AU2014269042A1 - Methods and compositions for treatment of HIV infection - Google Patents
Methods and compositions for treatment of HIV infection Download PDFInfo
- Publication number
- AU2014269042A1 AU2014269042A1 AU2014269042A AU2014269042A AU2014269042A1 AU 2014269042 A1 AU2014269042 A1 AU 2014269042A1 AU 2014269042 A AU2014269042 A AU 2014269042A AU 2014269042 A AU2014269042 A AU 2014269042A AU 2014269042 A1 AU2014269042 A1 AU 2014269042A1
- Authority
- AU
- Australia
- Prior art keywords
- hiv
- treatment
- cells
- inhibitors
- infection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000011282 treatment Methods 0.000 title claims abstract description 268
- 239000000203 mixture Substances 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title claims abstract description 64
- 208000031886 HIV Infections Diseases 0.000 title claims description 110
- 208000037357 HIV infectious disease Diseases 0.000 title claims description 69
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 title claims description 69
- 241000725303 Human immunodeficiency virus Species 0.000 claims abstract description 332
- 210000004027 cell Anatomy 0.000 claims abstract description 167
- 210000001744 T-lymphocyte Anatomy 0.000 claims abstract description 133
- 230000003612 virological effect Effects 0.000 claims abstract description 80
- 150000001875 compounds Chemical class 0.000 claims abstract description 71
- 208000015181 infectious disease Diseases 0.000 claims abstract description 67
- 230000005867 T cell response Effects 0.000 claims abstract description 49
- 230000010076 replication Effects 0.000 claims abstract description 17
- 230000005934 immune activation Effects 0.000 claims abstract description 11
- 239000003112 inhibitor Substances 0.000 claims description 135
- WAEXFXRVDQXREF-UHFFFAOYSA-N vorinostat Chemical compound ONC(=O)CCCCCCC(=O)NC1=CC=CC=C1 WAEXFXRVDQXREF-UHFFFAOYSA-N 0.000 claims description 76
- 229960000237 vorinostat Drugs 0.000 claims description 75
- 229960004710 maraviroc Drugs 0.000 claims description 74
- GSNHKUDZZFZSJB-QYOOZWMWSA-N maraviroc Chemical compound CC(C)C1=NN=C(C)N1[C@@H]1C[C@H](N2CC[C@H](NC(=O)C3CCC(F)(F)CC3)C=3C=CC=CC=3)CC[C@H]2C1 GSNHKUDZZFZSJB-QYOOZWMWSA-N 0.000 claims description 73
- XXSMGPRMXLTPCZ-UHFFFAOYSA-N hydroxychloroquine Chemical compound ClC1=CC=C2C(NC(C)CCCN(CCO)CC)=CC=NC2=C1 XXSMGPRMXLTPCZ-UHFFFAOYSA-N 0.000 claims description 68
- 229960004171 hydroxychloroquine Drugs 0.000 claims description 64
- 239000003276 histone deacetylase inhibitor Substances 0.000 claims description 62
- 102000003964 Histone deacetylase Human genes 0.000 claims description 55
- 108090000353 Histone deacetylase Proteins 0.000 claims description 55
- 229940121372 histone deacetylase inhibitor Drugs 0.000 claims description 52
- 230000007420 reactivation Effects 0.000 claims description 49
- 101150023944 CXCR5 gene Proteins 0.000 claims description 38
- 230000000694 effects Effects 0.000 claims description 36
- XPOQHMRABVBWPR-ZDUSSCGKSA-N efavirenz Chemical compound C([C@]1(C2=CC(Cl)=CC=C2NC(=O)O1)C(F)(F)F)#CC1CC1 XPOQHMRABVBWPR-ZDUSSCGKSA-N 0.000 claims description 31
- XPOQHMRABVBWPR-UHFFFAOYSA-N Efavirenz Natural products O1C(=O)NC2=CC=C(Cl)C=C2C1(C(F)(F)F)C#CC1CC1 XPOQHMRABVBWPR-UHFFFAOYSA-N 0.000 claims description 30
- XQSPYNMVSIKCOC-NTSWFWBYSA-N Emtricitabine Chemical compound C1=C(F)C(N)=NC(=O)N1[C@H]1O[C@@H](CO)SC1 XQSPYNMVSIKCOC-NTSWFWBYSA-N 0.000 claims description 30
- 229960003804 efavirenz Drugs 0.000 claims description 30
- VCMJCVGFSROFHV-WZGZYPNHSA-N tenofovir disoproxil fumarate Chemical compound OC(=O)\C=C\C(O)=O.N1=CN=C2N(C[C@@H](C)OCP(=O)(OCOC(=O)OC(C)C)OCOC(=O)OC(C)C)C=NC2=C1N VCMJCVGFSROFHV-WZGZYPNHSA-N 0.000 claims description 30
- HBOMLICNUCNMMY-XLPZGREQSA-N zidovudine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](N=[N+]=[N-])C1 HBOMLICNUCNMMY-XLPZGREQSA-N 0.000 claims description 29
- 229960002555 zidovudine Drugs 0.000 claims description 26
- 239000000137 peptide hydrolase inhibitor Substances 0.000 claims description 25
- 108010002350 Interleukin-2 Proteins 0.000 claims description 23
- 239000003419 rna directed dna polymerase inhibitor Substances 0.000 claims description 23
- 230000036436 anti-hiv Effects 0.000 claims description 22
- 229960003677 chloroquine Drugs 0.000 claims description 22
- WHTVZRBIWZFKQO-UHFFFAOYSA-N chloroquine Natural products ClC1=CC=C2C(NC(C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-UHFFFAOYSA-N 0.000 claims description 22
- 229960000366 emtricitabine Drugs 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 229960004556 tenofovir Drugs 0.000 claims description 19
- 230000005764 inhibitory process Effects 0.000 claims description 17
- 102000003812 Interleukin-15 Human genes 0.000 claims description 16
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical compound ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 claims description 15
- 229940122313 Nucleoside reverse transcriptase inhibitor Drugs 0.000 claims description 15
- 102000013462 Interleukin-12 Human genes 0.000 claims description 14
- -1 M344 Chemical compound 0.000 claims description 13
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 claims description 13
- MCGSCOLBFJQGHM-SCZZXKLOSA-N abacavir Chemical compound C=12N=CN([C@H]3C=C[C@@H](CO)C3)C2=NC(N)=NC=1NC1CC1 MCGSCOLBFJQGHM-SCZZXKLOSA-N 0.000 claims description 12
- 239000003795 chemical substances by application Substances 0.000 claims description 12
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 claims description 12
- 229940124524 integrase inhibitor Drugs 0.000 claims description 12
- 239000002850 integrase inhibitor Substances 0.000 claims description 12
- NIJJYAXOARWZEE-UHFFFAOYSA-N Valproic acid Chemical compound CCCC(C(O)=O)CCC NIJJYAXOARWZEE-UHFFFAOYSA-N 0.000 claims description 11
- CJBJHOAVZSMMDJ-HEXNFIEUSA-N darunavir Chemical compound C([C@@H]([C@H](O)CN(CC(C)C)S(=O)(=O)C=1C=CC(N)=CC=1)NC(=O)O[C@@H]1[C@@H]2CCO[C@@H]2OC1)C1=CC=CC=C1 CJBJHOAVZSMMDJ-HEXNFIEUSA-N 0.000 claims description 11
- 108010019625 Atazanavir Sulfate Proteins 0.000 claims description 10
- NCDNCNXCDXHOMX-UHFFFAOYSA-N Ritonavir Natural products C=1C=CC=CC=1CC(NC(=O)OCC=1SC=NC=1)C(O)CC(CC=1C=CC=CC=1)NC(=O)C(C(C)C)NC(=O)N(C)CC1=CSC(C(C)C)=N1 NCDNCNXCDXHOMX-UHFFFAOYSA-N 0.000 claims description 10
- AXRYRYVKAWYZBR-GASGPIRDSA-N atazanavir Chemical compound C([C@H](NC(=O)[C@@H](NC(=O)OC)C(C)(C)C)[C@@H](O)CN(CC=1C=CC(=CC=1)C=1N=CC=CC=1)NC(=O)[C@@H](NC(=O)OC)C(C)(C)C)C1=CC=CC=C1 AXRYRYVKAWYZBR-GASGPIRDSA-N 0.000 claims description 10
- 229960005107 darunavir Drugs 0.000 claims description 10
- JUZYLCPPVHEVSV-LJQANCHMSA-N elvitegravir Chemical compound COC1=CC=2N([C@H](CO)C(C)C)C=C(C(O)=O)C(=O)C=2C=C1CC1=CC=CC(Cl)=C1F JUZYLCPPVHEVSV-LJQANCHMSA-N 0.000 claims description 10
- 229950010245 ibalizumab Drugs 0.000 claims description 10
- 229960000311 ritonavir Drugs 0.000 claims description 10
- NCDNCNXCDXHOMX-XGKFQTDJSA-N ritonavir Chemical compound N([C@@H](C(C)C)C(=O)N[C@H](C[C@H](O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1SC=NC=1)CC=1C=CC=CC=1)C(=O)N(C)CC1=CSC(C(C)C)=N1 NCDNCNXCDXHOMX-XGKFQTDJSA-N 0.000 claims description 10
- 229960003452 romidepsin Drugs 0.000 claims description 10
- OHRURASPPZQGQM-GCCNXGTGSA-N romidepsin Chemical compound O1C(=O)[C@H](C(C)C)NC(=O)C(=C/C)/NC(=O)[C@H]2CSSCC\C=C\[C@@H]1CC(=O)N[C@H](C(C)C)C(=O)N2 OHRURASPPZQGQM-GCCNXGTGSA-N 0.000 claims description 10
- 108010091666 romidepsin Proteins 0.000 claims description 10
- OHRURASPPZQGQM-UHFFFAOYSA-N romidepsin Natural products O1C(=O)C(C(C)C)NC(=O)C(=CC)NC(=O)C2CSSCCC=CC1CC(=O)NC(C(C)C)C(=O)N2 OHRURASPPZQGQM-UHFFFAOYSA-N 0.000 claims description 10
- 150000003384 small molecules Chemical class 0.000 claims description 10
- 230000000638 stimulation Effects 0.000 claims description 10
- VAZAPHZUAVEOMC-UHFFFAOYSA-N tacedinaline Chemical compound C1=CC(NC(=O)C)=CC=C1C(=O)NC1=CC=CC=C1N VAZAPHZUAVEOMC-UHFFFAOYSA-N 0.000 claims description 10
- 229960000604 valproic acid Drugs 0.000 claims description 10
- AXRYRYVKAWYZBR-UHFFFAOYSA-N Atazanavir Natural products C=1C=C(C=2N=CC=CC=2)C=CC=1CN(NC(=O)C(NC(=O)OC)C(C)(C)C)CC(O)C(NC(=O)C(NC(=O)OC)C(C)(C)C)CC1=CC=CC=C1 AXRYRYVKAWYZBR-UHFFFAOYSA-N 0.000 claims description 9
- 229960004748 abacavir Drugs 0.000 claims description 9
- 230000003110 anti-inflammatory effect Effects 0.000 claims description 9
- 229960003277 atazanavir Drugs 0.000 claims description 9
- AUZONCFQVSMFAP-UHFFFAOYSA-N disulfiram Chemical compound CCN(CC)C(=S)SSC(=S)N(CC)CC AUZONCFQVSMFAP-UHFFFAOYSA-N 0.000 claims description 9
- 229960003586 elvitegravir Drugs 0.000 claims description 9
- BNQSTAOJRULKNX-UHFFFAOYSA-N N-(6-acetamidohexyl)acetamide Chemical compound CC(=O)NCCCCCCNC(C)=O BNQSTAOJRULKNX-UHFFFAOYSA-N 0.000 claims description 8
- NCNRHFGMJRPRSK-MDZDMXLPSA-N belinostat Chemical compound ONC(=O)\C=C\C1=CC=CC(S(=O)(=O)NC=2C=CC=CC=2)=C1 NCNRHFGMJRPRSK-MDZDMXLPSA-N 0.000 claims description 8
- 229960002049 etravirine Drugs 0.000 claims description 8
- PYGWGZALEOIKDF-UHFFFAOYSA-N etravirine Chemical compound CC1=CC(C#N)=CC(C)=C1OC1=NC(NC=2C=CC(=CC=2)C#N)=NC(N)=C1Br PYGWGZALEOIKDF-UHFFFAOYSA-N 0.000 claims description 8
- 229960001627 lamivudine Drugs 0.000 claims description 8
- 229940042402 non-nucleoside reverse transcriptase inhibitor Drugs 0.000 claims description 8
- 239000002726 nonnucleoside reverse transcriptase inhibitor Substances 0.000 claims description 8
- WMBWREPUVVBILR-WIYYLYMNSA-N (-)-Epigallocatechin-3-o-gallate Chemical compound O([C@@H]1CC2=C(O)C=C(C=C2O[C@@H]1C=1C=C(O)C(O)=C(O)C=1)O)C(=O)C1=CC(O)=C(O)C(O)=C1 WMBWREPUVVBILR-WIYYLYMNSA-N 0.000 claims description 7
- 108010092160 Dactinomycin Proteins 0.000 claims description 7
- WMBWREPUVVBILR-UHFFFAOYSA-N GCG Natural products C=1C(O)=C(O)C(O)=CC=1C1OC2=CC(O)=CC(O)=C2CC1OC(=O)C1=CC(O)=C(O)C(O)=C1 WMBWREPUVVBILR-UHFFFAOYSA-N 0.000 claims description 7
- 102000011787 Histone Methyltransferases Human genes 0.000 claims description 7
- 108010036115 Histone Methyltransferases Proteins 0.000 claims description 7
- USZYSDMBJDPRIF-SVEJIMAYSA-N aclacinomycin A Chemical compound O([C@H]1[C@@H](O)C[C@@H](O[C@H]1C)O[C@H]1[C@H](C[C@@H](O[C@H]1C)O[C@H]1C[C@]([C@@H](C2=CC=3C(=O)C4=CC=CC(O)=C4C(=O)C=3C(O)=C21)C(=O)OC)(O)CC)N(C)C)[C@H]1CCC(=O)[C@H](C)O1 USZYSDMBJDPRIF-SVEJIMAYSA-N 0.000 claims description 7
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 claims description 7
- ZCIGNRJZKPOIKD-CQXVEOKZSA-N cobicistat Chemical compound S1C(C(C)C)=NC(CN(C)C(=O)N[C@@H](CCN2CCOCC2)C(=O)N[C@H](CC[C@H](CC=2C=CC=CC=2)NC(=O)OCC=2SC=NC=2)CC=2C=CC=CC=2)=C1 ZCIGNRJZKPOIKD-CQXVEOKZSA-N 0.000 claims description 7
- INVTYAOGFAGBOE-UHFFFAOYSA-N entinostat Chemical compound NC1=CC=CC=C1NC(=O)C(C=C1)=CC=C1CNC(=O)OCC1=CC=CN=C1 INVTYAOGFAGBOE-UHFFFAOYSA-N 0.000 claims description 7
- JTEGQNOMFQHVDC-NKWVEPMBSA-N lamivudine Chemical compound O=C1N=C(N)C=CN1[C@H]1O[C@@H](CO)SC1 JTEGQNOMFQHVDC-NKWVEPMBSA-N 0.000 claims description 7
- 125000003729 nucleotide group Chemical group 0.000 claims description 7
- 229960004742 raltegravir Drugs 0.000 claims description 7
- CZFFBEXEKNGXKS-UHFFFAOYSA-N raltegravir Chemical compound O1C(C)=NN=C1C(=O)NC(C)(C)C1=NC(C(=O)NCC=2C=CC(F)=CC=2)=C(O)C(=O)N1C CZFFBEXEKNGXKS-UHFFFAOYSA-N 0.000 claims description 7
- UUUHXMGGBIUAPW-UHFFFAOYSA-N 1-[1-[2-[[5-amino-2-[[1-[5-(diaminomethylideneamino)-2-[[1-[3-(1h-indol-3-yl)-2-[(5-oxopyrrolidine-2-carbonyl)amino]propanoyl]pyrrolidine-2-carbonyl]amino]pentanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-methylpentanoyl]pyrrolidine-2-carbon Chemical compound C1CCC(C(=O)N2C(CCC2)C(O)=O)N1C(=O)C(C(C)CC)NC(=O)C(CCC(N)=O)NC(=O)C1CCCN1C(=O)C(CCCN=C(N)N)NC(=O)C1CCCN1C(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C1CCC(=O)N1 UUUHXMGGBIUAPW-UHFFFAOYSA-N 0.000 claims description 6
- 102100030988 Angiotensin-converting enzyme Human genes 0.000 claims description 6
- 108090000882 Peptidyl-Dipeptidase A Proteins 0.000 claims description 6
- 108060008682 Tumor Necrosis Factor Proteins 0.000 claims description 6
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 claims description 6
- 229960004176 aclarubicin Drugs 0.000 claims description 6
- NOFOAYPPHIUXJR-APNQCZIXSA-N aphidicolin Chemical compound C1[C@@]23[C@@]4(C)CC[C@@H](O)[C@@](C)(CO)[C@@H]4CC[C@H]3C[C@H]1[C@](CO)(O)CC2 NOFOAYPPHIUXJR-APNQCZIXSA-N 0.000 claims description 6
- SEKZNWAQALMJNH-YZUCACDQSA-N aphidicolin Natural products C[C@]1(CO)CC[C@]23C[C@H]1C[C@@H]2CC[C@H]4[C@](C)(CO)[C@H](O)CC[C@]34C SEKZNWAQALMJNH-YZUCACDQSA-N 0.000 claims description 6
- 229960003094 belinostat Drugs 0.000 claims description 6
- 229960002402 cobicistat Drugs 0.000 claims description 6
- 229960000640 dactinomycin Drugs 0.000 claims description 6
- 229940030275 epigallocatechin gallate Drugs 0.000 claims description 6
- 229940121292 leronlimab Drugs 0.000 claims description 6
- 239000002773 nucleotide Substances 0.000 claims description 6
- HYAFETHFCAUJAY-UHFFFAOYSA-N pioglitazone Chemical compound N1=CC(CC)=CC=C1CCOC(C=C1)=CC=C1CC1C(=O)NC(=O)S1 HYAFETHFCAUJAY-UHFFFAOYSA-N 0.000 claims description 6
- GWNOTCOIYUNTQP-FQLXRVMXSA-N 4-[4-[[(3r)-1-butyl-3-[(r)-cyclohexyl(hydroxy)methyl]-2,5-dioxo-1,4,9-triazaspiro[5.5]undecan-9-yl]methyl]phenoxy]benzoic acid Chemical compound N([C@@H](C(=O)N1CCCC)[C@H](O)C2CCCCC2)C(=O)C1(CC1)CCN1CC(C=C1)=CC=C1OC1=CC=C(C(O)=O)C=C1 GWNOTCOIYUNTQP-FQLXRVMXSA-N 0.000 claims description 5
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 claims description 5
- KJHKTHWMRKYKJE-SUGCFTRWSA-N Kaletra Chemical compound N1([C@@H](C(C)C)C(=O)N[C@H](C[C@H](O)[C@H](CC=2C=CC=CC=2)NC(=O)COC=2C(=CC=CC=2C)C)CC=2C=CC=CC=2)CCCNC1=O KJHKTHWMRKYKJE-SUGCFTRWSA-N 0.000 claims description 5
- MJQUEDHRCUIRLF-TVIXENOKSA-N bryostatin 1 Chemical compound C([C@@H]1CC(/[C@@H]([C@@](C(C)(C)/C=C/2)(O)O1)OC(=O)/C=C/C=C/CCC)=C\C(=O)OC)[C@H]([C@@H](C)O)OC(=O)C[C@H](O)C[C@@H](O1)C[C@H](OC(C)=O)C(C)(C)[C@]1(O)C[C@@H]1C\C(=C\C(=O)OC)C[C@H]\2O1 MJQUEDHRCUIRLF-TVIXENOKSA-N 0.000 claims description 5
- 229960005539 bryostatin 1 Drugs 0.000 claims description 5
- PZPPOCZWRGNKIR-PNVYSBBASA-N chaetocin Chemical compound N([C@@H]1N2C(=O)[C@]3(CO)SS[C@]2(C(N3C)=O)C2)C3=CC=CC=C3[C@]12[C@@]12C[C@]3(SS4)C(=O)N(C)[C@]4(CO)C(=O)N3[C@H]2NC2=CC=CC=C12 PZPPOCZWRGNKIR-PNVYSBBASA-N 0.000 claims description 5
- PZPPOCZWRGNKIR-UHFFFAOYSA-N chaetocin Natural products C1C2(C(N3C)=O)SSC3(CO)C(=O)N2C2NC3=CC=CC=C3C21C12CC3(SS4)C(=O)N(C)C4(CO)C(=O)N3C2NC2=CC=CC=C12 PZPPOCZWRGNKIR-UHFFFAOYSA-N 0.000 claims description 5
- 229960000684 cytarabine Drugs 0.000 claims description 5
- 230000001939 inductive effect Effects 0.000 claims description 5
- 229960003301 nivolumab Drugs 0.000 claims description 5
- 229960002814 rilpivirine Drugs 0.000 claims description 5
- YIBOMRUWOWDFLG-ONEGZZNKSA-N rilpivirine Chemical compound CC1=CC(\C=C\C#N)=CC(C)=C1NC1=CC=NC(NC=2C=CC(=CC=2)C#N)=N1 YIBOMRUWOWDFLG-ONEGZZNKSA-N 0.000 claims description 5
- BWDQBBCUWLSASG-MDZDMXLPSA-N (e)-n-hydroxy-3-[4-[[2-hydroxyethyl-[2-(1h-indol-3-yl)ethyl]amino]methyl]phenyl]prop-2-enamide Chemical compound C=1NC2=CC=CC=C2C=1CCN(CCO)CC1=CC=C(\C=C\C(=O)NO)C=C1 BWDQBBCUWLSASG-MDZDMXLPSA-N 0.000 claims description 4
- DBPMWRYLTBNCCE-UHFFFAOYSA-N 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1h-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione Chemical compound C1=2C(OC)=CN=C(OC)C=2NC=C1C(=O)C(=O)N(CC1)CCN1C(=O)C1=CC=CC=C1 DBPMWRYLTBNCCE-UHFFFAOYSA-N 0.000 claims description 4
- XNXJTMYPDIHLNJ-ZPUQHVIOSA-N 5-[(e)-2-[[(e)-2-(3,4,5-trihydroxyphenyl)ethenyl]sulfonylmethylsulfonyl]ethenyl]benzene-1,2,3-triol Chemical compound OC1=C(O)C(O)=CC(\C=C\S(=O)(=O)CS(=O)(=O)\C=C\C=2C=C(O)C(O)=C(O)C=2)=C1 XNXJTMYPDIHLNJ-ZPUQHVIOSA-N 0.000 claims description 4
- RFLHBLWLFUFFDZ-UHFFFAOYSA-N BML-210 Chemical compound NC1=CC=CC=C1NC(=O)CCCCCCC(=O)NC1=CC=CC=C1 RFLHBLWLFUFFDZ-UHFFFAOYSA-N 0.000 claims description 4
- 229940045513 CTLA4 antagonist Drugs 0.000 claims description 4
- 108700022150 Designed Ankyrin Repeat Proteins Proteins 0.000 claims description 4
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 claims description 4
- HRNLUBSXIHFDHP-UHFFFAOYSA-N N-(2-aminophenyl)-4-[[[4-(3-pyridinyl)-2-pyrimidinyl]amino]methyl]benzamide Chemical compound NC1=CC=CC=C1NC(=O)C(C=C1)=CC=C1CNC1=NC=CC(C=2C=NC=CC=2)=N1 HRNLUBSXIHFDHP-UHFFFAOYSA-N 0.000 claims description 4
- YALNUENQHAQXEA-UHFFFAOYSA-N N-[4-[(hydroxyamino)-oxomethyl]phenyl]carbamic acid [6-(diethylaminomethyl)-2-naphthalenyl]methyl ester Chemical compound C1=CC2=CC(CN(CC)CC)=CC=C2C=C1COC(=O)NC1=CC=C(C(=O)NO)C=C1 YALNUENQHAQXEA-UHFFFAOYSA-N 0.000 claims description 4
- NUQJULCGNZMBEF-UHFFFAOYSA-N Prostratin Natural products COC(=O)C12CC(C)C3(O)C(C=C(CO)CC4(O)C3C=C(C)C4=O)C1C2(C)C NUQJULCGNZMBEF-UHFFFAOYSA-N 0.000 claims description 4
- 102000011990 Sirtuin Human genes 0.000 claims description 4
- 108050002485 Sirtuin Proteins 0.000 claims description 4
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 claims description 4
- 239000000556 agonist Substances 0.000 claims description 4
- 229950006356 aplaviroc Drugs 0.000 claims description 4
- 229960002563 disulfiram Drugs 0.000 claims description 4
- 229950010415 givinostat Drugs 0.000 claims description 4
- 229960004525 lopinavir Drugs 0.000 claims description 4
- 229950007812 mocetinostat Drugs 0.000 claims description 4
- BOJKFRKNLSCGHY-HXGSDTCMSA-N prostratin Chemical compound C1=C(CO)C[C@]2(O)C(=O)C(C)=C[C@H]2[C@@]2(O)[C@H](C)C[C@@]3(OC(C)=O)C(C)(C)[C@H]3[C@@H]21 BOJKFRKNLSCGHY-HXGSDTCMSA-N 0.000 claims description 4
- 229960003560 tenofovir alafenamide fumarate Drugs 0.000 claims description 4
- SVUJNSGGPUCLQZ-FQQAACOVSA-N tenofovir alafenamide fumarate Chemical compound OC(=O)\C=C\C(O)=O.O([P@@](=O)(CO[C@H](C)CN1C2=NC=NC(N)=C2N=C1)N[C@@H](C)C(=O)OC(C)C)C1=CC=CC=C1.O([P@@](=O)(CO[C@H](C)CN1C2=NC=NC(N)=C2N=C1)N[C@@H](C)C(=O)OC(C)C)C1=CC=CC=C1 SVUJNSGGPUCLQZ-FQQAACOVSA-N 0.000 claims description 4
- CNPVJJQCETWNEU-CYFREDJKSA-N (4,6-dimethyl-5-pyrimidinyl)-[4-[(3S)-4-[(1R)-2-methoxy-1-[4-(trifluoromethyl)phenyl]ethyl]-3-methyl-1-piperazinyl]-4-methyl-1-piperidinyl]methanone Chemical compound N([C@@H](COC)C=1C=CC(=CC=1)C(F)(F)F)([C@H](C1)C)CCN1C(CC1)(C)CCN1C(=O)C1=C(C)N=CN=C1C CNPVJJQCETWNEU-CYFREDJKSA-N 0.000 claims description 3
- 102100035875 C-C chemokine receptor type 5 Human genes 0.000 claims description 3
- 101710149870 C-C chemokine receptor type 5 Proteins 0.000 claims description 3
- 101710143544 Griffithsin Proteins 0.000 claims description 3
- 108010014726 Interferon Type I Proteins 0.000 claims description 3
- 102000002227 Interferon Type I Human genes 0.000 claims description 3
- 102000004889 Interleukin-6 Human genes 0.000 claims description 3
- 108090001005 Interleukin-6 Proteins 0.000 claims description 3
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 claims description 3
- BDUHCSBCVGXTJM-IZLXSDGUSA-N Nutlin-3 Chemical compound CC(C)OC1=CC(OC)=CC=C1C1=N[C@H](C=2C=CC(Cl)=CC=2)[C@H](C=2C=CC(Cl)=CC=2)N1C(=O)N1CC(=O)NCC1 BDUHCSBCVGXTJM-IZLXSDGUSA-N 0.000 claims description 3
- 102000003728 Peroxisome Proliferator-Activated Receptors Human genes 0.000 claims description 3
- 108090000029 Peroxisome Proliferator-Activated Receptors Proteins 0.000 claims description 3
- 230000003510 anti-fibrotic effect Effects 0.000 claims description 3
- 229940121363 anti-inflammatory agent Drugs 0.000 claims description 3
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 3
- 229940030156 cell vaccine Drugs 0.000 claims description 3
- 239000003255 cyclooxygenase 2 inhibitor Substances 0.000 claims description 3
- PGHMRUGBZOYCAA-ADZNBVRBSA-N ionomycin Chemical compound O1[C@H](C[C@H](O)[C@H](C)[C@H](O)[C@H](C)/C=C/C[C@@H](C)C[C@@H](C)C(/O)=C/C(=O)[C@@H](C)C[C@@H](C)C[C@@H](CCC(O)=O)C)CC[C@@]1(C)[C@@H]1O[C@](C)([C@@H](C)O)CC1 PGHMRUGBZOYCAA-ADZNBVRBSA-N 0.000 claims description 3
- PGHMRUGBZOYCAA-UHFFFAOYSA-N ionomycin Natural products O1C(CC(O)C(C)C(O)C(C)C=CCC(C)CC(C)C(O)=CC(=O)C(C)CC(C)CC(CCC(O)=O)C)CCC1(C)C1OC(C)(C(C)O)CC1 PGHMRUGBZOYCAA-UHFFFAOYSA-N 0.000 claims description 3
- VHOGYURTWQBHIL-UHFFFAOYSA-N leflunomide Chemical compound O1N=CC(C(=O)NC=2C=CC(=CC=2)C(F)(F)F)=C1C VHOGYURTWQBHIL-UHFFFAOYSA-N 0.000 claims description 3
- 229960000681 leflunomide Drugs 0.000 claims description 3
- KBOPZPXVLCULAV-UHFFFAOYSA-N mesalamine Chemical compound NC1=CC=C(O)C(C(O)=O)=C1 KBOPZPXVLCULAV-UHFFFAOYSA-N 0.000 claims description 3
- 229960004963 mesalazine Drugs 0.000 claims description 3
- 229960000485 methotrexate Drugs 0.000 claims description 3
- 229960005095 pioglitazone Drugs 0.000 claims description 3
- YIQPUIGJQJDJOS-UHFFFAOYSA-N plerixafor Chemical compound C=1C=C(CN2CCNCCCNCCNCCC2)C=CC=1CN1CCCNCCNCCCNCC1 YIQPUIGJQJDJOS-UHFFFAOYSA-N 0.000 claims description 3
- 229960002169 plerixafor Drugs 0.000 claims description 3
- 230000000861 pro-apoptotic effect Effects 0.000 claims description 3
- 229950009860 vicriviroc Drugs 0.000 claims description 3
- 101150066398 CXCR4 gene Proteins 0.000 claims description 2
- DNVXATUJJDPFDM-KRWDZBQOSA-N JQ1 Chemical compound N([C@@H](CC(=O)OC(C)(C)C)C1=NN=C(N1C=1SC(C)=C(C)C=11)C)=C1C1=CC=C(Cl)C=C1 DNVXATUJJDPFDM-KRWDZBQOSA-N 0.000 claims description 2
- FMURUEPQXKJIPS-UHFFFAOYSA-N n-(1-benzylpiperidin-4-yl)-6,7-dimethoxy-2-(4-methyl-1,4-diazepan-1-yl)quinazolin-4-amine;trihydrochloride Chemical compound Cl.Cl.Cl.C=12C=C(OC)C(OC)=CC2=NC(N2CCN(C)CCC2)=NC=1NC(CC1)CCN1CC1=CC=CC=C1 FMURUEPQXKJIPS-UHFFFAOYSA-N 0.000 claims 1
- 230000002401 inhibitory effect Effects 0.000 abstract description 20
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 105
- 239000003814 drug Substances 0.000 description 56
- 229940079593 drug Drugs 0.000 description 55
- 238000004088 simulation Methods 0.000 description 37
- 241000700605 Viruses Species 0.000 description 32
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 29
- 238000002560 therapeutic procedure Methods 0.000 description 26
