AU2017232064B2 - Systems, methods, software, and interfaces for multilingual information retrieval - Google Patents
Systems, methods, software, and interfaces for multilingual information retrieval Download PDFInfo
- Publication number
- AU2017232064B2 AU2017232064B2 AU2017232064A AU2017232064A AU2017232064B2 AU 2017232064 B2 AU2017232064 B2 AU 2017232064B2 AU 2017232064 A AU2017232064 A AU 2017232064A AU 2017232064 A AU2017232064 A AU 2017232064A AU 2017232064 B2 AU2017232064 B2 AU 2017232064B2
- Authority
- AU
- Australia
- Prior art keywords
- query
- language
- documents
- terms
- term
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Machine Translation (AREA)
Abstract
The present inventors have a devised one or more novel methods, systems, and interfaces for facilitating multi-lingual searches. One exemplary method entails creating multiple language-specific indices for a collection of documents, with each 5 index including stemmed and non-stemmed versions of terms from the documents. Users submit queries that are associated with a set of one or more target languages. Query processing entails translating original and stemmed versions of each term in a query into each of the target languages, using one or more techniques that each yield a set of potentially equivalent query terms. Each set of potentially equivalent query 10 terms is then processed against the corresponding language-specific index, using a conventional monolingual search technique, such as a Boolean or natural language query, to identify documents from the collection. The resultant documents are presented to the user in language groupings or by computed relevance.
Description
Systems, Methods, Software, and Interfaces for Multilingual Information Retrieval
The present application is a divisional application from Australian Patent
Application No. 2015215882, which is a divisional of Australian Patent application 2013200190, which is a divisional of Australian Patent application 2010227061, which is a divisional of 2006203912, the entire disclosure of each of which are incorporated herein by reference.
Technical Field
Various embodiments of the present invention concern information retrieval, particularly multi-lingual or cross-lingual information retrieval systems, methods, and software.
Background
The importance of search engine technology has grown significantly in the last 15 decade or so, mirroring the expansion and usage of the Internet. When a user clicks a search button, a search engine hunts through tens of millions of terms to find terms and corresponding documents that satisfy the query. But, this superficial simplicity obscures the complexity of the underlying search technology, because good search engines do not generally stop with a simple matching of query terms.
To appreciate the complexity, consider that search engines fall generally into one of two categories: monolingual or multilingual. Monolingual search engines receive queries or search requests in one language, and retrieve documents in the same language. For example, Spanish language queries yield Spanish language documents. Monolingual search engines typically process a query by breaking, or 25 parsing, it into individual terms, and then reducing or stemming each individual term to its root or base form. The stemmed terms, sometimes in combination with equivalent terms, are then used to find relevant documents. Thus, for example, a search for documents containing the word 'cat' also retrieves documents that include the term cats, cat's, cats', or even feline.
Multilingual searches engines, on the other hand, receive search requests in one language, such as German, and retrieve relevant information in another language, such as French or English. In such cases, the challenge of effective searching is more complex, because in non-English languages, nouns can be masculine, feminine, or neutral; verbs change form to show number (singularity or
2017232064 24 Jan 2019 plurality), to show tense (present, past, future and so forth), and to show person- first (I), second (you), and third (he/she/it.); adjectives change form based on the nouns they modify; and character punctuation, such as accent or other diacritical marks, significantly affect meaning. While stemming resolves these complexities in a monolingual search, stemming alone cannot address the added complexities of linguistic conflicts across languages, and in some cases, may even interfere. For example, gender in most languages can be normalized to a single stem without loss of significant meaning; however, there are some languages, such as Portuguese, that require gender to be retained in order to maintain meaning. As a result, multilingual 10 search engines typically rely on some method of translating queries and possibly documents into a common language.
Although there is continuing research in this area, the present inventors have recognized a need for alternative methods, systems, and interfaces for facilitating multi-lingual searches.
A reference herein to a patent document or other matter which is given as prior art is not to be taken as an admission that that document or matter was known or that the information it contains was part of the common general knowledge as at the priority date of any of the claims.
Summary
To address this and/or other needs, the present inventors have a devised one or more novel methods, systems, and interfaces for facilitating multi-lingual searches. For example, one exemplary method entails creating multiple language-specific indices for a collection of documents, with each index including stemmed and nonstemmed versions of terms from the documents. Each term in the index is associated 25 with a document identifier, a position indicator, and a language indicator. The exemplary method further entails receiving a query and a set of one or more target languages from a user. The query is parsed into one or more terms or phrases, with each term or phrase associated with a specific language.
The original and stemmed versions of each term or phrase are then translated 30 into the target languages, using one or more techniques that each separately yields a set of one or more potentially equivalent query terms. Exemplary techniques include using a database of pre-translated documents, an electronic language dictionary, an automated translator, and pivot language. Each set of potentially equivalent query
2017232064 07 Aug 2019 terms is then taken as a separate query and processed against the corresponding language-specific index, using a conventional monolingual search technique, such as a Boolean or natural language query, to identify documents from the collection. The resultant documents are presented to the user in language groupings or by computed 5 relevance.
