AU2013257503B2 - Method and apparatus for dehydrating veneer - Google Patents
Method and apparatus for dehydrating veneer Download PDFInfo
- Publication number
- AU2013257503B2 AU2013257503B2 AU2013257503A AU2013257503A AU2013257503B2 AU 2013257503 B2 AU2013257503 B2 AU 2013257503B2 AU 2013257503 A AU2013257503 A AU 2013257503A AU 2013257503 A AU2013257503 A AU 2013257503A AU 2013257503 B2 AU2013257503 B2 AU 2013257503B2
- Authority
- AU
- Australia
- Prior art keywords
- dehydrating
- roller
- rotatable
- rollers
- veneer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Landscapes
- Veneer Processing And Manufacture Of Plywood (AREA)
Abstract
OF DISCLOSURE Method and apparatus for dehydration of veneer sheet having therein a knot are disclosed. Veneer dehydration apparatus includes a firststationary single dehydrating roller and.a plurality of second movablesectional dehydrating rollers, which rollers are disposed one above the other so that a nip through which a veneer sheet for dehydration is moved is formed between the first and second rollers. A stop device determines the initial position of each second roller relative to thefirstroller wherea predetermined spaced distance is formed between the first and the second rollers. An urging device yieldably urges each second roller to the initial position. The second roller is movableaway from the initialposition againstthe urging force of the urging device independently of the other second rollers by a knot present in the veneer sheet and just moving through the nip between the second rollerand the first roller. Cl ------ -------- -----
Description
METHOD AND APPARATUS FOR DEHYDRATING VENEER
- 1 2013257503 15 Nov 2013
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for dehydrating wood veneer or removing water contained in veneer by mechanical squeezing and also to a method therefor.
Wood veneer has been used widely for production of various veneer laminated products such as plywood, laminated veneer lumber (LVL), etc. Multiple layers of veneer are assembled together with an adhesive into the form of a panel, a board or lumber. Prior to the assembling, sheets of green or undri ed veneer are dried to the desired level of moisture content. As a preparation for such drying, dehydration of veneer or removing part of the water contained in the veneer by mechanical compression or squeezing of the veneer across the thickness thereof has been practiced in some veneer or plywood mills.
Atypical veneer dehydrating apparatus is disclosed by U.S. Patent No. 6,505,658, The veneer dehydrating apparatus has a pair of rotatable dehydrating rollers disposed one above the other with the axes thereof extending parallel to each other and at least one of the rollers is positively driven. The paired upper and lower dehydrating rollers are spaced radially so that a nip is formed between the peripheries thereof. The nip or the. smallest spaced distance between the peripheral surfaces of the paired upper and lower rollers is smaller than, the thickness of the veneer sheet to be dehydrated so that the veneer is squeezed by the rollers and part of the water contained in the veneer Is removed.
In some veneer dehydrating apparatuses, the dehydrating rollers disposed one above the other are spaced at a spaced distance between the peripheral surfaces thereof that accounts for about 50% of the thickness of veneer sheet for dehydration. In dehydrating veneer by compression or squeezing, however, the presence of a relatively hard knot in wood veneer poses a problem.
Generally, the elastic range in the grain direction of a veneer sheet subjected to compression is much smaller than the elastic ranges in the tangential direction, i.e. the direction across the grain direction, and in the radial direction, i.e. the thickness direction. A. knot in a veneer sheet, which is originally the base of a side branch of a tree, has its grain oriented across the grain of the veneer sheet. Specifically, the grain of a knot in a veneer sheet is oriented in the thickness direction of the veneer sheet. Therefore, when a
-22013257503 22 Feb 2019 veneer sheet having therein any knot is passed between the dehydrating rollers and compressed across the thickness by such rollers, the strain of the knot easily exceeds its elastic-plastic range, with the result that the knot is broken into small pieces and a void is formed through the veneer sheet where the knot was present. A veneer having such a void or open hole is graded as low quality veneer and the veneer laminated product having therein such veneer is regarded as low quality product, accordingly. Though the spaced distance between the dehydrating rollers may be enlarged with an attempt to protect the knot against breakage, the reduced compression due to the increased spaced distance may nullify the dehydrating effect of the apparatus.
Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present disclosure as it existed before the priority date of each of the appended claims.
Throughout this specification the word comprise, or variations such as comprises or comprising, will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
SUMMARY OF THE INVENTION
Disclosed herein is a veneer dehydrating apparatus configured to compress a veneer sheet thereby to squeeze or remove part of the water contained in the veneer sheet by using two sets of dehydrating rollers disposed one above the other. The two sets of dehydrating rollers includes a stationary first dehydrating roller which is driven positively to rotate about an axis of rotation thereof and a plurality of rotatable second dehydrating rollers having respective axes of rotation extending parallel to the axis of rotation of the first dehydrating roller. The second dehydrating rollers are individually movable toward and away from the first dehydrating roller. The apparatus further includes a stop device which determines the initial setting position of each second dehydrating roller relative to the first stationary dehydrating roller where the second dehydrating roller is spaced from
-3 2013257503 22 Feb 2019 the first dehydrating roller at a predetermined distance that is smaller than the thickness of the veneer sheet for dehydration, e.g. about 30% of the original thickness of the veneer sheet. Each second dehydrating roller is yieldably urged by an urging device such as hydraulic cylinder to the above initial setting position with a force that is the largest in the range of force in which very little breakage or collapse occurs in a knot present in the veneer sheet and passing between the first and the second dehydrating rollers. Each second dehydrating roller is yieldable or movable away from the initial setting position independently of the other second dehydrating rollers when a knot that is relatively hard in the veneer sheet just moves between the first and the second dehydrating rollers.
