AU2015308035B2 - Improved process for the preparation of Lacosamide and its novel intermediate - Google Patents
Improved process for the preparation of Lacosamide and its novel intermediate Download PDFInfo
- Publication number
- AU2015308035B2 AU2015308035B2 AU2015308035A AU2015308035A AU2015308035B2 AU 2015308035 B2 AU2015308035 B2 AU 2015308035B2 AU 2015308035 A AU2015308035 A AU 2015308035A AU 2015308035 A AU2015308035 A AU 2015308035A AU 2015308035 B2 AU2015308035 B2 AU 2015308035B2
- Authority
- AU
- Australia
- Prior art keywords
- formula
- compound
- reaction
- temperature
- iii
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 238000002360 preparation method Methods 0.000 title claims abstract description 32
- VPPJLAIAVCUEMN-GFCCVEGCSA-N lacosamide Chemical compound COC[C@@H](NC(C)=O)C(=O)NCC1=CC=CC=C1 VPPJLAIAVCUEMN-GFCCVEGCSA-N 0.000 title claims abstract description 31
- 229960002623 lacosamide Drugs 0.000 title claims abstract description 31
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 14
- 125000005843 halogen group Chemical group 0.000 claims abstract 5
- 150000001875 compounds Chemical class 0.000 claims description 61
- 238000006243 chemical reaction Methods 0.000 claims description 52
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 35
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 27
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 21
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 claims description 14
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 claims description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 12
- 239000002904 solvent Substances 0.000 claims description 12
- 230000003647 oxidation Effects 0.000 claims description 11
- 238000007254 oxidation reaction Methods 0.000 claims description 11
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 10
- 229910017604 nitric acid Inorganic materials 0.000 claims description 10
- 239000007800 oxidant agent Substances 0.000 claims description 10
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 claims description 8
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 claims description 8
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 claims description 8
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 claims description 8
- 239000007822 coupling agent Substances 0.000 claims description 8
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 claims description 8
- 238000007142 ring opening reaction Methods 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- JMTMSDXUXJISAY-UHFFFAOYSA-N 2H-benzotriazol-4-ol Chemical compound OC1=CC=CC2=C1N=NN2 JMTMSDXUXJISAY-UHFFFAOYSA-N 0.000 claims description 6
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 claims description 6
- 229940086542 triethylamine Drugs 0.000 claims description 6
- 239000003054 catalyst Substances 0.000 claims description 5
- 239000007858 starting material Substances 0.000 claims description 5
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 claims description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 3
- UKVIEHSSVKSQBA-UHFFFAOYSA-N methane;palladium Chemical compound C.[Pd] UKVIEHSSVKSQBA-UHFFFAOYSA-N 0.000 claims description 3
- 230000010933 acylation Effects 0.000 claims description 2
- 238000005917 acylation reaction Methods 0.000 claims description 2
- 230000006340 racemization Effects 0.000 claims description 2
- 238000001953 recrystallisation Methods 0.000 claims description 2
- 229910001923 silver oxide Inorganic materials 0.000 claims description 2
- BRLQWZUYTZBJKN-VKHMYHEASA-N (-)-Epichlorohydrin Chemical compound ClC[C@H]1CO1 BRLQWZUYTZBJKN-VKHMYHEASA-N 0.000 claims 1
- 238000007069 methylation reaction Methods 0.000 claims 1
- 239000011541 reaction mixture Substances 0.000 description 17
- 235000019439 ethyl acetate Nutrition 0.000 description 14
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 11
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 10
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 9
- 150000002367 halogens Chemical group 0.000 description 9
- 238000000746 purification Methods 0.000 description 9
- 239000012043 crude product Substances 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 6
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 6
- 238000004809 thin layer chromatography Methods 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 239000000543 intermediate Substances 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- PAMIQIKDUOTOBW-UHFFFAOYSA-N 1-methylpiperidine Chemical compound CN1CCCCC1 PAMIQIKDUOTOBW-UHFFFAOYSA-N 0.000 description 4
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 150000007529 inorganic bases Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 150000007530 organic bases Chemical class 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 3
- 235000019341 magnesium sulphate Nutrition 0.000 description 3
- 239000012044 organic layer Substances 0.000 description 3
- 235000010333 potassium nitrate Nutrition 0.000 description 3
- 239000004323 potassium nitrate Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000013557 residual solvent Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- PVOAHINGSUIXLS-UHFFFAOYSA-N 1-Methylpiperazine Chemical compound CN1CCNCC1 PVOAHINGSUIXLS-UHFFFAOYSA-N 0.000 description 2
- HZONRRHNQILCNO-UHFFFAOYSA-N 1-methyl-2h-pyridine Chemical compound CN1CC=CC=C1 HZONRRHNQILCNO-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- ZMCUDHNSHCRDBT-UHFFFAOYSA-M caesium bicarbonate Chemical compound [Cs+].OC([O-])=O ZMCUDHNSHCRDBT-UHFFFAOYSA-M 0.000 description 2
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 2
- 229910000024 caesium carbonate Inorganic materials 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 229940043279 diisopropylamine Drugs 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- HQRPHMAXFVUBJX-UHFFFAOYSA-M lithium;hydrogen carbonate Chemical compound [Li+].OC([O-])=O HQRPHMAXFVUBJX-UHFFFAOYSA-M 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 2