- 210000004369 blood Anatomy 0.000 description 24
- 239000008280 blood Substances 0.000 description 24
- 230000014509 gene expression Effects 0.000 description 24
- 208000030507 AIDS Diseases 0.000 description 23
- 210000000987 immune system Anatomy 0.000 description 22
- 102000000588 Interleukin-2 Human genes 0.000 description 21
- 230000007423 decrease Effects 0.000 description 20
- 208000033157 Hepatic cystic hamartoma Diseases 0.000 description 19
- 208000016457 liver mesenchymal hamartoma Diseases 0.000 description 19
- 239000002585 base Substances 0.000 description 17
- 230000009385 viral infection Effects 0.000 description 16
- 208000036142 Viral infection Diseases 0.000 description 14
- 230000028993 immune response Effects 0.000 description 14
- 230000000284 resting effect Effects 0.000 description 14
- 108010033040 Histones Proteins 0.000 description 13
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 13
- 206010028980 Neoplasm Diseases 0.000 description 12
- 238000011225 antiretroviral therapy Methods 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 12
- 230000004913 activation Effects 0.000 description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 11
- 210000002381 plasma Anatomy 0.000 description 11
- 230000006044 T cell activation Effects 0.000 description 10
- 230000000798 anti-retroviral effect Effects 0.000 description 10
- 201000010099 disease Diseases 0.000 description 10
- 230000009467 reduction Effects 0.000 description 10
- VERWQPYQDXWOGT-LVJNJWHOSA-N 4-amino-5-fluoro-1-[(2r,5s)-2-(hydroxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one;[[(2r)-1-(6-aminopurin-9-yl)propan-2-yl]oxymethyl-(propan-2-yloxycarbonyloxymethoxy)phosphoryl]oxymethyl propan-2-yl carbonate;(e)-but-2-enedioic acid Chemical compound OC(=O)\C=C\C(O)=O.C1=C(F)C(N)=NC(=O)N1[C@H]1O[C@@H](CO)SC1.N1=CN=C2N(C[C@@H](C)OCP(=O)(OCOC(=O)OC(C)C)OCOC(=O)OC(C)C)C=NC2=C1N VERWQPYQDXWOGT-LVJNJWHOSA-N 0.000 description 9
- 206010000807 Acute HIV infection Diseases 0.000 description 9
- 102000000704 Interleukin-7 Human genes 0.000 description 9
- 108010002586 Interleukin-7 Proteins 0.000 description 9
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- MSRILKIQRXUYCT-UHFFFAOYSA-M valproate semisodium Chemical compound [Na+].CCCC(C(O)=O)CCC.CCCC(C([O-])=O)CCC MSRILKIQRXUYCT-UHFFFAOYSA-M 0.000 description 9
- OFFWOVJBSQMVPI-RMLGOCCBSA-N Kaletra Chemical compound N1([C@@H](C(C)C)C(=O)N[C@H](C[C@H](O)[C@H](CC=2C=CC=CC=2)NC(=O)COC=2C(=CC=CC=2C)C)CC=2C=CC=CC=2)CCCNC1=O.N([C@@H](C(C)C)C(=O)N[C@H](C[C@H](O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1SC=NC=1)CC=1C=CC=CC=1)C(=O)N(C)CC1=CSC(C(C)C)=N1 OFFWOVJBSQMVPI-RMLGOCCBSA-N 0.000 description 8
- 230000009471 action Effects 0.000 description 8
- 210000004970 cd4 cell Anatomy 0.000 description 8
- PNDKCRDVVKJPKG-WHERJAGFSA-N cenicriviroc Chemical compound C1=CC(OCCOCCCC)=CC=C1C1=CC=C(N(CC(C)C)CCC\C(=C/2)C(=O)NC=3C=CC(=CC=3)[S@@](=O)CC=3N(C=NC=3)CCC)C\2=C1 PNDKCRDVVKJPKG-WHERJAGFSA-N 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 239000002777 nucleoside Substances 0.000 description 8
- 150000003833 nucleoside derivatives Chemical class 0.000 description 8
- 108010077544 Chromatin Proteins 0.000 description 7
- 102000006947 Histones Human genes 0.000 description 7
- 108020005202 Viral DNA Proteins 0.000 description 7
- 201000011510 cancer Diseases 0.000 description 7
- 210000003483 chromatin Anatomy 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 230000001404 mediated effect Effects 0.000 description 7
- FPOHNWQLNRZRFC-ZHACJKMWSA-N panobinostat Chemical compound CC=1NC2=CC=CC=C2C=1CCNCC1=CC=C(\C=C\C(=O)NO)C=C1 FPOHNWQLNRZRFC-ZHACJKMWSA-N 0.000 description 7
- 230000007502 viral entry Effects 0.000 description 7
- 230000029812 viral genome replication Effects 0.000 description 7
- ZMCJFJZOSKEMOM-DNKZPPIMSA-N (4,6-dimethylpyrimidin-5-yl)-[4-[(3s)-4-[(1r,2r)-2-ethoxy-5-(trifluoromethyl)-2,3-dihydro-1h-inden-1-yl]-3-methylpiperazin-1-yl]-4-methylpiperidin-1-yl]methanone Chemical compound N([C@@H]1C2=CC=C(C=C2C[C@H]1OCC)C(F)(F)F)([C@H](C1)C)CCN1C(CC1)(C)CCN1C(=O)C1=C(C)N=CN=C1C ZMCJFJZOSKEMOM-DNKZPPIMSA-N 0.000 description 6
- OSXFATOLZGZLSK-UHFFFAOYSA-N 6,7-dimethoxy-2-(4-methyl-1,4-diazepan-1-yl)-N-[1-(phenylmethyl)-4-piperidinyl]-4-quinazolinamine Chemical compound C=12C=C(OC)C(OC)=CC2=NC(N2CCN(C)CCC2)=NC=1NC(CC1)CCN1CC1=CC=CC=C1 OSXFATOLZGZLSK-UHFFFAOYSA-N 0.000 description 6
- 102000002689 Toll-like receptor Human genes 0.000 description 6
- 108020000411 Toll-like receptor Proteins 0.000 description 6
- WCWSTNLSLKSJPK-LKFCYVNXSA-N cabotegravir Chemical compound C([C@H]1OC[C@@H](N1C(=O)C1=C(O)C2=O)C)N1C=C2C(=O)NCC1=CC=C(F)C=C1F WCWSTNLSLKSJPK-LKFCYVNXSA-N 0.000 description 6
- 230000034994 death Effects 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 230000006698 induction Effects 0.000 description 6
- 230000004054 inflammatory process Effects 0.000 description 6
- 230000007774 longterm Effects 0.000 description 6
- 229960005184 panobinostat Drugs 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- QWAXKHKRTORLEM-UGJKXSETSA-N saquinavir Chemical compound C([C@@H]([C@H](O)CN1C[C@H]2CCCC[C@H]2C[C@H]1C(=O)NC(C)(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)C=1N=C2C=CC=CC2=CC=1)C1=CC=CC=C1 QWAXKHKRTORLEM-UGJKXSETSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- NEAQRZUHTPSBBM-UHFFFAOYSA-N 2-hydroxy-3,3-dimethyl-7-nitro-4h-isoquinolin-1-one Chemical class C1=C([N+]([O-])=O)C=C2C(=O)N(O)C(C)(C)CC2=C1 NEAQRZUHTPSBBM-UHFFFAOYSA-N 0.000 description 5
- 206010001513 AIDS related complex Diseases 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 5
- 102100021455 Histone deacetylase 3 Human genes 0.000 description 5
- 206010061218 Inflammation Diseases 0.000 description 5
- 230000006907 apoptotic process Effects 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 229950011033 cenicriviroc Drugs 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- RHWKPHLQXYSBKR-BMIGLBTASA-N dolutegravir Chemical compound C([C@@H]1OCC[C@H](N1C(=O)C1=C(O)C2=O)C)N1C=C2C(=O)NCC1=CC=C(F)C=C1F RHWKPHLQXYSBKR-BMIGLBTASA-N 0.000 description 5
- PEASPLKKXBYDKL-FXEVSJAOSA-N enfuvirtide Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(C)=O)[C@@H](C)O)[C@@H](C)CC)C1=CN=CN1 PEASPLKKXBYDKL-FXEVSJAOSA-N 0.000 description 5
- 230000008029 eradication Effects 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 230000003834 intracellular effect Effects 0.000 description 5
- 230000003389 potentiating effect Effects 0.000 description 5
- 230000035755 proliferation Effects 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 230000003442 weekly effect Effects 0.000 description 5
- VMUXSMXIQBNMGZ-UHFFFAOYSA-N 3,4-dihydrocoumarin Chemical compound C1=CC=C2OC(=O)CCC2=C1 VMUXSMXIQBNMGZ-UHFFFAOYSA-N 0.000 description 4
- WVLHHLRVNDMIAR-IBGZPJMESA-N AMD 070 Chemical compound C1CCC2=CC=CN=C2[C@H]1N(CCCCN)CC1=NC2=CC=CC=C2N1 WVLHHLRVNDMIAR-IBGZPJMESA-N 0.000 description 4
- 108010032976 Enfuvirtide Proteins 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 241000711549 Hepacivirus C Species 0.000 description 4
- 102000003893 Histone acetyltransferases Human genes 0.000 description 4
- 108090000246 Histone acetyltransferases Proteins 0.000 description 4
- 101000899282 Homo sapiens Histone deacetylase 3 Proteins 0.000 description 4
- 102100034349 Integrase Human genes 0.000 description 4
- IDQPVOFTURLJPT-UHFFFAOYSA-N N,N'-dihydroxyoctanediamide Chemical compound ONC(=O)CCCCCCC(=O)NO IDQPVOFTURLJPT-UHFFFAOYSA-N 0.000 description 4
- 206010058874 Viraemia Diseases 0.000 description 4
- YLEQMGZZMCJKCN-NKWVEPMBSA-N [[(2r,5s)-5-(4-amino-2-oxopyrimidin-1-yl)-1,3-oxathiolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound O=C1N=C(N)C=CN1[C@H]1O[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)SC1 YLEQMGZZMCJKCN-NKWVEPMBSA-N 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 230000000840 anti-viral effect Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 239000000306 component Substances 0.000 description 4
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 4
- 210000004443 dendritic cell Anatomy 0.000 description 4
- DMSHWWDRAYHEBS-UHFFFAOYSA-N dihydrocoumarin Natural products C1CC(=O)OC2=C1C=C(OC)C(OC)=C2 DMSHWWDRAYHEBS-UHFFFAOYSA-N 0.000 description 4
- 229960002542 dolutegravir Drugs 0.000 description 4
- 230000005059 dormancy Effects 0.000 description 4
- 229960002062 enfuvirtide Drugs 0.000 description 4
- 230000001973 epigenetic effect Effects 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 238000001802 infusion Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- 239000008194 pharmaceutical composition Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000010839 reverse transcription Methods 0.000 description 4
- 231100000331 toxic Toxicity 0.000 description 4
- 230000002588 toxic effect Effects 0.000 description 4
- JHSXDAWGLCZYSM-UHFFFAOYSA-N 4-(4-chloro-2-methylphenoxy)-N-hydroxybutanamide Chemical compound CC1=CC(Cl)=CC=C1OCCCC(=O)NO JHSXDAWGLCZYSM-UHFFFAOYSA-N 0.000 description 3
- DQEFVRYFVZNIMK-FEDPJRJMSA-N 4-amino-5-fluoro-1-[(2r,5s)-2-(hydroxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one;[[(2r)-1-(6-aminopurin-9-yl)propan-2-yl]oxymethyl-(propan-2-yloxycarbonyloxymethoxy)phosphoryl]oxymethyl propan-2-yl carbonate;(e)-but-2-enedioic acid;4-[[4-[4-[(e)-2-cyanoe Chemical compound OC(=O)\C=C\C(O)=O.C1=C(F)C(N)=NC(=O)N1[C@H]1O[C@@H](CO)SC1.CC1=CC(\C=C\C#N)=CC(C)=C1NC1=CC=NC(NC=2C=CC(=CC=2)C#N)=N1.N1=CN=C2N(C[C@@H](C)OCP(=O)(OCOC(=O)OC(C)C)OCOC(=O)OC(C)C)C=NC2=C1N DQEFVRYFVZNIMK-FEDPJRJMSA-N 0.000 description 3
- 108010017088 CCR5 Receptors Proteins 0.000 description 3
- 102000004274 CCR5 Receptors Human genes 0.000 description 3
- 210000004366 CD4-positive T-lymphocyte Anatomy 0.000 description 3
- BXZVVICBKDXVGW-NKWVEPMBSA-N Didanosine Chemical compound O1[C@H](CO)CC[C@@H]1N1C(NC=NC2=O)=C2N=C1 BXZVVICBKDXVGW-NKWVEPMBSA-N 0.000 description 3
- 229940126656 GS-4224 Drugs 0.000 description 3
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 3
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 3
- 108700020129 Human immunodeficiency virus 1 p31 integrase Proteins 0.000 description 3
- 108010047761 Interferon-alpha Proteins 0.000 description 3
- 102000006992 Interferon-alpha Human genes 0.000 description 3
- 102100027268 Interferon-stimulated gene 20 kDa protein Human genes 0.000 description 3
- 108010050904 Interferons Proteins 0.000 description 3
- 102000014150 Interferons Human genes 0.000 description 3
- 101710085061 Orsellinic acid synthase Proteins 0.000 description 3
- 101710110277 Orsellinic acid synthase armB Proteins 0.000 description 3
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 3
- 244000269722 Thea sinensis Species 0.000 description 3
- 108091023040 Transcription factor Proteins 0.000 description 3
- 102000040945 Transcription factor Human genes 0.000 description 3
- WIEOLFZNMKSGEX-NTSWFWBYSA-N [[(2r,5s)-5-(4-amino-5-fluoro-2-oxopyrimidin-1-yl)-1,3-oxathiolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound C1=C(F)C(N)=NC(=O)N1[C@H]1O[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)SC1 WIEOLFZNMKSGEX-NTSWFWBYSA-N 0.000 description 3
- GLWHPRRGGYLLRV-XLPZGREQSA-N [[(2s,3s,5r)-3-azido-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](N=[N+]=[N-])C1 GLWHPRRGGYLLRV-XLPZGREQSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- 239000005557 antagonist Substances 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 230000030741 antigen processing and presentation Effects 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 239000003430 antimalarial agent Substances 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 210000001124 body fluid Anatomy 0.000 description 3
- 239000010839 body fluid Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229940014461 combivir Drugs 0.000 description 3
- 230000002860 competitive effect Effects 0.000 description 3
- 229940029487 complera Drugs 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical class C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 3
- 230000006196 deacetylation Effects 0.000 description 3
- 238000003381 deacetylation reaction Methods 0.000 description 3
- 229960002656 didanosine Drugs 0.000 description 3
- 238000002651 drug therapy Methods 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 229940059826 emtricitabine 200 mg Drugs 0.000 description 3
- 229940019131 epzicom Drugs 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- SWMDAPWAQQTBOG-UHFFFAOYSA-N fostemsavir Chemical compound C1=2N(COP(O)(O)=O)C=C(C(=O)C(=O)N3CCN(CC3)C(=O)C=3C=CC=CC=3)C=2C(OC)=CN=C1N1C=NC(C)=N1 SWMDAPWAQQTBOG-UHFFFAOYSA-N 0.000 description 3
- 229950010812 fostemsavir Drugs 0.000 description 3
- 230000030279 gene silencing Effects 0.000 description 3
- 230000013595 glycosylation Effects 0.000 description 3
- 210000004837 gut-associated lymphoid tissue Anatomy 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 229940124525 integrase strand transfer inhibitor Drugs 0.000 description 3
- 229940079322 interferon Drugs 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 229940113983 lopinavir / ritonavir Drugs 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 108010092853 peginterferon alfa-2a Proteins 0.000 description 3
- 230000002085 persistent effect Effects 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 230000037452 priming Effects 0.000 description 3
- 230000001566 pro-viral effect Effects 0.000 description 3
- 230000010322 reactivation of latent virus Effects 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 229960001852 saquinavir Drugs 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- SGOIRFVFHAKUTI-ZCFIWIBFSA-N tenofovir (anhydrous) Chemical compound N1=CN=C2N(C[C@@H](C)OCP(O)(O)=O)C=NC2=C1N SGOIRFVFHAKUTI-ZCFIWIBFSA-N 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 238000011269 treatment regimen Methods 0.000 description 3
- 210000004881 tumor cell Anatomy 0.000 description 3
- 229940120938 zidovudine and lamivudine Drugs 0.000 description 3
- PFTAWBLQPZVEMU-DZGCQCFKSA-N (+)-catechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-DZGCQCFKSA-N 0.000 description 2
- JWOGUUIOCYMBPV-GMFLJSBRSA-N (3S,6S,9S,12R)-3-[(2S)-Butan-2-yl]-6-[(1-methoxyindol-3-yl)methyl]-9-(6-oxooctyl)-1,4,7,10-tetrazabicyclo[10.4.0]hexadecane-2,5,8,11-tetrone Chemical compound N1C(=O)[C@H](CCCCCC(=O)CC)NC(=O)[C@H]2CCCCN2C(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]1CC1=CN(OC)C2=CC=CC=C12 JWOGUUIOCYMBPV-GMFLJSBRSA-N 0.000 description 2
- QRPSQQUYPMFERG-LFYBBSHMSA-N (e)-5-[3-(benzenesulfonamido)phenyl]-n-hydroxypent-2-en-4-ynamide Chemical compound ONC(=O)\C=C\C#CC1=CC=CC(NS(=O)(=O)C=2C=CC=CC=2)=C1 QRPSQQUYPMFERG-LFYBBSHMSA-N 0.000 description 2
- QRPZBKAMSFHVRW-UHFFFAOYSA-N 1-(4-benzoylpiperazin-1-yl)-2-[4-methoxy-7-(3-methyl-1,2,4-triazol-1-yl)-1h-pyrrolo[2,3-c]pyridin-3-yl]ethane-1,2-dione Chemical compound C1=2NC=C(C(=O)C(=O)N3CCN(CC3)C(=O)C=3C=CC=CC=3)C=2C(OC)=CN=C1N1C=NC(C)=N1 QRPZBKAMSFHVRW-UHFFFAOYSA-N 0.000 description 2
- FQYRLEXKXQRZDH-UHFFFAOYSA-N 4-aminoquinoline Chemical compound C1=CC=C2C(N)=CC=NC2=C1 FQYRLEXKXQRZDH-UHFFFAOYSA-N 0.000 description 2
- 208000000153 Acute Retroviral Syndrome Diseases 0.000 description 2
- 108010041397 CD4 Antigens Proteins 0.000 description 2
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 2
- 101100180402 Caenorhabditis elegans jun-1 gene Proteins 0.000 description 2
- 229940122444 Chemokine receptor antagonist Drugs 0.000 description 2
- 229940046168 CpG oligodeoxynucleotide Drugs 0.000 description 2
- 208000009011 Cytochrome P-450 CYP3A Inhibitors Diseases 0.000 description 2
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 2
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 2
- 102000004214 DNA polymerase A Human genes 0.000 description 2
- 108090000725 DNA polymerase A Proteins 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 2
- 229940122964 Deacetylase inhibitor Drugs 0.000 description 2
- 208000005176 Hepatitis C Diseases 0.000 description 2
- 108010016918 Histone-Lysine N-Methyltransferase Proteins 0.000 description 2
- 102000000581 Histone-lysine N-methyltransferase Human genes 0.000 description 2
- 206010061598 Immunodeficiency Diseases 0.000 description 2
- 208000029462 Immunodeficiency disease Diseases 0.000 description 2
- 102100037850 Interferon gamma Human genes 0.000 description 2
- 108010074328 Interferon-gamma Proteins 0.000 description 2
- 102000015696 Interleukins Human genes 0.000 description 2
- 108010063738 Interleukins Proteins 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- BAWFJGJZGIEFAR-NNYOXOHSSA-O NAD(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-O 0.000 description 2
- JWOGUUIOCYMBPV-UHFFFAOYSA-N OT-Key 11219 Natural products N1C(=O)C(CCCCCC(=O)CC)NC(=O)C2CCCCN2C(=O)C(C(C)CC)NC(=O)C1CC1=CN(OC)C2=CC=CC=C12 JWOGUUIOCYMBPV-UHFFFAOYSA-N 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- XNKLLVCARDGLGL-JGVFFNPUSA-N Stavudine Chemical compound O=C1NC(=O)C(C)=CN1[C@H]1C=C[C@@H](CO)O1 XNKLLVCARDGLGL-JGVFFNPUSA-N 0.000 description 2
- 108091008874 T cell receptors Proteins 0.000 description 2
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 2
- 101800001690 Transmembrane protein gp41 Proteins 0.000 description 2
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 2
- WREGKURFCTUGRC-POYBYMJQSA-N Zalcitabine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)CC1 WREGKURFCTUGRC-POYBYMJQSA-N 0.000 description 2
- 229940052877 abacavir 600 mg Drugs 0.000 description 2
- WMHSRBZIJNQHKT-FFKFEZPRSA-N abacavir sulfate Chemical compound OS(O)(=O)=O.C=12N=CN([C@H]3C=C[C@@H](CO)C3)C2=NC(N)=NC=1NC1CC1.C=12N=CN([C@H]3C=C[C@@H](CO)C3)C2=NC(N)=NC=1NC1CC1 WMHSRBZIJNQHKT-FFKFEZPRSA-N 0.000 description 2
- 230000021736 acetylation Effects 0.000 description 2
- 238000006640 acetylation reaction Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 239000001961 anticonvulsive agent Substances 0.000 description 2
- 229960003965 antiepileptics Drugs 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 229940124522 antiretrovirals Drugs 0.000 description 2
- 239000003903 antiretrovirus agent Substances 0.000 description 2
- 108010082820 apicidin Proteins 0.000 description 2
- 229930186608 apicidin Natural products 0.000 description 2
- 229940068561 atripla Drugs 0.000 description 2
- 229940054066 benzamide antipsychotics Drugs 0.000 description 2
- 150000003936 benzamides Chemical class 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- ADRVNXBAWSRFAJ-UHFFFAOYSA-N catechin Natural products OC1Cc2cc(O)cc(O)c2OC1c3ccc(O)c(O)c3 ADRVNXBAWSRFAJ-UHFFFAOYSA-N 0.000 description 2
- 235000005487 catechin Nutrition 0.000 description 2
- 230000020411 cell activation Effects 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 230000003915 cell function Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 108091092356 cellular DNA Proteins 0.000 description 2
- 239000002559 chemokine receptor antagonist Substances 0.000 description 2
- 230000010428 chromatin condensation Effects 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 229950001002 cianidanol Drugs 0.000 description 2
- 229940000425 combination drug Drugs 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000004940 costimulation Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 229940127089 cytotoxic agent Drugs 0.000 description 2
- WHBIGIKBNXZKFE-UHFFFAOYSA-N delavirdine Chemical compound CC(C)NC1=CC=CN=C1N1CCN(C(=O)C=2NC3=CC=C(NS(C)(=O)=O)C=C3C=2)CC1 WHBIGIKBNXZKFE-UHFFFAOYSA-N 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- XMOCLSLCDHWDHP-IUODEOHRSA-N epi-Gallocatechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@H]2O)=CC(O)=C(O)C(O)=C1 XMOCLSLCDHWDHP-IUODEOHRSA-N 0.000 description 2
- 230000007608 epigenetic mechanism Effects 0.000 description 2
- 229940125777 fusion inhibitor Drugs 0.000 description 2
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 229940124784 gp41 inhibitor Drugs 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000036737 immune function Effects 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 230000007813 immunodeficiency Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000000411 inducer Substances 0.000 description 2
- 229940100994 interleukin-7 Drugs 0.000 description 2
- 238000009533 lab test Methods 0.000 description 2
- 229940080431 lamivudine 150 mg Drugs 0.000 description 2
- 229940029101 lamivudine 300 mg Drugs 0.000 description 2
- 239000006193 liquid solution Substances 0.000 description 2
- 230000002132 lysosomal effect Effects 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 201000004792 malaria Diseases 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 210000003071 memory t lymphocyte Anatomy 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 230000011987 methylation Effects 0.000 description 2
- 238000007069 methylation reaction Methods 0.000 description 2
- 239000006225 natural substrate Substances 0.000 description 2
- NQDJXKOVJZTUJA-UHFFFAOYSA-N nevirapine Chemical compound C12=NC=CC=C2C(=O)NC=2C(C)=CC=NC=2N1C1CC1 NQDJXKOVJZTUJA-UHFFFAOYSA-N 0.000 description 2
- 101150015886 nuc-1 gene Proteins 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 229940127073 nucleoside analogue Drugs 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000036470 plasma concentration Effects 0.000 description 2
- 210000005134 plasmacytoid dendritic cell Anatomy 0.000 description 2
- 230000036515 potency Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000770 proinflammatory effect Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 238000007634 remodeling Methods 0.000 description 2
- 230000000754 repressing effect Effects 0.000 description 2
- 230000001177 retroviral effect Effects 0.000 description 2
- 206010039073 rheumatoid arthritis Diseases 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- RTKIYFITIVXBLE-QEQCGCAPSA-N trichostatin A Chemical compound ONC(=O)/C=C/C(/C)=C/[C@@H](C)C(=O)C1=CC=C(N(C)C)C=C1 RTKIYFITIVXBLE-QEQCGCAPSA-N 0.000 description 2