According to an aspect of the present invention, there is provided a computer implemented method comprising: defining a set of a plurality of language-specific indices in at least one data storage device for a collection of documents, wherein at least two of the plurality of language-specific indices comprise terms in different io languages, with each index including stemmed and non-stemmed versions of terms contained in the documents; receiving a query from a user, with the query associated with a set of one or more target languages; parsing the query into one or more terms using at least one processor with each term associated with a corresponding language identifier and a stemmed version of the term; translating the original and 15 stemmed versions of each term of the query into each of the target languages using at least one processor, to define respective sets of one or more equivalent query terms; and identifying a set of documents from the collection of documents for each of the target languages using at, least one processor with each set identified based on processing each of the respective sets of equivalent query terms using a 20 corresponding one of the language-specific indices corresponding to a respective target language.
According to another aspect of the present invention, there is provided a system comprising: a collection of documents; a set of a plurality of language-specific indices for the collection of documents, with each index including stemmed and non25 stemmed versions of terms contained in the documents, wherein at least two of the plurality of language-specific indices comprise terms in different languages; and a server for interacting with the collection of documents and the set of language-specific indices, with the server configured: to receive a query from a user, with the query associated with a set of one or more target languages; to parse the query into one or 30 more terms, with each term associated with a corresponding language identifier and a stemmed version of the term; to translate the original and stemmed versions of each term of the query into each of the target languages and thus define respective sets of one or more equivalent query terms; and to identify a set of documents from the collection of documents for each of the target languages, with each set identified
2017232064 07 Aug 2019 based on processing each of the respective sets of equivalent query terms using a corresponding one of the language-specific indices corresponding to a respective target language.
According to yet another aspect of the present invention, there is provided a 5 server for interacting with a collection of documents and a set of a plurality of language-specific indices including at least two language-specific indices comprising terms in different languages, with the server configured: to receive a query from a user, with the query associated with a set of one or more target languages; to parse the query into one or more terms, with each term associated with a corresponding io language identifier and a stemmed version of the term; to translate the original and stemmed versions of each term into each of the target languages and thus define respective sets of one or more equivalent query terms; and to identify a set of documents from the collection of documents for each of the target languages, with each set identified based on processing each of the respective sets of equivalent 15 query terms using a corresponding one of the language-specific indices corresponding to a respective target language.
According to still another aspect of the present invention, there is provided a machine-readable medium for causing a server to interact with a collection of documents and a set of a plurality of language-specific indices having at least two 20 language-specific indices comprising terms in different languages, with the medium comprising instructions for causing the server: to receive a query from a user, with the query associated with a set of one or more target languages; to parse the query into one or more terms, with each term associated with a corresponding language identifier and a stemmed version of the term; to translate the original and stemmed 25 versions of each term into each of the target languages and thus define respective sets of one or more equivalent query terms; and to identify a set of documents from the collection of documents for each of the target languages, with each set identified based on processing each of the respective sets of equivalent query terms using a corresponding one of the language-specific indices corresponding to a respective 30 target language.
According to sill another aspect of the present invention, there is provided system comprising: a set of a plurality of language-specific indices for a collection of documents, with each index including stemmed and non-stemmed versions of terms contained in the documents, wherein at least two of the plurality of language-specific
4a
2017232064 07 Aug 2019 indices comprise terms in different languages; a computer comprising a processor and a non-transitory memory, the memory comprising instructions when executed by the processor configured to: receive a query from a client access device, with the query associated with a set of one or more target languages; parse the query into one 5 or more original terms, with each term associated with a corresponding language identifier and a stemmed version of the term; translate the original and stemmed versions of each term into each of the target languages to define respective sets of one or more equivalent query terms; and identify a set of documents from a collection of documents for each of the target languages, with each set identified based on io processing each of the respective sets of equivalent query terms using a corresponding one of the language-specific indices corresponding to a respective target language.
Brief Description of the Drawings
Figure 1 is a block diagram of an exemplary multilingual information retrieval 15 system corresponding to one or more embodiments of the present invention.
Figure 2 is a flow chart of an exemplary method of operation which corresponds to one or more embodiments of the present invention
Detailed Description of Exemplary Embodiment(s)
This description, which references and incorporates the above-identified 20 Figures, describes one or more specific embodiments of an invention. These embodiments, offered not to limit but only to exemplify and teach the invention, are shown and described in sufficient detail to enable those skilled in the art to implement or practice the invention. Where appropriate to avoid obscuring the invention, the description may omit certain information known to those of skill in the art.
2017232064 19 Sep 2017
Exemplary Multilingual Information-Retrieval System
Figure 1 shows an exemplary online multilingual information-retrieval system 100, which incorporates teachings of the present invention. System 100 includes one or more databases 110, one or more servers 120, and one or more access devices 5 130.
Databases 110 include a set of multilingual documents 112 and corresponding set of monolingual indices 114.
Documents 112, in the exemplary embodiment, include English, French,
German, and Japanese documents. (Other embodiments may include other 10 languages, and in some embodiments, some of the documents are multilingual, meaning that one or more portions, such as a paragraph, are written in a different language than other portions of the documents.) Each of the documents, of which document 1121 is representative, is associated with a unique document identifier, such as DI, and includes a number of terms, such as terms t1, t2, t3, ..., tn, with each 15 term having a corresponding position within the document, such as pi, p2, p3, ..., pn.
Multilingual documents 112 are associated logically with monolingual indices 114.