In more detail, the present disclosure provides a veneer dehydrating apparatus, comprising: a stationary first dehydrating roller driven to rotate about an axis of rotation thereof; a plurality of rotatable second dehydrating rollers having respective axes of rotation extending parallel to the axis of rotation of the first dehydrating roller, each rotatable second dehydrating roller being movable toward and away from the first dehydrating roller independently of the other rotatable second dehydrating rollers; a plurality of stop devices, each stop device being associated with one of the plurality of rotatable second dehydrating rollers, and each stop device determining a position of its associated rotatable second dehydrating roller relative to the first dehydrating roller where its associated rotatable second dehydrating roller is spaced from the first dehydrating roller at a predetermined distance that is smaller than a thickness of a veneer sheet prior to dehydration; and a plurality of urging devices, each urging device being associated with one of the plurality of rotatable second dehydrating rollers, and each urging device urging its associated rotatable second dehydrating roller toward said first dehydrating roller while allowing its associated rotatable second dehydrating roller to move away from said first dehydrating roller independently of the other second dehydrating rollers under the influence of a knot present in a veneer sheet passing between the first dehydrating roller and the plurality of rotatable second dehydrating rollers.
The veneer dehydrating apparatus may further include a roller support device for
-42013257503 22 Feb 2019 each rotatable second dehydrating roller, each roller support device including respective pairs of support members each swingably supported by a first support block and a second support block and rotatably supporting the rotatable second dehydrating roller and swingable about a pivot. Each urging device may urge its associated rotatable second dehydrating roller by way of the roller support device and each stop device may determine the initial setting position of its associated rotatable second dehydrating roller relative to the first stationary dehydrating roller, for example, by limiting the swinging motion of the support device.
The second dehydrating rollers of the veneer dehydrating apparatus may be disposed with a space formed between any two adjacent second dehydrating rollers. The veneer dehydrating apparatus may further include a filler member which is fixedly mounted to the support device for each rotatable second dehydrating roller at a position between any two adjacent rotatable second dehydrating rollers and spaced away from the first dehydrating roller at a distance that is substantially the same as or smaller than the thickness of the veneer sheet. The filler member may be configured to fill partially the space between any two adjacent rotatable second dehydrating rollers thereby to restrict the flow of water squeezed out from the veneer sheet.
Method for dehydrating veneer according to the present disclosure includes preparing a veneer sheet with a predetermined thickness and having therein a relatively hard knot and of providing the aforementioned stationary first dehydrating roller and a plurality of rotatable second dehydrating rollers. The method further includes yieldably urging each second dehydrating roller toward the first dehydrating roller to the initial setting position where the second dehydrating roller is spaced from the first dehydrating roller at a predetermined distance that is smaller than a thickness of the veneer sheet with an urging that is largest in the range of force that causes very little breakage to a knot present in the veneer sheet, and passing the veneer sheet between the first dehydrating roller and the second dehydrating rollers.
Features and advantages of the present invention will become more apparent to those skilled in the art from the following description of various embodiments of the
-4A2013257503 15 Nov 2013 from the initial setting position independently of the other second dehydrating rollers when a knot that is relatively hard in the veneer sheet just move s between the first and the second dehydrating rollers.
The veneer dehydrating apparatus further includes a support device rotatably supporting each second dehydrating roller and swingable about, a pivot. The urging device urges the second dehydrating roller by way of the support device and the stop device determines the initial setting position, of each second dehydrating roller relative to the first stationary dehydrating roller, for example, by limiting the swinging motion of the support device.
The second dehydrating rollers of a veneer dehydrating apparatus are disposed with a pace formed between any two adjacent second dehydrating rollers. The veneer dehydrating apparatus may further include a filler member which is fixedly mounted to the support device, for each second dehydrating roller at a position between any two adjacent second dehydrating rollers and spaced away from the first dehydrating roller at a 5 distance that is substantially the same as or smaller than the thickness of the veneer sheet. The filler member is configured to fill partially the space between any two adjacent second dehydrating rollers thereby to restrict the flow of water squeezed, out from the veneer sheet.
Method for dehydrating veneer according to the present invention includes preparing a veneer sheet with a predetermined thickness and having therein a relatively hard knot and of providing the aforementioned stationary first dehydrating roller and a plurality of rotatable second dehydrating rollers. The method further includes yieldably urging each second dehydrating roller toward the first dehydrating roller to the initial setting position where the second dehydrating roller is spaced from the first dehydrating 2 5 roller at. a predetermined distance that is smaller than thickness of the veneer sheet with an urging that is largest in the range of force that causes very little breakage to a knot present in the veneer sheet, and passing the veneer sheet between the first dehydrating roller and the second dehydrating rollers.
Features and advantages of the present invention will become more apparent to those skilled in the art from the following description of various embodiments of the .4.
2013257503 15 Nov 2013 present invention, which description is made with reference to the accompanying drawings, wherein:
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic side view of a veneer dehydrating apparatus according to a first preferred embodiment of the present invention;
FIG. 2 is a side view of a lower dehydrating roller of the apparatus of FIG. 1 shown with its support member removed for clarity;
FIG. 3 is a sectional view of the lower dehydrating roller and a support shaft taken along line G~G in FIG 2 and viewed in the arrow direction;
FIG. 4 is a perspective view of a first support member for the lower dehydrating roller of FIGS. 2 and 3;
FIG. 5 is a perspective view of a second support member for the lower dehydrating roller of FIGS. 2 and 3;
FIG. 6 is a perspective view of the second support member as seen in the arrow direction of FIG. 5;
FIG. 7 is an illustrative view showing the positional relation between the lower dehydrating roller and the first and the second support members;
FIG. 8 is a fragmentary front view of the veneer dehydrating apparatus as viewed in the arrow direction X-X of FIG. 1 with a veneer sheet removed for clarity;
θ FIG.. 9 is a fragmentary rear view of the- veneer dehydrating apparatus as viewed in the arrow direction Y-Y of FIG. 1 with a veneer sheet removed for clarity;
FIG. 10 is a fragmentary plan view of the veneer dehydrating apparatus as viewed in the arrow direction M-M of FIG. 1 with a veneer sheet removed for clarity;
FIG. 11 is a partially-enlarged view of the veneer dehydrating apparatus as
5 viewed in the arrow direction P-P of FIG. 1, the line P-P being shown shifted off the Center to show arrows indicating the spaced distance L7;
FIG 12 is a schematic side view of a veneer dehydrating apparatus according to a second embo diment of the present invention;
FIG. 13 is a partially-enlarged view of the veneer dehydrating apparatus of'FIG θ 12 as viewed in the arrow direction Q-Q of FIG, 12;
2013257503 15 Nov 2013
FIG 14 is a fragmentary schematic side view of a veneer dehydrating apparatus according to a third embodiment of the present in vention;
FIG 15 is a fragmentary plan view of the veneer dehydrating apparatus of FIG 14 as seen in the arrow direction N-N of FIG. 14;
FIG. 16 is a fragmentary side view of a veneer dehydrating apparatus according to 'a. modified embodiment of the present invention;
FIG 17 is a fragmentary side view of a veneer dehydrating apparatus according to another modified embodiment of the present invention;
FIG 18 is a fragmentary side view of a veneer dehydrating apparatus according q to still another modified embodiment of the present invention;
DETAILED DESCRIPTION OF THE EMBODIMENTS
The following will describe the veneer dehydrating apparatus of the first preferred embodiment of the present invention with reference to FIGS. 1 through 11,
Referring firstly to FIG. L reference numeral 14 designates a sheet of green or j undried veneer having a thickness L4 and being moved in the arrow direction. The veneer sheet 1.4 has therein a knot 14A that is relatively hard. The veneer dehydrating apparatus includes a single upper stationary dehydrating roller 13 extending in the width direction of the veneer dehydrating apparatus that is perpendicular to the direction in which the veneer sheet 14 is moved. The upper dehydrating roller 13 is positively driven q by an electric motor (not shown) to rotate in the arrow direction.. The veneer dehydrating apparatus further includes a plurality of lower rotatable dehydrating rollers 1 (only one roller 1 being shown in FIG. 1) which are disposed just below the upper dehydrating .roller 13 with the axes of rotation thereof extending parallel to the axis of rotation, of the upper dehydrating roller 13. The lower dehydrating rollers I are individually movable relative 2 5 to the upper dehydrating roller 13 and arranged axially over a distance that substantially corresponds to tire axial length of the single stationary upper dehydrating roller 13. The lower dehydrating rollers 1 are spaced from the upper dehydrating roller 13 so that a space or a nip is formed between the peripheries of the upper roller 13 and the lower rollers 1, through which the veneer sheet 14 is passed while being compressed or squeezed in the- thickness direction for dehydration of the veneer sheet 14. Each lower
-630
2013257503 15 Nov 2013 dehydrating roller 1 is rotatably supported by a support device including a pair of first and the second support members 3,4 which are swingable about a pivot shaft 7 and urged upward by their associated hydraulic cylinders 9, so that the lower dehydrating roller .1 is movable toward and away from the first roller 13 individually by the swinging motion of 5 the support members 3, 4, as will be described in greater detail in later part hereof.
The following will describe the lower dehydrating, roller 1 and its associated support mechanism, in detail. Referring to FIGS. 2 and 3, each lower dehydrating roller 1 has a peripheral annular rim portion. 1A with a width LI and a boss portion IB with a width L3 that is smaller than LL The lower dehydrating roller 1 is rotatably mounted at 10 the boss portion 2.1B on a support shaft 2 through bearings 1C held In place in the boss portion IB by a snap ring ID. The lower dehydrating roller 1 is supported and held by and between the first support member 3 and the second support member 4 (only the second, support member 4 being shown in FIG 1). Specifically, the support shaft 2. on which the lower roller 1 is rotatably supported has at the opposite ends thereof cylindrical R projections 2A and the first and the second support members 3,4 have formed therethrough at the center thereof holes 3R, 4R and three holes 3P, 4P located around the respective center holes 3R, 4R(FIGS. 4,5 and 6), Additionally, the support shaft 2 has on the opposite ends thereof at positions radially outward of the respective cylindrical projections 2A annular projections 2C and an annular oil seal 2D is inserted in the space 20 between the cylindrical projection 2A and its corresponding annular projection 2C to prevent the ingress of water produced by veneer squeezing into the bearings 1C. The lower dehydrating, roller 1 is supported by the first and the second support members 3,4 with the cylindrical projections 2A of the support shaft 2 Inserted through the center holes 3RS 4R of the support members 3,4 and the first and the second support members 3,4 are
5 fixed to the the support shaft 2 by means of socket shoulder bolts SA inserted through the holes 3P, 4P of the support members 3,4 and screwed into their corresponding threaded holes 2B' which are formed in the support shaft 2, The state in which the first and the second support members 3,4 are combined together to hold therebetween the lower roller 1 is shown most clearly in FIG. 7.
[he first and the second support members 3,4 will be described in detail with
-730
2013257503 15 Nov 2013 reference to FIGS. 4, 5 and 6. The first support member 3 has at diagonal positions thereof mounting lugs 3 A, 3B having-.formed therethrough holes 3C, 3D, respectively. The second support members 4 also has at diagonal positions thereof mounting lugs 4A, 4B. having formed therethrough holes 4C, 4D, respectively. Though the first and the > second support members 3,4 are substantially of the same structure, the two support members 3,4 are formed symmetrically with respect to the lower roller 1 held between the support members 3,4. To be more specific, the first and the second support members 3.4 are formed in such a manner that the mounting lugs 3A, 3B of the first support member 3 and the mounting lugs 4A, 4B of the second support member 4 are formed at q such diagonal positions that the holes 3C, 3D are in alignment with the respective holes 4C, 4D when the support members 3,4 are combined together thereby to hold therebetween the lower dehydrating roller 1 as shown in FIG. 7.
Referring to FIG. 4 showing the first support member 3 in perspective view, a space 3F is formed in the first support member 3 between the outer circumferential surface of an outer annular projection 3 J and two separate inner peripheral curved surfaces 3E formed in the shape of an arc of a circle with a diameter that is greater than that of the second dehydrating roller 1 and located on horizontally opposite sides of the center hole 3R. An annular groove (not shown) is formed in the end of the outer annular projection. 3 J and an annular seal member 3K made of a urethane rubber is inserted in foe annular groove. The seal member 3K has such a thickness that a part of the- seal .member 3K extends out from the end of the outer annular projection 3 J by about 2 to 3 tnm. An inner annular projection 3L is formed inward of the outer annular projection 3 J and the aforementioned three bolt holes 3P are formed through this inner annular projection 3L of the first support member 3 at positions that correspond to the threaded holes 2B in the c support shaft 2 for receiving therein, the bolts 5 A fastening the first support member 3 to the support shaft 2. The aforementioned center hole 3R is .formed in the first support member 3 at a position inward of the inner annular projection 3L. Additionally, the first support member 3 has formed therein at positions adjacent to the four corners thereof threaded holes 3M.
ο θ As mentioned earlier, the first and the second support members 3, 4 .are of
-82013257503 15 Nov 2013 substantially the same structure and the parts or the structures of the second support member 4 that correspond to the counterparts of the first support member 3. are depicted by the same reference character with the affix ''4 In FIGS. 5 and 6, so that detailed description of the second support member 4 will be omitted. As indicated earlier, however, the. first and the second support members 3,4 differ from each other in that the two support members 3,4 are configured in a symmetrical manner with respect to the lower roller 1 when these components are assembled together as shown in FIG. 7. Additionally, as will be appreciated from comparison of FIG. 4 and FIGS. 5, 6, the second support member 4 differs from the first support member 3 in that the holes 4M formed at positions adjacent to the four corners of the second, support member 4 are plain holes having no thread. The threaded holes 3M and the plain holes 4M are formed at such four positions that permits the threaded holes 3M to be aligned with the plain holes 4M for receiving therein, socket shoulder bolts SB when the first and the second support members 3,4 are combined together.
In assembling the first and the second support members 3, 4 to the lower dehydrating roller i. firstly the support members 3, 4 are mounted on the opposite cylindrical projections 2A of the support shaft 2 with the projections 2 A inserted through the center holes 3R, 4R of the support members 3,4, respectively, and also with the holes 3C, 3D of the first support member 3 and the holes 4C, 4D of the second support member 4 set in alignment with each other, respectively. By so mounting the first and the second support members 3, 4, the threaded holes 3M and the plain holes 3P of the first support member 3 are set in alignment with their corresponding plain holes 4M and the holes 4P of the second support member 4. Assembling of the support members 3, 4 to the lower dehydrating roller 1 may be completed by tightening, the bolts 5 A in the holes 3P and 4P 2 5 and the bolts 5B in the holes 3.M and 4M, respectively. In. the present embodiment, the first and the second support members 3,4, the support shaft 2 and their associated parts cooperate to form a roller support device 5 that rotatably supports the lower dehydrating roller 1,
Referring back to FIGS . 1 and 8, reference numeral 6 designates a first support block fixed, to the frame 100 of the veneer dehydrating apparatus and configured to
-92013257503 15 Nov 2013 support the roller support device 5 at the mounting tugs 3B, 4B of the first and the second support members 3,4. The first support block 6 is of a U-shape (FIG. 8) having a pair of vertical portions 6 A, and the mounting lugs 3B, 4B of the first and the second support members 3,4 are received between these vertical portions 6 A of the first support block 6 and fixedly mounted on the pivot shaft 7. The pivot shaft 7 is fixedly inserted in the holes 3D, 4D of the mounting lugs 3'B. 4B and rotatably supported in holes 6B which are formed through the vertical portions 6A of the first support block 6. Thus, the first and the second support, members 3,4 are fixedly mounted at the mounting lugs 3 B, 4B on the rotatable· pivot shaft 7 for rotation therewith, so that the support members 3,4 are swingable about the pivot shaft 7 as indicated by double-headed arrow in FIG. 1.
Referring to FIGS. 1,9 and 10, reference numeral 8 designates a second support block fixed to the frame 100 of the veneer dehydrating apparatus and numeral 9 the aforementioned hydraulic cylinder having a piston 9D indicated by dashed line in the cylinder 9 and a piston rod 9C connected to the piston 9D. The second support block 8 is also of a U-shape having a pair of vertical portion 8A and the cylinder 9 has a lower end 9A which is received between the vertical portions 8 A, Specifically, the lower end 9A of the cylinder 9 is fixedly mounted on a shaft 10 which is rotatably supported in holes 8B which are formed through the vertical portions 8A of the second support block 8. Thus, the cylinder 9 is pivotally mounted at the lower end 9A thereof to the support block 8.
The piston rod 9C of the hydraulic cylinder 9 has at the upper end thereof a link member 11 which is also of a U-shape having a pair of vertical portions 11A, and the mounting lugs 3 A, 4 A of the first and the second support members 3,4 are received between the vertical portions 11A of the link member 11 and fixedly mounted on a rotatable shaft 12. The shaft 12 is fixedly inserted in the holes 3C, 4G in the mounting 2 5 lugs 3A, 4.A and rotatably supported in holes 1 IB which are formed through the vertical portions 11A of the link member 11. Thus, the support members 3,4 are pivotally mounted at the mounting lugs 3 A. 4A thereof to the link member 11 of the cylinder 9. That is, the support members 3,4 are pivotally connected via the link member 11 to the piston rod 9C of the hydraulic cylinder 9 for the swinging motion o f the support, members 30 3, 4 about the pivot shaft 7 in the double-headed arrow directions. In conjunction with
- 102013257503 15 Nov 2013 such swinging motion of the support members 3, 4, the lower dehydrating roller 1 is moved toward and away from the upper dehydrating roller 13.
The lower dehydrating roller 1, the support device 5 including the first and the second support members 3,4 and the support shaft 2, the hydraulic cylinder 9 and its associated parts, the pivot shafts 7 and 11 cooperate to constitute a lower dehydrating roller assembly, and a plurality of such dehydrating roller assemblies is disposed in side-by-side relation with the axes of the individual lower dehydrating rollers 1 extending parallel to the axis of the upper stationary dehydrating roller 1.3. As shown in FIGS. 8 and 9, the lower dehydrating roller assemblies are disposed, with a spaced distance between j any two adjacent assemblies to prevent any mechanical interference between the assemblies, thereby permitting the support members 3,4 of each lower dehydrating roller assembly to swing independently of the support members of the other lower dehydrating roller assemblies. The total axial length of the lower dehydrating roller assemblies including the above spaced distances is substantially corresponds to the axial length of the stationary upper dehydrating roller 13.
The piston rod 9C of the hydraulic cylinder 9 is normally placed in its fully extended position shown in FIG. 1, This position of the piston rod 9C is determined by the contact of the movable piston 9K with the inner surface of the upper end 9E of the cylinder 9 that serves, as a stop. In this position of the pi ston rod 9C, the lower dehydrating roller 1 carried by the support members 3,4 is placed at a position where a spaced distance L7 is formed between the upper dehydrating roller .13 and the lower dehydrating roller 1., as shown in FIG. 1. In the present embodiment, the spaced distance L7 corresponds to about 30% of the thickness L4 of the veneer sheet 14 for dehydration. For this purpose, various parts and components of the apparatus -such as the lower dehydrating roller 1, the first and the second support members 3,4, the support blocks 6, 8 and the hydraulic cylinder 9 and its associated parts are so dimension and disposed that the formation of the spaced distance L7 is· accomplished when the piston rod 9C Is fully extended.
The cylinder 9 which serves as an urging device yieldably urges the lower dehydrating roller 1 to the position where the spaced distance L7 is provided between the
-- 11 2013257503 15 Nov 2013 upper and the lower dehydrating rollers 13, 1, The hydraulic pressure of the cylinder 9 is set so that the force that urges the lower dehydrating roller 1 toward the upper dehydrating roller 13 fulfills the following two condition. Namely, the urging force should be firstly such that a part of the veneer sheet 14 free of a knot such as 14 A may be compressed approximately to a thickness corresponding to the spaced distance- L7, i.e. about 30% of the original thickness of the veneer sheet 14 and secondly that very little breakage occurs in a knot such as 14A present in the veneer sheet 14 and passing between the upper and the lower dehydrating rollers 13/1. In other words, the hydraulic cylinder 9 is configured to yieldably urge the lower dehydrating roller 1 toward the upper dehydrating roller 13 θ with a force that is the largest in the range of force that causes very little breakage to the knot 14A. It is noted that the actual force acting to urge the lower dehydrating roller 1 upward is approximately the difference between the hydraulic pressure exerted by the hydraulic cylinder 9 and the force acting downward due to the weight of the components such as the support members 3, 4 and the lower dehydrating roller 1. Therefore, file actual hydraulic pressure of the hydraulic cylinder 9 should be established with such, difference taken into consideration.
The following will describe the operation of the veneer dehydrating apparatus according to the above-described first preferred embodiment of the present invention.
In the initial setting of the apparatus, each lo wer dehydrating roller 1 is yieldably j urged to the position where the spaced distance L7 is formed between the upper and the lower dehydrating rollers 13, 1. As indicated above, this position is determined by the contact of the piston 9D with the inner surface of the upper end 9E of the cylinder 9 that serves as the stop. A veneer sheet such as 14 having the thickness L4, for example, of about 4 mm is fed into the apparatus between the upper and the lower dehydrating rollers - 13,1. The veneer sheet 14 is compressed or squeezed across the thickness thereof by the upper and tire lower dehydrating rollers 13, 1, as shown in FIG. 1. Referring to FIG. 11, the two lower dehydrating rollers I which are shown in fragmentary vie w on the opposite sides of the drawing and past which part of the veneer sheet 14 having no knot such, as 14A moves remain substantially unmoved, so that the spaced distance L7 between the upper and the lower dehydrating rollers 1.3, 1 remains substantially the same. Therefore,
-12 2013257503 15 Nov 2013 the part of the veneer sheet 14 free of knot is compressed to a thickness that is about 30% of the original thickness L4, with the result that part of the water contained in the veneer sheet 14 is removed. The water squeezed out from the opposite surfaces of the veneer sheet 14 flows toward the infeeding side of the apparatus, or leftward as seen in FIG. 1, from, the position where the veneer sheet 14 is compressed. It is noted that the lower dehydrating roller 1 may be moved slightly from the initial setting position against the urging force depending on. the condition of veneer sheet such as irregularity in thickness or hardness.
Referring to the lower dehydrating roller 1 at the middle in FIG. 11 past which a 10 part of the veneer sheet 14 having a knot 14A just moves, the lower dehydrating roller 1 is pushed downward, while causing the support members 3,4 to swing about the pivot shaft 7 in clockwise direction as seen in FIG, 1, against the urging force of the hydraulic cylinder 9 by a force that is due to the presence of the relatively hard knot 14 A in the veneer sheet 14. In this case, the lower dehydrating roller 1 is moved to a position where j 5 the spaced distance between the upper and the lower dehydrating rollers 13s 1 becomes approximately L4 corresponding to the original thickness of the veneer sheet 14. Because of the above-described setting of the· hydraulic pressure of the cylinder 9, the knot 1.4 A resists the urging force and passes through the nip between the upper and the lower dehydrating rollers 13,1 without being broken. It is noted that those parts of the veneer 2 o sheet 14 which are located just on the opposite sides of the knot 14 are not squeezed and, therefore, no dehy dration of the veneer occurs. After the knot 14A in the veneer sheet 14 has moved past the nip between the rollers 13,1, the lower dehydrating roller 1 returns to the squeezing position shown in FIG. 1.
As shown in FIG. '11, there exist regions of clearance 15 between the rim portions 1A of any two adjacent lower dehydrating rollers 1 where the veneer sheet 14 is clear of
5' contact with the lower dehydrating rol ler 1. Part of the water squeeze and flowing out from the veneer sheet 14 is attached to the lower surface of the veneer sheet 14 that is exposed to the clearance region 15 and moved past the dehydrating rollers 13,1 with the veneer sheet 14. Such water is absorbed by the veneer sheet 14 which is then expanded to resume its original thickness after moving past the nip between the upper and the lower .132013257503 15 Nov 2013 dehydrating rollers 13,1, According to the first embodiment, therefore, the veneer sheet 14 moved past the apparatus may have an irregularity in the degree of dehydration. Such veneer sheet, if kiln dried, will suffer from an irregularity in the moisture content, which may cause insufficient or failure in the lamination of veneer.
The second embodiment of the present invention shown in FIGS. 12 and 13 has been made for the purpose of solving the above-identified problem associated with uneven dehydration result. The second embodiment differs from the first embodiment in that a filler member is provided to the first and the second support members 3,4. Referring to the drawings, numeral 21 designates a filler member which is made of a metal block and fastened bv means of a screw 21A to a mounting 20 which is in turn fixed to the top of the first and the second support members 3 ,4. The filler member 21 is positioned between the rim portions 1A of any two adjacent lower dehydrating rollers 1 as shown in FIG. 13 and shaped such that its top surface adjacent to the nip between the upper and the lower dehydrating rollers 13,1 is curved upwardly toward the position where the spaced distance between, the rollers 13,1 is the smallest and also that the highest top surface of the filler member 21 is formed flat extending for about 30 mm in the veneer feeding direction. As shown in FIG. 13, the spaced distance Lg between this flat surface and the upper dehydrating roller 13 is substantially the same as or slightly smaller than the distance corresponding to the thickness L4 of the veneer sheet 14. 'The rest of the structure of the veneer dehydrating apparatus Is substantially the same as that of the first preferred embodiment of FIG. 1 and, therefore, the descripti on thereof will be omitted.
The filler members 21 is placed in contact at the flat top surface thereof with the part of the l ower surface of the veneer sheet 14 which is present in the region 15, thus the c region 15 being partially filled with the filler members 21. Therefore, the amount of the water attached to the lower surface of the veneer sheet 14 and carried therewith is restricted by the filler member 21, so that the amount of water absorbed by the veneer sheet 14 is .reduced. As indicated earlier, the filler member 21 may be formed in such a way that die spaced distance LB between the flat surface of the filler member 21 and the q. q upper dehydrating roller 13 is slightly smaller than the dimension L4. In this case, the
142013257503 15 Nov 2013 part of the veneer sheet .14 between the rim portions IA of any two adjacent lower dehydrating rollers 1 may be subjected to some compression, so that some amount of water may be squeezed out from the part of the veneer sheet 14 in the region 15. The filler member 21 which is made of a metal block, not in the form of a roller, may cause harmfol friction, with the veneer sheet. 14 depending on its magnitude. In order to forestall such trouble, care should be taken in setting of the spaced distance between the .flat top surface of the filler member 21 and the upper dehydrating roller 13.
The following will describe the third embodiment according to the present invention with reference to FIGS . 14 and 15. The third embodiment differs from the first preferred embodiment in that the support block 8, the hydraulic cylinder 9 and the link member 11 which have been described with reference to the first preferred embodiment are disposed on the opposite side of the dehydrating rollers 1, 13 as seen in FIG. 1, or located upstream of the dehydrating roller 1,13 with respect to the .moving direction of the veneer sheet 14. Numerals 31,32 designate the first and the second support members for the lower dehydrating roller 1 corresponding to their counterpart support members 3, 4 in the first embodiment. The first and the second support members 31,32 are pivotally mounted on a pivot shaft 30 which is in turn fixedly mounted to a support block 33 fixed to the frame '100 of the veneer dehydrating apparatus. The link member 1.1 is pivotally mounted on the shaft 12 which is. fixedly connected to the mounting lugs 31 A, 32A of the support members 31., 32. As is apparent from the drawing, since the support members 31, 32 are different in shape from the counterpart members 3, 4 of the first embodiment, the fastening bolts 5B are located at different positions. It is noted that, the parts designated by numerals 3.4, 35,36 in FIG. 14 are not used in the apparatus of this third embodiment, but they are used in a modified embodiment which will be described in later part hereof.
The hydraulic cylinder 9 in the embodiment of FIG. 14 differs from the cylinder used in the first em bodiment in that the hydraulic pressure of the cylinder 9 acts downward so as to move the piston rod 9C in the retracting direction thereby to urge the lower dehydrating roller 1 upward to the initial setting position, where the spaced distance L7 is formed between the first and the second dehydrating rollers 13, 1. This initial setting position of the lower dehydrating roller 1 is determined by the contact of the
2013257503 15 Nov 2013 movable link member 11 with the top end surface 9E of the cylinder 9, which serves as the stop. It is noted that in FIG. 14 the piston rod 9C is shown to be in an extended position in the initial setting position of the lower dehydrating, roller 1 for the sake of showing the piston rod 9C of the hydraulic cylinder 9.
In the third embodiment, the lower dehydrating roller 1 is movable away from the first dehydrating roller 13 by causing the support members 31,41 to swing about the pivot shaft 30 against the urging force due to the presence of any knot such as 14 A moving past the nip between the upper and the lower dehydrating rollers 13,1.
In the above first to third embodiments, the diameter of the upper dehydrating roller 13 may be- between 200 mm and 500 mm and the width LI of the rim portion 1A of the lower dehydrating roller 1 between 30 mm to 80 nun.
The above-described embodiments may be modified in various way without departing from the spirit of the present invention, as exemplified below.
In the above-described embodiments, the initial setting position of the lower dehydrating roller 1 where the spaced distance L7 is formed between the upper and the lower rollers 13,1 is accomplished by the contact of the piston 9D with the inner surface of the upper end 9.E of the cylinder 9 or by the contact of the link member 11 with the top end surface 9E of the cylinder 9.
Referring again to FIG. 14 which has been used for describing the third embodiment, numeral 34 designates a mounting block 34 fixed to the frame 100 of the veneer dehydrating apparatus and having formed therein an internally threaded hole (not shown).. An adjusting bolt 35 having a head contactable with the bottom of the first and the second support members 31,41 is screwed in the threaded hole in the mounting block 34. Numeral 36 designates a lock bolt.. In this case, the initial setting position of the lower dehydrating roller 1 mav be ad justed by turning the adjusting bolt 35. After the
5 desired position has been obtained by the adjustment, the adjusting bolt 35 is fixed in place by tightening the lock bolt 36. In this case, the adjusting bolt 35 serves as the adjustable stop. The provision of such adjustable stop device makes possible easy adjustment and changing of the spaced distance between the upper and the lower dehydrating rollers 13, 1.
-162013257503 15 Nov 2013
Referring to FIG. 16, the modification shown in the drawing differs from the embodiment of FIG. 1.4 in that a tension, spring 54 is used instead of the hydraulic cylinder 9. The tension spring 54 is hooked at the upper end thereof on a bolt 51 screwed in the mounting lug 32A. of the second support member 32 and at the lower end thereof on a bolt 5 53 screwed in a support block 52 fixed to the frame 100 of the veneer dehydrating apparatus, so that the bolt 51 and hence the. mounting lug 32 A of the support' member 32 is urged downward, while the lower'dehydrating roller 1 is urged upward. For the initial setting position of the lower dehydrating roller 1, the length to which the tension spring 54 is extended may be determined so that the two conditions mentioned earlier with reference to the pressure setting of the hydraulic cylinder 9 in the first embodiment may be fulfilled. As in the case of the first embodiment using the hydraulic cylinder 9, that the lower dehydrating roller 1 is yieldably urged to a position where the lower dehydrating roller 1 is spaced away from the upper dehydrating roller 13 with a force that is largest in the range of force that causes very little breakage to a knot present in the veneer sheet. As 15 in the case of embodiment described with reference to FIG. 14, the initial setting position of the lower dehydrating roller 1 may be adjusted by turning the adjusting bolt 35. In the case of using a tension spring as the urging device, it is to be noted that the urging force of the spring 54 is increased when it is extended by the downward movement of the lower dehydrating roller 1 due to the passage of a veneer sheet between the dehydrating rollers
13,1, with the result that the urging force of the spring 54 may exceed the largest force in
2. 0 the range of force that causes very little breakage to a knot present in the veneer sheet.
Therefore, the extended length of the spring 54 for the initial setting should be slightly smaller, e.g. by half the thickness of the veneer sheet 14, than the first-mentioned length.
Referring to FIG. 17 showing still another modification, a counterweight 9 r mechanism is used as the urging device in place of the hydraulic cylinder 9 of the first embodiment of FIG. 1. In the drawing, numeral 61 designates a weight member and 58 a support block which is fixed to the frame 100 of the veneer dehydrating apparatus. The support block 58 has in the upper pari thereof two guide rollers 59 disposed at the same level in the support block 58 and rotatably supported by bearings 60. A stainless steel wire 62 is connected between the top of the weight member 61 and holes 57 which are
2013257503 15 Nov 2013 formed through lugs 56 of the first, and the second support members 3,4 by way of the two guide rollers 59, The weight of the weight member 61 causes the first and the second support members 3,4 to tend to swing in counterclockwise direction as seen in the drawing about the pivot shaft 7, thereby yieldably urging the lower dehydrating roller 1 toward the upper dehydrating roller 13 , Numeral 63 designates a stop block, that '
determines the lowermost· position of the weight member 61 where the spaced distance L7 is formed between the upper and the lower dehydrating rollers 13,1.
The force that urges the lower dehydrating roller 1. upward depends on the weight of the weight m ember 61. Specifically, the actual urging force acting on the lower θ dehydrating roller 1 upward is approximately the difference between the force acting upward due to the weight of the weight member 61 on one hand and. the force acting downward due to tire weight of components such as the support members 3 , 4 and the lower dehydrating roller 1. Therefore, the desired urging force may be determined through adjustments by changing tire weight of the weight member 61,
According to the present invention, the positions of the individually movable dehydrating rollers 1 supported by the first and the second support members 3,4 and the single stationary dehydrating roller 13 which are disposed one above the other may be reversed. As shown in Fig, 18. the dehydrating rollers 1 may be disposed above the stationary single dehydrating roller 13. In this case, the actual urging force acting on the q upper dehydrating roller 1 is approximately the sum of the force exerted by the hydraulic cylinder 9 and the force due to the weight of components such as the upper dehydrating roller 1 and its support members 3,4. Therefore, the hydraulic pressure of the cylinder 9 for urging the upper· dehydrating roller 1 should be established with such matter taken into account.
In the above-described embodiments, the single stationary roller 13 and the
5 plural dehydrating rollers 13, 1 have been shown and illustrated to have plain cylindrical surface. According to the present invention, the dehydrating rollers 13 and/or 1 may be formed on the- periphery thereof with a number of metal projections of any desired shape for increasing the frictional force between the dehydrating roller and the veneer sheet thereby to increase the force to move the veneer sheet, between the dehydrating .rollersl.3,
- 182013257503 15 Nov 2013
1. A knot in veneer having a high compression Young's modulus may be broken when subjected to compression or squeezing by the dehydrating roller having such projections. In order to forestall such breakage of a knot, it may be so arranged that at least either one of the single stationary dehydrating roll and the plural movable dehydrating rolls are clad on the periphery thereof with a layer of clastic material such as rubber with a predetermined thickness.
Although the invention has been described in conjunction with some specific embodiments and modification, it is evident to those skilled in the art that present invention, may be practiced in various alternatives and variations without departing from 10 the spirit and the scope of the present invention.
Claims (10)
- THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:-1. A veneer dehydrating apparatus, comprising:a stationary first dehydrating roller driven to rotate about an axis of rotation thereof;a plurality of rotatable second dehydrating rollers having respective axes of rotation extending parallel to the axis of rotation of the first dehydrating roller, each rotatable second dehydrating roller being movable toward and away from the first dehydrating roller independently of the other rotatable second dehydrating rollers;a plurality of stop devices, each stop device being associated with one of the plurality of rotatable second dehydrating rollers, and each stop device determining a position of its associated rotatable second dehydrating roller relative to the first dehydrating roller where its associated rotatable second dehydrating roller is spaced from the first dehydrating roller at a predetermined distance that is smaller than a thickness of a veneer sheet prior to dehydration; and a plurality of urging devices, each urging device being associated with one of the plurality of rotatable second dehydrating rollers, and each urging device urging its associated rotatable second dehydrating roller toward said first dehydrating roller while allowing its associated rotatable second dehydrating roller to move away from said first dehydrating roller independently of the other second dehydrating rollers under the influence of a knot present in a veneer sheet passing between the first dehydrating roller and the plurality of rotatable second dehydrating rollers.
- 2. The apparatus according to claim 1, wherein each urging device includes one of (a) hydraulic cylinder/piston mechanism, (b) tension springs and (c) weights.
- 3. The apparatus according to claim 1 or claim 2, further comprising a roller support device for each rotatable second dehydrating roller, each roller support device including respective pairs of support members each swingably supported by a first support block and a second support block and rotatably supporting the rotatable second dehydrating roller and swingable about a pivot, each urging device urging its associated rotatable second dehydrating roller by way of the roller support device, each stop device limiting a swinging motion of the roller support device of its associated rotatable second dehydrating roller thereby to determine the position of the rotatable second dehydrating roller.2013257503 22 Feb 2019
- 4. The apparatus according to claim 3, wherein the roller support device includes at least two combined support members, said support members having the rotatable second dehydrating roller interposed therebetween.
- 5. The apparatus according to any one of claims 1 to 4, wherein each stop device includes an adjustable stop device.
- 6. The apparatus according to any one of claims 1 to 5, wherein each urging device includes a hydraulic cylinder/piston mechanism provided on the second support block, each rotatable second dehydrating roller being supported by its roller support device including said pair of support members, said roller support device being rotatably mounted on said first block.
- 7. The apparatus according to any one of claims 1 to 5, wherein said roller support device includes said pair of support members, said respective rotatable second dehydrating roller being supported by said pair of support members, the urging device including a tension spring hooked between said roller support device including said pair of support members and said first support block.
- 8. The apparatus according to any one of claims 1 to 5, wherein each urging device includes weights, said weights being supported by way of guide rollers provided on the second support block and connected to the support members.
- 9. The apparatus according to any one of claims 1 to 8, wherein the rotatable second dehydrating rollers are disposed with a space formed between any two adjacent second dehydrating rollers, the apparatus further comprising a filler member fixedly mounted to the roller support device at a position that is between any two adjacent rotatable second dehydrating rollers and spaced away from the first dehydrating roller at a distance that is substantially the same as or smaller than the thickness of the veneer sheet and configured to fill partially said space between any two adjacent rotatable second dehydrating rollers.
- 10. Method for dehydrating veneer, comprising:preparing a veneer sheet with a predetermined thickness and having therein a knot;providing a stationary first dehydrating roller driven to rotate about an axis of rotation thereof and a plurality of rotatable second dehydrating rollers having respective axes of rotation extending parallel to the axis of rotation of the first dehydrating roller and-21 2013257503 22 Feb 2019 individually movable toward and away from the first dehydrating roller;yieldably urging each second dehydrating roller toward the first dehydrating roller to a position where the second dehydrating roller is spaced from the first dehydrating roller at a predetermined distance that is smaller than a thickness of the veneer sheet, said urging being performed with a force that is largest in the range of force that causes very little breakage to a knot present in the veneer sheet;passing the veneer sheet between the first dehydrating roller and the second dehydrating rollers.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2013257503A AU2013257503B2 (en) | 2013-11-15 | 2013-11-15 | Method and apparatus for dehydrating veneer |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2013257503A AU2013257503B2 (en) | 2013-11-15 | 2013-11-15 | Method and apparatus for dehydrating veneer |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| AU2013257503A1 AU2013257503A1 (en) | 2015-06-04 |
| AU2013257503B2 true AU2013257503B2 (en) | 2019-04-04 |
Family
ID=53266661
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2013257503A Ceased AU2013257503B2 (en) | 2013-11-15 | 2013-11-15 | Method and apparatus for dehydrating veneer |
Country Status (1)
| Country | Link |
|---|---|
| AU (1) | AU2013257503B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112414073A (en) * | 2020-11-24 | 2021-02-26 | 浙江德清蓝雅晶体纤维有限公司 | Ceramic fiber product drying device |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5471921A (en) * | 1991-02-04 | 1995-12-05 | Kubat; Josef | Apparatus for dewatering and lossening raw biopulp |
| JP2013220624A (en) * | 2012-04-18 | 2013-10-28 | Meinan Mach Works Inc | Dehydration method for veneer |
-
2013
- 2013-11-15 AU AU2013257503A patent/AU2013257503B2/en not_active Ceased
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5471921A (en) * | 1991-02-04 | 1995-12-05 | Kubat; Josef | Apparatus for dewatering and lossening raw biopulp |
| JP2013220624A (en) * | 2012-04-18 | 2013-10-28 | Meinan Mach Works Inc | Dehydration method for veneer |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112414073A (en) * | 2020-11-24 | 2021-02-26 | 浙江德清蓝雅晶体纤维有限公司 | Ceramic fiber product drying device |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2013257503A1 (en) | 2015-06-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2873500B1 (en) | Method and apparatus for dehydrating veneer | |
| EP3000504B1 (en) | Running board for running machine and running machine using same | |
| CN103662915B (en) | A kind of cloth wrap-up | |
| CN202440167U (en) | Unreeling spring roll mechanism of dividing and cutting machine | |
| CN104444514A (en) | Die-cutting machine coating roller tension adjustment device | |
| AU2013257503B2 (en) | Method and apparatus for dehydrating veneer | |
| CN104661756A (en) | Improved Double Roller Sugarcane Press | |
| CN106282428B (en) | Leather wringing device and leather wringing method | |
| CN205630857U (en) | Ejection of compact clamping device of log frame sawing machine | |
| CN206295991U (en) | A kind of pneumatic rubber roll husker | |
| CN101658862A (en) | Sheet rolling mill with hydraulic screwdown on support roll | |
| US3512727A (en) | Pressure roll beam in a longitudinal sheet cutter | |
| CN102910477B (en) | The flatten mechanism of material strip | |
| CN201817132U (en) | Tension balancing roller device | |
| RU2478039C2 (en) | Roller to process paper roll material | |
| CN110712425A (en) | Flattening device on label printing machine | |
| US2675985A (en) | Shock absorbing support | |
| CN208761773U (en) | A kind of coil stock film conveying mechanism | |
| CN205768248U (en) | A kind of embossing machine reducing sheet material abrasion | |
| CN202804040U (en) | Hot rolling spring machine elastic tail pressing device | |
| JP5496267B2 (en) | Veneer sheet material transfer device | |
| CN203514115U (en) | Device for restraining vibration in equipment of fiber web machine | |
| CN206912093U (en) | A kind of panel beating fixed mechanism | |
| CN214496997U (en) | Calender | |
| CN113859643A (en) | Packaging film roll fixing device for packaging machine |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| DA2 | Applications for amendment section 104 |
Free format text: THE NATURE OF THE AMENDMENT IS: AMEND THE NAME OF THE INVENTOR TO READ NOZAWA, YOSHIOKI AND SAKAMOTO, SHIN-ICHI |
|
| FGA | Letters patent sealed or granted (standard patent) | ||
| MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |