). Based on zones of clearance by Sensi-Disc™ antibiotic disc controls, gentamicin release for each drug-silk formulation was estimated (Figure 6).
[0076] Disc diffusion of cefazolin represented as mean zones of clearance of S. aureus ATCC 25923 after 24 hours, as shown in Figure 7, was significantly lower from silk scaffolds embedded with cefazolin directly in the silk fibroin structure (8.00 mm + 2.67 mm; p< 0.05) than all other drug-silk formulations. Silk scaffolds embedded with cefazolin-loaded silk microspheres (17.0 mm + 3.33 mm), layered with cefazolin (36.0 mm + 2.33 mm), and electrospun fibroin mats layered with the antibiotic (30.0 mm + 2.33 mm) cleared S. aureus similar to the 30 pg cefazolin Sensi-Disc™ disc (37.0 mm + 0.33 mm). Sensi-Disc™ antibiotic disc zone of clearance values did not statistically differ from values established by the NCCLS, 2003, verifying the validity of the present results (p> 0.05). Based on zones of
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 clearance by Sensi-Disc™ antibiotic disc controls, cefazolin release for each drug-silk formulation was estimated (Figure 7).
[0077] Disc diffusion of gentamicin/cefazolin represented as mean zones of clearance of E. coll ATCC 25922 (Figure 8), after 24 hours was significantly lower from silk scaffolds embedded with gentamicin/cefazolin directly in the silk fibroin structure (10.00 mm + 3.33 mm; p< 0.05) and from silk scaffolds embedded with gentamicin/cefazolin-loaded silk microspheres (10.0 mm + 3.67 mm; p< 0.05) than all other drug-silk formulations. Silk scaffolds layered with gentamicin/cefazolin (23.0 mm + 3.33 mm) and electrospun fibroin mats layered with the antibiotics (26.0 mm + 2.33 mm) cleared E. coll similar to the 10 pg gentamicin Sensi-Disc™ disc (26.5 mm + 0.50 mm) and 30 pg cefazolin Sensi-Disc™ disc (27.0 mm + 0.40 mm). Based on zones of clearance by Sensi-Disc™ antibiotic disc controls, gentamicin/cefazolin release for each drug-silk formulation was estimated (e.g., silk scaffolds layered with gentamicin/cefazolin were estimated to simultaneously release 12 pg Cefazolin and 4 pg Gentamicin on a MuellerHinton agar plate (Figure 8).
[0078] Disc diffusion of gentamicin/cefazolin represented as mean zones of clearance of
S. aureus ATCC 25923, after 24 hours was significantly lower from silk scaffolds embedded with gentamicin/cefazolin directly in the silk fibroin structure (11.00 mm + 3.67 mm; p< 0.05) and from silk scaffolds embedded with gentamicin/cefazolin-loaded silk microspheres (16.0 mm + 2.67 mm; p< 0.05) than all other drug-silk formulations (Figure 9). Silk scaffolds layered with gentamicin/cefazolin (26.0 mm + 2.33 mm) and electrospun fibroin mats layered with the antibiotic (27.0 mm + 2.33 mm) cleared S. aureus similar to the 10 pg gentamicin Sensi-Disc™ disc (26.0 mm + 0.34 mm) and 30 pg cefazolin Sensi-Disc™ (35.0 mm + 0.31 mm). Based on zones of clearance by Sensi-Disc™ antibiotic disc controls, gentamicin/cefazolin release for each drug-silk formulation was estimated (Figure 9).
[0079] The release profiles of gentamicin and cefazolin formulations when placed in water showed a burst of release within 24 hours, followed by a plateau (Figures 1 to 3). Antibiotic release from silk scaffolds may be controlled primarily by diffusion through the polymer matrix, mediated by crystalline β-sheet content and the dissolution properties of the drug. Gentamicin and cefazolin are highly hydrophilic compounds and easily diffused through the porous silk structures and conduits in the scaffolds. Park et al., 1998; Naraharisetti et al., 77 J. Biomed. Mater. Res. B. Appl. Biomater. 329-37 (2006). Advantageously, the antibiotic release trends corresponded with established guidelines for prophylaxis established by the Surgical Infection Prevention Guideline Writers Workgroup from the Centers for Medicare and Medicaid Services and the CDC. The guidelines state that prophylaxis should end within 24 hours following surgery; prolonged use of prophylactic antimicrobials is associated with the
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 dangerous emergence of resistance bacteria. Burke, 348 N. Engl. J. Med. 651-56 (2003); Bratzler & Houck, 2004.
[0080] More specifically, the low release rates exhibited by scaffolds embedded with antibiotic-encapsulated silk microspheres may be attributed to their preparation with DOPC lipid vesicles. Although the lipid templates were removed after lyophilization, residual lipid might form an aqueous diffusion boundary layer, providing resistance to the diffusion and dissolution of the antibiotics. Wang et al., 351 Int. J. Pharm. 219-26 (2008); Park et al., 1998. This might also explain the comparably smaller zones of clearance by scaffolds embedded with antibioticloaded silk microspheres and scaffolds with the antibiotics embedded directly into the structure. Furthermore, drug-loaded silk microspheres offer applicability in long-term, sustained drug release conditions (Wang et al., 2008). The modest drug release from scaffolds embedded with the antibiotics directly into the silk structure may relate to differences in localized structures in the aqueous silk preparations. Kim et al., 26 Biomats. 2775-85 (2005); Hofmann et al., 2006.