- 235000015497 potassium bicarbonate Nutrition 0.000 description 2
- 239000011736 potassium bicarbonate Substances 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 235000011181 potassium carbonates Nutrition 0.000 description 2
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 208000001640 Fibromyalgia Diseases 0.000 description 1
- -1 Lacosamide compound Chemical class 0.000 description 1
- 208000019695 Migraine disease Diseases 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 150000001793 charged compounds Chemical class 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 206010027599 migraine Diseases 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- MUMZUERVLWJKNR-UHFFFAOYSA-N oxoplatinum Chemical compound [Pt]=O MUMZUERVLWJKNR-UHFFFAOYSA-N 0.000 description 1
- NXJCBFBQEVOTOW-UHFFFAOYSA-L palladium(2+);dihydroxide Chemical compound O[Pd]O NXJCBFBQEVOTOW-UHFFFAOYSA-L 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 229910003446 platinum oxide Inorganic materials 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C231/00—Preparation of carboxylic acid amides
- C07C231/08—Preparation of carboxylic acid amides from amides by reaction at nitrogen atoms of carboxamide groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C231/00—Preparation of carboxylic acid amides
- C07C231/02—Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/18—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C231/00—Preparation of carboxylic acid amides
- C07C231/12—Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C231/00—Preparation of carboxylic acid amides
- C07C231/22—Separation; Purification; Stabilisation; Use of additives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C235/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
- C07C235/02—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
- C07C235/04—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C235/06—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C247/00—Compounds containing azido groups
- C07C247/02—Compounds containing azido groups with azido groups bound to acyclic carbon atoms of a carbon skeleton
- C07C247/12—Compounds containing azido groups with azido groups bound to acyclic carbon atoms of a carbon skeleton being further substituted by carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/27—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with oxides of nitrogen or nitrogen-containing mineral acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/29—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with halogen-containing compounds which may be formed in situ
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C59/00—Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C59/01—Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
- C07C59/115—Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups containing halogen
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
An improved, cost effective process for the preparation of Lacosamide is disclosed. A novel intermediate of formula (IV) and a process for preparation of the novel intermediate is also disclosed. wherein, X is halogen.
Description
BACKGROUND OF THE INVENTION
Lacosamide [(R)-2-acetamido-N-benzyl-3-methoxypropionamide] of formula (I) is disclosed in US RE 38,551. It shows effects in the treatment of pain, epilepsy, fibromyalgia syndrome, osteoarthritis and migraine.
The process for preparation of Lacosamide of formula (I) is disclosed in US RE 38,551, WO 2006037574 and WO 2010052011.
The processes disclosed in these references are having following disadvantages:
a) Use of very expensive and hazardous reagents like silver oxide or butyllithium results in partial racemization which reduces the yield.
b) Purification with column chromatography techniques which is very difficult in commercial scale.
c) Use of expensive starting material.
WO 2016/030911
PCT/IN2015/050011
d) Late stage optical resolution to afford high optical purity of Lacosamide.
In view of the preparation methods available for Lacosamide, there is a need for simple and cost effective process for the preparation of Lacosamide with high optical purity avoiding the use of expensive starting material and late stage optical resolution.
OBJECTS OF THE INVENTION
Primary object of the invention is to provide an improved process for the preparation of Lacosamide.
Another object of the invention is to provide a simple and cost effective process for the preparation of Lacosamide with high optical purity.
Another object of the invention is to provide an industrially viable process for the preparation of Lacosamide avoiding expensive materials and late stage optical resolution.
A further object of the invention is to provide novel intermediates for the synthesis of Lacosamide.
SUMMARY OF THE INVENTION
Accordingly, in one aspect, the invention provides a novel process for the preparation of a compound of formula (III)
O OH w
HO CH2X (HI) wherein, X is halogen which comprises: regioselective ring opening of a compound of formula (II)
O
A
Bh2x (Π) wherein, X is halogen, in the presence of water, followed by oxidation with oxidising agent to obtain compound of formula (III).
WO 2016/030911
PCT/IN2015/050011
In another aspect, the invention provides a novel intermediate of formula (IV) which is useful in the preparation of Lacosamide of formula (I) . 0 °H
Q (IV) wherein X is halogen.
In another aspect, the invention provides a process for preparation of optically pure or optically enriched novel intermediate of formula (IV) _ 0 °H
H
CH2X (IV) wherein, X is halogen which comprises:
Step 1: regioselective ring opening of compound of formula (II);
O
A ^ch2x (II) in presence of water , followed by oxidation with oxidising agent to obtain compound of formula (III);
O OH w
HO CH2X (ΠΙ) wherein, X is halogen;
Step 2:reaction of compound of formula (III) with benzyl amine in the presence of base and coupling agent to obtain formula (IV).