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 2
- 229940008349 truvada Drugs 0.000 description 2
- 241001478887 unidentified soil bacteria Species 0.000 description 2
- 230000017613 viral reproduction Effects 0.000 description 2
- 210000002845 virion Anatomy 0.000 description 2
- 229960000523 zalcitabine Drugs 0.000 description 2
- 229940052255 ziagen Drugs 0.000 description 2
- XSSYCIGJYCVRRK-RQJHMYQMSA-N (-)-carbovir Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1C[C@H](CO)C=C1 XSSYCIGJYCVRRK-RQJHMYQMSA-N 0.000 description 1
- 229930014124 (-)-epigallocatechin gallate Natural products 0.000 description 1
- LLOKIGWPNVSDGJ-AFBVCZJXSA-N (3s,6s,9s,12r)-3,6-dibenzyl-9-[6-[(2s)-oxiran-2-yl]-6-oxohexyl]-1,4,7,10-tetrazabicyclo[10.3.0]pentadecane-2,5,8,11-tetrone Chemical compound C([C@H]1C(=O)N2CCC[C@@H]2C(=O)N[C@H](C(N[C@@H](CC=2C=CC=CC=2)C(=O)N1)=O)CCCCCC(=O)[C@H]1OC1)C1=CC=CC=C1 LLOKIGWPNVSDGJ-AFBVCZJXSA-N 0.000 description 1
- OPNUROKCUBTKLF-UHFFFAOYSA-N 1,2-bis(2-methylphenyl)guanidine Chemical compound CC1=CC=CC=C1N\C(N)=N\C1=CC=CC=C1C OPNUROKCUBTKLF-UHFFFAOYSA-N 0.000 description 1
- FBFJOZZTIXSPPR-UHFFFAOYSA-N 1-(4-aminobutyl)-2-(ethoxymethyl)imidazo[4,5-c]quinolin-4-amine Chemical compound C1=CC=CC2=C(N(C(COCC)=N3)CCCCN)C3=C(N)N=C21 FBFJOZZTIXSPPR-UHFFFAOYSA-N 0.000 description 1
- UJQBOUAGWGVOTI-XSSZXYGBSA-N 1-[(2r,4s,5r)-4-azido-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@](O)(N=[N+]=[N-])C1 UJQBOUAGWGVOTI-XSSZXYGBSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- UNFCIEAAJFHALK-UHFFFAOYSA-N 1h-diazepine;quinazolin-2-amine Chemical class N1C=CC=CC=N1.C1=CC=CC2=NC(N)=NC=C21 UNFCIEAAJFHALK-UHFFFAOYSA-N 0.000 description 1
- 102000007445 2',5'-Oligoadenylate Synthetase Human genes 0.000 description 1
- 108010086241 2',5'-Oligoadenylate Synthetase Proteins 0.000 description 1
- ZAVJTSLIGAGALR-UHFFFAOYSA-N 2-(2,2,2-trifluoroacetyl)cyclooctan-1-one Chemical compound FC(F)(F)C(=O)C1CCCCCCC1=O ZAVJTSLIGAGALR-UHFFFAOYSA-N 0.000 description 1
- GNKZMNRKLCTJAY-UHFFFAOYSA-N 4'-Methylacetophenone Chemical compound CC(=O)C1=CC=C(C)C=C1 GNKZMNRKLCTJAY-UHFFFAOYSA-N 0.000 description 1
- OBKXEAXTFZPCHS-UHFFFAOYSA-N 4-phenylbutyric acid Chemical compound OC(=O)CCCC1=CC=CC=C1 OBKXEAXTFZPCHS-UHFFFAOYSA-N 0.000 description 1
- JTDYUFSDZATMKU-UHFFFAOYSA-N 6-(1,3-dioxo-2-benzo[de]isoquinolinyl)-N-hydroxyhexanamide Chemical compound C1=CC(C(N(CCCCCC(=O)NO)C2=O)=O)=C3C2=CC=CC3=C1 JTDYUFSDZATMKU-UHFFFAOYSA-N 0.000 description 1
- PITHJRRCEANNKJ-UHFFFAOYSA-N Aclacinomycin A Natural products C12=C(O)C=3C(=O)C4=CC=CC=C4C(=O)C=3C=C2C(C(=O)OC)C(CC)(O)CC1OC(OC1C)CC(N(C)C)C1OC(OC1C)CC(O)C1OC1CCC(=O)C(C)O1 PITHJRRCEANNKJ-UHFFFAOYSA-N 0.000 description 1
- 206010003581 Asymptomatic HIV infection Diseases 0.000 description 1
- 241000700675 Bugula neritina Species 0.000 description 1
- 102000001902 CC Chemokines Human genes 0.000 description 1
- 108010040471 CC Chemokines Proteins 0.000 description 1
- 101150017501 CCR5 gene Proteins 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 101150015280 Cel gene Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 108050000299 Chemokine receptor Proteins 0.000 description 1
- 102000009410 Chemokine receptor Human genes 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 208000006154 Chronic hepatitis C Diseases 0.000 description 1
- 108010060434 Co-Repressor Proteins Proteins 0.000 description 1
- 102000008169 Co-Repressor Proteins Human genes 0.000 description 1
- 208000003322 Coinfection Diseases 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- 108010001237 Cytochrome P-450 CYP2D6 Proteins 0.000 description 1
- 208000000130 Cytochrome P-450 CYP3A Inducers Diseases 0.000 description 1
- 102000016903 DNA Polymerase gamma Human genes 0.000 description 1
- 108010014080 DNA Polymerase gamma Proteins 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 108010002156 Depsipeptides Proteins 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 1
- 108010040721 Flagellin Proteins 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 208000009329 Graft vs Host Disease Diseases 0.000 description 1
- 230000005154 HIV tropism Effects 0.000 description 1
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 108010034791 Heterochromatin Proteins 0.000 description 1
- 102100039869 Histone H2B type F-S Human genes 0.000 description 1
- 102100039996 Histone deacetylase 1 Human genes 0.000 description 1
- 102100038715 Histone deacetylase 8 Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101001035372 Homo sapiens Histone H2B type F-S Proteins 0.000 description 1
- 101001035024 Homo sapiens Histone deacetylase 1 Proteins 0.000 description 1
- 101001032118 Homo sapiens Histone deacetylase 8 Proteins 0.000 description 1
- 101001137987 Homo sapiens Lymphocyte activation gene 3 protein Proteins 0.000 description 1
- 101000800483 Homo sapiens Toll-like receptor 8 Proteins 0.000 description 1
- 101900297506 Human immunodeficiency virus type 1 group M subtype B Reverse transcriptase/ribonuclease H Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 108010061833 Integrases Proteins 0.000 description 1
- XMOCLSLCDHWDHP-UHFFFAOYSA-N L-Epigallocatechin Natural products OC1CC2=C(O)C=C(O)C=C2OC1C1=CC(O)=C(O)C(O)=C1 XMOCLSLCDHWDHP-UHFFFAOYSA-N 0.000 description 1
- 102000017578 LAG3 Human genes 0.000 description 1
- DNVXATUJJDPFDM-UHFFFAOYSA-N LSM-6732 Chemical compound C1=2C(C)=C(C)SC=2N2C(C)=NN=C2C(CC(=O)OC(C)(C)C)N=C1C1=CC=C(Cl)C=C1 DNVXATUJJDPFDM-UHFFFAOYSA-N 0.000 description 1
- 238000012773 Laboratory assay Methods 0.000 description 1
- 102000043131 MHC class II family Human genes 0.000 description 1
- 108091054438 MHC class II family Proteins 0.000 description 1
- 241001599018 Melanogaster Species 0.000 description 1
- 241000213996 Melilotus Species 0.000 description 1
- 240000000366 Melilotus officinalis Species 0.000 description 1
- 235000017822 Melilotus officinalis Nutrition 0.000 description 1
- 235000000839 Melilotus officinalis subsp suaveolens Nutrition 0.000 description 1
- 101150091206 Nfkbia gene Proteins 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 241000368696 Nigrospora oryzae Species 0.000 description 1
- 108091093105 Nuclear DNA Proteins 0.000 description 1
- 108010047956 Nucleosomes Proteins 0.000 description 1
- 208000001388 Opportunistic Infections Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 241000167562 Pittosporum tobira Species 0.000 description 1
- 201000010273 Porphyria Cutanea Tarda Diseases 0.000 description 1
- 206010036186 Porphyria non-acute Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102000003923 Protein Kinase C Human genes 0.000 description 1
- 108090000315 Protein Kinase C Proteins 0.000 description 1
- 108700040121 Protein Methyltransferases Proteins 0.000 description 1
- 102000055027 Protein Methyltransferases Human genes 0.000 description 1
- 101500027983 Rattus norvegicus Octadecaneuropeptide Proteins 0.000 description 1
- 241001068263 Replication competent viruses Species 0.000 description 1
- 208000025747 Rheumatic disease Diseases 0.000 description 1
- 230000018199 S phase Effects 0.000 description 1
- MEFKEPWMEQBLKI-AIRLBKTGSA-N S-adenosyl-L-methioninate Chemical compound O[C@@H]1[C@H](O)[C@@H](C[S+](CC[C@H](N)C([O-])=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 MEFKEPWMEQBLKI-AIRLBKTGSA-N 0.000 description 1
- 108091006779 SLC19A3 Proteins 0.000 description 1
- 108010041897 SU(VAR)3-9 Proteins 0.000 description 1
- 101100225046 Schizosaccharomyces pombe (strain 972 / ATCC 24843) ecl2 gene Proteins 0.000 description 1
- 229940124639 Selective inhibitor Drugs 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 241001467544 Streptomyces galilaeus Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 206010042971 T-cell lymphoma Diseases 0.000 description 1
- 229940124613 TLR 7/8 agonist Drugs 0.000 description 1
- 235000006468 Thea sinensis Nutrition 0.000 description 1
- JZRWCGZRTZMZEH-UHFFFAOYSA-N Thiamine Natural products CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 1
- SUJUHGSWHZTSEU-UHFFFAOYSA-N Tipranavir Natural products C1C(O)=C(C(CC)C=2C=C(NS(=O)(=O)C=3N=CC(=CC=3)C(F)(F)F)C=CC=2)C(=O)OC1(CCC)CCC1=CC=CC=C1 SUJUHGSWHZTSEU-UHFFFAOYSA-N 0.000 description 1
- 102000008235 Toll-Like Receptor 9 Human genes 0.000 description 1
- 108010060818 Toll-Like Receptor 9 Proteins 0.000 description 1
- 102100033110 Toll-like receptor 8 Human genes 0.000 description 1
- LLOKIGWPNVSDGJ-UHFFFAOYSA-N Trapoxin B Natural products C1OC1C(=O)CCCCCC(C(NC(CC=1C=CC=CC=1)C(=O)N1)=O)NC(=O)C2CCCN2C(=O)C1CC1=CC=CC=C1 LLOKIGWPNVSDGJ-UHFFFAOYSA-N 0.000 description 1
- RTKIYFITIVXBLE-UHFFFAOYSA-N Trichostatin A Natural products ONC(=O)C=CC(C)=CC(C)C(=O)C1=CC=C(N(C)C)C=C1 RTKIYFITIVXBLE-UHFFFAOYSA-N 0.000 description 1
- 238000012212 Trofile assay Methods 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- UGWQMIXVUBLMAH-IVVFTGHFSA-N [(1s,4r)-4-[2-amino-6-(cyclopropylamino)purin-9-yl]cyclopent-2-en-1-yl]methanol;4-amino-1-[(2r,5s)-2-(hydroxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one Chemical compound O=C1N=C(N)C=CN1[C@H]1O[C@@H](CO)SC1.C=12N=CN([C@H]3C=C[C@@H](CO)C3)C2=NC(N)=NC=1NC1CC1 UGWQMIXVUBLMAH-IVVFTGHFSA-N 0.000 description 1
- DFPAKSUCGFBDDF-ZQBYOMGUSA-N [14c]-nicotinamide Chemical compound N[14C](=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-ZQBYOMGUSA-N 0.000 description 1
- 229940066321 abacavir 300 mg Drugs 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 108091005646 acetylated proteins Proteins 0.000 description 1
- 229940045800 actinomycines Drugs 0.000 description 1
- 230000004721 adaptive immunity Effects 0.000 description 1
- 229960001570 ademetionine Drugs 0.000 description 1
- 238000011256 aggressive treatment Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 230000003281 allosteric effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229940045799 anthracyclines and related substance Drugs 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000001773 anti-convulsant effect Effects 0.000 description 1
- 230000003556 anti-epileptic effect Effects 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 230000000118 anti-neoplastic effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 210000001130 astrocyte Anatomy 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- JEUUNKOFKDUVMN-UHFFFAOYSA-N benzo[f]chromen-1-one Chemical compound C1=CC=CC2=C3C(=O)C=COC3=CC=C21 JEUUNKOFKDUVMN-UHFFFAOYSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000007321 biological mechanism Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 235000020279 black tea Nutrition 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 238000010322 bone marrow transplantation Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000025084 cell cycle arrest Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000007969 cellular immunity Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 210000003756 cervix mucus Anatomy 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 230000014564 chemokine production Effects 0.000 description 1
- 239000002604 chemokine receptor CCR2 antagonist Substances 0.000 description 1
- 239000003067 chemokine receptor CCR5 antagonist Substances 0.000 description 1
- YDDGKXBLOXEEMN-IABMMNSOSA-N chicoric acid Chemical compound O([C@@H](C(=O)O)[C@@H](OC(=O)\C=C\C=1C=C(O)C(O)=CC=1)C(O)=O)C(=O)\C=C\C1=CC=C(O)C(O)=C1 YDDGKXBLOXEEMN-IABMMNSOSA-N 0.000 description 1
- 230000019113 chromatin silencing Effects 0.000 description 1
- 238000011284 combination treatment Methods 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 229940088547 cosmegen Drugs 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000011461 current therapy Methods 0.000 description 1
- QOXHZZQZTIGPEV-UHFFFAOYSA-K cyclopenta-1,3-diene;titanium(4+);trichloride Chemical compound Cl[Ti+](Cl)Cl.C=1C=C[CH-]C=1 QOXHZZQZTIGPEV-UHFFFAOYSA-K 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 230000001461 cytolytic effect Effects 0.000 description 1
- 230000001085 cytostatic effect Effects 0.000 description 1
- 230000007402 cytotoxic response Effects 0.000 description 1
- RGWHQCVHVJXOKC-SHYZEUOFSA-N dCTP Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO[P@](O)(=O)O[P@](O)(=O)OP(O)(O)=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-N 0.000 description 1
- 230000002498 deadly effect Effects 0.000 description 1
- 229960005319 delavirdine Drugs 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- YDDGKXBLOXEEMN-WOJBJXKFSA-N dicaffeoyl-L-tartaric acid Natural products O([C@@H](C(=O)O)[C@@H](OC(=O)C=CC=1C=C(O)C(O)=CC=1)C(O)=O)C(=O)C=CC1=CC=C(O)C(O)=C1 YDDGKXBLOXEEMN-WOJBJXKFSA-N 0.000 description 1
- FKGKZBBDJSKCIS-UHFFFAOYSA-N diethyl-[[6-[[4-(hydroxycarbamoyl)phenyl]carbamoyloxymethyl]naphthalen-2-yl]methyl]azanium;chloride;hydrate Chemical compound O.[Cl-].C1=CC2=CC(C[NH+](CC)CC)=CC=C2C=C1COC(=O)NC1=CC=C(C(=O)NO)C=C1 FKGKZBBDJSKCIS-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 229930004069 diterpene Natural products 0.000 description 1
- 150000004141 diterpene derivatives Chemical class 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 229940029119 efavirenz 600 mg Drugs 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 229950005837 entinostat Drugs 0.000 description 1
- DZYNKLUGCOSVKS-UHFFFAOYSA-N epigallocatechin Natural products OC1Cc2cc(O)cc(O)c2OC1c3cc(O)c(O)c(O)c3 DZYNKLUGCOSVKS-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 239000003777 experimental drug Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 244000053095 fungal pathogen Species 0.000 description 1
- 229940074391 gallic acid Drugs 0.000 description 1
- 235000004515 gallic acid Nutrition 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 210000002288 golgi apparatus Anatomy 0.000 description 1
- 208000024908 graft versus host disease Diseases 0.000 description 1
- 235000009569 green tea Nutrition 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 208000010710 hepatitis C virus infection Diseases 0.000 description 1
- 230000006195 histone acetylation Effects 0.000 description 1
- 108010074724 histone deacetylase 3 Proteins 0.000 description 1
- 230000003284 homeostatic effect Effects 0.000 description 1
- 230000009675 homeostatic proliferation Effects 0.000 description 1
- 230000005745 host immune response Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229960002927 hydroxychloroquine sulfate Drugs 0.000 description 1
- 239000012729 immediate-release (IR) formulation Substances 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000008629 immune suppression Effects 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 230000001024 immunotherapeutic effect Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 210000002602 induced regulatory T cell Anatomy 0.000 description 1
- 230000004968 inflammatory condition Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 108040003610 interleukin-12 receptor activity proteins Proteins 0.000 description 1
- 230000007709 intracellular calcium signaling Effects 0.000 description 1
- 210000005061 intracellular organelle Anatomy 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 229940112586 kaletra Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 231100001252 long-term toxicity Toxicity 0.000 description 1
- 229940120922 lopinavir and ritonavir Drugs 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 230000001868 lysosomic effect Effects 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 210000004779 membrane envelope Anatomy 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- CAAULPUQFIIOTL-UHFFFAOYSA-N methyl dihydrogen phosphate Chemical compound COP(O)(O)=O CAAULPUQFIIOTL-UHFFFAOYSA-N 0.000 description 1
- 230000002025 microglial effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 229940127237 mood stabilizer Drugs 0.000 description 1
- 239000004050 mood stabilizer Substances 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 229940126662 negative allosteric modulator Drugs 0.000 description 1
- 229960000689 nevirapine Drugs 0.000 description 1
- 230000036963 noncompetitive effect Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 229940042404 nucleoside and nucleotide reverse transcriptase inhibitor Drugs 0.000 description 1
- 210000001623 nucleosome Anatomy 0.000 description 1
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 229950009215 phenylbutanoic acid Drugs 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 229940072689 plaquenil Drugs 0.000 description 1
- 239000003910 polypeptide antibiotic agent Substances 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229940068586 prezista Drugs 0.000 description 1
- 210000004986 primary T-cell Anatomy 0.000 description 1
- 230000009290 primary effect Effects 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 208000037821 progressive disease Diseases 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 210000003289 regulatory T cell Anatomy 0.000 description 1
- 238000009256 replacement therapy Methods 0.000 description 1
- 230000001718 repressive effect Effects 0.000 description 1
- 229940064914 retrovir Drugs 0.000 description 1
- 239000013037 reversible inhibitor Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229940107904 reyataz Drugs 0.000 description 1
- 229940083992 rilpivirine 25 mg Drugs 0.000 description 1
- 229940096357 ritonavir 100 mg Drugs 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 229930000044 secondary metabolite Natural products 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 150000004666 short chain fatty acids Chemical class 0.000 description 1
- 235000021391 short chain fatty acids Nutrition 0.000 description 1
- 108010048106 sifuvirtide Proteins 0.000 description 1
- WIOOVJJJJQAZGJ-ISHQQBGZSA-N sifuvirtide Chemical compound C([C@H](NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@@H](N)CO)[C@@H](C)O)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O)C1=CC=C(O)C=C1 WIOOVJJJJQAZGJ-ISHQQBGZSA-N 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- MFBOGIVSZKQAPD-UHFFFAOYSA-M sodium butyrate Chemical compound [Na+].CCCC([O-])=O MFBOGIVSZKQAPD-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000011272 standard treatment Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 229960001203 stavudine Drugs 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229940070590 stribild Drugs 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000011421 subcutaneous treatment Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 229940054565 sustiva Drugs 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 229950011110 tacedinaline Drugs 0.000 description 1
- 235000013616 tea Nutrition 0.000 description 1
- 229960004693 tenofovir disoproxil fumarate Drugs 0.000 description 1
- 229940061226 tenofovir disoproxil fumarate 300 mg Drugs 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- KYMBYSLLVAOCFI-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SCN1CC1=CN=C(C)N=C1N KYMBYSLLVAOCFI-UHFFFAOYSA-N 0.000 description 1
- 229960003495 thiamine Drugs 0.000 description 1
- 235000019157 thiamine Nutrition 0.000 description 1
- 239000011721 thiamine Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 206010043554 thrombocytopenia Diseases 0.000 description 1
- 229960000838 tipranavir Drugs 0.000 description 1
- SUJUHGSWHZTSEU-FYBSXPHGSA-N tipranavir Chemical compound C([C@@]1(CCC)OC(=O)C([C@H](CC)C=2C=C(NS(=O)(=O)C=3N=CC(=CC=3)C(F)(F)F)C=CC=2)=C(O)C1)CC1=CC=CC=C1 SUJUHGSWHZTSEU-FYBSXPHGSA-N 0.000 description 1
- 230000014599 transmission of virus Effects 0.000 description 1
- 108010060596 trapoxin B Proteins 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 229940111527 trizivir Drugs 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 230000007501 viral attachment Effects 0.000 description 1
- 230000006648 viral gene expression Effects 0.000 description 1
- 244000052613 viral pathogen Species 0.000 description 1
- 230000006490 viral transcription Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 229940087450 zerit Drugs 0.000 description 1
- 229940103576 zidovudine 250 mg Drugs 0.000 description 1
- 229940102247 zidovudine 300 mg Drugs 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/46—8-Azabicyclo [3.2.1] octane; Derivatives thereof, e.g. atropine, cocaine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/165—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
- A61K31/167—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/4706—4-Aminoquinolines; 8-Aminoquinolines, e.g. chloroquine, primaquine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
- A61K38/204—IL-6
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
- A61K38/2086—IL-13 to IL-16
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/21—Interferons [IFN]
- A61K38/212—IFN-alpha
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Emergency Medicine (AREA)
- Pain & Pain Management (AREA)
- Virology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Molecular Biology (AREA)
- AIDS & HIV (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Methods and compositions for treatment of human immunodeficiency virus (HIV) infections have been developed which dampen immune activation with a bias more on the CD4 T cells relative to the CD8 T cell response, inhibit HIV replication, reactivate latent HIV, and inhibit infection of cells by HIV. Pushing latent HIV into active infections with hindrance of cell infection by the reactivated HIV can substantially reduce the number of cells infected with HIV and the viral load of HIV, which is not achieved using just the combination of ART and compounds which activate latent HIV. The methods involve administering to an HIV-infected subject three or more compounds which collectively dampen immune activation with a bias more on the CD4 T cells relative to the CD8 T cell response, inhibit HIV replication, reactivate latent HIV, and inhibiting infection of CD4 T cells by HIV.