[0081] According to the NCCLS (2000), the MIC values established for clearance of E. coll ATCC 25922 and S. aureus ATCC 25923 are 0.5 mg/L and 0.25 mg/L for gentamicin, respectively, and 1.0 mg/L and 0.25 mg/L for cefazolin, respectively. The release of antibiotics in the embodiments of the invention revealed unit adjusted concentrations in the range of 1.0 mg/mL to 10.0 mg/L, exceeding standardized MIC values. To release a lower concentration of antibiotics comparable to the standardized MIC values, a lower initial loading of antibiotics may be embedded into the silk material systems.
[0082] Antimicrobial susceptibility testing on Mueller-Hinton agar plates with E. coll ATCC 25922 and S. aureus ATCC 25923 paralleled results from the release experiments, showing a dose-dependent effect as expected (e.g., scaffolds layered with gentamicin or cefazolin released greater amounts of the drug and therefore produced greater zones of clearance; Figures 3 to 9). Scaffolds prepared with antibiotic-loaded silk microspheres or with the antibiotics embedded directly into the structure typically displayed smaller zones of clearance than other antibiotic-silk preparations. Generally, silk scaffolds and electrospun mats layered with antibiotic cleared E. coll ATCC 25922 and S. aureus ATCC 25923 similar to standardized Sensi-Disc™ antibiotic discs preloaded with gentamicin or cefazolin. The gentamicin/cefazolin combination did not result in enhanced antibacterial properties.
[0083] Based on zones of clearance by standardized Sensi-Disc™ discs embedded with 10 pg gentamicin or 30 pg cefazolin, the amount of the antibiotics encapsulated in each equally sized scaffold was extrapolated (Right set Y-axes, Figures 4 to 9). This estimation also describes the antibacterial and drug diffusion properties of each silk-antibiotic preparation. The majority of the antibiotics is released within 24 hours and, overall, the trend in release kinetics
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 does not vary considerably across treatments (Figures 1 to 3). For example, the 30 pg cefazolin disc of 6 mm diameter cleared 37.0 mm + 0.33 mm of S. aureus ATCC 25923 and the 6 mm diameter scaffold layered with cefazolin cleared 36.0 mm + 2.33 mm S. aureus. Therefore, an estimated 29.2 pg of cefazolin was assumed to be encapsulated in the 6 mm scaffold layered with the antibiotic.
[0084] The difference between spectrophotometrically detected antibiotic release in water and proportionately calculated antibiotic released on Mueller-Hinton agar plates inoculated with bacteria relates to the varied conditions of each experiment. Drug diffusion is enhanced upon direct contact with agar versus water (Clutterbuck et al., 2007). In addition, Sensi-Disc™ antibiotic discs were assumed to release 10 pg gentamicin or 30 pg cefazolin onto the agar and zones of clearance were equated with the given drug-disc concentration. Smaller concentrations of the drug could have been emitted from the discs, however, proportionately lowering the estimated antibiotic released from the drug-silk preparations.
[0085] A lack of consensus exists on the use of antibiotics in peripheral wound healing. Apparently, the antimicrobials tobramicin, gentamicin, and chloramphenicol yielded no beneficial effect on healing rates or quality of healing when topically applied to corneal epithelial wounds in rabbits, and produced fatally toxic systemic effects. Stern et al., 101 Arch. Ophthalmol. 644-47 (1983). Conversely, tobramicin-loaded collagen-hyaluronic acid matrices containing growth factors have significantly enhanced skin wound healing in guinea pigs, and these preparations did not exhibit toxic consequences. Park et al., 2004.
[0086] According to the embodiments of the invention, the biomaterials of the invention and the method of using such biomaterials to prevent and/or treat microbial contamination meet the established MIC values for bacterial clearance of E. coll ATCC 25922 and S. aureus ATCC 25923 established by the NCCLS, and thus have potential in pharmaceutical applications for delivering antibiotics. Furthermore, the present invention provides for the effective local concentrations of antimicrobial and appropriate duration of release for the use of silk fibroin polymeric devices and implants as drug delivery systems in tissue repair and for medical devices. Hence, the silk fibroin based biomaterials embedded with antibiotics can potentially offer a new medical substitute to systemic prophylaxis for surgery.
[0087] The invention will be further characterized by the following examples which are intended to be exemplary of the embodiments.
EXAMPLES
Example 1. Preparation of silk fibroin aqueous solution
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 [0088] Silk fibroin aqueous stock solutions were prepared as previously described. Hofmann et al., 2006). Briefly, cocoons of B. mori were boiled for 20 min in an aqueous solution of 0.02 M Na2CO3, and then rinsed thoroughly with distilled water to extract sericin proteins. The extracted silk fibroin was then dissolved in 9.3 m LiBr solution at 60°C for 4 hr, yielding a 20% (w/v) solution. This solution was dialyzed against distilled water using a Slide-aLyzer dialysis cassette (MWCO 3500 g/mol, Pierce, Woburn, MA) at room temperature for 48 hr to remove salts. The dialysate was centrifuged two times, each at 4°C for 20 min, to remove impurities and the aggregates that formed during dialysis. The final concentration of silk fibroin aqueous solution was approximately 8% (wt/v). Fibroin concentration was determined by weighing the residual solid of a known volume of solution after drying at 60°C for 24 hr.