Monolingual indices 114 include an English index 1141, a French index
1142, a German index 1143, and a Japanese index 1144, each of which has a similar structure. Representative of the other indices, French index 1142 includes a number 20 of data structures, such as representative data structure 1142 A. Data structure
1142A includes a term 1142B in its original form from at least one of documents 112, a normalized or stemmed version of the term 1142C, positional data 1142D, language identifier 1142E, and document identifier 1142F. Assigning document terms to these language-specific indexes not only enables the system to discern the language type 25 of each document term, both in its original form and its stemmed form, but also enables the system to find each term in a document, with all the searching options available in conventional monolingual searches. In some embodiments, the indices are logical portions of a single index, whereas in other embodiments, each index is logically independent of the others and may reside in separate storage locations or 30 devices.
Databases 110, which take the exemplary form of one or more electronic, magnetic, or optical data-storage devices, include or are otherwise associated with respective indices (not shown). Each of the indices includes terms and phrases in association with corresponding document addresses, identifiers, and other
2017232064 19 Sep 2017 conventional information. Databases 110 are coupled or couplable via a wireless or wireline communications network, such as a local-, wide-, private-, or virtual-private network, to server 120.
Server 120, which is generally representative of one or more servers for serving data in the form of webpages or other markup language forms with associated applets, ActiveX controls, remote-invocation objects, or other related software and data structures to service clients of various thicknesses. More particularly, server 120 includes a processor module 121, a memory module 122, a subscriber database 123, a search module 124, and a multilingual module (or software) 125.
Processor module 121 includes one or more local or distributed processors, controllers, or virtual machines, in the exemplary embodiment, processor module 121 assumes any convenient or desirable form.
Memory module 122, which takes the exemplary form of one or more electronic, magnetic, or optical data-storage devices, stores subscriber database 123, 15 search engines 124, and multilingual module 125.
Subscriber database 123 includes subscriber-related data for controlling, administering, and managing pay-as-you-go or subscription-based access of databases 110. In the exemplary embodiment, subscriber database 123 includes one or more preference data structures, of which data structure 1231 is representative.
Data structure 1231 includes a customer or user identifier portion 123IA, which is logically associated with one or more search preferences, such as preferences 1231B, 1231C, and 1231D. Preference 1231B and 1231C include respective default value governing whether search results include documents from first and second languages, such as German and Japanese. Preference 123ID includes a default value governing whether search results are presented based strictly on relevance, or whether they are grouped via language, (in the absence of a temporary user override, for example, an override during a particular query or session, the default value for the search preferences governs.)
Search module 124 includes one or more search engines and related user30 interface components, for receiving and processing queries against one or more of databases 110, with use of indices 114. In the exemplary embodiment, one or more search engines associated with search module 124 provide Boolean, tf-idf (term frequency-inverse document frequency), and/or natural-language search capabilities.
2017232064 19 Sep 2017
Multilingual module 125 includes an indexer module 1251, a translator module 1252, and an interface module 1253. Indexer module 1251 comprises machine readable and/or executable instructions for processing documents 112 and defining or updating indices 114. Translator module 1252 comprises machine-readable and/or 5 executable instructions for translating and/or extending query terms (or concepts) submitted in a user query to multiple sets of equivalent query terms in one or more corresponding target languages. Interface module 1253 comprises machine readable and/or executable instructions for wholly or partly defining web-based user interfaces (such as a user interface 138) over a wireless or wireline communications network on 10 one or more accesses devices, such as access device 130.
Access device 130 is generally representative of one or more access devices. In the exemplary embodiment, access device 130 takes the form of a personal computer, workstation, personal digital assistant, mobile telephone, or any other device capable of providing an effective user interface with a server or database. 15 Specifically, access device 130 includes a processor module 131, a memory 132, a display 133, a keyboard 134, and a graphical pointer or selector 135 (also known as a mouse).
Processor module 131 includes one or more processors, processing circuits, or controllers. In the exemplary embodiment, processor module 131 takes any 20 convenient or desirable form. Coupled to processor module 131 is memory 132.
Memory 132 stores code (machine-readable or executable instructions) for an operating system 136, a browser 137, and a graphical user interface (GUI)138. In the exemplary embodiment, operating system 136 takes the form of a version of the Microsoft Windows operating system, and browser 137 takes the form of a version of 25 Microsoft Internet Explorer. Operating system 136 and browser 137 not only receive inputs from keyboard 134 and selector 135, but also support rendering of GUI 138 on display 133. Upon rendering, GUI 138 presents data in association with one or more interactive control features (or user-interface elements). (The exemplary embodiment defines one or more portions of interface 138 using applets or other programmatic 30 objects or structures from server 120.)
More specifically, graphical user interface 138 defines or provides one or more display regions, such as a query or search region 1381 and a search-results region
1382. Query region 1381 is defined in memory and upon rendering includes one or more interactive control features (elements or widgets), such as a query input region
2017232064 19 Sep 2017
1381 A, a query submission button 138IB, and a language selection region 1381C . Query input region 1381A also allows a user to designate or identify the language of one or more of the terms input in the query region. Language-selection region 1381C allows a user to select, using check boxes, radio buttons, or pull-down menus, one or 5 more languages in which to search.
Search-results region 1382 is also defined in memory and upon rendering includes one or more interactive control features 1382A-1382D. Control features 1382A-1382C correspond to one or more monolingual document lists and enable a user to selectively access or retrieve one or more corresponding documents relevant 10 to the governing query from databases 110 via server 120. Each of control features 1382A-1382C includes a respective document identifier or label, such as LX DOCS, LY DOCS, and LZ DOCS, identifying respective languages and/or the number of corresponding documents. In some embodiments, the control feature is incorporated with a folder icon or associated with a particular language tab. Control feature 1382D 15 enables a user to selectively change the contents of results region 1382 to a relevance mode, where the documents found to be relevant to the governing query are listed in rank order of relevance.
In the exemplary embodiment, each of these control features of interface 138 takes the form of a hyperlink or other browser-compatible command input. Although 20 Figure 1 shows query region 1381 and results region 1382 as being simultaneously displayed, some embodiments present them at separate times.
Exemplary Methods of Operating a Multilingual Information-Retrieval System
Figure 2 shows a flow chart 200 of an exemplary method of operating a multilingual information retrieval system, such as system 100 in Figure 1. Flow chart 25 200 includes blocks 210- 270, which are arranged and described serially. However, other embodiments execute two or more blocks in parallel using multiple processors or processor-like devices or a single processor organized as two or more virtual machines or sub processors. Other embodiments also alter the process sequence or provide different functional partitions or blocks to achieve analogous results. 30 Moreover, still other embodiments implement the blocks as two or more interconnected hardware modules with related control and data signals communicated between and through the modules. Thus, the exemplary process flow applies to software, hardware, and firmware implementations.
2017232064 19 Sep 2017
At block 210, the exemplary method begins with provision of a multilingual document collection — that is a collection comprising two or more documents written in two or more languages. In the exemplary embodiment, the document collection takes the form of one or more databases, such as database 110 in Figure 1, which 5 includes English, French, German, and Japanese documents. In the exemplary embodiment, each document is treated as a single unit with a single identifier no matter how many languages it contains, and each term in the document, regardless of its language, is associated with that single document. The assignment of consecutive word positions across language boundaries within the same document provides full 10 text searching across language types. The process of tokenizing a document, that is, finding the words in the document, is language specific, meaning that each document (or document portion) is tokenized with a tokenizer consistent with its language. The exemplary method continues at block 220.
Block 220 entails defining a set of one or more language-specific indices for 15 the document collection, using for example indexer 1251 in Figure 1. In the exemplary embodiment, this entails tokenizing each of the documents in the collection, eliminating stop words, and then stemming the remaining terms. Stemmed and nonstemmed versions of the remaining terms are then stored in association with one or more document identifiers for uniquely identifying the corresponding collection 20 document that contain the terms, and with one or more positional indicators for indicating positions of the terms in the documents. Additionally, a language indicator or identifier is stored in association with the terms to facilitate language-specific searching and to effectively define logical language-specific indices including a number of data structures, such as data structure 1142A in Figure 1. Some 25 embodiments may simply store terms in language-specific locations or files. After the one or more indices are defined, processing continues at block 230.
Block 230 entails receiving a query from a user. In the exemplary embodiment, this entails a user directing a browser in a client access device, such as device 130 in
Figure 1, to an internet-protocol (IP) address for an online information-retrieval system, such as system 100, and then logging onto the system using appropriate credentials. Successful login results in a web-based search interface, such as interface 138 in Figure 1 (or one or more portions thereof) being output from server
120, stored in memory 132, and displayed by client access device 130.
2017232064 19 Sep 2017
The user then defines the query by interacting with the interface, specifically entering terms of the query into a query input region and selecting one or more of the listed target languages for use in directing the query to appropriate databases or portions thereof; and finally actuating a query submission feature to transmit the query 5 to a server, such as server 120 for processing. In some embodiments, the user also identifies the language of the query, or the language of one or more portions, such as words or phrases, in the query. The identification of language may be done automatically and/or with user assistance, such as confirmation of automatically generated and presented language identifiers. The exemplary embodiment supports 10 the following use cases:
| User Query | Target Language for Search Results |
| One language | Same language as query |
| One language | One different language |
| One Language | Many different languages |
| One Language | Same language plus different languages |
| Multiple Languages | Same Languages as query |
| Multiple Languages | One different language |
| Multiple Languages | Many different languages |
| Multiple Languages | Same languages plus many different languages |
Execution then advances to block 240 (as shown in Figure 2.)
Block 240 parses the query into one or more query terms, with each query term associated with a corresponding language identifier. In the exemplary 15 embodiment, this entails parsing the query using conventional language-specific parsing techniques and eliminating language-specific stop words. The exemplary embodiment also entails stemming the words using language-specific stemmers to define stemmed versions of the query terms. Execution of the exemplary method continues at block 250.
Block 250 translates the original and stemmed versions of each query term into each of the target languages to define respective sets of one or more equivalent query terms; In the exemplary embodiment, translating the original and stemmed versions of each term includes identifying equivalent query terms using each of the
2017232064 19 Sep 2017 following: a lexicon built from a database of pre-translated documents (that is, a parallel corpus), an electronic language dictionary, an automated translator, and a pivot language.