Description
WO 2014/189648 PCT/US2014/035354 METHODS AND COMPOSITIONS FOR TREATMENT OF HIV INFECTION FIELD OF THE INVENTION 5 The invention is in the general field of treatment of HIV infections and particularly in the field of treatment of latent HIV infections to maintain reduced viral load following cessation of drug treatment. CROSS REFERENCE TO RELATED APPLICATIONS This application claims priority to U.S.S.N. 61/827,314 filed May 24, 10 2013 by Kenneth G. Cooper, Mark S. De Souza, Keith Eubanks, John D. Kapson, and Hua Yang and to U.S.S.N. 61/866,865 filed August 16, 2013, by Kenneth G. Cooper, Mark S. De Souza, Keith Eubanks, David H. Starr, John D. Kapson, and Hua Yang. BACKGROUND OF THE INVENTION 15 Human immunodeficiency virus (HIV) affects specific cells of the immune system, called CD4 cells, or T cells. Over time, HIV can destroy so many of these cells that the body cannot fight off infections and disease. HIV disease has a well-documented progression. Untreated, HIV is almost universally fatal because it eventually overwhelms the immune system 20 resulting in acquired immunodeficiency syndrome (AIDS). HIV treatment helps people at all stages of the disease, and treatment can slow or prevent progression from one stage to the next. HIV progresses through three stages: Acute infection: Within 2 to 4 weeks after infection with HIV, acute 25 retroviral syndrome (ARS) or primary HIV infection, results in large amounts of HIV being produced in your body. The virus uses CD4 cells to make copies of itself and destroys these cells in the process. The amount of virus in the blood is very high during this stage. Eventually, the immune response will reduce the amount of virus to a stable level, and the 30 CD4 count will begin to increase, but typically does not return to pre infection levels. Clinical latency (inactivity or dormancy): This period is sometimes called asymptomatic HIV infection or chronic HIV infection. During this 1 WO 2014/189648 PCT/US2014/035354 phase, HIV is still active, but reproduces at very low levels, and the individual may not have any symptoms or get sick during this time. People who are on antiretroviral therapy (ART) may live with clinical latency for several decades. For people who are not on ART, this period can last up to a 5 decade, but some may progress through this phase faster. Toward the middle and end of this period, the viral load begins to rise and the CD4 cell count continues to drop. This correlates with development of symptoms of HIV infection as the immune system becomes too weak to protect against other diseases and cancer. 10 AIDS (acquired immunodeficiency syndrome): This is the stage of infection that occurs when one becomes vulnerable to a range of bacterial, viral and fungal pathogens termed opportunistic infections. AIDS is defined as when the number of CD4 cells falls below 200 cells/mm 3 blood. AIDS may also be diagnosed upon development of one or more opportunistic 15 infections, regardless of the CD4 count. Without treatment, people who are diagnosed with AIDS typically survive about three years. The HIV reservoir is established during primary infection. Administration of anti-retroviral therapy ("ART") very early in acute infection seems to result in a low post-treatment HIV viral load, suggesting 20 that aggressive treatment can decrease the size of the viral reservoir (Hocqueloux et al., 2010; Chun et al., JInfect Dis 2007; 195: 1762-64; Ananworanich et al., PLoS One 2012; 7: e33948; Archin et al., Proc. Natl. Acad. Sci. USA 2012; 109: 9523-28). Although early treatment can substantially reduce the size of the total reservoir, a stable population of 25 latently infected CD4 T cells develops into the long-lived latent reservoir, and is unaffected by early combination ART (cART) (von Wyl et al., PLoS One 2011; 6: e27463). Most proviral HIV is detected in CD4+ T lymphocytes in lymphoid tissue (Hufert et al., AIDS 1997; 11: 849-57; Stellbrink et al., AIDS 1997; 11: 1103-10). In blood, most proviral HIV is 30 found in central memory and transitional memory T cells, which maintain the reservoir because of their intrinsic capacity to persist through homoeostatic proliferation and renewal (Chomont et al., Nat. Med. 2009; 15: 893-900). Other cellular reservoirs that might exist include naive CD4 T 2 WO 2014/189648 PCT/US2014/035354 cells, monocytes and macrophages, astrocytes, microglial cells (Deeks et al., Nat. Rev. Immunol. 2012; 12: 607-14) and T stem cell memory cells (Buzon et al.. Nat Med. 2014 Feb;20(2):139-42). During long-term effective ART, a steady-state, low-level plasma HIV viral load can be achieved, typically from 5 less than one to three copies of HIV per ml. (Palmer et al., Proc. Natl. Acad. Sci. USA 2008; 105: 3879-84). Chronic production of HIV from a stable reservoir of long-lived infected cells (the so-called latent reservoir) is probably the main source of this persistent HIV. A prerequisite for the establishment of HIV latency is the integration 10 of viral DNA into the host chromatin and epigenetic silencing of active viral transcription. The molecular mechanisms contributing to the silencing of latent HIV are complex (Karn and Stoltzfus, Cold Spring Harb. Perspect. Med. 2012; 2: a006916). Infected cells with replication-competent provirus are transcriptionally silenced by co-repressor complexes that include histone 15 deacetylases, histone methyltransferases, and heterochromatin proteins. Active methylation of the long terminal repeat might also play a part (Van Duyne et al., J. Mol. Biol. 2011; 411: 581-96; Friedman et al., J. Virol. 2011; 85: 9078-89). Epigenetic silencing of a provirus can be reversed by agents that mobilize chromatin remodeling complexes to replace repressive 20 complexes poised at the viral long terminal repeat (Hakre et al., FEMS Microbiol. Rev. 2012; 36: 706-16). Signals delivered through the T cell receptor (TCR-CD3) complex and CD28 co-stimulation can drive productive transcription, suggesting that physiological activation of memory CD4 T cells can lead to virus production in vivo (Rong and Perelson, PLoS 25 Comput. Biol. 2009; 5: e1000533). Activated CD4 T cells are the most permissive target for HIV infection. How recently infected activated cells become long-lived latently infected resting memory cells is not fully understood. Many regulatory pathways designed to blunt the effect of cell activation are turned on during T cell activation, including the upregulation 30 of negative regulators of T cell activation-for example, PD-1, CTLA-4, TRIM-3, LAG3, CD160, and 2B4 cell surface receptors. Cells expressing these receptors could be preferential reservoirs of HIV. In a cross-sectional 3 WO 2014/189648 PCT/US2014/035354 study of long-term treated individuals, PD-I- expressing cells were enriched with latent HIV (Chomont et al., Nat Med 2009; 15: 893). ART is one of the major medical successes in the era of AIDS. ART can provide indefinite viral suppression, restored immune function, improved 5 quality of life, the near normalization of expected lifespan, and reduced viral transmission. However, ART does not eliminate viral reservoirs, and needs to be used indefinitely to keep AIDS at bay. ART is also expensive with potential short-term and long-term toxic effects. Despite virus control, HIV associated complications persist, including a higher than normal risk of 10 cardiovascular disease, cancer, osteoporosis, and other end-organ diseases. This increased risk might be due to the toxic effects of treatment or the consequences of persistent inflammation and immune dysfunction associated with HIV. Treatment approaches that eliminate persistent virus and do not need lifelong adherence to expensive and potentially toxic antiretroviral 15 drugs are needed. There are two general categories of a "cure" for HIV infection: a functional cure and a sterilizing cure. A functional cure is defined as an intervention that renders patients with progressive disease able to permanently control viral replication, thereby preventing clinical 20 immunodeficiency and transmission (adapted from: Eisele E, Siliciano RF. Redefining the viral reservoirs that prevent HIV- 1 eradication. Immunity. 2012 Sep 21;37(3):377-88). A functional cure suppresses viral replication for a pre-defined period of time in the absence of drug therapy, restores and stabilizes effective immune function, and decreases both HIV-induced 25 inflammation (which could increase the risk of AIDS or non-AIDS morbidity) and, in those individuals that maintain stable low-level plasma viral loads, reduces the risk of virus transmission to others. The World Health Organization (WHO) recommends first-line anti retroviral therapy ("ART") consist of two nucleoside reverse transcriptase 30 inhibitors (NRTIs) plus a non-nucleoside reverse-transcriptase inhibitor (NNRTI). TDF + 3TC (or FTC) + EFV as a fixed-dose combination is recommended as the preferred option to initiate ART (strong 4 WO 2014/189648 PCT/US2014/035354 recommendation, moderate-quality evidence). If TDF + 3TC (or FTC) + EFV is contraindicated or not available, one of the following options is recommended: AZT + 3TC + EFV; AZT + 3TC + NVP; or TDF + 3TC (or FTC) + NVP 5 (strong recommendation, moderate-quality evidence). As reported by Messiaen et al., PLoS One. 2013; 8(1):e52562 (Epub Jan. 9, 2013), an optimal regimen choice of antiretroviral therapy is essential to achieve long-term clinical success. Integrase inhibitors have been adopted as part of current antiretroviral regimens. However, integrase inhibitors 10 combined with protease inhibitors do not result in a significant better virological outcome. As most recently reviewed by Lewin, The Lancet, 381(9883):2057 2058 (15 June 2013), there is still no cure for HIV, although a few cases of functional cures have been reported, one due to a naturally occurring 15 mutation in the CCR5 gene, one in a newborn given immediate ART at birth, and a few people who were treated immediately upon infection. These are the exceptions. Current therapy is now focused on activating HIV from resting T cells. Activating latent virus might lead to death of the cell or make the virus ready for immune-mediated clearance. A range of drugs that 20 modify gene expression, including viral gene expression, are in clinical trials in HIV-infected patients on ART. Two studies have reported that HIV latency can be activated with the histone deacetylase inhibitor Vorinostat. The frequency of HIV-cure related trials is increasing annually based on the findings of the VISCONTI cohort (Siez-Ciri6n et al.. PLoS Pathog. 2013 25 Mar;9(3):e1003211. doi: 10.1371/journal.ppat.1003211. Epub 2013 Mar 14. and the "Mississippi baby" treatment outcome (Persaud D, et al. NEngl. J. Med. 2014 Feb 13;370(7):678). Clinical trials include investigations of increasingly potent histone deacetylase inhibitors, and of gene therapy to eliminate the CCR5 receptor from patient-derived cells. HIV-cure-related 30 trials raise many complex issues, given potentially toxic interventions to patients doing very well on ART, and needs careful assessment. 5 WO 2014/189648 PCT/US2014/035354 Rasmussen et al., Human Vaccines & Immunotherapeutics 9:4, 790 799 (April 2013), review all of the strategies proposed to eradicate HIV infection. Prolonged combination antiretroviral treatment (cART) has not led to eradication of HIV infection. Current research is focused on 5 characterizing latent HIV reservoirs and understanding the intricate mechanisms that establish HIV latency and enable the virus to persist for decades evading host immune responses and potent cART. It is useful to distinguish between proviral latency, referring to the presence of replication competent but transcriptionally silent provirus within resting cells, and 10 residual viremia, referring to the continuous existence of trace levels of extracellular HIV-RNA in plasma during suppressive cART. Whereas the pool of latently infected memory CD4+ T-cells is now the most well-defined latent HIV reservoir and presumably the primary obstacle to the eradication of HIV infection, the origin and significance of the residual viremia, in 15 particular whether this is caused by on-going replication, is still debated. Several therapeutic strategies are being pursued to achieve a cure for HIV (Rasmussen et al., 2013). First, intensification studies have explored whether adding an extra antiretroviral drug to an already suppressive cART regimen can reduce the residual viremia or the latent HIV reservoir. Overall, 20 there seems to be little or no effect from these interventions, but there are conflicting results. Elimination of latently infected T cells by reactivating HIV-1 expression using agents like histone deacetylase inhibitors (HDACi), IL-7, disulfiram or prostratin have been investigated in numerous in vitro and in vivo studies. Since reactivation of HIV-1 expression in latently infected 25 cells may be insufficient to ensure the removal of these cells, immunotherapy to enhance HIV specific immunity is continuously being developed and tested. There are 11 known histone deacetylase (HDAC) metal-dependent enzymes, which are classified into class I (HDAC 1, 2, 3, and 8), class Ila 30 (HDAC 4, 5, 7, and 9), class Ilb (HDAC 6 and 10), and class IV (HDAC 11) (Wang et al., Nat. Rev. Drug Discov., 8:969-981 (2009)). The counteracting mechanisms of HDACs and histone acetyl transferases (HAT) exert a key function in regulating gene expression by controlling the degree of 6 WO 2014/189648 PCT/US2014/035354 acetylation/deacetylation of histone tails, which in turn influences chromatin condensation. The HIV 5' long-terminal repeat (LTR) that contains promoter and enhancer elements and has binding sites for several transcription factors is arranged in two nucleosomes, nuc-0 and nuc- 1. In the transcriptionally 5 silent state of HIV latency, various transcription factors recruit HDACs to the HIV-1 5' LTR where they induce chromatin condensation by promoting deacetylation of lysine residues on histones, keeping nuc- 1 in the hypoacetylated state and preventing HIV transcription. HDAC inhibitors (HDACi) offset these mechanisms by inhibiting HDACs. Chromatin 10 immunoprecipitation assays have shown that the class I HDACs, HDAC1, 2 and 3, may be particularly important to maintaining latency. A recent study correlating HDACi isoform specificity with the ability to reactivate latent HIV- 1 expression, showed that potent inhibition or knockdown of HDAC 1 was not sufficient to disrupt HIV latency. HDAC3 inhibition was found to be 15 essential for reactivating viral expression. Class I HDACs are ubiquitously expressed and deacetylation of lysine residues on histones is a key function of class I HDACs. However, they may deacetylate more than 1750 non histone proteins. To which degree, if any, the non-histone effects of HDACi contribute to the desired circumvention of HIV latency is largely unknown. 20 The HDACi acting on HDAC metalloenzymes may be categorized according to their chemical structure into short chain fatty acids, hydroxamic acids and cyclic tetrapeptides, and are further characterized as selective or pan-inhibitors according to their spectrum of action. Consistent with the role histone deacetylases play in repressing transcription, HDAC inhibitors have 25 been shown to disrupt HIV-latency and induce virus HIV-1 expression in latently infected cell lines, latently infected primary T-cells, resting CD4+ T cells isolated from HIV-infected donors and, recently, in vivo. Valproic acid (VPA), a known anticonvulsant that also exerts weak HDAC inhibition, was the first HDACi to be tested in a clinical study with the objective of 30 depleting the latent reservoir of HIV-1 infection. Whereas a substantial decline was seen in the frequency of replication competent HIV in circulating resting CD4 T cells in the initial study, additional studies failed to demonstrate any effect of VPA, even in the setting of intensified cART. 7 WO 2014/189648 PCT/US2014/035354 Vorinostat is a hydroxamic acid containing pan-HDACi with activity against class I and II HDACs. It is the most extensively investigated HDACi in HIV, having consistently shown the ability to reactivate HIV-1 expression at therapeutic concentrations in latently infected cell lines, latently infected 5 primary cells, and resting CD4+ T-cells from HIV infected patients on suppressive HAART. A recent study investigating the HDACi vorinostat, VPA and oxamflatin found that the levels of HIV production by HDAC inhibitor stimulated resting CD4+ T-cells from aviremic donors were not significantly different from those of cells treated with media alone, based on 10 measurement of virion-associated (extracellular) HIV-RNA rather than cell associated HIV-RNA. Data from a recent clinical trial showed that a single dose of 400 mg Vorinostat significantly increased expression of HIV-RNA in isolated resting CD4 T cells in 8 of 8 evaluated subjects without any safety issues, other than the problematic thrombocytopenia seen with all HDAC 15 inhibitors. Clinical and experimental studies have identified a range of immune modulatory effects of HDACi involving both specific inflammation signaling pathways (e.g., regulation of NF-KB via IKBa or p65) as well as epigenetic mechanisms. Most of these effects are anti-inflammatory but the biologic 20 roles of individual HDAC isoforms and their corresponding selective inhibitors are complex and show great diversity. HDACi induced immune suppression via Tregs may impact the course of HIV infection since the virus induces excess inflammation that drives disease progression in untreated HIV infection and causes premature immunosenescence and morbidity in 25 persons on HAART. In HIV eradication, the consequences of HDACi induced Treg expansion and/or function, could be either beneficial, by suppressing generalized T-cell activation, or detrimental, by weakening HIV specific immune responses, thereby hindering immune-mediated clearance of latently infected reactivated CD4 T cells. However, predicting different 30 HDAC is in vivo anti- or pro-inflammatory effects in HIV may prove challenging since even structurally related compounds have been shown to have opposing actions. 8 WO 2014/189648 PCT/US2014/035354 Early studies suggested that interleukin (IL)-2 therapy might impact on the frequency of resting cells harboring replication competent virus, but rebound viremia occurred rapidly upon interruption of cART. Additional studies could not establish an effect of IL-2 on the pool of latently infected 5 CD4 T cells or HIV production, and when IL-2 was used in combination with anti-CD3 antibody OKT3 this led to detrimental T cell activation and irreversible CD4 T cell depletion. Several studies have shown that IL-7 induces virus outgrowth ex vivo in the resting CD4 T cells of HIV infected patients on cART (Wang et al., J. Clin. Invest., 115:128-137 (2005); 10 Lehrman et al., J. Acquir. Immune Defic. Syndr., 36:1103-1104 (2004)). Two small clinical trials conducted in HIV infected patients reported that IL-7 administration increased CD4+ and CD8 T cells with a memory phenotype. A recent study showed that, whereas partial reactivation of latent HIV- 1 can be achieved with IL-2 and IL-7 in combination, this does not reduce the pool 15 of latently infected cells. Proliferation induced by these cytokines may favor the maintenance of the latent HIV-1 reservoir. Collectively, these findings indicate that the homeostatic proliferation induced by IL-7 therapy could be counterproductive in HIV eradication therapy. Some toll-like receptor (TLR) ligands appear to modulate latent HIV 20 infection. The TLR-5 agonist flagellin results in NF-KB activation and induces expression in latently infected cell lines and resting central memory T-cells transfected with HIV-1, but could not be shown to reactivate HIV-1 in purified resting CD4 T cells from aviremic HIV patients. The TLR7/8 agonist, R-848, activated HIV from cells of myeloid-monocytic origin 25 through TLR8-mediated NF-KB activation (Schlaepfer et al., J. Immunol., 176:2888-2895 (2006); Schlaepfer and Speck, J. Immunol., 186:4314-4324 (2011)). Finally, synthetic CpG oligodeoxynucleotides (CpG ODNs) that stimulate immune cells via TLR9 induced HIV reactivation in vitro. In summary, combination ART has transformed HIV from a deadly 30 to a chronic disease, but HIV infected patients are still burdened with excess morbidity and mortality, acquisition of viral resistance to drug regimens, regimen-adherence issues, long-term toxicities from cART, stigmatization and, finally, insufficient access to cART worldwide. A cure for HIV would 9 WO 2014/189648 PCT/US2014/035354 have a substantial impact on society as well as the individual and continues to be a high research priority. It is therefore an object of this invention to provide methods and compositions for treatment of HIV infections functionally, to reduce viral 5 load following cessation of drug therapy. SUMMARY OF THE INVENTION Methods and compositions for treatment of human immunodeficiency virus (HIV) infections have been developed which dampen immune activation with a bias more on the CD4 T cells relative to 10 the CD8 T cell response, inhibit HIV replication, reactivate latent HIV, and inhibit infection of cells by HIV. It has been discovered that pushing latent HIV into active infections with inhibition of cell infection by the reactivated HIV can substantially reduce the number of cells infected with HIV and the viral load of HIV, which is not achieved using just the combination of ART 15 and compounds which activate latent HIV. The methods involve administering three or more compounds to an HIV-infected subject collectively dampening immune activation with a bias more on the CD4 T cell relative to the CD8 T cell response, inhibiting HIV replication, reactivating latent HIV, and inhibiting infection of CD4 T cells by HIV, 20 wherein the compounds are provided in dosages substantially reducing the number of cells infected with HIV or the viral load of HIV, relative to which is achieved using just the combination of ART and compounds which activate latent HIV. Representative inhibitors of HIV replication include nucleoside 25 reverse transcriptase inhibitors (NRTIs) such as tenofovir, emtricitabine, zidovudine (AZT), lamivudine (3TC), abacavir, and tenofovir alafenamide fumarate; non-nucleotide reverse transcriptase inhibitors (NNRTIs) such as efavirenz, rilpivirine, and etravirine; integrase inhibitors such as raltegravir and elvitegravir; and protease inhibitors such as ritonavir, darunavir, 30 atazanavir, lopinavir, and cobicistat. Representative compounds dampening immune activation include anti-inflammatories such as hydroxychloroquine, chloroquine, PD-I inhibitors, type I interferons, IL6, cyclo-oxygenase -2 inhibitors, peroxisome proliferator-activated receptor -c (PPAR-c) agonists 10 WO 2014/189648 PCT/US2014/035354 such as pioglitazone and leflunomide, methotrexate, mesalazine, and anti fibrotic agents such as angiotensin-converting enzyme (ACE) inhibitors. Representative inhibitors of HIV infection of CD4 T cells include C-C chemokine receptor type 5 (CCR5) inhibitors, C-X-X chemokine receptor 5 type 4 (CXCR4) inhibitors, CD4 inhibitors, gp120 inhibitors, and gp41 inhibitors, wherein the stimulator of CD8 T cell response to HIV can be a direct stimulator of CD8 T cell response to HIV, a differential stimulator of CD8 T cell response to HIV, can also be administered. Representative compounds include IL-2, IL-12, IL-15, or a combination thereof, or a 10 composition that stimulates production in the subject of IL-2, IL-12, IL-15, or a combination thereof. Representative compounds that stimulate reactivation of latent HIV include HDACi such as vorinostat, pomidepsin, panpbinostat, givinostat, belinostat, valproic acid, CI-994, MS-275, BML 210, M344, NVP-LAQ824, mocetinostat, and sirtuin inhibitors; NF-KB 15 inducing agents such as anti-CD3/CD28 antibodies, tumor necrosis factor alpha (TNFa), prostratin, ionomycin, bryostatin-1, and picolog; histone methyltransferase (HMT) inhibitors such as BIX-01294 and chaetocin; pro apoptotic and cell differentiating molecules such as JQ1, nutlin3, disulfiram, aphidicolin, hexamethylene bisacetamide (HMBA), dactinomycin, 20 aclarubicin, cytarabine, Wnt small molecule inhibitors, Notch inhibitors; immune modulators such as anti-PD-I antibodies, anti-CTLA-4 antibodies, anti-TRIM-3 antibodies, and BMS-936558; and CD4 T cell vaccines. In the most preferred embodiment, these are administered with a combination of nucleos(t)ide and non-nucleos(t)ide retroviral inhibitors 25 In preferred embodiments, the inhibitor is a CCR5 inhibitor such as Maraviroc at a dosage of 200 to 600 mg of Maraviroc per day, the the compound dampening immune activation is a chloroquine compound such as hydroxychloroquine in a dosage of between 150 to 400 mg administered per day, the stimulator of reactivation of latent HIV is a histone 30 deacetylase inhibitor such as Vorinostatin a dosage of from 150 to 400 mg administered per day. A clinical study is proposed having the following treatment: 11 WO 2014/189648 PCT/US2014/035354 Vorinostat at 400mg orally every 24 hours for 3 cycles of 14 days with an interim rest-period of 14 days between cycles; Hydroxychloroquine (H) at a dosage of 200mg twice daily during the course of vorinostat administration with no rest-period during the interim 5 cycle; Maraviroc (M) at a dosage of 600 mg twice daily during the course of vorinostat administration with no rest-period during the interim cycle; and HAART in the form of two-nucleos(t)ide reverse-transcriptase inhibitors such as emtricitabine (FTC) and tenofovir (TDF) and one non 10 nucleoside reverse transcriptase inhibitor such as efavirenz (EFV) or a protease or integrase inhibitor in subjects who are intolerant to EFV for the duration of the treatment at a dosage equivalent to FTC, 200mg IX/day; TDF, 300mg IX/day and EFV, 600mg IX/day or a protease-inhibitor or integrase-inhibitor. 15 In one embodiment, the administration of the inhibitors and reactivation stimulator can be a course of treatment including a plurality of administrations of the inhibitors and reactivation stimulator over a period of time. For example, the inhibitors and reactivation stimulator can be administered daily. The period of time can be, for example, from 10 weeks 20 to 40 weeks. In particular embodiments, the period of time can end after the earlier of 40 weeks or 2 weeks after HIV infected cells or HIV viral load becomes undetectable. In one embodiment, the subject has not been administered any anti HIV treatment for at least two weeks prior to administration of the inhibitors 25 and reactivation stimulator. In another embodiment, the subject has not been administered any anti-HIV treatment for at least 10 weeks prior to administration of the inhibitors and reactivation stimulator. In one embodiment, the method include administering to the subject a highly active antiretroviral therapy (HAART), a direct stimulator of CD8 T 30 cell response to HIV and a differential stimulator of CD8 T cell response to HIV. The drugs are preferably administered together, over one or more periods of time. The second period of time can completely overlap with the first period of time, can partially overlap with the first period of time, or can 12 WO 2014/189648 PCT/US2014/035354 follow the first period of time. In a particular embodiment, no part of the second period of time precedes the first period of time. In a particular embodiment, the second period of time overlaps the last two weeks of the first period of time. 5 The methods and compositions can result in a CD4 T cell count, HIV viral load and/or HIV infected cell count at or below a threshold level for four weeks, 8 weeks, more preferably 3 months, more preferably 6 months, and most preferably 12 months following the end of a course of treatment. In particular embodiments, the CD4 T cell count can remain at or above 300 10 per cubic millimeter, preferably 500 per cubic millimeter; HIV viral load can remain at or below 1000 copies per milliliter of blood, preferably 100 copies per milliliter of blood, most preferably undetectable; and/or HIV infected cell count can remain at or below 1% of peripheral blood mononuclear cells, preferably below 0.1% of peripheral blood mononuclear cells, most 15 preferably below 0.01% of peripheral blood mononuclear cells, for 8 weeks, preferably 3 months, more preferably 6 months, and most preferably 12 months following the end of a course of treatment. BRIEF DESCRIPTION OF THE DRAWINGS Figures 1A-1H are graphs of the actual results as well as computer 20 modeled simulated results for clinical trials described in the prior art. Figure 2 is a graph of HIV virus load (log10 RNA copies/ml) versus time (weeks) in an immune system simulation of baseline (untreated) HIV infection (upper line at week 52) and treatment holding new infections in check (as with a CCR5 inhibitor), reactivating HIV in latently infected cells 25 (as with a histone deacetylase inhibitor), and stimulation of CD8 T cell response (as with IL-15) (lower line at week 52). The treatment was started at week 26 and continued to week 40. Figure 3 is a graph of CD4 T cell count (cells/pl) versus time (weeks) in an immune system simulation of baseline (untreated) HIV infection (lower 30 line at week 52) and treatment holding new infections in check (as with a CCR5 inhibitor), reactivating HIV in latently infected cells (as with a histone deacetylase inhibitor), and stimulation of CD8 T cell response (as with IL 13 WO 2014/189648 PCT/US2014/035354 15) (upper line at week 52). The treatment was started at week 26 and continued to week 40. Figure 4 is a graph of HIV virus load (log10 RNA copies/ml) versus time (weeks) in an immune system simulation of baseline (untreated) HIV 5 infection (upper line at week 55) and treatment holding new infections in check (as with a CCR5 inhibitor) and reactivating HIV in latently infected cells (as with a histone deacetylase inhibitor) (lower line at week 55). The treatment was started at week 26 and continued to week 80. Figure 5 is a graph of CD4 T cell count (cells/pl) versus time (weeks) 10 in an immune system simulation of baseline (untreated) HIV infection (lower line at week 55) and treatment holding new infections in check (as with a CCR5 inhibitor) and reactivating HIV in latently infected cells (as with a histone deacetylase inhibitor) (upper line at week 55). The treatment was started at week 26 and continued to week 80. 