AU2018254514B2 - Assay for the comprehensive identification of antibiotic sensitivity - Google Patents
Assay for the comprehensive identification of antibiotic sensitivity Download PDFInfo
- Publication number
- AU2018254514B2 AU2018254514B2 AU2018254514A AU2018254514A AU2018254514B2 AU 2018254514 B2 AU2018254514 B2 AU 2018254514B2 AU 2018254514 A AU2018254514 A AU 2018254514A AU 2018254514 A AU2018254514 A AU 2018254514A AU 2018254514 B2 AU2018254514 B2 AU 2018254514B2
- Authority
- AU
- Australia
- Prior art keywords
- antibiotics
- antibiotic
- sample
- bacteria
- medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/04—Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
- C12Q1/06—Quantitative determination
- C12Q1/08—Quantitative determination using multifield media
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/18—Testing for antimicrobial activity of a material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/59—Transmissivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/59—Transmissivity
- G01N21/5907—Densitometers
- G01N2021/5915—Processing scan data in densitometry
- G01N2021/593—Correcting from the background density
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/59—Transmissivity
- G01N21/5907—Densitometers
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Toxicology (AREA)
- Genetics & Genomics (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Disclosed herein are methods determining susceptibility of bacteria in a sample from a subject suspected of having an infection to a plurality of antibiotics simultaneously, wherein the sample is tested without first isolating the bacteria from the sample.
Description
[0001] The present application claims the benefit of U.S. Provisional application 62/487,395 filed April 19, 2017, the entire contents of which are incorporated by reference herein.
[0002] Infectious disease affect multiple organs systems and are responsible for significant morbidity, mortality, and economic impact. Infectious agents most often present as a complex polymicrobial infections rather than as a single pathogens. Within the body, these polymicrobial infections cooperate with each other through mutualism changing both the type of antibiotics the organisms are susceptible to but also the level of antibiotics required to treat the infection as well as the virulence of the individual pathogens. The current gold standard is culture and sensitivity; a process in which a sample of is placed on a plate containing an agar medium for an overnight incubation allowing for individual organisms to be isolated and identified. An additional day is usually required to identify which antibiotic the individual organism is susceptible to through antibiotic susceptibility testing. The effectiveness of the this process is limited by the inherently poor sensitivity and specificity of the methodology. For example, recent studies have found that up to 25% of all urine culture results produce a false negative finding and that up to 2/3 of all uropathogens are missed by culture. This process which typically takes 48-72 hours has a significant impact on clinical practice in that clinicians are forced to treat the patient empirically without an accurate diagnosis and without proper guidance regarding the type of antibiotic that would be effective for treating the infection.
[0003] An inherent flaw in current antibiotic susceptibility testing is that it relies on testing only an individual organism rather than the entire pool of organisms simultaneously .
By necessitating the isolation it adds a minimum of one additional day to the testing process. There is a need for a test that allows for the simultaneous assessment of antibiotic resistance without the need for isolation allowing for a more rapid determination of antibiotic resistance. It is an object of the invention to provide simple cost effective methods for assessing antibiotic resistance in all constituents simultaneously without the need for prior isolation; and/or to at least provide the public with a useful choice.
[0003A] The invention provides a method for simultaneously determining the antibiotic susceptibilities of a mixed population of bacteria in a polymicrobial sample to a plurality of antibiotics, the method comprising: (a) applying a quantity of the polymicrobial sample simultaneously to a plurality of antibiotic-containing growth mediums, wherein each medium comprises bacterial growth medium with one or a plurality of antibiotics, wherein the polymicrobial sample is from a subject suspected of having an infection, wherein individual species of bacteria are not isolated from the sample prior to application of the quantity of the polymicrobial sample to the plurality of mediums; (b) culturing the polymicrobial sample in the mediums for a period of time; and (c) measuring an OD600 of each medium, and calculating an adjusted OD600 for each medium, wherein the adjusted OD600 of a medium indicates the susceptibility or resistance of the bacteria in the polymicrobial sample to one or a plurality of antibiotics, wherein the bacteria in the sample are susceptible to an antibiotic or combination of antibiotics if the adjusted OD600 is less than 0.065 and the bacteria in the sample are resistant to an antibiotic or combination of antibiotics if the adjusted OD600 is greater than or equal to 0.065. BRIEF DESCRIPTION
[0004] Disclosed herein are methods for determining the antibiotic sensitivity of a mixed population of bacteria present in patient samples to multiple antibiotics simultaneously without first isolating the bacteria from the sample.
[0005] In some embodiments, disclosed herein are methods for susceptibility determining of a mixed population of bacteria in a sample to a plurality of antibiotics simultaneously, the method comprising: applying a quantity of the sample simultaneously to a plurality of antibiotic-containing medium, wherein the sample is from a subject suspected of having an infection; culturing the sample on the medium for a period of time; suspending bacteria present in the medium with a solution and recovering the suspension; measuring an ODeoo of the suspension, wherein an adjusted OD6 0 0 of a suspension indicates the susceptibility or resistance of bacteria in the sample to an individual antibiotic; and providing the susceptibility information to a medical professional to determine antibiotic therapy for the subject. The sample is suspected of having multiple species of bacteria therein.
[0006] In some embodiments, the plurality of antibiotic-containing medium comprises a multi-well assay plate having disposed in a plurality of wells antibiotic-containing bacterial growth medium. In some embodiments, the multi-well assay plate has 96 wells. In some embodiments, the bacterial growth medium is an agar-containing medium.
[0007] In some embodiment, the plurality of antibiotics comprises two or more of sulfamethoxazole, trimethoprim, nitrofurantoin, fosfomycin, amoxicillin, clavulanate, cefpodoxime, cefdinir, cefaclor, cefepime, cefazolin, ciprofloxacin, levofloxacin, ceftriaxone, gentamicin, tobramycin, avibactam, ceftazidime, ceftolozane, tazobactam, norfloxacin, meropenem, piperacillin, cefoxitin, tetracycline, sulbactam, cefuroxime, and vancomycin. In some embodiments, each of the plurality of wells contains a single antibiotic or a combination of antibiotics. In some embodiment, the combination of antibiotics comprises two antibiotics. In some embodiment, the plurality of antibiotics comprises at least three antibiotics, at least four antibiotics, at least five antibiotics, at least six antibiotics, at least seven antibiotics, at least eight antibiotics, at least nine antibiotics, or at least ten antibiotics. In some embodiments, each antibiotic, or combination of antibiotics, is present in the wells at two or more concentrations. In some embodiment, each antibiotic, or combination of antibiotics, is present in the wells at three or more concentrations.
[0008] In some embodiments, the OD 6 0 0 of the suspension is measured a plurality of times. In some embodiments, the ODeoo is measured twice, three times, four times, or five times. In some embodiments, the adjusted OD6 0 0 comprises the mean OD6 0 0 of a plurality of measurements less a background control. In some embodiments, the bacteria in the sample are susceptible to an antibiotic, or combination of antibiotics, if the adjusted OD6 0 0 is less than 0.025. In some embodiments, the bacteria in the sample are resistant to an antibiotic, or combination of antibiotics, if the adjusted OD 6 0 0 is greater than or equal to 0.025.
[0009] In some embodiments, the sample is a biological fluid or a biopsy sample. In some embodiments, the sample comprises urine, blood, saliva, sputum, pulmonary lavage, vaginal secretions, biopsy tissue, or cerebrospinal fluid.
[0010] Also disclosed herein are methods for simultaneously determining susceptibility of a mixed population of bacteria in a sample to a plurality of antibiotics, the method comprising: mixing a quantity of a sample with growth medium and incubating for a period of time; applying the sample simultaneously to a plurality of antibiotic-containing medium, wherein the sample is from a subject suspected of having an infection; culturing the sample in the antibiotic-containing medium for a period of time; measuring bacterial growth in the medium by OD6 0 0 measurement, wherein an adjusted OD6 0 0 measurement of the sample indicates the susceptibility or resistance of the bacteria in the sample to an individual antibiotic; and providing the susceptibility information to a medical professional to determine antibiotic therapy for the subject. The sample is suspected of having multiple species of bacteria therein.
[0011] In some embodiments, the plurality of antibiotic-containing medium comprises a multi-well assay plate having disposed in a plurality of wells antibiotic-containing bacterial growth medium. In some embodiments, the multi-well assay plate has 96-wells. In some embodiments, the medium is a liquid broth medium. In some embodiments, the medium is Mueller-Hinton medium.
[0012] In some embodiments, the plurality of antibiotics comprises two or more of sulfamethoxazole, trimethoprim, nitrofurantoin, fosfomycin, amoxicillin, clavulanate, cefpodoxime, cefdinir, cefaclor, ciprofloxacin, levofloxacin, ceftriaxone, gentamicin, tobramycin, avibactam, ceftazidime, ceftolozane, tazobactam, norfloxacin, meropenem, piperacillin, cefoxitin, tetracycline, sulbactam, cefuroxime, and vancomycin. In some embodiments, each of the plurality of wells contains a single antibiotic or a combination of antibiotics. In some embodiments, the combination of antibiotics comprises two antibiotics. In some embodiments, the plurality of antibiotics comprises at least three antibiotics, at least four antibiotics, at least five antibiotics, at least six antibiotics, at least seven antibiotics, at least eight antibiotics, at least nine antibiotics, or at least ten antibiotics. In some embodiments, each antibiotic, or combination of antibiotics, is present in the wells at two or more concentrations. In some embodiments, each antibiotic, or combination of antibiotics, is included at three or more concentrations.
[0013] In some embodiments, the ODeooof the sample is measured one time. In some embodiments,the OD 6 0 0 of the sample is measured a plurality of times. In some embodiments, the OD 6 0 0 is measured twice, three times, four times, or five times. In some embodiments, the adjusted OD6 0 0 comprises a single OD6 0 0 measurement, or a mean OD6 0 0 of a plurality of measurements, less a background control. In some embodiments, the bacteria in the sample are susceptible to an antibiotic, or combination of antibiotics, if the adjusted OD 6 0 0 is less than 0.065. In some embodiments, the bacteria in the sample are resistant to an antibiotic, or combination of antibiotics, if the adjusted OD6 0 0 is greater than or equal to 0.065.
[0014] In some embodiments, the sample is a biological fluid or a biopsy sample. In some embodiments, the sample comprises urine, blood, saliva, sputum, pulmonary lavage, vaginal secretions, biopsy tissue, or cerebrospinal fluid.
[0015] FIG. 1 depicts an exemplary Antibiotic Source Plate with well contents and antibiotic concentration (pg/mL). Nitro = nitrofurantoin, Cipro = ciprofloxacin, Mero = meropenem, Ceftiaxone = ceftriaxone, TMP/SMX = trimethoprim + sulfamethoxazole,
Pip/Tazo = piperacillin + tazobactam, Levo = levofloxacin, Cefoxitin = cefoxitin, Tetra = tetracycline, Amp/Sulb = ampicillin + sulbactam, Amp = ampicillin, and Vanco = vancomycin.
[0016] FIG. 2 depicts an exemplary Antibiotic Source Plate with well contents and antibiotic concentration (pg/mL). Cefazolin = cefazolin, Cefepime = cefepime, Ceftazidime = ceftazidime, Gentamicin = gentamicin, Amox/Clav = amoxicillin + clavulanate, Cefaclor = cefaclor.
[0017] The diagnosis and management of polymicrobial infections has never been more important especially with an aging population in which polymicrobial infections affecting multiple sites and organ systems have significant impacts both clinically and economically. The diagnosis and management of these infectious diseases is significantly impacted by the poor diagnostic tools available coupled with decreasing efficacy of antibiotics available to combat them. A good model system to evaluate these challenges is the diagnosis and management of urinary tract infections (UTI's).
[0018] In the past, urine had been considered a "sterile" liquid and normally would not have bacteria present. Cultures with no bacterial outgrowth were assumed to be bacterial free and it is now know that this may be due to the lack of bacterial growth in the urine culture, not necessarily due to the absence of bacteria. The human bladder is now recognized as having a microbiome including a spectrum of bacterial flora normally present which has been overlooked because of our limited capacity to culture microorganisms. The result of this problem is an understatement of the frequency and scope of bacterial infections.