For lexicons built from parallel corpora, the exemplary embodiment considers a 5 parallel corpus to be a body of documents where each document is represented in at least two languages A and B. Exemplary parallel corpora include legal documents in the European Union, which are commonly provided in at least German, French, and English. Patents are also sometimes translated into multiple languages and can also serve as parallel corpora. The parallel corpora can be used, 10 in combination with an IBM statistical machine translation training phase and a similarity thesaurus, to generate a one-way lexicon of terms where a term has one to many weighted translations. That is each term a (maps or translates to equivalent query terms) biw b2w, b3w . The electronic dictionary provides a one-way lexicon of terms where each term has one or more translations: for example, a —> bi, b2. 15 Automatic machine translation is used in the exemplary embodiment for natural language translation of a phrase or sentence from language A to B: for example, “ai a2 -η bi. A pivot language may be used to create the associations between two languages that have each established associations to the pivot language. If a term or concept in language A has an associated term or concept in language B, and if the 20 same term or concept in language A has its associated term concept in language C, then the concept in language B has an associated concept in language C. In other words, if a —> b and a —> c, then b —> c.
Thus, in the exemplary embodiment, each query term (concept or phrase) is associated with 2X sets of equivalent query terms, with X being the number of target 25 languages. Moreover, each set of equivalent terms results from as many as four possible translation or equivalence-determination techniques. Integrating several translation methodologies or techniques is believed to result in more accurate and meaningful translations with fewer ambiguities. Execution continues at block 260.
Block 260 entails identifying one or more sets of documents from the document 30 collection for each of the target languages, with each set identified based on the equivalent query terms for the corresponding target language. In the exemplary embodiment, this entails use of a Boolean or natural-language search engine to process each of the sets of equivalent query terms using a corresponding one of the
2017232064 19 Sep 2017 language specific indices 114. Each of the equivalent monolingual queries is resolved by relying on the OR operator to provide hits for one or more of the language specific terms in a document. In some embodiments, other logical operators may be used to combine the various sets of equivalent 5 monolingual query terms. For natural-language searching, identifying each set of documents includes determining a relevance score for documents based on the equivalent query terms, and then identifying documents having a relevance score exceeding a predetermined threshold.
Block 270 entails presenting a graphical user interface listing the identified set 10 of documents in groups based on corresponding language and/or in rank order of relevance. In the exemplary embodiment, this entails displaying a listing of the identified set of documents on interface 138, specifically search-results region 1382. Whether the set is displayed in language groupings or in rank order of relevance (or other criteria such as date) is governed by user preference stored in subscriber 15 database 123. Some embodiments include a command feature on the interface, enabling a user to selectively alter the display mode from the language-grouping mode to the relevance mode and vice versa. In some embodiments, the relevance mode results in normalization of the scores between documents of different language types. In addition, search concepts are weighted by language type.
Conclusion
In furtherance of the art, the present inventors have presented various embodiments of multilingual information-retrieval systems, methods, software, and interfaces. One exemplary system enables a user to submit a single monolingual or multilingual query and search one or more collections of monolingual or multilingual 25 documents. Components of the system include multiple monolingual indices, a mechanism for translating a query into multiple sets of equivalent monolingual query terms, and a mechanism for effectively routing the respective sets of monolingual query terms to the appropriate monolingual indices for identification of relevant documents. Ultimately, the exemplary embodiment allows any combination of 30 collections and languages to be searched with a single query and a single search platform.
The embodiments described above and in the claims are intended only to illustrate and teach one or more ways of practicing or implementing the present invention, not to restrict its breadth or scope. The actual scope of the invention, which
2017232064 19 Sep 2017 embraces all ways of practicing or implementing the teachings of the invention, is defined only by the issued claims and their equivalents.
Where the terms “comprise”, “comprises”, “comprised” or “comprising” are used in this specification (including the claims) they are to be interpreted a specifying 5 the presence of the stated features, integers, steps or components, but not precluding the presence of one or more other features, integers, steps or components, or group thereof.
Claims (25)
1. A computer-implemented method comprising:
defining a set of a plurality of language-specific indices in at least one data storage device for a collection of documents, with each index including stemmed and 5 non-stemmed versions of terms contained in the documents, wherein at least two of the plurality of language-specific indices comprise terms in different languages;
receiving a query from a user, with the query associated with a set of one or more target languages;
parsing the query into one or more terms, using at least one processor with io each term associated with a corresponding language identifier and a stemmed version of the term;
translating the original and stemmed versions of each term of the query into each of the target languages using at least one processor to define respective sets of one or more equivalent query terms; and
2. The method of claim 1, wherein each term in each index is associated with a document identifier for uniquely identifying one of the documents in the collection, a positional indicator for indicating a position of the term in the one of the documents, and a language indicator for indicating language of the term.
3. The method of claim 1 or 2, wherein before receiving the query from a user, the user defines the query by interacting with a graphical user interface having a query submission screen having a control region for entering terms of the query; a control region for selecting one or more of the target language; and a control region
30 for submitting the query.
4. The method of any one of claims 1 to 3, wherein the query is associated with a set of one or more target languages selected by the user.
2017232064 07 Aug 2019
5 32. The system of any one of claims 7 to 11, wherein the collection of documents comprises a parallel corpora with stored documents being represented in two or more different languages, and the server further configured to define a lexicon comprising terms having weighted translations used at least in part to define a respective set of equivalent query terms.
33. The server of any one of claims 12 to 16, wherein the collection of documents comprises a parallel corpora with stored documents being represented in two or more different languages, and the server is further configured to define a lexicon comprising terms having weighted translations used at least in part to define a respective set of
5 to receive a query from a user, with the query associated with a set of one or more target languages;
to parse the query into one or more terms, with each term associated with a corresponding language identifier and a stemmed version of the term;
to translate the original and stemmed versions of each term into each of the io target languages and thus define respective sets of one or more equivalent query terms; and to identify a set of documents from the collection of documents for each of the target languages, with each set identified based on processing each of the respective sets of equivalent query terms using a corresponding one of the language-specific 15 indices corresponding to a respective target language.
5 document identifier for uniquely identifying one of the documents in the collection, a positional indicator for indicating a position of the term in the one of the documents, and a language indicator for indicating language of the term.
5 an automated translator, and a pivot language.
5. The method of any one of claims 1 to 4, wherein translating the original and stemmed versions of each term into two or more equivalent query terms in one of the target languages, includes identifying equivalent query terms using at least two of the following: a database of pre-translated documents, an electronic language dictionary,
6. The method of any one of claims 1 to 5:
wherein identifying the set of documents from the collection for each of the target languages, includes:
io determining a relevance score for documents based on the equivalent query terms; and identifying documents having a relevance score exceeding a predetermined threshold; and wherein the method further comprises presenting a graphical user interface 15 listing the identified set of documents in groups based on corresponding language and/or in rank order of relevance.
7. A system comprising:
a collection of documents;
8. The system of claim 7, wherein each term in each index is associated with a
9. The system of claim 7 or 8, wherein the server is further configured to define a io graphical user interface for enabling a user to submit a query, the interface having a query submission screen having a control region for entering terms of the query; a control region for selecting one or more of the target language; and a control region for submitting the query.
15
10. The system of any one of claims 7 to 9, wherein to translate the original and stemmed versions of each term into two or more equivalent query terms in one of the target languages, the server is further configured to identify equivalent query terms using at least two of the following: a database of pre-translated documents, an electronic language dictionary, an automated translator, and a pivot language.
11. The system of claim 7 or 8, wherein the server includes a processor and a memory, and the memory includes coded instructions for causing the processor: to receive the query from a user, to parse the query into one or more terms, to translate the original and stemmed versions of each term into each of the target languages and
25 thus define respective sets of one or more equivalent query terms, and to identify a set of documents from the collection of documents for each of the target languages.
12. A server for interacting with a collection of documents and a set of a plurality of language-specific indices including at least two language-specific indices comprising
30 terms in different languages, with the server configured:
to receive a query from a user, with the query associated with a set of one or more target languages;
to parse the query into one or more terms, with each term associated with a corresponding language identifier and a stemmed version of the term;
2017232064 07 Aug 2019 to translate the original and stemmed versions of each term into each of the target languages and thus define respective sets of one or more equivalent query terms; and to identify a set of documents from the collection of documents for each of the 5 target languages, with each set identified based on processing each of the respective sets of equivalent query terms using a corresponding one of the language-specific indices corresponding to a respective target language.
13. The server of claim 12, wherein each term in each index is associated with a 10 document identifier for uniquely identifying one of the documents in the collection, a positional indicator for indicating a position of the term in the one of the documents, and a language indicator for indicating language of the term.
14. The server of claim 12 or 13, wherein the server is further configured to define 15 a graphical user interface for enabling a user to submit a query, the interface having a query submission screen having a control region for entering terms of the query; a control region for selecting one or more of the target language; and a control region for submitting the query.
15 equivalent query terms.
34. The medium of any one of claims 17 to 20, wherein the collection of documents comprises a parallel corpora with stored documents being represented in two or more different languages, and the medium is further configured to define a
15 identifying a set of documents from the collection of documents for each of the target languages using at least one processor with each set identified based on processing each of the respective sets of equivalent query terms using a corresponding one of the language-specific indices corresponding to a respective target language.
16. The server of claim 12 or 13, wherein the server includes a processor and a memory, and the memory includes coded instructions for causing the processor: to receive the query from a user, to parse the query into one or more query terms, to translate original and stemmed versions of each query term into each of the target 30 languages and thus define respective sets of one or more equivalent query terms, and to identify a set of documents from the collection of documents for each of the target languages.
2017232064 07 Aug 2019
17. A machine-readable medium for causing a server to interact with a collection of documents and a set of a plurality of language-specific indices having at least two language-specific indices comprising terms in different languages, with the medium comprising instructions for causing the server:
18. The medium of claim 17, wherein each term in each index is associated with a document identifier for uniquely identifying one of the documents in the collection, a positional indicator for indicating a position of the term in the one of the documents,
19. The medium of claim 17 or 18, further including instructions to define a graphical user interface for enabling a user to submit a query, the interface having a query submission screen having a control region for entering terms of the query; a
25 control region for selecting one or more of the target language; and a control region for submitting the query.
20 lexicon comprising terms having weighted translations used at least in part to define a respective set of equivalent query terms.
35. The system of any one of claims 21 to 26, wherein the collection of documents comprises a parallel corpora with stored documents being represented in two or more
20 28. The server of any one of claims 12 to 16, wherein the server is further configured to parse the query using language-specific parsing techniques and using language-specific stemmers to define stemmed versions of query terms.