15 Figure 6 is a graph of HIV virus load (log10 RNA copies/ml) versus time (weeks) in an immune system simulation of baseline (untreated) HIV infection (upper line at week 55) and treatment starting at week 26 and ending at week 36 holding new infections in check (as with a CCR5 inhibitor) and reactivating HIV in latently infected cells (as with a histone 20 deacetylase inhibitor), followed by a standard HAART protocol starting at week 34 and ending at week 46 (lower line at week 55). Figure 7 is a graph of CD4 T cell count (cells/pl) versus time (weeks) in an immune system simulation of baseline (untreated) HIV infection (lower line at week 55) and treatment starting at week 26 and ending at week 36 25 holding new infections in check (as with a CCR5 inhibitor) and reactivating HIV in latently infected cells (as with a histone deacetylase inhibitor), followed by a standard HAART protocol starting at week 34 and ending at week 46 (upper line at week 55). Figure 8 is a graph of HIV infected cells (log cells) versus time 30 (weeks) in an immune system simulation of treatment inhibiting new infections with Maraviroc and reactivating HIV in latently infected cells with Vorinostat. The lines at week 30, in order from top to bottom, result from 14 WO 2014/189648 PCT/US2014/035354 increasing effectiveness of Maraviroc at inhibiting new HIV infections. The treatment was started at week 26 and continued to week 78. Figure 9 is a graph of HIV infected cells (log cells) versus time (weeks) in an immune system simulation of treatment inhibiting new 5 infections with Maraviroc and hydroxychloroquine and reactivating HIV in latently infected cells with Vorinostat in various combinations. The no treatment base is the only line at 20 weeks, full treatment using effective amounts of all three drugs (VMC) is the lowest line at week 41, and treatment with both Vorinostat and Maraviroc (VM) is the second lowest line 10 at week 41. The other lines at week 104, in order from top to bottom, are treatment with both Vorinostat and Maraviroc (VM), treatment with both hydroxychloroquine alone (C), treatment with both hydroxychloroquine and Maraviroc (MC) and treatment with Maraviron alone (M) (lines overlap), no treatment base, and treatment with both Vorinostat and hydroxychloroquine 15 (VC) and treatment with Vorinostat alone (V) (lines overlap). The treatment was started at week 26 and continued through week 42. Figure 10 is a graph of HIV infected cells (log cells) versus time (weeks) in an immune system simulation of treatment inhibiting new infections with Maraviroc and hydroxychloroquine and reactivating HIV in 20 latently infected cells with Vorinostat using varying amounts of Vorinostat. The lines at week 40, in order from top to bottom, are the no treatment base, treatment with hydroxychloroquine, Maraviroc, and Vorinostat at 0.5 (VO.5MC) , treatment with hydroxychloroquine, Maraviroc, and Vorinostat at 1 (V1MC), treatment with hydroxychloroquine, Maraviroc, and Vorinostat 25 at 2 (V2MC), treatment with hydroxychloroquine, Maraviroc, and Vorinostat at 4 or 5 (V4MC and V5MC) (lines overlap), and treatment with hydroxychloroquine, Maraviroc, and Vorinostat at 3 (VMC; the full treatment). The treatment was started at week 26 and continued through week 42. 30 Figure 11 is a graph of HIV infected cells (log cells) versus time (weeks) in an immune system simulation of treatment inhibiting new infections with Maraviroc and hydroxychloroquine and reactivating HIV in latently infected cells with Vorinostat using varying amounts of Maraviroc. 15 WO 2014/189648 PCT/US2014/035354 The lines at week 30, in order from top to bottom, are the no treatment base, treatment with hydroxychloroquine, Vorinostat, and Maraviroc at -0.1 (VMO. 1 C) , treatment with hydroxychloroquine, Vorinostat, and Maraviroc at -0.5 (VM0.5C), treatment with hydroxychloroquine, Vorinostat, and 5 Maraviroc at -1.5 (VM1.5C), treatment with hydroxychloroquine, Vorinostat, and Maraviroc at -2 (VM2C; the full treatment), treatment with hydroxychloroquine, Vorinostat, and Maraviroc at -2.5 (VM2.5C), and treatment with hydroxychloroquine, Vorinostat, and Maraviroc at -3 (VM3C). The treatment was started at week 26 and continued through week 10 42. Figure 12 is a graph of HIV infected cells (log cells) versus time (weeks) in an immune system simulation of treatment inhibiting new infections with Maraviroc and hydroxychloroquine and reactivating HIV in latently infected cells with Vorinostat using varying amounts of 15 hydroxychloroquine. The lines at week 35, in order from top to bottom, are the no treatment base, treatment with Maraviroc, Vorinostat, and hydroxychloroquine at -0.01 (VMCO.01), treatment with Maraviroc, Vorinostat, and hydroxychloroquine at -0.05 (VMCO.05), treatment with Maraviroc, Vorinostat, and hydroxychloroquine at 20 -0.1 (VMC; the full treatment), treatment with Maraviroc, Vorinostat, and hydroxychloroquine at -0.2 (VMCO.2), treatment with Maraviroc, Vorinostat, and hydroxychloroquine at -0.4 (VMCO.4), and treatment with Maraviroc, Vorinostat, and hydroxychloroquine at -0.6 (VMCO.6). The treatment was started at week 26 and continued through week 42. 25 DETAILED DESCRIPTION OF THE INVENTION Methods and compositions for treatment of human immunodeficiency virus (HIV) infections have been developed. Efforts to cure individuals of HIV infection have been stymied by a remaining reservoir of latently infected T cells. Front line anti-HIV treatments 30 generally target only active HIV infections and cannot reach cells that are latently infected. If anti-HIV treatment is paused or stopped, reactivation of latent HIV can generate newly infected cells and resurgent viral loads. 16 WO 2014/189648 PCT/US2014/035354 Lifelong treatment with anti-HIV therapy has been the only answer to this problem. Latent HIV infection must be attacked to produce more robust and longer lasting reduction in infected cell counts and viral load. The approach 5 disclosed herein involves reactivation of latent HIV and inhibiting infection of cells by HIV, in combination with inhibitors of viral repliaction. A combination of driving HIV out of latency with inhibition of cell infection and viral replication by the reactivated HIV substantially reduces the number of cells infected with HIV and the viral load of HIV. 10 Some factors can affect the effectiveness of the methods and compositions. Because HIV targets the immune system, the state of the immune system can affect reactivation of latent HIV, cell infection by HIV, and HIV replication. Having a more active immune response can increase the effectiveness of the methods. It is believed that a more active cellular 15 cytotoxic response leads to more effective hindrance of cell infection by HIV. For this reason, and because anti-HIV therapy (such as standard HAART) may result in a waning of the measurable CD8 T cell immune response, it may be useful for subjects to be treatment-experienced at an early stage of HIV infection (within 12 months) or treatment-naive but at an 20 early stage of HIV infection (within 3 months) when the cellular immune response is more intact before treatment with the methods and compositions disclosed herein. The method uses inhibitors of HIV infection that have different effects or targets of action. For example, it has been discovered that a 25 combination of the CCR5 inhibitor Maraviroc, which inhibits HIV entry into cells via the CCR5 receptor, thus slowing infection of CD4 T cells, and hydroxychloroquine, which reduces viral replication by reducing the inflammatory response that accompanies HIV infection, improves the effectiveness of inhibition of HIV infection of CD4 T cells. 30 Hydroxychloroquine has been shown in HIV treatment trials to have less of an impact on CD8 T cell function relative to its impact on CD4 T cell function (Piconi et al., Blood, 118(12):3263-72 (2011)). The method can be made more effective by using one or more different inhibitors of HIV 17 WO 2014/189648 PCT/US2014/035354 infection, preferably having different effects or targets of action, and/or by using one or more stimulators of reactivation of latent HIV, preferably having different effects or targets of action. Preferably, HAART is included to further hinder cell infection by HIV and HIV replication, thus helping to 5 reduce the viral load and HIV infected cell count. As another example, CD8 T cell response to HIV can be stimulated and/or differentially regulated relative to CD4 T cell responses in blood in the method. The immune system's attack on HIV infected cells can thus help to decrease the viral load and HIV infected cell count once or as latent HIV is reactivated by the 10 method. I. Definitions As used herein, "active infection" and "active viral infection" refer to a viral infection where viral replication and production is ongoing. Production of virus refers to production of copies of viral genomes and 15 production of viral particles. Unless noted otherwise, all references herein to "HIV" refer to HIV- 1 and all genomic subtypes within HIV- 1. A "plurality of administrations" refers to multiple administrations made at different times, different routes, and/or different forms. In the context of a plurality of administrations over a period of time, the plurality of 20 administrations at least refers to multiple administrations made at different times during the period of time. As used herein, "anti-HIV therapy" refers to a treatment or therapy that has the purpose of reducing the number of cells infected with HIV, reducing HIV viral load, or both. 25 As used herein, "anti-HIV therapy holiday" refers to a break or pause in administration of anti-HIV therapies to a subject. As used herein, a subject that "has not been administered any anti-HIV treatment" refers to subjects that are naive to anti-HIV therapy or that are on an anti-HIV therapy holiday. The latter is generally used in the context of a subject that has not 30 been administered any anti-HIV treatment for a specified period of time. As used herein, "cell count" refers to the number of cells having a specified characteristic. For example, an HIV infected cell count refers to the number of cells infected with HIV. A CD4 T cell count refers to the 18 WO 2014/189648 PCT/US2014/035354 number of CD4 T cells. Cell count is generally based on or expressed relative to a volume or amount of sample tested. Thus, for example, a direct or derived measurement of 10 HIV infected cells in a 5 pl sample of blood can be expressed as a cell count of 2 /pl of blood, 2,000/ml, or some other 5 equivalent. As used herein, expressions such as "HIV infected cells are no longer detected" and "HIV infected cells are undetectable" refer to HIV infected cell counts that are undetectable under the assay conditions used. As used herein, "course of treatment" refers to a plurality of administrations that follow a plan or schedule of treatment. 10 As used herein, "effective amount" of a compound or composition refers therapeutically effective amount of the compound to provide the desired result. As used herein, "following" refers to an event or act that takes place after a period of time, existence of a condition, or a prior act or event has 15 ended or no longer exists. For example, administering HAART following a course of treatment with a stimulator of reactivation of latent HIV means that the HAART is administered after the course of treatment with the stimulator has ended. As used herein, "precedes" refers to an event or act that takes place 20 before a period of time, existence of a condition, or a prior act or event has begun or no exists. For example, administration of a stimulator of reactivation of latent HIV preceding HAART means that the stimulator is administered before the HAART treatment. As used herein, "virus infection of a cell" refers to entry of virus into 25 a cell and the beginning of an active infection of the cell. Unless the context indicates otherwise, this is meant to refer to the event of the virus beginning infection of a cell. Ongoing viral infections can be referred to as active viral infections. Active viral infections generate new events of viral infection of cells. "HIV infection of T cells" refers to entry of HIV into T cells and the 30 beginning of an active infection of the T cells. Unless the context indicates otherwise, this is meant to refer to the event of HIV beginning infection of a T cell. Ongoing HIV infections can be referred to as active HIV infections. Active HIV infections generate new events of HIV infection of T cells. 19 WO 2014/189648 PCT/US2014/035354 As used herein, "inhibiting" refers to reduction or decrease in activity or expression. For example, inhibiting HIV infection of T cells refers to a reduction or decrease in entry of HIV into T cells and the beginning of an active infection of the T cells compared to a control or standard level. This 5 can be a complete inhibition or activity or expression, or a partial inhibition. Inhibition can be compared to a control or to a standard level. As used herein, "inhibitor of cell infection by virus" refers to a compound or composition that inhibits virus infection of a cell. For example, inhibitor of cell infection by HIV refers to a compound or 10 composition that inhibits HIV infection of a cell. As used herein, "inhibitor of viral production" refers to a compound or composition that inhibits production of virus. For example, inhibitor of HIV production or replication refers to a compound or composition that inhibits production of HIV. 15 As used herein, "latent viral infection" refers to a viral infection where the viral genome is incorporated into a chromosome (as a provirus) and is dormant and there is not an active infection. Latent viral infection can refer to a subject as a whole or, more commonly, to cells. Thus, for example, a cell of a subject can be latently infected while other cells in the subject can 20 be actively infected. Latent HIV infection refers to an HIV infection where the HIV genome is incorporated into a chromosome (as a provirus) and is dormant and there is not an active infection. As used herein, "overlapping with" refers to an event or act that takes place during a specified period of time, during the existence of a condition, 25 or while an act or event is ongoing or exists. For example, a first period of time can be overlapping with a second period of time. For example, a course of treatment of HAART administered during a first period of time overlaps with a course of treatment with a stimulator of reactivation of latent HIV during a second period of time when the first and second periods of time 30 overlap. Put another way, a course of treatment of HAART overlaps with a course of treatment with a stimulator of reactivation of latent HIV when any administrations in the course of HAART treatment are at the same time as or interspersed with administrations of the course of stimulator treatment. 20 WO 2014/189648 PCT/US2014/035354 As used herein, "completely overlaps with" refers to an event or act that takes place completely and only during a specified period of time, during the existence of a condition, or while an act or event is ongoing or exists. That is, no part of the event or act takes place outside of, before, or after the 5 specified period of time, the existence of the condition, or the other act or event. For example, a first period of time completely overlaps with a second period of time when no part of the first period of time is outside of the second period of time. As used herein, "partially overlaps with" refers to an event or act that 10 takes place partially during a specified period of time, during the existence of a condition, or while an act or event is ongoing or exists and partially outside of, before, or after the specified period of time, the existence of the condition, or the other act or event. For example, a first period of time partially overlaps with a second period of time when part of the first period 15 of time overlaps with the second period of time and part of the first period of time is outside of the second period of time. As used herein, "partially overlaps and follows" refers to an event or act that takes place partially during a specified period of time, during the existence of a condition, or while an act or event is ongoing or exists and partially after the specified 20 period of time, the existence of the condition, or the other act or event. For example, a first period of time partially overlaps and follows a second period of time when part of the first period of time overlaps with the second period of time and part of the first period of time is after the second period of time. Similarly, a first period of time partially overlaps and precedes a second 25 period of time when part of the first period of time overlaps with the second period of time and part of the first period of time is before the second period of time. As used herein, "period of time" refers to a specified continuous interval of time. As used herein, "no part of a period of time" refers to a 30 period of time, event, or act that does not overlap with the specified period of time. As used herein, "sequential time periods" refers to periods of time that follow one another. Unless otherwise noted, the sequential time periods do 21 WO 2014/189648 PCT/US2014/035354 not overlap. There may or may not be gaps in time between the sequential time periods. As used herein, "pharmaceutically acceptable" refers to a material that is not biologically or otherwise undesirable; that is, the material can be 5 administered to a subject along with the selected compound without causing undesirable biological effects or interacting in a deleterious manner with the other components of the pharmaceutical composition in which it is contained. As used herein, "reactivation" refers to a shift of a provirus from 10 latency or dormancy into active infection. As used herein, "reduce" refers to decrease in number, amount, or level. For example, reducing HIV viral load refers to a reduction or decrease in the amount of HIV in an involved body fluid. Reduction generally can be compared to an initial of starting number, amount, or level, but can also be 15 compared to a control or to a standard number, amount, or level. As used herein, "selectively affects" refers to a compound, composition, treatment, condition, etc. that has a greater effect on one component or condition as compared to another component or condition. For example, in the context of immune responses, a composition can be said 20 to selectively affect, for example, CD4 T cell-based immune response as compared to CD8 T cell-based immune response. For example, an anti inflammatory compound can selectively affect CD4 T cells compared to CD8 T cells, meaning, for example, that the CD4 T cell immune response is inhibited while the CD8 T cell immune response is not inhibited or is less 25 inhibited than the CD4 T cell immune response. As used herein, "separate administration" refers to an administration that is of a separate composition, at a different time, by a different route, and/or in a different manner than another administration. As used herein, "separate composition" refers to a composition that is 30 physically separate from another composition. For example, different pills that are not bound or attached to each other are separate compositions. As another example, two liquid solutions that are mixed together are not separate compositions once they are mixed together. 22 WO 2014/189648 PCT/US2014/035354 As used herein, "single composition" refers to a combination of components in one composition rather than in separate compositions. For example, a first inhibitor of HIV infection of CD4 T cells, a second inhibitor of HIV infection of CD4 T cells, and a stimulator of reactivation of latent 5 HIV formulated in a single pill are in a single composition. As used herein, "stimulator of reactivation of the latent virus" refers to a compound or composition that stimulates or promotes a shift of a provirus from latency or dormancy into active infection. For example, stimulator of reactivation of the latent HIV refers to a compound or 10 composition that stimulates a shift of an HIV provirus from latency or dormancy into active HIV infection. As used herein, "stimulator of CD8 T cell response to HIV" refers to a compound or composition that stimulates, increases, or promotes a CD8 T cell response to HIV. Such stimulation can be relative to a prior or baseline 15 CD8 T cell response to HIV (this can be referred to as direct stimulation of CD8 T cell response to HIV) and/or such stimulation can be relative to CD4+ activation (this can be referred to as differential stimulation of CD8 T cell response to HIV). For example, a stimulator of CD8 T cell response to HIV can increase CD8 T cell response to HIV relative to the prior existing 20 CD8 T cell response to HIV, can decrease CD4 T cell activation with no or a lesser decrease of the prior existing CD8 T cell response to HIV, or can both increase CD8 T cell response to HIV relative to the prior existing CD8 T cell response to HIV and decrease CD4 T cell activation. A "direct stimulator" of CD8 T cell response to HIV supports direct 25 stimulation of CD8 T cell response to HIV. A "differential stimulator" of CD8 T cell response to HIV supports direct stimulation of CD8 T cell response to HIV. Generally, an increase of CD8 T cell response to HIV relative to the prior existing CD8 T cell response to HIV can be accomplished with a direct stimulator of CD8 T cell response to HIV. 30 Generally, a decrease of CD4 T cell activation with no or a lesser decrease of the prior existing CD8 T cell response to HIV can be accomplished with a differential stimulator of CD8 T cell response to HIV. Generally, a combination of an increase of CD8 T cell response to HIV relative to the 23 WO 2014/189648 PCT/US2014/035354 prior existing CD8 T cell response to HIV and a decrease of CD4 T cell activation can be accomplished with a direct stimulator and a differential stimulator of CD8 T cell response to HIV. As used herein, "subject" refers to a human. 5 As used herein, "viral load" refers to the amount of virus in an involved body fluid. For example, viral load can be given in viral copies per milliliter of blood plasma. HIV viral load refers to the amount of HIV in an involved body fluid. Viral load is a measure of the severity of a viral infection. Tracking viral load is used to monitor therapy during 10 chronic viral infections. As used herein, "HIV viral load becomes undetectable" refers to the condition where no virus is detected in the sample being tested by standard commercial quantitative viral load assays. Because of limits of assay methods, HIV can be undetectable in an assay when virus is still present in the sample, albeit at a very low level. HIV is considered to 15 be functionally absent when HIV viral load is undetectable. II. Compositions Inhibitors of HIVInfection of CD4 T cells Compounds that inhibit HIV infection of CD4 T cells include, for example, entry inhibitors, such as C-C chemokine receptor type 5 (CCR5) 20 inhibitors, C-X-X chemokine receptor type 4 (CXCR4) inhibitors, CD4 inhibitors, gp120 inhibitors, and gp41 inhibitors (such as enfuvirtide); and anti-inflammatories, such as hydroxychloroquine, chloroquine, PD-I inhibitors, type I interferons, IL6, cyclo-oxygenase -2 inhibitors, peroxisome proliferator-activated receptor -c (PPAR-c) agonists (such as pioglitazone 25 and leflunomide), methotrexate, mesalazine, and anti-fibrotic agents (such as angiotensin-converting enzyme (ACE) inhibitors). Examples of CCR5 inhibitors include maraviroc, aplaviroc, and vicriviroc. Examples of other entry inhibitors include TNX-355, PRO 140, BMS-488043, plerixafor, epigallocatechin gallate, anti-gp 120 antibody, such as antibody b12, 30 griffithsin, DCM205, and Designed Ankyrin Repeat Proteins (DARPins). Maraviroc (Pfizer) is an antiretroviral drug in the CCR5 receptor antagonist class used in the treatment of HIV infection. It is also classed as an entry inhibitor. It also appeared to reduce graft-versus-host disease in 24 WO 2014/189648 PCT/US2014/035354 patients treated with allogeneic bone marrow transplantation for leukemia. Maraviroc is a virus entry inhibitor. Specifically, Maraviroc is a negative allosteric modulator of the CCR5 receptor. The drug binds to CCR5, thereby blocking the HIV protein gp120 from associating with the 5 receptor. HIV is then unable to enter human macrophages and T cells. Because HIV can also use other co-receptors, such as CXCR4, an HIV tropism test such as a Trofile assay should be performed to determine if the drug will be effective. Maraviroc is administered twice daily, at a dosage of 600mg daily when co-administered with certain antiretroviral medicals, 300 10 mg daily when administered with CYP3A inhibitors such as a protease inhibitor like tipranavir or delavirdine, or 1200 mg daily when administered with a CYP3A inducer such as efavirenz or etravirine. Chloroquine is a 4-aminoquinoline drug used in the treatment or prevention of malaria. Chloroquine was discovered in 1934 and clinical 15 trials for antimalarial drug development during World War II showed that chloroquine has a significant therapeutic value as an antimalarial drug. It was introduced into clinical practice in 1947 for the prophylactic treatment of malaria. Chloroquine inhibits thiamine uptake. It acts specifically on the transporter SLC19A3. As an antiviral agent, chloroquine impedes the 20 completion of the viral life cycle by inhibiting some processes that occur within intracellular organelles and that require a low pH. As for HIV-1, chloroquine inhibits the glycosylation of the viral envelope glycoprotein gp120, which occurs within the Golgi apparatus. Hydroxychloroquine is also an antimalarial drug and is used to 25 reduce inflammation in the treatment of rheumatoid arthritis and lupus. Hydroxychloroquine differs from chloroquine by the presence of a hydroxyl group at the end of the side chain: The N-ethyl substituent is beta hydroxylated. It is available for oral administration as hydroxychloroquine sulfate (PLAQUENIL) of which 200 mg contains 155 mg base in chiral 30 form. Hydroxychloroquine has similar pharmacokinetics to chloroquine, with quick gastrointestinal absorption and is eliminated by the kidney. Cytochrome P450 enzymes (CYP 2D6, 2C8, 3A4 and 3A5) converts N desethylated hydroxychloroquine to N-desethylhydroxychloroquine. 25 WO 2014/189648 PCT/US2014/035354 Hydroxychloroquine is used to treat systemic lupus erythematosus, rheumatic disorders like rheumatoid arthritis and Sj6gren's Syndrome, and porphyria cutanea tarda. Hydroxychloroquine increases lysosomal pH in antigen presenting cells. In inflammatory conditions, it blocks TLR 5 on plasmacytoid dendritic cells (pDCs). TLR 9, which recognizes DNA containing immune complexes, leads to the production of interferon and causes the dendritic cells to mature and present antigen to T cells. Hydroxychloroquine, by decreasing TLR signaling, reduces the activation of dendritic cells and the inflammatory process. 10 Hydroxychloroquine and its quinoline analogue chloroquine have been used in HIV-1 therapeutic trials since 1995 (Sperber et al., Clin. Ther. 1995 Jul-Aug;17(4):622-36.). Both drugs are similar in structure with identical biological mechanisms. The free base form of the drugs accumulates in lysosomes, increasing the pH to levels that inhibit lysosomal 15 proteases, thereby diminishing intracellular processing, glycosylation, and secretion of cellular proteins. These drugs interfere with a number of steps in the T-cell activation pathway including antigen-presentation (Ziegler and Unanue, Proc. Natl. Acad. Sci. U.S.A. 1982 Jan;79(1):175-8), T-cell receptor-mediated intracellular calcium signaling (Goldman et al., Blood. 20 2000 Jun 1;95(11):3460-6), the reduction of pro-inflammatory cytokine production (Sperber et al., J. Rheumatol., 1993 May;20(5):803-8) and modulation of the intracellular TLR pathway (Hong et al., Int. Immunopharmacol., 2004 Feb;4(2):223-34). Additionally, hydroxychloroquine and chloroquine have antiviral properties resulting in 25 inhibition of viral protein glycosylation (Savarino et al., J Acquir. Immune Defic. Syndr., 2004 Mar 1;35(3):223-32). The use of hydroxychloroquine and chloroquine in HIV therapeutic trials has been either singly or in combination with anti-retroviral therapy (Paton et al., JAMA., 2012 Jul 25;308(4):353-61; Piconi et al., Blood, 2011 30 Sep 22;118(12):3263-72). However, the effect of hydroxychloroquine appears to be more significant on CD4+ compared to CD8 T cells in terms of dampening immune activation, with a significant effect on the former, but minimal impact on the latter (Piconi et al., Blood, 2011). Such selective 26 WO 2014/189648 PCT/US2014/035354 effect on CD4+ and CD8 T cells is useful because a reduction in activation of CD4 T cell-based immune response aids in inhibiting HIV infection of CD4 T cells while CD8 T cell-based immune response aids in clearing HIV infected cells. Thus, it is preferred that the anti-inflammatory compound 5 selectively affects CD4 T cells versus CD8 T cells. AMD070 (Genzyme) is an entry inhibitor specific for CXCR4. AMD-070 is a selective, reversible, small molecule CXCR4 chemokine coreceptor antagonist. AMD-070 prevents CXCR4-mediated viral entry of T cell tropic synctium-inducing HIV (associated with advanced stages of HIV 10 1 infection) by binding to transmembrane regions of the coreceptor, blocking the interaction of the CD4-gp 120 complex with the ECL2 domain of the CXCR4 coreceptor. AMD-070 is administered orally and twice daily in 200mg doses. In healthy participants, the median estimated terminal half-life ranged from 7.6 to 12.6 hours (single-dose cohorts, 50 to 400 mg) and from 15 11.2 to 15.9 hours (multiple-dose cohorts, 100 to 400 mg twice daily). Aplaviroc (INN, GW873140) (GlaxoSmithKline) is a CCR5 entry inhibitor developed for the treatment of HIV infection. Aplaviroc is administered orally at 100 mg twice daily, 200 mg twice daily or 400 mg once daily. 20 BMS-488043 (Bristol Meyers-Squibb) is a unique oral small molecule inhibitor of the attachment of human immunodeficiency virus type 1 (HIV-1) to CD4+lymphocytes. BMS-488043 is administered orally at 800 mg or 1,800 mg twice daily. BfMS-663068 (Bristol Mevers-Sqiuibb) is a HIV-1 entry inhibitor. 25 BMS-663068 is a methyl phosphate prodrug of the small molecule inhibitor BMS-626529. BMS-626529 prevents viral entry by binding to the viral envelope gp120 and interfering with virus attachment to the host CD4 receptor. BMS-663068 is administered orally in various doses and dosing schedules with total daily BMS-663068 doses ranging from 1200 mg to 2400 30 mg. For example, 400 or 800 mg twice daily; or 600 or 1200 mg once daily. Cenicriviroc (TBR-652, CVC, TAK-652) (Takeda; Tobira Therapeutics) is a HIV- 1 entry inhibitor. Cenicriviroc is a small-molecule CCR5 coreceptor antagonist that prevents viral entry by binding to a domain 27 WO 2014/189648 PCT/US2014/035354 of CCR5 and subsequently inhibiting the interaction between HIV-1 gp120 and CCR5. Cenicriviroc is also a CCR2 antagonist. Cenicriviroc is administered once daily and orally. Cenicriviroc doses range from 25 mg to 150 mg. 5 DCM205 is a small molecule based on L-chicoric acid, an integrase inhibitor. DCM205 is an entry inhibitor specific for CCR5 and CXCR4. Dolutegravir (DTG, GSK1349572, S/GSK1349572) (ViiV Healthcare) is a HIV-1 integrase strand transfer inhibitor. Dolutegravir prevents viral DNA integration into the host genome. Dolutegravir tablets are 10 administered orally and without regard to food at a dose of 50 mg once or twice daily. Enfuvirtide (T20) (Roche) is a fusion inhibitor (interferes with gp41 fusion to the cell membrane). Enfuvirtide is administered subcutaneously at 90 mg twice daily. 15 Epigallocatechin gallate (EGCG), also known as epigallocatechin-3 gallate, is the ester of epigallocatechin and gallic acid, and is a type of catechin. EGCG is the most abundant catechin in tea and is a potent antioxidant that may have therapeutic applications in the treatment of many disorders (e.g. cancer). It is found in green tea, but not black tea. 20 EGCG is administered orally once daily at 800 mg. Griffithsin is an entry inhibitor specific for CCR5 and CXCR4. Ibalizumab (Hu5A8, TMB-355, TNX-355) (TaiMed Biologics) is an entry inhibitor specific for CCR5/CXCR4. Ibalizumab allows binding to CD4 but interferes with co-receptor binding. Ibalizumab, a humanized 25 monoclonal antibody (mAb), binds to extracellular domain 2 of the CD4 receptor. The ibalizumab binding epitope is located at the interface between domains 1 and 2, opposite from the binding site for major histocompatibility complex class II molecules and gp120 attachment. Ibalizumab's post-binding conformational effects prevent viral entry and fusion. Ibalizumab can be 30 administered via IV infusion at a dose of 10 mg/kg weekly, 15 mg/kg biweekly, 800 mg every 2 weeks, or 2000 mg every 4 weeks. INCB-9471 (INCB009471) (Incyte) is a HIV-1 entry inhibitor. INCB-9471 is a selective, reversible, small-molecule CCR5 coreceptor 28 WO 2014/189648 PCT/US2014/035354 antagonist that binds to a CCR5 binding pocket that is different from what Maraviroc binds to. INCB-947 prevents viral entry by inhibiting the interaction between HIV-1 gp120 and CCR5. INCB-9471 prevents CCR5 mediated viral entry via allosteric noncompetitive mechanisms. INCB-9471 5 does not inhibit CXCR4-tropic or dual-tropic viruses. INCB-9471 is administered once daily in a dose of 100 mg or 200 mg of an immediate release formulation or 300 mg of a slow-release formulation. Plerixafor (AMD3 100) (Genzyme) is an entry inhibitor specific for CXCR4. It is administered in a dosage of 0.16 to 0.24 mg/kg for cancer 10 therapy. PRO 140 (PA14) (CytoDyn Inc) is a HIV-1 entry inhibitor. PRO-140, a humanized IgG4 monoclonal antibody (mAb), binds to hydrophilic extracellular domains on CCR5, and via competitive mechanisms it inhibits CCR5-mediated HIV-1 viral entry, without preventing CC-chemokine 15 signaling at antiviral concentrations. PRO-140 does not inhibit CXCR4 using viruses. PRO-140 can be administered via SC or IV infusion at a dose of 5 mg/kg or 10 mg/kg. Sifuvirtide is a fusion inhibitor (interferes with gp41 fusion to the cell membrane). 20 Vicriviroc is an entry inhibitor specific for CCR5. It is administered in a dosage of 20-30mg/day. Caseiro, et al. J Infect. 2012 Oct;65(4):326-35. Inhibitors of HIV Production Compounds that inhibit production of HIV include nucleoside reverse transcriptase inhibitors (NRTIs), such as tenofovir, emtricitabine, zidovudine 25 (AZT), lamivudine (3TC), abacavir, and tenofovir alafenamide fumarate; and one or more non-nucleotide reverse transcriptase inhibitors (NNRTIs), such as efavirenz, rilpivirine, and etravirine; integrase inhibitors, such as raltegravir and elvitegravir; and/or protease inhibitors, such as ritonavir, darunavir, atazanavir, lopinavir, and cobicistat. 30 HAART is used to reduce the likelihood of the virus developing resistance. The WHO has recently recommended that HAART be initiated when the CD4 T cell count declines to 500 or less/ul (IAS Conference, Kuala Lumpur, Malaysia, 2013). Data suggest that these recommendations mean a 29 WO 2014/189648 PCT/US2014/035354 substantial increase in the number of patients who will require treatment and need early HIV testing. Six classes of antiretroviral agents currently exist, as follows: nucleoside reverse transcriptase inhibitors (NRTIs), nonnucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), integrase 5 inhibitors (Ils), fusion inhibitors (FIs), chemokine receptor antagonists (CRAs). Each class targets a different step in the viral life cycle as the virus infects a CD4+ T lymphocyte or other target cell. The use of these agents in clinical practice is largely dictated by their ease or complexity of use, side 10 effect profile, efficacy based on clinical evidence, practice guidelines, and clinician preference. Resistance, adverse effects, pregnancy, and coinfection with hepatitis B virus, or hepatitis C virus present important challenges to clinicians when selecting and maintaining therapy. Compounds for HAART are well known and include, for example, a 15 combination of two or more nucleoside reverse transcriptase inhibitors (NRTIs), such as tenofovir, emtricitabine, zidovudine (AZT), lamivudine (3TC), abacavir, and tenofovir alafenamide fumarate; and one or more non nucleotide reverse transcriptase inhibitors (NNRTIs), such as efavirenz, rilpivirine, and etravirine; integrase inhibitors, such as raltegravir and 20 elvitegravir; and/or protease inhibitors, such as ritonavir, darunavir, atazanavir, lopinavir, and cobicistat. HAART medicines that are most often used to treat HIV infection include nucleoside/nucleotide reverse transcriptase inhibitors, such as tenofovir, emtricitabine, and abacavir; and non-nucleoside reverse transcriptase inhibitors (NNRTIs), such as efavirenz, 25 nevirapine, or etravirine; protease inhibitors (PIs), such as atazanavir, ritonavir, or darunavir; fusion and entry inhibitors, such as enfuvirtide and maraviroc; and integrase inhibitors, such as raltegravir. Abacavir (ZIAGEN) is a carbocyclic synthetic nucleoside analogue. Abacavir is converted by cellular enzymes to the active metabolite, carbovir 30 triphosphate (CBV-TP), an analogue of deoxyguanosine-5'-triphosphate (dGTP). CBV-TP inhibits the activity of HIV- 1 reverse transcriptase (RT) both by competing with the natural substrate dGTP and by its incorporation into viral DNA. The lack of a 3'-OH group in the incorporated nucleotide 30 WO 2014/189648 PCT/US2014/035354 analogue prevents the formation of the 5' to 3' phosphodiester linkage essential for DNA chain elongation, and therefore, the viral DNA growth is terminated. CBV-TP is a weak inhibitor of cellular DNA polymerases a, P, and 7. The recommended oral dose of abacavir (ZIAGEN) for adults is 600 5 mg daily, administered as either 300 mg twice daily or 600 mg once daily, in combination with other antiretroviral agents. ATRIPLA is a combination of Efavirenz 600 mg, emtricitabine 200 mg, and tenofovir disoproxil fumarate 300 mg. COMBIVIR (GlaxoSmithKline) is a combination of zidovudine 10 300mg + lamivudine 150mg. COMBIVIR is administered orally twice daily. COMPLERA (Gilead) is a combination of emtricitabine 200 mg + rilpivirine 25 mg + tenofovir 300 mg. COMPLERA is administered orally daily. Darunavir (PREZISTA) is a second-generation protease inhibitor (PI). Darunavir is administered orally at 600 mg twice a day or 800 mg four 15 times a day. Didanosine (VIDEX, Didex) (Bristol-Myers Squibb) is a nucleoside reverse transcriptase inhibitor. Didanosine given orally: Patient weight <60 kg: (Tablets): 125 mg orally twice daily or 250mg once daily or 167 mg (Buffered powder) twice daily. Patient weight > 60kg: (Tablets): 200mg 20 orally twice daily or 400mg orally once daily. (Buffered Powder): 250mg orally twice daily. Emtricitabine, a synthetic nucleoside analog of cytidine, is phosphorylated by cellular enzymes to form emtricitabine 5'-triphosphate. Emtricitabine 5'-triphosphate inhibits the activity of the HIV-1 reverse 25 transcriptase by competing with the natural substrate deoxycytidine 5' triphosphate and by being incorporated into nascent viral DNA which results in chain termination. Emtricitabine 5'-triphosphate is a weak inhibitor of mammalian DNA polymerase a, P, e, and mitochondrial DNA polymerase Y. The dose for adults is 200 mg orally once daily. 30 Epzicom is a combination of abacavir 600 mg + lamivudine 300 mg. Epzicom is administered orally once daily. Lamivudine (3TC) is a synthetic nucleoside analogue. Intracellularly lamivudine is phosphorylated to its active 5'-triphosphate metabolite, 31 WO 2014/189648 PCT/US2014/035354 lamivudine triphosphate (3TC-TP). The principal mode of action of 3TC-TP is inhibition of RT via DNA chain termination after incorporation of the nucleotide analogue. CBV-TP and 3TC-TP are weak inhibitors of cellular DNA polymerases a, P, and 7. The adult dose is one tablet (abacavir 600 mg 5 and lamivudine 300 mg) once daily. Etravirine is a non-nucleoside reverse transcriptase inhibitor. Etravirine is administered orally twice daily at 200 mg. Stavudine (ZERIT) is given to patients weight more than 60 kg at a dose of 40mg orally twice daily; at a dose of 30mg orally twice daily for 10 patients weighing less than 60 kg. Tenofovir (VIREAD) is given at a dose of 300 mg orally once daily with a meal. TRIZAVIR is a combination of Abacavir 300 mg, lamivudine 150 mg, and zidovudine 300 mg. TRUVADA is a combination of emtricitabine 200 mg and tenofovir 300 mg. Zalcitabine (HIVID) is administered as 0.75 mg orally three times daily. Zidovudine 15 (RETROVIR) is given orally at a dose of 300 mg twice daily or 200 mg 3 times/day. Atazanavir (Reyataz) (Bristol Myers-Squibb) is a protease inhibitor. Atazanavir is administered orally at 300 mg or 400 mg once daily. Cobicistat (GS-9350) (Gilead) is a booster of protease inhibitors that 20 inhibits cytochrome P450. Cobicistat is administered daily orally at 150 mg. Efavirenz (SUSTIVA) (Bristol-Myers Squibb) is a non-nucleoside reverse transcriptase inhibitor. Efavirenz is administered orally at 300 or 600 mg once daily. Elviegravir (EVG, GS-9137, JTK303) (Japan Tobacco Inc.; Gilead 25 Sciences; GlaxoSmithKline) is a HIV-1 integrase strand transfer inhibitor. Elvitegravir prevents viral DNA integration into the host genome. Elvitegravir is administered orally and once daily in combination with a boosting agent (CYP3A inhibitor) and with food at a dose at 85 mg or 150 mg. 30 S/GSK1265744 (GSK-1265744, GSK1265744, S-265744) (ViiV Healthcare) is a HIV-1 integrase strand transfer inhibitor. S/GSK1265744 prevents viral DNA integration into the host genome. S/GSK1265744 LAP can be administered via IM or SC injection; 800-mg loading dose given at 32 WO 2014/189648 PCT/US2014/035354 Month 1, followed by monthly maintenance doses (200 mg or 400 mg). S/GSK1265744 can be administered once daily and orally at a dose at 10, 30, or 60 mg. The U.S. National Institutes of Health recommends one of the 5 following programs for people who begin treatment for HIV: Efavirenz + tenofovir + emtricitabine; Ritonavir-boosted atazanavir + tenofovir + emtricitabine; Ritonavir-boosted darunavir + tenofovir + emtricitabine; Raltegravir + tenofovir + emtricitabine. 10 Fixed dose combinations are multiple antiretroviral drugs combined into a single pill: COMBIVIR: zidovudine and lamivudine; TRIZIVIR: abacavir, zidovudine and lamivudine; KALETRA: lopinavir and ritonavir: EPZICOM: abacavir and lamivudine; TRUVADA: tenofovir and emtricitabine; 15 ATRIPLA: efavirenz, tenofovir and emtricitabine; COMPLERA: rilpivirine, tenofovir, and emtricitabine; and STRIBILD: elvitegravir, cobicistat, tenofovir and emtricitabine. The preferred initial regimens in the United States are: tenofovir/emtricitabine (a combination of two NRTIs) 20 and efavirenz (a NNRTI); tenofovir/emtricitabine and raltegravir (an integrase inhibitor); tenofovir/emtricitabine, ritonavir, and darunavir (both latter are protease inhibitors); tenofovir/emtricitabine, ritonavir, and atazanavir (both latter are protease inhibitors). Most current HAART regimens consist of three drugs: 2 NRTIs + a PI/NNRTI/II. Initial 25 regimens use "first-line" drugs with a high efficacy and low side-effect profile. Stimulators of Reactivation of Latent HIV Compounds that stimulate reactivation of latent HIV include, for example, histone deacetylase (HDAC) inhibitors, such as vorinostat, 30 pomidepsin, panobinostat, givinostat, belinostat, valproic acid, CI-994, MS 275, BML-210, M344, NVP-LAQ824, mocetinostat, and sirtuin inhibitors; NF-iB-inducing agents, such as anti-CD3/CD28 antibodies, tumor necrosis factor alpha (TNFa), prostratin, ionomycin, bryostatin-1, and picolog; 33 WO 2014/189648 PCT/US2014/035354 histone methyltransferase (HMT) inhibitors, such as BIX-01294 and chaetocin; pro-apoptotic and cell differentiating molecules, such as JQ 1, nutlin3, disulfiram, aphidicolin, hexamethylene bisacetamide (HMBA), dactinomycin, aclarubicin, cytarabine, Wnt small molecule inhibitors, and 5 Notch inhibitors; immune modulators, such as anti-PD-I antibodies, anti CTLA-4 antibodies, anti-TRIM-3 antibodies, and BMS-936558; and CD4 T cell vaccines. Combinations of such stimulators can also be used. The effects of some stimulators on reactivation of HIV can also be enhanced by combination with other compounds. 10 Histone deacetylase inhibitors (HDAC inhibitors, HDACi) are a class of compounds that interfere with the function of histone deacetylase. HDAC inhibitors have a long history of use in psychiatry and neurology as mood stabilizers and anti-epileptics. More recently they have been investigated as treatments for cancers and inflammatory diseases. To carry out gene 15 expression, a cell must control the coiling and uncoiling of DNA around histones. This is accomplished with the assistance of histone acetylases (HAT), which acetylate the lysine residues in core histones leading to a less compact and more transcriptionally active chromatin, and, on the converse, the actions of histone deacetylases, which remove the acetyl 20 groups from the lysine residues leading to the formation of a condensed and transcriptionally silenced chromatin. Reversible modification of the terminal tails of core histones constitutes the major epigenetic mechanism for remodeling higher-order chromatin structure and controlling gene expression. HDAC inhibitors block this action and can result in 25 hyperacetylation of histones, thereby affecting gene expression. It is this effect that allows HDAC inhibitors to reactivate dormant proviruses. The "classical" HDAC inhibitors act exclusively on Class I and Class II HDACs by binding to the zinc-containing catalytic domain of the HDACs. These classical HDAC inhibitors fall into several groupings, in order of 30 decreasing potency: hydroxamic acids (or hydroxamates), such as trichostatin A, cyclic tetrapeptides (such as trapoxin B), and the depsipeptides, benzamides, 34 WO 2014/189648 PCT/US2014/035354 electrophilic ketones, and aliphatic acid compounds such as phenylbutyrate and valproic acid. "Second-generation" HDAC inhibitors include the hydroxamic acids vorinostat (SAHA), belinostat (PXD101), LAQ824, and panobinostat 5 (LBH589); and the benzamides: entinostat (MS-275), C1994, and mocetinostat (MGCDO103). The sirtuin Class III HDACs are dependent on NAD+ and are, therefore, inhibited by nicotinamide, as well derivatives of NAD, dihydrocoumarin, naphthopyranone, and 2-hydroxynaphaldehydes. Vorinostat (rINN) or suberoylanilide hydroxamic acid (SAHA) is a 10 member of a larger class of compounds that inhibit histone deacetylases (HDAC). Histone deacetylase inhibitors (HDAC inhibitors) have a broad spectrum of epigenetic activities. Vorinostat has been shown to bind to the active site of histone deacetylases and act as a chelator for Zinc ions also found in the active site of histone deacetylases Vorinostat's 15 inhibition of histone deacetylases results in the accumulation of acetylated histones and acetylated proteins, including transcription factors crucial for the expression of genes needed to induce cell differentiation. Panobinostat (LBH-589) (Novartis) is an experimental drug developed by Novartis for the treatment of various cancers. It is 20 a hydroxamic acid and acts as a non-selective histone deacetylase inhibitor (HDAC inhibitor). Panobinostat inhibits multiple histone deacetylase enzymes, a mechanism leading to apoptosis of malignant cells via multiple pathways. Panobinostat is currently undergoing a phase I/II HIV treatment trial at a dosage of 20 mg/day on days 1,3, 5 every other 25 week for a period of 8 weeks (NCT01680094). Romidepsin In the study reported by Wei et al. in PLoS Pathog 10(4): e100407 L doi: 10.137 1/journai.ppat.1004071, the ability of romidepsin (RMD),, a histone deacetylase inhibitor approved in the United States for the treatment 30 of T-cell lymphomas, was tested for its ability to activate the expression of latent HIV. In an !n vitro T-cell model of HWM latency, RMD was the most potent inducer of HIV (EC 5 0 = 4.5 nM) compared with vorinostat (VOR;
EC
5 = 3,950 nM) and other histone deacetylase (IHDAC) inhibitors in 35 WO 2014/189648 PCT/US2014/035354 clinical development including panobinostat (PNB; ECO = 10 nM). The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzvmes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive 5 combination antiretroviral therapy (cART), a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels. whereas a 24-hour treatment with I pM VOR resulted in 2-- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC 10 activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions front both niemory and resting CD4 T cell cultures. The activation of HIV expression was observed at RMID concentrations below the drug plasma levels achieved by doses used in 15 patients treated for T-cell lvmphomas. Belinostat (PXD101) is a histone deacetylase inhibitor for the treatment of hematological malignancies and solid tumors. Belinostat is a HDAC inhibitor affecting class I and II HDACs. Belinostat is administered orally and IV. IV is infused at 400 mg/m 2 per day. Belinostat is administered 20 orally at 500 mg/m 2 or 1000 mg/m 2 once or twice daily. Aclarubicin (INN) or Aclacinomycin A is an anthracycline drug that is used in the treatment of cancer. Soil bacteria Streptomyces galilaeus can produce aclarubicin. The iv dosage initially is 175-300 mg/m 2 , divided over 3-7 consecutive days, with a maintenance dose of 25-100 mg/m 2 3-4 25 weekly. Antibody b12 is a HIV-1 gp120 monoclonal antibody obtained as a Fab fragment by selection against IIIB gp120 from an antibody phage display library prepared from bone marrow of a long term asymptomatic HIV-1 seropositive donor. Antibody b12 is administered IV weekly at 1 30 mg/kg. Aphidicolin is defined as a tetracyclic diterpene antibiotic with antiviral and antimitotical properties. Aphidicolin is a reversible inhibitor of eukaryotic nuclear DNA replication. It blocks the cell cycle at early S phase. 36 WO 2014/189648 PCT/US2014/035354 It is a specific inhibitor of DNA polymerase A,D in eukaryotic cells and in some viruses and an apoptosis inducer in HeLa cells. Natural aphidicolin is a secondary metabolite of the fungus Nigrospora oryzae. Apicidin is a HDAC inhibitor affecting class I HDACs. Apicidin is 5 administered orally daily at 10 mg/kg. BIX-01294, a diazepin-quinazolinamine derivative, is a histone lysine methyltransferase (HMTase) inhibitor that modulates the epigenetic status of chromatin. BIX-01294 inhibits the G9aHMTase dependent levels of histone-3 lysine (9) methylation (H3K9me). 10 BML-210 is a histone deacetylase inhibitor. Treatment of A549 cells with BML-2 10 results in a dose-dependent increase in acetylated histone levels (EC50 = 36 pM). In HeLa extracts, the IC50 for inhibition of HDAC activity is 80 pM. BMS-936558 is an antibody against PD-1, a protein involved in 15 repressing the immune system. Blocking PD-I with an antibody activates the immune system and enables it to fight tumors. BMS-936558 is administered IV at 3 mg/kg or 10 mg/kg at two or three week intervals. Bryostatin-1 is a macrocyclic lactone isolated from the bryozoan Bugula neritina with antineoplastic activity. Bryostatin- 1 binds to and 20 inhibits the cell-signaling enzyme protein kinase C, resulting in the inhibition of tumor cell proliferation, the promotion of tumor cell differentiation, and the induction of tumor cell apoptosis. This agent may act synergistically with other chemotherapeutic agents. Bryoststin-1 is administered IV at 25 pg/m 2 or 40 pg/m 2 per day. 25 CG05/CGO6 is a HDAC inhibitor. CG05/CGO6 is administered at 0.15 pM or 0.3 pM. Chaetocin is a fungal metabolite with antimicrobial and cytostatic activity. Chaetocin is a specific inhibitor of the lysine-specific histone methyltransferase SU(VAR)3-9 (IC 50 = 0.6 pM) of Drosophila 30 melanogaster and of its human ortholog (IC 50 = 0.8 pM), and acts as a competitive inhibitor for S-adenosylmethionine. CI-994 (Tacedinaline, PD-123654, GOE-5549, Acetyldinaline) is an orally active compound with a wide spectrum of antitumor activity in 37 WO 2014/189648 PCT/US2014/035354 preclinical models, in vitro and in vivo. CI-994 is an inhibitor of Class I and II HDACs. CI-994 is administered orally daily at 500 mg/kg or 600 mg/kg. Cytarabine is a nucleoside analog that interferes with nucleic acid replication. Cytarabine is administered IV or subcutaneously at 100 mg/m 2 5 per day. Dactinomycin (actinomycin D, Cosmegen, Act-D) is the most significant member of actinomycines, which are a class of polypeptide antibiotics isolated from soil bacteria of the genus Streptomyces. Dactinomycin is administered IV daily at 15 pg/kg per day or 400 pg/m 2 per 10 day. Dihydrocoumarin is a compound found in Melilotus officinalis (sweet clover) that is commonly added to food and cosmetics. Dihydrocoumarin is an HDAC inhibitor that disrupts heterochromatic silencing. Dihydrocoumarin is administered orally. 15 Disulfiram (Antabuse) is administered orally at 250 mg or 500 mg daily. Droxinostat is a HDAC inhibitor affecting class III HDACs. Droxinostat selective inhibits HDAC3, 6, and 8, with IC50 values of 16.9 pM, 2.47 pM, and 1.46 pM, respectively, without inhibiting other HDAC 20 members (IC50 > 20 pM). Droxinostat is administered IV or IM at 20 or 40 PM. Entinostat (MS-275) is an inhibitor of HDAC (histone deacetylase) that preferentially inhibits HDACl (IC50 = 300 nM) over HDAC3 (IC50 = 8 pM). However, MS-275 does not inhibit HDAC8 (IC50 > 100 pM). 25 Entinostat is administered orally at 10 mg or 15 mg once per day. Givinostat (ITF2357) is a PAN HDAC inhibitor. Givinostat is administered orally once or twice daily at 50 mg or 100 mg (Rowinsky, et al. JCO December 1986 4 (12):1835-1844). Hexamethylene bisacetamide (HMBA) at a dose from 4.8 to 33.6 30 g/m2/d Oxamflatin is a HDAC inhibitor affecting class I HDACs. Romidepsin (Celgene) is a HDAC inhibitor that affects class I HDACs. 38 WO 2014/189648 PCT/US2014/035354 Scriptaid is a PAN HDAC inhibitor. Sodium butyrate is a HDAC inhibitor affecting class I and Ila HDACs. Suberohydroxamic acid (SBHA) is a competitive HDAC inhibitor that affects HDAC classes I and III. SBHA has been shown to cause cell 5 differentiation, cell cycle arrest, and apoptosis. SBHA inhibits HDACl with an IC50 = 0.25 pM and HDAC3 with an IC50 =0.3 pM. Trichostatin A (TsA) is a PAN HDAC inhibitor. Valproic acid (VPA) is a PAN HDAC inhibitor. Stimulator of CD8 T cell Response to HIV 10 Stimulation of an effective response by naive T cells requires three signals: TCR engagement, costimulation/IL-2, and a third signal that can be provided by IL-12. IL-2 contributes to both primary and secondary expansion in memory CD8+ T-cell differentiation. IL-2 is responsible for optimal expansion and generation of effector functions following primary 15 antigenic challenge. As the magnitude of T-cell expansion determines the numbers of memory CD8 T cells surviving after pathogen elimination, these events influence memory cell generation. Moreover, during the contraction phase of an immune response where most antigen-specific CD8 T cells disappear by apoptosis, IL-2 signals are able to rescue CD8 T cells from cell 20 death and provide a durable increase in memory CD8+ T-cell counts. At the memory stage, CD8+ T-cell frequencies can be boosted by administration of exogenous IL-2. Significantly, only CD8 T cells that have received IL-2 signals during initial priming are able to mediate efficient secondary expansion following renewed antigenic challenge. Thus, IL-2 signals during 25 different phases of an immune response are important in optimizing CD8+ T-cell functions, thereby affecting both primary and secondary responses of these T cells. IL-12 family members are an important link between innate and adaptive immunity. IL-12 drives Th1 responses by augmenting IFN-gamma 30 production, which is generally important for clearance of intracellular pathogens. IL-12 is the major cytokine influencing the level of IFN-gamma production by CD8 T cells. IL-12 promotes longer duration conjugation events between CD8 T cells and DC. IL-12 augments naive CD8 T cell 39 WO 2014/189648 PCT/US2014/035354 activation by facilitating chemokine production, thus promoting more stable cognate interactions during priming. In addition to being required for acquisition of cytolytic function, IL-12 is required for optimal IL-2 dependent proliferation and clonal expansion. IL-12 stimulates expression of 5 the IL-2R-chain (CD25) to much higher levels than are reached in response to just TCR and costimulation and/or IL-2. In addition, high CD25 expression is substantially prolonged in the presence of IL-12. As a consequence, the cells proliferate more effectively in response to low levels of IL-2. IL-2 and IL-12 both act to increase expression of both CD25 and 10 the IL-12R, thus providing positive cross-regulation of receptor expression. IL-15 in HIV-infected individuals can enhance the function, survival, and expansion of HIV-specific CD8 T cells. IL-15 is crucial for the development of naive and memory CD8 T cells and is delivered through a mechanism called transpresentation. For example, memory CD8 T cells 15 grow more dependent on IL-15 transpresentation by dendritic cells. (Sneller etal., Blood., 2011 Dec 22;118(26):6845-8. Epub 2011 Nov 8). IL-15 promotes activation and maintenance of natural killer (NK) and CD8 T effector memory (T(EM)) cells, making it a potential immunotherapeutic agent for the treatment of cancer and immunodeficiency states. IL-15 at a 20 dose of 20 pg/kg/d administered by continuous intravenous infusion for 10 days resulted in a massive (100-fold) expansion of CD8 T(EM) cells in the peripheral blood. In contrast, the administration of 20-40 pg/kg/d of IL-15 by subcutaneous injection resulted in a more modest (10-fold) expansion of CD8 T(EM) cells. NK expansion was similar in both the continuous 25 intravenous and daily subcutaneous treatment groups. IL-15 administered by continuous intravenous infusion is able to induce markedly greater expansions of CD8 T(EM) cells than the same dose administered by other routes. Formulation of Compositions 30 The compounds and compositions disclosed herein can be formulated in any useful way. Generally, the nature of the compound and the route of administration will influence the choice of formulation. 40 WO 2014/189648 PCT/US2014/035354 In one embodiment, the inhibitors of HIV infection of CD4 T cells and stimulator of reactivation of latent HIV can be administered together in a single composition. In one embodiment, the inhibitors and reactivation stimulator are administered in separate compositions. In one embodiment, 5 the first and second inhibitors of HIV infection of CD4 T cells are administered together in a single composition while the reactivation stimulator is administered in a separate composition. In one embodiment, the first inhibitor of HIV infection of CD4 T cells and the reactivation stimulator are administered together in a single composition while the second 10 inhibitor of HIV infection of CD4 T cells is administered in a separate composition. In one embodiment, the second inhibitor of HIV infection of CD4 T cells and the reactivation stimulator are administered together in a single composition while the first inhibitor of HIV infection of CD4 T cells is administered in a separate composition. 15 The dosage can be adjusted by the individual physician based on the clinical condition of the subject involved. The dose, schedule of doses and route of administration can be varied. The efficacy of administration of a particular dose of the compounds or compositions according to the methods described herein can be 20 determined by evaluating the particular aspects of the medical history, signs, symptoms, and objective laboratory tests that are known to be useful in evaluating the status of a subject in need of treatment of HIV infection or other diseases and/or conditions. These signs, symptoms, and objective laboratory tests will vary, depending upon the particular disease or condition 25 being treated or prevented, as will be known to any clinician who treats such patients or a researcher conducting experimentation in this field. For example, if, based on a comparison with an appropriate control group and/or knowledge of the normal progression of the disease in the general population or the particular individual: (1) a subject's physical condition is shown to be 30 improved (e.g., a tumor has partially or fully regressed), (2) the progression of the disease or condition is shown to be stabilized, or slowed, or reversed, or (3) the need for other medications for treating the disease or condition is 41 WO 2014/189648 PCT/US2014/035354 lessened or obviated, then a particular treatment regimen will be considered efficacious. Any of the compounds disclosed herein can be used therapeutically in combination with a pharmaceutically acceptable carrier. The compounds 5 described herein can be conveniently formulated into pharmaceutical compositions composed of one or more of the compounds in association with a pharmaceutically acceptable carrier. See, e.g., Remington's Pharmaceutical Sciences, latest edition, by E.W. Martin Mack Pub. Co., Easton, PA, which discloses typical carriers and conventional methods of 10 preparing pharmaceutical compositions that can be used in conjunction with the preparation of formulations of the compounds described herein. These most typically would be standard carriers for administration of compositions to humans. Other compounds can be administered according to standard procedures used by those skilled in the art. 15 The pharmaceutical compositions described herein can include, but are not limited to, carriers, thickeners, diluents, buffers, preservatives, surface active agents and the like in addition to the molecule of choice. Generally, oral administration is preferred and is generally available for the compounds and compositions disclosed herein. Parenteral administration, if 20 used, is generally characterized by injection. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid prior to injection, or as emulsions. Parenteral administration can use a slow release or sustained release system such that a constant dosage is maintained. 25 III. Methods of Treatment The disclosed compounds and compositions can be administered in any manner or route suitable to the compound or composition and the formulation of the compound or composition. Such techniques are well known and can be applied to the methods and compositions disclosed herein. 30 Courses of Treatment The methods and compositions can be used in courses of treatment in order to achieve clinical or other goals. Generally, the compositions can be administered over periods of time measured in weeks and months. Viral 42 WO 2014/189648 PCT/US2014/035354 infections such as HIV are generally affected by treatments over similar time periods. Reactivation of latent virus and subsequent clearing of infected cells generally requires weeks to months of treatment. In particular, reactivation and clearance of the small number of infected cells remaining 5 after the beginning and middle of treatment requires time. Reactivation of latent virus and clearance of infected cells can be conceptualized as occurring via half-life kinetics based on a rate constant. A course of treatment generally should last long enough to reduce remaining latently and/or actively infected cells to below a threshold level. Such clinical factors 10 and their assessment are well known and are discussed elsewhere herein. The schedule of treatment during a course of treatment generally can be a schedule of treatment that will keep the compounds or compositions at or above an effective, therapeutic, or useful level in the subject. However, reactivation of latent virus and clearance of infected cells generally does not 15 require that constant levels of the compounds or compositions. Rather, the levels need only be sufficient to reduce the half-life of latent virus and/or infected cells and to reduce the possibility of new cell infection and of establishment of a provirus in a cell. As with most therapies, a consistent schedule and fewer 20 administrations are preferred to irregular schedules and frequent administrations. However, as is well-known, the half-life of therapeutic compounds and compositions in subjects generally determine the frequency of administration. For the disclosed methods and compositions, the schedule of administration generally will be one or more administrations per day of 25 the compositions. In one embodiment, the disclosed compositions can be administered from 10 to 80 weeks, preferably from 10 to 40 weeks, more preferably from 10 to 30 weeks, and most preferably from 20 to 40 weeks. In a particular embodiment, the period of time can end after the earlier of 40 weeks or 4 30 weeks after HIV infected cells are no longer detected, preferably 3 weeks after HIV infected cells are no longer detected, most preferably 2 weeks after HIV infected cells are no longer detected. In another particular embodiment, the period of time can end after the earlier of 40 weeks or 4 weeks after the 43 WO 2014/189648 PCT/US2014/035354 HIV viral load becomes undetectable, preferably 3 weeks after the HIV viral load becomes undetectable, most preferably 2 weeks after the HIV viral load becomes undetectable. These compounds can be administered alone or in various 5 combinations. In one embodiment, the inhibitors of HIV infection of CD4 T cells can be administered one to four times daily, preferably one to three times daily, more preferably one or two times daily, most preferably one time daily. In one embodiment, the inhibitors of HIV infection of CD4 T cells can be administered one to four times daily, preferably one to three 10 times daily, more preferably one or two times daily, most preferably one time daily. In one embodiment, the stimulator of reactivation of latent HIV can be administered one to four times daily, preferably one to three times daily, more preferably one or two times daily, most preferably one time daily. In one embodiment, the highly active antiretroviral therapy (HAART) 15 can be administered one to four times daily, preferably one to three times daily, more preferably one or two times daily, most preferably one time daily. In one embodiment, the stimulator of CD8 T cell response to HIV can be administered one to four times daily, preferably one to three times daily, more preferably one or two times daily, most preferably one time daily. 20 Different compounds and compositions can be administered following the same schedule, a similar schedule, or different schedules. For example, courses of treatment of different compounds and compositions can be overlapping, completely overlapping, partially overlapping, or sequential. In one embodiment, the highly active antiretroviral therapy (HAART), 25 stimulator of CD8 T cell response to HIV, or both, can be administered simultaneous with, overlapping with, or following the administration of the inhibitors of HIV infection of CD4 T cells and the stimulator of reactivation of latent HIV. The methods and compositions can be used with any virally infected 30 subject. In one embodiment, the subject is receiving anti-HIV therapy. In another embodiment, the subject is naive of anti-HIV therapy or on an anti HIV therapy holiday. In a particular embodiment, the subject has not been administered any anti-HIV treatment for at least 2 weeks prior to beginning a 44 WO 2014/189648 PCT/US2014/035354 course of treatment of the methods or compositions disclosed herein, preferably for at least 3 weeks, more preferably for at least 4 weeks, most preferably for at least 5 weeks, and in one embodiment, for at least 10 weeks prior to administration of the inhibitors and reactivation stimulator. In one 5 embodiment, the subject is not administered HAART for at least the first 10 weeks of the start of a course of treatment disclosed herein, preferably for at least the first 15 weeks, more preferably for at least the first 20 weeks, most preferably for at least the first 30 weeks. In one embodiment, the inhibitors of HIV infection of CD4 T cells 10 and stimulator of reactivation of latent HIV are administered in the same course of treatment. In one embodiment, the inhibitors and reactivation stimulator are administered in different courses of treatment. In one embodiment, the first and second inhibitors of HIV infection of CD4 T cells are administered in the same course of treatment while the reactivation 15 stimulator is administered in a different course of treatment. In one embodiment, the first inhibitor of HIV infection of CD4 T cells and the reactivation stimulator are administered in the same course of treatment while the second inhibitor of HIV infection of CD4 T cells is administered in a different course of treatment. In one embodiment, the second inhibitor of 20 HIV infection of CD4 T cells and the reactivation stimulator are administered in the same course of treatment while the first inhibitor of HIV infection of CD4 T cells is administered in a different course of treatment. In one embodiment, the inhibitors and reactivation stimulator can be administered in different course of treatment from the highly active 25 antiretroviral therapy (HAART), the stimulator of CD8 T cell response to HIV, or both. Assessing Effectiveness of Treatment The effectiveness of the methods and compositions can be assessed in any suitable manner. The effect of the methods and compositions on 30 subjects in which they are used is a preferred approach. For example, the methods and courses of treatment can be assessed by testing one or more clinical factors. For assessment of treatments of HIV infections, such assessments can include, for example, CD4 T cell count, HIV viral load, and 45 WO 2014/189648 PCT/US2014/035354 HIV infected cell count. Any other assessment of the state of HIV infection can also be used. The methods and courses of treatment can also be assessed and adjusted based on assessments of the state of viral infection. For example, 5 methods and courses of treatment in the methods can be continued for one or more clinical endpoints and/or until one or more clinical factors have reached a threshold level. For example, a course of treatment can be continued until CD4 T cell count has increased to or above a threshold level, HIV viral load has decreased to or below a threshold level, and/or HIV infected cell count 10 has decreased to or below a threshold level. In particular embodiments, a course of treatment can be continued until: CD4 T cell count has increased to or above 300 per cubic millimeter, preferably 500 per cubic millimeter; until HIV viral load has decreased to or below 1000 copies per milliliter of blood, preferably 100 copies per milliliter of blood, most preferably undetectable; 15 and/or until HIV infected cell count has decreased to or below 1% of peripheral blood mononuclear cells, preferably below 0.1% of peripheral blood mononuclear cells, most preferably below 0.01% of peripheral blood mononuclear cells. The methods and compositions can result in an improved state of 20 viral infection. For example, the methods and compositions can result in an improved state of viral infection for a period of time following the end of a course of treatment. For example, CD4 T cell count can remain at or above a threshold level, HIV viral load can remain at or below a threshold level, and/or HIV infected cell count can remain at or below a threshold level for 25 and/or at 8 weeks, preferably 3 months, more preferably 6 months, and most preferably 12 months following the end of a course of treatment. In particular embodiments, CD4 T cell count can remain at or above 300 per cubic millimeter, preferably 500 per cubic millimeter; HIV viral load can remain at or below 1000 copies per milliliter of blood, preferably 100 copies 30 per milliliter of blood, most preferably undetectable; and/or HIV infected cell count can remain at or below 1% of peripheral blood mononuclear cells, preferably below 0.1% of peripheral blood mononuclear cells, most preferably below 0.01% of peripheral blood mononuclear cells for and/or at 46 WO 2014/189648 PCT/US2014/035354 8 weeks, preferably 3 months, more preferably 6 months, and most preferably 12 months following the end of a course of treatment. Clinical factors of HIV infection generally can be assessed in blood or blood components. However, in some embodiments, clinical factors can 5 be assessed in other types of samples, such as semen, vaginal secretions, gut associated lymphoid tissue (GALT), bone marrow, saliva, lymphatic fluid, lymph tissue, and cerebrospinal fluid. In many embodiments, it is expected that clinical factors will improve further beyond the end of the method or course of treatment. This is 10 expected because, for example, the clinical factors can lag the primary effects of the methods and courses of treatment. As used herein, "effective" means that the viral load of the patient remains suppressed following discontinuation of treatment for at least two weeks, one month, two months, or longer. This can be determined using any 15 of the foregoing methods, but typically is performed by measuring the amount of virus in the blood. Subject Selection and Pretreatment Any subject in need of the disclosed methods and compositions can be treated. Generally, suitable subjects are infected with HIV or have been 20 exposed to HIV. Subjects can be, for example, newly infected, infected long-term, anti-HIV therapy experienced, or naive to anti-HIV therapy. In some embodiments, the method can be performed on subjects that have not been administered any anti-HIV treatment. This state may make the subject more receptive to the method and make one or more of the compounds used 25 more effective. Subjects generally should be selected for such appropriate characteristics. Such selection and considerations are well known regarding HIV therapies. The present invention will be further understood by reference to the following non-limiting examples. Examples 2-5 demonstrate combination 30 therapies that should be effective in maintaining low viral load after cessation of drug therapy as defined above, as well as combinations that are not effective. 47 WO 2014/189648 PCT/US2014/035354 Example 1: Simulation of HIV infection Treatment Outcome and Correlation with Multiple Clinical Trials A computer model of the human immune system has been developed which can accurately simulate the effect on the immune system and clinical 5 factors of HIV infection and clinical treatments of HIV infection. The model has been validated by inputting the drugs, dosages, and dosing regimens as well as patients to be treated, for drugs in which the clinical outcomes have been described in the literature. The results obtained with the computer model, which is not based on input of the clinical trial 10 results to be validated, demonstrate that the treatments using reverse transcriptase inhibitors do not result in elimination of HIV reservoirs, as shown by a rapid rise in blood viral load following cessation of drug treatment. Seven active HIV drug trials were modeled based on patients being 15 treated, drugs, dosages, and treatment regimens. Results of actual outcomes compared to simulated results are shown in Figures 1A-1H. A. AZT: Concorde Trial This study was reported in Lancet., 1994 Apr 9;343(8902):871-81. Concorde was a double-blind randomised comparison of two policies 20 of zidovudine treatment in symptom-free individuals infected with human immunodeficiency virus (HIV): (a) immediate zidovudine from the time of randomisation (Imm); and (b) deferred zidovudine (Def) until the onset of AIDS-related complex (ARC) or AIDS (CDC group IV disease) or the development of persistently low CD4 cell counts if the clinician judged that 25 treatment was indicated. Between October, 1988, and October, 1991, 1749 HIV-infected individuals from centers in the UK, Ireland, and France were randomly allocated to zidovudine 250 mg four times daily (877 Imm) or matching placebo (872 Def). Follow-up was to death or Dec 31, 1992 (total 5419 person-years; median 3.3 years) and only 7% of the 1749 had not had a 30 full clinical assessment after July 1, 1992. Of those allocated to the Def group, 418 started zidovudine at some time during the trial, 174 (42%) of them at or after they were judged by the clinician to have developed ARC or AIDS (nearly all confirmed subsequently) and most of the remainder on the 48 WO 2014/189648 PCT/US2014/035354 basis of low CD4 cell counts. There was no statistically significant difference in clinical outcome between the two therapeutic policies. The 3-year estimated survival probabilities were 92% (95% CI 90-94%) in Imm and 94% (92-95%) in Def (log-rank p = 0.13), with no significant differences 5 overall or in subgroup analyses by CD4 cell count at baseline. Similarly, there was no significant difference in progression of HIV disease: 3-year progression rates to AIDS or death were 18% in both groups, and to ARC, AIDS, or death were 29% (Imm) and 32% (Def) (p = 0.18), although there was an indication of an early but transient clinical benefit in favour of Imm 10 in progression to ARC, AIDS, or death. However, there was a clear difference in changes in CD4 cell count over time in the two groups. Results comparing actual versus predicted results are shown in Figure 1A. AZT, a "classic" HIV drug, inhibits HIV replication in target cells by inhibiting reverse transcription of the virus. The treatment used 250mg AZT, 15 4 times daily, for 6 months. CD4T cell count was monitored. The simulation is an extremely accurate predictor of the median impact observed in Concorde trial-both the quantum and the timing, falling within the range of impact observed at 3 months into treatment using 300 mg AZT 2 times daily for 13 days (trial stopped). 20 B. AZT: Ruane Trial In 1985, 3'-azido-thymidine (AZT, zidovudine) was identified as the first nucleoside analog with activity against human immunodeficiency virus type 1 (HIV-1) (Mitsuya et al., 1985, 1987; Mitsuya & Broder, 1986), the etiologic agent of acquired immunodeficiency syndrome (Barre-Sinoussi et 25 al., 1983; Gallo et al., 1984). The initial phase 1 clinical trial of AZT at the NCI, in collaboration with the scientists from Burroughs-Wellcome and Duke University proved that the drug could be safely administered to patients with HIV, that it increased their CD4 counts, restored T cell immunity as measured by skin testing, and that it showed strong evidence of 30 clinical effectiveness, such as inducing weight gain in AIDS patients. It also showed that levels of AZT that worked in the test tube could be injected into patients in serum and suppository form, and that the drug penetrated deeply only into infected brains. This study showed that HIV-1 replication could be 49 WO 2014/189648 PCT/US2014/035354 suppressed by small molecule chemotherapeutic agents. Zidovudine was approved by the United States of America Food and Drug Administration for the treatment of HIV-1 infection in 1987. As demonstrated by Figure IB, the Ruane trial monitored (a) viral 5 load in bloodstream, as reduced by treatment, and (b) the viral load rebound after treatment ended. The simulation exhibits the same time pattern and the same magnitude of impact on the viral load as was observed during and after the treatment. The simulation shows return to untreated viral set point within 2 10 weeks of ending treatment, just as was observed in the trial results. C. 2 NRTI + NNRTI: Gallant Trial Gallant et al. (NEngl. J.Med. 2006 Jan 19; 354(3):251-60) reported on an open-label, noninferiority study involving 517 patients with HIV infection who had not previously received anti-retroviral therapy and who 15 were randomly assigned to receive either a regimen of tenofovir disoproxil fumarate (DF), emtricitabine, and efavirenz once daily (tenofovir emtricitabine group) or a regimen of fixed-dose zidovudine and lamivudine twice daily plus efavirenz once daily (zidovudine-lamivudine group). The primary end point was the proportion of patients without baseline resistance 20 to efavirenz in whom the HIV RNA level was less than 400 copies per milliliter at week 48 of the study. Through week 48, significantly more patients in the tenofovir-emtricitabine group reached and maintained the primary end point of less than 400 copies of HIV RNA per milliliter than did those in the zidovudine-lamivudine group (84 percent vs. 73 percent, 25 respectively; 95 percent confidence interval for the difference, 4 to 19 percent; P=0.002). HAART combines two nucleoside/nucleotide reverse-transcription inhibitors (NRTIs) and one non-nucleoside reverse-transcription inhibitor (NNRTI), thus reducing viral integration in the target cell. Viral load in 30 bloodstream was monitored, with treatment reducing the load to less than 2 log (<100) copies/ml, just as the model simulated, as shown in Figure IC. 50 WO 2014/189648 PCT/US2014/035354 D. 2 NRTI + Protease Inhibitor: Gemini Trial Wamsley, et al., reported in J. Acquir. Immune Defic. Syndr., 2009 Apr 1;50(4):367-74 on the results of a 48-week, randomized, open-label, 2 arm study was conducted by Hoffman-La Roche to compare the efficacy of 5 saquinavir/ritonavir BID plus emtricitabine/tenofovir QD versus lopinavir/ritonavir BID plus emtricitabine/tenofovir QD in treatment-naive HIV- 1 infected patients and to evaluate the efficacy, safety and tolerability of saquinavir/ritonavir or lopinavir/ritonavir in combination with emtricitabine/tenofovir in patients with HIV-1 infection who have received 10 no prior HIV treatment. Patients were randomized to receive either saquinavir/ritonavir 1000/100mg po bid + emtricitabine/tenofovir 200/300mg po qd, or lopinavir/ritonavir 400/100mg po bid + emtricitabine/tenofovir 200/300mg po qd. A similar proportion of participants in the SQV/r (n = 167) and LPV/r 15 (n = 170) arms had HIV-1 RNA levels <50 copies per milliliter at week 48: 64.7% vs 63.5% and estimated difference in proportion for noninferiority: 1.14%, 96% confidence interval: -9.6 to11.9 (P < 0.012), confirming that SQV/r was noninferior to LPV/r treatment. There were no significant differences in week 48 CD4 counts between arms. The rate and severity of 20 adverse events were similar in both groups. There were no significant differences in the median change from baseline between arms in plasma lipids except for triglyceride levels, which were significantly higher in the LPV/r at week 48. In treatment-naive, HIV-1-infected patients, SQV/r treatment was 25 noninferior in virologic suppression at 48 weeks to LPV/r treatment and offered a better triglyceride profile. 2 NRTIs and a protease inhibitor (reducing viral replication) constitute another current standard treatment. The impact of treatment was observed in the trial to reduce the mean viral load in bloodstream to less than 30 50 copies/ml, again, as predicted by the CHS simulation, shown in Figure ID. 51 WO 2014/189648 PCT/US2014/035354 E. Interferon Alpha: Asmuth Trial Asmuth, et al., reported in J. Infect. Dis., 2010 Jun 1;201(11):1686 96 a study of the antiviral activity of pegylated interferon alfa-2a in participants with untreated human immunodeficiency virus type 1 (HIV-1) 5 infection without chronic hepatitis C virus (HCV) infection. Untreated HIV 1-infected volunteers without HCV infection received 180 microg of pegylated interferon alfa-2a weekly for 12 weeks. Changes in plasma HIV-1 RNA load, CD4(+) T cell counts, pharmacokinetics, pharmacodynamic measurements of 2',5'-oligoadenylate synthetase (OAS) activity, and 10 induction levels of interferon-inducible genes (IFIGs) were measured. Nonparametric statistical analysis was performed. Eleven participants completed 12 weeks of therapy. The median plasma viral load decrease and change in CD4(+) T cell counts at week 12 were 0.61 log(10) copies/mL (90% confidence interval [CI], 0.20-1.18 15 log(10) copies/mL) and -44 cells/microL (90% CI, -95 to 85 cells/microL), respectively. There was no correlation between plasma viral load decreases and concurrent pegylated interferon plasma concentrations. However, participants with larger increases in OAS level exhibited greater decreases in plasma viral load at weeks 1 and 2 (r = -0.75 [90% CI, -0.93 to -0.28] and r = 20 -0.61 [90% CI, -0.87 to -0.09], respectively; estimated Spearman rank correlation). Participants with higher baseline IFIG levels had smaller week 12 decreases in plasma viral load (0.66 log(10) copies/mL [90% CI, 0.06 0.91 log(10) copies/mL]), whereas those with larger IFIG induction levels exhibited larger decreases in plasma viral load (-0.74 log(10) copies/mL 25 [90% CI, -0.93 to -0.21 log(10) copies/mL]). The results demonstrated that pegylated interferon alfa-2a was well tolerated and exhibited statistically significant anti-HIV-1 activity in HIV-1 monoinfected patients. The anti-HIV-1 effect correlated with OAS protein levels (weeks 1 and 2) and IFIG induction levels (week 12) but not with 30 pegylated interferon concentrations. The Asmuth trial tested Interferon alpha as a treatment for Hepatitis C. Interferon alpha hinders reverse transcription and replication of the virus. Figure 1E compares the actual results with the impact simulated by the 52 WO 2014/189648 PCT/US2014/035354 model. The same shape and timing was observed, with the simulation falling right in the middle of the range of results observed in the trial. F. Interleukin 7: Levy (7) Trial Levy, et al., Clin. Infect. Dis., 2012 Jul;55(2):291-300. Epub 2012 5 May 1 showed that Interleukin 7 stimulates proliferation of naive and central memory CD4 T and CD8 T cells. The Levy trial tested weekly injections of 10, 20 or 30pg/kg of IL7, for 3 weeks, on HIV-positive individuals also on standard anti-retroviral treatment. The Levy trial measured CD8 T count (cells/pl) at 4, 12, 24, 36, and 52 weeks after initiation of the IL7 treatment. 10 The increase in CD4 T and CD8 T counts were monitored. As shown by Figure 1E, the CHS simulation shows the same time pattern and magnitude of response, falling near the middle of the range of results observed in the trial, for both CD4 T and CD8 T cell counts. G. Interleukin 2: Levy (2) Trial 15 This trial was reported by Levy, et al; ILIADE Study Group. Effect of intermittent interleukin-2 therapy on CD4+ T-cell counts following antiretroviral cessation in patients with HIV. AIDS. (2012) 26(6):711-20. (NCT00071890). The Levy (2) trial showed that Interleukin 2 stimulates proliferation 20 of activated T cells. Levy tested three cycles of twice daily injections of 6 million IUs of interleukin-2 (cycles lasted five days each at weeks 0, 8 and 16) on HIV positive individuals also on standard anti-retroviral treatment (ART). Treatment was discontinued at week 24. Levy measured CD4 T cell counts every 8 weeks, during IL-2 therapy and subsequent cessation of ART 25 for a total of 72 weeks. The simulation results in Figure IG are nearly identical to the magnitude and timing of the observed change in median cell counts. 53 WO 2014/189648 PCT/US2014/035354 HIV TREATMENT MATRIX THERAPEUTIC DRUG 1 DRUG 2 DRUG 3 DURATION REGIMEN DOSAGE DOSAGE DOSAGE EXAMPLE 21 Maraviroc HDACi - Cytokine IL-15 Initiate at 26 vorinostat weeks; continue to 40 weeks EXAMPLE 32 Maraviroc HDACi - Initiate at 26 vorinostat weeks; continue to 80 weeks EXAMPLE 33 Maraviroc HDACi - HAART (two Drugs 1 and 2 vorinostat non-nucleoside for weeks 26 reverse 36; then add transcriptase drug 3 weeks inhibitors and 34-46 one protease inhibitor) EXAMPLE 54 Maraviroc Hydroxyl HDACi - Week 26 to chloroquine vorinostat week 41 sulfate ITreatment effective 2 Treatment ineffective 3 Treatment effective 5 4Treatment effective Example 2: Simulated Treatment to hinder CD4 T cell infection; force latently infected cells to produce and present HIV; and push a stronger CD8 T cell response to HIV. Method of Treatment 10 Treatment simulation was performed to target three points at the same time to hinder CD4 T cell infection; force latently infected cells to produce and present HIV; and push a stronger CD8 T cell response to HIV. In this simulation, new infections are held in check directly (as with a CCR5 54 WO 2014/189648 PCT/US2014/035354 inhibitor), latent cells are pushed out via activation (such as with a histone deacetylase inhibitors), and the CD8 T cell response is magnified (as IL-15 might accomplish), for example, by administering Maraviroc, vorinostat and IL-15 using standard dosing: Maraviroc at 600mg /2x/daily, Vornisotat at 5 400mg daily. Under the specific treatment protocol tested, new infections are slowed by hindering CD4 T cell activation, therefore reducing the target population for HIV infection. Latently infected cells are forced out of latency, and the CD8 T cell response is increased with IL-15. This treatment 10 protocol increases the attack against HIV while forcing all infected cells out in the open and at the same time holding new infections down. Results This strategy takes approximately one month to clear HIV in the simulation. Figures 2 and 3 show the results of a simulated treatment 15 protocol being initiated at week 26 and continuing to week 40. Figure 2 tracks the HIV viral load and shows that the HIV viral load in the blood approaches zero around week 36. Figure 3 tracks CD4 T cell count and shows that CD4 T cell count increases during the course of treatment (for the duration of the simulation shown). 20 These treatment protocols show that HIV viral load can be pushed to undetectable levels and indicate that longer term success in affecting latent HIV infection can be achieved with more robust reactivation of latent HIV. Example 3: Simulation of combination treatment to reduce HIV infection of CD4+T cells, drives HIV and associated antigen presentation 25 from latently infected cells, and prevents viral replication. Method of Treatment This example describes simulations using the model of a treatment strategy that uses two targets ("levers") concurrently, then adds a third, HAART, to clear the rest of the HIV. The initial targets are to reduce HIV 30 infection of CD4+T cells and to drive HIV and associated antigen presentation from latently infected cells. The first effect can be accomplished with, for example, a CCR5 inhibitor such as Maraviroc. The second effect can be accomplished with, for example, a histone deacetylase 55 WO 2014/189648 PCT/US2014/035354 inhibitors such as Vorinostat. All simulations using Vorinostat assume 400 mg, once daily and Maraviroc at 600mg/2x/daily. Results In the initial simulation runs with just the first two treatments, HIV is 5 not cleared. The results shown in Figures 4 and 5 are for the treatment protocol initiated at the start of week 26 and ended treatment at the start of week 80. Over the first ten weeks, viral copies per ml drop effectively to zero and appear to be cleared (see Figure 4). In this scenario, latently infected cells are completely eliminated in the first four weeks. However, a 10 small population of infected cells is maintained in the GALT tissue causing viral load to reappear around week 75 and return to set-point when treatment is terminated. CD4 T cell counts increase during the treatment period but then began to decline after treatment termination (Figure 5). Variations on this protocol can drive simulated viral load to zero and 15 completely eliminate the simulated virus. For example, in a protocol termed "multiple levers and HAART," the two-lever protocol can be applied from the start of week 26 through the start of week 36 and a standard HAART protocol (two non-nucleoside reverse transcriptase inhibitors and one protease inhibitor) can be added from the start of week 34 through week 46. 20 Figures 6 and 7 show the results of this protocol. In this modified protocol, viral load does not return following the termination of treatment (Figure 6). CD4 T cell counts increase during the course of treatment and continue increasing following the termination of treatment (Figure 7). Example 4: Dependency of results on using three drugs 25 Treatments The model of the human immune system can show the dependency of the results of treatment protocols on the effectiveness of the levers that are used. This example shows the dependency of HIV infected cell count on the use of three drugs, two for reduction HIV infection and one for reactivating 30 latent HIV, in a treatment protocol. In this example treatment protocol, the two drugs for reduction of HIV infection are a CCR5 inhibitor such as Maraviroc, and anti-inflammatory, such as hydroxychloquine. Reactivating latent HIV uses a histone deacetylase inhibitor such as Vorinostat in this 56 WO 2014/189648 PCT/US2014/035354 example treatment protocol. All treatments were begun at week 26 and ended after week 42. Table 1 shows the drugs used in the different treatments, with an "x" indicating use of the effective amount of the drug for that row. 5 Table 1: Reduction of HIV infection with a CCR5 inhibitor; an anti inflammatory; and a histone deacetylase inhibitor Example Compound VMC VM V VC MC M C Histone deacetylase x X x x inhibitor (vorinostat) CCR5 Inhibitor (maraviroc) x X x x Chloroquine compound x x x x (hydroxychloroquine) In the simulations, the quantity of absorbed and available drug is translated into an effect on HIV infectivity, CD4 T cell activation or 10 reactivation of latent HIV. For Maraviroc, the infection rate was calculated as a product of the concentration of viral particles with the concentration of target cells and a rate constant. The effectiveness of Maraviroc is applied via the rate constant. For hydroxychloroquine, the priming and activation of CD4 T cells was calculated as a product of the concentration of mature 15 antigen presenting dendritic cells, the concentration of HIV specific naive and central memory CD4 T cells and a rate constant. The effectiveness of hydroxychloroquine is applied via the rate constant. For Vorinostat, the reactivation of latent HIV was calculated as a product of a concentration of latently infected CD4 T cells and a rate constant. The effectiveness of 20 Vorinostat is applied via the rate constant. Results Figure 9 displays the output from a series of simulations that include a no treatment base (only line at 20 weeks), a full treatment using effective amounts of all three drugs (VMC; lowest line at week 41), and treatments 25 leaving one or two of the drugs out. The results show the full treatment (VMC) clears HIV infected cells by week 41. Only the treatment with both Vorinostat and Maraviroc (VM) shows clearance (second lowest line at week 57 WO 2014/189648 PCT/US2014/035354 41). All other treatments with only one or two of the drugs fail to clear HIV infected cells (all lines over 7.5 at week 104). In fact, all of these other treatments are essentially no better than the no treatment base. Although in these simulations hydroxychloroquine is not essential for clearance of HIV 5 infected cells, the full treatment includes it to speed and increase the reliability of clearance. Figure 10 displays the output from a series of simulations that include a no treatment base (only line at 25 weeks), a full treatment using effective amounts of all three drugs (VMC; lowest line at week 41), and treatments 10 where the effectiveness of Vorinostat is varied from the base amount. All treatments were begun at week 26 and ended after week 42. Table 2 shows the drugs used in the different treatments, with an "x" indicating use of the effective amount of the drug for that row. The number shown for Vorinostat is the rate constant used in the simulation expressed as the fold effectiveness 15 of Vorinostat. Table 2: Variable Efficacy of Vorinostat Example Compound VMC V5MC V4MC V2MC V1MC VO.5MC Histone deacetylase 3 5 4 1 0.5 inhibitor (vorinostat) 2 CCR5 Inhibitor X (maraviroc) Chloroquine compound x X x x x x (hydroxychloroquine) I I I I I I _ __ The results show the full treatment (VMC) clears HIV infected cells by week 41. Treatments with more effective Vorinostat (V5MC and V4MC; 20 second lowest lines at week 41 (the lines are overlapping)) also clear HIV infected cells, but slightly slower than the VMC treatment. This is one reason why the amount of Vorinostat used for the full treatment (VMC) was chosen. The other treatments with less than the effective amount of Vorinostat fail to clear HIV infected cells during the treatment period 25 (V2MC, V1MC, and VO.5MC; all lines over 7.5 at week 50). All of these other treatments are essentially no better than the no treatment base by week 50. 58 WO 2014/189648 PCT/US2014/035354 Figure 11 displays the output from a series of simulations that include a no treatment base (only line at 25 weeks), a full treatment using effective amounts of all three drugs (VMC; line that goes to zero at week 41), and treatments where the effectiveness of Maraviroc is varied from the base 5 amount. All treatments were begun at week 26 and ended after week 42. Table 3 shows the drugs used in the different treatments, with an "x" indicating use of the effective amount of the drug for that row. The number shown for Maraviroc is the rate constant used in the simulation expressed as the fold effectiveness of Maraviroc. 10 Table 3: Variable Efficacy of Maraviroc Example Compound VMC VM3C VM2.5C VM1.5C VMO.5C VMO.1C Histone deacetylase x X x x x x inhibitor (vorinostat) CCR5 Inhibitor -2 -3 -2.5 -1.5 -0.5 -0.1 (maraviroc) Chloroquine compound x X x x x x (hydroxychloroquine) The results show the full treatment (VMC) clears HIV infected cells by week 41. Treatments with more effective Maraviroc (VM3 C and VM2.5C; lines that go to zero at weeks 34 and 36, respectively) also clear 15 HIV infected cells. A lower effectiveness of Maraviroc was assumed for the full treatment (VMC) because of the uncertainty and variability of actual Maraviroc effectiveness. The other treatments with a less effective Maraviroc fail to clear HIV infected cells (VM1.5C, VMO.5C, and VMO. IC; all lines over 7.5 at week 50). All of these other treatments are essentially no 20 better than the no treatment base by week 50. Figure 12 displays the output from a series of simulations that include a no treatment base (only line at 25 weeks), a full treatment using effective amounts of all three drugs (VMC; line that goes to zero at week 41), and treatments where the effectiveness of hydroxychloroquine is varied from the 25 base amount. All treatments were begun at week 26 and ended after week 42. Table 4 shows the drugs used in the different treatments, with an "x" indicating use of the effective amount of the drug for that row. The number shown for hydroxychloroquine is the rate constant used in the simulation 59 WO 2014/189648 PCT/US2014/035354 expressed as the fold effectiveness of hydroxychloroquine. Table 4: Variable efficacy of Hydroxychloroquine Example Compound VMC VMCO.6 VMCO.4 VMCO.2 VMCO.05 VMCO.01 Histone deacetylase x X x x x x inhibitor (vorinostat) CCR5 Inhibitor X (maraviroc) Chloroquine compound -0.1 -0.6 -0.4 -0.2 -0.05 -0.01 (hydroxychloroquine) The results show the full treatment (VMC) clears HIV infected cells 5 by week 41. Treatments with more hydroxychloroquine (VMCO.6, VMCO.4 and VMCO.2; lines that go to zero at weeks 37, 38, and 39, respectively) also clear HIV infected cells. A lower effectiveness of hydroxychloroquine was chosen for the base treatment (VMC) because of the significant uncertainty around the actual effectiveness of hydroxychloroquine in reducing CD4 + T 10 cell activation. The treatments with less than the effective amount of hydroxychloroquine clears HIV infected cells by week 42 (VMCO.05; line that goes to zero at week 42; VMCO.01; line that goes to zero after week 43). Example 6: Clinical Protocol for Treatment of HIV Study Title: 15 A randomized study to compare the efficacy of vorinostat/hydroxychloroquine /maraviroc (VHM) in controlling HIV after treatment interruption in subjects who initiated ART during acute HIV infection (SEARCH 019) Institution Name: 20 The Thai Red Cross AIDS Research Centre, Bangkok, Thailand Primary objective To compare the proportion of patients between vorinostat/hydroxychloroquine/maraviroc (VHM) co-administered with anti retroviral therapy (ART) versus ART only arms who are able to maintain 25 HIV RNA < 50 copies/ml following treatment interruption. Secondary objectives Time to HIV RNA rebound after treatment interruption between VHM +ART versus ART only arms; 60 WO 2014/189648 PCT/US2014/035354 To compare the cell-associated HIV RNA (multispliced and unspliced) in total CD4 T cells between the VHM +ART versus ART only arms; To compare markers of HIV persistence (total and integrated HIV 5 DNA and 2-LTR circles) between the VHM + ART versus ART arms; To compare histone acetylation (H3) between the VHM +ART versus ART arms; To compare adverse events both related and unrelated to the combination of vorinostat, hydroxychloroquine and maraviroc between arms; 10 To compare the occurrence and severity of acute retroviral syndrome between arms following treatment interruption; To prospectively validate the simulation model of a functional cure for HIV- 1 infection. Hypotheses: 15 A higher proportion of patients with HIV RNA < 50 copies/ml following treatment interruption at the end of the study; Longer time to HIV RNA rebound following treatment interruption; Higher cell-associated RNA in total CD4 T cells at the end of the VHM treatment period; 20 Lower reservoir size and 2 LTR circles at the end of VHM treatment period and the end of the study; Higher H3 acetylation at the end of VHM treatment; Higher adverse events related to VHM; Similar rates of acute retroviral syndrome after treatment interruption 25 in subjects experiencing viral rebound. This will be a single-center proof-of-concept study in which recruitment and follow-up of volunteers will be done at the Thai Red Cross AIDS Research Centre (TRC-ARC). The TRC-ARC has extensive experience in executing clinical HIV treatment studies with intensive 30 specimen collections, processing, storage, international shipments and complex laboratory assays. The TRC-ARC is associated with two internationally-accredited (College of American Pathologists) clinical laboratory facilities. 61 WO 2014/189648 PCT/US2014/035354 Study Design An exploratory, open label, randomized study of Vorinostat/Hydroxychloroquine/ HAART versus HAART only. Study Participants 5 Subjects will be recruited from RV254/SEARCH 010. RV254/SEARCH 010 is an acute HIV infection cohort funded by the US Military HIV Research Program and conducted by the TRC-ARC in Bangkok, Thailand. Subjects will be co-enrolled in RV254/SEARCH 010 but will not have any blood drawn for RV254/SEARCH 010 during the 10 period of co-enrollment, so the total blood draw in this treatment interruption study represents the only blood samples that will be taken from these patients. Extensive feasibility data exists for enrolling and retaining subjects. Screening for acute HIV infection in RV254/SEARCH 010 is performed in 15 real-time by pooled nucleic acid testing and sequential enzyme immunoassay and Western blot assay. Since April 2009, the study has screened more than 55,000 samples and identified over 100 subjects with acute HIV infection. These subjects have been classified using the Fiebig and 4thG staging systems for acute HIV infection, and for this study we propose to use acutely 20 infected subjects who were staged as Fiebig III or later. Subjects aged 18-60 years old, who initiated ART during acute HIV infection stages and have maintained viral suppression (HIV RNA < 50 copies/ml) for at least the prior 28 weeks will be asked to enroll in the study. The subjects must have CD4 > 450 cells/pl, and EKG and laboratory values within acceptable ranges. 25 Subjects positive for HBsAg or with malignancy will be excluded. It is anticipated that over 85% of subjects in this study will be male as reflected by the RV254/SEARCHO1O study population. Sample Size Fifteen subjects will be enrolled randomized 2:1 to VHM (N=10) vs 30 HAART (N=5) only. Study Drug Vorinostat will be administered at 400mg orally every 24h for 3 cycles, each of 14 days with an interim rest-period of 14 days between 62 WO 2014/189648 PCT/US2014/035354 cycles. HCQ will be administered at a dose of 200mg 2X/daily during the course of vorinostat administration (10 weeks). Maraviroc will be administered at 600 mg 2X/daily on the same schedule as HCQ. This dose of maraviroc is based on its concomitant use with efavirenz. Dosing will be 5 adjusted as appropriate should the subject be on an integrase inhibitor or a protease inhibitor instead of efavirenz due to intolerance to the drug or primary NNRTI resistance. Any standard ART may be used. However, it is expected that the majority of subjects will be on 2 nucleos(t)ide reverse transcriptase inhibitors (NRTI) [emtricitabine (FTC) and tenofovir (TDF) 10 and 1 non-nucleoside reverse transcriptase inhibitor [efavirenz (EFV)] to all study participants at the following dosage: FTC, 200mg IX/day or 3TC, 300mg IX/day; TDF, 300mg IX/day and EFV, 600mg IX/day. In subjects on NNRTI-based therapy, the NNRTI will be interrupted at week 8 and the rest of the regimens will be interrupted at week 10. In 15 order to prevent NNRTI resistance, protease inhibitor replacement therapy with darunavir 900 mg IX/day with ritonavir 100 mg IX/day will be given between weeks 8 and 10 and maraviroc will be reduced from 1200 mg/day to 600 mg/day., 200mg IX/day; TDF, 300mg IX/day and EFV, 600mg IX/day. Study Duration 20 A minimum of 34 weeks and up to 80 weeks: Subjects must have been on ART for a minimum of 42 weeks prior to study entry. Note that some subjects may be enrolled from RV254/SEARCHO1O who have already fulfilled the minimum 42-week ART requirement. The VHM treatment will occur over 10 weeks and the follow-up period will be 24 weeks. 63
Claims (20)
1. A method of preventing or delaying a rise in viral load following cessation of treatment of human immunodeficiency virus (HIV) infection, the method comprising: administering to a subject infected with HIV at least three compounds collectively having the following activities: dampening of immune activation with a bias more on the CD4 T cell response relative to the CD8 T cell response, inhibition of HIV replication, stimulation of reactivation of latent HIV, and inhibition of infection of CD4 T cells by HIV, wherein the compounds are provided in dosages substantially reducing the number of cells infected with HIV or the viral load of HIV, relative to which is achieved using just the combination of ART and compounds which activate latent HIV.
2. The method of claim 1 wherein the compound that inhibits HIV replication are selected from the group consisting of nucleoside reverse transcriptase inhibitors (NRTIs) such as tenofovir, emtricitabine, zidovudine (AZT), lamivudine (3TC), abacavir, and tenofovir alafenamide fumarate; non-nucleotide reverse transcriptase inhibitors (NNRTIs) such as efavirenz, rilpivirine, and etravirine; integrase inhibitors such as raltegravir and elvitegravir; and protease inhibitors such as ritonavir, darunavir, atazanavir, lopinavir, and cobicistat.
3. The method of claim 1 wherein the compound that dampens immune activation is selected from the group consisting of anti inflammatories such as hydroxychloroquine, chloroquine, PD-I inhibitors, type I interferons, IL6, cyclo-oxygenase -2 inhibitors, peroxisome proliferator-activated receptor -c (PPAR-c) agonists such as pioglitazone and leflunomide, methotrexate, mesalazine, and anti-fibrotic agents such as angiotensin-converting enzyme (ACE) inhibitors. 45176818 64 CHSL 100 PCT
095357-00002 WO 2014/189648 PCT/US2014/035354
4. The method of claim 1, wherein the compound that inhibits HIV infection of CD4 T cells is selected from the group consisting of C-C chemokine receptor type 5 (CCR5) inhibitors, C-X-X chemokine receptor type 4 (CXCR4) inhibitors, CD4 inhibitors, gp120 inhibitors, and gp4l inhibitors. wherein the stimulator of CD8 T cell response to HIV comprises a direct stimulator of CD8 T cell response to HIV, a differential stimulator of CD8 T cell response to HIV, or both.
5. The method of claim 1 further comprising administering a stimulator of CD8 T cell response to HIV such as IL-2, IL-12, IL-15, or a combination thereof, or a composition that stimulates production in the subject of IL-2, IL-12, IL-15, or a combination thereof.
6. The method of claim 1 wherein the compound that stimulates reactivation of latent HIV is selected from the group consisting of histone deacetylase (HDAC) inhibitors such as vorinostat, romidepsin, pomidepsin, panpbinostat, givinostat, belinostat, valproic acid, CI-994, MS-275, BML 210, M344, NVP-LAQ824, mocetinostat, and sirtuin inhibitors; NF-KB inducing agents such as anti-CD3/CD28 antibodies, tumor necrosis factor alpha (TNFa), prostratin, ionomycin, bryostatin-1, and picolog; histone methyltransferase (HMT) inhibitors such as BIX-01294 and chaetocin; pro apoptotic and cell differentiating molecules such as JQ1, nutlin3, disulfiram, aphidicolin, hexamethylene bisacetamide (HMBA), dactinomycin, aclarubicin, cytarabine, Wnt small molecule inhibitors, Notch inhibitors; immune modulators such as anti-PD-I antibodies, anti-CTLA-4 antibodies, anti-TRIM-3 antibodies, and BMS-936558; and CD4 T cell vaccines.
7. The method of claim 4 wherein the compound that inhibits HIV infection of CD4 T cells is a CCR5 inhibitor selected from the group consisting of maraviroc, aplaviroc, vicriviroc, TNX-355, PRO 140, BMS 488043, plerixafor, epigallocatechin gallate, anti-gp120 antibody, such as antibody b12, griffithsin, DCM205, and Designed Ankyrin Repeat Proteins (DARPins).
8. The method of claim 7, wherein a dosage of CCR5 inhibitor equivalent to 200 to 600 mg of Maraviroc is administered per day. 65 WO 2014/189648 PCT/US2014/035354
9. The method of claim 3, wherein the compound that dampens immune activation is a chloroquine compound.
10. The method of claim 9, wherein the chloroquine compound is administered in a dosage equivalent to hydroxychloroquine in a dosage of between 150 to 400 mg administered per day.
11. The method of claim 6 wherein the compound that stimulates reactivation of latent HIV comprises a histone deacetylase inhibitor.
12. The method of claim 11, wherein the histone deacetylase inhibitor is administered in a dosage equivalent to Vorinostatin at a dosage of from 150 to 400 mg administered per day.
13. The method of claim 1, wherein: the compound that inhibits HIV infection of CD4 T cells is a CCR5 inhibitor such as Maraviroc, the compound that reduces immune activation is an anti inflammatory compound such as hydroxychloroquine, and the compound that stimulates reactivation of latent HIV is a histone deacetylase inhibitor such as Vorinostat.
14. The method of claim 13 further comprising administering HART.
15. The method of claim 14 comprising administering: Vorinostat at 400mg orally every 24 hours for 2 cycles of 14 days with an interim rest-period of 14 days between cycles; Hydroxychloroquine (H) at a dosage of 200mg twice daily during the course of vorinostat administration with no rest-period during the interim cycle; Maraviroc (M) at a dosage of 600 mg twice daily during the course of vorinostat administration with no rest-period during the interim cycle; and HAART in the form of two nucleos(t)ide reverse-transcriptase inhibitors such as emtricitabine (FTC) and tenofovir (TDF) and one non nucleoside reverse transcriptase inhibitor such as efavirenz (EFV) for the duration of the treatment at a dosage equivalent to FTC, 200mg IX/day; TDF, 300mg IX/day and EFV, 600mg IX/day. 66 WO 2014/189648 PCT/US2014/035354
16. The method of any one of claims 1-15, wherein the compounds are administered for a period of time from 10 weeks to 40 weeks or at least two weeks after HIV infected cells or HIV viral load becomes undetectable.
17. The method of claim 1, wherein the subject has not been administered any anti-HIV treatment for at least two weeks prior to administration of the inhibitors and reactivation stimulator.
18. The method of claim 1, wherein the subject has not been administered any anti-HIV treatment for at least 10 weeks prior to administration of the inhibitors and reactivation stimulator.
19. The method of any one of claims 1-18, wherein HIV infected cells or HIV viral load is not detectable at 12 months after the end of the course of treatment.
20. A composition for use in the method of any of claims 1-19. 67
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361827314P | 2013-05-24 | 2013-05-24 | |
| US61/827,314 | 2013-05-24 | ||
| US201361866865P | 2013-08-16 | 2013-08-16 | |
| US61/866,865 | 2013-08-16 | ||
| PCT/US2014/035354 WO2014189648A1 (en) | 2013-05-24 | 2014-04-24 | Methods and compositions for treatment of hiv infection |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| AU2014269042A1 true AU2014269042A1 (en) | 2015-12-03 |
Family
ID=51022404
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2014269042A Abandoned AU2014269042A1 (en) | 2013-05-24 | 2014-04-24 | Methods and compositions for treatment of HIV infection |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20160095850A1 (en) |
| EP (1) | EP3003355A1 (en) |
| JP (1) | JP2016519166A (en) |
| AU (1) | AU2014269042A1 (en) |
| CA (1) | CA2913231A1 (en) |
| WO (1) | WO2014189648A1 (en) |
Families Citing this family (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015171591A1 (en) | 2014-05-05 | 2015-11-12 | Board Of Trustees Of The University Of Arkansas | COMPOSITIONS AND METHODS FOR INHIBITING ANTIAPOPTOTIC Bcl-2 PROTEINS AS ANTI-AGING AGENTS |
| EP3177144A4 (en) | 2014-07-22 | 2018-01-24 | Bioventures, LLC. | Compositions and methods for selectively depleting senescent cells |
| CN105732592A (en) * | 2014-12-06 | 2016-07-06 | 北京瑞都医药科技有限公司 | Macrocyclic polyamine drug and preparation method thereof |
| WO2016117666A1 (en) | 2015-01-23 | 2016-07-28 | 国立大学法人鹿児島大学 | Agent for killing hiv-1-infected cell and application thereof |
| US20180161347A1 (en) * | 2015-04-20 | 2018-06-14 | Mayo Foundation For Medical Education And Research | Methods and materials for killing hiv infected cells |
| WO2016196471A1 (en) * | 2015-06-02 | 2016-12-08 | Cooper Human Systems Llc | Methods and compositions for treatment of hiv infection |
| TWI794171B (en) | 2016-05-11 | 2023-03-01 | 美商滬亞生物國際有限公司 | Combination therapies of hdac inhibitors and pd-l1 inhibitors |
| TWI808055B (en) | 2016-05-11 | 2023-07-11 | 美商滬亞生物國際有限公司 | Combination therapies of hdac inhibitors and pd-1 inhibitors |
| BR112018076449A2 (en) * | 2016-06-21 | 2019-04-09 | Tobira Therapeutics, Inc. | purified cenicriviroc and purified intermediates to make cenicriviroc |
| CN109996815A (en) * | 2016-08-13 | 2019-07-09 | 联合生物制药股份有限公司 | With CD4 antibody, in stablizing, the patient for receiving HAART treatment carries out the treatment of HIV infection and the viral of duration is alleviated |
| US11554123B2 (en) | 2017-03-01 | 2023-01-17 | Saint Joseph's University | Compositions and methods for reactivating latent HIV-1 infections |
| EP3758683A1 (en) * | 2018-03-02 | 2021-01-06 | The University Of Liverpool | Solid compositions of actives, processes for preparing same and uses of such solid compositions |
| US12084423B2 (en) | 2018-05-18 | 2024-09-10 | Bioventures, Llc | Piperlongumine analogues and uses thereof |
| EP3980072A4 (en) * | 2019-06-05 | 2023-06-14 | University of Georgia Research Foundation | COMPOSITIONS AND METHODS FOR THE PREVENTION OR TREATMENT OF PULMONARY ARTERIAL HYPERTENSION RELATED TO HUMAN IMMUNE DEFICIENCY VIRUS |
| CA3158591A1 (en) * | 2019-11-26 | 2021-06-03 | Carolyn Luscombe | Methods of treating hiv-1 infection |
| WO2021113632A1 (en) * | 2019-12-04 | 2021-06-10 | The Methodist Hospital System | A combination therapy approach to eliminate hiv infections |
| US11744866B2 (en) | 2020-03-18 | 2023-09-05 | Sabine Hazan | Methods of preventing and treating COVID-19 infection with probiotics |
| US11253534B2 (en) | 2020-03-23 | 2022-02-22 | Sabine Hazan | Method of preventing COVID-19 infection |
| US11278520B2 (en) | 2020-03-31 | 2022-03-22 | Sabine Hazan | Method of preventing COVID-19 infection |
| CN120131968B (en) * | 2025-05-14 | 2025-07-29 | 广州医科大学附属第二医院 | Application of Trim3 gene and/or expression product thereof in preparation of medicament for treating osteoporosis |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2790134A1 (en) * | 2010-02-16 | 2011-08-25 | Valorisation-Recherche, Limited Partnership | Pd-1 modulation and uses thereof for modulating hiv replication |
-
2014
- 2014-04-24 US US14/893,359 patent/US20160095850A1/en not_active Abandoned
- 2014-04-24 JP JP2016515336A patent/JP2016519166A/en active Pending
- 2014-04-24 EP EP14733398.3A patent/EP3003355A1/en not_active Withdrawn
- 2014-04-24 WO PCT/US2014/035354 patent/WO2014189648A1/en not_active Ceased
- 2014-04-24 AU AU2014269042A patent/AU2014269042A1/en not_active Abandoned
- 2014-04-24 CA CA2913231A patent/CA2913231A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| EP3003355A1 (en) | 2016-04-13 |
| US20160095850A1 (en) | 2016-04-07 |
| WO2014189648A1 (en) | 2014-11-27 |
| JP2016519166A (en) | 2016-06-30 |
| CA2913231A1 (en) | 2014-11-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20160095850A1 (en) | Methods and compositions for treatment of hiv infection | |
| WO2016196471A1 (en) | Methods and compositions for treatment of hiv infection | |
| Le Douce et al. | Achieving a cure for HIV infection: do we have reasons to be optimistic? | |
| US20150133434A1 (en) | Compositions and Methods for Reactivating Latent Immunodeficiency Virus | |
| US9943536B2 (en) | Reactivation of HIV-1 gene expression to treat persistent HIV infection | |
| WO2012051492A2 (en) | Compounds and methods for inhibiting hiv latency | |
| EP2821105A1 (en) | Ingenol derivatives in the reactivation of latent hiv | |
| US20230087766A1 (en) | Methods of reactivating latent human immunodeficiency virus and related compositions | |
| A Waheed et al. | Why do we need new drug classes for HIV treatment and prevention? | |
| US20200163924A1 (en) | Compositions and methods for reactivating latent viral infections | |
| US20180169108A1 (en) | Drug Combinations For the Treatment of HIV | |
| Katlama et al. | Barriers to a cure: new concepts in targeting and eradicating HIV-1 reservoirs | |
| US10758531B2 (en) | Regimens and compositions for treating HIV infections and AIDS | |
| JP2025128082A (en) | Regimens for treating hiv infections and aids | |
| Lu et al. | A novel selective histone deacetylase I inhibitor CC-4a activates latent HIV-1 through NF-κB pathway | |
| WO2019106427A2 (en) | Method for screening hiv-1 latency reversing agents | |
| JP2020530024A (en) | Combinations and their use and treatment | |
| Saliba et al. | Recent and future therapeutic advances in the management of HIV infection | |
| WO2025183089A1 (en) | Composition for reactivating latent hiv | |
| Acchioni et al. | Fighting HIV-1 Persistence: At the Crossroads of Shoc-K and B-Lock”. Pathogens 2021, 10, 1517 | |
| Johns et al. | Chemotherapy of human immunodeficiency virus infection | |
| JP2020529461A (en) | Combinations and their use and treatment | |
| Margolis | Eradicating the latent reservoir of HIV: finding light at the end of the tunnel | |
| HK1203872B (en) | Ingenol derivatives in the reactivation of latent hiv |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MK5 | Application lapsed section 142(2)(e) - patent request and compl. specification not accepted |