(IV)
WO 2016/030911
PCT/IN2015/050011
In another aspect, the invention provides a process for the preparation of Lacosamide of formula (I),
(I) which comprises:
Step 1: regioselective ring opening of compound of formula (II)
O
A ^ch2x (II) wherein X is halogen, in the presence of water, followed by oxidation with oxidising agent to obtain compound of formula (III);
O OH w
HO CH2X (HI)
Step 2:reaction of compound of formula (III) with benzyl amine in the presence of base and coupling agent to obtain formula (IV)
(IV)
Step 3: reaction of compound of formula (IV) with base in alcohol solvent to obtain a compound of formula (V);
(V)
WO 2016/030911
PCT/IN2015/050011
Step 4: protection of hydroxyl group of compound of formula (V) with Tosyl chloride in presence of dimethyl amino pyridine, dichloromethane and triethyl amine at a temperature in the range of 20 °C to 40 °C to obtain compound of formula (VI);
Step 5: reaction of compound of formula (VI) with sodium azide in presence of dimethyl formamide and water at a temperature in the range of 60 °C to 80 °C for the period of 5 hours to 7 hours to obtain compound of formula (VII);
(VII)
Step 6: reducing compound of formula (VII) with H2 in presence of organic solvent and catalyst at a temperature in the range of 20 °C to 40 °C for the period of 2 hours to 4 hours to obtain compound of formula (VIII);
(VIII)
Step 7: acylation of compound of formula (VIII) with aceticanhydride in presence of dimethyl amino pyridine and anhydrous methylene dichloride at a temperature in the range of 25 °C to 35 °C for the period of 10 hours to 14 hours to obtain Lacosamide of formula (I).
In another aspect, the invention provides a process for the purification of the Lacosamide in ethyl acetate at a temperature in the range of 5 °C to 15 °C for the period of 15 minutes to 45 minutes to give the pure Lacosamide of formula (I).
In another aspect, the invention provides a process for the preparation of Lacosamide of formula (I) by
WO 2016/030911
PCT/IN2015/050011 using inexpensive, readily available and easy to handle reagents.
In another aspect, the invention provides process for the preparation of Lacosamide of formula (I) which can be readily scaled up and which does not require a special purification steps.
In yet another aspect, the present invention provides an improved process for the preparation of Lacosamide of formula (I) which is simple, convenient, economical and environment friendly.
DETAILED DESCRIPTION OF THE INVENTION
Accordingly, the present invention provides a process for the preparation of formula (III),
Scheme-1 illustrates the process for the preparation of formula (III).
(II) (III) wherein, X is halogen.
Scheme-1
This step comprises regioselective ring opening of formula (II) with water, followed by oxidation with suitable oxidizing agent to obtain compound of formula (III).
The oxidation agent used in the reaction is selected from nitric acid, sulfuric acid, hydrogen peroxide or potassium nitrate and preferably using nitric acid. The reaction temperature may range from 80 °C to 120 °C and preferably at a temperature in the range from 85 °C to 110 °C. The duration of the reaction may range from 5 hours to 7 hours, preferably for a period of 6 hours.
In another aspect, the invention provides a novel intermediate of formula (IV), which is useful for the preparation of Lacosamide of formula (I).
WO 2016/030911
PCT/IN2015/050011 (IV)
In yet another aspect, the invention provides a process for the preparation of novel intermediate of formula (IV),
Scheme-2 illustrates the process for the preparation of formula (IV);
X (II) (III) (IV) wherein, X is halogen.
Scheme-2
The process of Scheme-2 comprises (i) regioselective ring opening of formula (II) with water, followed by oxidation with suitable oxidizing agent to obtain compound of formula (III);
The oxidation agent used in the reaction is selected from nitric acid, sulfuric acid, hydrogen peroxide or potassium nitrate and preferably using nitric acid. The reaction temperature may range from 80 °C to 120 °C and preferably at a temperature in the range from 85 °C to 110 °C. The duration of the reaction may range from 5 hours to 7 hours, preferably for a period of 6 hours.
(ii) reacting the above obtained compound of formula (III) with benzyl amine in presence of base and coupling reagent to obtain compound of formula (IV).
The base employed in reaction can be selected from organic or inorganic base wherein the organic base is selected from the group comprising of isopropyl amine, diisopropyl amine, diisopropyl ethyl-amine, Nmethyl morpholine, N-methyl piperidine, N-methyl piperazine, N-methyl pyridine or triethylamine. Inorganic base is selected from the group comprising of sodium, potassium, lithium, sodium carbonate, potassium carbonate, cesium carbonate, lithium carbonate, sodium bicarbonate, potassium bicarbonate, lithium bicarbonate, cesium bicarbonate, sodium hydroxide, calcium hydroxide or potassium hydroxide and preferably using N-methyl morpholine.
WO 2016/030911
PCT/IN2015/050011
The coupling agent used in the reaction is selected from hydroxybenzotriazole and dicyclohexylcarbodiimide. The reaction temperature may range from 25 °C to 40 °C and preferably at a temperature in the range from 25 °C to 35 °C. The duration of the reaction may range from 4 hours to 6 hours, preferably for a period of 5 hours.
According to another aspect of the invention, there is provided a process for the preparation of Lacosamide of formula (I).
(I)
Scheme-3 illustrates the process for preparation of Lacosamide of formula (I);
V
VI
WO 2016/030911
PCT/IN2015/050011
wherein, X is halogen; preferably chlorine.
Scheme-3
The step-1 of scheme-3 comprises regioselective ring opening of formula (II) with water followed by oxidation with suitable oxidizing agent to obtain compound of formula (III).
The oxidation agent used in the reaction is selected from nitric acid, sulfuric acid, hydrogen peroxide or potassium nitrate and preferably using nitric acid. The reaction temperature may range from 80 °C to 120 °C and preferably at a temperature in the range from 85 °C to 110 °C. The duration of the reaction may range from 5 hours to 7 hours, preferably for a period of 6 hours.