[0019] A recent study (Wolfe et al. J Clin Microbiol 50:1376-1383, 2012) compared urine samples obtained from voided, transurethral, and/or suprapubic collection methods and determined standard culture methodology with PCR amplification of 16S rRNA. This study demonstrated that bacteria were present in at least a subpopulation of the culture negative transurethral collected urine, the sample least likely to be contaminated with bacteria from other sources (vaginal or rectal contamination). It is estimated that the urine of only about half UTI symptomatic patients results in positive cultures.
[0020] Furthermore, it was thought that UTIs were usually due to a single bacteria strain and if, after culture, multiple strains of bacteria were present in a urine specimen, the specimen was presumed to be contaminated during collection. These cultures with multiple strains of bacteria were often discarded and not processed further. It is now recognized that many UTI are polymicrobial and the bacterial strains may cooperate or support each other in colonizing the bladder.
[0021] Currently existing urine culture conditions, from the composition of the culture medium, to the pH, gas ratios, and incubation time, are biased for the detection of a subset of pathogens, primarily Escherichia coli. However, these biased assays are not consistent with clinical symptoms. Thus, routine testing of urine samples misses many uropathogens.
[0022] Due to increase in prevalence of antibiotic-resistant bacteria, treatment of UTIs is often insufficient due to the presence of undiagnosed resistant organisms. Additionally, polymicrobial infections have increased the frequency of antibiotic resistance and virulence compared to monomicrobial infections.
[0023] For example, infection with both Staphylococcus saprophyticus and Proteus mirabilis leads to an increased risk of ascending pyelonephritis; infection with both uropathogenic E. coli (UPEC) and P. mirabilis results in increased colony forming units (CFU) count for both microbes; infection with both P. mirabilis and a Providencia strain leads to an increased risk of urinary stones; infection with both Pseudomonas aeruginosa and Enterococcus faecalis leads to an increased risk of pyelonephritis; and infection with both a Group B Streptococcus and UPEC results in an increased titer of UPEC.
[0024] The challenges involved in identifying microorganisms and managing the associated polymicrobial infections is not limited to urine. It is in point of fact the norm, rather than the exception, and include infections of the ears, nose and throat, the gastrointestinal tract, kidney stones, nails and skin, the prostate, the respiratory system, presurgical and surgical infections, and wound care. These polymicrobial infections are often complex with large numbers of organisms involved. For example,, bacterial prostatitis is caused by between one to eight various pathogens at one time as the pathogens could be discovered in any specific semen sample, and the complete concentration of microorganisms varies from 2.0 to 7.5 log10 CFU/ml. In cystic fibrosis, the infections are recognized to be genetically and phenotypically diversified, even inside the same patient and separate area of the lung. Infection diversity likely impacts management, and the presence of two or more species inhabiting the same space appears to change the way individual bacterial species behave. Their communications, including distributing genetic data, influence antibiotic susceptibility. The presence of a particular bacteria may be associated with better or worse outcomes.
[0025] In surgical site infections, a subcomponent of healthcare-associated infections (HAI) that constitutes 20% of all HAI with surgical site infections developing in roughly 5% of all surgical procedures. Surgical site infections have been shown to arise from polymicrobial infections.
[0026] One of the most common sites of polymicrobial infections is in would care. Pressure sores are most common in aging seniors with impaired mobility and are fairly very difficult to cure. Approximately 26% of the elderly have pressure ulcers at the moment of a hospital stay and the occurrence escalates significantly as a result of age. The ulcer that develops may be associated with some infectious complications. Chronic and acute wounds embody a widespread health issue. Dermal wounds are colonized by both anaerobic and aerobic bacterial and fungal strains, most them belonging to the resident microbiota of the surrounding skin, mouth, and gut, or from the external environment, which form polymicrobial communities.
[0027] Kidney stones have shown to involve polymicrobial bacterial agents. The kidney stone is a solid piece of stone or crystals that develops in the urinary tract. Stones may lead to hematuria in the urine, vomiting, or painful urination. Individuals who suffer from chronic UTIs, such as those with long-term tubes in their kidneys or bladders, or people with weak bladder emptying due to neurologic disorders (paralysis, multiple sclerosis, and spina bifida) are the most risk.
[0028] Thus, the prevalence of polymicrobial infections requires the development of new methodologies. Using current culture guidelines, polymicrobial infections would most often be classed as mixed flora - probable contamination - and would not be worked up. There are a number of studies showing polymicrobial infections in the blood with corresponding UTI findings supporting the importance of proper characterization of samples. This lack of sensitivity seen with traditional culture coupled with current culture guidelines underlies the growing incidence of patients presenting with symptoms of infection and no diagnosis - resulting in ineffective treatment.
[0029] In some embodiments, described herein are antibiotic susceptibility assays for combined microflora (polymicrobial) present in a patient sample. Thus, the samples assayed in the present method comprise the sample which is optionally stored, and optionally diluted, prior to testing. No bacteria are isolated from the sample prior to antibiotic sensitivity training. The disclosed method identifies the antibiotics necessary to treat organisms found within the sample in a biological context and determines the minimal inhibitory concentration (MIC) for the desired antibiotics.
[0030] As used herein, the term "sample" refers to any biological fluid or tissue collected from a subject suspected of having an infection. Exemplary "samples" include, but are not limited to, urine, blood, saliva, sputum, pulmonary lavage, fecal material, vaginal secretions, biopsy tissue, cerebrospinal fluid, or any bodily fluid or tissue in need of antibiotic susceptibilityassay.
[0031] As used herein, the term "subject" refers to any mammalian subject for which antibiotic susceptibility testing is desired and includes, but is not limited to, humans, companion animals (e.g., dogs, cats, guinea pigs, hamsters, ferrets, rabbits, rats, mice, etc.), livestock (e.g., cattle, swine, sheep, goats, horses, etc.), and any other mammal suspected of having an infection and in need of antibiotic susceptibility assay.
[0032] As used herein, the term "bacteria" can refer to a single species or multiple species.
[0033] As used herein, the term "polymicrobial" refers to a sample having present therein multiple species of bacteria. Polymicrobial samples are also referred to as having a mixed population of bacteria.
[0034] As used herein, the term "susceptible" refers to bacteria which are inhibited by the usually achievable concentrations of antimicrobial agent when the dosage recommended to treat the site of infection is used.
[0035] As used herein, the term "resistant" refers to bacteria which are not inhibited by the usually achievable concentrations of the antibiotic with normal dosage schedules and/or that demonstrate minimal inhibitory concentrations that fall in the range in which specific microbial resistance mechanisms (e.g., p-lactamases) are likely, and clinical efficacy of the agent against the isolate has not been reliably shown in treatment studies.
[0036] The minimal inhibitory concentration (MIC) is the lowest concentration of an antimicrobial agent that prevents visible growth of a microorganism in an agar or broth dilution susceptibility test.
[0036A] The term "comprising" as used in this specification and claims means "consisting at least in part of". When interpreting statements in this specification, and claims which include the term "comprising", it is to be understood that other features that are additional to the features prefaced by this term in each statement or claim may also be present. Related terms such as "comprise" and "comprised" are to be interpreted in similar manner.
[0037] Current antibiotic susceptibility testing methods are conducted on individual organisms, cultured from a sample prior to susceptibility testing. The Clinical and Laboratory Standards Institute has established antibiotic concentrations specific to the bacterial species being tested and utilized to indicate if the organism is "Sensitive", "Intermediate", or "Resistant" to the tested antibiotic. Testing methods include the "Gold Standard" method of agar dilution, liquid culture dilution, and disk diffusion.
[0038] Currently, either broth (liquid) or agar dilution methods may be used to measure quantitatively the in vitro activity of an antimicrobial agent against a given bacterial isolate.
To perform the tests, a series of tubes or plates is prepared with a broth or agar medium to which various concentrations of the antimicrobial agents are added. The tubes or plates are then inoculated with a standardized suspension of the test organism. After incubation at 35± 40C, the tests are examined and the MIC is determined. The final result is significantly influenced by methodology, which must be carefully controlled if reproducible results (intra laboratory and inter-laboratory) are to be achieved.
[0039] CurrenIty, isolated colonies of each type of organism that may be pathogenic are selected from primary agar plates and tested individually for susceptibility. Identification procedures are often performed at the same time. It is currently recommended that mixtures of different types of microorganisms are not tested on the same susceptibility test plate or panel.
[0040] The practice of conducting susceptibility tests directly with clinical material (e.g., normally sterile body fluids and tissue) had not been previously recommended, except in clinical emergencies when the direct Gram stain suggests a single pathogen. Testing labs were cautioned that when testing has been carried out directly with the clinical material, the results should be reported as preliminary, and the susceptibility test repeated using the standardized methodology with isolated microorganisms. The disclosed methods are thus different than the currently accepted methodology.
[0041] While the agar dilution method is considered the gold standard, it is rarely used due to a high labor, materials, and space requirements. This method requires the preparation of petri dishes containing solid agar with growth medium and antibiotic. Separate petri dishes are prepared consisting of different antibiotic concentrations for each of the antibiotics being tested on each bacterial species. For an initial panel of 12 antibiotics, this translates to 45 separate petri dishes for each species. Subsequent to obtaining isolated single organisms (obtained from an overnight incubation on a bacterial species identification plate), the organisms are plated on each of the agar plates and incubated overnight. A microbiologist then visually inspects and documents if the bacteria grew on each of the antibiotic-containing agar plates.
[0042] More commonly, the disk diffusion method is currently used wherein the isolated single organisms are plated on growth medium-containing petri dishes and antibiotic impregnated filter paper discs are placed on the agar plate. If the antibiotic, which diffuses into the agar, stops the bacteria from growing, or kills the bacteria, there is a zone of no growth around the disc where the bacteria were present. This is called a zone of inhibition. By measuring the sizes of the zone of inhibition, MIC, sensitivity, and resistance are determined. However, this method requires depositing the bacteria uniformly across the culture plate. Larger inhibition zones correlate with lower MIC.
[0043] Also commonly used is the broth microdilution method wherein the isolated single organisms are inoculated into liquid growth medium and antibiotic solution at varying concentrations. If the antibiotic stops the bacteria from growing, or kills the bacteria, the turbidity of the suspension will be much lower or nonexistent compared to turbidity of bacteria inoculated into medium not containing antibiotic. By creating varying concentrations of an antibiotic in liquid medium, MIC, sensitivity, and resistance can be determined.
[0044] The methods described herein test the antibiotic sensitivity of the combined microflora of the sample and thus eliminates the need to first isolate individual bacterial species from the sample. The need for separate petri dishes or tubes for each antibiotic or concentration is eliminated by plating the agar growth medium or liquid growth medium with all of the different antibiotic concentrations in different wells of a multi-well plate (e.g., 6-well, 12-well, 24-well, 48-well, 96-well, 384-well plates, or any multi-well plate suitable for this purpose). The labor associated with the visual evaluation of growth is eliminated by use of spectrophotometer analysis. For the method utilizing agar medium, following overnight incubation, an aqueous solution is placed in each of the wells of the multi-well plates and incubated to allow bacterial colonies growing on the surface of the agar to pass into a suspension. Manual agitation may be used to aid this process and the aqueous solution containing any bacteria that may have grown on the agar plate is transferred to a fresh multi well plate for spectrophotometric analysis. For the method utilizing liquid medium, the suspensions arrayed in the multi-well plate are applied to spectrophotometric analysis without transferring to a new multi-well plate. The ODeoo measurements are taken to measure bacterial growth. A simple threshold is utilized to indicate if bacteria are present or absent at a given antibiotic concentration.
[0045] The present methods are conducted using a plurality of antibiotics selected from the large number available to treat patients. Antibiotics (also referred to as anti-microbial agents or anti-bacterial agents) include, but are not limited to, penicillins, tetracyclines, cephalosporins, quninolones, lincomycins, macrolides, sulronamides, glycopeptide antibiotics, aminoglycosides, carbapenems, ansamycins, lipopeptides, monobactams, nitrofurans, oxaxolidinones, and polypeptides.
