[go: up one dir, main page]

AU2012100165A4 - Processes for extracting aluminum and iron from aluminous ores - Google Patents

Processes for extracting aluminum and iron from aluminous ores Download PDF

Info

Publication number
AU2012100165A4
AU2012100165A4 AU2012100165A AU2012100165A AU2012100165A4 AU 2012100165 A4 AU2012100165 A4 AU 2012100165A4 AU 2012100165 A AU2012100165 A AU 2012100165A AU 2012100165 A AU2012100165 A AU 2012100165A AU 2012100165 A4 AU2012100165 A4 AU 2012100165A4
Authority
AU
Australia
Prior art keywords
aluminum
composition
iron ions
ions
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
AU2012100165A
Inventor
Serge Alex
Fabienne Biasotto
Richard Boudreault
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orbite Technologies Inc
Original Assignee
Orbite Aluminae Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2008253545A external-priority patent/AU2008253545B2/en
Application filed by Orbite Aluminae Inc filed Critical Orbite Aluminae Inc
Priority to AU2012100165A priority Critical patent/AU2012100165A4/en
Application granted granted Critical
Publication of AU2012100165A4 publication Critical patent/AU2012100165A4/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

WO 2008/141423 PCT/CA2008/000877 PROCESSES FOR EXTRACTING ALUMINIUM AND IRON FROM ALUMINOUS ORES TECHNICAL FIELD [0001] The present invention relates to improvements in the field of chemistry applied to extraction of aluminum from aluminous ores. For example, such processes are useful for extracting aluminum from aluminous ores comprising various types of metals such as Fe, K, Mg, Na, Ca, Mn, Ba, Zn, Li, Sr, V, Ni, Cr, Pb, Cu, Co, Sb, As, B, Sn, Be, Mo, or mixtures thereof. BACKGROUND OF THE INVENTION [0002] More than 96 % of the alumina which is produced worldwide is obtained from bauxite, which is a mineral that is particularly rich in alumina (40 - 60 %) and whose main suppliers are from Jamaica, Australia, Brazil, Africa and Russia. In certain areas of the world there are large quantities of aluminous ores, which are aluminosilicates (for example argillite, nepheline, etc.) that are relatively rich in alumina (20 - 28 %). However such areas have received little attention up to now because the production costs for extracting aluminum from such ores remained too high. In these aluminous materials, and contrary to bauxite, aluminum oxide is associated with silicated or sulfated phases. Thus, the Bayer process cannot be used, which means that alternative treatments for the production of alumina must be used or developed. Various processes have been proposed so far in order to extract aluminum from such aluminous ores comprising aluminosilicates but there is still room for improvement or for alternative routes. SUMMARY OF THE INVENTION [0003] According to one aspect, there is provided a process for extracting aluminum ions from a mixture comprising iron ions and the aluminum ions. The process comprises recovering the aluminum ions from a composition comprising the aluminum ions, the iron ions, an organic solvent and an extracting agent adapted to form an organometallic complex substantially 1 WO 2008/141423 PCT/CA2008/000877 selectively with the iron ions or with the aluminum ions which is soluble in the organic solvent. [0004] According to one embodiment, the composition can comprise an acidic aqueous phase comprising aluminum ions and an organic phase comprising iron ions complexed with the extracting agent and wherein the aluminum ions are recovered by separating the aqueous phase from the organic phase. The aqueous phase can have a pH of about I to about 2.5 or of about 2. The extracting agent can be chosen from phosphoric acids and derivatives thereof, and phosphinic acids and derivatives thereof. For example, the extracting agent can be chosen from di-2-ethylhexyl phosphoric acid (HDEHP), bis(2,4,4-trimethylpentyl) phosphinic acid and 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester. The extracting agent can have a concentration of about 0.5 M to about 1.5 M in the organic phase or of about 1 M in the organic phase. The composition can have a volumic ratio organic phase : aqueous phase of about 1:1. After extraction (passing the composition through the membrane), the aqueous phase can be separated from the organic phase, and the aluminum ions can recovered in the aqueous phase and the aqueous phase can be treated with a base (for example NaOH, KOH, or a mixture thereof). The aqueous phase can be treated with the base so as to obtain a pH of at least about 4. The process can further comprise treating the organic phase with HCI and isolating the iron ions in the form of Fe 3 ". [0005] According to another embodiment, the composition can comprise an acidic aqueous phase comprising iron ions and an organic phase comprising aluminum ions complexed with the extracting agent, and wherein the aluminum ions are recovered by separating the aqueous phase from the organic phase. The aqueous phase can have a pH of about 2.5 to about 3.5, The extracting agent can be a phosphinic acid or a derivative thereof. For example, the extracting agent can be bis(2,4,4-trimethylpentyl) phosphinic acid. The extracting agent can have a concentration of about 10 % to about 25 % v/v with respect to the organic solvent or of about 20 % v/v with respect to the organic solvent. The composition can have a volumic ratio aqueous phase : organic phase of about 1:1 to about 1:3. During the process, the 2 WO 2008/141423 PCT/CA2008/000877 composition can be at a temperature of about 30 *C to about 50 *C or at a temperature of about 35 *C to about 45 "C. After extraction through the membrane, the aqueous phase can be separated from the organic phase. The complexed aluminum ions can be recovered in the organic phase. The organic phase can then be treated with HCI so as to obtain an aqueous composition comprising the aluminum ions. [00061 For example, the organic solvent can be chosen from hydrocarbons. For example, the organic solvent can be chosen from C 5