The step-2 of scheme-3 comprises reacting the above obtained compound of formula (III) with benzyl amine in presence of base and coupling reagent to obtain compound of formula (IV).
The base employed in reaction can be selected from organic or inorganic base wherein the organic base is selected from the group comprising of isopropyl amine, diisopropyl amine, diisopropyl ethyl-amine, Nmethyl morpholine, N-methyl piperidine, N-methyl piperazine, N-methyl pyridine or triethylamine. Inorganic base is selected from the group comprising of sodium, potassium, lithium, sodium carbonate, potassium carbonate, cesium carbonate, lithium carbonate, sodium bicarbonate, potassium bicarbonate,
WO 2016/030911
PCT/IN2015/050011 lithium bicarbonate, cesium bicarbonate, sodium hydroxide, calcium hydroxide or potassium hydroxide and preferably using N-methyl morpholine. The coupling agents used in the reaction is selected from hydroxybenzotriazole and dicyclohexylcarbodiimide. The reaction temperature may range from 25 °C to 40 °C and preferably at a temperature in the range from 25 °C to 35 °C. The duration of the reaction may range from 4 hours to 6 hours, preferably for a period of 5 hours.
The step-3 of scheme-3 comprises reaction of compound of formula (IV) with base in alcohol solvent to obtain a compound of formula (V).
The base used in this reaction is selected from methyl iodide, dimethyl sulphate, dimethyl carbonate, sodium methoxide or sodium ethoxide and preferably using sodium methoxide. The alcohol solvent is selected form methanol, ethanol, propanol, butanol, pentanol, and preferably methanol.The reaction temperature may range from -5 °C to 5°C and preferably at a temperature in the range from 0 °C to 3 °C. The duration of the reaction may range from 2 hours to 4 hours, preferably for a period of 3 hours.
The step-4 of scheme-3 comprises hydroxy protection of compound of formula (V) with tosyl chloride in presence of dimethyl amino pyridine, dichloromethane and triethyl amine to obtain compound of formula (VI). The reaction temperature may range from 20 °C to 40 °C and preferably at a temperature in the range from 25 °C to 35 °C.
In Step 5 of the scheme-3, the above obtained compound of formula (VI) is reacted with sodium azide in the presence of dimethyl formamide and water to obtain compound of formula (VII). The reaction temperature may range from 60 °C to 80 °C and preferably at a temperature in the range from 65 °C to 75 °C. The duration of the reaction may range from 5 hours to 7 hours, preferably for a period of 6 hours.
In Step 6 of this scheme, the above obtained compound of formula (VII) is reduced with H2 in the presence of catalyst and organic solvent to obtain compound of formula (VIII). Catalyst used in the reaction can be selected from Pd/C, Pt/C, Raney Ni, Rh/C, Platinum oxide, Pd(OH)2/C or Lithium aluminium hydride and preferably using palladium carbon. Organic solvent used in this reaction can be selected from alcohols or ketones and preferably methanol. The reaction temperature may range from 20 °C to 40 °C and preferably at a temperature in the range from 25 °C to 35 °C. The duration of the reaction may range from 2 hours to 4 hours, preferably for a period of 3 hours.
In Step 7 of the sheme-3, the above obtained compound of formula (VIII) is acylated with acetic anhydride in presence of catalytic amount of dimethyl amino pyridine and anhydrous methylene 10
WO 2016/030911
PCT/IN2015/050011 dichloride to obtain Lacosamide of formula (I).
The reaction temperature may range from 20 °C to 40 °C and preferably at a temperature in the range from 25 °C to 35 °C. The duration of the reaction may range from 10 hours to 14 hours, preferably for a period of 12 hours.
According to another aspect of the invention, there is provided a process for purification of Lacosamide compound of formula (I) by recrystallization in ethyl acetate. The reaction temperature may range from 5 °C to 15 °C and preferably at a temperature of 10 °C. The duration of the reaction may range from 15 minutes to 45 minutes, preferably for a period of 30 minutes
The following examples are provided to enable one skilled in the art to practice the invention and merely illustrate the process of the invention. However, it is not intended in any way to limit the scope of the present invention.
Examples
Example 1: Preparation of compound of formula (III)
To the round bottom flask having 100 mL of demineralised water (DM water) is charged compound of formula (II) (100 grams) at room temperature (RT) and subsequently reaction temperature is raised to 90°C, reaction mixture is allowed to stir at same temperature with vigorous stirring for 6hours. Subsequently to the reaction mixture at 85 °C is added 65 % aqueous nitric acid (250 mL) under controlled rate over 30 minutes in small aliquots and reaction mixture is heated to 110 °C, The same temperature is maintained for additional 4 hours when thin layer chromatography (TLC), using 80 % ethyl acetate (EtOAc)/hexane as mobile phase confirmed the full consumption of starting material and formation of slower moving spot. Reaction mixture is cooled to 10 °C and to reaction mixture is added 58 grams of sodium bicarbonate (NaHCCL) while maintaining the same temperature. The product is extracted with ethyl acetate (EtOAc) (8 xlOO mL) and dried over magnesium sulphate. The solvent is then evaporated at room temperature (RT) and the temperature is raised to 60 °C towards the end of evaporation to remove residual nitric acid. The crude product solidified on standing at RT and is recrystallized from chloroform to yield 60 grams of colorless crystals of formula (III).