[0046] Penicillin antibiotics include, but are not limited to, penicillin, methicillin, amoxicillin, ampicillin, flucloxacillin, penicillin G, penicillin V, carbenicillin, piperacillin, ticarcillin, oxacillin, dicloxacillin, azlocillin, cloxacillin, mezlocillin, temocillin, and nafcillin. Additionally, penicillin antibiotics are often used in combination with beta-lactamase inhibitors to provide broader spectrum activity; these combination antibiotics include amoxicillin/clavulanate, ampicillin/sulbactam, piperacillin/tazobactam, and clavulanate/ticarcillin.
[0047] Tetracycline antibiotics include, but are not limited to, tetracycline, doxycycline, demeclocycline, minocycline, and oxytetracycline.
[0048] Cephalosporin antibiotics include, but are not limited to, cefadroxil, cephradine, cefazolin, cephalexin, cefepime, ceftaroline, loracarbef, cefotetan, cefuroxime, cefprozil, cefoxitin, cefaclor, ceftibuten, cetriaxone, cefotaxime, cefpodoxime, cefdinir, cefixime, cefditoren, ceftizoxime, cefoperazone, cefalotin, cefamanadole, ceftaroline fosamil, cetobiprole, and ceftazidime. Cephalosporin antibiotics are often used in combination with beta-lactamase inhibitors to provide broader spectrum activity; these combination antibiotics include, but are not limited to, avibactam/ceftazidime and ceftolozane/tazobactam.
[0049] Quinolone antibiotics include, but are not limited to, lom efloxacin, ofloxacin, norfloxacin, gatifloxacin, ciprofloxacin, moxifloxacin, levofloxacin, gemifloxacin, cinoxacin, nalidixic acid, trovaloxacin, enoxacin, grepafloxacin, temafloxacin, and sparfloxacin.
[0050] Lincomycin antibiotics include, but are not limited to, clindamycin and lincomycin.
[0051] Macrolide antibiotics include, but are not limited to, azithromycin, clarithromycin, erythromycin, telithromycin, dirithromycin, roxithromycin, troleandomycin, spiramycin, and fidazomycin.
[0052] Sulfonamide antibiotics include, but are not limited to, sulfamethoxazole, sulfasalazine, mafenide, sulfacetamide, sulfadiazine, silver sufadiazine, sulfadimethoxine, sulfanilimide, sulfisoxazole, sulfonamidochrysoidine, and sulfisoxazole. Sulfonamide antibiotics are often used in combination with trimethoprim to improve bactericidal activity.
[0053] Glycopeptide antibiotics include, but are not limited to, dalbavancin, oritavancin, telavancin, teicoplanin, and vancomycin.
[0054] Aminoglycoside antibiotics include, but are not limited to, paromomycin, tobramycin, gentamicin, amikacin, kanamycin, neomycin, netilmicin, streptomycin, and spectinomycin.
[0055] Carbapenem antibiotics include, but are not limited to, imipenem, meropenem, doripenem, ertapenem, and imipenem /cilastatin.
[0056] Ansamycin antibiotics include, but are not limited to, geldanamycin, herbimycin, and rifaximin.
[0057] Lipopeptide antibiotics include, but are not limited to, daptomycin.
[0058] Monobactam antibiotics include, but are not limited to, aztreonam.
[0059] Nitrofuran antibiotics include, but are not limited to furazolidone and nitrofurantoin.
[0060] Oxaxolidinone antibiotics include, but are not limited to, linezolid, posizolid, radezolid, and torezolid.
[0061] Polypeptide antibiotics include, but are not limited to, bacitracin, colistin, and polymyxin B.
[0062] Other antibiotics which are not part of any of the above-mentioned groups include, but are not limited to, clofazimine, dapsone, capreomycin, cycloserine, ethambutol, ethionamide, isoniazid, pyrazinamide, rifampicin, rifabutin, rifapentine, streptomycin, arsphenamide, chloramphenicol, fosfomycin, fusidic acid, metronidazole, mupirocin, platensimycin, quinupristin/dalfopristin, thiamphenicol, tigecycline, tinidazole, and trimethoprim.
[0063] In some embodiments, the suspected infection is a urinary tract infection and the antibiotic is one or more of ciprofloxacin, levofloxacin, TMP/SMX, ceftriaxone, fluoroquinolone, ciprofloxacin, an aminoglycoside (e.g., gentamicin 5 mg/kg/day), amoxicillin, linezolid, vancomycin, nitrofurantoin, fosfomycin, pivmecillinam, amoxicillin-clavulanate, ampicillin-sulbactam, piperacillin, piperacillin-tazobactam, cephalexin, cefazolin, cefaclor, cefuroxime, cefotetan, cefotaxime, ceftriaxone, ceftazidime, cefepime, cefixime, cefpodoxime, aztreonam, imipenemb, doripenem, trimethoprim, sulfamethoxazole, gatifloxacin, moxifloxacin, ofloxacin, prulifloxacin, clindamycin, azithromycin, and cephalexin.
[0064] In some embodiments, the suspected infection is a prostate infection and the antibiotic is one or more of amoxicillin-clavulanate, ampicillin-sulbactam, ampicillin, piperacillin, piperacillin-tazobactam, cephalexin, cefazolin, cefaclor, cefuroxime, cefotetan, cefotaxime, ceftriaxone, ceftazidime, cefepime, cefixime, cefpodoxime, aztreonam, imipenemb, doripenem, vancomycinb, TMP/SMX, trimethoprim, sulfamethoxazole, nitrofurantoin, ciprofloxacin, gatifloxacin, levofloxacin, moxifloxacin, ofloxacin, prulifloxacin, clindamycin, azithromycin, and clarithromycin.
[0065] In some embodiments, the suspected infection is a gastrointestinal infection and the antibiotic is one or more of metronidazole, vancomycin, fidaxomicin, nitazoxanide, metronidazole, nitazoxanide, azithromycin, ciprofloxacin, doxycycline, TMP/SMX, fidaxomicin, and tinidazole.
[0066] In some embodiments, the suspected infection is a pulmonary infection and the antibiotic is one or more of azithromycin, clarithromycin, cefuroxime, cefpodoxime, cefdinir, ampicillin/clavulanate, ciprofloxacin, levofloxacin, moxifloxacin, gemifloxacin, TMP/SMX, a tetracycline (e.g., doxycycline), amoxicillin, ampicillin, amoxicillin/clavulanate, cefdinir, cefpodoxime proxetil, cefdinir, cefuroxime, levofloxacin, moxifloxacin, aztreonam lysine, colistin, tobramycin, amikacin, piperacillin-tazobactam, and vancomycin.
[0067] In some embodiments, the suspected infection is a central nervous system infection and the antibiotic is one or more of penicillin, ampicillin, gentamicin, cefotaxime, cefepime, ceftriaxone, vancomycin, moxifloxacin, gemifloxacin, gatifloxacin, garenoxacin, trovafloxacin, TMP/SMX, aztreonam, meropenem, chloramphenicol, linezolid, rifampin, metronidazole, penicillin G, ceftizoxime, ceftazidime, ampicillin-sulbactam, imipenem, minocycline, and amikacin.
[0068] In some embodiments, the suspected infection is a wound infection and the antibiotic is one or more of TMP/SMX, cephalexin, amoxicillin/clavulanate, doxycycline, clindamycin, ticarcillin/clavulanic, piperacillin/tazobactam, ertapenem, vancomycin, cefazolin, ampicillin/sulbactam, cefotaxime, ceftriaxone, metronidazole, and imipenem.
[0069] In some embodiments, the suspected infection is a Struvite infection/kidney stone infection and the antibiotic is one or more of ciprofloxacin, levofloxacin, TMP-SMX, ceftriaxone, fluoroquinolone, ciprofloxacin, aminoglycoside (e.g., gentamicin 5 mg/kg/day), amoxicillin, linezolid, cancomycin, nitrofurantoin, fosfomycin, pivmecillinam, amoxicillin-clavulanate, ampicillin-sulbactam, piperacillin, piperacillin tazobactam, cephalexin, cefazolin, cefaclor, cefuroxime, cefotetan, cefotaxime, ceftriaxone, ceftazidime, cefepime, cefixime, cefpodoxime, aztreonam, imipenemb, doripenem, TMP/SMX, trimethoprim, sulfamethoxazole, gatifloxacin, moxifloxacin, ofloxacin, prulifloxacin, clindamycin, azithromycin, and cephalexin.
[0070] In some embodiments, the suspected infection is a nail, skin, paronychia infection and the antibiotic are one or more of ampicillin, TMP/SMX, cephalexin, clindamycin, amoxicillin/clavulanate, doxycycline, clindamycin, ticarcillin/clavulanic, piperacillin/tazobactam, ertapenem, vancomycin, cefazolin, ampicillin/sulbactam, cefotaxime, ceftriaxone, metronidazole, and imipenem.
[0071] In some embodiments, the suspected infection is an ear, nose, and throat infection and the antibiotic is one or more of azithromycin, clarithromycin, cefuroxime, cefpodoxime, cefdinir, ampicillin/clavulanate, ciprofloxacin, levofloxacin, moxifloxacin, gemifloxacin, TMP/SMX, a tetracycline (e.g., doxycycline), amoxicillin, ampicillin, amoxicillin/clavulanate, cefdinir, cefpodoxime proxetil, cefdinir, cefuroxime, levofloxacin, moxifloxacin, aztreonam lysine, colistin, tobramycin, amikacin, tobramycin, oflaxacin, doxycycline, penicillin V, piperacillin-tazobactam, and vancomycin.
[0072] In some embodiments, the suspected infection is a presurgical/surgical site infection and the antibiotic is one or more of cefazolin, cefuroxime, cefazolin, cefuroxime, cefazolin, cefoxitin, cefotetan, ceftriaxone, ampicillin-sulbactam, cefotetan, metronidazole, neomycin sulfate, erythromycin, ertapenem, fluoroquinolone, TMP/SMX, ampicillin, aztreonam, ciprofloxacin, clindamycin, ertapenem, fluconazole, gentamicin, levofloxacin, moxifloxacin, piperacillin-tazobactam, vancomycin, erythromycin, metronidazole, and neomycin.
[0073] Additionally, the scope of the presently disclosed methods encompasses the inclusion of antibiotics not yet known, or not yet approved by regulatory authorities. The presently claimed assay can be performed with any anti-bacterial agent and is not limited to the antibiotics disclosed herein.
[0074] Now, turning to the disclosed methods, samples are collected from subjects according to standard collection protocols in sterile containers and are transported to the testing facility.
[0075] The preparation of the antibiotic resistance (ABR) testing plates involves two steps. First is preparation of antibiotic solutions and the second is preparation of the bacterial growth medium plate. The antibiotics to be tested for any given sample include antibiotics known to be useful for treating the tissue having the suspected infection, or any antibiotics requested by a medical or laboratory professional having knowledge of the particular patient sample. It is anticipated that most assays will be performed with a standard panel of antibiotics based on the type and location of infection suspected by a medical professional. In some embodiments, the standard panel of antibiotics comprises nitrofurantoin, ciprofloxacin, meropenem, ceftriaxone, trimethoprim/sulfamethoxazole, piperacillin/tazobactam, levofloxacin, cefoxitin, tetracycline, ampicillin/sulbactam, ampicillin, and vancomycin. However, patients with known antibiotic allergies or sensitivities, or with a history of antibiotic resistance, may require customized panels of antibiotics. The assay can be performed simultaneous with an unlimited number of antibiotics.
