AU2011349026A1 - A process for the preparation of Lapatinib and its ditosylate salt - Google Patents
A process for the preparation of Lapatinib and its ditosylate saltInfo
- Publication number
- AU2011349026A1 AU2011349026A1 AU2011349026A AU2011349026A AU2011349026A1 AU 2011349026 A1 AU2011349026 A1 AU 2011349026A1 AU 2011349026 A AU2011349026 A AU 2011349026A AU 2011349026 A AU2011349026 A AU 2011349026A AU 2011349026 A1 AU2011349026 A1 AU 2011349026A1
- Authority
- AU
- Australia
- Prior art keywords
- formula
- compound
- lapatinib
- methanol
- ditosylate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 39
- BCFGMOOMADDAQU-UHFFFAOYSA-N lapatinib Chemical compound O1C(CNCCS(=O)(=O)C)=CC=C1C1=CC=C(N=CN=C2NC=3C=C(Cl)C(OCC=4C=C(F)C=CC=4)=CC=3)C2=C1 BCFGMOOMADDAQU-UHFFFAOYSA-N 0.000 title claims description 30
- 239000002136 L01XE07 - Lapatinib Substances 0.000 title claims description 26
- 229960004891 lapatinib Drugs 0.000 title claims description 25
- 238000002360 preparation method Methods 0.000 title claims description 21
- 150000003839 salts Chemical class 0.000 title claims description 21
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 117
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 90
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 30
- 150000001875 compounds Chemical class 0.000 claims description 28
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 claims description 28
- 238000006243 chemical reaction Methods 0.000 claims description 25
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 claims description 20
- SDNXQWUJWNTDCC-UHFFFAOYSA-N 2-methylsulfonylethanamine Chemical compound CS(=O)(=O)CCN SDNXQWUJWNTDCC-UHFFFAOYSA-N 0.000 claims description 17
- 239000003054 catalyst Substances 0.000 claims description 16
- 229960001320 lapatinib ditosylate Drugs 0.000 claims description 16
- AZBFJBJXUQUQLF-UHFFFAOYSA-N n-(1,5-dimethylpyrrolidin-3-yl)pyrrolidine-1-carboxamide Chemical compound C1N(C)C(C)CC1NC(=O)N1CCCC1 AZBFJBJXUQUQLF-UHFFFAOYSA-N 0.000 claims description 16
- 238000005984 hydrogenation reaction Methods 0.000 claims description 14
- 239000002585 base Substances 0.000 claims description 12
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical compound C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 claims description 12
- 239000002904 solvent Substances 0.000 claims description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 10
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical group CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 claims description 9
- 239000000543 intermediate Substances 0.000 claims description 7
- 239000007868 Raney catalyst Substances 0.000 claims description 5
- 229910000564 Raney nickel Inorganic materials 0.000 claims description 5
- 150000001298 alcohols Chemical class 0.000 claims description 4
- 150000008282 halocarbons Chemical class 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 238000005580 one pot reaction Methods 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 claims 2
- 239000011541 reaction mixture Substances 0.000 description 18
- 239000007787 solid Substances 0.000 description 17
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- KJIFKLIQANRMOU-UHFFFAOYSA-N oxidanium;4-methylbenzenesulfonate Chemical compound O.CC1=CC=C(S(O)(=O)=O)C=C1 KJIFKLIQANRMOU-UHFFFAOYSA-N 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 239000000706 filtrate Substances 0.000 description 8
- 238000004128 high performance liquid chromatography Methods 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 6
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 6
- -1 3-chloro-4-((3-fluorobenzyl)oxy)phenyl Chemical group 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 125000004547 quinazolin-6-yl group Chemical group N1=CN=CC2=CC(=CC=C12)* 0.000 description 5
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical class CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000012458 free base Substances 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- 238000006268 reductive amination reaction Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- XQPZOUAAXRXPAM-UHFFFAOYSA-N 5-[4-[3-chloro-4-[(3-fluorophenyl)methoxy]anilino]quinazolin-6-yl]furan-2-carbaldehyde Chemical compound FC1=CC=CC(COC=2C(=CC(NC=3C4=CC(=CC=C4N=CN=3)C=3OC(C=O)=CC=3)=CC=2)Cl)=C1 XQPZOUAAXRXPAM-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000004682 monohydrates Chemical class 0.000 description 3
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 2
- GRCLBOGXTPXNPL-UHFFFAOYSA-N 2-fluoropyridine-3-carboxamide Chemical compound NC(=O)C1=CC=CN=C1F GRCLBOGXTPXNPL-UHFFFAOYSA-N 0.000 description 2
- 206010055113 Breast cancer metastatic Diseases 0.000 description 2
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 125000005907 alkyl ester group Chemical group 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 2
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 2
- 229940011051 isopropyl acetate Drugs 0.000 description 2
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 150000003738 xylenes Chemical class 0.000 description 2
- 125000004180 3-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C(F)=C1[H] 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 1
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 102100037787 Protein-tyrosine kinase 2-beta Human genes 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 229940123237 Taxane Drugs 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 229940045799 anthracyclines and related substance Drugs 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 1
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 150000002390 heteroarenes Chemical class 0.000 description 1
- 108091008039 hormone receptors Proteins 0.000 description 1
- 238000001794 hormone therapy Methods 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229940043355 kinase inhibitor Drugs 0.000 description 1
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 description 1
- 229960003881 letrozole Drugs 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 1
- MTSNDBYBIZSILH-UHFFFAOYSA-N n-phenylquinazolin-4-amine Chemical class N=1C=NC2=CC=CC=C2C=1NC1=CC=CC=C1 MTSNDBYBIZSILH-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- DRYRBWIFRVMRPV-UHFFFAOYSA-N quinazolin-4-amine Chemical class C1=CC=C2C(N)=NC=NC2=C1 DRYRBWIFRVMRPV-UHFFFAOYSA-N 0.000 description 1
- 150000003246 quinazolines Chemical class 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- DKPFODGZWDEEBT-QFIAKTPHSA-N taxane Chemical class C([C@]1(C)CCC[C@@H](C)[C@H]1C1)C[C@H]2[C@H](C)CC[C@@H]1C2(C)C DKPFODGZWDEEBT-QFIAKTPHSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000009901 transfer hydrogenation reaction Methods 0.000 description 1
- 229960000575 trastuzumab Drugs 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 230000004565 tumor cell growth Effects 0.000 description 1
- 229940094060 tykerb Drugs 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
Description
A PROCESS FOR THE PREPARATION OF LAPATINIB AND ITS DITOSYLATE
SALT.
TECHNICAL FIELD
This invention relates to a process for the preparation of Lapatinib (I) and its ditosylate salt thereof.
BACKGROUND
Lapatinib is a member of the 4-anilinoquinazoline class of kinase inhibitors. It is marketed in the USA as Tykerb® and is indicated in combination with: Capecitabine for the treatment of patients with advanced or metastatic breast cancer whose tumors overexpress HER2 and who have received prior therapy including an anthracycline, a taxane, and Trastuzumab and Letrozole for the treatment of postmenopausal women with hormone receptor positive metastatic breast cancer that overexpresses the HER2 receptor for whom hormonal therapy is indicated. Lapatinib inhibits ErbB-driven tumor cell growth in vitro and in various animal models. Lapatinib is present as the
monohydrate of the ditosylate salt, with the chemical name A/-[3-chloro-4-[(3- fluorophenyl)methoxy]phenyl]-6-[5[[[2-(methylsulfonyl)ethyl]amino]methyl]-2-furanyl]-4- quinazolinaminebis(4-methylbenzenesulfonate) monohydrate.
US 6,713,485 relates to substituted heteroaromatic compounds, methods for their preparation, pharmaceutical compositions containing them and their use in medicine. Specifically, the invention relates to quinazoline derivatives useful in treating disorders mediated by protein tyrosine kinase activity, in particular erbB-2 and/or EGFR activity
WO 2002/02552 discloses ditosylate salts of 4-quinazolineamines as well as methods of using the same in the treatment of disorders characterized by aberrant erbB family PTK activity.
WO 2010/017387 provides Lapatinib intermediates and improved processes for preparing Lapatinib intermediates. The invention also provides processes for preparing Lapatinib and Lapatinib ditosylate.
WO 2010/061400 relates to an improved and novel process for the preparation of high purity crystalline base of Lapatinib and its pharmaceutically acceptable salts. The invention further relates to intermediates according to formula (8) and formula (9) used in this process.
SUMMARY
The present invention is directed to a process for the preparation of Lapatinib and its pharmaceutically acceptable salts.
Illustrative embodiments of the present invention provide a process for the preparation of Lapatinib or a ditosylate salt thereof comprising: i) treating of a compound
of Formula II: II with 2- methanesulphonylethylamine or a salt thereof, thereby forming a product; and ii) reducing the product in the presence of a suitable hydrogenation catalyst, thereby
forming Lapatinib free base of Formula IV:
Illustrative embodiments of the present invention provide a process described herein further comprising converting the compound of Formula IV to Lapatinib ditosylate
of Formula I:
Illustrative embodiments of the present invention provide a process described herein wherein the compound of Formula IV is not isolated before converting the compound of Formula IV to the Lapatinib ditosylate of Formula I.
Illustrative embodiments of the present invention provide a process described herein wherein the converting of the compound of Formula IV to the Lapatinib ditosylate of Formula I comprises: i) treating the compound of Formula IV with about 0.8 to about 1.2 equivalents of p-toluenesulfonic acid (PTSA), thereby forming monotosylate of Formula V:
v ; and ii) treating the compound of Formula
V with about 0.8 to about 1.2 equivalents of p-toluenesulfonic acid, thereby forming the Lapatinib ditosylate of Formula I.
Illustrative embodiments of the present invention provide a process described herein wherein the conversion of a compound of Formula IV to Lapatinib ditosylate of Formula I comprises treatment of a compound of Formula IV with about 1.8 to about 2.2 equivalents of p-toluenesulfonic acid.
Illustrative embodiments of the present invention provide a process described herein whereby the process for preparation of Lapatinib ditosylate is a one-pot process in which no intermediates are isolated.
Illustrative embodiments of the present invention provide a process described herein wherein the treating of the compound of Formula II with 2- methanesulphonylethylamine or a salt thereof occurs in the presence of a first base.
Illustrative embodiments of the present invention provide a process described herein wherein the first base is N,N-diisopropylethylamine.
Illustrative embodiments of the present invention provide a process described herein wherein the hydrogenation catalyst is selected from the group consisting of palladium on carbon, platinum on carbon and Raney nickel.
Illustrative embodiments of the present invention provide a process described herein wherein the hydrogenation catalyst is palladium on carbon.
Illustrative embodiments of the present invention provide a process described herein wherein the hydrogenation catalyst is 5% palladium on carbon.
Illustrative embodiments of the present invention provide a process described herein wherein the treating of the compound of Formula II with 2- methanesulphonylethylamine or a salt thereof occurs in the presence of a first solvent selected from the group consisting of alcohols and halogenated hydrocarbons.
Illustrative embodiments of the present invention provide a process described herein wherein the treating of the compound of Formula II with 2- methanesulphonylethylamine or a salt thereof occurs in the presence of a first solvent selected from the group consisting of methanol, dichloromethane and mixtures thereof.
Illustrative embodiments of the present invention provide a composition comprising i) at least one of Lapatinib and Lapatinib ditosylate and ii) at least one of palladium, platinum and Raney nickel.
Other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention.
*
DETAILED DESCRIPTION
According to illustrative embodiments of the present invention, Lapatinib may be repared according to Scheme 1 starting from compound of Formula II.
SCHEME 1
In illustrative embodiments of the present invention, there is provided a process for the preparation of Lapatinib and its ditosylate salt thereof comprising:
i. reductive amination of a compound of Formula II:
II
by treatment, optionally in the presence of a first base, with 2- methanesulphonylethylamine or its salt, followed by reduction by catalytic hydrogenation in the presence of a suitable hydrogenation catalyst, thereby forming Lapatinib free base of Formula IV:
ii. optionally, conversion of the compound of Formula IV to Lapatinib ditosylate of Formula I:
The first base may be used to liberate the free amine in a case where an acid salt of 2-methanesulphonylethylamine is used. The first base may be any suitable base capable of liberating the free amine. The first base may be inorganic or organic. The first base may be selected from the group consisting of metal hydroxides, carbonates,
phosphates, tertiary amines, and aryl amines. The first base may be selected from the group consisting of sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, sodium bicarbonate, potassium carbonate, lithium carbonate, potassium phosphate, sodium phosphate, triethylamine, diisopropylamine, N,N- diisopropyethylamine, N,N-dimethylaniline, Ν,Ν-diethylaniline, pyridine and mixtures thereof.
The reductive amination may be conducted in a first solvent. The first solvent may be a suitable protic or aprotic organic solvent. The first solvent may be selected from the group consisting of alcohols (e.g. methanol, ethanol, propanol, isopropanol, butanol), alkyl ethers (e.g. tetrahydrofuran, dioxane, diethyl ether, methyl t-butyl ether, diisopropyl ether, butyl ether), alkyl esters (e.g. ethyl acetate, isopropyl acetate), aromatic and aliphatic hydrocarbons (e.g. toluene, xylenes, hexanes, and heptanes), nitriles (e.g. acetonitrile, propionitrile, butyronitrile, and benzonitrile), N,N-dialkylamides (e.g. N,N- dimethylformamide, Ν,Ν-dimethylacetamide, and N-methyl-2-pyrrolidinone), halogenated hydrocarbons (e.g. dichloromethane and dichloroethane), and mixtures thereof.
The suitable hydrogenation catalyst may be selected from the group consisting of palladium, platinum, rhodium, ruthenium and nickel. Often, the hydrogenation catalyst is palladium on carbon, platinum on carbon or Raney-nickel. The catalyst loading may be from about 0.1 wt% to about 100 wt% palladium with respect to the weight of a compound of Formula II. The catalyst loading may be from about 0.1 % to about 20% with respect to the weight of a compound of Formula II. The suitable hydrogenation catalyst may be finely dispersed solids or adsorbed on an inert support such as carbon or alumina. The suitable hydrogenation catalyst may be 5 wt % palladium on carbon. The hydrogenation may be performed by using hydrogen gas or transfer hydrogenation. It should also be noted that catalyst moistened with water, for instance 50% water wet 5% palladium on carbon, is also suitable.
Optionally, following the reaction of a compound of the Formula II with 2- methanesulphonylethylamine or its salt, an intermediate imine of the Formula III may be isolated prior to catalytic hydrogenation.
The reductive amination of the present invention may cleanly convert the compound of the Formula II to the compound of Formula IV in high yield with few
impurities. The reaction occurs under mild conditions and does not require aqueous work-up. This clean conversion allows for preparation of ditosylate of Formula I in high yield and high purity.
The free base of Formula IV may or may not be isolated before conversion to the ditosylate of Formula I. The ditosylate of Formula I may be prepared directly from the free base of Formula IV by treatment with a sufficient quantity of p-toluenesulfonic acid. For example, treatment of the free base of Formula IV with about 1.8 to about 2.2 equivalents of p-toluenesulfonic acid yields the compound of Formula I. Alternatively, the ditosylate may be prepared stepwise, whereby the monotosylate is isolated first, followed by treatment with a second quantity of p-toluenesulfonic acid to yield the ditosylate. For example, treatment of the free base of Formula IV with about 0.8 to about 1.2 equivalents of p-toluenesulfonic acid yields the intermediate monotosylate of Formula V. Treatment of the isolated monotosylate of Formula V with a further about 0.8 to about 1.2 equivalents of p-toluenesulfonic acid yields the ditosylate of Formula I.
In an embodiment, preparation of the compound of Formula I is a one-pot process whereby reductive amination of the compound of Formula II yields a compound of Formula IV, which is treated, without isolation, with p-toluenesulfonic acid to generate the distosylate of Formula I. Conversion of the compound of Formula IV to the compound of Formula I maybe conducted in a second solvent. The second solvent may be a suitable protic or aprotic organic solvent. The second solvent may be selected from the group consisting of alcohols (e.g. methanol, ethanol, propanol, isopropanol, butanol), alkyl ethers (e.g. tetrahydrofuran, dioxane, diethyl ether, methyl t-butyl ether, diisopropyl ether, butyl ether), alkyl ester (e.g. ethyl acetate, isopropyl acetate), ketones (e.g. acetone, methyl ethyl ketone, methyl isobutyl ketone), aromatic and aliphatic hydrocarbons (e.g. toluene, xylenes, hexanes, and heptanes), nitriles (e.g. acetonitrile, propionitrile, butyronitrile, and benzonitrile), N,N-dialkylamides (e.g. Ν,Ν-dimethylformamide, N,N- dimethylacetamide, and N-methyl-2-pyrrolidinone), sulfoxides and sulfones (e.g. dimethyl sulfoxide and sulfolane), halogenated hydrocarbons (e.g. dichloromethane and
dichloroethane), and mixtures thereof. Similar solvents may be employed in each step when the conversion of the compound of Formula IV to the compound of Formula I proceeds stepwise through isolated Lapatinib monotosylate (Formula V).
Examples
The following examples are illustrative of some of the embodiments of the invention described herein. These examples should not be considered to limit the spirit or scope of the invention in any way.
Example 1 :
Preparation of A/-(3-chloro-4-{[(3-fluorophenyl)methyl]oxy}phenyl)-6-[5-({[2- (methylsulfonyl)ethyl]amino}methyl)-2-furanyl]-4-quinazolinamine, 4- methylbenzenesulfonate.
The suspension of 5-[4-((3-chloro-4-((3-fluorobenzyl)oxy)phenyl)amino)- quinazolin-6-yl]-2-furaldehyde (5 g, 10.6 mmoL) and 2-aminoethylmethylsulfone hydrochloride (3 g, 19 mmoL) in methanol (10 mL) and dichloromethane (25 mL) was charged with N,N-diisopropylethylamine (1.6 g, 12.7 mmoL) slowly under constant stirring at room temperature. The reaction mixture was stirred for 2-4 hours until reaction completion. The reaction mixture was charged with 5% Pd-C (750 mg) and stirred under hydrogen atmosphere (after evacuation) for 16-24 hours until reaction completion. The reaction mixture was further charged with methanol (25 mL) and dichloromethane (25 mL) and stirred for 12-16 hours. The obtained mixture was filtered, washed with 1 : 1 mixture of methanol (20 mL) and dichloromethane (20 mL). The yellow filtrate thus obtained was charged slowly with a solution of p-toluenesulfonic acid monohydrate (2 g, 10.6 mmoL) in methanol (5 mL). The yellow solid which precipitated out was filtered and washed with 1 :1 mixture of methanol (20 mL) and dichloromethane (20 mL). The solid obtained was dried under vacuum at 40-45 °C to provide the monotosylate salt of Lapatinib (4.8 g, Yield = 60%, HPLC purity >99%).
1HNMR (400MHz, DMSO-d6) δ 2.28 (s, 3H), 3.14 (s, 3H), 3.49-3.44 (m, 2H), 3.58-3.61 (m, 2H), 4.42 (s, 2H), 5.28 (s, 2H), 6.85 (d, J = 3.4 Hz), 1 H), 7.1 1 (d, J = 7.9Hz, 2H), 7.15-7.20 (m, 2H), 7.25-7.35 (m, 3H), 7.42-7.52 (m, 3H), 7.73 (dd, J = 8.9 & 2.1 Hz, 1 H), 7.87 (d, J = 8.7Hz, 1 H), 8.00 (d, J = 2.1 Hz, 1 H), 8.24 (dd, J = 8.5 Hz,& 1 Hz, 1 H), 8.61 (s, 1 H), 8.87 (s, 1 H), 9.17 (br s, 1 H), 10.0 (s, 1 H).
Example 2:
Preparation of A/-(3-chloro-4-{[(3-fluorophenyl)methyl]oxy}phenyl)-6-[5-({[2- (methylsulfonyl)ethyl]amino}methyl)-2-furanyl]-4- quinazolinamine, 4- methylbenzenesulfonate.
The suspension of 5-[4-((3-chloro-4-((3-fluorobenzyl)oxy)phenyl)
amino)quinazolin-6-yl]-2-furaldehyde (5 g, 10.6 mmoL) and 2-aminoethylmethylsulfone hydrochloride (3 g, 19 mmoL) in methanol (10 mL) and dichloromethane (25 mL) was charged with N,N-diisopropylethylamine (1.6 g, 12.7 mmoL) slowly under constant stirring at room temperature. The reaction mixture was stirred for 2-4 hours until reaction completion. The reaction mixture was charged with 10% Pt-C (500 mg) and stirred under hydrogen atmosphere (after evacuation) for 16-24 hours until reaction completion. The reaction mixture was further charged with methanol (25 mL) and dichloromethane (25 mL) and stirred for 12-16 hours. The obtained mixture was filtered, washed with 1 :1 mixture of methanol (20 mL) and dichloromethane (20 mL). The yellow filtrate thus obtained was slowly charged with a solution of p-toluenesulfonic acid monohydrate (2 g, 10.6 mmoL) in methanol (5 mL). The yellow solid which precipitated out was filtered and washed with 1 :1 mixture of methanol (20 mL) and dichloromethane (20 mL). The solid obtained was dried under vacuum at 40-45 °C to afford the monotosylate salt of Lapatinib (5 g, Yield = 61 %, HPLC purity >99%).
Example 3:
Preparation of /V-(3-chloro-4-{[(3-fluorophenyl)methyl]oxy}phenyl)-6-[5-({[2- (methylsulfonyl)ethyl]amino}methyl)-2-furanyl]-4-quinazolinamine 4-methylbenzene- sulfonate.
The suspension of 5-[4-((3-chloro-4-((3-fluorobenzyl)oxy)phenyl)
amino)quinazolin-6-yl]-2-furaldehyde (5 g, 10.6 mmoL) in methanol (25 mL) and dichloromethane (25 mL) was charged with 2-aminoethylmethylsulfone (1.4 g, 1 1.2 mmoL) slowly under constant stirring at room temperature. The reaction mixture was stirred for 2-4 hours until reaction completion and then the reaction mixture was charged with 5% Pd-C (500 mg) and stirred under hydrogen atmosphere (after evacuation) for
16-24 hours until reaction completion. The reaction mixture was further charged with methanol (25 mL) and dichloromethane (25 mL) and stirred for 12-16 hours. The obtained mixture was filtered, washed with 1 :1 mixture of methanol (20 mL) and dichloromethane (20 mL). The yellow filtrate thus obtained was slowly charged with a solution of p-toluenesulfonic acid monohydrate (2.2 g, 1 1.2 mmoL) in methanol (5 mL). The yellow solid which precipitated out was filtered and washed with 1 :1 mixture of methanol (20 mL) and dichloromethane (20 mL). The solid obtained was dried under vacuum at 40-45 °C to provide the monotosylate salt of Lapatinib (6.5 g, Yield = 81 %, HPLC purity >99%).
1HNMR (300MHz, CDCI3) δ 2.69 (dd, J=5.0, 2.2 Hz, 1 H), 2.82 (t, J=4.3 Hz, 1 H), 3.20- 3.27 (m, 2H), 3.51-3.58 (m, 1 H), 3.67-3.71 (m, 2H), 3.96-4.02 (m, 3H), 4.32 (s, 2H), 6.66 (d, J=8.7 Hz, 2H), 7.11 (d, J=8.7 Hz, 2H).
Example 4:
Preparation of A/-(3-chloro-4-{[(3-fluorophenyl)methyl]oxy}phenyl)-6-[5-({[2- (methylsulfonyl)ethyl]amino}methyl)-2-furanyl]-4-quinazolinamine 4-methylbenzene- sulfonate.
The suspension of 5-[4-((3-chloro-4-((3-fluorobenzyl)oxy)phenyl)amino)- quinazolin-6-yl]-2-furaldehyde (20 g, 42.2 mmoL) in methanol (100 mL) and
dichloromethane (60 mL) was charged with 2-aminoethylmethylsulfone (5.8 g, 46.4 mmoL) slowly under constant stirring at room temperature and then the reaction mixture was stirred for 2-4 hours until reaction completion. The reaction mixture was charged with 5% Pd-C (1 g) and stirred under hydrogen atmosphere (after evacuation) for 16-24 hours until reaction completion. The obtained mixture was filtered, washed with 3:1 mixture of methanol (40 mL) and dichloromethane (20 mL). The filtrate was distilled to low volume whereupon the obtained solution was slowly charged with a solution of p- toluenesulfonic acid monohydrate (8.8 g, 46.4 mmoL) in methanol (20 mL). The yellow solid which precipitated out was filtered and washed with 1 :3 mixture of methanol (10 mL) and dichloromethane (30 mL). The solid obtained was dried under vacuum at 40-45
°C to furnish the monotosylate salt of Lapatinib (23.7 g, Yield = 75%, HPLC purity >99%). HNMR (300MHz, CDCI3) δ 2.69 (dd, J=5.0, 2.2 Hz, 1 H), 2.82 (t, J=4.3 Hz, 1 H), 3.20- 3.27 (m, 2H), 3.51-3.58 (m, 1 H), 3.67-3.71 (m, 2H), 3.96-4.02 (m, 3H), 4.32 (s, 2H), 6.66 (d, J=8.7 Hz, 2H), 7.1 1 (d, J=8.7 Hz, 2H).
Example 5:
Preparation of A/-(3-chloro-4-{[(3-fluorophenyl)methyl]oxy}phenyl)-6-[5-({[2- (methylsulfonyl)ethyl]amino}methyl)-2-furanyl]-4-quinazolinamine 4-methylbenzene- sulfonate.
The suspension of 5-[4-((3-chloro-4-((3-fluorobenzyl)oxy)phenyl)amino)- quinazolin-6-yl]-2-furaldehyde (10 g, 21.1 mmoL) in dichloromethane (100 mL) was charged with a solution of 2-aminoethylmethylsulfone (5.8 g, 46.4 mmoL) in methanol (50 mL) slowly under constant stirring at room temperature. The reaction mixture was stirred for 2-4 hours until reaction completion and then was charged with 5% Pd-C (0.5 g) and stirred under hydrogen atmosphere at 25 psi pressure for 16-24 hours until reaction completion. The obtained mixture was filtered, washed with a 3:1 mixture of methanol (40 mL) and dichloromethane (20 mL). The filtrate was distilled to low volume, and the obtained solution was slowly charged with solution of p-toluenesulfonic acid monohydrate (4.4 g, 23.2 mmoL) in methanol (10 mL). The yellow solid which
precipitated out was filtered and washed with a 1 :1 mixture of methanol (20 mL) and dichloromethane (20 mL). The solid obtained was dried under vacuum at 40-45°C to give the monotosylate salt of Lapatinib (11 .4 g, Yield = 72%, HPLC purity >99%).
1HNMR (300MHz, CDCI3) δ 2.69 (dd, J=5.0, 2.2 Hz, 1 H), 2.82 (t, J=4.3 Hz, 1 H), 3.20- 3.27 (m, 2H), 3.51-3.58 (m, 1 H), 3.67-3.71 (m, 2H), 3.96-4.02 (m, 3H), 4.32 (s, 2H), 6.66 (d, J=8.7 Hz, 2H), 7.11 (d, J=8.7 Hz, 2H).
Example 6:
Preparation of A/-(3-chloro-4-{[(3-fluorophenyl)methyl]oxy}phenyl)-6-[5-({[2- (methylsulfonyl)ethyl]amino}methyl)-2-furanyl]-4-quinazolinamine 4- methylbenzenesulfonate.
The suspension of 5-[4-((3-chloro-4-((3-fluorobenzyl)oxy)phenyl)
amino)quinazolin-6-yl]-2-furaldehyde (10 g, 21.1 mmoL) in dichloromethane (100ml_) was charged with a solution of 2-aminoethylmethylsulfone (5.8 g, 46.4 mmoL) in methanol (50 ml_) slowly under constant stirring at room temperature. The reaction mixture was stirred for 2-4 hours until reaction completion. The reaction mixture was charged with 5% Pd-C (1.5 g) and stirred under hydrogen atmosphere using balloon pressure for 12-16 hours until reaction completion. The obtained mixture was filtered through Celite® pad and rinsed with methanol (30 ml_) and dichloromethane (10 ml_) mixture. The filtrate was distilled to a low volume and the solution was charged with toluene (50 ml_) followed by addition of the solution of p-toluenesulfonic acid
monohydrate (4.8 g, 25.3 mmoL) in methanol (25 ml_). The yellow solid precipitated out was filtered after 2-8 hours and washed with 1 :1 mixture of methanol and toluene (40 mL). The solid obtained was dried under vacuum at 40-45°C to provide the
monotosylate salt of Lapatinib (1 1.4 g, Yield = 93%, HPLC purity >99%).
1HNMR (300MHz, CDCI3) δ 2.69 (dd, J=5.0, 2.2 Hz, 1 H), 2.82 (t, J=4.3 Hz, 1 H), 3.20- 3.27 (m, 2H), 3.51-3.58 (m, 1 H), 3.67-3.71 (m, 2H), 3.96-4.02 (m, 3H), 4.32 (s, 2H), 6.66 (d, J=8.7 Hz, 2H), 7.1 1 (d, J=8.7 Hz, 2H).
Example 7:
Preparation of A/-(3-chloro-4-{[(3-fluorophenyl)methyl]oxy}phenyl)-6-[5-({[2- (methylsulfonyl)ethyl]amino}methyl)-2-furanyl]-4-quinazolinamine bis 4- methylbenzenesulfonate.
The suspension of 5-[4-((3-chloro-4-((3-fluorobenzyl)oxy)phenyl)
amino)quinazolin-6-yl]-2-furaldehyde (5 g, 10.6 mmoL) in dichloromethane (50ml_) was charged with a solution of 2-aminoethylmethylsulfone (3.2 g, 1 1.7mmoL) in methanol (25ml_) slowly under constant stirring at room temperature. The reaction mixture was stirred for 2-4 hours until reaction completion. The reaction mixture was charged with
5% Pd-C (750mg) and stirred under hydrogen atmosphere using balloon pressure for 12-16 hours until reaction completion. The obtained mixture was filtered through Celite® pad and rinsed with methanol (5 mL) and dichloromethane (15 mL) mixture. The filtrate was distilled to low volume and the solution was charged with dichloromethane (25 mL) followed by addition of the solution of p-toluenesulfonic acid monohydrate (4.4 g, 23.3 mmoL) in methanol (10 mL). The yellow solid which precipitated out was filtered after 2- 8 hours and washed with 1 :1 mixture of methanol and dichloromethane (20 mL). The solid obtained was dried under vacuum at 40-45°C to provide Lapatinib (1 1.4 g, Yield = 93%, HPLC purity >99%).
Example 8:
Preparation of /V-(3-chloro-4-{[(3-fluorophenyl)methyl]oxy}phenyl)-6-[5-({[2- (methylsulfonyl)ethyl]amino}methyl)-2-furanyl]-4-quinazolinamine
The suspension of 5-[4-((3-chloro-4-((3-fluorobenzyl)oxy)phenyl)
amino)quinazolin-6-yl]-2-furaldehyde (5g, 10.6 mmoL) in dichloromethane (50 mL) was charged with a solution of 2-aminoethylmethylsulfone (3.2 g, 1 1.7 mmoL) in methanol (25 mL) slowly under constant stirring at room temperature. The reaction mixture was stirred for 2-4 hours until reaction completion and then was charged with 5% Pd-C (750 mg) and stirred under a hydrogen atmosphere using balloon pressure for 12-16 hours until reaction completion. The obtained mixture was filtered through Celite® pad and rinsed with methanol (5 mL) and dichloromethane (15 mL) mixture. The filtrate was distilled to low volume and the obtained solution was charged with methanol (25 mL). The reaction mixture was stirred for 2-6 hours and the yellow solid which precipitated out was filtered and washed with methanol (10 mL). The solid obtained was dried under vacuum at 40-45°C to furnish Lapatinib freebase (5 g, Yield = 85%, HPLC purity >99%).
Although various embodiments of the invention are disclosed herein, many adaptations and modifications may be made within the scope of the invention in accordance with the common general knowledge of those skilled in this art. Such modifications include the substitution of known equivalents for any aspect of the
invention in order to achieve the same result in substantially the same way. Numeric ranges are inclusive of the numbers defining the range. Furthermore, numeric ranges are provided so that the range of values is recited in addition to the individual values within the recited range being specifically recited in the absence of the range. The word "comprising" is used herein as an open-ended term, substantially equivalent to the phrase "including, but not limited to", and the word "comprises" has a corresponding meaning. As used herein, the singular forms "a", "an" and "the" include plural references unless the context clearly dictates otherwise. Thus, for example, reference to "a thing" includes more than one such thing. Citation of references herein is not an admission that such references are prior art to the present invention. Furthermore, material appearing in the background section of the specification is not an admission that such material is prior art to the invention. Any priority document(s) are incorporated herein by reference as if each individual priority document were specifically and individually indicated to be incorporated by reference herein and as though fully set forth herein. The invention includes all embodiments and variations substantially as hereinbefore described and with reference to the examples.
Claims (14)
1. A process for the preparation of Lapatinib or a ditosylate salt thereof comprising: i) treating of a compound of Formula II:
II
with 2-methanesulphonylethylamine or a salt thereof, thereby forming a product; and ii) reducing the product in the presence of a suitable hydrogenation catalyst, thereby forming Lapatinib free base of Formula IV:
2. The process of claim 1 further comprising converting the compound of Formula IV to Lapatinib ditosylate of Formula I:
o
3. The process of claim 2 wherein the compound of Formula IV is not isolated before converting the compound of Formula IV to the Lapatinib ditosylate of Formula I.
4. The process of claim 2 or 3 wherein the converting of the compound of Formula IV to the Lapatinib ditosylate of Formula I comprises:
i) treating the compound of Formula IV with about 0.8 to about 1.2 equivalents of p-toluenesulfonic acid, thereby forming monotosylate of Formula V:
and
ii) treating the compound of Formula V with about 0.8 to about 1.2 equivalents of p-toluenesulfonic acid, thereby forming the Lapatinib ditosylate of Formula I.
5. The process of claim 2 or 3 wherein the conversion of a compound of Formula IV to Lapatinib ditosylate of Formula I comprises treatment of a compound of Formula IV with about 1.8 to about 2.2 equivalents of p-toluenesulfonic acid.
6. The process of claim 3 whereby the process for preparation of Lapatinib ditosylate is a one-pot process in which no intermediates are isolated.
7. The process of any one of claims 1 to 6 wherein the treating of the compound of Formula II with 2-methanesulphonylethylamine or a salt thereof occurs in the presence of a first base.
8. The process of claim 7 wherein the first base is N,N-diisopropylethylamine.
9. The process of any one of claims 1 to 8 wherein the hydrogenation catalyst is selected from the group consisting of palladium on carbon, platinum on carbon and Raney nickel.
10. The process of any one of claims 1 to 8 wherein the hydrogenation catalyst is palladium on carbon.
11. The process of any one of claims 1 to 8 wherein the hydrogenation catalyst is 5% palladium on carbon.
12. The process of any one of claims 1 to 11 wherein the treating of the compound of Formula II with 2-methanesulphonylethylamine or a salt thereof occurs in the presence of a first solvent selected from the group consisting of alcohols and halogenated hydrocarbons.
13. The process of any one of claims 1 to 11 wherein the treating of the compound of Formula II with 2-methanesulphonylethylamine or a salt thereof occurs in the presence of a first solvent selected from the group consisting of methanol, dichloromethane and mixtures thereof.
14. A composition comprising i) at least one of Lapatinib and Lapatinib ditosylate and ii) at least one of palladium, platinum and Raney nickel.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US61/427,092 | 2010-12-23 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| AU2011349026A1 true AU2011349026A1 (en) | 2013-08-08 |
Family
ID=
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8664389B2 (en) | Process for the preparation of lapatinib and it's pharmaceutically acceptable salts | |
| US10167275B2 (en) | AZD9291 intermediate and preparation method therefor | |
| US20100197915A1 (en) | Lapatinib intermediates | |
| US8952154B2 (en) | Process for the preparation of lapatinib and its ditosylate salt | |
| US20120245351A1 (en) | Process for the preparation of lapatinib and its pharmaceutically acceptable salts | |
| RU2563630C1 (en) | Method of obtaining hydrochloride of 1-(3,4-dichloro-2-fluorophenylamino)-7-methoxyquinazolin-6-yloxy)piperidin-1-yl)prop-2-en-1-one and intermediate compounds, applied in it | |
| CN107922350B (en) | Novel benzimidazole compounds and medicinal use thereof | |
| CN101102999B (en) | Novel process for the preparation of substituted indoles | |
| AU2011349026A1 (en) | A process for the preparation of Lapatinib and its ditosylate salt | |
| JP7288295B2 (en) | A Novel Crystalline Form of an Intermediate in the Production of Alogliptin Benzoate | |
| EP3089961B1 (en) | Process for the manufacture of (e)-4-n,n-dialkylamino crotonic acid in hx salt form and use thereof for synthesis of egfr tyrosine kinase inhibitors | |
| WO2014183560A1 (en) | Afatinib and preparation method of intermediate thereof | |
| WO2014170910A1 (en) | Process for the preparation of lapatinib | |
| KR20120007059A (en) | 4- (3-chloro-2-fluoro-anilino) -7-methoxy-6 [[1- (N-methylcarbamoylmethyl) -piperidin-4-yl] oxy] quinazolin Manufacturing method | |
| CN110612289B (en) | Deuterated benzimidazole compound and its medical use | |
| US20090312351A1 (en) | Processes for the Preparation of Alfuzosin | |
| US8993579B2 (en) | Polymorphic forms of Lapatinib ditosylate and processes for their preparation | |
| JP2016104717A (en) | Manufacturing method of erlotinib | |
| US8987448B2 (en) | Preparation of anhydrous and hydrated polymorphs 4-amino-5-fluoro-3-[6-(4-methylpiperazin-1-YL)-1H-benzimidazol-2-YL]-1H-quinolin-2-one-lactic acid salt | |
| WO2020136671A1 (en) | Improved process for the preparation of lapatinib base and it's anhydrous ditosylate salt | |
| CN106543007B (en) | A kind of synthetic method of the chloro- 4- of 3- (3- fluorine benzyloxy) nitrobenzene | |
| WO2022029795A1 (en) | An environment friendly process for the preparation of Lapatinib Ditosylate of Formula 1(b) | |
| CN111217821A (en) | Preparation method of series of dioxanoquinazoline derivatives | |
| CN112912373A (en) | Angiogenesis inhibitor, preparation method and application thereof | |
| HK40019697A (en) | Novel benzimidazolone compound and pharmaceutical use thereof |