Ή - NMR (300 MHz, DMSO-d6): d= 12.89 (br s, 1H), 5.71 (br s, 1H), 4.31 (t, J = 6.0 Hz, 1H), 3.78 (d, J =6.0 Hz, 1H);
MS(ESI):m/z=123.00[M-H]+.
WO 2016/030911
PCT/IN2015/050011
Example 2: Preparation of compound of formula IV
To the cold reaction mixture of hydroxyl benzotriazole (HOBt) (68.28 grams) in dichloromethane (600 mL) is added to benzyl amine (60 mL) followed by N-methyl morpholine (63.48 mL) and dicyclohexylcarbodiimide (DCC) (104.28 grams) under nitrogen atmosphere. Subsequently, compound of formula (III) (60 grams) is added slowly to reaction mixture under nitrogen atmosphere over 30 minutes and reaction mass temperature is raised to RT and reaction mass is stirred for 5 hours at RT when TLC (50% EtOAc in n-hexane) showed complete consumption of staring material and formation of slower moving spot. Insoluble material is filtered off and resulted mother liquor is washed with 3N hydrochloric acid (HC1) (120 mL). The solvent is then evaporated at RT and the temperature is raised to 40 °C towards the end of evaporation. The crude product of formula (IV) (95 grams) is considered to subsequent stage without further purification.
Ή - NMR (300 MHz, DMSO-d6): d= 8.45 (t, J = 6.0Hz, 1H), 7.33 - 7.19 (m, 5H), 6.13 (d, J = 6.0Hz, 1H), 4.33 - 4.26 (m, 3H), 3.85 - 3.75 (m, 2H);
MS(ESI):m/z =212.05 [M-H]+.
Example 3: Preparation of compound of formula (V)
To the reaction mixture of formula (IV) (90 grams) in methanol (55 mL) is charged 220 mL of 30% sodium methoxide in methanol at 0 - 3 °C under nitrogen atmosphere and the reaction is stirred for 3hours at RT when TLC (50% EtOAc in n-hexane) showed complete consumption of staring material and formation of slower moving spot. To the reaction mixture is added 190 mL of 5N HC1 and reaction mixture is stirred for 30 minutes at RT. The product is extracted with EtOAc (2 x 200 mL) and dried over magnesium sulphate. The solvent is then evaporated at RT and the temperature is raised to 60 °C towards the end of evaporation to remove residual solvent. The crude product compound of formula (V) (80 grams) is considered for subsequent stage without further purification.
Ή - NMR (300 MHz, DMSO-d6): d= 8.30 (t, J = 6.0Hz, 1H), 7.33 - 7.19 (m, 5H), 5.72 (d, J = 6.0Hz, 1H), 4.29 (d, J = 6.0 Hz, 2H), 4.09 - 4.05 (m, 1H), 3.56 - 3.44 (m, 2H), 3.26 (s, 3H);
MS(ESI):m/z = 210.13 [M+H]+.
Example 4: Preparation of compound of formula VI
To the cold reaction mixture of formula (V) (80 grams) in 400 mL of dichloromethane is added to triethyl amine(64.09 mL) followed by tosyl chloride (87.3 grams) and dimethyl amino pyridine (0.05 equivalents, 2.3grams) under N2 gas atmosphere. Slowly reaction temperature is raised to 20 °C and reaction is stirred for 12 hours when TLC (50% EtOAc in n-hexane) showed complete consumption of starting material and formation of faster moving spot. To the reaction mixture is added 160 mL of water while stirring for additional 30 minutes. The organic layer is separated and dried over magnesium sulphate. The solvent is 12
WO 2016/030911
PCT/IN2015/050011 then evaporated at RT and the temperature is raised to 40 °C towards the end of evaporation to remove residual solvent. The crude product of formula (VI) is recrystallized with 240 mL of isopropanol at room temperature followed by cooling to 5 °C and obtained white solid is air dried for 3hours. Isolated yield: 105 grams.
Ή -NMR (300 MHz, CDC13): d= 7.79 (d, J = 9.0 Hz, 2H), 7.75 - 7.24 (m, 5H), 7.21 - 7.19 (m, 2H), 6.72 (br s, 1H), 4.99 (dd, J = 3.0 Hz,3.0 Hz, 1H), 4.43 - 4.41 (m, 2H), 3.79 (dd, J =12.0 Hz,3 Hz, 1H), 3.63 (dd, J=9.0 Hz,3 Hz, 1H), 3.23 (s, 3H), 2.44 (s, 3H);
MS(ESI):m/z =364.14 [M+H]+.
Example 5: Preparation of compound of formula VII
To a stirred solution of formula (VI) (55 grams) in dimethyl formamide and water (192 mL: 82 mL) at 70 °C under a N2 atmosphere is added sodium azide (15 grams). The mixture is then allowed to stirr at 70 °C for 6 hours, and then quenched with cool water (275 mL) at RT, the product is extracted with EtOAc (2x 100 mL). The combined organic extracts are washed with cool water (200 mL), dried with sodium sulphate, and concentrated to give the crude product compound of formula (VII) (33grams) as a pale yellow liquid. The crude is taken to subsequent step as such without any further purification.