[0089] If desired, the silk fibroin solution may be further concentrated as taught in WO 2005/012606. As discussed elsewhere herein, the β-sheet content of the silk fibroin may be induced. See, e.g., WO 2005/123114.
Example 2. Preparation of antibiotic-loaded silk fibroin scaffolds [0090] For Preparation of silk fibroin scaffolds, aqueous-derived silk fibroin scaffolds were prepared by the addition of 4 g of granular NaCT (particle size: 600 pm-710 pm) into 2 ml of 6% silk fibroin aqueous solutions in disc-shaped containers. Kim et al., 2005. The container was covered and left at room temperature for 24 hr. The container was immersed in distilled water and the NaCT extracted for 48 hr. The scaffolds were removed from the container and cut into desired dimensions.
[0091] For the preparation of Silk scaffolds embedded with antibiotic, 1 mg of antibiotic (gentamicin, cefazolin, and gentamicin/cefazolin in combination) was added to 2 ml of 6% (w/v) silk fibroin solution and the silk scaffold preparation procedures, as described herein, were followed.
[0092] To prepare Silk scaffolds embedded with antibiotic-loaded silk microspheres, 100 mg of l,2-Dioleoyl-5n-glycero-3-phosphocholine (DOPC; Avanti Polar Lipids, Alabaster, AL) were dissolved in 1 ml chloroform in a glass tube and dried into a film under a flow of nitrogen gas. Wang et al., 117 J. Contr. Release 360-70 (2007). Two milligrams (2 mg) of the antibiotic (gentamicin, cefazolin, and gentamicin/cefazolin in combination; SigmaAldrich, St. Louis, MO) were mixed with 2 ml of 8 % (w/v) silk fibroin solution and this mixture was added to hydrate the lipid film in installations of 0.33 ml, 0.5 ml, and 1 ml. The mixture was diluted to 2 ml with distilled water and moved to a plastic tube. The sample was frozen in liquid nitrogen for 15 min and then thawed at 37°C for 15 min. The freeze-thaw step may help create smaller vesicles with homogeneous size distributions. Brandl, 7 Biotech. Ann.
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018
Rev. 59-85 (2001); Colletier et al., 2 BMC Biotech. 9 (2002). The freeze-thaw cycle was repeated three times and then the thawed solution was slowly pipetted into 50 ml water with fast stirring. The resulting solution was lyophilized for 72 hr and stored at 4°C.
[0093] Twenty milligrams (20 mg) of the lyophilized material was suspended in 2 ml of pure methanol in an Eppendorf tube, and the suspension was incubated for 30 min at room temperature. After the methanol induced β-sheet structure self-assembly, the lipid templates (white viscous material) were removed and the mixture was centrifuged at 10,000 rpm for 5 min at 4°C (Eppendorf 5417R centrifuge). The pellet obtained was dried in air and stored at 4°C. To generate a suspension of silk microspheres, the dried pellet was washed once with 2 ml of distilled water by centrifugation, and then re-suspended in water. The clustered microspheres were dispersed by ultrasonication for 10 sec at 30% amplitude (approximately 20 W) using a Branson 450 ultrasonicator (Branson Ultrasonics Co., Danbury, CN). The antibiotic-loaded microsphere suspension was added directly to 2 ml of 8 % (w/v) silk fibroin solution and the silk scaffold preparation procedures, as described herein, were followed. See also WO 2008/118133. Micro- and nano-particles may also be prepared using phase separation of silk and polyvinyl alcohol without exposure to an organic solvent. See U.S. Patent Application Ser. No. 61/246,676.
[0094] For Silk scaffolds coated with antibiotic layers, the buildup of multiple layers of antibiotics on silk scaffolds was accomplished by the consecutive adsorption of silk fibroin and the antibiotic using a modified protocol previous reported. Wang et al., 21 Langmuir 11335-41 (2005). The silk scaffold preparation procedure, as described above, was followed and the dried scaffolds were dipped in 1 mg/ml of antibiotic solution (gentamicin, cefazolin, and gentamicin/cefazolin combination) for 3 min. The scaffolds were dried at 37°C for 10 min and then dipped in a dilute 0.2% (w/v) silk fibroin solution for 3 min. The scaffolds were dried at 37°C for 10 min and the coating process was repeated two times for a total of three antibiotic layers. See also WO 2007/016524.
[0095] To prepare Antibiotic-loaded electrospun silk fibroin scaffolds, electrospun silk fibroin scaffold mats were prepared as described previously and coated with antibiotic layers (gentamicin, cefazolin, and gentamicin/cefazolin combination) as previously described. Zhang et al., 29 Biomaterials 2217-27 (2008).
[0096] The antibiotic release and antimicrobial susceptibility experiments for each sample prepared here were examined as in Examples 3 and 4.