[0076] Antibiotic stock solutions are prepared using diluents suitable for each antibiotic and then 1Ox solutions are prepared and stored in multi-well plates to allow efficient transfer to testing plates. Each antibiotic is tested at at least two concentrations. In some embodiments, three concentrations, four concentrations, five concentrations, six concentrations, seven concentrations, eight concentrations, nine concentrations, or ten concentrations of an antibiotic, or antibiotic combination, are included in the assay. Typically serial dilutions of the antibiotics are prepared wherein each dilution represents half the concentration of the higher concentration. The 10x antibiotic solutions are stored in the multi-well plate according to a plate plan established for the antibiotic panel chosen for the assay. Exemplary plate plans are depicted in the Antibiotic Source Plates in FIG. 1 and FIG 2. Antibiotic stocks and 10x solutions are stored at 2-8°C until needed.
[0077] The ABR testing plates are multi-well plates (e.g., 6-well, 12-well, 24-well, 48 well, 96-well, 384-well plates, or any multi-well plate suitable for this purpose) capable of containing bacterial growth medium and culturing bacteria. In some embodiments, the plates are 96-well plates. In some embodiments, sterile agar-bacterial growth medium is dispensed into each well of the plate. Exemplary agar-bacterial growth medium include, but are not limited to Mueller-Hinton agar, blood agar, trypticase soy agar, etc. After the agar has solidified at room temperature, 1/10 volume (of bacterial growth medium) of 10x antibiotic solution is added to each well of the test plate according to the pre-determined plate plan. After the antibiotics have been introduced to the bacterial growth medium, the plates are allowed to rest for at least one hour. For long-term storage, the antibiotic containing ABR plates are stored at 2-8°C. In some embodiments, sterile liquid broth bacterial growth medium mixed with sample is dispensed into each well of the plate containing 1/10 volume (of bacterial growth medium) of 10x antibiotic solution arrayed according to a pre-determined plate plan. Multi-well plates containing 1/10 volume (of final well volume of bacterial growth medium and antibiotic solution) are stored at 2-8°C for later use or long-term storage.
[0078] Samples for the disclosed antibiotic resistance testing may be optionally diluted in sterile aqueous solution or mixed with bacterial growth medium. In some embodiments, a volume of sample for the disclosed antibiotic resistance testing are first mixed with a growth medium and incubated for 0-24 hours at an incubation temperature of 35± 40C. The samples are then diluted with saline and then mixed with growth medium and added to room temperature ABR testing plates at 9/10 volume of each well in the multi-well plate. In some embodiments, samples are added to room temperature ABR plates at 1/20 volume of bacterial growth medium present in the well. A single patient specimen is used for each ABR plate. If multiple patient specimens are to be tested, each specimen is assayed in its own plate. Once inoculated, the plates are covered and incubated to encourage bacterial growth. Embodiments where a single sample is assayed using more than one plate are also within the scope of the present method.
[0079] The plates can be used to culture either anaerobic or aerobic bacteria. For culture of anaerobic bacteria, the plates are incubated at a temperature and in a reduced oxygen environment to encourage growth of anaerobic bacteria. For culture of aerobic bacteria, the plates are incubated at a temperature and in an oxygen-containing environment to encourage growth of aerobic bacteria.
[0080] The incubation temperature can vary depending on the expected types of bacteria but will most likely be in a range of 35-40°C. The plates containing samples are incubated for 12-48 hours, 12-24 hours, 24-28 hours, 12-36 hours, 14-30 hours, 16-24 hours, 16-20 hours, or 16-18 hours, or any range bounded by these numbers.
[0081] In some embodiments, wherein the assay is performed with an agar-containing medium, after incubation, bacteria present in each well are recovered by resuspension in an aqueous liquid. Suitable liquids include, but are not limited to, water, saline, culture medium, etc. The aqueous liquid should be sterile, or at least free from bacterial growth. A volume of liquid equal to 100% of the volume of bacterial growth medium is carefully added to the wells of the ABR plate and allowed to sit for at least 30 minutes. In some embodiments, the plates are allowed to sit for 35 minutes, 40 minutes, 45 minutes, 50 minutes, or 60 minutes. The resulting suspension is then carefully removed from each well into individual wells of a clean multi-well plate according to the predetermined plate plan. The plates are optionally agitated to cause mixing of the bacteria with the liquid prior to removal of the suspension. In some embodiments wherein the assay is performed using liquid growth medium, the multi-well plate will be applied to ODeoo measurement immediately after incubation.
[0082] The multi-well plate containing the bacteria-containing suspension is then read in a spectrophotometer. The optical density of the recovered liquid is measured at ODeoo multiple times to correct for uneven distribution of bacteria particles in the suspension. In some embodiments, the plates are read one time, two times, three times, four times, five times, six times, seven times, or eight times. The multiple plate reads occur in sequence without allowing the suspension to settle in the wells.
[0083] The multiple ODeoo of each well are averaged to provide an accurate quantitation of bacteria present in each well under the specific conditions. Each well's average OD6 0 0 is then adjusted for background by subtracting the average OD6 0 0 measurements of a well where no bacteria could grow to yield a blanked value. In some embodiments, this no-growth well contains a blend of antibiotics (AB-blend). In some embodiments, this no-growth well contains sodium azide (Na-Azide). The blanked value is representative of the ability of bacteria to grow in the presence of the particular antibiotic in the well.
[0084] The blanked results are then converted into a "resistance" (R) or "sensitive" (S) score based on a threshold value. OD 6 0 0 measurements greater than or equal to the threshold are interpreted as resistant, while measurements below the threshold are interpreted as sensitive.
[0085] In some embodiments, the threshold value is for a agar-containing medium. In some embodiments, a threshold value has been determined at 0.010 to 1.000, 0.010-0.090,
0.015 to 0.035, or 0.020 to 0.030 based on correlations to a standard reference method. In some embodiments, the threshold value as been determined at about 0.010, about 0.015, about 0.020, about 0.025, about 0.030, about 0.035, about 0.040, about 0.045, about 0.050, about 0.055, about 0.060, about 0.065, about 0.070, about 0.075, about 0.080, about 0.085, or about 0.090 based on correlations to a standard reference method. In some embodiments, a threshold value has been determined at 0.025 based on correlations to a standard reference method.
[0086] In some embodiments, the threshold value is for a liquid medium. In some embodiments, a threshold value has been determined at 0.010-1.000, 0.020-0.090, 0.050 0.080, 0.055 to 0.075, or 0.060 to 0.070 based on correlation to a consensus score between two standard reference methods. In some embodiments, the threshold value as been determined at about 0.010, about 0.015, about 0.020, about 0.025, about 0.030, about 0.035, about 0.040, about 0.045, about 0.050, about 0.055, about 0.060, about 0.065, about 0.070, about 0.075, about 0.080, about 0.085, about 0.090, or about 0.095 based on correlation to a consensus score between two standard reference methods. In some embodiments, a threshold value has been determined at 0.065 based on correlation to a consensus score between two standard reference methods.
[0087] In other embodiments, any adjusted ODeoo measurement greater than blank OD 6 0 0 measurement can be determined as indicative of bacterial growth and applied as a threshold value by correlation to a standard reference method or combination of reference methods.
[0088] Minimal inhibitory concentrations for each effective antibiotic are then calculated based on the sensitivity or resistance of the culture at the multiple antibiotic concentrations.
[0089] Results of the antibiotic resistance assay disclosed herein are transmitted to the appropriate medical professional who then has the option of prescribing an antibiotic, or antibiotics, shown to be active against the patient's infection, changing the antibiotic to a more effective antibiotic, or ordering additional testing.
Example 1. Antibiotic Resistance (ABR) Assay Utilizing Agar-Containing Medium
[0090] Urine samples suitable for processing with this assay are collected, transported, and stored using BD Vacutainer (gray top) tubes or other suitable leak-proof sterile container. Urine samples may be held at room temperature for 48 hours before test results are compromised.
[0091] Antibiotics not received in ready-made solutions were dissolved in appropriate diluent and according to their individual solubility at 10x the concentration desired in the assay as antibiotic stocks. Antibiotic stocks are stored at 2-8°C and protected from direct sunlight. Prepared antibiotic stock solutions were aliquoted into a 96-deep well plate (Thermo Fisher Scientific) to form an Antibiotic Source Plate, as shown in FIG. 1 and identified by antibiotic name and concentration (pg/mL; 10x final concentration). Antibiotics include in this assay were nitrofurantoin, ciprofloxacin, meropenem, ceftriaxone, trimethoprim, sulfamethoxazole, piperacillin, tazobactam, levofloxacin, cefoxitin, tetracycline, ampicillin, sulbactam, and vancomycin, either singly or in combination. One well was designated AB-blend which contained a combination of antibiotics to ensure there was no bacterial growth.
[0092] One hundred microliters of Mueller-Hinton agar medium was aliquoted into each appropriate well position of a 96-well microplate (VIS 96/F-PS, Eppendorf). The medium was allowed to solidify at room temperature for at least 10 min.
[0093] The antibiotics (10 pL) at various concentrations were then aliquoted into desired wells from the Antibiotic Source Plate. After the antibiotics were introduced to the agar medium, the ABR microplates were allowed to sit for at least 1 hr before use. If long term storage is required, ABR microplates containing antibiotic-infuse agar are stored at 2 80C in the dark.
[0094] At the time of testing, urine samples were diluted 1:20 in sterile saline and vortexed. Each patient sample utilized a single ABR microplate. Five microliters of diluted patient sample were added to each well of the room temperature microplate, the plate was sealed and incubated for 16-18 hr at 370C.
[0095] After incubation, the plate was removed from the incubator and carefully uncovered. Two-hundred microliters of deionized water were added to each well to suspend cells present above the agar and the plates incubated at room temperature for 30 min. After 30 min, 100 pl from each well was removed to a new plate and the OD6 0 0 was determined in a spectrophotometer. Five separate reads were taken of each plate and a mean OD 6 00
measurement calculated.
[0096] Controls are depicted in Table 1.
Table 1. Controls
Control Name Control Conditions No-antibiotic control Any well containing medium that is not infused with antibiotics to ensure viability of bacterial cells present in patient urine samples and included in each plate. If the no-antibiotic control for any given patient does not yield growth, a secondary test is performed using the same patient sample without dilution. Negative control plate Microplate containing antibiotic-infused agar medium without addition of patient sample or cultured bacterial organisms to ensure non contamination of reagents. AB-Blend One or more wells containing a combination of antibiotics to ensure there is no bacterial growth
[0097] Raw data collected from the plate is depicted in Table 2. Data in spreadsheet form was arranged as "Well Position" adjacent to its corresponding "Mean" OD.
Table 2. Raw Data
A7 0.6960 C1l 0.0401 F9 0.0392 A8 0.0388 C12 0.5222 F10 0.4378 A9 0.0744 D7 0.0392 F11 0.0389 A10 0.0385 D8 0.5372 F12 0.5307 Al1 0.0477 D9 0.0432 G7 0.0387 A12 0.4550 D10 0.4377 G8 0.0408 B7 0.0387 D11 0.0392 G9 0.0391 B8 0.0390 D12 0.4824 G10 0.0495 B9 0.0412 E7 0.0408 Gl 0.4304 B10 0.4250 E8 0.5029 G12 0.0384 B1l 0.0449 E9 0.0405 H7 0.0392 B12 0.4880 E10 0.4918 H8 0.0401 C7 0.0386 Eli 0.0389 H9 0.0386 C8 0.0385 E12 0.5087 H10 0.0474 C9 0.0445 F7 0.0414 H1l 0.4396 C10 0.4296 F8 0.2925 H12 0.7874
[0098] Each well position corresponds to a particular antibiotic at a certain concentration according to the plate plan. Addition of the antibiotic legend is depicted in Table 3.
Table 3.
No-antibiotic A7 0.6960 Cipro-l E7 0.0408 Mero-2 A8 0.0388 Amp/Sulb-16,8 E8 0.5029 Levo-4 A9 0.0744 Ceftria-4 E9 0.0405 Ceftria-64 A10 0.0385 Vanco-16 E10 0.4918 Pip/Tazo-64,4 Al1 0.0477 Cefox-16 Eli 0.0389 Tetra-16 A12 0.4550 TMP/SMX-2,38 E12 0.5087 Nitro-32 B7 0.0387 Cipro-2 F7 0.0414 Mero-4 B8 0.0390 Amp/Sulb-32,16 F8 0.2925 Levo-8 B9 0.0412 Ceftria-8 F9 0.0392 Vanco-2 B10 0.4250 Vanco-32 F10 0.4378 Pip/Tazo-128,4 Bll 0.0449 Cefox-32 Fll 0.0389 Amp-8 B12 0.4880 TMP/SMX-4,76 F12 0.5307 Nitro-64 C7 0.0386 Cipro-4 G7 0.0387 Mero-8 C8 0.0385 Levo-l G8 0.0408 Ceftria-l C9 0.0445 Ceftria-16 G9 0.0391 Vanco-4 C10 0.4296 Pip/Tazo-16,4 G10 0.0495 Cefox-4 C11 0.0401 Tetra-4 Gl1 0.4304 Amp-16 C12 0.5222 AB-Blend G12 0.0384 Nitro-128 D7 0.0392 Mero-l H7 0.0392 Amp/Sulb-8,4 D8 0.5372 Levo-2 H8 0.0401 Ceftria-2 D9 0.0432 Ceftria-32 H9 0.0386 Vanco-8 D10 0.4377 Pip/Tazo-32,4 H10 0.0474 Cefox-8 Dl1 0.0392 Tetra-8 Hl1 0.4396 Amp-32 D12 0.4824 empty H12 0.7874
[0099] Once the antibiotic legend was placed adjacent to the appropriate well, the data was rearranged by sorting like antibiotics together (Table 4).
Table 4.
No-antibiotic A7 0.6960 Ceftria-64 A10 0.0385 Nitro-32 B7 0.0387 Vanco-2 B10 0.4250 Nitro-64 C7 0.0386 Vanco-4 C10 0.4296 Nitro-128 D7 0.0392 Vanco-8 D10 0.4377 Cipro-l E7 0.0408 Vanco-16 E10 0.4918 Cipro-2 F7 0.0414 Vanco-32 F10 0.4378 Cipro-4 G7 0.0387 Pip/Tazo-16,4 G10 0.0495 Mero-l H7 0.0392 Pip/Tazo-32,4 H10 0.0474 Mero-2 A8 0.0388 Pip/Tazo-64,4 Al1 0.0477 Mero-4 B8 0.0390 Pip/Tazo-128,4 B11 0.0449 Mero-8 C8 0.0385 Cefox-4 C11 0.0401 Amp/Sulb-8,4 D8 0.5372 Cefox-8 Dl 0.0392 Amp/Sulb-16,8 E8 0.5029 Cefox-16 Eli 0.0389 Amp/Sulb-32,16 F8 0.2925 Cefox-32 Fl 0.0389 Levo-l G8 0.0408 Tetra-4 Gl 0.4304 Levo-2 H8 0.0401 Tetra-8 Hi1 0.4396 Levo-4 A9 0.0744 Tetra-16 A12 0.4550 Levo-8 B9 0.0412 Amp-8 B12 0.4880 Ceftria-l C9 0.0445 Amp-16 C12 0.5222 Ceftria-2 D9 0.0432 Amp-32 D12 0.4824 Ceftria-4 E9 0.0405 TMP/SMX-2,38 E12 0.5087 Ceftria-8 F9 0.0392 TMP/SMX-4,76 F12 0.5307 Ceftria-16 G9 0.0390 AB-Blend G12 0.0384 Ceftria-32 H9 0.0386 empty H12 0.7874
[0100] The raw data was then "blanked" using the measurement obtained from the AB Blend well, as depicted in Table 5.
Table 5.
No-antibiotic A7 0.6960 0.6576 Nitro-32 B7 0.0387 0.0003 Nitro-64 C7 0.0386 0.0002 Nitro-128 D7 0.0392 0.0008 Cipro-1 E7 0.0408 0.0024 Cipro-2 F7 0.0414 0.0030 Cipro-4 G7 0.0387 0.0003 Mero-1 H7 0.0392 0.0008 Mero-2 A8 0.0388 0.0004 Mero-4 B8 0.0390 0.0006 Mero-8 C8 0.0385 0.0001 Amp/Sulb-8,4 D8 0.5372 0.4988 Amp/Sulb-16,8 E8 0.5029 0.4646 Amp/Sulb-32,16 F8 0.2925 0.2541 Levo-1 G8 0.0408 0.0024 Levo-2 H8 0.0401 0.0017 Levo-4 A9 0.0744 0.0360 Levo-8 B9 0.0412 0.0028 Ceftria-1 C9 0.0445 0.0061 Ceftria-2 D9 0.0432 0.0048 Ceftria-4 E9 0.0405 0.0021 Ceftria-8 F9 0.0392 0.0008 Ceftria-16 G9 0.0391 0.0007 Ceftria-32 H9 0.0386 0.0002 Ceftria-64 A10 0.0385 0.0001 Vanco-2 B10 0.4250 0.3866 Vanco-4 C10 0.4296 0.3912 Vanco-8 D10 0.4377 0.3993 Vanco-16 E10 0.4918 0.4534 Vanco-32 F10 0.4378 0.3994 Pip/Tazo-16,4 G10 0.0495 0.0111 Pip/Tazo-32,4 H10 0.0474 0.0090 Pip/Tazo-64,4 Al1 0.0477 0.0093 Pip/Tazo-128,4 Bl 0.0449 0.0065 Cefox-4 C11 0.0401 0.0017 Cefox-8 Dl 0.0392 0.0008 Cefox-16 Eli 0.0389 0.0005 Cefox-32 Fl 0.0389 0.0005 Tetra-4 Gl 0.4304 0.3920 Tetra-8 Hi1 0.4396 0.4012 Tetra-16 A12 0.4550 0.4166 Amp-8 B12 0.4880 0.4496
Amp-16 C12 0.5222 0.4838 Amp-32 D12 0.4824 0.4440 TMP/SMX-2,38 E12 0.5087 0.4703 TMP/SMX-4,76 F12 0.5307 0.4923 AB-Blend G12 0.0384 0 empty H12 0.7874 0.7490
[0101] To determine whether bacterial organisms present in the patient samples were resistant or sensitive to a particular antibiotic at a certain concentration, blanked OD readings were compared to a threshold OD6 0 0 of 0.025 (Table 6). Any OD measurement greater than or equal to this threshold was designated Resistant (R) meaning bacterial organisms present in patient sample were resistant to that particular antibiotic at that certain concentration. Any OD measurement less than this threshold was designated Sensitive (S) meaning bacterial organisms present in patient sample were sensitive to that particular antibiotic at that certain concentration.
Table 6.
No-antibiotic A7 0.6960 0.6576 R Nitro-32 B7 0.0387 0.0003 S Nitro-64 C7 0.0386 0.0002 S Nitro-128 D7 0.0392 0.0008 S Cipro-1 E7 0.0408 0.0024 S Cipro-2 F7 0.0414 0.0030 S Cipro-4 G7 0.0387 0.0003 S Mero-1 H7 0.0392 0.0008 S Mero-2 A8 0.0388 0.0004 S Mero-4 B8 0.0390 0.0006 S Mero-8 C8 0.0385 0.0001 S Amp/Sulb-8,4 D8 0.5372 0.4988 R Amp/Sulb-16,8 E8 0.5029 0.4646 R Amp/Sulb-32,16 F8 0.2925 0.2541 R Levo-1 G8 0.0408 0.0024 S Levo-2 H8 0.0401 0.0017 S Levo-4 A9 0.0744 0.0360 R Levo-8 B9 0.0412 0.0028 S Ceftria-1 C9 0.0445 0.0061 S Ceftria-2 D9 0.0432 0.0048 S Ceftria-4 E9 0.0405 0.0021 S Ceftria-8 F9 0.0392 0.0008 S Ceftria-16 G9 0.0391 0.0007 S
Ceftria-32 H9 0.0386 0.0002 S Ceftria-64 A10 0.0385 0.0001 S Vanco-2 B10 0.4250 0.3866 R Vanco-4 C10 0.4296 0.3912 R Vanco-8 D10 0.4377 0.3993 R Vanco-16 E10 0.4918 0.4534 R Vanco-32 F10 0.4378 0.3994 R Pip/Tazo-16,4 G10 0.0495 0.0111 S Pip/Tazo-32,4 H10 0.0474 0.0090 S Pip/Tazo-64,4 Al1 0.0477 0.0093 S Pip/Tazo-128,4 Bl 0.0449 0.0065 S Cefox-4 C1l 0.0401 0.0017 S Cefox-8 Dl 0.0392 0.0008 S Cefox-16 Eli 0.0389 0.0005 S Cefox-32 Fll 0.0389 0.0005 S Tetra-4 Gl1 0.4304 0.3920 R Tetra-8 Hl1 0.4396 0.4012 R Tetra-16 A12 0.4550 0.4166 R Amp-8 B12 0.4880 0.4496 R Amp-16 C12 0.5222 0.4838 R Amp-32 D12 0.4824 0.4440 R TMP/SMX-2,38 E12 0.5087 0.4703 R TMP/SMX-4,76 F12 0.5307 0.4923 R AB-Blend G12 0.0384 0 S empty H12 0.7874 0.7490 R
[0102] In this example, the sample contains bacteria sensitive to nitrofurantoin, ciprofloxacin, meropenem, ceftriaxone, piperacillin/tazobactam, and cefoxitin. The results for levo are equivocal.
[0103] The MIC for each drug can then be provided. The minimum inhibitory concentration (MIC) is the minimum test antibiotic concentration to which the sample is sensitive. An exemplary MIC determination for meropenembased on the results above is depicted in Table 7.
Table 7.
Mero [1] Mero [2] Mero [4] Mero [8] MIC Interpretation S S S S <=1 S R S S S <=2 1 R R S S <=4 1 R R R S <=8 1
R R R R >=8 R
Example 2. Validation of ABR Assay Utilizing Agar Containing Growth Medium
[0104] Accuracy
[0105] Accuracy was assessed by comparing the antibiotic resistance results of the test method compared to those obtained for mixed and isolated cultures evaluated by the antibiotic-agar method. A total of 19 bacterial pools (pools consist of 2-4 organisms), 17 isolated organisms, and 9 routinely processed urine samples were tested for resistance to 12 antibiotics. Accuracy was assessed in regards to Specificity (True Negatives), Sensitivity (True Positives), and Overall Accuracy (All Samples). The assay showed good accuracy in all three categories (Table 8).
Table 8.
% Accuracy Overall Accuracy 96% Specificity 95% Sensitivity 96%
[0106] Precision
[0107] Inter-assay precision was evaluated by testing three samples from the "Accuracy" sample set over three days. Intra-assay precision was evaluated by testing each of these samples in triplicate in one batch. Precision for each sample was assessed by determining the consensus result of all 5 replicates and then counting the number of replicates that match the consensus. This number was then divided by the sum of all measurements (sum of measurements for all drugs) to determine the % precision. The overall precision was calculated by dividing the sum of all correct matches by the total number of measurements from all samples. The assay demonstrated very good precision (Table 9).
Table 9.
All Precision Samples Total Matched 643 Total Measurements 690 % Match 93%
[0108] Analytical Sensitivity
[0109] Analytic sensitivity, or the limit of detection (LOD), was assessed by determined the lowest bacterial concentration that yielded accurate results. Bacterial concentrations lower than 10,000 cells/mL are not considered positive for UTI and therefore the lowest concentration tested was 10,000 cells/mL. Consistent results (>98%) correlation to the consensus results were obtained at the lowest bacterial concentrations tested. The LOD of this assay was 10,000 cells/mL.
[0110] Analytical Specificity
[0111] The analytic specificity of this assay was assessed by testing samples at bacterial concentrations of 100,000,000 cells/mL. Such concentrations are not typically observed in routine UTI patient samples but were achieved in saturated overnight bacterial cultures. Assessment of analytic measurement range (AMR) was then performed by testing three samples from the "Accuracy" sample set each diluted as follows: 100,000,000 cells/mL, 1,000,000 cells/mL, 100,000 cells/mL and 10,000 cells/mL. Consistent results (>94%) correlation to the consensus results were obtained at all bacterial concentrations tested. The assay is specific at bacterial concentration up to 100,000,000 cells/mL.
Example 3. Antibiotic Resistance (ABR) Assay Utilizing Liquid Growth Medium
[0112] Urine samples suitable for processing with this assay are collected, transported, and stored using BD Vacutainer tubes or other suitable leak-proof sterile containers. Urine samples may be held at room temperature for 48 hours before test results are compromised.
[0113] Antibiotics not received in ready-made solutions were dissolved in appropriate solvents and according to their individual solubility to 50x the concentration desired in the assay and stored as antibiotic stocks. Antibiotic stocks are stored at 2-8°C and protected from direct sunlight. Prepared antibiotic stock solutions were aliquoted into a 96-deep well plate (ThermoFisher Scientific) to form a 50x Antibiotic Source Plate and then diluted 1:5 to form a 10x Antibiotic Source Plate, as shown in FIG. 2 where each well is identified by antibiotic name and concentration (pg/mL; 10x final concentration). Antibiotics included in this assay were amoxicillin, clavulanate, ampicillin, sulbactam, cefaclor, cefazolin, cefepime, cefoxitin, ceftazidime, ceftriaxone, ciprofloxacin, gentamicin, levofloxacin, meropenem, nitrofurantoin, piperacillin, tazobactam, tetracycline, trimethoprim, sulfamethoxazole, and vancomycin, either singly or in combination. One well was assigned sodium azide to ensure no bacterial growth would be observed in that well.
[0114] Twenty microliters of each antibiotic solution were aliquoted into the pre determined wells of a 96-well microplate (VIS 96/F-PS, Eppendorf) from the 10x Antibiotic Source Plate to create ABR testing plates for inoculation. These ABR testing plates were allowed to sit for up to 24 hours before use at 2-8°C in the dark.
[0115] At the time of testing, urine samples were centrifuged to concentrate any bacterial cells and then mixed with liquid Mueller-Hinton medium and incubated for 6-16 hours at 37°C. After this initial incubation, the sample is diluted to 0.5-0.6 McF in saline and then 500 pl of that suspension was added to 29.5 pl of Mueller-Hinton medium. One hundred and eighty microliters of the diluted sample is then aliquoted to each well of the ABR microplate already containing 1Ox antibiotic solution, bringing all of the antibiotics to the desired final concentration. The plate is then sealed and incubated for 12-16 hours at 37°C.
[0116] After incubation, the plate was removed from the incubator and carefully uncovered and the OD600 was determined for each appropriate well by spectrophotometer. Five separate measurements were taken of each well on a plate and the mean OD600 measurement calculated for each well.
[0117] Controls are depicted in Table 10.
Table 10. Controls
Control Name Control Conditions No-antibiotic control Any well containing medium that is not infused with antibiotics to ensure viability of bacterial cells present in patient urine samples and included in each plate. If the no-antibiotic control for any given patient does not yield growth, the sample is repeated on the assay and reported as quantity not sufficient if repeat testing still does not yield satisfactory results. Negative control plate Microplate containing antibiotic-infused agar medium without addition of patient sample or cultured bacterial organisms to ensure non contamination of reagents. Na Azide One or more wells containing a dilute concentration of sodium azide to ensure no bacterial growth will occur.
[0118] Raw data collected from the plate is depicted in Table 11. Data in spreadsheet form was arranged as "Well Position" adjacent to its corresponding "Mean" OD.
Table 11. Raw Data
Al 0.2217 A5 0.0539 B1 0.0552 A2 0.0496 A6 0.1468 B2 0.0413 A3 0.2357 A710.2457 B3 0.2449
[A4[ .421 A8 0.0427 B4 0.0419
B5 0.0417 D7 0.2437 G1 0.1928 B6 0.0570 D8 0.0600 G2 0.0443 B7 0.2607 El 0.0423 G3 0.0431 B8 0.0419 E2 0.0436 G4 0.2224 C1 0.0539 E3 0.0435 G5 0.2339 C2 0.0414 E4 0.2348 G6 0.2323 C3 0.2356 E5 0.1209 G7 0.0418 C4 0.2202 E6 0.2417 G8 0.2354 C5 0.0419 E7 0.0615 H1 0.1556 C6 0.2416 E8 0.0457 H2 0.2485 C7 0.2473 F1 0.2198 H3 0.0426 C8 0.2332 F2 0.0431 H4 0.1596 D1 0.0441 F3 0.0425 H5 0.2090 D2 0.1180 F4 0.2084 H6 0.2281 D3 0.0504 F5 0.1016 H7 0.0437 D4 0.2288 F6 0.2404 H8 0.2446 D5 0.0418 F7 0.0426 D6 0.2427 F8 0.2604
[0119] Each well position corresponds to a particular antibiotic at a certain concentration according to the plate plan. Addition of the antibiotic legend is depicted in Table 12.
Table 12.
No-Antibiotic Al 0.2217 Levo-2 E2 0.0436 Mero-8 A2 0.0496 Vanco-2 E3 0.0435 Ceftriaxone-4 A3 0.2357 Cefoxitin-32 E4 0.2348 Pip/Tazo-16,4 A4 0.0421 TMP/SMX-2,38 E5 0.1209 Tetra-16 A5 0.0539 Cefepime-4 E6 0.2417 Cefazolin-16 A6 0.1468 Gentamicin-4 E7 0.0615 Ceftazidime-4 A7 0.2457 Na Azide E8 0.0457 No-Antibiotic A8 0.0427 Mero-1 F1 0.2198 Nitro-32 B1 0.0552 Levo-4 F2 0.0431 Amp/Sulb-8,4 B2 0.0413 Vanco-4 F3 0.0425 Ceftriaxone-8 B3 0.2449 Tetra-2 F4 0.2084 Pip/Tazo-128,4 B4 0.0419 TMP/SMX-4,76 F5 0.1016 Amp-8 B5 0.0417 Cefepime-8 F6 0.2404 Cefazolin-32 B6 0.0570 Gentamicin-16 F7 0.0426 Ceftazidime-8 B7 0.2607 No-Antibiotic F8 0.2604 No-Antibiotic B8 0.0419 Mero-2 G1 0.1928 Nitro-128 C1 0.0539 Levo-8 G2 0.0443 Amp/Sulb-32,16 C2 0.0414 Vanco-16 G3 0.0431 Ceftriaxone-64 C3 0.2356 Tetra-4 G4 0.2224 Cefoxitin-4 C4 0.2202 Cefazolin-2 G5 0.2339 Amp-16 C5 0.0419 Cefepime-16 G6 0.2323 Cefepime-1 C6 0.2416 Amox/Clav-8,4 G7 0.0418 Ceftazidime-16 C7 0.2473 No-Antibiotic G8 0.2354 Cefaclor-8 C8 0.2332 Mero-4 H1 0.1556 Cipro-1 Dl 0.0441 Ceftriaxone-1 H2 0.2485 Levo-1 D2 0.1180 Vanco-32 H3 0.0426 Vanco-1 D3 0.0504 Tetra-8 H4 0.1596 Cefoxitin-8 D4 0.2288 Cefazolin-8 H5 0.2090 Amp-32 D5 0.0418 Cefepime-32 H6 0.2281 Cefepime-2 D6 0.2427 Amox/Clav-32,16 H7 0.0437 Ceftazidime-32 D7 0.2437 No-Antibiotic H8 0.2446 Cefaclor-32 D8 0.0600 Cipro-4 El 0.0423
[0120] With antibiotic legend placed adjacent to the appropriate well, the data was rearranged by sorting like antibiotics together (Table 13).
Table 13.
Aniioi Wel -Ma Aniioi Wel Mean
Na Azide E8 0.0457 Levo-2 E2 0.0436 No-Antibiotic Al 0.2217 Levo-4 F2 0.0431 No-Antibiotic F8 0.2604 Levo-8 G2 0.0443 No-Antibiotic G8 0.2354 Mero-1 F1 0.2198 No-Antibiotic H8 0.2446 Mero-2 G1 0.1928 Amox/Clav-8,4 G7 0.0418 Mero-4 H1 0.1556 Amox/Clav-32,16 H7 0.0437 Mero-8 A2 0.0496 Amp-8 B5 0.0417 Nitro-32 B1 0.0552 Amp-16 C5 0.0419 Nitro-128 C1 0.0539 Amp-32 D5 0.0418 Pip/Tazo-16,4 A4 0.0421 Amp/Sulb-8,4 B2 0.0413 Pip/Tazo-128,4 B4 0.0419 Amp/Sulb-32,16 C2 0.0414 Tetra-2 F4 0.2084 Cefaclor-8 C8 0.2332 Tetra-4 G4 0.2224 Cefaclor-32 D8 0.0600 Tetra-8 H4 0.1596 Cefazolin-2 G5 0.2339 Tetra-16 A5 0.0539 Cefazolin-8 H5 0.2090 TMP/SMX-2,38 E5 0.1209 Cefazolin-16 A6 0.1468 TMP/SMX-4,76 F5 0.1016 Cefazolin-32 B6 0.0570 Vanco-1 D3 0.0504 Cefepime-1 C6 0.2416 Vanco-2 E3 0.0435 Cefepime-2 D6 0.2427 Vanco-4 F3 0.0425 Cefepime-4 E6 0.2417 Vanco-16 G3 0.0431 Cefepime-8 F6 0.2404 Vanco-32 H3 0.0426 Cefepime-16 G6 0.2323 Cefepime-32 H6 0.2281 Cefoxitin-4 C4 0.2202 Cefoxitin-8 D4 0.2288 Cefoxitin-32 E4 0.2348 Ceftazidime-4 A7 0.2457 Ceftazidime-8 B7 0.2607 Ceftazidime-16 C7 0.2473 Ceftazidime-32 D7 0.2437 Ceftriaxone-1 H2 0.2485 Ceftriaxone-4 A3 0.2357 Ceftriaxone-8 B3 0.2449 Ceftriaxone-64 C3 0.2356 Cipro-1 D1 0.0441 Cipro-4 El 0.0423 No-Antibiotic A8 0.0427 No-Antibiotic B8 0.0419 Gentamicin-4 E7 0.0615 Gentamicin-16 F7 0.0426 Levo-1 D2 0.1180
[0121] The raw data was then "blanked" using the measurement obtained from the Na Azide well, as depicted in Table 14.
Table 14.
Na Azide E8 0.0457 0 No-Antibiotic Al 0.2217 0.1760 No-Antibiotic F8 0.2604 0.2147 No-Antibiotic G8 0.2354 0.1897 No-Antibiotic H8 0.2446 0.1989 Amox/Clav-8,4 G7 0.0418 -0.0039 Amox/Clav-32,16 H7 0.0437 -0.0020 Amp-8 B5 0.0417 -0.0040 Amp-16 C5 0.0419 -0.0038 Amp-32 D5 0.0418 -0.0039 Amp/Sulb-8,4 B2 0.0413 -0.0044 Amp/Sulb-32,16 C2 0.0414 -0.0043 Cefaclor-8 C8 0.2332 0.1875 Cefaclor-32 D8 0.0600 0.0143 Cefazolin-2 G5 0.2339 0.1882 Cefazolin-8 H5 0.2090 0.1633 Cefazolin-16 A6 0.1468 0.1011 Cefazolin-32 B6 0.0570 0.0113 Cefepime-1 C6 0.2416 0.1959 Cefepime-2 D6 0.2427 0.1970 Cefepime-4 E6 0.2417 0.1960 Cefepime-8 F6 0.2404 0.1947 Cefepime-16 G6 0.2323 0.1866 Cefepime-32 H6 0.2281 0.1824 Cefoxitin-4 C4 0.2202 0.1745 Cefoxitin-8 D4 0.2288 0.1831 Cefoxitin-32 E4 0.2348 0.1891 Ceftazidime-4 A7 0.2457 0.2000 Ceftazidime-8 B7 0.2607 0.2150 Ceftazidime-16 C7 0.2473 0.2016 Ceftazidime-32 D7 0.2437 0.1980 Ceftriaxone-1 H2 0.2485 0.2028 Ceftriaxone-4 A3 0.2357 0.1900 Ceftriaxone-8 B3 0.2449 0.1992 Ceftriaxone-64 C3 0.2356 0.1899 Cipro-1 D1 0.0441 -0.0016 Cipro-4 El 0.0423 -0.0034
-Antibiotic A8 0.42 B-03 No-Antibiotic A8 0.0427 -0.0030 No-Antibiotic B8 0 .0419 -0.0038 Gentamicin-4 E7 0.0615 0.0158 Gentamicin-16 F7 0.0426 -0.0031 Levo-1 D2 0.1180 0.0723 Levo-2 E2 0.0436 -0.0021 Levo-4 F2 0.0431 -0.0026 Levo-8 G2 0.0443 -0.0014 Mero-1 F1 0.2198 0.1741 Mero-2 G1 0.1928 0.1471 Mero-4 H1 0.1556 0.1099 Mero-8 A2 0.0496 0.0039 Nitro-32 B1 0.0552 0.0095 Nitro-128 C1 0.0539 0.0082 Pip/Tazo-16,4 A4 0.0421 -0.0036 Pip/Tazo-128,4 B4 0.0419 -0.0038 Tetra-2 F4 0.2084 0.1627 Tetra-4 G4 0.2224 0.1767 Tetra-8 H4 0.1596 0.1139 Tetra-16 A5 0.0539 0.0082 TMP/SMX-2,38 E5 0.1209 0.0752 TMP/SMX-4,76 F5 0.1016 0.0559 Vanco-1 D3 0.0504 0.0047 Vanco-2 E3 0.0435 -0.0022 Vanco-4 F3 0.0425 -0.0032 Vanco-16 G3 0.0431 -0.0026 Vanco-32 H3 0.0426 -0.0031
[0122] To determine whether bacterial organisms present in the patient samples were resistant or sensitive to a particular antibiotic at a certain concentration, blanked OD readings were compared to a threshold OD6 0 0 of 0.065 (Table 15). An OD measurement greater than or equal to this threshold was designated Resistant (R) meaning bacterial organisms present in patient sample were resistant to that particular antibiotic at that certain concentration. Any OD measurement less than this threshold was designated Sensitive (S) meaning bacterial organisms present in patient sample were sensitive to that particular antibiotic at that certain concentration.
Table 15.
Na Azide E8 0.0457 0 S No-Antibiotic Al 0.2217 0.1760 R No-Antibiotic F8 0.2604 0.2147 R No-Antibiotic G8 0.2354 0.1897 R No-Antibiotic H8 0.2446 0.1989 R Amox/Clav-8,4 G7 0.0418 -0.0039 S Amox/Clav-32,16 H7 0.0437 -0.0020 S Amp-8 B5 0.0417 -0.0040 S Amp-16 C5 0.0419 -0.0038 S Amp-32 D5 0.0418 -0.0039 S Amp/Sulb-8,4 B2 0.0413 -0.0044 S Amp/Sulb-32,16 C2 0.0414 -0.0043 S Cefaclor-8 C8 0.2332 0.1875 R Cefaclor-32 D8 0.0600 0.0143 S Cefazolin-2 G5 0.2339 0.1882 R Cefazolin-8 H5 0.2090 0.1633 R Cefazolin-16 A6 0.1468 0.1011 R Cefazolin-32 B6 0.0570 0.0113 S Cefepime-1 C6 0.2416 0.1959 R Cefepime-2 D6 0.2427 0.1970 R Cefepime-4 E6 0.2417 0.1960 R Cefepime-8 F6 0.2404 0.1947 R Cefepime-16 G6 0.2323 0.1866 R Cefepime-32 H6 0.2281 0.1824 R Cefoxitin-4 C4 0.2202 0.1745 R Cefoxitin-8 D4 0.2288 0.1831 R Cefoxitin-32 E4 0.2348 0.1891 R Ceftazidime-4 A7 0.2457 0.2000 R Ceftazidime-8 B7 0.2607 0.2150 R Ceftazidime-16 C7 0.2473 0.2016 R Ceftazidime-32 D7 0.2437 0.1980 R Ceftriaxone-1 H2 0.2485 0.2028 R Ceftriaxone-4 A3 0.2357 0.1900 R Ceftriaxone-8 B3 0.2449 0.1992 R Ceftriaxone-64 C3 0.2356 0.1899 R Cipro-1 D1 0.0441 -0.0016 S Cipro-4 El 0.0423 -0.0034 S No-Antibiotic A8 0.0427 -0.0030 S No-Antibiotic B8 0.0419 -0.0038 S Gentamicin-4 E7 0.0615 0.0158 S Gentamicin-16 F7 0.0426 -0.0031 S Levo-1 D2 0.1180 0.0723 R
Levo-2 e 0.43 -0.0021 s Levo-2 E2 0.0436 -0.0021 S Levo-4 F2 0.0431 -0.0026 S Levo-8 G2 0.0443 -0.0014 S Mero-1 F1 0.2198 0.1741 R Mero-2 G1 0.1928 0.1471 R Mero-4 H1 0.1556 0.1099 R Mero-8 A2 0.0496 0.0039 S Nitro-32 B1 0.0552 0.0095 S Nitro-128 C1 0.0539 0.0082 S Pip/Tazo-16,4 A4 0.0421 -0.0036 S Pip/Tazo-128,4 B4 0.0419 -0.0038 S Tetra-2 F4 0.2084 0.1627 R Tetra-4 G4 0.2224 0.1767 R Tetra-8 H4 0.1596 0.1139 R Tetra-16 A5 0.0539 0.0082 S TMP/SMX-2,38 E5 0.1209 0.0752 R TMP/SMX-4,76 F5 0.1016 0.0559 S Vanco-1 D3 0.0504 0.0047 S Vanco-2 E3 0.0435 -0.0022 S Vanco-4 F3 0.0425 -0.0032 S Vanco-16 G3 0.0431 -0.0026 S Vanco-32 H3 0.0426 -0.0031 S
[0123] In this example, the sample contains bacteria sensitive to amoxicillin/clavulanate, ampicillin, ampicillin/sulbactam, ciprofloxacin, gentamicin, levofloxacin, nitrofurantoin, piperacillin/tazobactam, and vancomycin.
[0124] The MIC for each drug can then be provided. The minimum inhibitory concentration (MIC) is the minimum test antibiotic concentration to which the sample is sensitive. An exemplary MIC determination for meropenembased on the results above is depicted in Table 16.
Table 16.
Mero [1] Mero [2] Mero [4] Mero [8] MIC Interpretation S S S S <=1 S R S S S <=2 1 R R S S <=4 1 R R R S <=8 1 R R R R >=8 R
Example 4. Validation of ABR Assay Utilizing Liquid Growth Medium
[0125] Accuracy
[0126] Accuracy was assessed by comparing the antibiotic resistance results of the test method to a consensus of results obtained by standard reference methods. A total of 15 isolated organisms, and 20 routinely processed patient urine samples were tested for resistance to 18 antibiotics, each tested at multiple concentrations for a total of 57 antibiotic concentrations. Accuracy was assessed regarding Specificity (True Negatives), Sensitivity (True Positives), and overall Accuracy (all samples). The assay showed good accuracy in all three categories (Table 17).
Table 17.
% Accuracy Overall Accuracy 96% Specificity 95% Sensitivity 97%
[0127] Precision
[0128] Inter-Assay precision was evaluated by testing five samples over three different days. Intra-Assay precision was evaluated by testing the same five samples in triplicate in a single day. Percent concordance was calculated to measure the precision of results obtained by this assay. The assay demonstrated very good precision (Table 18).
Table 18.
Precision Description Intra-Assay Inter-Assay Total # of Matches 841 1388 Total # of Measurements 855 1425 % Concordance 98% 97%
[0129] Analytic Sensitivity
[0130] Analytic sensitivity was evaluated by creating a dilution series of E. coli and E. faecalis with the lowest bacterial concentration at less than 100 cells/mL for each organism. Each dilution level for each isolate was tested to show reproducibility of results down to the lowest concentration. 98% correlation was observed across all dilution levels for both isolates, indicating the limit of detection (LOD) of this assay is less than 100 cells/ml.
[0131] Analytic Specificity
[0132] Analytic specificity was evaluated in the context of inhibitory effect of overloading the assay with too many bacterial cells. Lower accuracy (due to false-resistant results) was observed for samples inoculated at high bacterial concentration. This indicates that all samples must be diluted to the specified cell density post pre-culture and before ABR inoculation.
[0133] Pre-Culture Duration Determination
[0134] This assay utilizes a pre-culture step prior to introducing samples to antibiotics. The duration of this pre-culture incubation was tested at 6 and 16 hours for 2 isolates (E. coli and E. faecalis). Good accuracy for each isolate was observed after both 6 and 16 hour pre culture incubations, indicating a pre-culture window of 6 to 16 hours for this assay. Results displayed below in Table 19.
Table 19.
Description # Results % Accuracy Total # of Matches 81 98% Total # of Measurements 83
[0135] Incubation Duration Determination
[0136] Once samples are introduced to antibiotics, they are incubated for 12 to 16 hours. This incubation length was determined by obtaining OD measurements for Precision samples after 12 and 16 hours of incubation. Good percent concordance was observed for all samples across within a 12 to 16 hour incubation window (Table 20).
Table 20.
Description # Targets % Concordance Total # of Matches 2758 97% Total # of Measurements 2850
[0137] Bacterial Growth Confirmation
[0138] To confirm turbidity (high OD measurements) are due to bacterial growth, DNA was extracted from wells corresponding to Sensitive and Resistant results and tested for pathogen identification by PCR. Identification results confirm Resistant (turbid) wells contained significantly higher bacterial concentration than Sensitive (clear) wells (Table 21).
Table 21.
Overall (Cells/mL) Resistant 5,170,897,798 Sensitive 1,341,116 Fold-Diff 3,856
[0139] Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term "about." As used herein the terms "about" and "approximately" means within 10 to 15%, preferably within 5 to 10%. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
[0140] The terms "a," "an," "the" and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.
[0141] Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
[0142] Certain embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on these described embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
[0143] Specific embodiments disclosed herein may be further limited in the claims using consisting of or consisting essentially of language. When used in the claims, whether as filed or added per amendment, the transition term "consisting of" excludes any element, step, or ingredient not specified in the claims. The transition term "consisting essentially of' limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s). Embodiments of the invention so claimed are inherently or expressly described and enabled herein.
[0144] Furthermore, numerous references have been made to patents and printed publications throughout this specification. Each of the above-cited references and printed publications are individually incorporated herein by reference in their entirety.
[0144A] In this specification where reference has been made to patent specifications, other external documents, or other sources of information, this is generally for the purpose of providing a context for discussing the features of the invention. Unless specifically stated otherwise, reference to such external documents is not to be construed as an admission that such documents, or such sources of information, in any jurisdiction, are prior art, or form part of the common general knowledge in the art.
[0144B] In the description in this specification reference may be made to subject matter which is not within the scope of the appended claims. That subject matter should be readily identifiable by a person skilled in the art and may assist in putting into practice the invention as defined in the appended claims.
[0145] In closing, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.
Claims (9)
- What is claimed is: 1. A method for simultaneously determining the antibiotic susceptibilities of a mixed population of bacteria in a polymicrobial sample to a plurality of antibiotics, the method comprising: (a) applying a quantity of the polymicrobial sample simultaneously to a plurality of antibiotic-containing growth mediums, wherein each medium comprises bacterial growth medium with one or a plurality of antibiotics, wherein the polymicrobial sample is from a subject suspected of having an infection, wherein individual species of bacteria are not isolated from the sample prior to application of the quantity of the polymicrobial sample to the plurality of mediums; (b) culturing the polymicrobial sample in the mediums for a period of time; and (c) measuring an OD6 oo of each medium, and calculating an adjusted OD6 0 0 for each medium, wherein the adjusted OD6 0 0 of a medium indicates the susceptibility or resistance of the bacteria in the polymicrobial sample to one or a plurality of antibiotics, wherein the bacteria in the sample are susceptible to an antibiotic or combination of antibiotics if the adjusted OD 6 0 0is less than 0.065 and the bacteria in the sample are resistant to an antibiotic or combination of antibiotics if the adjusted OD 6 0 0 is greater than or equal to 0.065.
- 2. The method according to claim 1, wherein the mediums are disposed in a multi-well assay plate.
- 3. The method according to claim 1, wherein the bacterial growth medium is a liquid broth medium.
- 4. The method according to claim 2, wherein each of the plurality of wells contains a single antibiotic or a combination of antibiotics.
- 5. The method according to claim 4, wherein the combination of antibiotics comprises at least two antibiotics, at least three antibiotics, at least four antibiotics, at least five antibiotics, at least six antibiotics, at least seven antibiotics, at least eight antibiotics, at least nine antibiotics, or at least ten antibiotics.
- 6. The method according to claim 1, wherein the one or a plurality of antibiotics comprises one or more of sulfamethoxazole, trimethoprim, nitrofurantoin, fosfomycin, amoxicillin, clavulanate, cefpodoxime, cefdinir, cefaclor, cefepime, cefazolin, ciprofloxacin, levofloxacin, ceftriaxone, gentamicin, tobramycin, avibactam, ceftazidime, ceftolozane, tazobactam, norfloxacin, meropenem, piperacillin, cefoxitin, tetracycline, sulbactam, cefuroxime, and vancomycin.
- 7. The method according to claim 1, wherein the OD6 0 0 of the suspension is measured a plurality of times.
- 8. The method according to claim 1, wherein the adjusted ODeoo comprises the mean OD 6 0 0 of a plurality of measurements less a background control.
- 9. The method according to claim 1, wherein the sample comprises urine, blood, saliva, sputum, pulmonary lavage, vaginal secretions, or cerebrospinal fluid.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762487395P | 2017-04-19 | 2017-04-19 | |
| US62/487,395 | 2017-04-19 | ||
| PCT/US2018/028422 WO2018195343A1 (en) | 2017-04-19 | 2018-04-19 | Assay for the comprehensive identification of antibiotic sensitivity |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| AU2018254514A1 AU2018254514A1 (en) | 2019-12-05 |
| AU2018254514B2 true AU2018254514B2 (en) | 2022-11-24 |
Family
ID=63852718
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2018254514A Active AU2018254514B2 (en) | 2017-04-19 | 2018-04-19 | Assay for the comprehensive identification of antibiotic sensitivity |
Country Status (9)
| Country | Link |
|---|---|
| US (2) | US10160991B2 (en) |
| EP (1) | EP3612638A4 (en) |
| JP (2) | JP2020517300A (en) |
| CN (1) | CN110997930A (en) |
| AU (1) | AU2018254514B2 (en) |
| BR (1) | BR112019021943B1 (en) |
| CA (1) | CA3061015A1 (en) |
| NZ (1) | NZ759292A (en) |
| WO (1) | WO2018195343A1 (en) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11053532B2 (en) | 2017-04-19 | 2021-07-06 | CAP Diagnostics, LLC | Methods for treating polymicrobial infections |
| US11268960B2 (en) | 2018-01-10 | 2022-03-08 | SeLux Diagnostics, Inc. | Assays for improving automated antimicrobial susceptibility testing accuracy |
| US20220111378A1 (en) * | 2019-01-17 | 2022-04-14 | Genecapture, Inc. | Methods and systems for determining target sensitivity to a therapeutic formula |
| US20230093073A1 (en) * | 2020-02-12 | 2023-03-23 | Regents Of The University Of Minnesota | Methods and compositions for community-based screening of polymicrobial infections |
| CA3176586A1 (en) * | 2020-04-14 | 2021-10-21 | CAP Diagnostics, LLC, dba Pathnostics | Methods for treating polymicrobial infections |
| DE102020119332B3 (en) | 2020-07-17 | 2021-12-02 | Aquarray GmbH | OPTICAL DETECTION METHOD |
| CA3175879A1 (en) * | 2021-02-17 | 2022-08-25 | CAP Diagnostics, LLC, dba Pathnostics | Methods and systems for determining suitability of compositions for inhibiting growth of polymicrobial samples |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015042583A2 (en) * | 2013-09-23 | 2015-03-26 | Anand Srinivasan | Systems, devices, & methods for microbial detection & identification, and antimicrobial susceptibility testing |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4132599A (en) | 1976-04-23 | 1979-01-02 | Nasa | Determination of antimicrobial susceptibilities on infected urines without isolation |
| EP1177448A2 (en) | 1999-04-29 | 2002-02-06 | Dade MicroScan Inc. | A combined rapid anti-microbial susceptibility assay and microorganism identification system |
| WO2003106696A2 (en) * | 2002-01-10 | 2003-12-24 | Idexx Laboratories, Inc. | Methods and devices for the detection of pathogenic microorganisms and their antimicrobial susceptilbility |
| IT1397120B1 (en) * | 2009-02-25 | 2012-12-28 | Alifax Holding S P A | INTEGRATED DEVICE FOR DIAGNOSTIC ANALYSIS, AND ITS PROCEDURE |
| EP2513064B1 (en) * | 2009-12-17 | 2018-07-04 | Katholieke Universiteit Leuven K.U. Leuven R&D | Compounds, compositions and methods for controlling biofilms |
| EP2844762B1 (en) * | 2012-05-04 | 2017-12-20 | The Regents of The University of California | Antibiotic susceptibility testing using probes for preribosomal rna |
| CN106661606B (en) | 2014-06-13 | 2021-12-21 | Q-莱纳公司 | Method for detecting and characterizing microorganisms |
| US10023895B2 (en) * | 2015-03-30 | 2018-07-17 | Accelerate Diagnostics, Inc. | Instrument and system for rapid microogranism identification and antimicrobial agent susceptibility testing |
| GB201511129D0 (en) | 2015-06-24 | 2015-08-05 | Linea Ab Q | Method of determining antimicrobial susceptibility of a microorganism |
| US11306345B2 (en) * | 2015-07-21 | 2022-04-19 | Xcellence in Bio Innovations and TechnologieS Pvt. Ltd. | Invention relating to a microbiological testing apparatus |
| US9834808B2 (en) | 2016-01-21 | 2017-12-05 | SeLux Diagnostics, Inc. | Methods for rapid antibiotic susceptibility testing |
-
2018
- 2018-04-19 CN CN201880039956.9A patent/CN110997930A/en active Pending
- 2018-04-19 WO PCT/US2018/028422 patent/WO2018195343A1/en not_active Ceased
- 2018-04-19 CA CA3061015A patent/CA3061015A1/en active Pending
- 2018-04-19 JP JP2020507493A patent/JP2020517300A/en active Pending
- 2018-04-19 NZ NZ759292A patent/NZ759292A/en unknown
- 2018-04-19 BR BR112019021943-9A patent/BR112019021943B1/en active IP Right Grant
- 2018-04-19 US US15/957,780 patent/US10160991B2/en active Active
- 2018-04-19 EP EP18787411.0A patent/EP3612638A4/en active Pending
- 2018-04-19 AU AU2018254514A patent/AU2018254514B2/en active Active
- 2018-12-11 US US16/216,751 patent/US20190153501A1/en not_active Abandoned
-
2022
- 2022-03-17 JP JP2022042545A patent/JP7490696B2/en active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015042583A2 (en) * | 2013-09-23 | 2015-03-26 | Anand Srinivasan | Systems, devices, & methods for microbial detection & identification, and antimicrobial susceptibility testing |
Non-Patent Citations (2)
| Title |
|---|
| EMILIE WEIBULL ET AL: "Bacterial Nanoscale Cultures for Phenotypic Multiplexed Antibiotic Susceptibility Testing", JOURNAL OF CLINICAL MICROBIOLOGY, vol. 52, no. 9, 2 July 2014 (2014-07-02), US, pages 3310 - 3317, DOI: 10.1128/JCM.01161-14 * |
| RITIKA MOHAN ET AL: "A microfluidic approach to study the effect of bacterial interactions on antimicrobial susceptibility in polymicrobial cultures", RSC ADVANCES, vol. 5, no. 44, 1 January 2015, pages 35211-35223, DOI: 10.1039/C5RA04092B * |
Also Published As
| Publication number | Publication date |
|---|---|
| EP3612638A1 (en) | 2020-02-26 |
| US20180305730A1 (en) | 2018-10-25 |
| US20190153501A1 (en) | 2019-05-23 |
| JP7490696B2 (en) | 2024-05-27 |
| US10160991B2 (en) | 2018-12-25 |
| BR112019021943B1 (en) | 2022-02-01 |
| EP3612638A4 (en) | 2020-12-16 |
| NZ759292A (en) | 2022-11-25 |
| CN110997930A (en) | 2020-04-10 |
| AU2018254514A1 (en) | 2019-12-05 |
| WO2018195343A1 (en) | 2018-10-25 |
| CA3061015A1 (en) | 2018-10-25 |
| BR112019021943A2 (en) | 2020-05-05 |
| JP2022088465A (en) | 2022-06-14 |
| JP2020517300A (en) | 2020-06-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2018254514B2 (en) | Assay for the comprehensive identification of antibiotic sensitivity | |
| US11746371B2 (en) | Methods for treating polymicrobial infections | |
| CN101790683B (en) | Compositions and means for diagnosing microbial infections | |
| JP4454846B2 (en) | Detection of pathogenic microorganisms and their antimicrobial susceptibility | |
| US20210172000A1 (en) | Methods and systems for preparing therapeutic solutions for polymicrobial infections | |
| JP2001519167A5 (en) | ||
| Osman | Antibiotic resistance of bacteria isolated in urinary tract infections in Erbil City | |
| CA3175879A1 (en) | Methods and systems for determining suitability of compositions for inhibiting growth of polymicrobial samples | |
| US20230392185A1 (en) | Methods and systems for determining suitability of compositions for inhibiting growth of polymicrobial samples | |
| Ringertz et al. | Antibiotic susceptibility of Escherichia coli isolates from inpatients with urinary tract infections in hospitals in Addis Ababa and Stockholm | |
| Koren et al. | Emergence of extended-spectrum β-lactamase (ESBL) and/or carbapenemase producing Enterobacteriaceae (CPE) and their antimicrobial resistance. | |
| US20230093073A1 (en) | Methods and compositions for community-based screening of polymicrobial infections | |
| WO2021211746A1 (en) | Methods for treating polymicrobial infections | |
| US20220315975A1 (en) | Methods and systems for preparing therapeutic solutions for polymicrobial infections | |
| Gamit et al. | Effects of Fosfomycin against Gram Negative Bacterial isolates of Urinary Tract Infection at Tertiary Care Hospital. | |
| Almzıl | ANTIBIOTIC RESISTANCE PROFILES OF PSEUDOMONAS AERUGINOSA ISOLATED FROM CLINICAL SAMPLES | |
| Khan et al. | INCIDENCE OF ANTIMICROBIAL-RESISTANT ESCHERICHIA COLI IN UROPATHOGENIC INFECTIONS: AN EMERGING THERAPEUTIC DILEMMA | |
| Nmema et al. | Identification, antimicrobial susceptibility screening and ESBL-status of Gram-negative bacteria from healthy humans and livestock waste by VITEK-2 Automated System | |
| Bello et al. | Beta-lactamase production by bacteria isolated from the gastrointestinal, urogenital and urinary tracts of patients at Murtala Muhammed Specialist Hospital and Decent Laboratory, Kano | |
| Ajayi et al. | Antibiotic susceptibility testing of bacteria in drinking water sources in Akungba-Akoko, Ondo State, Nigeria | |
| Ika Ayunur Kholifah et al. | Bacteriological Profile of Wound Infection and Antibiotic Susceptibility Patterns in a Public Hospital in Surabaya, Indonesia | |
| Al-Jamal et al. | R2189 Antibiotic usage and resistance patterns in a Saudi tertiary hospital |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FGA | Letters patent sealed or granted (standard patent) |