-C
12 alkanes and mixtures thereof. The organic solvent can also be hexane or heptane. The organic phase and the aqueous phase can be separated by means of a filtration membrane, for example a hollow fiber membrane. Such membrane can comprise polypropylene, polyvinylidene difluoride, or a mixture thereof. The aqueous phase can be treated with the base so as to obtain a pH of at least about 4. The process can also further comprise a separation by filtration so as to obtain AI(OH) 3 . The process can also comprise washing the
AI(OH)
3 . The process can also comprise converting AI(OH) 3 into A1 2 0 3 . Conversion of AI(OH)3 into A1 2 0 3 can be carried out at a temperature of about 800 *C to about 1200 *C. [0007] According to another aspect there is provided a composition comprising aluminum ions, iron ions, an organic solvent and an extracting agent adapted to form an organometallic complex substantially selectively with the iron ions or with the aluminum ions which is soluble in the organic solvent. [0008] According to another aspect, there is provided a composition comprising an acidic aqueous phase comprising aluminum ions and an organic phase comprising iron ions complexed with an extracting agent. [0009] According to another aspect, there is provided a composition comprising an acidic aqueous phase comprising iron ions and an organic phase comprising aluminum ions complexed with an extracting agent. 3 WO 2008/141423 PCT/CA2008/000877 Polo] The various parameters, embodiments and examples previously described concerning the processes can also be applied, when possible, to these compositions. [0011] According to another aspect, there is provided a process for at least partially separating aluminum ions from iron ions comprised in a composition, the process comprising substantially selectively precipitating at least a portion of the iron ions in basic conditions in which the pH is of at least 10. The iron ions can be precipitated from a basic aqueous composition comprising NaOH or KOH. For example, the base can be reacted with the composition so as to obtain a mixture in which the pH is of at least 10, and then, the at least portion of precipitated iron ions can be separated from the rest of the mixture. For example, the precipitated iron ions can be separated from the rest of the mixture by carrying out a filtration, a decantation, a centrifugation, or combinations thereof. The process can further comprise rinsing the obtained precipitated iron ions with a basic solution. The basic solution can have a concentration of about 0.01 M to about 0.02 M, The pH can be at least 11, at least 12, about 10,8 to about 11.2, or about 11.5 to about 12.5. The process can further comprise purifying the precipitated iron ions by means of a hollow fiber membrane. (0012 According to another aspect, there is provided a process for extracting aluminum from an aluminum ore, the process comprising: - leaching the aluminum ore with an acid so as to obtain a leachate and a solid residue; - removing at least a portion of iron ions contained in the leachate by: (i) substantially selectively precipitating the at least portion of the iron ions in basic conditions in which the pH is of at least 10, so as to obtain an aluminum enriched composition; or 4 WO 2008/141423 PCT/CA2008/000877 (ii) substantially selectively complexing the at least portion of the iron ions with an extracting agent adapted to form an organometallic complex substantially selectively with the iron ions so as to obtain an aluminum enriched composition. [0013] For example, the acid can be HCI. The aluminum ore can leached with HCI at a temperature of at least 80 "C, at least 90 *C, or about 100 "C to about 110 "C. HCI can have a concentration of about 6 M. The alunimum ore / acid ratio can be about 1/10 in weight by volume. [0014] For example, the removal of the at least portion of iron ions can be carried out by precipitating the iron ions from a basic aqueous composition. The composition can comprise comprising NaOH or KOH. [0015] For example, the removal of the at least portion of iron ions can be carried out by reacting the leachate with a base in order to obtain a pH of at least 10 and precipitating the iron ions. [0016] For example, the precipitated iron ions can be separated from the rest of the leachate by carrying out a filtration, a decantation, a centrifugation, or mixtures thereof. [0017] The process can further comprise rinsing the obtained precipitated iron ions with a basic solution. The basic solution can have a concentration of about 0.01 M to about 0.02 