Example 3. Antibiotic release experiments
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 [0097] Scaffolds containing antibiotics and controlled scaffolds containing no antibiotic were cut into cylinders of 6 mm diameter. The scaffolds were immersed in 3 ml distilled water and incubated at room temperature without shaking. At 24 hr intervals for 168 hr, 100 μΐ of each solution was withdrawn and the water replenished. The amount of antibiotic released was assayed spectrophotometrically (Spectramax® spectrophotometer, Molecular Devices, Sunnyvale, CA).
[0098] Cefazolin absorbs UV light at 270 nm. Voisine et al., 356 Int. J. Pharm. 206-11 (2008). Gentamicin does not absorb UV light, however, and thus o-phthaldialdehyde reagent (OPA; Sigma-Aldrich, St. Louis, MO) was used to analyze gentamicin concentration. Cabanes et al., 14 J. Liq. Chrom. 1989-2010 (1991); Chang et al., 110 J. Contr. Release 414-21 (2006).
[0099] One hundred microliters (100 μΐ) of the aqueous solution containing gentamicin was added to 100 μΐ isopropanol and 100 μΐ o-phthaldialdehyde reagent. The samples were incubated at room temperature for 45 min before measuring UV absorbance at 333 nm. For scaffolds prepared with the gentamicin/cefazolin combination, cefazolin detection was performed first followed by reaction with OPA for gentamicin quantification. The concentration of gentamicin and cefazolin was obtained by comparison with a calibration curve using a series dilution of the antibiotics in water. Background absorption of silk fibroin determined by control scaffolds was subtracted from experimental samples.
[0100] All assays were performed in triplicate and results reported as means + standard deviation. Significance levels were determined by ANOVA or by Student’s t-test in SPSS Version 13.0 (SPSS, Inc., Chicago, IL). Differences were considered significant when p< 0.05.
Example 4. Antimicrobial susceptibility experiments [0101] The susceptibilities of E. coli ATCC 25922 and S. aureus ATCC 25923 (both from American Type Culture Collection, Manassas, VA) to the antibiotic-loaded scaffolds were determined by a modified Kirby-Bauer disc diffusion on agar method according to the National Committee for Clinical Laboratory Standards: Methods for dilution antimicrobial susceptibility testing for bacteria that grow aerobically Approved standard Μ7-Λ5, (Nat. Committee Clin. Lab. Standards, Wayne, PA, 2000). One milliliter (1 ml) of each bacterial vial was suspended in 5 ml #18 Tryptic Soy Broth (Becton Dickenson, Sparks, MD) and the density of the o
suspension was estimated to match the turbidity standard of 3.0 x 10 CFU/ml (McFarland Standard, BioMerieux, Marcy l’Etoile, France). Mueller Hinton agar 100 mm plates were inoculated with 1 ml of bacterial suspension. The suspension was spread over the surface of the agar plates using a sterile 1 ml syringe and rod to ensure complete coverage.
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 [0102] Scaffolds containing antibiotics and control scaffolds containing no antibiotic were cut into cylinders of 6 mm diameter. Sterile forceps were used to place the scaffolds and Sensi-Disc™ antimicrobial susceptibility test discs (gentamicin, 10 pg; cefazolin, 30 pg; Becton Dickenson, Sparks, Maryland) on the plates, spaced 15 mm from the edge of the plate and gently pressed to ensure even contact. The plates were incubated for 24 hr at 37°C and zones of clearance (mm) were recorded.
[0103] All assays were performed in triplicate and results reported as means + standard deviation. Significance levels were determined by ANOVA or by Student’s t-test in SPSS Version 13.0 (SPSS, Inc., Chicago, IL). Differences were considered significant when p< 0.05. Example 5. Controlled release of penicillin and ampicillin from silk films [0104] Although longer term release profiles were studied for many of the material format studies, only the first 24 hours of penicillin and ampicillin release from silk films were characterized due to the literature reporting a 6-ht post-implantation “decisive period” during which implants are particularly susceptible to surface bacterial colonialization (Zilberman & Elsner, 130 Contr. Release 202-15 (2008)). The first 24 hrsof release from silk films were therefore considered most critical in prevention of bacterial adhesion and long-term implant success.
[0105] Release was determined using the previously described zone of inhibition assay in S. aureus lawns. Briefly, diluted Luria-Bertani (LB) agar was mixed with overnight S. aureus culture and added to LB agar plates. Standards and materials for testing were placed on the inoculated dilute agar layers and plates were grown overnight at 37°C. Zone of inhibition was measured the next day using Image J imaging software. Amount of drug released over 24 hr was then determined by comparison of sample zones of inhibition to the zones of inhibition of known standards on filter paper disks. Extended release studies were carried out by transferring the material being tested to new plates every 24 hr.Antibiotic-loaded silk films were prepared by mixing drug into 8% (w/v) silk solution and drying films overnight at ambient conditions. Two loading concentrations were studied: high loading (5 mg/mL, approx. 0.4 mg per film) and low loading (2.5 mg/mL, ~0.2 mg per film). To assess the effects of methanol on incorporated antibiotics, films were either treated with methanol for 5 min or left untreated. Results of ampicillin and penicillin release from silk films are reported in Tables 1 and 2, respectively:
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018
Table 1, Ampicillin Film Release
| High Loading/ Methanol treated | High Loading/ Untreated | Low Loading/ Methanol treated | Low Loading/ Untreated | ||
| Average active ampicillin Release (in pg) | 213.8 + 50.5 | 176.1 +45.5 | 68.5 + 9.3 | 68.3 + 24.0 | |
| Fraction of total theoretical film load released in the first 24 hours | 0.53 | 0.44 | 0.34 | 0.34 | |
| High loading = 5 mg/mL ampicillin in an 8% (w/v) silk solution (theoretical loac Low loading = 2.5 mg/mL ampicillin in an 8% (w/v) silk solution (theoretical loa Table 2. Penicillin Film Release | = 0.4 mg per film) d = 0.2 mg per film) | ||||
| High Loading/ Methanol treated | High Loading/ Untreated | Low Loading/ Methanol treated | Low Loading/ Untreated | ||
| Average active penicillin Release (in pg) | 345.9 ± 140.9 | 167.1 +24.8 | 194.0 + 5.0 | 205.9 + 22.6 | |
| Fraction of total theoretical film load released in the first 24 hours | 0.43 | 0.21 | 0.48 | 0.51 |
High loading = 10 mg/mL penicillin in an 8% (w/v) silk solution (theoretical load = 0.8 mg per film) Low loading = 5 mg/mL penicillin in an 8% (w/v) silk solution (theoretical load = 0.4 mg per film) [0106] Results are reported as averages with standard deviations for n=3 films. Theoretical loading is calculated based on the concentration of drug in the silk solution and volume of solution used in casting the film. When methanol residue from methanol treatment was evaporated overnight, resuspended in PBS and assayed, no antibiotic activity was detected. These results suggest that methanol treatment does not degrade the incorporated antibiotic, as no reduction in activity is seen in the methanol treated films compared to the untreated films. The results also show that films deliver approximately half of their initial load within the first 24 hr of bacterial exposure.
[0107] To determine the minimum inhibitory penicillin loading concentration in silk films, penicillin was mixed into an 8% silk solution in concentrations ranging from 100 mg/ml down to 0.013 mg/ml. 200 μΐ of silk + penicillin solution were aliquoted into each well of a 48well plate, dried overnight at ambient conditions, methanol treated for 5 minutes and dried again. 400 pL of overnight S. aureus or E. coll culture diluted 1/100 in LB broth were added to each well. The cultures were grown at 37°C for 48 hr, and then the optical density at 600 nm was measured for each sample with a UV spectrophotometer to determine bacterial growth. The results are shown in Figure 10.
[0108] For both bacteria tested, total inhibition was seen in films prepared with 25 mg, 50 mg, or 100 mg or penicillin per ml of silk (5 mg, 10 mg and 20 mg of
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 penicillin per film, respectively). Minimum concentrations were 0.39 mg/ml and 0.05 mg/ml required to induce near total inhibition in E. coli and S. aureus, respectively. These results suggest that, prepared in sufficient drug concentrations, these films can be used to prevent infection and totally suppress bacterial growth.
Example 6. Antibiotic delivery via bulk-loaded silk hydrogels and silk microspheres imbedded in silk hydrogels [0109] Systems for injectable delivery of antibiotic releasing silk biomaterials were also studied. Drug release from both bulk loaded gels and gels loaded with drug releasing silk microspheres were characterized. Bulk loaded gels were prepared by sonicating silk solution using a Branson Digital Sonifier 450 at 15% amplitude for 60 sec to 90 sec, then mixing in antibiotic solution, then waiting for gelation to occur, thus entrapping the drug. Microspheres were prepared according to the lipid-template protocol described herein. As with the bulk loading, silk was sonicated and mixed with a microsphere suspension just prior to gelation.
[0110] For penicillin-loaded gels, 8% (w/v) and 4% (w/v) silk hydrogel was studied to examine the effects of silk concentration on drug release. As no noticeable effect was observed, ampicillin release studies were carried out only using 8% (w/v) silk. Results of the zone of inhibition study in S. aureus lawns for penicillin loaded gels are shown in Figure 11 and results of the ampicillin loaded silk gels are shown in Figure 12.
[0111] Bulk-loaded gels exhausted their penicillin drug load within 48 hr and their ampicillin load within 72 hr. Microsphere-loaded gels released at a lower daily release rate than bulk loaded but continued to release for 4 days for both penicillin and ampicillin. Loading of drug into silk microspheres sustained release and delayed burst compared to bulk loaded gels. This suggests that bulk loading could be used to deliver a large initial burst dose, with microspheres incorporated for sustained release of a lower maintenance antibiotic dose. These results also show that injectable formats can effectively deliver active antibiotics.
Example 7. Stabilization of temperature-sensitive antibiotics in silk films [0112] To determine if incorporation into silk films would have a similar stabilizing effect to that observed for enzymes, a long-term stability study was carried out comparing the residual activity of penicillin stored in 8% (w/v) silk films or in solution at 4°C (refrigeration), 25°C (room temperature) and 37°C (body temperature). The results of the first five months of stability data are shown in Figure 13.
[0113] Although stability rapidly declines for penicillin in solution stored at 25°C and 37°C, temperature appears to have little effect on stability in silk films. Activity was still
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018 present after 140 days of storage. Note that for the first 40 days of storage, incubation enhanced activity above 100% of the initial value, a phenomenon also observed for enzyme storage data.
[0114] Stability was also characterized for dry penicillin powder stored at 4°C, 25°C, and 37°C. Comparison of the stability of penicillin stored in silk films, in solution and in dry powder format over 60 days is shown in Figure 14.
[0115] Dry powder and silk film performed equally well as penicillin stabilizers when stored at 4°C, but for samples stored at 25°C and 37°C, activity was greater for penicillin in silk films compared with dry penicillin powder. Comparison of activity in collagen films of comparable drug loading and mass stored at various storage temperatures for 60 days (Figure 15) also shows that activity is greater for penicillin stored in silk films compared with penicillin stored in collagen films.
Example 8. Nanofilm coatings of gentamicin and cefazolin on porous silk scaffolds [0116] Layer-by-layer nanofilm coating was studied as a potential loading strategy for water-soluble antibiotics and porous three-dimensional substrates. Prior to coating, the average mass of silk scaffolds was 25.1 mg + 3.4 mg for the gentamicin coated scaffolds and 25.0 mg ± 4.8 mg for cefazolin coated scaffolds.
[0117] The nanofilm coating procedure described herein was followed, except that 8 mm diameter sponges were used rather than 6 mm, for the final layer of silk a higher concentration 4% (w/v) silk solution was used to provide a thicker capping layer and the drying times were closer to 30 min than 10 min.
[0118] Cefazolin release data determined on S. aureus plates is shown. Gentamicin release data is shown based on both S. aureus and E. coll inhibition. In the end, gentamicin release duration was 5 days, cefazolin was 4 days. Data for cumulative gentamicin release is reported in Table 3 and shown in Figure 16; cumulative cefazolin release is reported in Table 4 and shown in Figure 17.
Table 3. Cumulative Release of gentamicin as determined by zone of growth inhibition on E. coll and S. aureus lawns
| Time (days) | Cumulative Gent Release (in pg) E. coll | Cumulative Gent Release (in pg) S. aureus |
| 0 | 0 | 0 |
| 1 | 2.81 | 5.70 |
| 2 | 15.46 | 12.20 |
| 3 | 27.71 | 22.05 |
| 4 | 38.70 | 33.21 |
| 5 | 43.57 | 41.08 |
12605851.1
WO 2010/141133
PCT/US2010/026190
2018267539 19 Nov 2018
Table 4. Cumulative release of cefazolin as determined
| by zone of growt | 1 inhibition on S. aureus lawns |
| Time (days) | Cumulative Cefazolin Release (in Fg) S. aureus |
| 0 | 0 |
| 1 | 24.42 |
| 2 | 33.30 |
| 3 | 44.51 |
| 4 | 44.94 |
[0119] Total loading was determined by degrading finished coated scaffolds in 0.1 mg/mL proteinase k solution at 37°C overnight. For gentamicin-loaded scaffolds, total loading was found to be 107.5 pg ± 30.95 pg (n = 4 samples) and for cefazolin-loaded scaffolds, total loading was found to be 55.5 pg ± 6.98 pg (n =3 samples). The gentamicin-loaded scaffolds released between 40 pg and 45 pg over 5 days and the cefazolin-loaded scaffolds released ~45 pg over 3 days. These results demonstrate that nanofilm coating can be used to achieve fairly linear, sustained release of water-soluble drugs from porous substrates to produce antibiotic-releasing silk sponges.
12605851.1
2018267539 19 Nov 2018
The claims defining the invention are as follows:
Claims (13)
- 2018267539 19 Nov 2018The claims defining the invention are as follows:1. A composition comprising antibiotic-loaded silk fibroin microspheres embedded in a threedimensional silk fibroin scaffold, wherein the silk fibroin microspheres are lipid-free, and wherein the scaffold is a slab or a three-dimensional structure.
- 2. The composition of claim 1, wherein the three-dimensional structure is a sponge, a powder, an electrospun mat, a porous matrix, a microsphere, a gel, an optical device, or an electronic device.
- 3. The composition of any one of the preceding claims, further comprising a flexible substrate to form a bandage.
- 4. The composition of any one of the preceding claims, wherein the antibiotic is selected from the group consisting of actinomycins; aminoglycosides; beta-lactamase inhibitors; glycopeptides; ansamycins; bacitracins; carbacephems; carbapenems; cephalosporins; isoniazid; linezolid; macrolides; mupirocin; penicillins; oxolinic acid; polypeptides; quinolones; sulfonamides; tetracyclines; monobactams; chloramphenicol; lincomycin; clindamycin; ethambutol; mupirocin; metronidazole; pefloxacin; pyrazinamide; thiamphenicol; rifampicin; thiamphenicl; dapsone; clofazimine; quinupristin; metronidazole; linezolid; isoniazid; piracil; novobiocin; trimethoprim; fosfomycin; and fusidic acid; or wherein the antibiotic is cefazolin, gentamicin, penicillin, ampicillin, or a combination thereof.
- 5. The composition of any one of the preceding claims, further comprising at least one agent selected from the group consisting of defensins, magainin, nisin, lytic bacteriophages, cells, proteins, peptides, amino acids, nucleic acid analogues, nucleotides, oligonucleotides, peptide nucleic acids, aptamers, antibodies or fragments or portions thereof, antigens or epitopes, hormones, hormone antagonists, growth factors or recombinant growth factors and fragments and variants thereof, cell attachment mediators, cytokines, anti-inflammation agents, antifungals, antivirals, toxins, prodrugs, chemotherapeutic agents, small molecules, drugs, dyes, vitamins, enzymes, antioxidants, and other antimicrobial compounds.2018267539 19 Nov 2018
- 6. The composition of claim 1, wherein the composition is injectable; or wherein the composition is a coating on a substrate; and wherein the substrate is optionally a bandage or an implant.
- 7. A method for preparing the antibiotic-loaded three-dimensional silk fibroin scaffold of claim1, the method comprising the steps of:preparing silk fibroin microspheres comprising at least one antibiotic agent;mixing the antibiotic-loaded silk fibroin microspheres with a silk fibroin aqueous salt solution in a container defining a three-dimensional shape; and removing the salt and water from the solution to form a three-dimensional silk fibroin scaffold embedded with the antibiotic-loaded silk microspheres.
- 8. A method for preparing the antibiotic-loaded three-dimensional silk fibroin scaffold of claim1, the method comprising the steps of:preparing silk fibroin microspheres comprising at least one antibiotic agent;mixing the antibiotic-loaded silk fibroin microspheres with a silk fibroin solution; and sonicating the solution to form a gel scaffold embedded with antibiotic-loaded silk microspheres.
- 9. The method of claim 7 or claim 8 for preparing the antibiotic-loaded three-dimensional silk fibroin scaffold of claim 1, further comprising at least one active agent.
- 10. The method of claim 7 or claim 8 for preparing the antibiotic-loaded three-dimensional silk fibroin scaffold of claim 1, wherein the steps further comprise coating the scaffold with one or more antibiotic-loaded layers.
- 11. A composition according to claim 1 for use in preventing and/or treating microbial contamination at a region of a subject in need thereof.
- 12. The composition for use as claimed in claim 11, wherein the microbial contamination is caused by a surgical site infection; and wherein the surgical site infection is optionally a bacterial infection selected from the group consisting of Streptococcus pyogenes (S. pyogenes), Pseudomonas aeruginosa (P. aeruginosa), Enterococcus faecalis (E. faecalis), Proteus mirabilis (P. mirabilis), Serratia marcescens (S. marcescens), Enterobacter clocae (E. clocae),2018267539 19 Nov 2018Acetinobacter anitratus (A. anitratus), Klebsiella pneumoniae (K. pneumonia), E. coll, S. aureus, coagulase-negative Staphylococci, and Enterococcus sp.
- 13. The composition for use as claimed in claim 12, wherein the antibiotic is cefazolin, gentamicin, penicillin, ampicillin, or a combination thereof.WO 2010/141133PCT/US2010/0261901/102018267539 19 Nov 2018
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2018267539A AU2018267539A1 (en) | 2009-03-04 | 2018-11-19 | Silk fibroin systems for antibiotic delivery |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US61/157,366 | 2009-03-04 | ||
| AU2010257120A AU2010257120A1 (en) | 2009-03-04 | 2010-03-04 | Silk fibroin systems for antibiotic delivery |
| AU2015201538A AU2015201538A1 (en) | 2009-03-04 | 2015-03-25 | Silk fibroin systems for antibiotic delivery |
| AU2017200570A AU2017200570A1 (en) | 2009-03-04 | 2017-01-30 | Silk fibroin systems for antibiotic delivery |
| AU2018267539A AU2018267539A1 (en) | 2009-03-04 | 2018-11-19 | Silk fibroin systems for antibiotic delivery |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2017200570A Division AU2017200570A1 (en) | 2009-03-04 | 2017-01-30 | Silk fibroin systems for antibiotic delivery |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| AU2018267539A1 true AU2018267539A1 (en) | 2018-12-13 |
Family
ID=53058121
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2015201538A Abandoned AU2015201538A1 (en) | 2009-03-04 | 2015-03-25 | Silk fibroin systems for antibiotic delivery |
| AU2017200570A Abandoned AU2017200570A1 (en) | 2009-03-04 | 2017-01-30 | Silk fibroin systems for antibiotic delivery |
| AU2018267539A Abandoned AU2018267539A1 (en) | 2009-03-04 | 2018-11-19 | Silk fibroin systems for antibiotic delivery |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2015201538A Abandoned AU2015201538A1 (en) | 2009-03-04 | 2015-03-25 | Silk fibroin systems for antibiotic delivery |
| AU2017200570A Abandoned AU2017200570A1 (en) | 2009-03-04 | 2017-01-30 | Silk fibroin systems for antibiotic delivery |
Country Status (1)
| Country | Link |
|---|---|
| AU (3) | AU2015201538A1 (en) |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108904373A (en) * | 2018-07-23 | 2018-11-30 | 东莞市联洲知识产权运营管理有限公司 | A kind of whitening antibacterial facial mask and preparation method thereof that apple polyphenol/chitosan oligosaccharide is modified |
| WO2020037260A1 (en) | 2018-08-17 | 2020-02-20 | Cepheid | Methods and compositions for nucleic acid isolation |
| CN113056291B (en) * | 2018-08-17 | 2023-05-30 | 塞弗德公司 | Nucleic acid decontamination method |
| CN110251721A (en) * | 2019-08-02 | 2019-09-20 | 山东百多安医疗器械有限公司 | A kind of formed in situ selfreparing anti-bacterial hydrogel and preparation method thereof |
| CN110615913B (en) * | 2019-11-06 | 2022-05-03 | 苏州大学 | Silk protein porous sponge and preparation method thereof |
| CN112043878B (en) * | 2020-08-06 | 2022-09-06 | 苏州大学 | A kind of anticoagulant tube stent coating and preparation method thereof |
| CN113230413A (en) * | 2021-04-02 | 2021-08-10 | 浙江理工大学 | Antibacterial silk fibroin and preparation method thereof |
| US20250144170A1 (en) * | 2022-02-07 | 2025-05-08 | Aasya Health Care Private Limited | Method for sustained drug delivery for wound healing using silk hydrogel and product thereof |
| CN115105645B (en) * | 2022-06-28 | 2023-05-26 | 北京化工大学 | Preparation method of composite microsphere and wound repair dressing |
| CN117338988B (en) * | 2023-11-07 | 2025-02-25 | 西南大学 | A silk fiber wound repair membrane loaded with astaxanthin and its preparation method and application |
-
2015
- 2015-03-25 AU AU2015201538A patent/AU2015201538A1/en not_active Abandoned
-
2017
- 2017-01-30 AU AU2017200570A patent/AU2017200570A1/en not_active Abandoned
-
2018
- 2018-11-19 AU AU2018267539A patent/AU2018267539A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| AU2017200570A1 (en) | 2017-02-23 |
| AU2015201538A1 (en) | 2015-04-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2791580C (en) | Silk fibroin systems for antibiotic delivery | |
| AU2018267539A1 (en) | Silk fibroin systems for antibiotic delivery | |
| Barros et al. | Encapsulated bacteriophages in alginate-nanohydroxyapatite hydrogel as a novel delivery system to prevent orthopedic implant-associated infections | |
| US8293486B2 (en) | Functionalization of silk material by avidin-biotin interaction | |
| EP2916876B1 (en) | Methods and compositions for wound healing | |
| Strobel et al. | Sequential release kinetics of two (gentamicin and BMP-2) or three (gentamicin, IGF-I and BMP-2) substances from a one-component polymeric coating on implants | |
| US9566365B2 (en) | Silk fibroin and polyethylene glycol-based biomaterials | |
| Shadjou et al. | Silica‐based mesoporous nanobiomaterials as promoter of bone regeneration process | |
| Bastari et al. | A controlled release of antibiotics from calcium phosphate-coated poly (lactic-co-glycolic acid) particles and their in vitro efficacy against Staphylococcus aureus biofilm | |
| Yu et al. | How does the pathophysiological context influence delivery of bone growth factors? | |
| Alphonsa et al. | Antimicrobial drugs encapsulated in fibrin nanoparticles for treating microbial infested wounds. | |
| US20200276362A1 (en) | Composition and method for controlled drug release from a tissue | |
| Mittal et al. | Drug-loaded polymeric composite skin graft for infection-free wound healing: Fabrication, characterization, cell proliferation, migration, and antimicrobial activity | |
| Nair et al. | Antibiotic releasing biodegradable scaffolds for osteomyelitis | |
| Ke re mu et al. | Anti-Infection Efficacy, Osteogenesis Potential, and Biocompatibility of 3D Printed PLGA/Nano-Hydroxyapatite Porous Scaffolds Grafted with Vancomycin/DOPA/rhBMP-2 in Infected Rabbit Bone Defects | |
| Kimishima et al. | Effects of gatifloxaine content in gatifloxacine-loaded PLGA and β-tricalcium phosphate composites on efficacy in treating osteomyelitis | |
| Ma et al. | Fabrication of gentamicin loaded Col-I/HA multilayers modified titanium coatings for prevention of implant infection | |
| Phewchan et al. | Injectable vancomycin‐loaded silk fibroin/methylcellulose containing calcium phosphate‐based in situ thermosensitive hydrogel for local treatment of osteomyelitis: Fabrication, characterization, and in vitro performance evaluation | |
| Wang et al. | Osteogenesis of aspirin microsphere-loaded tilapia collagen/hydroxyapatite biomimetic scaffolds | |
| Pamfil et al. | Collagen‐Based Materials for Pharmaceutical Applications | |
| Mouriño | Polymer nanocomposites for drug delivery applications in bone tissue regeneration | |
| Song | Nanostructured carriers for the delivery of antibacterial agents | |
| Xiang et al. | Research progress of implantable materials in antibacterial treatment of bone infection | |
| Dalgic et al. | Hydrogels Used in Bone Treatment | |
| Viitasalo | LOCAL BIOMATERIAL APPLICATIONS FOR OSTEOMYELITIS TREATMENT |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| NB | Applications allowed - extensions of time section 223(2) |
Free format text: THE TIME IN WHICH TO GAIN ACCEPTANCE HAS BEEN EXTENDED TO 14 SEP 2020 |
|
| MK5 | Application lapsed section 142(2)(e) - patent request and compl. specification not accepted |