Ή - NMR (300 MHz, CDC13): d= 7.38 - 7.26 (m, 5H), 6.79 (br s, 1H), 4.47 (d, J = 6.0 Hz, 2H), 4.25 (dd, J = 6.0 Hz, 3.0 Hz, 1H), 3.94 (dd, J =12.0 Hz, 6.0 Hz, 1H), 3.77 (dd, J=9.0 Hz, 6.0 Hz, 1H), 3.43 (s, 3H); MS(ESI):m/z = 235.14 [M+H]+.
Example 6: Preparation of compound of Formula VIII
The obtained crude of formula (VII) (33 grams) is dissolved in methanol (150 mL) and to the reaction mixture in autoclave is added 5%palladium carbon (4.2 grams) at RT under nitrogen atmosphere. The reaction mixture is stirred for 3 hours at RT under 3 kg H2 gas pressure.TLC (50% EtOAc in n-hexane) showed complete consumption of staring material and formation of slower moving spot. Filter the reaction mixture through celite pad and the celite pad is washed successively with hot methanol (30 mL). The solvent is then evaporated at RT and the temperature is raised to 50 °C towards the end of evaporation to remove residual solvent. The crude product of formula (VIII) (28 grams) is considered for subsequent stage without further purification.
Ή - NMR (300 MHz, DMSO-d6): d= 8.39 (s, 1H), 7.33 - 7.20 (m, 5H), 4.30 (dd, J = 6.0 Hz, 3.0Hz, 2H), 3.45 - 3.39 (m, 3H), 3.25 (s, 3H), 1.97 (s, 2H).
MS(ESI):m/z=209.17 [M+H]+.
Example 7: Preparation of compound of formula I
To a stirred solution of formula (VIII) (27.7 grams) in anhydrous methylene dichloride (138 mL) is slowly
WO 2016/030911
PCT/IN2015/050011 added acetic anhydride (12.7 mL) and catalytic amount of dimethyl amino pyridine (0.5 grams). The resulting solution is stirred at RT for 12 hours. To the reaction mixture is added water (166 mL) and stirred for 15 minutes. The organic layer is successively washed with saturated sodium carbonate solution (83 mL). Organic layer is dried over sodium sulphate and solvent is evaporated to afford 31 grams of crude product of formula (I).
Example 8: Purification of Lacosamide
The above obtained crude 31 grams is taken in EtOAc (217 mL) and mixture is refluxed for 30 minutes. Subsequently, reaction mixture is allowed to cool at 10°Cwhile maintaining the stirring for additional 30 minutes. The obtained crystalline mass is filtered and solid cake is washed with chilled EtOAc (31 mL). Obtained solid is dried under vacuum to afford 25 grams of Lacosamide with high chiral purity.
Ή - NMR (300 MHz, DMSO-d6): d= 8.47 (t, J=6.0Hz, 1H),8.O8 (d, J=6.0Hz, 1H), 7.33 - 7.19 (m, 5H), 4.52 - 4.45 (m, 1H), 4.28 (d, J=6.0 Hz, 2H), 3.55 - 3.45 (m, 2H), 3.25 (s, 3H), 1.87 (s, 3H);
MS(ESI): m/z =251.15 [M+H]+.
Claims (20)
1. The process uses commercially available and less expensive starting material, namely (R)-Glycidyl chloride.
2. The present invention avoids cumbersome O-methylation step used in prior art (in earlier methods, this step involves expensive silver oxide, longer reaction period (3-4 days), and partial racemization).
CLAIMS:
2015308035 28 Feb 2019
1. A process for the preparation of Lacosamide of formula (I) (I) which comprises:
i). regioselective ring opening of compound of formula (II) O ch2x (II) in presence of water, followed by oxidation with an oxidising agent to obtain compound of formula (III) wherein, X is halogen;
ii). reaction of compound of formula (III) with benzyl amine in presence of a base and coupling agent to obtain a compound of formula (IV);
(IV) iii). reaction of compound of formula (IV) with a base in alcohol solvent to obtain a compound of formula (V);
2015308035 28 Feb 2019 iv). protection of hydroxyl group of compound of formula (V) with tosyl chloride in presence of dimethyl amino pyridine, dichloromethane and triethyl amine to obtain compound of formula (VI);
v). reacting compound of formula (VI) with sodium azide in presence of dimethyl formamide and water to obtain compound of formula (VII);
vi). reducing compound of formula (VII) with H2 in the presence of organic solvent and catalyst to obtain compound of formula (VIII);
(VIII) vii). acylation of compound of formula (VIII) with acetic anhydride in presence of dimethyl amino pyridine and anhydrous methylene dichloride to obtain Lacosamide of formula (I); and optionally, recrystalizing Lacosamide in ethyl acetate to give pure Lacosamide of formula (I).
2015308035 28 Feb 2019
2. The process as claimed in claim 1, wherein the oxidising agent is step (i) is nitric acid.
3. The process as claimed in claim 1 or claim 2, wherein the reaction of step (i) takes place at a temperature between 80 °C to 120 °C.
4. The process as claimed in any one of claims 1 to 3, wherein the coupling agent in step (ii) is hydroxybenzotriazole and dicyclohexylcarbodiimide.