29. The medium of any one of claims 17 to 20, further comprising instructions for 25 causing the server to parse the query using language-specific parsing techniques and using language-specific stemmers to define stemmed versions of query terms.
30. The system of any one of claims 21 to 26, further comprising instructions when executed by the processor cause the computer to parse the query using language-
30 specific parsing techniques and using language-specific stemmers to define stemmed versions of query terms.
31. The method of any one of claims 1 to 6, wherein the collection of documents comprises a parallel corpora with stored documents being represented in two or more
2017232064 07 Aug 2019 different languages, and further comprising defining a lexicon comprising terms having weighted translations used at least in part to define a respective set of equivalent query terms.
20. The medium of claim 17 or 19, wherein the instructions for causing the server to translate the original and stemmed versions of each term into two or more
30 equivalent query terms in one of the target languages, include instructions to identify equivalent query terms using at least two of the following: a database of pretranslated documents, an electronic language dictionary, an automated translator, and a pivot language.
2017232064 07 Aug 2019
20 and a language indicator for indicating language of the term.
20 15. The server of any one of claims 12 to 14, wherein to translate the original and stemmed versions of each term into two or more equivalent query terms in one of the target languages, the server is further configured to identify equivalent query terms using at least two of the following: a database of pre-translated documents, an electronic language dictionary, an automated translator, and a pivot language.
20 a set of a plurality of language-specific indices for the collection of documents, with each index including stemmed and non-stemmed versions of terms contained in the documents, wherein at least two of the plurality of language-specific indices comprise terms in different languages; and a server for interacting with the collection of documents and the set of 25 language-specific indices, with the server configured:
to receive a query from a user, with the query associated with a set of one or more target languages;
to parse the query into one or more terms, with each term associated with a corresponding language identifier and a stemmed version of the term;
30 to translate the original and stemmed versions of each term of the query into each of the target languages and thus define respective sets of one or more equivalent query terms; and to identify a set of documents from the collection of documents for each of the target languages, with each set identified based on processing each of the respective
2017232064 07 Aug 2019 sets of equivalent query terms using a corresponding one of the language-specific indices corresponding to a respective target language.
21. A system comprising:
a set of a plurality of language-specific indices for a collection of documents, with each index including stemmed and non-stemmed versions of terms contained in the documents, wherein at least two of the plurality of language-specific indices 5 comprise terms in different languages;
a computer comprising a processor and a non-transitory memory, the memory comprising instructions when executed by the processor configured to:
receive a query from a client access device, with the query associated with a set of one or more target languages;
io parse the query into one or more original terms, with each term associated with a corresponding language identifier and a stemmed version of the term;
translate the original and stemmed versions of each term into each of the target languages to define respective sets of one or more equivalent query terms; and identify a set of documents from a collection of documents for each of the 15 target languages, with each set identified based on processing each of the respective sets of equivalent query terms using a corresponding one of the language-specific indices corresponding to a respective target language.
22. The system of claim 21, wherein each term in each index is associated with a 20 document identifier for uniquely identifying one of the documents in the collection, a positional indicator for indicating a position of the term in the one of the documents, and a language indicator for indicating language of the term.
23. The system of claim 21 or 22, wherein the client access device includes a 25 graphical user interface having a query submission screen having a control region for entering terms of the query; a control region for selecting one or more of the target languages; and a control region for submitting the query.
24. The system of any one of claims 21 to 23, wherein the memory further 30 comprises instructions when executed by the processor configured to identify equivalent query terms using at least two of the following: a database of pretranslated documents, an electronic language dictionary, an automated translator, and a pivot language.
2017232064 07 Aug 2019
25. The system of any one of claims 21 to 24:
wherein the memory further comprises instructions when executed by the processor configured to:
determine a relevance score for documents based on the equivalent query 5 terms; and identify documents having a relevance score exceeding a predetermined threshold; and wherein the system comprises a display configured to present a graphical user interface listing the identified set of documents in groups based on corresponding io language and/or in rank order of relevance.
26. The method of any one of claims 1 to 6, wherein parsing comprises using language-specific parsing techniques and using language-specific stemmers to define stemmed versions of query terms.
27. The system of any one of claims 7 to 11, wherein the server is further configured to parse the query using language-specific parsing techniques and using language-specific stemmers to define stemmed versions of query terms.
25 different languages, and comprising further instructions when executed by the processor further configured to define a lexicon comprising terms having weighted translations used at least in part to define a respective set of equivalent query terms.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2017232064A AU2017232064B2 (en) | 2005-01-04 | 2017-09-19 | Systems, methods, software, and interfaces for multilingual information retrieval |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US60/641,669 | 2005-01-04 | ||
| AU2013200190A AU2013200190A1 (en) | 2005-01-04 | 2013-01-11 | Systems, methods, software, and interfaces for multilingual information retrieval |
| AU2015215882A AU2015215882A1 (en) | 2005-01-04 | 2015-08-19 | Systems, methods, software, and interfaces for multilingual information retrieval |
| AU2017232064A AU2017232064B2 (en) | 2005-01-04 | 2017-09-19 | Systems, methods, software, and interfaces for multilingual information retrieval |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2015215882A Division AU2015215882A1 (en) | 2005-01-04 | 2015-08-19 | Systems, methods, software, and interfaces for multilingual information retrieval |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| AU2017232064A1 AU2017232064A1 (en) | 2017-10-12 |
| AU2017232064B2 true AU2017232064B2 (en) | 2019-08-29 |
Family
ID=54063257
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2015215882A Abandoned AU2015215882A1 (en) | 2005-01-04 | 2015-08-19 | Systems, methods, software, and interfaces for multilingual information retrieval |
| AU2017232064A Active AU2017232064B2 (en) | 2005-01-04 | 2017-09-19 | Systems, methods, software, and interfaces for multilingual information retrieval |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2015215882A Abandoned AU2015215882A1 (en) | 2005-01-04 | 2015-08-19 | Systems, methods, software, and interfaces for multilingual information retrieval |
Country Status (1)
| Country | Link |
|---|---|
| AU (2) | AU2015215882A1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108763224A (en) * | 2016-06-28 | 2018-11-06 | 大连民族大学 | The interpretation method of the multi-lingual machine translation subsystem of comment information |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1014278A1 (en) * | 1998-12-22 | 2000-06-28 | Xerox Corporation | System for providing cross-lingual information retrieval |
| US20030158725A1 (en) * | 2002-02-15 | 2003-08-21 | Sun Microsystems, Inc. | Method and apparatus for identifying words with common stems |
| US6757646B2 (en) * | 2000-03-22 | 2004-06-29 | Insightful Corporation | Extended functionality for an inverse inference engine based web search |
-
2015
- 2015-08-19 AU AU2015215882A patent/AU2015215882A1/en not_active Abandoned
-
2017
- 2017-09-19 AU AU2017232064A patent/AU2017232064B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1014278A1 (en) * | 1998-12-22 | 2000-06-28 | Xerox Corporation | System for providing cross-lingual information retrieval |
| US6757646B2 (en) * | 2000-03-22 | 2004-06-29 | Insightful Corporation | Extended functionality for an inverse inference engine based web search |
| US20030158725A1 (en) * | 2002-02-15 | 2003-08-21 | Sun Microsystems, Inc. | Method and apparatus for identifying words with common stems |
Non-Patent Citations (2)
| Title |
|---|
| GOBINDA G. CHOWDHURY: "Natural language processing", Annual Review of Information Science and Technology (ARIST), Vol. 37, 2003, pp. 51-89, ISSN: 0066-4200 * |
| JENQ-HAUR WANG et. al.: "Toward Web mining of cross-language query translations in digital libraries", International Journal on Digital Libraries, Vol. 4, 20 October 2004, pp 247-257 * |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2015215882A1 (en) | 2015-09-10 |
| AU2017232064A1 (en) | 2017-10-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9418139B2 (en) | Systems, methods, software, and interfaces for multilingual information retrieval | |
| US6055528A (en) | Method for cross-linguistic document retrieval | |
| US9477656B1 (en) | Cross-lingual indexing and information retrieval | |
| JP5264892B2 (en) | Multilingual information search | |
| US20090125497A1 (en) | System and method for multi-lingual information retrieval | |
| EP1315084A1 (en) | Method and apparatus for localizing software | |
| JP2013502643A (en) | Structured data translation apparatus, system and method | |
| GB2415518A (en) | Method and apparatus for translation based on a repository of existing translations | |
| US20100153396A1 (en) | Name indexing for name matching systems | |
| US20090210404A1 (en) | Database search control | |
| EP1099171B1 (en) | Accessing a semi-structured database | |
| US8082240B2 (en) | System for retrieving information units | |
| AU2017232064B2 (en) | Systems, methods, software, and interfaces for multilingual information retrieval | |
| AU2013200190A1 (en) | Systems, methods, software, and interfaces for multilingual information retrieval | |
| Fontelo et al. | PICO linguist and BabelMeSH: Development and partial evaluation of evidence-based multilanguage search tools for Medline/Pubmed. | |
| Graën et al. | Efficient exploration of translation variants in large multiparallel corpora using a relational database | |
| US20060195313A1 (en) | Method and system for selecting and conjugating a verb | |
| Hoque et al. | An effective approach for relevant paragraph retrieval in Question Answering systems | |
| US20170052966A1 (en) | Translating search engine | |
| JP2025179561A (en) | Information processing system, information processing method, and program | |
| JP2009080777A (en) | Machine translation apparatus and machine translation program | |
| Adafre et al. | The University of Amsterdam at WiQA 2006. | |
| Leacock et al. | Harman, DK (1993). Overview of the First Text Retrieval Conference. In NIST Special Publication 500-207: The First Text Retrieval Conference (TREC-1), ed. DK Harman, Computer Systems Laboratory, NIST. Landauer, TK and ML Littman (1990). Fully Automatic Cross-Lan-guage Document Retrieval Using Latent Semantic Indexing. In Proceedings | |
| Davis et al. | Query Translation Using Evolutionary |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| HB | Alteration of name in register |
Owner name: THOMSON REUTERS GLOBAL RESOURCES UNLIMITED COMPANY Free format text: FORMER NAME(S): THOMSON REUTERS GLOBAL RESOURCES |
|
| FGA | Letters patent sealed or granted (standard patent) | ||
| PC | Assignment registered |
Owner name: THOMSON REUTERS ENTERPRISE CENTRE GMBH Free format text: FORMER OWNER(S): THOMSON REUTERS GLOBAL RESOURCES UNLIMITED COMPANY |