M. The pH can be at least 11, at least 12, about 10.8 to about 11.2, or about 11.5 to about 12.5, The process can further comprise purifying the precipitated iron ions by means of a hollow fiber membrane. (00181 The removal of the at least portion of iron ions can be carried out by reacting the leachate, under acidic conditions, with the extracting agent and an organic solvent in order to obtain a composition comprising an acidic aqueous phase comprising aluminum ions and an organic phase comprising iron ions complexed with the extracting agent. The aluminum enriched composition can be obtained by separating the aqueous phase from the 5 WO 2008/141423 PCT/CA2008/000877 organic phase. The aqueous phase can have a pH of about 1 to about 2.5, or about 2. The extracting agent can be chosen from di-2-ethylhexyl phosphoric acid (HDEHP), bis(2,4,4-trimethylpentyl) phosphinic acid and 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester). The extracting agent can have a concentration of about 0.5 M to about 1.5 M in the organic phase or about 1 M in the organic phase. [00191 For example, the organic solvent can be chosen from C 5
-C
12 alkanes and mixtures thereof. The organic solvent can be heptane. The composition can have a volumic ratio organic phase : aqueous phase of about 1:1. The organic phase and the aqueous phase can be separated by means of a filtration membrane. The membrane can be a hollow fiber membrane. The membrane can comprise polypropylene, polyvinylidene difluoride, or a mixture thereof. [0020] After passing the composition through the membrane, the aqueous phaco can coparatod from the organic phaco. Tho aluminum lono on bo recovered in the aqueous phase and the aqueous phase is treated with a base (such as NaOH or KOH). The aqueous phase can be treated with the base so as to obtain a pH of at least about 4. The process can further comprise a separation by filtration to obtain AI(OH) 3 , which can be eventually washed. [0021] For example, the aluminum ore can be crushed and roasted before being leached. (0022] For example, before removal of the iron ions, the leachate is treated with a base. [0023] For example. hefore removal of the irnn inns. the Innchnft can he distilled so as to reduce its vulume, [0024] For example, the process can further comprise at least partially recovering the aluminum ions present in the aluminum enriched composition. 6 WO 2008/141423 PCT/CA200S/000877 [0025] For example, the aluminum enriched composition can be treated with an extracting agent adapted to form an organometallic complex substantially selectively with the aluminum ions in the presence of an organic solvent and an acid solution in order to form a composition comprising an acidic aqueous phase comprising impiiriatis nnd nn organic pha.se rnmprising aluminum ions complexed with the extracting agent. The aluminum ions can be recovered by separating the aqueous phase from the organic phase. For example, the aqueous phase can have a pH of about 2.6 to about 3.5. The extracting agent can be a phosphinic acid or a derivative thereof. The extracting agent can be bis(2,4,4-trimethylpentyl) phosphinic acid. The extracting agent can have a concentration of about 10 % to about 25 % v/v or about 20 % v/v with respect to the organic solvent. The organic solvent can be chosen from C 5
-C,
2 alkanes and mixtures thereof. The organic solvent can be heptane. The composition can have a volumic ratio aqueous phase : organic phase of about 1:1 to about 1:3. The organic phase and the aqueous phase can be separated by means of a membrane (for example a hollow fiber membrane). The membrane can comprise polypropylene, polyvinylidene difluoride, or a mixture thereof. The composition can be at a temperature of about 30 "C to about 50 "C, or about 35 *C to about 45 "C. After passing the composition through the membrane, the aqueous phase can be separated from the organic phase. The complexed aluminum ions can be recovered in the organic phase. The organic phase can then be treated with HCI so as to obtain an aqueous composition comprising the aluminum ions, The aluminum ions can be converted into Al(OH) 3 by contacting it with a base. AI(OH) 3 can then be converted into A1 2 0 3 . Such a conversion of AI(OH) 3 Into A1 2 0 3 can be carried out at a temperature of about 800 *C to about 1200 *C. BRIEF DESCRIPTION OF DRAWINGS [0026] In the following drawings, which represent by way of example only, various embodiments of the invention: [0027] Fig. 1 shows a bloc diagram of a process according to one embodiment of a process for extracting aluminum from an aluminous ore.
WO 2008/141423 PCT/CA2008/000877 DETAILLED DESCRIPTION OF VARIOUS EMBODIMENTS [0028] Further features and advantages will become more readily apparent from the following description of various embodiments as illustrated by way of examples only in the appended drawings wherein: [0029] As it can be seen from Fig. 1, such a process can comprise various steps, and each of these steps can eventually be individually considered has being a process. Preparation of argillite sample [0030] Argillite can be finely crushed in order to help along during the following steps. For example, micronization can shorten the reaction time by few hours (about 2 to 3 hours). In order to remove most of the iron, a leaching step at room temperature is optionally carried out between the crushing step and the roasting step (see option 1). This operation is, for example, carried out with hydrochloric acid HC (12 M) and an argillite / acid ratio (weight I volume) of 1:5 is used. Depending on experimental conditions (sizes of the particles, time of treatment, agitation system), about 65 % to about 93 % of the iron con thcn be removed. However, this leaching step can also bring in a certain percentage of the aluminum (0 - 5 %). The last step of the preparation of argillite comprises roasting the pretreated argillite. This can be accomplished at a temperature greater than 550 "C for a period of about 1 to 2 hours. For example, a heat treatment makes it possible to increase the quantity of extracted aluminum by about 30 % to about 40 % for the same period of time. In others words, the quantity of extracted aluminum is doubled. When leaching at room temperature is carried out, a phase separation before roasting can be made in order to recover the acid and reduce heating costs. Acid leaching [0031] Acid leaching comprises reacting the crushed and roasted argillite with a hydrochloric acid solution at elevated temperature during a given period of time. For example, the argillite / acid ratio can be of about of 8 WO 2008/141423 PCT/CA2008/000877 1:10 (weight I volume), the HCI concentration can be of about 6 M, the temperature can be of about 100 "C to about 110 *C, and the reaction time can be of about 5 to about 7 hours. Under such conditions, more than about 90 % of the aluminum and about 100 % of the iron can be extracted in addition In impurities [00321 During the second half of such a treatment (for example the last 2 or 3 hours), a portion of the acid can be recovered by condensation. Once the extraction is terminated, the solid (argillite impoverished in metals) can be separated from the liquid by decantation or by filtration, after which it is washed. The residual leachate and the washing water may be completely evaporated. The corresponding residue can thereafter be washed many times with water so as to decrease acidity and to lower the quantities of sodium hydroxide (NaOH) that are required to adjust the pH during iron removal. Final volurno uccounto for 10 O, to 20 q of initial volurn, Thu acid rucoverad will can be re-utilized after having adjusted its titer either by adding gaseous HCI, or by adding concentrated HCI (12 M). After the reaction, the titer of the acid can vary from about 4 M to about 6 M depending on experimental conditions. With respect to the solid, it represents about 65 % to about 75 % of the initial mass of argillite, it can be valorized and be used again either as an ion exchange resin, or as an adsorbent. Removal of iron [0033] Removal of iron can be carried out by precipitation of the latter in basic medium for example at a pH of at least 10 or at a pH of about 11.5 to about 12.5. Such a step can be made by adding NaOH, for example at a concentration of 10 M. Other bases such as KOH can also be used. Then, all that is required is to separate the solid portion from the liquid portion by filtration, decantation or centrifugation and to rinse the solid by means of a diluted base, such as a solution of NaOH (for example NaOH at a concentration of 0.01 M to 0.02 M). Then, the solid is washed with distilled water. The liquid portion comprises aluminum and alkaline-earths A substantially complete removal of the iron and of nearly all the impurities 9 WO 20081141423 PCT/CA2008/000877 (other metals) can thus be achieved. Optionally, it is possible to recover iron by using a refining step by liquid-liquid extraction through a hollow fiber membrane (see option 2). [0034] Alternatively (see option 3), removal of iron can be carried out by using an extracting agent and a hollow fiber membrane. Various extracting agents that could substantially selectively complex iron ions over aluminum ions (or aluminum ions over iron ions) could be used in such a step depending an Al I Fe ratio. For example, extraction can be carried out by using HDEHP (diethylhexylphosphoric acid) as an extracting agent adapted to complex iron ions. A concentration of about 1 M of HDEHP can be used in an organic solvent, such as heptane or any hydrocarbon solvent. Such an extraction can require relatively short contact times (few minutes). For example, the pH of the order of 2 can be used and aqueous phase / organic phase ratio can be of about 1:1. It was observed that is possible to extract from 86 % to 98 % iron under such conditions. It will be understood that in the present case, iron is trapped in the organic phase. To recover iron in an aqueous phase, a reverse extraction with hydrochloric acid (2 M or 6 M) and organic phase / acidic phase ratio of about 1:0.5 can then be carried out. In such a case, the resulting aqueous phase is rich in Fe 3 4 ions. Aluminum recovery [0036] The solution obtained from the previous step using either the precipitation or the extraction technique is relatively clean and mainly contains aluminum for example about 90 % to 95 % (without the alkaline-earths in the case of precipitation). Recovery of the latter can be carried out by liquid-liquid extraction for example by using a same hollow fiber membrane and an extracting agent that is adapted to complex at least substantially selectively aluminum over other metals or residues. For example, bis(2,4,4 trimethylpentyl) phosphinic acid (such as the one sold under the name Cyanex T M 272) can be used as an extracting agent specific to aluminum. For example, this extracting agent can be used at a concentration of about 20 % v/v in an organic solvent such as heptane. The ratios between the aqueous 10 WO 2008/141423 PCT/CA2008/000877 phase and the organic phase can be of about 1:1 to about 1:3. For example, the extraction temperatures can be of about 40 "C and the pH can be maintained at about 2.5 to about 3.5. It was observed that such a technique makes it possible to extract more than 70 - 90 % of the aluminum. After the aluminum has been trapped in the organic phase, it can berecovered in the form of a concentrate of AIl" ions by using a back extraction. For example, the reverse extraction can be carried out at a temperature of about 40 0C with hydrochloric acid (for example at a concentration of 6 M). Under this condition, more than 90 % of aluminum can be recovered. Then, Al 3 + can be converted into aluminum hydroxide AI(OH) 3 by addition of NaOH, Finally, Al(OH)a can be converted into alumina (alumina A1 2 0 3 ) by roasting AI(OH) 3 for example at a temperature of about 800 "C to1200 *C, [00361 The following non-limiting examples further illustrate the invention. Examples Example 1 Preparation of argillite sample [0037] Crushing of mudstone : The resulting micronization average employed for the tests ranges between 10 and 50 microns. [0038] Roasting : Crushed mudstone was roasted at least during 1 hour at a temperature of 600 *C. Its average composition was: A1 2 0 3 21,0 % Fe 2 0 3 8,0 % K20 1,5 % Na 2 O 0,9 % TiO 2 0,9 % CaO 0,08 % ZnO 0,06 % SiO 2 51,0 % 11 WO 2008/141423 PCT/CA2008/000877 Acid leaching [0039] 500 g of argillite crushed and roasted were added to 5 liters of hydrochloric acid 6 M. The mixture was then heated at 100 "C - 110 0 C during 7 hours. [0040] After reaction, the liquid part was separated from the solid part by filtration. The solid was washed with distilled water which was added to the liquid portion. This washing makes it possible to recover part of the aluminum trapped in the solid. This solid had a dry mass of 345 :- 5 g, which corresponds to a loss of about 30 % - 32 %. [0041] The remaining liquid part, containing aluminum, iron and a great part of the impurities initially present in mudstone, was reduced by evaporation at a temperature of 100 'C to 90 % of its initial volume. Residual volume was then 50 mL. The liquid compositions before and after evaporation were : Leaching solution Evaporated leaching solution Composition (%) Composition (%) [concentration (mg/L)] [concentration (mg/L)] 47.63 47.86 Aluminum [9 250] [59 500] 3154 3107 Iron [6 125] [38 626] Alkaline-earths 19.30 19-53 (Na, Mg, K, Ca) [3 749] [24 277] 1.53 1.54 Other metals [297.3] [1 920] All the ions species seem to remain soluble. 12 WO 2008/141423 PCTCA2008/000877 Removal of iron [0042] The residual volume was slightly diluted (+ 25 %) and concentrated hydroxide sodium (10 M) was added until a pH higher than 11.5 was reached. The formed precipitate was separated from the solution by standard filtration and was washed several times with NaOH dilued and hot ultra-pure water. The precipitate contained all the iron and the majority of the metal impurities, The filtrate contained in addition to ions AI 3 t mainly alkaline-earths and some following impurities: Major filtrate impurities (%) Iron 0.14 Sodium 94,13 Alkaline-earths 5.71 (Mg, K, Ca) Other metals 0.02 Na+ came from soda and was also the AI(OH)4 counter-ion. Aluminum recovery [0043] The filtrate is adjusted at a pH of 2.5 to 3.5 by addition of HCI 6 M. The resulting solution is extracted by means of the complexing agent, Cyanex 272, at a concentration of 20 % volume / volume in an organic solvent with a volumetric ratio of 1:1. The extraction is carried out at a temperature of 40 "C in a membrane contactor with hollow fibers. In less than about 30 to 60 min, more than 85 % of aluminum is extracted. The pH adjustment is performed by a regulation loop controling the NaOH (10 M) addition. Complexed Al 3 in Cyanex are then recovered by carrying out a back extraction with HCI (6 M) at 40 4C and an organic phase / acid phase volumetric ratio of 1:0.5. After the back extraction, the composition of the recovered acid phase is: 13 WO 2008/141423 PCT/CA2008/000877 Composition (%) Aluminum 92.81 Iron 0 Alkaline-earths 7.14 (Na, Mg, K, Ca) Other metals 0.05 [0044] To increase the percentage of purity, the Al 3 ions are precipitated in the form of AI(OH) 3 hydroxide, then washed several times with ultra-pure water. The composition of the hydroxide becomes: Composition (%) Aluminum 99.09 Iron 0 Alkaline-earths 0.88 (Na, Mg, K, Ca) Other metals 0.03 [0045] Further purification can be performed by recrystallization [0046] While a description was made with particular reference to the specific embodiments, it will be understood that numerous modifications thereto will appear to those skilled in the art. Accordingly, the above description and accompanying drawings should be taken as specific examples and not in a limiting sense. 14

Claims (95)

  1. 2. The process of claim 1, wherein said extracting agent is adapted to form an organometallic complex substantially selectively with said iron ions.
  2. 3. The process of claim 2, wherein said acidic aqueous phase has a pH of about I to about 2.5.
  3. 4. The process of claim 2, wherein said acidic aqueous phase has a pH of about 2.
  4. 5. The process of any one of claims 2 to 4, wherein said extracting agent is chosen from di-2-ethylhexyl phosphoric acid (HDEHP), bis(2,4,4 trimethylpentyl) phosphinic acid and 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester.
  5. 6. The process of any one of claims 2 to 5, wherein said extracting agent has a concentration of about 0.5 M to about 1.5 M in said organic phase.
  6. 7. The process of any one of claims 2 to 5, wherein said extracting agent has a concentration of about 1 M in said organic phase. B. The process of any one of claims 2 to 7, wherein said organic solvent is chosen from C 5 -C 12 alkanes and mixtures thereof.
  7. 9. The process of any one of claims 2 to 7, wherein said organic solvent is heptane.
  8. 10. The process of any one of claims 2 to 9, wherein said composition has a volumic ratio organic phase : aqueous phase of about 1:1.
  9. 11. The process of any one of claims 2 to 10, wherein said membrane comprises polypropylene, polyvinylidene difluoride, or a mixture thereof. zu 19arcn LUUYr rV- -- f~hU
  10. 12. The process of any one of claims 2 to 10, wherein said membrane comprises polypropylene.
  11. 13. The process of any one of claims 2 to 12, wherein said separated aqueous phase is reacted with said base, said base being chosen from NaOH, KOH, and a mixture thereof.
  12. 14. The process of any one of claims 2 to 12, wherein said separated aqueous phase is reacted with said base, said base being NaOH.
  13. 15. The process of any one of claims 2 to 14, wherein said aqueous phase is reacted with said base so as to obtain a pH of at least about 4.
  14. 16. The process of any one of claims 2 to 15, further comprising a separation by filtration to recover said aluminum ions in the form of AI(OH) 3 .
  15. 17. The process of claim 16, further comprising washing said AI(OH) 3 .
  16. 18. The process of claim 16 or 17, further comprising converting AI(OH) 3 into Al 2 03.
  17. 19. The process of claim 18, wherein conversion of AI(OH) 3 into A1 2 0 3 is carried out at a temperature of about 800 "C to about 1200 "C.
  18. 20. The process of any one of claims 2 to 19, further comprising treating said separated organic phase with HCI and isolating said iron ions in the form of Fe'.
  19. 21. The process of claim 1, wherein said extracting agent is adapted to form an organometallic complex substantially selectively with said aluminum ions.
  20. 22. The process of claim 21, wherein said aqueous phase has a pH of about 2.5 to about 3.5.
  21. 23. The process of claim 21 or 22, wherein said extracting agent is a phosphinic acid or a derivative thereof.
  22. 24. The process of claim 21 or 22, wherein said extracting agent is bis(2,4,4-trimethylpentyl) phosphinic acid.
  23. 25. The process of any one of claims 21 to 24, wherein said extracting agent has a concentration of about 10 % to about 25 % v/v with respect to said organic solvent.
  24. 26. The process of any one of claims 21 to 24, wherein said extracting agent has a concentration of about 20 % v/v with respect to said organic solvent.
  25. 27. The process of any one of claims 21 to 26, wherein said organic solvent is chosen from 0 5 -C 12 alkanes and mixtures thereof.
  26. 28. The process of any one of claims 21 to 26, wherein said organic solvent is heptane,
  27. 29. The process of any one of claims 21 to 28, wherein said composition has a volumic ratio aqueous phase : organic phase of about 1:1 to about 1:3.
  28. 30. The process of any one of claims 21 to 30, wherein said membrane comprises polypropylene, polyvinylidene difluoride, or a mixture thereof.
  29. 31. The process of any one of claims 21 to 30, wherein said membrane comprises polypropylene. - - - -18-- zU Marn ZUUo ~U-U34UUv
  30. 32. The process of any one of claims 21 to 31, wherein said composition is at a temperature of about 30 "C to about 50 *C.
  31. 33. The process of any one of claims 21 to 31, wherein said composition is at a temperature of about 35 *C to about 45 *C,
  32. 34. The process of any one of claims 21 to 31, wherein said base comprises NaOH, KOH, or a mixture thereof.
  33. 35. The process of any one of claims 21 to 31, wherein said base comprises NaOH.
  34. 36. The process of any one of claims 21 to 35, wherein said other aqueous phase is treated with said base so as to obtain a pH of at least about 4.
  35. 37. The process of any one of claims 21 to 36, further comprising a separation by filtration to obtain AI(OH)a.
  36. 38. The process of claim 37, further comprising washing said Al(OH) 3 .
  37. 39. The process of any one of claims 21 to 38, further comprising converting AI(OH) 3 into A1 2 0 3 .
  38. 40. The process of claim 39 wherein conversion of Ai(OH) 3 into A120 3 is carried out at a temperature of about 800 0 C to about 1200 *C.
  39. 41. A process for at least partially separating aluminum ions from iron ions comprised in a composition, said process comprising substantially selectively precipitating at least a portion of said iron ions under basic conditions in which the pH is of at least 10, and purifying the precipitated iron ions by means of a hollow fiber membrane. 19 LU- YUdCUII &V-~ 4- - -,tUZ
  40. 42. The process of claim 41, wherein said iron ions are precipitated from a basic aqueous composition comprising NaOH.
  41. 43. The process of claim 41, wherein said iron ions are precipitated from a basic aqueous composition comprising KOH.
  42. 44. The process of claim 41, wherein a base is reacted with said composition so as to obtain a mixture in which the pH is of at least 10, and then, said at least portion of precipitated iron ions are separated from the rest of said mixture.
  43. 45. The process of claim 44, wherein said precipitated iron ions are separated from the rest of said mixture by carrying out a filtration, a decantation, a centrifugation, or combinations thereof.
  44. 46. The process of claim 44 or 45, wherein said base is chosen from KOH, NaOH, and mixtures thereof.
  45. 47. The process of claim 44 or 45, wherein said base is NaOH.
  46. 48. The process of claim 44 or 45, wherein said base is KOH.
  47. 49. The process of any one of claims 44 to 48, further comprising rinsing the obtained precipitated iron ions with a basic solution.
  48. 50. The process of claim 49, wherein the basic solution is NaOH or KOH having a concentration of about 0.01 M to about 0.02 M.
  49. 51. The process of any one of claims 41 to 50, wherein said pH is at least 11.
  50. 52. The process of any one of claims 41 to 50, wherein said pH is at least 12. 20 zu narcn ZUUNi 4J-U-ZUUY
  51. 53. The process of any one of claims 41 to 50, wherein said pH is about 10.8 to about 11.2.
  52. 54. The process of any one of claims 41 to 50, wherein said pH is about 11.5 to about 12.5.
  53. 55. A process for extracting aluminum from an aluminum ore, said process comprising: - leaching said aluminum ore with an acid so as to obtain a leachate and a solid residue, and separating said leachate from said solid residue: - removing at least a portion of iron ions contained in said leachate by reacting said leachate with a base in order to obtain a pH of at least 10 and substantially selectively precipitating said at least portion of said iron ions and separating said precipitated at least portion of said iron ions from said leachate so as to obtain an aluminum enriched composition.
  54. 56. The process of claim 55, wherein said acid is HCI.
  55. 57. The process of claim 55, wherein said aluminum ore is leached with HCI at a temperature of at least 80 *C.
  56. 58. The process of claim 55, wherein said aluminum ore is leached with HCI at a temperature of at least 90 *C.
  57. 59. The process of claim 55, wherein said aluminum ore is leached with HCI at a temperature of about 100 "C to about 110 "C.
  58. 60. The process of any one of claims 56 to 59, wherein said HCI has a concentration of about 6 M. 21 2U Maxon 2UUj 2U-U3-JUUI
  59. 61. The process of any one of claims 55 to 61, wherein the alunimum ore / acid ratio is about 1 / 10 in weight by volume.
  60. 62. The process of any one of claims 55 to 61, wherein removal of said at least portion of iron ions is carried out by substantially selectively precipitating said iron ions from a basic aqueous composition comprising NaOH.
  61. 63. The process of any one of claims 55 to 61, wherein removal of said at least portion of iron ions is carried out by substantially selectively precipitating said iron ions from a basic aqueous composition comprising KOH.
  62. 64. The process of any one of claims 55 to 61, wherein said base is chosen from KOH, NaOH, and mixtures thereof.
  63. 65. The process of claim 64, wherein said base is NaOH.
  64. 66. The process of claim 64, wherein said base is KOH.
  65. 67. The process of any one of claims 55 to 66, wherein said precipitated at least portion of iron ions is separated from said leachate by carrying out a filtration, a decantation, a centrifugation, or mixtures thereof.
  66. 68. The process of any one of claims 55 to 67, further comprising rinsing the obtained precipitated at least portion of iron ions with a basic solution.
  67. 69. The process of claim 68, wherein the basic solution is NaOH or KOH having a concentration of about 0.01 M to about 0.02 M.
  68. 70. The process of any one of claims 55 to 69 wherein said pH is at least 11. 22-- LU arn l4UUV 4V-V-
  69. 71. The process of any one of claims 55 to 69 wherein said pH is at least 12.
  70. 72. The process of any one of claims 55 to 69 wherein said pH is about 10.8 to about 11.2.
  71. 73. The process of any one of claims 55 to 69 wherein said pH is about 11.5 to about 12.5.
  72. 74. The process of any one of claims 55 to 73, further comprising purifying the precipitated iron ions by means of a hollow fiber membrane.
  73. 75. The process of any one of claims 55 to 73, wherein said aluminum ore is crushed and roasted before being leached.
  74. 76. The process of any one of claims 55 to 75, wherein before removal said iron ions, said leachate is reacted with a base so as to increase pH of the leachate.
  75. 77. The process of any one of claims 55 to 76, wherein before removal of said iron ions, said leachate is distilled so as to reduce its volume.
  76. 78. The process of any one of claims 55 to 77, further comprising at least partially recovering said aluminum ions present in said aluminum enriched composition.
  77. 79. The process of claim 78, wherein said aluminum enriched composition is treated with an extracting agent adapted to form an organometallic complex substantially selectively with said aluminum ions in the presence of an organic solvent and an acid solution in order to form a composition comprising an acidic aqueous phase comprising impurities and an organic phase comprising aluminum 23 4U ar=n LUUflV U-UD-&UV ions complexed with said extracting agent, and wherein said aluminum ions are recovered by separating said aqueous phase from said organic phase.
  78. 80. The process of claim 79, wherein said aqueous phase has a pH of about 2.5 to about 3.5.
  79. 81. The process of claim 79 or 80, wherein said extracting agent is a phosphinic acid or a derivative thereof.
  80. 82. The process of claim 79 or 80, wherein said extracting agent is bis(2,4,4-trimethylpentyl) phosphinic acid,
  81. 83. The process of any one of claims 79 to 82, wherein said extracting agent has a concentration of about 10 % to about 25 % v/v with respect to said organic solvent.
  82. 84. The process of any one of claims 79 to 82, wherein said extracting agent has a concentration of about 20 % v/v with respect to said organic solvent.
  83. 85. The process of any one of claims 79 to 84, wherein said organic solvent is chosen from 0 5 -C 12 alkanes and mixtures thereof.
  84. 86. The process of any one of claims 79 to 84, wherein said organic solvent is heptane.
  85. 87. The process of any one of claims 79 to 86, wherein said composition has a volumic ratio aqueous phase : organic phase of about 1:1 to about 1:3.
  86. 88. The process of any one of claims 79 to 87, wherein said organic phase and said aqueous phase are separated by means of a membrane. 24 LU miarcn LUUv LU-uJaUU.vv
  87. 89. The process of claim 88, wherein said membrane is a hollow fiber membrane.
  88. 90. The process of claim 89, wherein said membrane comprises polypropylene, polyvinylidene difluoride, or a mixture thereof.
  89. 91. The process of claim 89, wherein said membrane comprises polypropylene.
  90. 92. The process of any one of claims 79 to 91, wherein said composition is at a temperature of about 30 "C to about 50 "C.
  91. 93. The process of any one of claims 79 to 91, wherein said composition is at a temperature of about 35 "C to about 45 *C.
  92. 94. The process of any one of claims 79 to 93, wherein after passing said composition through said membrane, said aqueous phase is separated from said organic phase, said complexed aluminum ions are recovered in said organic phase, said organic phase being then treated with HCI so as to obtain an aqueous composition comprising said aluminum ions.
  93. 95. The process of claim 94, wherein aluminum ions are converted into AI(OH) 3 by contacting it with a base.
  94. 96. The process of claim 95, further comprising converting AI(OH) 3 into Al 2 0 3 .
  95. 97. The process of claim 96, wherein conversion of Al(OH) 3 into A12O3 is carried out at a temperature of about 800 "C to about 1200 *C.
AU2012100165A 2007-05-21 2012-02-15 Processes for extracting aluminum and iron from aluminous ores Expired AU2012100165A4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2012100165A AU2012100165A4 (en) 2007-05-21 2012-02-15 Processes for extracting aluminum and iron from aluminous ores

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US60/939,254 2007-05-21
AU2008253545A AU2008253545B2 (en) 2007-05-21 2008-05-07 Processes for extracting aluminum and iron from aluminous ores
AU2012100165A AU2012100165A4 (en) 2007-05-21 2012-02-15 Processes for extracting aluminum and iron from aluminous ores

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2008253545A Division AU2008253545B2 (en) 2007-05-21 2008-05-07 Processes for extracting aluminum and iron from aluminous ores

Publications (1)

Publication Number Publication Date
AU2012100165A4 true AU2012100165A4 (en) 2012-03-08

Family

ID=46651029

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2012100165A Expired AU2012100165A4 (en) 2007-05-21 2012-02-15 Processes for extracting aluminum and iron from aluminous ores
AU2012204028A Active AU2012204028B2 (en) 2007-05-21 2012-07-09 Processes for extracting aluminum and iron from aluminous ores

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU2012204028A Active AU2012204028B2 (en) 2007-05-21 2012-07-09 Processes for extracting aluminum and iron from aluminous ores

Country Status (1)

Country Link
AU (2) AU2012100165A4 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025129096A1 (en) * 2023-12-13 2025-06-19 Sublime Systems, Inc. Cementitious materials and additives containing aluminum and/or siliceous materials and methods of making thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868935A (en) * 1995-03-15 1999-02-09 New Jersey Institute Of Technology Method and apparatus for extraction and recovery of ions from solutions
US6468483B2 (en) * 2000-02-04 2002-10-22 Goldendale Aluminum Company Process for treating alumina-bearing ores to recover metal values therefrom

Also Published As

Publication number Publication date
AU2012204028A1 (en) 2012-07-26
AU2012204028B2 (en) 2015-03-19

Similar Documents

Publication Publication Date Title
AU2008253545B2 (en) Processes for extracting aluminum and iron from aluminous ores
CA2711013C (en) Processes for extracting aluminum from aluminous ores
CA2812309C (en) Process for extracting aluminum from aluminous ores
AU2012250460B2 (en) Processes for recovering rare earth elements from various ores
AU2012231686B2 (en) Processes for recovering rare earth elements from aluminum-bearing materials
AU2012100165A4 (en) Processes for extracting aluminum and iron from aluminous ores
HK1166355A (en) Processes for extracting aluminum and iron from aluminous ores
HK1147780B (en) Processes for extracting aluminum and iron from aluminous ores
CA3220775A1 (en) Process for producing high purity aluminium materials

Legal Events

Date Code Title Description
FGI Letters patent sealed or granted (innovation patent)
MK22 Patent ceased section 143a(d), or expired - non payment of renewal fee or expiry