5. The process as claimed in any one of claims 1 to 4, wherein the base in step (ii) is Nmethyl morpholine.
6. The process as claimed in any one of claims 1 to 4, wherein the base in step (iii) is sodium methoxide.
7. The process as claimed in any one of claims 1 to 6, wherein the alcohol solvent in step (iii) is methanol.
8. The process as claimed in any one of claims 1 to 7, wherein the reaction of step (iii) takes place at a temperature between 0 °C to 40 °C.
9. The process as claimed in any one of claims 1 to 8, wherein the reaction of step (iv) and step (vi) takes place at a temperature between 20 °C to 40 °C.
10. The process as claimed in any one of claims 1 to 9, wherein the reaction of step (v) takes place at a temperature between 60 °C to 80 °C.
11. The process as claimed in any one of claims 1 to 10, wherein the catalyst in step (vi) is palladium carbon.
12. The process as claimed in any one of claims 1 to 11, wherein the solvent in step (vi) is methanol.
13. The process as claimed in any one of claims 1 to 12, wherein the reaction of step (vii) takes place at a temperature between 25 °C to 35 °C.
2015308035 28 Feb 2019
14. The process as claimed in any one of claims 1 to 13, wherein the recrystallization of Lacosamide (I) is done at a temperature between 5 °C to 15 °C.
15. A compound of formula (IV) (IV) wherein, X is halogen.
16. A process for the preparation of a compound of formula (IV) wherein, X is halogen, which comprises;
i). regioselective ring opening of formula (II)
CH2X (Π) in the presence of water, followed by oxidation with oxidising agent to obtain compound of formula (III)
O OH w
HO CH2X (HI) wherein, X is halogen;
2015308035 28 Feb 2019 ii). reaction of compound of formula (III) with benzyl amine in presence of base and coupling agent to obtain formula (IV).
(IV)
17. The process as claimed in claim 16, wherein the oxidizing agent in step (i) is nitric acid.
18. The process as claimed in claim 16 or claim 17, wherein the reaction in step (i) takes place at a temperature between 80 °C to 120 °C.
19. The process as claimed in any one of claims 16 to 18, wherein the coupling agent in step (ii) is hydroxybenzotriazole and dicyclohexylcarbodiimide.
20. The process as claimed in any one of claims 16 to 19, wherein the base in step (ii) is Nmethyl morpholine.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IN4228CH2014 | 2014-08-28 | ||
| IN4228/CHE/2014 | 2014-08-28 | ||
| PCT/IN2015/050011 WO2016030911A2 (en) | 2014-08-28 | 2015-02-25 | Improved process for the preparation of lacosamide and its novel intermediate |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| AU2015308035A1 AU2015308035A1 (en) | 2017-03-02 |
| AU2015308035B2 true AU2015308035B2 (en) | 2019-04-04 |
Family
ID=52779535
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2015308035A Ceased AU2015308035B2 (en) | 2014-08-28 | 2015-02-25 | Improved process for the preparation of Lacosamide and its novel intermediate |
Country Status (9)
| Country | Link |
|---|---|
| US (1) | US9346744B2 (en) |
| EP (1) | EP2990399B1 (en) |
| KR (1) | KR20170053644A (en) |
| AU (1) | AU2015308035B2 (en) |
| BR (1) | BR112017003148A2 (en) |
| CA (1) | CA2958283A1 (en) |
| ES (1) | ES2622993T3 (en) |
| MX (1) | MX2017002609A (en) |
| WO (1) | WO2016030911A2 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106866456B (en) * | 2017-01-23 | 2019-01-11 | 齐鲁天和惠世制药有限公司 | A kind of synthetic method of scheme for lacosamide |
| EP3567027B1 (en) * | 2017-03-01 | 2022-01-19 | API Corporation | Method for producing n-benzyl-2-bromo-3-methoxypropionamide and intermediates thereof |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090143472A1 (en) * | 2007-12-04 | 2009-06-04 | Mukesh Kumar Madhra | Intermediate compounds and their use in preparation of lacosamide |
| WO2013024383A1 (en) * | 2011-08-12 | 2013-02-21 | Alembic Pharmaceuticals Limited | An improved process for the preparation of lacosamide |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5724362A (en) * | 1980-07-17 | 1982-02-08 | Yamamoto Kagaku Kogyo Kk | Preparation of pindolol |
| US5773475A (en) | 1997-03-17 | 1998-06-30 | Research Corporation Technologies, Inc. | Anticonvulsant enantiomeric amino acid derivatives |
| US20070155926A1 (en) * | 2003-03-28 | 2007-07-05 | Krzysztof Matyjaszewski | Degradable polymers |
| KR20040090062A (en) * | 2003-04-16 | 2004-10-22 | 주식회사 엘지생명과학 | Process for preparing 4-chloro-3-hydroxybutanoic acid ester |
| US7253283B2 (en) * | 2004-01-16 | 2007-08-07 | Bristol-Myers Squibb Company | Tricyclic modulators of the glucocorticoid receptor, AP-1, and/or NF-κB activity and use thereof |
| EP1642889A1 (en) | 2004-10-02 | 2006-04-05 | Schwarz Pharma Ag | Improved synthesis scheme for lacosamide |
| EA019040B1 (en) | 2008-11-07 | 2013-12-30 | Юсб Фарма Гмбх | Novel process for the preparation of amino acid derivatives |
| US8957252B2 (en) * | 2010-07-27 | 2015-02-17 | Indoco Remedies Limited | Process for preparation of lacosamide and some N-benzyl-propanamide intermediate derivatives |
| US8748660B2 (en) * | 2012-07-09 | 2014-06-10 | Council Of Scientific & Industrial Research | Process for the synthesis of antiepileptic drug lacosamide |
-
2015
- 2015-02-25 BR BR112017003148A patent/BR112017003148A2/en not_active Application Discontinuation
- 2015-02-25 KR KR1020177008319A patent/KR20170053644A/en not_active Withdrawn
- 2015-02-25 CA CA2958283A patent/CA2958283A1/en not_active Abandoned
- 2015-02-25 WO PCT/IN2015/050011 patent/WO2016030911A2/en not_active Ceased
- 2015-02-25 MX MX2017002609A patent/MX2017002609A/en unknown
- 2015-02-25 AU AU2015308035A patent/AU2015308035B2/en not_active Ceased
- 2015-03-09 US US14/641,949 patent/US9346744B2/en not_active Expired - Fee Related
- 2015-03-25 EP EP15160898.1A patent/EP2990399B1/en not_active Not-in-force
- 2015-03-25 ES ES15160898.1T patent/ES2622993T3/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090143472A1 (en) * | 2007-12-04 | 2009-06-04 | Mukesh Kumar Madhra | Intermediate compounds and their use in preparation of lacosamide |
| WO2013024383A1 (en) * | 2011-08-12 | 2013-02-21 | Alembic Pharmaceuticals Limited | An improved process for the preparation of lacosamide |
Non-Patent Citations (2)
| Title |
|---|
| SACHIN WADAVRAO ET AL, SYNTHESIS, 2013, vol. 45, pages 3383 - 3386 * |
| WISNIEWSKI, K., Organic Preparations and Procedures International, 1999, vol. 31, pp. 211-214 * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2016030911A3 (en) | 2016-04-21 |
| US20160060210A1 (en) | 2016-03-03 |
| EP2990399B1 (en) | 2017-03-15 |
| CA2958283A1 (en) | 2016-03-03 |
| AU2015308035A1 (en) | 2017-03-02 |
| US9346744B2 (en) | 2016-05-24 |
| KR20170053644A (en) | 2017-05-16 |
| ES2622993T3 (en) | 2017-07-10 |
| MX2017002609A (en) | 2017-05-30 |
| BR112017003148A2 (en) | 2017-11-28 |
| WO2016030911A2 (en) | 2016-03-03 |
| EP2990399A1 (en) | 2016-03-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TW201311629A (en) | Novel processes for the preparation of prostaglandin amides | |
| CA2746570A1 (en) | Process for producing optically active carboxylic acid | |
| NO317258B1 (en) | Process for the preparation of a protected 4-aminomethyl-pyrrolidin-3-one | |
| AU2015308035B2 (en) | Improved process for the preparation of Lacosamide and its novel intermediate | |
| CA2373077A1 (en) | Salts of 2,2-dimethyl-1,3-dioxane intermediates and process for the preparation thereof | |
| CN110577490B (en) | Synthetic method of abamectin intermediate (2S,5S) -N-protecting group-5-hydroxy-2-piperidine formate | |
| CA2516465A1 (en) | Chemical process for the preparation of intermediates to obtain n-formyl hydroxylamine compounds | |
| KR101327866B1 (en) | Improved process for preparing Mitiglinide calcium salt | |
| EP2383253B1 (en) | Method for manufacturing trans-{4-[(alkyl amino) methyl]cyclohexyl} acetic ester | |
| JP2007210923A (en) | Process for producing 4-trifluoromethylnicotinic acid or a salt thereof | |
| JP5704763B2 (en) | Production of trans-4-aminocyclopent-2-ene-1-carboxylic acid derivative | |
| JP2011520876A (en) | Process for the production of chiral intermediates for the production of HMG-CoA reduction inhibitors | |
| KR100968576B1 (en) | Method for preparing 2-acyl-3-amino-2-alkenoate | |
| JP4984676B2 (en) | Preparation of aniline having benzyloxy group | |
| CN110862325B (en) | Preparation method of (1R,3S) -3-amino-1-cyclopentanol and salt thereof | |
| CZ2013544A3 (en) | Novel process for preparing elvitegravir | |
| JP2009507783A (en) | Process for producing chiral 3-hydroxypyrrolidine compound having high optical purity and derivative thereof | |
| JP4831897B2 (en) | Method for producing (2,6-dichloropyridin-4-yl) methanol | |
| CN105384660A (en) | Preparation method for alpha-amino acid | |
| US20100305330A1 (en) | Process for preparing 2-alkyl-3-halo-6-nitrilpyridine and its carboxylic acid and ester derivatives | |
| JPH0912544A (en) | Production of new 6-amino-3-azabicyclo(3.1.0)hexane derivative | |
| JP2001031647A (en) | Purification of 4-hydroxy-2-pyrrolidinone | |
| JPH06157494A (en) | Alpha-acylaminoketone derivative, its production and its utilization | |
| HK1160105A (en) | Process for producing optically active carboxylic acid | |
| WO2011121091A1 (en) | Efficient synthesis for the preparation of montelukast and novel crystalline form of intermediates therein |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FGA | Letters patent sealed or granted (standard patent) | ||
| MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |