AU2011347203A1 - Derivatives of glyco-CF2-serine and glyco-CF2-threonine - Google Patents
Derivatives of glyco-CF2-serine and glyco-CF2-threonineInfo
- Publication number
- AU2011347203A1 AU2011347203A1 AU2011347203A AU2011347203A AU2011347203A1 AU 2011347203 A1 AU2011347203 A1 AU 2011347203A1 AU 2011347203 A AU2011347203 A AU 2011347203A AU 2011347203 A AU2011347203 A AU 2011347203A AU 2011347203 A1 AU2011347203 A1 AU 2011347203A1
- Authority
- AU
- Australia
- Prior art keywords
- group
- compound
- alkyl
- aryl
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004473 Threonine Substances 0.000 title claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 328
- 125000000217 alkyl group Chemical group 0.000 claims description 99
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 78
- 239000000203 mixture Substances 0.000 claims description 45
- 238000003786 synthesis reaction Methods 0.000 claims description 44
- 125000003118 aryl group Chemical group 0.000 claims description 42
- 230000015572 biosynthetic process Effects 0.000 claims description 42
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 39
- 229910052739 hydrogen Inorganic materials 0.000 claims description 30
- 125000005843 halogen group Chemical group 0.000 claims description 28
- -1 cyclic acetal Chemical class 0.000 claims description 22
- 239000001257 hydrogen Substances 0.000 claims description 20
- 150000001413 amino acids Chemical class 0.000 claims description 18
- 125000000896 monocarboxylic acid group Chemical group 0.000 claims description 18
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 claims description 16
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 claims description 16
- 125000001072 heteroaryl group Chemical group 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 125000006272 (C3-C7) cycloalkyl group Chemical group 0.000 claims description 13
- 125000000592 heterocycloalkyl group Chemical group 0.000 claims description 13
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 13
- 230000009467 reduction Effects 0.000 claims description 10
- 239000000427 antigen Substances 0.000 claims description 9
- 108091007433 antigens Proteins 0.000 claims description 9
- 102000036639 antigens Human genes 0.000 claims description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims description 9
- 239000002537 cosmetic Substances 0.000 claims description 9
- 150000003839 salts Chemical class 0.000 claims description 9
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims description 8
- 229910052731 fluorine Chemical group 0.000 claims description 8
- 125000001153 fluoro group Chemical group F* 0.000 claims description 8
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 7
- 238000005984 hydrogenation reaction Methods 0.000 claims description 7
- 230000003278 mimic effect Effects 0.000 claims description 7
- 238000006467 substitution reaction Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 102000004169 proteins and genes Human genes 0.000 claims description 6
- 108090000623 proteins and genes Proteins 0.000 claims description 6
- 238000011282 treatment Methods 0.000 claims description 6
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 claims description 5
- 229940022399 cancer vaccine Drugs 0.000 claims description 5
- 239000003814 drug Substances 0.000 claims description 5
- XXJGBENTLXFVFI-UHFFFAOYSA-N 1-amino-methylene Chemical group N[CH2] XXJGBENTLXFVFI-UHFFFAOYSA-N 0.000 claims description 4
- 208000035143 Bacterial infection Diseases 0.000 claims description 4
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims description 4
- 230000001580 bacterial effect Effects 0.000 claims description 4
- 238000009566 cancer vaccine Methods 0.000 claims description 4
- 239000003937 drug carrier Substances 0.000 claims description 4
- 208000027866 inflammatory disease Diseases 0.000 claims description 4
- 238000004321 preservation Methods 0.000 claims description 4
- 230000003612 virological effect Effects 0.000 claims description 4
- 239000012620 biological material Substances 0.000 claims description 3
- 230000018044 dehydration Effects 0.000 claims description 3
- 238000006297 dehydration reaction Methods 0.000 claims description 3
- 210000000056 organ Anatomy 0.000 claims description 3
- 230000002265 prevention Effects 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 230000003712 anti-aging effect Effects 0.000 claims description 2
- VUWZPRWSIVNGKG-UHFFFAOYSA-N fluoromethane Chemical group F[CH2] VUWZPRWSIVNGKG-UHFFFAOYSA-N 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims description 2
- 229940037201 oris Drugs 0.000 claims description 2
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 88
- 238000000034 method Methods 0.000 description 71
- 239000000243 solution Substances 0.000 description 64
- 238000005481 NMR spectroscopy Methods 0.000 description 56
- 229910001868 water Inorganic materials 0.000 description 51
- 239000011734 sodium Substances 0.000 description 42
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 35
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 28
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 25
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 24
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 24
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 24
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 24
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 22
- 238000004587 chromatography analysis Methods 0.000 description 21
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical class CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 20
- 210000004027 cell Anatomy 0.000 description 20
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 19
- 229940024606 amino acid Drugs 0.000 description 19
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 102000005936 beta-Galactosidase Human genes 0.000 description 17
- 108010005774 beta-Galactosidase Proteins 0.000 description 17
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 17
- 239000011541 reaction mixture Substances 0.000 description 17
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 16
- 235000001014 amino acid Nutrition 0.000 description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 14
- 239000002253 acid Substances 0.000 description 14
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 235000019341 magnesium sulphate Nutrition 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 239000012298 atmosphere Substances 0.000 description 11
- 238000000746 purification Methods 0.000 description 11
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 10
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 10
- 102000005840 alpha-Galactosidase Human genes 0.000 description 10
- 108010030291 alpha-Galactosidase Proteins 0.000 description 10
- 229940125797 compound 12 Drugs 0.000 description 10
- 238000001819 mass spectrum Methods 0.000 description 10
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 10
- 239000012044 organic layer Substances 0.000 description 10
- 229910052727 yttrium Inorganic materials 0.000 description 10
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 9
- 229940125898 compound 5 Drugs 0.000 description 9
- 239000010410 layer Substances 0.000 description 9
- 239000002609 medium Substances 0.000 description 9
- 239000012429 reaction media Substances 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 8
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 8
- 239000012074 organic phase Substances 0.000 description 8
- 125000004430 oxygen atom Chemical group O* 0.000 description 8
- 239000011369 resultant mixture Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 206010028980 Neoplasm Diseases 0.000 description 7
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 7
- 150000001720 carbohydrates Chemical class 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 229910052938 sodium sulfate Inorganic materials 0.000 description 7
- 235000011152 sodium sulphate Nutrition 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 6
- UNILWMWFPHPYOR-KXEYIPSPSA-M 1-[6-[2-[3-[3-[3-[2-[2-[3-[[2-[2-[[(2r)-1-[[2-[[(2r)-1-[3-[2-[2-[3-[[2-(2-amino-2-oxoethoxy)acetyl]amino]propoxy]ethoxy]ethoxy]propylamino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-[(2r)-2,3-di(hexadecanoyloxy)propyl]sulfanyl-1-oxopropan-2-yl Chemical compound O=C1C(SCCC(=O)NCCCOCCOCCOCCCNC(=O)COCC(=O)N[C@@H](CSC[C@@H](COC(=O)CCCCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCC)C(=O)NCC(=O)N[C@H](CO)C(=O)NCCCOCCOCCOCCCNC(=O)COCC(N)=O)CC(=O)N1CCNC(=O)CCCCCN\1C2=CC=C(S([O-])(=O)=O)C=C2CC/1=C/C=C/C=C/C1=[N+](CC)C2=CC=C(S([O-])(=O)=O)C=C2C1 UNILWMWFPHPYOR-KXEYIPSPSA-M 0.000 description 6
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 6
- 239000005695 Ammonium acetate Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000004480 active ingredient Substances 0.000 description 6
- 235000019257 ammonium acetate Nutrition 0.000 description 6
- 229940043376 ammonium acetate Drugs 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 6
- 239000012267 brine Substances 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 201000011510 cancer Diseases 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 239000000284 extract Substances 0.000 description 6
- 235000003642 hunger Nutrition 0.000 description 6
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 6
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 6
- 230000037351 starvation Effects 0.000 description 6
- 235000000346 sugar Nutrition 0.000 description 6
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 5
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 5
- AZWXAPCAJCYGIA-UHFFFAOYSA-N bis(2-methylpropyl)alumane Chemical compound CC(C)C[AlH]CC(C)C AZWXAPCAJCYGIA-UHFFFAOYSA-N 0.000 description 5
- 229940125773 compound 10 Drugs 0.000 description 5
- 229940125782 compound 2 Drugs 0.000 description 5
- SIPUZPBQZHNSDW-UHFFFAOYSA-N diisobutylaluminium hydride Substances CC(C)C[Al]CC(C)C SIPUZPBQZHNSDW-UHFFFAOYSA-N 0.000 description 5
- 150000002243 furanoses Chemical class 0.000 description 5
- 150000002430 hydrocarbons Chemical group 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 5
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 5
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 description 5
- 235000018102 proteins Nutrition 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 239000000741 silica gel Substances 0.000 description 5
- 229910002027 silica gel Inorganic materials 0.000 description 5
- 235000011006 sodium potassium tartrate Nutrition 0.000 description 5
- IWZSHWBGHQBIML-ZGGLMWTQSA-N (3S,8S,10R,13S,14S,17S)-17-isoquinolin-7-yl-N,N,10,13-tetramethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-amine Chemical compound CN(C)[C@H]1CC[C@]2(C)C3CC[C@@]4(C)[C@@H](CC[C@@H]4c4ccc5ccncc5c4)[C@@H]3CC=C2C1 IWZSHWBGHQBIML-ZGGLMWTQSA-N 0.000 description 4
- QRDAPCMJAOQZSU-KQQUZDAGSA-N (e)-3-[4-[(e)-3-(3-fluorophenyl)-3-oxoprop-1-enyl]-1-methylpyrrol-2-yl]-n-hydroxyprop-2-enamide Chemical compound C1=C(\C=C\C(=O)NO)N(C)C=C1\C=C\C(=O)C1=CC=CC(F)=C1 QRDAPCMJAOQZSU-KQQUZDAGSA-N 0.000 description 4
- ONBQEOIKXPHGMB-VBSBHUPXSA-N 1-[2-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-4,6-dihydroxyphenyl]-3-(4-hydroxyphenyl)propan-1-one Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=CC(O)=C1C(=O)CCC1=CC=C(O)C=C1 ONBQEOIKXPHGMB-VBSBHUPXSA-N 0.000 description 4
- 102000003886 Glycoproteins Human genes 0.000 description 4
- 108090000288 Glycoproteins Proteins 0.000 description 4
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 4
- 102000015636 Oligopeptides Human genes 0.000 description 4
- 108010038807 Oligopeptides Proteins 0.000 description 4
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 4
- LNUFLCYMSVYYNW-ZPJMAFJPSA-N [(2r,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[[(3s,5s,8r,9s,10s,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-disulfo Chemical compound O([C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1C[C@@H]2CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)[C@H]1O[C@H](COS(O)(=O)=O)[C@@H](OS(O)(=O)=O)[C@H](OS(O)(=O)=O)[C@H]1OS(O)(=O)=O LNUFLCYMSVYYNW-ZPJMAFJPSA-N 0.000 description 4
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 4
- QWCKQJZIFLGMSD-UHFFFAOYSA-N alpha-aminobutyric acid Chemical compound CCC(N)C(O)=O QWCKQJZIFLGMSD-UHFFFAOYSA-N 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 229940126142 compound 16 Drugs 0.000 description 4
- 229940125810 compound 20 Drugs 0.000 description 4
- FTKASJMIPSSXBP-UHFFFAOYSA-N ethyl 2-nitroacetate Chemical compound CCOC(=O)C[N+]([O-])=O FTKASJMIPSSXBP-UHFFFAOYSA-N 0.000 description 4
- 210000002950 fibroblast Anatomy 0.000 description 4
- 125000005519 fluorenylmethyloxycarbonyl group Chemical group 0.000 description 4
- 239000007903 gelatin capsule Substances 0.000 description 4
- JAXFJECJQZDFJS-XHEPKHHKSA-N gtpl8555 Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)N[C@H](B1O[C@@]2(C)[C@H]3C[C@H](C3(C)C)C[C@H]2O1)CCC1=CC=C(F)C=C1 JAXFJECJQZDFJS-XHEPKHHKSA-N 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000012266 salt solution Substances 0.000 description 4
- 239000012279 sodium borohydride Substances 0.000 description 4
- 229910000033 sodium borohydride Inorganic materials 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 230000035899 viability Effects 0.000 description 4
- ASGMFNBUXDJWJJ-JLCFBVMHSA-N (1R,3R)-3-[[3-bromo-1-[4-(5-methyl-1,3,4-thiadiazol-2-yl)phenyl]pyrazolo[3,4-d]pyrimidin-6-yl]amino]-N,1-dimethylcyclopentane-1-carboxamide Chemical compound BrC1=NN(C2=NC(=NC=C21)N[C@H]1C[C@@](CC1)(C(=O)NC)C)C1=CC=C(C=C1)C=1SC(=NN=1)C ASGMFNBUXDJWJJ-JLCFBVMHSA-N 0.000 description 3
- AOSZTAHDEDLTLQ-AZKQZHLXSA-N (1S,2S,4R,8S,9S,11S,12R,13S,19S)-6-[(3-chlorophenyl)methyl]-12,19-difluoro-11-hydroxy-8-(2-hydroxyacetyl)-9,13-dimethyl-6-azapentacyclo[10.8.0.02,9.04,8.013,18]icosa-14,17-dien-16-one Chemical compound C([C@@H]1C[C@H]2[C@H]3[C@]([C@]4(C=CC(=O)C=C4[C@@H](F)C3)C)(F)[C@@H](O)C[C@@]2([C@@]1(C1)C(=O)CO)C)N1CC1=CC=CC(Cl)=C1 AOSZTAHDEDLTLQ-AZKQZHLXSA-N 0.000 description 3
- GLGNXYJARSMNGJ-VKTIVEEGSA-N (1s,2s,3r,4r)-3-[[5-chloro-2-[(1-ethyl-6-methoxy-2-oxo-4,5-dihydro-3h-1-benzazepin-7-yl)amino]pyrimidin-4-yl]amino]bicyclo[2.2.1]hept-5-ene-2-carboxamide Chemical compound CCN1C(=O)CCCC2=C(OC)C(NC=3N=C(C(=CN=3)Cl)N[C@H]3[C@H]([C@@]4([H])C[C@@]3(C=C4)[H])C(N)=O)=CC=C21 GLGNXYJARSMNGJ-VKTIVEEGSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229940126657 Compound 17 Drugs 0.000 description 3
- 229940127007 Compound 39 Drugs 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 102000002464 Galactosidases Human genes 0.000 description 3
- 108010093031 Galactosidases Proteins 0.000 description 3
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 3
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 3
- OPFJDXRVMFKJJO-ZHHKINOHSA-N N-{[3-(2-benzamido-4-methyl-1,3-thiazol-5-yl)-pyrazol-5-yl]carbonyl}-G-dR-G-dD-dD-dD-NH2 Chemical compound S1C(C=2NN=C(C=2)C(=O)NCC(=O)N[C@H](CCCN=C(N)N)C(=O)NCC(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(N)=O)=C(C)N=C1NC(=O)C1=CC=CC=C1 OPFJDXRVMFKJJO-ZHHKINOHSA-N 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 235000004279 alanine Nutrition 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000003833 cell viability Effects 0.000 description 3
- 229940125758 compound 15 Drugs 0.000 description 3
- 229940126086 compound 21 Drugs 0.000 description 3
- 229940127573 compound 38 Drugs 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- PIDFDZJZLOTZTM-KHVQSSSXSA-N ombitasvir Chemical compound COC(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@H]1C(=O)NC1=CC=C([C@H]2N([C@@H](CC2)C=2C=CC(NC(=O)[C@H]3N(CCC3)C(=O)[C@@H](NC(=O)OC)C(C)C)=CC=2)C=2C=CC(=CC=2)C(C)(C)C)C=C1 PIDFDZJZLOTZTM-KHVQSSSXSA-N 0.000 description 3
- 150000002923 oximes Chemical class 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 229960002429 proline Drugs 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 238000010898 silica gel chromatography Methods 0.000 description 3
- 210000001626 skin fibroblast Anatomy 0.000 description 3
- 238000004809 thin layer chromatography Methods 0.000 description 3
- 239000011135 tin Substances 0.000 description 3
- 230000001173 tumoral effect Effects 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- WWTBZEKOSBFBEM-SPWPXUSOSA-N (2s)-2-[[2-benzyl-3-[hydroxy-[(1r)-2-phenyl-1-(phenylmethoxycarbonylamino)ethyl]phosphoryl]propanoyl]amino]-3-(1h-indol-3-yl)propanoic acid Chemical compound N([C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)O)C(=O)C(CP(O)(=O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1C=CC=CC=1)CC1=CC=CC=C1 WWTBZEKOSBFBEM-SPWPXUSOSA-N 0.000 description 2
- MNIPVWXWSPXERA-IDNZQHFXSA-N (6r,7r)-1-[(4s,5r)-4-acetyloxy-5-methyl-3-methylidene-6-phenylhexyl]-4,7-dihydroxy-6-(11-phenoxyundecanoyloxy)-2,8-dioxabicyclo[3.2.1]octane-3,4,5-tricarboxylic acid Chemical compound C([C@@H](C)[C@H](OC(C)=O)C(=C)CCC12[C@@H]([C@@H](OC(=O)CCCCCCCCCCOC=3C=CC=CC=3)C(O1)(C(O)=O)C(O)(C(O2)C(O)=O)C(O)=O)O)C1=CC=CC=C1 MNIPVWXWSPXERA-IDNZQHFXSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- TVTJUIAKQFIXCE-HUKYDQBMSA-N 2-amino-9-[(2R,3S,4S,5R)-4-fluoro-3-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-7-prop-2-ynyl-1H-purine-6,8-dione Chemical compound NC=1NC(C=2N(C(N(C=2N=1)[C@@H]1O[C@@H]([C@H]([C@H]1O)F)CO)=O)CC#C)=O TVTJUIAKQFIXCE-HUKYDQBMSA-N 0.000 description 2
- PECYZEOJVXMISF-UHFFFAOYSA-N 3-aminoalanine Chemical compound [NH3+]CC(N)C([O-])=O PECYZEOJVXMISF-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 108010053481 Antifreeze Proteins Proteins 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229940126650 Compound 3f Drugs 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 102000002068 Glycopeptides Human genes 0.000 description 2
- 108010015899 Glycopeptides Proteins 0.000 description 2
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 2
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 2
- 241000463109 Haloprofundus marisrubri Species 0.000 description 2
- DIIWSYPKAJVXBV-UHFFFAOYSA-N Hantzch dihydropyridine Natural products CCOC(=O)C1=CC(C(=O)OCC)=C(C)N=C1C DIIWSYPKAJVXBV-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- WTDHULULXKLSOZ-UHFFFAOYSA-N Hydroxylamine hydrochloride Chemical compound Cl.ON WTDHULULXKLSOZ-UHFFFAOYSA-N 0.000 description 2
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- QIAFMBKCNZACKA-UHFFFAOYSA-N N-benzoylglycine Chemical compound OC(=O)CNC(=O)C1=CC=CC=C1 QIAFMBKCNZACKA-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- 229910000564 Raney nickel Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000005864 Sulphur Substances 0.000 description 2
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 239000001166 ammonium sulphate Substances 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical compound NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 description 2
- 239000011260 aqueous acid Substances 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- IADUEWIQBXOCDZ-UHFFFAOYSA-N azetidine-2-carboxylic acid Chemical compound OC(=O)C1CCN1 IADUEWIQBXOCDZ-UHFFFAOYSA-N 0.000 description 2
- HSDAJNMJOMSNEV-UHFFFAOYSA-N benzyl chloroformate Chemical compound ClC(=O)OCC1=CC=CC=C1 HSDAJNMJOMSNEV-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 229940126208 compound 22 Drugs 0.000 description 2
- 229940125851 compound 27 Drugs 0.000 description 2
- 229940126214 compound 3 Drugs 0.000 description 2
- 239000012059 conventional drug carrier Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000010511 deprotection reaction Methods 0.000 description 2
- NKLCNNUWBJBICK-UHFFFAOYSA-N dess–martin periodinane Chemical compound C1=CC=C2I(OC(=O)C)(OC(C)=O)(OC(C)=O)OC(=O)C2=C1 NKLCNNUWBJBICK-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- LJXTYJXBORAIHX-UHFFFAOYSA-N diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OCC)C1 LJXTYJXBORAIHX-UHFFFAOYSA-N 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 150000002256 galaktoses Chemical class 0.000 description 2
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 229960002591 hydroxyproline Drugs 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 238000009169 immunotherapy Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000012280 lithium aluminium hydride Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 238000005897 peptide coupling reaction Methods 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 150000003214 pyranose derivatives Chemical class 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical compound C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- ILMRJRBKQSSXGY-UHFFFAOYSA-N tert-butyl(dimethyl)silicon Chemical group C[Si](C)C(C)(C)C ILMRJRBKQSSXGY-UHFFFAOYSA-N 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- USQHEVWOPJDAAX-PHDIDXHHSA-N (1r,2r)-2-aminocyclohexane-1-carboxylic acid Chemical compound N[C@@H]1CCCC[C@H]1C(O)=O USQHEVWOPJDAAX-PHDIDXHHSA-N 0.000 description 1
- JWYOAMOZLZXDER-RFZPGFLSSA-N (1r,2r)-2-azaniumylcyclopentane-1-carboxylate Chemical compound N[C@@H]1CCC[C@H]1C(O)=O JWYOAMOZLZXDER-RFZPGFLSSA-N 0.000 description 1
- SZUVGFMDDVSKSI-WIFOCOSTSA-N (1s,2s,3s,5r)-1-(carboxymethyl)-3,5-bis[(4-phenoxyphenyl)methyl-propylcarbamoyl]cyclopentane-1,2-dicarboxylic acid Chemical compound O=C([C@@H]1[C@@H]([C@](CC(O)=O)([C@H](C(=O)N(CCC)CC=2C=CC(OC=3C=CC=CC=3)=CC=2)C1)C(O)=O)C(O)=O)N(CCC)CC(C=C1)=CC=C1OC1=CC=CC=C1 SZUVGFMDDVSKSI-WIFOCOSTSA-N 0.000 description 1
- HFVMEOPYDLEHBR-UHFFFAOYSA-N (2-fluorophenyl)-phenylmethanol Chemical compound C=1C=CC=C(F)C=1C(O)C1=CC=CC=C1 HFVMEOPYDLEHBR-UHFFFAOYSA-N 0.000 description 1
- IUSARDYWEPUTPN-OZBXUNDUSA-N (2r)-n-[(2s,3r)-4-[[(4s)-6-(2,2-dimethylpropyl)spiro[3,4-dihydropyrano[2,3-b]pyridine-2,1'-cyclobutane]-4-yl]amino]-3-hydroxy-1-[3-(1,3-thiazol-2-yl)phenyl]butan-2-yl]-2-methoxypropanamide Chemical compound C([C@H](NC(=O)[C@@H](C)OC)[C@H](O)CN[C@@H]1C2=CC(CC(C)(C)C)=CN=C2OC2(CCC2)C1)C(C=1)=CC=CC=1C1=NC=CS1 IUSARDYWEPUTPN-OZBXUNDUSA-N 0.000 description 1
- YONLFQNRGZXBBF-ZIAGYGMSSA-N (2r,3r)-2,3-dibenzoyloxybutanedioic acid Chemical compound O([C@@H](C(=O)O)[C@@H](OC(=O)C=1C=CC=CC=1)C(O)=O)C(=O)C1=CC=CC=C1 YONLFQNRGZXBBF-ZIAGYGMSSA-N 0.000 description 1
- SAAQPSNNIOGFSQ-LURJTMIESA-N (2s)-2-(pyridin-4-ylamino)propanoic acid Chemical compound OC(=O)[C@H](C)NC1=CC=NC=C1 SAAQPSNNIOGFSQ-LURJTMIESA-N 0.000 description 1
- PDRJLZDUOULRHE-ZETCQYMHSA-N (2s)-2-amino-3-pyridin-2-ylpropanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=N1 PDRJLZDUOULRHE-ZETCQYMHSA-N 0.000 description 1
- LJRDOKAZOAKLDU-UDXJMMFXSA-N (2s,3s,4r,5r,6r)-5-amino-2-(aminomethyl)-6-[(2r,3s,4r,5s)-5-[(1r,2r,3s,5r,6s)-3,5-diamino-2-[(2s,3r,4r,5s,6r)-3-amino-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-hydroxycyclohexyl]oxy-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxyoxane-3,4-diol;sulfuric ac Chemical compound OS(O)(=O)=O.N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)N)O[C@@H]1CO LJRDOKAZOAKLDU-UDXJMMFXSA-N 0.000 description 1
- JAEIBKXSIXOLOL-SCSAIBSYSA-N (3r)-pyrrolidin-1-ium-3-carboxylate Chemical compound OC(=O)[C@@H]1CCNC1 JAEIBKXSIXOLOL-SCSAIBSYSA-N 0.000 description 1
- HUWSZNZAROKDRZ-RRLWZMAJSA-N (3r,4r)-3-azaniumyl-5-[[(2s,3r)-1-[(2s)-2,3-dicarboxypyrrolidin-1-yl]-3-methyl-1-oxopentan-2-yl]amino]-5-oxo-4-sulfanylpentane-1-sulfonate Chemical compound OS(=O)(=O)CC[C@@H](N)[C@@H](S)C(=O)N[C@@H]([C@H](C)CC)C(=O)N1CCC(C(O)=O)[C@H]1C(O)=O HUWSZNZAROKDRZ-RRLWZMAJSA-N 0.000 description 1
- VHWBYQPKMIHOSS-SECBINFHSA-N (4r)-4-amino-5-(4-hydroxyphenyl)pentanoic acid Chemical compound OC(=O)CC[C@@H](N)CC1=CC=C(O)C=C1 VHWBYQPKMIHOSS-SECBINFHSA-N 0.000 description 1
- JPYGFLFUDLRNKX-SCSAIBSYSA-N (4r)-4-amino-5-hydroxypentanoic acid Chemical compound OC[C@H](N)CCC(O)=O JPYGFLFUDLRNKX-SCSAIBSYSA-N 0.000 description 1
- ONTGVUKSHAFZCY-ZCFIWIBFSA-N (4r)-4-aminoheptanethioic s-acid Chemical compound CCC[C@@H](N)CCC(S)=O ONTGVUKSHAFZCY-ZCFIWIBFSA-N 0.000 description 1
- HYYFSIISRIDZPM-ZCFIWIBFSA-N (4r)-4-azaniumyl-5-methylhexanoate Chemical compound CC(C)[C@H](N)CCC(O)=O HYYFSIISRIDZPM-ZCFIWIBFSA-N 0.000 description 1
- URBAOHLJWLYLQE-SNVBAGLBSA-N (4r)-4-azaniumyl-5-phenylpentanoate Chemical compound OC(=O)CC[C@@H](N)CC1=CC=CC=C1 URBAOHLJWLYLQE-SNVBAGLBSA-N 0.000 description 1
- PJBIRKFNLCOMSB-ZETCQYMHSA-N (4s)-4,8-diaminooctanoic acid Chemical compound NCCCC[C@H](N)CCC(O)=O PJBIRKFNLCOMSB-ZETCQYMHSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- OXFGRWIKQDSSLY-UHFFFAOYSA-N 1,2,3,4-tetrahydroisoquinolin-2-ium-1-carboxylate Chemical compound C1=CC=C2C(C(=O)O)NCCC2=C1 OXFGRWIKQDSSLY-UHFFFAOYSA-N 0.000 description 1
- BWKMGYQJPOAASG-UHFFFAOYSA-N 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid Chemical compound C1=CC=C2CNC(C(=O)O)CC2=C1 BWKMGYQJPOAASG-UHFFFAOYSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- FVTVMQPGKVHSEY-UHFFFAOYSA-N 1-AMINOCYCLOBUTANE CARBOXYLIC ACID Chemical compound OC(=O)C1(N)CCC1 FVTVMQPGKVHSEY-UHFFFAOYSA-N 0.000 description 1
- NILQLFBWTXNUOE-UHFFFAOYSA-N 1-aminocyclopentanecarboxylic acid Chemical compound OC(=O)C1(N)CCCC1 NILQLFBWTXNUOE-UHFFFAOYSA-N 0.000 description 1
- PAJPWUMXBYXFCZ-UHFFFAOYSA-N 1-aminocyclopropanecarboxylic acid Chemical compound OC(=O)C1(N)CC1 PAJPWUMXBYXFCZ-UHFFFAOYSA-N 0.000 description 1
- HTTPGMNPPMMMOP-UHFFFAOYSA-N 1-azaniumyl-2,3-dihydroindene-1-carboxylate Chemical compound C1=CC=C2C(N)(C(O)=O)CCC2=C1 HTTPGMNPPMMMOP-UHFFFAOYSA-N 0.000 description 1
- 238000004293 19F NMR spectroscopy Methods 0.000 description 1
- 125000000453 2,2,2-trichloroethyl group Chemical group [H]C([H])(*)C(Cl)(Cl)Cl 0.000 description 1
- HJKLEAOXCZIMPI-UHFFFAOYSA-N 2,2-diethoxyethanamine Chemical class CCOC(CN)OCC HJKLEAOXCZIMPI-UHFFFAOYSA-N 0.000 description 1
- YQTCQNIPQMJNTI-UHFFFAOYSA-N 2,2-dimethylpropan-1-one Chemical group CC(C)(C)[C]=O YQTCQNIPQMJNTI-UHFFFAOYSA-N 0.000 description 1
- CSEWAUGPAQPMDC-UHFFFAOYSA-N 2-(4-aminophenyl)acetic acid Chemical compound NC1=CC=C(CC(O)=O)C=C1 CSEWAUGPAQPMDC-UHFFFAOYSA-N 0.000 description 1
- WAPLXGPARWRGJO-UHFFFAOYSA-N 2-(4-aminophenyl)butanoic acid Chemical compound CCC(C(O)=O)C1=CC=C(N)C=C1 WAPLXGPARWRGJO-UHFFFAOYSA-N 0.000 description 1
- WOMVICAMAQURRN-UHFFFAOYSA-N 2-(4-aminophenyl)propanoic acid Chemical compound OC(=O)C(C)C1=CC=C(N)C=C1 WOMVICAMAQURRN-UHFFFAOYSA-N 0.000 description 1
- XVDSFSRMHSDHGJ-UHFFFAOYSA-N 2-(4-azaniumylcyclohexyl)acetate Chemical compound NC1CCC(CC(O)=O)CC1 XVDSFSRMHSDHGJ-UHFFFAOYSA-N 0.000 description 1
- HUHXLHLWASNVDB-UHFFFAOYSA-N 2-(oxan-2-yloxy)oxane Chemical class O1CCCCC1OC1OCCCC1 HUHXLHLWASNVDB-UHFFFAOYSA-N 0.000 description 1
- TXHAHOVNFDVCCC-UHFFFAOYSA-N 2-(tert-butylazaniumyl)acetate Chemical compound CC(C)(C)NCC(O)=O TXHAHOVNFDVCCC-UHFFFAOYSA-N 0.000 description 1
- 125000003821 2-(trimethylsilyl)ethoxymethyl group Chemical group [H]C([H])([H])[Si](C([H])([H])[H])(C([H])([H])[H])C([H])([H])C(OC([H])([H])[*])([H])[H] 0.000 description 1
- FUOOLUPWFVMBKG-UHFFFAOYSA-N 2-Aminoisobutyric acid Chemical compound CC(C)(N)C(O)=O FUOOLUPWFVMBKG-UHFFFAOYSA-N 0.000 description 1
- AKBHYCHPWZPGAH-UHFFFAOYSA-N 2-[3-[(3-chloro-4-methylphenyl)methoxy]azetidine-1-carbonyl]-7-oxa-5-azaspiro[3.4]octan-6-one Chemical compound CC1=C(Cl)C=C(COC2CN(C2)C(=O)C2CC3(C2)COC(=O)N3)C=C1 AKBHYCHPWZPGAH-UHFFFAOYSA-N 0.000 description 1
- HAAUVXXFRQXTTQ-UHFFFAOYSA-N 2-[4-(azaniumylmethyl)phenyl]acetate Chemical compound NCC1=CC=C(CC(O)=O)C=C1 HAAUVXXFRQXTTQ-UHFFFAOYSA-N 0.000 description 1
- YSUIQYOGTINQIN-UZFYAQMZSA-N 2-amino-9-[(1S,6R,8R,9S,10R,15R,17R,18R)-8-(6-aminopurin-9-yl)-9,18-difluoro-3,12-dihydroxy-3,12-bis(sulfanylidene)-2,4,7,11,13,16-hexaoxa-3lambda5,12lambda5-diphosphatricyclo[13.2.1.06,10]octadecan-17-yl]-1H-purin-6-one Chemical compound NC1=NC2=C(N=CN2[C@@H]2O[C@@H]3COP(S)(=O)O[C@@H]4[C@@H](COP(S)(=O)O[C@@H]2[C@@H]3F)O[C@H]([C@H]4F)N2C=NC3=C2N=CN=C3N)C(=O)N1 YSUIQYOGTINQIN-UZFYAQMZSA-N 0.000 description 1
- AJHPGXZOIAYYDW-UHFFFAOYSA-N 3-(2-cyanophenyl)-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid Chemical compound CC(C)(C)OC(=O)NC(C(O)=O)CC1=CC=CC=C1C#N AJHPGXZOIAYYDW-UHFFFAOYSA-N 0.000 description 1
- GSWYUZQBLVUEPH-UHFFFAOYSA-N 3-(azaniumylmethyl)benzoate Chemical compound NCC1=CC=CC(C(O)=O)=C1 GSWYUZQBLVUEPH-UHFFFAOYSA-N 0.000 description 1
- XABCFXXGZPWJQP-UHFFFAOYSA-N 3-aminoadipic acid Chemical compound OC(=O)CC(N)CCC(O)=O XABCFXXGZPWJQP-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- CKTUXQBZPWBFDX-UHFFFAOYSA-N 3-azaniumylcyclohexane-1-carboxylate Chemical compound NC1CCCC(C(O)=O)C1 CKTUXQBZPWBFDX-UHFFFAOYSA-N 0.000 description 1
- BXRLWGXPSRYJDZ-UHFFFAOYSA-N 3-cyanoalanine Chemical compound OC(=O)C(N)CC#N BXRLWGXPSRYJDZ-UHFFFAOYSA-N 0.000 description 1
- XODDQKUDQGKJEV-UHFFFAOYSA-N 4-(2-aminoethoxy)benzoic acid Chemical compound NCCOC1=CC=C(C(O)=O)C=C1 XODDQKUDQGKJEV-UHFFFAOYSA-N 0.000 description 1
- ALYNCZNDIQEVRV-PZFLKRBQSA-N 4-amino-3,5-ditritiobenzoic acid Chemical compound [3H]c1cc(cc([3H])c1N)C(O)=O ALYNCZNDIQEVRV-PZFLKRBQSA-N 0.000 description 1
- QJKGTQZAVYBRGG-UHFFFAOYSA-N 4-azaniumyl-5-(1h-indol-3-yl)pentanoate Chemical compound C1=CC=C2C(CC(CCC(O)=O)N)=CNC2=C1 QJKGTQZAVYBRGG-UHFFFAOYSA-N 0.000 description 1
- DRNGLYHKYPNTEA-UHFFFAOYSA-N 4-azaniumylcyclohexane-1-carboxylate Chemical compound NC1CCC(C(O)=O)CC1 DRNGLYHKYPNTEA-UHFFFAOYSA-N 0.000 description 1
- JHHOFXBPLJDHOR-UHFFFAOYSA-N 4-phenylpyrrolidin-1-ium-2-carboxylate Chemical compound C1NC(C(=O)O)CC1C1=CC=CC=C1 JHHOFXBPLJDHOR-UHFFFAOYSA-N 0.000 description 1
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- UQXNEWQGGVUVQA-UHFFFAOYSA-N 8-aminooctanoic acid Chemical compound NCCCCCCCC(O)=O UQXNEWQGGVUVQA-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000349731 Afzelia bipindensis Species 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N Alanine Chemical compound CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- 201000004384 Alopecia Diseases 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 229910000761 Aluminium amalgam Inorganic materials 0.000 description 1
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- IADUEWIQBXOCDZ-VKHMYHEASA-N Azetidine-2-carboxylic acid Natural products OC(=O)[C@@H]1CCN1 IADUEWIQBXOCDZ-VKHMYHEASA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 229930182476 C-glycoside Natural products 0.000 description 1
- 150000000700 C-glycosides Chemical class 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910021580 Cobalt(II) chloride Inorganic materials 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YTBSYETUWUMLBZ-UHFFFAOYSA-N D-Erythrose Natural products OCC(O)C(O)C=O YTBSYETUWUMLBZ-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-CBPJZXOFSA-N D-Gulose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O WQZGKKKJIJFFOK-CBPJZXOFSA-N 0.000 description 1
- WQZGKKKJIJFFOK-WHZQZERISA-N D-aldose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-WHZQZERISA-N 0.000 description 1
- WQZGKKKJIJFFOK-IVMDWMLBSA-N D-allopyranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@@H]1O WQZGKKKJIJFFOK-IVMDWMLBSA-N 0.000 description 1
- LKDRXBCSQODPBY-JDJSBBGDSA-N D-allulose Chemical compound OCC1(O)OC[C@@H](O)[C@@H](O)[C@H]1O LKDRXBCSQODPBY-JDJSBBGDSA-N 0.000 description 1
- YTBSYETUWUMLBZ-IUYQGCFVSA-N D-erythrose Chemical compound OC[C@@H](O)[C@@H](O)C=O YTBSYETUWUMLBZ-IUYQGCFVSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-NQXXGFSBSA-N D-ribulose Chemical compound OC[C@@H](O)[C@@H](O)C(=O)CO ZAQJHHRNXZUBTE-NQXXGFSBSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-UHFFFAOYSA-N D-threo-2-Pentulose Natural products OCC(O)C(O)C(=O)CO ZAQJHHRNXZUBTE-UHFFFAOYSA-N 0.000 description 1
- YTBSYETUWUMLBZ-QWWZWVQMSA-N D-threose Chemical compound OC[C@@H](O)[C@H](O)C=O YTBSYETUWUMLBZ-QWWZWVQMSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-WUJLRWPWSA-N D-xylulose Chemical compound OC[C@@H](O)[C@H](O)C(=O)CO ZAQJHHRNXZUBTE-WUJLRWPWSA-N 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 206010056474 Erythrosis Diseases 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- LCWXJXMHJVIJFK-UHFFFAOYSA-N Hydroxylysine Natural products NCC(O)CC(N)CC(O)=O LCWXJXMHJVIJFK-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 229910021638 Iridium(III) chloride Inorganic materials 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- SNDPXSYFESPGGJ-BYPYZUCNSA-N L-2-aminopentanoic acid Chemical compound CCC[C@H](N)C(O)=O SNDPXSYFESPGGJ-BYPYZUCNSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ZGUNAGUHMKGQNY-ZETCQYMHSA-N L-alpha-phenylglycine zwitterion Chemical compound OC(=O)[C@@H](N)C1=CC=CC=C1 ZGUNAGUHMKGQNY-ZETCQYMHSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VSOAQEOCSA-N L-altropyranose Chemical compound OC[C@@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-VSOAQEOCSA-N 0.000 description 1
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline Chemical compound NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 description 1
- JTTHKOPSMAVJFE-VIFPVBQESA-N L-homophenylalanine Chemical compound OC(=O)[C@@H](N)CCC1=CC=CC=C1 JTTHKOPSMAVJFE-VIFPVBQESA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- SNDPXSYFESPGGJ-UHFFFAOYSA-N L-norVal-OH Natural products CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- HXEACLLIILLPRG-YFKPBYRVSA-N L-pipecolic acid Chemical compound [O-]C(=O)[C@@H]1CCCC[NH2+]1 HXEACLLIILLPRG-YFKPBYRVSA-N 0.000 description 1
- 229930182821 L-proline Natural products 0.000 description 1
- DGYHPLMPMRKMPD-UHFFFAOYSA-N L-propargyl glycine Natural products OC(=O)C(N)CC#C DGYHPLMPMRKMPD-UHFFFAOYSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 229910010084 LiAlH4 Inorganic materials 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 102000015728 Mucins Human genes 0.000 description 1
- 108010063954 Mucins Proteins 0.000 description 1
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 1
- LFZAGIJXANFPFN-UHFFFAOYSA-N N-[3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-thiophen-2-ylpropyl]acetamide Chemical compound C(C)(C)C1=NN=C(N1C1CCN(CC1)CCC(C=1SC=CC=1)NC(C)=O)C LFZAGIJXANFPFN-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- RHGKLRLOHDJJDR-UHFFFAOYSA-N Ndelta-carbamoyl-DL-ornithine Natural products OC(=O)C(N)CCCNC(N)=O RHGKLRLOHDJJDR-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- KUIFHYPNNRVEKZ-VIJRYAKMSA-N O-(N-acetyl-alpha-D-galactosaminyl)-L-threonine Chemical compound OC(=O)[C@@H](N)[C@@H](C)O[C@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1NC(C)=O KUIFHYPNNRVEKZ-VIJRYAKMSA-N 0.000 description 1
- 230000004989 O-glycosylation Effects 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 229910019891 RuCl3 Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 108010077895 Sarcosine Proteins 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical compound [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229910003074 TiCl4 Inorganic materials 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- YLEIFZAVNWDOBM-ZTNXSLBXSA-N ac1l9hc7 Chemical compound C([C@H]12)C[C@@H](C([C@@H](O)CC3)(C)C)[C@@]43C[C@@]14CC[C@@]1(C)[C@@]2(C)C[C@@H]2O[C@]3(O)[C@H](O)C(C)(C)O[C@@H]3[C@@H](C)[C@H]12 YLEIFZAVNWDOBM-ZTNXSLBXSA-N 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- WNNNWFKQCKFSDK-UHFFFAOYSA-N allylglycine Chemical compound OC(=O)C(N)CC=C WNNNWFKQCKFSDK-UHFFFAOYSA-N 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- SRBFZHDQGSBBOR-STGXQOJASA-N alpha-D-lyxopyranose Chemical compound O[C@@H]1CO[C@H](O)[C@@H](O)[C@H]1O SRBFZHDQGSBBOR-STGXQOJASA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical compound [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229960002684 aminocaproic acid Drugs 0.000 description 1
- QCTBMLYLENLHLA-UHFFFAOYSA-N aminomethylbenzoic acid Chemical compound NCC1=CC=C(C(O)=O)C=C1 QCTBMLYLENLHLA-UHFFFAOYSA-N 0.000 description 1
- 229960003375 aminomethylbenzoic acid Drugs 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 229960003942 amphotericin b Drugs 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 229940124650 anti-cancer therapies Drugs 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 238000011319 anticancer therapy Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- UHBYWPGGCSDKFX-UHFFFAOYSA-N carboxyglutamic acid Chemical compound OC(=O)C(N)CC(C(O)=O)C(O)=O UHBYWPGGCSDKFX-UHFFFAOYSA-N 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 238000010523 cascade reaction Methods 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 1
- 229960002173 citrulline Drugs 0.000 description 1
- 235000013477 citrulline Nutrition 0.000 description 1
- 230000035071 co-translational protein modification Effects 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 229940126543 compound 14 Drugs 0.000 description 1
- 229940125807 compound 37 Drugs 0.000 description 1
- 229940126115 compound 4f Drugs 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005138 cryopreservation Methods 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- YSMODUONRAFBET-UHFFFAOYSA-N delta-DL-hydroxylysine Natural products NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- UXGNZZKBCMGWAZ-UHFFFAOYSA-N dimethylformamide dmf Chemical compound CN(C)C=O.CN(C)C=O UXGNZZKBCMGWAZ-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- CETRZFQIITUQQL-UHFFFAOYSA-N dmso dimethylsulfoxide Chemical compound CS(C)=O.CS(C)=O CETRZFQIITUQQL-UHFFFAOYSA-N 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 150000002081 enamines Chemical class 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical compound NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- UQPHVQVXLPRNCX-UHFFFAOYSA-N erythrulose Chemical compound OCC(O)C(=O)CO UQPHVQVXLPRNCX-UHFFFAOYSA-N 0.000 description 1
- ZIUSEGSNTOUIPT-UHFFFAOYSA-N ethyl 2-cyanoacetate Chemical compound CCOC(=O)CC#N ZIUSEGSNTOUIPT-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000003818 flash chromatography Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 238000000806 fluorine-19 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 208000024963 hair loss Diseases 0.000 description 1
- 230000003676 hair loss Effects 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- QJHBJHUKURJDLG-UHFFFAOYSA-N hydroxy-L-lysine Natural products NCCCCC(NO)C(O)=O QJHBJHUKURJDLG-UHFFFAOYSA-N 0.000 description 1
- 150000002453 idose derivatives Chemical class 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- QNRXNRGSOJZINA-UHFFFAOYSA-N indoline-2-carboxylic acid Chemical compound C1=CC=C2NC(C(=O)O)CC2=C1 QNRXNRGSOJZINA-UHFFFAOYSA-N 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- SRJOCJYGOFTFLH-UHFFFAOYSA-N isonipecotic acid Chemical compound OC(=O)C1CCNCC1 SRJOCJYGOFTFLH-UHFFFAOYSA-N 0.000 description 1
- BJHIKXHVCXFQLS-PQLUHFTBSA-N keto-D-tagatose Chemical compound OC[C@@H](O)[C@H](O)[C@H](O)C(=O)CO BJHIKXHVCXFQLS-PQLUHFTBSA-N 0.000 description 1
- HXEACLLIILLPRG-RXMQYKEDSA-N l-pipecolic acid Natural products OC(=O)[C@H]1CCCCN1 HXEACLLIILLPRG-RXMQYKEDSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- IHLVCKWPAMTVTG-UHFFFAOYSA-N lithium;carbanide Chemical compound [Li+].[CH3-] IHLVCKWPAMTVTG-UHFFFAOYSA-N 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- LWJROJCJINYWOX-UHFFFAOYSA-L mercury dichloride Chemical compound Cl[Hg]Cl LWJROJCJINYWOX-UHFFFAOYSA-L 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 150000005217 methyl ethers Chemical class 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229940051875 mucins Drugs 0.000 description 1
- TXXHDPDFNKHHGW-UHFFFAOYSA-N muconic acid Chemical compound OC(=O)C=CC=CC(O)=O TXXHDPDFNKHHGW-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-N naphthalene-2-sulfonic acid Chemical compound C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 230000007472 neurodevelopment Effects 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- PSACHCMMPFMFAJ-UHFFFAOYSA-N nmm n-methylmorpholine Chemical compound CN1CCOCC1.CN1CCOCC1 PSACHCMMPFMFAJ-UHFFFAOYSA-N 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- CQYBNXGHMBNGCG-RNJXMRFFSA-N octahydroindole-2-carboxylic acid Chemical compound C1CCC[C@H]2N[C@H](C(=O)O)C[C@@H]21 CQYBNXGHMBNGCG-RNJXMRFFSA-N 0.000 description 1
- 238000006772 olefination reaction Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 125000003544 oxime group Chemical group 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 229960001639 penicillamine Drugs 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 125000003170 phenylsulfonyl group Chemical group C1(=CC=CC=C1)S(=O)(=O)* 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000007348 radical reaction Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 229940043230 sarcosine Drugs 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 229910000104 sodium hydride Inorganic materials 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000012879 subculture medium Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 150000003479 talose derivatives Chemical class 0.000 description 1
- NPDBDJFLKKQMCM-UHFFFAOYSA-N tert-butylglycine Chemical compound CC(C)(C)C(N)C(O)=O NPDBDJFLKKQMCM-UHFFFAOYSA-N 0.000 description 1
- WHRNULOCNSKMGB-UHFFFAOYSA-N tetrahydrofuran thf Chemical compound C1CCOC1.C1CCOC1 WHRNULOCNSKMGB-UHFFFAOYSA-N 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- GYDJEQRTZSCIOI-LJGSYFOKSA-N tranexamic acid Chemical compound NC[C@H]1CC[C@H](C(O)=O)CC1 GYDJEQRTZSCIOI-LJGSYFOKSA-N 0.000 description 1
- 229960000401 tranexamic acid Drugs 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- DBGVGMSCBYYSLD-UHFFFAOYSA-N tributylstannane Chemical compound CCCC[SnH](CCCC)CCCC DBGVGMSCBYYSLD-UHFFFAOYSA-N 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- DANYXEHCMQHDNX-UHFFFAOYSA-K trichloroiridium Chemical compound Cl[Ir](Cl)Cl DANYXEHCMQHDNX-UHFFFAOYSA-K 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 229960000281 trometamol Drugs 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 231100000747 viability assay Toxicity 0.000 description 1
- 238000003026 viability measurement method Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- ORQXBVXKBGUSBA-QMMMGPOBSA-N β-cyclohexyl-alanine Chemical compound OC(=O)[C@@H](N)CC1CCCCC1 ORQXBVXKBGUSBA-QMMMGPOBSA-N 0.000 description 1
Description
Derivatives of glyco-CF2-serine and glyco-CF2-threonine
The present invention relates to glycoside-CF2-serine or glycoside-CF2-threonine derivatives, useful as glycoside-O-serine or glycoside-O-threonine mimics, as well as their preparation process, their use in peptide synthesis, said peptide and the use of said peptide.
Glycosylation is a co- or post-translational modification present in more than 50 % of all proteins. O-glycosylation on the hydroxyl function of amino acids, such as serine, threonine, tyrosine, hydroxylysine or hydroxyproline, is the most common modification.
Glycoproteins, which are present in the cellular membranes, are implicated in numerous biochemical processes such as fertilisation, embryogenesis, neuronal development, immune responses, inflammatory reactions, intercellular recognition and regulation of the cell growth. Important changes are observed in the structure of sugars present on the surface of cells during the canceration process. Moreover, sugars of host cells are often used by different pathogens to allow their entry into cells.
For all these reasons, glycoproteins are an important key messengers for numerous therapies such as anti-inflammatory, antibacterial, antiviral and in particular anticancer therapies.
Cancer represents the first cause of mortality. In a global point of view, a doubling of the number of cancers is expected in the next 30 years. The discovery of novel anticancer compounds is thus a major endeavor.
Several treatments are actually used for treating cancer such as surgery, chemotherapy, radiotherapy or immunotherapy. However, the 3 first possibilities either are very invasive or lead to side effects such as, for chemotherapy, hair loss, nauseas, diarrheas and diminution of erythrocyte.
New approaches are thus studied to improve the treatments against cancer, notably through "passive" or "active" immunotherapy. The last one seems very promising and consists in the stimulation of the immune response against specific tumoral antigens.
Indeed, a modification of mucins expression has been observed on the surface of cancer cells. Those glycoproteins are over-expressed on the surface of tumoral epithelial cells.
Moreover, contrary to healthy cells, cancerous cells have, on their surface, because of abnormal glycosylations, shorter peptide units, which allowed the identification of specific tumoral antigens of saccharide type. Examples of oside epitopes are described below:
-Ser/Thr
antigen TF antigen Tn antigen sTn
The common synthon of these antigens is the moiety Gal-O-Ser/Thr. This moiety is currently being extensively studied towards the development of synthetic anticancer vaccines.
The drawback of such structures is the ease in which the O-glycosyl bond is cleaved by enzymatic systems such as hydrolases.
This prompted numerous research teams to design mimics of natural glycoconjugates in order to improve their stability in a biological medium. In this field, C-glycosides are the most studied, with the replacement of the oxygen atom of the O- glycosyl bond with a methylene group which is less sensitive to circulating enzymes. However, even if the stability is improved, the CH2 group is not a good oxygen mimic, and access to this compound is not that straightforward.
The inventors of the present invention have thus developed a synthesis of glyco- CF2-serine or glyco-CF2-threonine derivatives which also constitute a synthetic challenge. Extensive synthetic methodology development was necessary to successfully synthesize the target compounds.
Indeed, a difluoromethylene moiety (-CF2-) is a better mimic of an oxygen atom for electronic reasons. The CF2 group has an electronegativity very closed to the one of the oxygen atom, the two fluorine atoms playing the role of the two electronic doublets of the oxygen. Moreover, the C-F bond is more stable thereby improving the stability of
the final molecule. A CF2 group is thus a better mimic of an oxygen atom than a CH2 group.
The introduction of such glyco-CF2-serine or glyco-CF2-threonine derivatives in peptides or proteins moieties stabilizes the resulting glycopeptides or glycoproteins, notably against glycosidases, proteases and acid or basic conditions.
The present invention relates thus to a com ound of formula (I):
(I)
or a pharmaceutically acceptable salt thereof, a tautomer, a stereoisomer or a mixture of stereoisomers in any proportion, in particular a mixture of enantiomers, and particularly a racemate mixture,
wherein:
- Y represents a CN, N02, ReR? or CF^ ReR? group,
- Z represents H or CH3,
- R represents a hydrogen or fluorine atom or a CH3, CH2F, CH2OSiRalRblRcl, CH2OR8, CH2OC(0)R9, CH2OCO2Ri0, CH2OC(0) RnRi2, CH2OP(0)(ORi3)2 or CH2OS03Ri4 group,
- Ri and R2 represent, independently from one another, a fluorine atom or an OSiRa2Rb2Rc2, ORis, OC(0)R16, OC02Ri7, OC(0) Ri8Ri9, OP(O)(OR20)2 or
OS03R2i group,
- R3 represents a fluorine atom or an OSiRa3Rb3Rc3, OR22, OC(0)R23, OC02R24, OCO R25R26, OP(0)(OR27)2, OS03R28, N3, phtalimidyl, R29R30, R3iC(0)R32, R33C(0)OR34, N(C(0)R35)C(0)R36, N(C(0)R37)C(0)OR38 and N(C(0)OR39)C(0)OR4o group,
- R4 represents a hydrogen or halogen atom or an OSiRa4Rb4Rc4, OR^, OC(0)R42, OC02R43, OCO R44R45, OP(0)(OR46)2, or OS03R47 group,
or R and Ri, together with the carbon atoms carrying them, form a cyclic acetal havin the following formula:
and/or (Ri and R2), (R2 and R3), and/or (R3 and R4), together with the carbon atoms carr ing them, form a cyclic acetal having the following formula:
R5 represents a hydrogen or halogen atom or a R48, OR49 or R50R51 group,:
5 representing:
- a hydrogen atom,
- a (Ci-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)cycloalkyl, 5- to 7- membered heterocycloalkyl, aryl, heteroaryl, aryl-(Ci-C6)alkyl, heteroaryl-(Ci- C6)alkyl, (Ci-C6)-alkyl-aryl or (Ci-C6)-alkyl-heteroaryl group, this group being possibly substituted with one or more groups chosen among a halogen atom, OH, COOH and CHO; preferably a (d-C6)alkyl, (C2-C6)alkenyl, (C2- C6)alkynyl, (C3-C7)cycloalkyl, 5- to 7-membered heterocycloalkyl, aryl-(Ci- C6)alkyl, heteroaryl-(Ci-C6)alkylgroup, this group being possibly substituted with one or more groups chosen among a halogen atom, OH, COOH and CHO,
- a C(0)R52 group, or
- a C(0)OR53 group,
R7 representing:
- a hydrogen atom,
- a (Ci-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)cycloalkyl, 5- to 7- membered heterocycloalkyl, aryl, heteroaryl, aryl-(Ci-C6)alkyl, heteroaryl-(Ci- C6)alkyl, (Ci-C6)-alkyl-aryl or (Ci-C6)-alkyl-heteroaryl group, this group being possibly substituted with one or more groups chosen among a halogen atom, OH, COOH and CHO; preferably a (Ci-C6)alkyl, (C2-C6)alkenyl, (C2- C6)alkynyl, (C3-C7)cycloalkyl, 5- to 7-membered heterocycloalkyl, aryl-(Ci-
C6)alkyl, heteroaryl-(Ci-C6)alkyl, group, this group being possibly substituted with one or more groups chosen among a halogen atom, OH, COOH and CHO,
- a C(0)R52 group,
- a C(0)OR53 group, or
- a N-protecting group,
R-8, Ri5, R22 and R41 representing, independently from one another, a hydrogen atom, a O-protecting group or a (Ci-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3- C7)cycloalkyl, 5- to 7-membered heterocycloalkyl, aryl, heteroaryl, aryl-(Ci- C6)alkyl, heteroaryl-(Ci-C6)alkyl, (Ci-Ce)-alkyl-aryl, (Ci-C6)-alkyl-heteroaryl, saccharidic or polysaccharidic group, this group being possibly substituted with one or more groups chosen among a halogen atom, OH, COOH and CHO; and in particular a hydrogen atom, a (Ci-C6)alkyl, aryl, aryl-(Ci-Ce)alkyl, saccharidic or polysaccharidic group, this group being possibly substituted with one or more groups chosen among a halogen atom, OH, COOH and CHO,
R9, Rio, Ri6, Ri7, R23, R24, R32, R34 to R40, R42, R43, R48, R52 and R53 representing, independently from one another, a (Ci-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)cycloalkyl, 5- to 7-membered heterocycloalkyl, aryl, heteroaryl, aryl-(Ci- C6)alkyl, heteroaryl-(Ci-C6)alkyl, (Ci-Ce)-alkyl-aryl or (Ci-C6)-alkyl-heteroaryl group, this group being possibly substituted with one or more groups chosen among a halogen atom, OH, COOH and CHO; and in particular a (Ci-C6)alkyl, aryl or aryl-(Ci-Ce)alkyl group, this group being possibly substituted with one or more groups chosen among a halogen atom, OH, COOH and CHO,
R11, R12, Ri8, Ri9, R25, R26, R29 to R31, R33, R44, R45, R50 and R51 representing, independently from one another, a hydrogen atom or a (Ci-C6)alkyl, (C2- C6)alkenyl, (C2-C6)alkynyl, aryl, heteroaryl, aryl-(Ci-Ce)alkyl, heteroaryl-(Ci- C6)alkyl, (Ci-Ce)-alkyl-aryl or (Ci-C6)-alkyl-heteroaryl group, this group being possibly substituted with one or more groups chosen among a halogen atom, OH, COOH and CHO; advantageously a hydrogen atom or a (Ci-C6)alkyl, (C2- C6)alkenyl, (C2-C6)alkynyl, aryl-(Ci-Ce)alkyl, heteroaryl-(Ci-C6)alkylgroup, this group being possibly substituted with one or more groups chosen among a halogen atom, OH, COOH and CHO; and in particular a hydrogen atom or a (Ci-C6)alkyl,
aryl or aryl-(Ci-C6)alkyl group, this group being possibly substituted with one or more groups chosen among a halogen atom, OH, COOH and CHO,
■ Ri3, Ri4, R20, R21, R27, R28, R46 and R47 representing, independently from one another, a hydrogen atom or a (Ci-C6)alkyl group,
■ R49 representing:
- a hydrogen atom,
- a (Ci-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)cycloalkyl, 5- to 7- membered heterocycloalkyl, aryl, heteroaryl, aryl-(Ci-C6)alkyl, heteroaryl-(Ci- C6)alkyl, (Ci-C6)-alkyl-aryl or (Ci-C6)-alkyl-heteroaryl group, this group being possibly substituted with one or more groups chosen among an halogen atom,
OH, COOH and CHO, or
- a O-protecting group,
■ Ral to Ra4, Rbl to RM and Rcl to Rc4 representing, independently from one another, a (Ci-C6)alkyl, aryl or aryl-(Ci-C6)alkyl group, and
■ Rd and Re representing, independently from one another, a hydrogen atom or a (Ci- C6)alkyl group.
For the purpose of the invention, the term "pharmaceutically acceptable" is intended to mean what is useful to the preparation of a pharmaceutical composition, and what is generally safe and non toxic, for a pharmaceutical use.
The term « pharmaceutically acceptable salt » i s intended to mean, in the framework of the present invention, a salt of a compound which is pharmaceutically acceptable, as defined above, and which possesses the pharmacological activity of the corresponding compound. Such salts comprise:
(1) hydrates and solvates,
(2) acid addition salts formed with inorganic acids such as hydrochloric, hydrobromic, sulfuric, nitric and phosphoric acid and the like; or formed with organic acids such as acetic, benzenesulfonic, fumaric, glucoheptonic, gluconic, glutamic, glycolic, hydroxynaphtoic, 2-hydroxyethanesulfonic, lactic, maleic, malic, mandelic, methanesulfonic, muconic, 2-naphtalenesulfonic, propionic, succinic, dibenzoyl-L- tartaric, tartaric, p-toluenesulfonic, trimethylacetic, and trifluoroacetic acid and the like, and
(3) salts formed when an acid proton present in the compound is either replaced by a metal ion, such as an alkali metal ion, an alkaline-earth metal ion, or an aluminium ion; or coordinated with an organic or inorganic base. Acceptable organic bases comprise diethanolamine, ethanolamine, N-methylglucamine, triethanolamine, tromethamine and the like. Acceptable inorganic bases comprise aluminium hydroxide, calcium hydroxide, potassium hydroxide, sodium carbonate and sodium hydroxide.
For the purpose of this invention, "tautomer" is intended to designate the various tautomer forms that the sugar of compound (I) may assume, namely a pyranose (6- membered ring), furanose (5-membered ring) or linear (open form) form.
However, the compounds of the invention can assume various tautomer forms only when the radical R4 represents an OH group, Ri having also to represent an OH group in order that the compounds of the invention can be in the furanose form.
Thus, for example, in the galactose series, the compounds of the invention might a ear under the following various forms:
Furanoses
The anomeric carbon can appear in two different configurations in the closed pyranose and furanose forms.
The compounds of the invention can assume different tautomer forms which can be present in solution in equilibrium, with optionally a major tautomer form relatively to the other(s) tautomer form(s), or the compounds of the invention can assume only one tautomer form, such as only a furanose form, in some cases.
In this last case where the sugar assumes only one tautomer form, it is possible to block the configuration of the sugar in this tautomeric form when R4 = OH i s transformed, notably by substitution of the OH group or conversion in a hydrogen or halogen atom.
Within the meaning of this invention, "stereoisomers" is intended to designate diastereoisomers or enantiomers. These are therefore optical isomers. Stereoisomers which are not mirror images of one another are thus designated as "diastereoisomers", and stereoisomers which are non-superimposable mirror images are designated as "enantiomers".
Notably, the sugar moiety of the compounds of the invention can belong to the D or L series, and preferably to the D series.
A carbon atom bond to four non-identical substituents is called a "chiral centre".
An equimolar mixture of two enantiomers is called a racemate mixture.
The term "halogen" as used in the present invention refers to an atom of fluorine, bromine, chlorine or iodine. Advantageously, this is an atom of fluorine.
The term "(Ci-C6)-alkyl" as used in the present invention refers to a saturated, linear or branched hydrocarbon chain comprising from 1 to 6 carbon atoms, in particular the methyl, ethyl, n-propyl, isopropyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl groups.
The term "(C2-C6)-alkenyl" as used in the present invention refers to a linear or branched hydrocarbon chain comprising at least one double bond and comprising from 2 to 6 carbon atoms, e.g., such as an ethenyl (vinyl) or propenyl group.
The term "(C2-C6)-alkynyl" as used in the present invention refers to a linear or branched hydrocarbon chain comprising at least one triple bond and comprising from 2 to 6 carbon atoms, e.g., such as an ethynyl or propynyl group.
The term "(C3-C7)-cycloalkyl" as used in the present invention refers to a saturated hydrocarbon ring comprising from 3 to 7, advantageously from 5 to 7, carbon atoms, in particular the cyclohexyl, cyclopentyl or cycloheptyl group.
The term "heterocycloalkyl" as used in the present invention refers to a saturated hydrocarbon ring having 5 to 7 members and containing one or more, advantageously one or two, heteroatoms, e.g., such as sulphur, nitrogen or oxygen atoms, e.g., such as
the tetrahydrofuranyl, piperidinyl, pyrrolidinyl, tetrahydropyranyl, 1 ,3-dioxolanyl group.
The term "aryl" as used in the present invention refers to an aromatic group preferably comprising from 5 to 10 carbon atoms and including one or more fused rings, e.g., such as a phenyl or naphtyl group. This is advantageously phenyl.
The term "heteroaryl" as used in the present invention refers to any aryl group as defined above wherein one or more carbon atoms have been replaced by one or more heteroatoms, advantageously 1 to 4, and even more advantageously 1 to 2, e.g., such as sulphur, nitrogen or oxygen atoms. Examples of heteroaryl groups are the furyl, thiophenyl, pyrrolyl, pyridyl, pyrimidyl, pyrazolyl, imidazolyl, tetrazolyl or else indyl groups.
The term "aryl-(Ci-C6)-alkyl" as used in the present invention refers to any aryl group as defined above, which is bound to the molecule by means of a (Ci-C6)-alkyl group as defined above. In particular, a group such as this can be a benzyl group.
The term "heteroaryl-(Ci-C6)-alkyl" as used in the present invention refers to mean a heteroaryl group as defined above, which is bound to the molecule by means of a (Ci-C6)-alkyl group as defined above.
The term "(Ci-C6)-alkyl-aryl" as used in the present invention refers to a (Ci- C6)-alkyl group as defined above, which is bound to the molecule by means of an aryl group as defined above. In particular, a group such as this can be a methylphenyl group.
The term "(Ci-C6)-alkyl-heteroaryl" as used in the present invention refers to a (Ci-C6)-alkyl group as defined above, which is bound to the molecule by means of a heteroaryl group as defined above.
The term "N-protecting group" as used in the present invention refers to those groups intended to protect an amino group against undesirable reactions during synthetic procedures. Commonly used N-protecting groups are disclosed in Greene, "Protective Groups In Organic Synthesis", (John Wiley & Sons, New York (1981)). N- protecting groups comprise carbamates, amides, N-alkyl derivatives, amino acetal derivatives, N-benzyl derivatives, imine derivatives, enamine derivatives and N- heteroatom derivatives. In particular, N-protecting groups include formyl, acetyl, benzoyl, pivaloyl, phenylsulfonyl, benzyl (Bn), t-butyloxycarbonyl (Boc), benzyloxycarbonyl (Cbz), trichloroethoxycarbonyl (TROC), allyloxycarbonyl (Alloc),
fluorenylmethyloxycarbonyl (FMOC), and the like. In particular, it will be a t- butyloxycarbonyl, benzyloxycarbonyl or fluorenylmethyloxycarbonyl group.
The term "O-Protecting group" as used in the present invention refers to a substituent which protects hydroxyl groups against undesirable reactions during synthetic procedures such as those O-protecting groups disclosed in Greene, "Protective Groups In Organic synthesis", (John Wiley & Sons, New York (1981)). O-protecting groups comprise (Ci-C6)alkyl groups, such as methyl, ethyl, tert-butyl; substituted methyl ethers, for example, methoxymethyl (MOM), benzyloxymethyl, 2- methoxyethoxymethyl, 2-(trimethylsilyl) ethoxymethyl, benzyl and triphenylmethyl; tetrahydropyranyl ethers; substituted ethyl ethers, for example, 2,2,2-trichloroethyl; and silyl ethers, for example, trimethylsilyl, t-butyldimethylsilyl (TBS) and t- butyldiphenylsilyl. In particular, it will be a benzyl or methoxymethyl group.
The term "saccharide" as used in the present invention refers to erythrose, threose, ribose, arabinose, xylose, lyxose, allose, altrose, glucose, mannose, gulose, idose, galactose, talose, erythrulose, ribulose, xylulose, psicose, fructose, sorbose or tagatose, in D or L form.
The term "saccharidic group" as used in the present invention refers to a saccharide as defined above bond to the molecule by means of its oxygen atom present at the anomeric centre.
The term "polysaccharide" as used in the present invention refers to a chain comprising at least 2, and preferably 2 to 10 saccharides as defined above bound together by means of an oxygen bridge formed between the OH function at the anomeric position of a saccharide and the OH function not at the anomeric position of another saccharide.
The term "polysaccharidic group" as used in the present invention refers to a polysaccharide as defined above bond to the molecule by means of the oxygen atom present at the anomeric centre of the terminal saccharide.
The compounds of the invention are advantageously based on the following formulas (la) and (Ιβ):
with R, Ri, R2, R3, R4, R5, Z and Y as defined above.
R can represent a CH2OSiRalRblRcl, CH2OR8, CH2OC(0)R9, CH2OCO2Ri0, CH2OC(0) RnRi2, CH2OP(0)(ORi3)2 or CH2OS03Ri4 group, advantageously a CH2OSiRalRblRcl, CH2OR8 or CH2OC(0)R9 group, more advantageously a CH2OR8 or CH2OC(0)R9 group, and even more advantageously a CH2OR8 group.
R can represent in particular a CH2OR8 group with R8 representing a hydrogen atom, a O-protecting group or a (Ci-C6)-alkyl, aryl or aryl-(Ci-C6)-alkyl group; or a CH2OC(0)R9 group with R9 representing a (Ci-C6)-alkyl, aryl or aryl-(Ci-C6)-alkyl group.
R can represent more particularly a CH2OR8 group with R8 representing a hydrogen atom or a O-protecting group. For instance, R can represent a CH2OH or CH2OBn group.
Ri and R2 can represent, independently from one another, an OSiRa2Rb2Rc2,
OR15, OC(0)Ri6, OC02Ri7 or OC(0) Ri8Ri9 group, advantageously an OSiRa2Rb2Rc2, OR15 or OC(0)Ri6 group, more advantageously an OR15 or OC(0)Ri6 group, and even more advantageously an OR15 group.
Ri and R2 can represent in particular, independently from one another, an OR15 group with R15 representing a hydrogen atom, a O-protecting group or a (Ci-C6)-alkyl, aryl or aryl-(Ci-Ce)-alkyl group; or an OC(0)Ri6 group Ri6 representing a (Ci-C6)- alkyl, aryl or aryl-(Ci-C6)-alkyl group.
Ri and R2 can represent more particularly, independently from one another, an OR15 group with R15 representing a hydrogen atom or a O-protecting group. For instance, Ri and R2 can represent an OH or OBn group.
Preferably, Ri and R2 are identical, and represent notably an OH or OBn group.
In particular, R represents a CH2OR8 group and Ri and R2 represent, independentl y from one another, an OR15 group, R8 and R15 representing advantageously a hydrogen atom or an O-protecting group. R8 and the two R15 can be identical, such as H or an O-protecting group.
According to another particular embodiment, R = CH2OH and Ri = R2 = OH or
R = CH2OBn and Ri = R2 = OBn.
According to a first embodiment, R3 represent an OSiRa3Rb3Rc3, OR22, OC(0)R23, OC02R24, OCO R25R26, R29R30, R3iC(0)R32, R33C(0)OR34, N(C(0)R35)C(0)R36, N(C(0)R37)C(0)OR38 or N(C(0)OR39)C(0)OR4o group, advantageously an OSiRa3Rb3Rc3, OR22, OC(0)R23, R29R30, R3iC(0)R32 or R33C(0)OR34 group, more advantageously an OR22, OC(0)R23 or R3iC(0)R32 group, and even more advantageously an OR22 or R3iC(0)R32 group.
R3 can represent in particular an OR22 group with R22 representing a hydrogen atom, a O-protecting group or a (Ci-C6)-alkyl, aryl or aryl-(Ci-C6)-alkyl group; an OC(0)R23 group with R23 representing a (Ci-C6)-alkyl, aryl or aryl-(Ci-C6)-alkyl group; or a R3iC(0)R32 group with R3i representing a hydrogen atom or a (Ci-C6)-alkyl, aryl or aryl-(Ci-C6)-alkyl group and R32 representing a (Ci-C6)alkyl, aryl or aryl-(Ci- C6)alkyl group.
R3 can represent more particularly an OR22 group with R22 representing a hydrogen atom or a O-protecting group; or a NR3iC(0)R32 group with R3i representing a hydrogen atom and R32 representing a (Ci-C6)alkyl. For instance, R3 can represent an OH, OBn, OMOM or HAc group.
According to a second embodiment R3 can represent an OSiRa3Rb3Rc3, OR22, OC(0)R23, OC02R24 or OCO R25R26 group, advantageously an OSiRa3Rb3Rc3, OR22 or OC(0)R23 group, more advantageously an OR22 or OC(0)R23 group, and even more advantageously an OR22 group.
R3 can represent in particular an OR22 group with R22 representing a hydrogen atom, a O-protecting group or a (Ci-C6)-alkyl, aryl or aryl-(Ci-C6)-alkyl group; or an OC(0)R23 group R23 with representing a (Ci-C6)-alkyl, aryl or aryl-(Ci-C6)-alkyl group.
R-3 can represent more particularly an OR22 group with R22 representing a hydrogen atom or a O-protecting group. For instance, R3 can represent an OH, OBn or OMOM group.
According to a particular embodiment, Ri, R2 and R3 are identical.
According to another particular embodiment, R represents a CH2OR8 group; Ri and R2 represent, independently from one another, an OR15 group; and R3 represents an OR22 group, R8, Ri5 and R22 representing advantageously a hydrogen atom or an O- protecting group. R8 and the two R15 can be identical, such as H or an O-protecting group. R8, the two R15 and R22 can also be identical, such as H or an O-protecting group.
According to another particular embodiment, R = CH2OH, Ri = R2 = OH or Ri =
R2 = R3 = OH.
R4 can advantageously represent a hydrogen or halogen atom or an OR41 group, and in particular a hydrogen atom or an OR41 group.
Yet even more advantageously, R4 may represent a hydrogen or halogen atom or an OH, O-protecting, -0-(Ci-Ce)-alkyl, -O-aiyl and -0-(Ci-C6)-alkyl-aryl group, and in particular, a hydrogen atom or an OH, O-protecting, -0-(Ci-C6)-alkyl, -O-aryl and -O- (Ci-C6)-alkyl-aryl group.
R4 can also represent a hydrogen or halogen atom or an OH, -0-(Ci-C6)-alkyl, -O-aryl and -0-(Ci-C6)-alkyl-aryl group, and in particular, a hydrogen atom or an OH, -0-(Ci-C6)-alkyl, -O-aryl and -0-(Ci-C6)-alkyl-aryl group.
In particular, R4 can represent a hydrogen or halogen (such as Br, CI, F) atom or an OH or O-protecting group, and advantageously, a hydrogen atom or an OH or O- protecting group, such as H, OH or OBn.
R4 can also represent a hydrogen or halogen (such as Br, CI, F) atom or an OH group, such as H or OH.
According to a particular embodiment, R4 represents a hydrogen atom.
According to a first embodiment, Y represents a N02 or ReR7 group, and notably a NReR7 group, with 5 and R7 as defined previously and notably with 5 representing a hydrogen atom or a (Ci-C6)alkyl group and R7 representing:
- a hydrogen atom,
- a (Ci-C6)alkyl, aryl or aryl-(Ci-C6)alkyl group; in particular a (Ci-Ce)alkyl or aryl-(Ci-C6)alkyl group,
- a C(0)R52 group, with R52 as defined above and representing in particular a (Ci-C6)alkyl, aryl or aryl-(Ci-C6)alkyl group,
- a C(0)OR53 group, with R53 as defined above and representing in particular a
(Ci-C6)alkyl, aryl or aryl-(Ci-C6)alkyl group, or
- a N-protecting group.
According to a second embodiment, Y represents a CN or CH2NR5R7 group, and notably a CH2NR5R7 group, with 5 and R7 as defined previously and notably with 5 representing a hydrogen atom or a (Ci-C6)alkyl group and R7 representing:
- a hydrogen atom,
- a (Ci-C6)alkyl, aryl or aryl-(Ci-C6)alkyl group; in particular a (Ci-C6)alkyl or aryl-(Ci-C6)alkyl group,
- a C(0)R52 group, with R52 as defined above and representing in particular a (Ci-C6)alkyl, aryl or aryl-(Ci-C6)alkyl group,
- a C(0)OR53 group, with R53 as defined above and representing in particular a (Ci-C6)alkyl, aryl or aryl-(Ci-C6)alkyl group, or
- a N-protecting group. R5 represents advantageously an OR49 group, with R49 as defined previously and advantageously representing a hydrogen atom, a (Ci-C6)alkyl group or a O-protecting group.
According to a particular embodiment (compounds of formula (1-1)), Y represents a NReR7 or CH2NR6R7 group, and notably a NReR7 group, and R5 represents an OR49 group, with:
- 5 and R7 representing each a hydrogen atom and R49 representing a O- protecting group such as a (Ci-C6)alkyl group, or
- R49 and 5 representing each a hydrogen atom and R7 representing a N- protecting group such as a Boc, Cbz or FMOC group.
In this case, R represents preferably a CH2OR8 group with R8 representing a O- protecting group; Ri and R2 represent preferably, independently from one another, an
ORi5 group with Ri5 representing a O-protecting group; and R3 represents preferably an OR22 group with R22 representing a O-protecting group or a R3iC(0)R32 group with R3i representing a hydrogen atom and R32 representing a (Ci-Ce)alkyl, and notably R3 represents an OR22 group.
R4 can represent a hydrogen atom or an OR41 group with R41 representing a O- protecting group, and notably R4 can represent a hydrogen atom.
According to a particular embodiment of the present invention, the compound of formula (I) can be chosen among:
The present invention relates also to a process for preparing a compound of formula (I) as defined above with Z = H, comprising the following successive steps: i) dehydration of a compound of formula (II):
in which R, Ri, R2, R3, R4, R5 and Y are as defined above,
to give a compound of formula (III):
in which R, Ri, R2, R3, R4, R5 and Y are as defined above, and
ii) hydrogenation of the compound of formula (III) obtained in the previous step to give a compound of formula (I) with Z = H.
Step a):
This step can be carried out by transforming the hydroxy function in a leaving group such as a halogen atom, a sulfate (-OS(0)20-Ai), a sulfonate (-OS(O)O-Ai) or a carboxylate (-OC(O)-Ai), with Ai representing a (Ci-Ce)alkyl, aryl, (Ci-C6)alkyl-aryl or aryl-(Ci-C6)alkyl group, said group being optionally substituted with one or more fluorine atoms. Such a leaving group can be, for example, a mesylate (-OS02Me), a tosylate (-OS02-PhMe), a triflate (-OS02CF3) or an acetate (-OC(0)CH3).
The leaving group is then eliminated in the presence of a base such as triethylamine.
For instance, this step can be carried out in the presence of mesyl chloride (MsCl) and a base such as triethylamine.
The elimination step can also be carried out directly from the hydroxy function, i.e. without transforming it first in a leaving group, by reaction with Burgess' reactive or with Martins' persulfane.
Step b):
This step can be carried out by hydrogenation methods well known to the person skilled in the art, notably in the presence of a hydride donor such as a borohydride, notably NaBH4, or by a radical reaction in the presence of Bu3SnH.
The compound thus obtained can be separated from the reaction medium by methods well known to the person skilled in the art, such as by extraction, evaporation of the solvent or by precipitation or crystallisation (followed by filtration).
The compound can be also purified if necessary by methods well known to the person skilled in the art, such as by recrystallisation, chromatography on a column of silica gel or high performance liquid chromatography (HPLC).
According to a first embodiment of the invention, this process can be carried out with a compound of formula (Hal), which is a compound of formula (II) in which Y = N02. The compound of formula (Ial) obtained, i.e. a compound of formula (I) in which Z = H and Y = N02, can be then hydrogenated to give a compound of formula (Ibl), i.e. a compound of formula (I) in which Z = H and Y = NH2. Compounds of formula (Icl), i.e. compounds of formula (I) in which Z = H and Y = ReR-7, at least R6 or R7 being not a hydrogen atom, are then obtained by substitution of the amino group of a compound of formula (Ibl).
According to a second embodiment of the invention, this process can be carried out with a compound of formula (IIa2), which is a compound of formula (II) in which Y = CN. The compound of formula (Ia2) obtained, i.e. a compound of formula (I) in which Z = H and Y = CN, can be then hydrogenated or reduced to give a compound of formula (Ib2), i.e. a compound of formula (I) in which Z = H and Y = CH2NH2. However, the compound of formula (Ib2) can be also obtained directly in one step from the compound of formula (IIIa2), corresponding to a compound of formula (III) in which Z = H and Y = CN. Compounds of formula (Ic2), i.e. compounds of formula (I) in which Z = H and Y = CH2NR6R7, at least R6 or R7 being not a hydrogen atom, are then obtained by substitution of the amino group of a compound of formula (Ib2).
Thus, according to a particular embodiment, the process comprises the following successive steps:
al) dehydration of a compound of formula (Ila) corresponding to a compound of formula (II) in which Y = N02 or CN to give a compound of formula (Ilia) corresponding to a compound of formula (III) in which Y = N02 or
CN,
bl) reduction of the compound of formula (Ilia) obtained in the previous step to give a compound of formula (la) corresponding to a compound of formula (I) in which Z = H and Y = N02 or CN, or a compound of formula (lb) corresponding to a compound of formula (I) in which Z = H and Y = NH2 or
CH2NH2,
cl) optionally reduction of the N02 or CN function of the compound of formula (la) obtained in the previous step to give a compound of formula (lb) as defined in step bl), and
dl) optionally substitution of the amino function of the compound of formula
(lb) obtained in the previous step to give a compound of formula (Ic) corresponding to a compound of formula (I) in which Z = H and Y = NReR7 or CH2NR6R-7 respectively, with at least R6 or R7 being not a hydrogen atom. Step al): see step a).
It is to be noted that the compound of formula (Ila) can be obtained by reaction of a compound of formula
in which R, Ri, R2, R3 and R4 are as defined above and A2 and A3 represent, independently from one another, a hydrogen atom or a (Ci-Ce)alkyl or aryl-(Ci-C6)- alkyl group,
with a compound of formula (V)
Y-CH2-COR5 (V)
in which R5 is as defined previously and Y = N02 or CN,
in the presence of a base such as HNEt2.
This reaction is carried out in the Henry's conditions.
The compound of formula (IV) can be obtained by methods well known to the person skilled in the art (see for example the experimental part).
Preferably, R5 represents a P S or OR49 group, with R48 and R49 as defined above but with the proviso that R49 is not a hydrogen atom.
Step bl): see step b).
Step cl):
This step can be carried out by methods well known to the person skilled in the art.
Notably, this step can be carried out under a hydrogen atmosphere in the presence of a hydrogenation catalyst, at an atmospheric pressure or at a higher pressure. The catalyst can be based on palladium, nickel or platinum, such as palladium on carbon (Pd/C), Raney's nickel or Pt02. The reaction can be carried out in the presence of an acid or a base to activate the catalyst.
The reduction of the nitro function can be carried out also in the presence of a borohydride, such as NaBH4, and a salt of nickel, cobalt, palladium, tin, copper or lanthanide, e.g. NiCl2, T1CI4, or CoCl2.
Another method consists in the hydrogenation of the nitro function with hydrogen formed in situ by the action of an acid, such as HC1, AcOH, Me3SiCl, CF3COOH or HC02H, on a metal chosen among zinc, tin and iron.
The nitro function can also be reduced in an oxime (=N-OH) which is then reduced in an amino group. This method is well known to the person skilled in the art.
The reduction of the nitro functionality into an oxime group can be obtained in the presence of a metal salt such as a tin salt (e.g. SnCl2 or Sn(Ph)2), associated or not to Et3N / PhSH or TMSPhSH / Et3N. NaN02 can also be used in the presence of a proton source such as CH3COOH or H20 in DMSO to reduce the nitro function. These reactions can be carried out at a temperature between 65 and 100°C.
The oxime can then be reduced into an amino function under a hydrogen atmosphere in the presence of a hydrogenation catalyst, at an atmospheric pressure or at a higher pressure. The catalyst can be based on palladium, nickel, platinum, ruthenium,
rhodium or iridium, such as palladium on carbon (Pd/C), Pd(OH)2, Pd on graphite, Raney's nickel, Pt02, RuCl3 or IrCl3. The reaction can be carried out in the presence of an acid or a base to activate the catalyst.
This reduction can also be carried out in the presence of an aluminum amalgam prepared from aluminum and HgCl2. The oxime can also be reduced with hydrogen formed in situ by the action of an acid on a metal. Hydrides can also be used, such as NaBH4 or LiAlH4.
All these methods are well known to the person skilled in the art. However, other methods known to the person skilled in the art can be used.
Step dl):
The substitution of the amino function can be carried out by methods well known to the person skilled in the art.
The compound thus obtained can be separated from the reaction medium by methods well known to the person skilled in the art, such as by extraction, evaporation of the solvent or by precipitation or crystallisation (followed by filtration).
The compound can also be purified if necessary by methods well known to the person skilled in the art, such as by recrystallisation, chromatography on a column of silica gel or high performance liquid chromatography (HPLC).
The present invention relates also to a process for preparing a compound of formula (I) as defined above with Z = CH3, comprising the following successive steps: i) reaction of a compound of formula (VII):
(VII)
in which R, Ri, R2, R3 and R^ are as defined above,
with a compound of formula (V):
Y-CH2-COR5 (V)
in which R5 is as defined previously and Y = N02 or CN,
a compound of formula (VIII):
(VIII)
ii) in which R, Ri, R2, R3, R4 and R5 are as defined above and Y = N02 or CN,optionally reduction of the compound of formula (VIII) obtained in the previous step i) to give a compound of formula (I) with Z = CH3 and Y = N02 or
CN,
iii) optionally reduction of the N02 or CN function of the compound of formula (I) obtained in the previous step ii) to give a compound of formula (I) with Z = CH3 and Y = NH2 or CH2NH2, and
iv) optionally substitution of the amino function of the compound of formula (I) obtained in the previous step iii) to give a compound of formula (I) with Z = CH3 and Y = NR5R7 or CH2NReR7, with at least 5 or R7 being not a hydrogen atom. Step i):
This reaction can be carried out in the presence of a Lewis acid such as T1CI4 and a base such as N-methyl-morpholine (NMM). Tetrahydrofurane, dichloromethane or a mixture thereof can be used as solvent.
The compounds of formula (VII) can be prepared as described in the experimental part below.
Step ii): see step bl).
Step iii): see step cl).
Step iv): see step dl). The compound thus obtained can be separated from the reaction medium by methods well known to the person skilled in the art, such as by extraction, evaporation of the solvent or by precipitation or crystallisation (followed by filtration).
The compound can be also purified if necessary by methods well known to the person skilled in the art, such as by recrystallisation, chromatography on a column of silica gel or high performance liquid chromatography (HPLC). If the two processes described above, to prepare compounds of formula (I) with
Z = H or CH3 respectively, are carried out from a compound of formula (II) or (VII) with R5 representing a OR49 group, with R49 as defined above but with the proviso that R49 is not a hydrogen atom, a final compound of formula (I) with R5 = H or OH can be obtained by reduction or deprotection of the OR49 group in conditions well known to the person skilled in the art.
The OH can thus be halogenated to give access to compounds of formula (I) with R5 representing a halogen atom, in conditions well known to the person skilled in the art.
Compounds of formula (I) with R5 representing a NR50R51 group can be obtained by methods well known to the person skilled in the arts from a compound of formula (I) with R5 = OH, notably by a peptide coupling.
It is to be noted moreover that the compound of formula (I) with Z = H can be obtained directly in one step from compound of formula (IV) and a compound of formula Y-CH2-COR5, by carrying out a cascade reaction of olefination and hydrogenation, such as described in Eur. J. org. Chem. 2008, 975.
In the synthesis of compounds of formula (I), R represents preferably a CH2OR8 group with R8 representing a O-protecting group; Ri and R2 represent preferably, independently from one another, an OR15 group with R15 representing a O-protecting group; and R3 represents preferably an OR22 group with R22 representing a O-protecting group; or a R3iC(0)R32 group with R3i representing a hydrogen atom and R32 representing a (Ci-C6)alkyl; and notably R3 represents an OR22 group. R4 can represent a hydrogen atom or an OR41 group with R41 representing a O-protecting group, and notably R4 represents a hydrogen atom.
The present invention relates also to the use of a compound of formula (I) with Y = H2 or CH2 H2, notably NH2, and/or R5 = OH, and in particular a compound of formula (1-1), i.e. a compound of formula (I) for which Y represents a R6R-7 or CH2 R6R7 group, and notably a R6R7 group, and R5 represents an OR49 group, with: - R5 and R7 representing each a hydrogen atom and R49 representi ng a O- protecting group such as a (Ci-Ce)alkyl group, or
- R49 and 5 representing each a hydrogen atom and R7 representing a N- protecting group such as a Boc or Cbz group,
in the synthesis of a peptide, in place of an amino acid such as a serine or a threonine.
The term "amino acid" as used in the present invention refers to natural a-amino acids (e.g. Alanine (Ala), Arginine (Arg), Asparagine (Asn), Aspartic acid (Asp), Cysteine (Cys), Glutamine (Gin), Glutamic acid (Glu), Glycine (Gly), Histidine (His), Isoleucine (He), Leucine (Leu), Lysine (Lys), Methionine (Met), Phenylalanine (Phe), Proline (Pro), Serine (Ser), Threonine (Thr), Tryptophan (Trp), Tyrosine (Tyr) and Valine (Val)) in the D or L form, as well as non-natural amino acid (e.g. β-alanine, allylglycine, tert-leucine, 3-amino-adipic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 2-aminobutanoic acid, 4-amino-l-carboxymethyl piped dine, 1 -amino- 1-cyclobutanecarboxylic acid, 4-aminocyclohexaneacetic acid, 1 -amino- 1- cyclohexanecarboxyilic acid, (lR,2R)-2-aminocyclohexanecarboxylic acid, (\R,2S)-2- aminocyclohexanecarboxylic acid, (l,S',2R)-2-aminocyclohexanecarboxylic acid, (l,S',2)S)-2-aminocyclohexanecarboxylic acid, 3-aminocyclohexanecarboxylic acid, 4- aminocyclohexanecarboxylic acid, (lR,2R)-2-aminocyclopentanecarboxylic acid, (lR,2,S)-2-aminocyclopentanecarboxyilic acid, 1 -amino- 1-cyclopentanecarboxylic acid, 1 -amino- 1-cyclopropanecarboxylic acid, 4-(2-aminoethoxy)-benzoic acid, 3- aminomethylbenzoic acid, 4-aminomethylbenzoic acid, 2-aminobutanoic acid, 4- aminobutanoic acid, 6-aminohexanoic acid, 1-aminoindane-l-carboxylic acid, 4- aminomethyl-phenylacetic acid, 4-aminophenylacetic acid, 3-amino-2-naphtoic acid, 4- aminophenylbutanoic acid, 4-amino-5-(3-indolyl)-pentanoic acid, (4R,5,S)-4-amino-5- methylheptanoic acid, (R)-4-amino-5-methylhexanoic acid, (R)-4-amino-6- methylthiohexanoic acid, (,S)-4-amino-pentanoic acid, (R)-4-amino-5-phenylpentanoic acid, 4-aminophenylpropionic acid, (R)-4-aminopimeric acid, (4R,5R)-4-amino-5-
hyroxyhexanoic acid, (R)-4-amino-5-hydroxypentanoic acid, (R)-4-amino-5-(p- hydroxyphenyl)-pentanoic acid, 8-aminooctanoic acid, (2,S',4R)-4-amino-pyrrolidine-2- carboxylic acid, (2,S',4)S)-4-amino-pyrrolidine-2-carboxylic acid, azetidine-2-carboxylic acid, ( 2,S',4R)-4-benzyl-pyrrolidine-2-carboxylic acid, (S)-4,8-diaminooctanoic acid, tert-butylglycine acid, γ-carboxyglutamate, β-cyclohexylalanine, citrulline, 2,3-diamino propionic acid, hippuric acid, homocyclohexylalanine, moleucine, homophenylalanine, 4-hydroxyproline, indoline-2-carboxylic acid, isonipecotic acid, a-methyl-alanine, nicopetic acid, norleucine, norvaline, octahydroindole-2-carboxylic acid, ornithine, penicillamine, phenylglycine, 4-phenyl-pyrrolidine-2-carboxylic acid, pipecolic acid, propargylglycine, 3-pyridinylalanine, 4-pyridinylalanine, l-pyrrolidine-3-carboxylic acid, sarcosine, statines, tetrahydroisoquinoline-l-carboxylic acid, 1,2,3,4- tetrahydroisoquinoline-3-carboxylic acid, or tranexamic acid). Preferably, it will be a natural or non-natural a-amino acid and preferably a natural a-amino acid.
The term "peptide" as used in the present invention refers to a chain comprising at least 2, and notably 2 to 30, amino acids as defined above (and preferably natural a- amino acid) bound together by means of peptide bounds (i.e. amide function). It can be in particular an oligopeptide having in particular 2 to 20 amino acids.
The synthesis of the peptide will be carried out by classical methods well known to the person skilled in the art, using notably steps of protection / deprotection and peptide coupling.
The peptide can notably be an oligopeptide comprising 2 to 20 amino acids.
The present invention concerns also a peptide of formula (VI) in which at least one amino acid, such as a serine or a threonine, has been replaced with a compound of formula (I) in which Y = HR7 or CH2 HR7, and notably HR7, and/or R5 = OH, and in particular with Y = H2 or CH2 H2, and notably H2, and R5 = OH, the Y and/or R5 group being linked to an amino acid of the peptide by means of peptide bond (i.e. an amide bond).
This means that the hydrogen of the NHR7 or CH2 HR7 moiety of Y is replaced by a bond with a C(=0) moiety derived from the acid function of an amino acid, and/or
the OH moiety of R5 is replaced by a bond with a nitrogen derived from the amino function of another amino acid.
The groups R, Ri, R2, R3 and R4 of the compound of formula (I) are moreover as defined previously.
The peptide can notably be an oligopeptide comprising 2 to 20 amino acids. It can be chosen notably among the following oligopeptides:
21
PCT/EP2011/073822
30
The invention relates also to a peptide (VI) as defined previously for use as medicament, notably for the treatment or the prevention of viral, bacterial or inflammatory diseases.
The invention concerns also the use of a peptide (VI) in the manufacture of a medicament, intended notably for the treatment or the prevention of viral, bacterial or inflammatory diseases.
More specifically, the invention concerns al so a method for treating or preventing viral, bacterial or inflammatory diseases comprising the administration to a person in need thereof of a sufficient quantity of a peptide (VI).
The invention concerns also a method for cosmetic treatment comprising the administration to a person in need thereof of a sufficient quantity of a peptide (VI).
The invention relates also to a peptide (VI) as defined previously for use as cancer vaccine.
The invention concerns also the use of a peptide (VI) in the manufacture of a medicament, intended notably for use as cancer vaccine.
More specifically, the invention concerns also a method for preventing cancer comprising the administration to a person in need thereof of a sufficient quantity of a peptide (VI).
Indeed, the compound of formula (I) integrated in the peptide (VI) represents a mimic of antigen Tn.
In this case, advantageously R = CH2OH and Ri = R2 = OH. R4 can also represent advantageously a hydrogen atom. R3 will be in particular an OH or NHAc group, preferably a NHAc group.
Advantageously, the Y group of the compound of formula (I) integrated in the peptide (VI) will be a NH2 group not bound to another amino acid of the peptide (VI).
The cancer in question can be in particular breast, lung, prostate or colon cancer.
The present invention relates thus also to the use of a compound of formula (I) according to the present invention as a mimic of antigen Tn.
In this case, advantageously R = CH2OH and Ri = R2 = OH. R4 can also represent advantageously a hydrogen atom. R3 will be in particular an OH or NHAc group, preferably a NHAc group. Advantageously, Y will represent a NH2 group.
The present invention relates also to pharmaceutical or cosmetic compositions comprising at least one peptide (VI) and a pharmaceutically acceptable carrier. Said pharmaceutically acceptable carrier can be a hapten, a protein, a chemical scaffold or a carrier matrix.
The pharmaceutical compositions of the invention can be intended to oral, sublingual, subcutaneous, intramuscular, intravenous, transdermal, local or rectal administration. The active ingredient can be admini stered in unit forms for administration, mixed with conventional pharmaceutical carriers, to animals or to humans. Suitable unit forms for administration compri se the form s for oral administration, such as tablets, gelatin capsules, powders, granules and oral solutions or suspensions, the forms for sublingual and buccal administration, the forms for subcutaneous, intramuscular, intravenous, intranasal or intraoccular administration and the forms for rectal administration.
The cosmetic compositions of the invention can be intended to oral, sublingual, cutaneous, topical, transdermal or local administration. The active ingredient can be administered in unit forms for administration, mixed with conventional pharmaceutical carriers, to animals or to humans. Suitable unit forms for administration comprise the forms for oral administration, such as tablets, gelatin capsules, powders, granules and oral solutions or suspensions, the forms for sublingual and buccal administration, the forms for topical, cutaneous, transdermal or local administration. When a solid composition is prepared in the form of tablets, the main active ingredient is mixed with a pharmaceutical vehicle such as gelatin, starch, lactose, magnesium stearate, talc, gum arabic and the like. The tablets may be coated with
sucrose or with other suitable materials, or they may be treated in such a way that they have a prolonged or delayed activity and they continuously release a predetermined amount of active principle.
A preparation in gelatin capsules is obtained by mixing the active ingredient with a diluent and pouring the mixture obtained into soft or hard gelatin capsules.
A preparation in the form of syrup or elixir may contain the active ingredient together with a sweetener, an antiseptic, or also a taste enhancer or a suitable coloring agent.
The water-dispersible powders or granules may contain the active ingredient mixed with dispersing agents or wetting agents, or suspending agents, and with flavor correctors or sweeteners.
For rectal administration, suppositories are used which are prepared with binders which melt at rectal temperature, for example cocoa butter or polyethylene glycols.
For parenteral, intranasal or intraoccular administration, aqueous suspensions, isotonic saline solutions or sterile and injectable solutions which contain pharmacologically compatible dispersing agents and/or wetting agents are used.
The active principle may also be formulated in the form of microcapsules, optionally with one or more carrier additives.
The compounds of the invention can be used in a pharmaceutical or cosmetic composition at a dose ranging from 0.01 mg to 1000 mg a day, administered in only one dose once a day or in several doses along the day, for example twice a day. The daily administered dose is advantageously comprises between 5 mg and 500 mg, and more advantageously between 10 mg and 200 mg. However, it can be necessary to use doses out of these ranges, which could be noticed by the person skilled in the art.
The present invention relates also to the use of a peptide (VI) in the preservation of biological materials, such as cells, tissues and organs, notably below 37°C, such as below 0°C, notably for the cryopreservation of biological materials (human organs or tissues (e.g. for transplant) or cells), and the preservation of food.
The present invention relates also to the cosmetic use of a peptide (VI), especially its cosmetic use in anti-aging applications.
Indeed the study of fish present in the iced water of the polar area shown that they resist to temperatures below 0°C because of the presence in their blood and in their organism of particular proteins protecting them against frost (Chem. Rev. 1996, 16, 2).
These proteins are called anti-freeze glycoprotein (AFGP), they contain a repetitive moiety consisting of a glycosylated peptide containing 3 amino acids (threonine - alanine or proline - alanine) and can have the following structure:
n=4-55
In this case, the peptide will advantageously respond to the following formula and in articular (IXa):
in which R, Ri, R2, R3, R4 and Z are as defined above (including the preferred embodiments), R54 represents a hydrogen atom or a N-protecting group such as Cbz and R55 represents a hydrogen atom or an O-protecting group such as Bn.
Advantageously, R = CH2OH, Ri = R2 = R3 = OH and R4 = H or OH. R54 and R55 each represent advantageously a hydrogen atom. Z can be also a hydrogen atom.
It will be in particular a peptide chosen from examples VI- 1 to VI- 12.
Examples of such compound preparations of the present invention, as well as results of their biological activity are described below for non-limiting and illustrative purposes. FIGURES
Figures la to 6b represent mass spectra (ESI+) of the following compounds:
- figure la: compound Adl without β-Galactosidase,
- figure lb: compound Adl with β-Galactosidase,
- figure 2a: compound Ad2 without β-Galactosidase,
- figure 2b: compound Ad2 with β-Galactosidase,
- figure 3a: compound Cdl without a-Galactosidase,
- figure 3b: compound Cdl with a-Galactosidase,
- figure 4a: compound Cd2 without a-Galactosidase,
- figure 4b: compound Cd2 with a-Galactosidase,
- figure 5a: compound Ddl without a-Galactosidase,
- figure 5b: compound Ddl with a-Galactosidase,
- figure 6a: compound Dd2 without α-Galactosidase, and
- figure 6b: compound Dd2 with a-Galactosidase.
Figure 7 represents the evolution of the percentage of fibroblast viability for 7 days after serum deprivation.
EXAMPLES I - Preparation of the compounds according to the invention
The features of the devices used to conduct analyses of all of the compounds described in this application are indicated below:
The 19F NMR spectra were recorded on BRUKER DPX 300 and DPX 600 spectrometers. The internal reference used is fluorotrichloromethane (CFC13). Chemical shifts are expressed in parts per million (ppm) and coupling constants (J) in Hertz (Hz).
The following abbreviations were used:
s for singlet, bs for a broad singlet, d for doublet, t for triplet, qdt for quartet, m for multiplet or massive, dd for doublet of doublets, etc.
The mass spectra were obtained on a spectrophotometer Micromass TOF-SPEC E 20 kV, a-cyano type, for MALDI ionization and JEOL AX500, 3 kV, Canon FAB JEOL, Xe, 4 kV, 10 μΑ limiting current, Gly- BA 50:50 for FAB ionization.
Separations via column chromatography are carried out under light pressure on Kieselgel 60 silica (230-400 Mesh, Merck).
Monitoring of reactions is performed by thin-layer chromatography (Kieselgel 60F-254-0.25-mm plates). The ratio of the migration distance of a compound on a given support to the migration distance of an eluent is called the retardation factor.
The compounds have been numbered by assigning the symbol a to the alpha derivatives and β to the beta derivatives, and when necessary by assigning the letter G to the galactose derivatives and the letter T to the talose derivatives. Synthesis of compound 2f$
To a cooled (-78°C) solution of compound lji (1.03g; 1.60mmol; leq.), synthesized according to Synlett 2005, 17, 2627-2630 and Org. Lett. 2002, 4, 757-759 - see also WO 2004/014928, WO 2007/125203 and WO 2007/125194, in anhydrous toluene (40 mL) was added a solution of diisobutylaluminium hydride (1.2 M in toluene; 2.00 mL; 2.40 mmol; 1.5eq.) and the resultant mixture was stirred for 1 h at this temperature. The reaction was then quenched with ethanol (10 mL) and the solution was warmed to -20°C for 10 min. A Rochelle's salt solution (20 %, 45 mL) was then added and the solution was vigorously stirred for 1 h. The reaction medium was extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over magnesium sulfate, filtered and evaporated in vacuo to give compound 2f$ (1.03g; yellow oil).
2β: C38H42F2O7 M=648.73g.mol"1
Mass (ESI+): 666.51(M+H20); 671.43(M+Na)
Synthesis o compound 2(a)a
1(a) 2(a)a
To a cooled (-78°C) solution of compound l(a)a (0.112 g, 0.157 mmol, 1 eq), (synthesized according to Org. Lett. 2007, 9, 2477-2480 with the use of Al(OiPr)3/ iPrOH in refluxing DCM for the reducing step, in anhydrous toluene (4.1 mL) was added a solution of diisobutylaluminium hydride (1.2 M in toluene; 0.211 mL; 0.253 mmol; 1.6eq.) and the resultant mixture was stirred for 1 h at this temperature. The reaction media was warmed to -20°C for 10 min and then quenched with ethanol (5 mL). A Rochelle's salt solution (20 %, 10 mL) was then added and the solution was vigorously stirred for lh. The reaction medium was extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over magnesium sulfate, filtered and evaporated in vacuo to give compound 2(a)a (0.1 OOg) which was used in the next step without any further purification.
2(a)a: C43H44F207 M=710.80g.mol"1
Mass (ESI+): 728.20=[M+H2O]+; 733.33=[M+Na]+ Synthesis of compound 2(b)
l(b) 2(b)
To a cooled (-78°C) solution of compound l(b)a (0.248 g, 0.404 mmol, 1 eq), synthesized according to Org. Lett. 2007, 9, 2477-2480 with the use of Al(OiPr)3/ iPrOH in refluxing DCM for the reducing step, in anhydrous toluene (9 mL) was added a solution of diisobutylaluminium hydride (1 M in toluene; 0.600 mL; 0.605 mmol; 1.5 eq.) and the resultant mixture was stirred for 1 h at this temperature. The reaction
medium was warmed to -20°C for 10 min and then quenched with ethanol (2 mL). A Rochelle's salt solution (20 %, 10 mL) was then added and the solution was vigorously stirred for 1 h. The reaction medium was extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over magnesium sulfate, filtered and evaporated in vacuo to give compound 2(b) (0.244 g) which was used in the next step without further purification.
2(b) : C34H42F208 M=616.69 g.mol"1
Mass (ESI+): 639.20[M+Na]+; 1255.07[2M+Na]+ Synthesis of compounds 3(b) and 3f$
2(b)a (R = MOM; R' = zPr) 3(b)a (R = MOM)
2f$ (R = Bn; R' = Et) 3J (R = Bn)
Compound 3β: Diethylamine (246 μΐ.; 2.39 mmol; 1.5 eq.) was added to a solution of compound 2f$ (1.03 g) and ethyl nitroacetate (264 μΐ.; 2.39 mmol; 1.5 eq.) in THF (5 mL) at 0°C. The mixture was stirred for 3h, then at 0°C, ethyl acetate (5 mL) and HC1 (0.5N, 5 mL) were added. The organic layer was separated and the aqueous layer was extracted with ethyl acetate. The combined organic extracts were dried over magnesium sulfate, filtered and evaporated to produce compound 3f$ (1.19 g; yellow oil). Compound 3f$ was used in the next step without further purification.
3J: C40H43F2NO10 M=735.77 g.mol"1
Mass (ESI+): 753.00(M+H2O); 758.13(M+Na)
Compound 3(b) : This compound (145 mg) was prepared from compound 2(b) (244 mg) following the same procedure as for compound3f$.
3(b) C35H41F2NO11 M=689.70 g.mol"1
Mass (ESI+): 707.33(M+H2O)
Synthesis of compounds 4(b) et 4f$
3(b) (R = MOM) 4(b) (R = MOM)
3β (R=Bn) 4J (R=Bn)
Compound 4β: To a chilled (0°C) solution of compound 3fi (1.19g) in THF (30 mL) was added mesyl chloride (377 μΐ.; 4.87 mmol) and triethylamine (684 μΐ.; 4.87 mmol). After stirring for 4 h, water was added (20 mL) and the mixture was extracted with Et20. The combined organic phase was dried (MgS04), filtered, and evaporated. The residue was purified by chromatography (cyclohexane/ethyl acetate 100/0 to 80/20) to give compound4f$ (0.50g; 0.70 mmol, yellow oil) as a diastereomeric mixture (50/50 ratio as measured by 19F MR).
4β: C40H41F2NO9 M=717.75 g.mol"1
Mass (ESI+): 735.33(M+H20); 740.33(M+Na)
Compound 4(b) : This compound (55 mg) was prepared from compound 3(b) (64 mg) following the same procedure as for compound 4β.
4(b) C35H39F2NO10 M=671.68 g.mol"1
Mass (ESI+): 689.13(M+H20)
Synthesis o compounds 5(b) and 5f$
4(b) (R=MOM) 5(b) (R=MOM)
4J (R=Bn) 5β (R=Bn)
Compound 5β: To a chilled (0°C) solution of compound 4f$ (3.90 g; 5.43 mmol) in THF (150 mL) and ethanol (150 mL) was added NaBH4 (410 mg; 10.84 mmol; 2 eq.). The reaction mixture was quenched with HC1 2N and was extracted with Et20. The combined organic extracts were dried over magnesium sulfate, filtered and evaporated. The residue was then purified by chromatography (cyclohexane/ethyl acetate 95/5 to 60/40) to give compound 5f$ as a diastereomeric mixture (2.49 g; 3.46 mmol; yellow
oil) with a yield of 64 %. The two diastereomers were present in a 50/50 ratio as measured by 19F NMR.
5β: C40H43F2NO9 M=719.77 g.mol"1
Mass (ESI+): 737.13(M+H20); 742.20(M+Na)
NMR 19F (CDCI3, 282.5 MHz) (with H coupled): -101.9/-103.7 (4 m, 2F); -107.1/-108.7 (4 m, 2F).
NMR 19F (CDCI3, 282.5 MHz) (without H coupled): -102.5 (d, J=258 Hz, IF); -103.2 (d, J=258Hz, IF); -107.7 (d, J=258Hz, IF); -108.2 (d, J=258Hz, IF).
Compound 5(b)a: This compound (25 mg; 0.04 mmol; yellow oil) was prepared from compound 4(b) (53 mg) following the same procedure as for compound 5β.
5(b) C35H41F2NO10 M=673.70 g.mol"1
Mass (ESI+): 691.13(M+H20)
Synthesis o compounds 5(a)a and 5(b)a
2(a)a (R=R'=Bn) 5(a) (R=Bn)
2(b)a (R=MOM, R'=iPr) 5(b) (R=MOM)
Compound 5(a)a: To a mixture of compound 2a(a) (0.100 g, 0.142 mmol, 1 eq), L- proline (L-Pro) (0.5 eq) and Hantzsch ester (1.3 eq) in ethanol (1 ml) was added ethyl nitroacetate (1.5 eq). The reaction mixture was stirred overnight at 60°C. Ether (15 ml) was added and the organic phase was washed with water (3x10 ml), dried over magnesium sulfate, filtered and evaporated. The residue was then purified by chromatography (cyclohexane/ethyle acetate 97/3 to 40/60) to give compound 5(a)a (68.4 mg, n=0.095 mmol, yield 67%)
5(a) : C40H43F2NO9 M= 719.77 g/mol
NMR 19F (CDCI3) 282,5MHz (with H coupled): -96.7Λ98.5 (2F; 3m); -107.5/-108.7 (2F; 2m)
MR19F (CDCI3) 282.5 MHz (without H coupled): -97.2 (IF; d; J=260Hz); -97.9 (IF; d; J=260Hz); -108.1 (IF; d; J=257Hz); -108.2 (IF; d; J=257Hz);
Mass (ESI+): 742.20=[M+Na]+
Compound 5(b)a: This compound (3.55 g, 5.27 mmol, yield 47 %) was prepared from compound 2(b) (6.96 g, 11.29 mmol) following the same procedure as for compound 5(a)q.
Mass (ESI+): 691.13(M+H20) Synthesis of compounds 5(c)B
2β
Compound 5(ε)β: This compound (yield=43 %) was prepared from compound 2f$ (213 mg) and ethylcyanoacetate (52 μΐ., 0.49 mmol) following the same procedure as for compound 5(a)a
5(c)a: C41H43F2NO7 M=699.78 g.mol"1
Mass (ESI+): 700.29[M+H]+; 722.27[M+Na]+.
MR 19F (CDCI3, 282.5MHz) (without H coupled): -103.3 (d, J=256Hz, IF, CF2); -103.6 (d, J=256Hz, IF, CF2); -107.1 (d, J=256Hz, IF, CF2); -108.1 (d, J=256Hz, IF, CF2).
NMR 19F (CDCI3, 282.5MHz) (with H coupled): -102.8/ -104.1 (4m, 2F, CF2); -106.6/ -108.5 (3m, 2F, CF2).
Synthesis o compounds 6β_ f6Bdl+6 Bd2), 6(a)a and 6(b) (6(b)adl/6(b)ad2
5Ji_(R=Bn) 6Ji_(R=Bn)
5(a)a (R=Bn) 6(a)a (R=Bn)
5(b)a (R=MOM) 6(b)a (R=MOM)
Compound 6β: To a solution of compound 5f$ (1.53 g; 2.13 mmol) in THF (7 mL), water (10 mL) and acetic acid (10 mL), was added Zn dust (2.9 g; 44 mmol; 20 eq.). The resultant mixture was stirred at room temperature for 12 hours. The reaction mixture was filtered through Celite and concentrated. A solution of H4OH was added to adjust the pH of the aqueous layer to pH8, and the resultant aqueous layer was then extracted with ethyl acetate. The combined organic phase was dried (MgS04), filtered, and concentrated. The crude mixture was purified by chromatography on silica gel (cyclohexane/ethyl acetate 90/10 to 20/80) to give compounds 6β (6pdl/6pd2 (50/50)) (0.91 g; 1.32 mmol, yellow oil) 62 % yield. Each diastereomer (6βά1 and 6pd2) was obtained separately.
6Bdl+6 Bd2: C40H45F2NO7 M=689.78 g.mol"1
Mass (ESI+): 690.53(M+H)
MR 19F (CDCI3, 282.5MHz) (with H coupled):
6Bdl: -103.2/-104.2 (2m, IF); -104.2/ -105.2 (2m, IF).
6Bd2: -102.6/ -103.7 (2m, IF); -105.0/ -106.0 (2m, IF).
NMR 19F (CDCI3, 282.5MHz) (without H coupled):
6Bdl: -103.8 (d, J=256Hz, IF); -104.7 (d, J=256Hz, IF).
6Bd2: -103.1 (d, J=255Hz, IF); -105.5 (d, J=255Hz, IF).
Compound 6(a)a: This compound (m= 44.9 mg, n=0.065 mmol, yield= 47 %) was prepared from compound 5(a)a (100 mg, 0.139 mmol, 1 eq) following the same procedure as for compound 6β.
6(a)a: C40H45F2NO7 M= 689.78 g/mol
Mass (ESI+): 690.33=[M+H]+
Compound 6(b) . This compound was obtained as a mixture of diastereomer in a proportion 50/50 from compound 5(b)a (3.55 g, 5.27 mmol, 1 eq) following the same
procedure as for 6f$. Each diastereomer has been isolated 6(b)adl (m = 1.03 g, n = 1.60 mmol, yield = 30 %) and 6(b)ad2 (m = 1.06 mg, n = 1.60 mmol, yield = 31 %).
6(b)adl/ 6(b)ad2: C35H43F2N08 M= 643.71 g/mol
6(b) dl
Mass (ESI+): 644.5 [M+H]+, 666.5 [M+Na]+
NMR 19F (CDC13, 282.5MHz) (without H coupled): -101.1 (IF; d; J=258Hz); -106.2 (IF; d; J=258Hz)
6(b) d2
Mass (ESI+): 644.5 [M+H]+
NMR 19F (CDC13, 282.5MHz) (without H coupled): -99.4 (IF; d; J=256Hz); -106.1 (IF; d; J=256Hz)
Synthesis of compound 7β
5β 7β
To a solution of compound 5f$ (54 mg; 0.075 mmol) in ethanol, SnCl2.2H20 (170 mg;
0.75 mmol; 10 eq.) was added. The mixture was then stirred for 24 h and concentrated.
The residue was then diluted in ethyl acetate and a solution of KOH (2M) was added.
The aqueous layer was further extracted with portions of ethyl acetate and the combined organic phase was washed with brine and water, dried over magnesium sulfate, filtered and concentrated. The crude residue was purified by chromatography
(cyclohexane/ethyl acetate 90/10 to 40/60) to give compounds 7f$ in 56 % yield.
7β: C40H43F2NO8 M=703.77g.mol"1
Mass (ESI+): 721.47(M+H20); 726.46(M+Na)
NMR 19F (CDC13, 282.5MHz) (with H coupled): -100.0/ -101.0 (2m, IF); -103.8 /-104.6
(2m, IF).
NMR 19F (CDC13, 282.5MHz) (without H coupled): -100.5 (d, J=253Hz, IF); -104.2 (d, J=253Hz, IF).
Synthesis o compounds 5β_ r8Bdl/8Bd2), 8(a)a and S(b) (8(b)adl/8(b)ad2)
6Bdl/6Bd2 (R=Bn) 8Bdl/8Bd2(R=Bn)
6(a)a (R=Bn) 8(a)a (R=Bn)
6(b)adl/6(b)ad2 (R=MOM) 8(b)adl/8(b)ad2 (R=MOM)
Compound 8β: To a chilled (0°C) solution of compound 6Bdl (810 mg; 1.18 mmol) in THF (15 mL) was added benzyl chloroformate (420 μΐ.; 2.95 mmol; 2.5 eq.) and triethylamine (247 μΐ.; 1.77 mmol; 1.5 eq.). The resultant mixture was stirred for 12 h and thenextracted with ethyl acetate, washed with a saturated aqueous NaHC03 solution, dried (MgS04), filtered and evaporated. The crude residue was purified by chromatography (cyclohexane/ethyl acetate 90/10 to 40/60) to give compound 8Bdl (792 mg; 0.96 mmol) as a yellowish solid 81 % yield.
Compound 8Bd2 (773 mg; 0.94 mmol) in the form of yellow oil, was prepared following the same procedure but starting from compound 6Bd2 (718 mg; 1.04 mmol).
8Bdl+8 Bd2: C48H51F2NO9 M=823.92g.mol"1
Mass (ESI+):824.27(M+H); 841.47(M+H20); 846.47(M+Na)
MR 19F (CDC13, 282.5MHz) (with H coupled):
8Bdl: -102.0/ -103.0 (2m, IF); -103.5/ -104.6 (2m, IF).
8Bd2: -101.0/ -102.1 (2m, IF); -104.0/ -105.1 (2m, IF).
NMR 19F (CDC13, 282.5MHz) (without H coupled):
8Bdl: -102.5 (d, J=257Hz, IF); -104.1 (d, J=257Hz, IF).
8Bd2: -101.5 (d, J=258Hz, IF); -104.6 (d, J=258Hz, IF).
Compound 8(a)a: This compound (m= 27 mg, n = 0.033 mmol, yield = 52 %) was prepared from compound 6(a)a (44 mg, 0.064 mmol, 1 eq) following the same procedure as for compound 8β.
S(a) C48H51F2NO9 M=823.92g.mol"1
Masse (ESI+): 846.3 (M+Na); 862.3 (M+K)
Compound 8(b)a: The compound 8(b)adl (m = 847 mg, n = 1.09 mmol, yield = 100 %) was prepared from compound 6(b)adl (700 mg, 1.09 mmol, 1 eq) following the same procedure as for compound 8J$.
The compound 8(b)ad2 (m = 847 mg, n = 1.09 mmol, yield = 100 %) was prepared from compound 6(b)ad2 (700 mg, 1.09 mmol, 1 eq) following the same procedure as for compound 8β.
8(b)adl/8(b)ad2: C43H49F2NO10 M=777.85 g.mol"1
8(b)adl
Mass (ESI+): 778.4 [M+H]+; 795.4 [M+H20]+
NMR 19F (CDCI3, 282.5MHz) (with H coupled): -100.5/-101.8 (IF; 2m); -104.9/-106.2 (IF; 2m)
NMR 19F (CDCI3, 282.5MHz) (without H coupled): -101. 1 (IF; d; J=258Hz); -105.6
(IF; d; J=258Hz)
8(b)ad2
Mass (ESI+): 778.3 [M+H]+, 795.4 [M+H20]+
NMR 19F (CDCI3, 282.5MHz) (with H coupled): -98.0/-99.2 (IF; 2m); -106.2/-107.6 (IF; 2m)
NMR 19F (CDCI3, 282.5MHz) (without H coupled): -98.5 (IF; d; J=259Hz); -106.9 (IF; d; J=259Hz)
Synthesis o compounds 9β i9Bdl/9Bd2) and 9(b) (9(b)adl/9(b)ad2)
8Bdl/8Bd2 (R=Bn) 9Bdl/9Bd2 (R=Bn)
8(b)adl/8(b)ad2 (R=MOM) 9(b)adl/9(b)ad2 (R=MOM)
Compound 9β: To a solution of compound 8Bdl (800 mg; 0.97 mmol) in THF (30 mL) and water (1.7 mL) was added LiOH (70 mg; 2.91 mmol). The solution was stirred for 12 hours then quenched with IN HCl aqueous solution. The reaction mixture was then extracted with dichloromethane, dried over sulfate magnesium, filtered and evaporated to give compound 9Bdl (680 mg; 0.86 mmol, yellow oil) in89 % yield.
Compound 9Bd2 (703 mg; 0.88 mmol) was prepared in 97 % yield from compound
8β Ι2 (750 mg; 0.91 mmol) following the same procedure as for compound 9Bdl.
9Bdl/9 Bd2: C46H47F2NO9 M=795.86 g.mol"1
Mass (ESI+): 796.04(M+H); 818.39(M+Na)
NMR 19F (CDCI3, 282.5MHz) (with H coupled):
9Bdl: -98.3/ -99.3 (2m, IF); -100.4/ -101.4 (2m, IF).
9Bd2: -100.0/ -101.3 (2m, IF); -103.4/ -104.7 (2m, IF).
NMR 19F (CDCI3, 282.5MHz) (without H coupled):
9Bdl: -98.8 (d, J=262Hz, IF); -100.9 (d, J=262Hz, IF).
9Bd2: -100.8 (d, J=259Hz, IF); -104.0 (d, J=259Hz, IF).
Compound 9(b) : The compound 9(b)adl (m = 818 mg, n =1.09 mmol, yield= 100 %) was prepared from compound 8(b)adl (847 mg, 1.09 mmol, 1 eq) following the same procedure as for compound 9Bdl.
The compound 9(b)ad2 (m = 818 mg, n = 1.09 mmol, yield= 100 %) was prepared from compound 8(b)ad2 (847 mg, 1.09 mmol, 1 eq) following the same procedure as for compound9Bdl.
9(b)adl/9(b)ad2: C41H45F2NO10 M=749.79g.mol"1
9(b)adl
Mass (ESI+): 750.3 [M+H]+, 767.3 [M+H20]+
NMR 19F (CDCI3, 282.5MHz) (with H coupled): -99.9/-101.1 (IF; 2m); -103.6/-105.0 (IF; 2m)
NMR 19F (CDCI3, 282.5MHz) (without H coupled): -100.4 (IF; d; J=258Hz); -104.2
(IF; d; J=258Hz)
9(b)ad2
Mass (ESI+): 750.3 [M+H]+, 767.3 [M+H20]+
NMR 19F (CDCI3, 282.5MHz) (with H coupled): -96.5Λ97.7 (IF; 2 m); -105.6/-107.0 (IF; 2m)
NMR 19F (CDCI3, 282.5MHz) (without H coupled): -97.1 (IF; d; J=261Hz); -106.3 (IF; d; J=261Hz)
Synthesis of compounds lO flOBdl/10Bd2) and 10(b)a q0(b)adl/10(b)ad2)
a. CF3C02-+3HN-Ala-Ala-OBn; PyBOP/NMM; DMF
9Bdl/9Bd2 (R=Bn) 10Bdl/10Bd2 (R=Bn)
9(b)adl/9(b)ad2 (R=MOM) 10(b)adl/10(b¼d2 (R=MOM)
Compound 10β: To a solution of compound 9Bdl (672 mg; 0.85 mmol) in DMF (9 mL) was added CF3COO" +H3NAlaAlaOBn (340 mg; 1.10 mmol), PyBOP (953 mg; 1.83 mmol) and N-methylmorpholine (284 μΐ^; 2.58 mmol). The reaction mixture was stirred for 48 h. Brine was then added and the reaction mixture was extracted with ethyl acetate. The combined organic phase was washed with an aqueous acid citric (10 %) solution, water and aqueous NaHC03 (5 %) solution. The organic layer was then dried over magnesium sulfate, filtered and evaporated. The crude residue was purified by chromatography (cyclohexane/ethyl acetate 90/10 to 40/60) to give compound lOBdl (630 mg; 0.61 mmol), in 72 % yield as a yellowish oil.
Compound 10Bd2 (594 mg; 0.58 mmol) was prepared from compound 9Bd2 (686 mg;
0.86 mmol) in 67 % yield as a white solid, following the same procedure as for compound lOBdl.
lOgdllO : C59H63F2N3Oii M=1028.14g.mol"1
Mass (ESI+): 1028.19(M+H); 1050.44(M+Na)
MR 19F (CDC13, 282.5MHz) (with H coupled):
lOBdl: -101.4/ -102.3 (2m, IF); -102.4/ -103.5 (2m, IF).
10Bd2: -98.5/ -99.5 (2m, IF); -102.9/ -104.0 (2m, IF).
MR19F (CDC13, 282.5MHz) (without H coupled):
lOBdl: -102.0 (d, J=258Hz, IF); -103.0 (d, J=258Hz, IF).
9Bd2: -99.0 (d, J=258Hz, IF); -103.4 (d, J=258Hz, IF).
Compound 10(b)a: The compound 10(b)adl (m = 910 mg, n = 0.93 mmol, yield = 85 %) was prepared from compound 9(b)adl (818 mg, 1.09 mmol, 1 eq) following the same procedure as for compound lOBdl.
The compound 10(b)ad2 (m= 845 mg, n= 0.86 mmol, yield= 79 %) was prepared from compound 9(b)ad2 (818 mg, 1.09 mmol, 1 eq) following the same procedure as for compound lOBdl.
lQ(b)adl/10(b)ad2: C54H61F2N3O12 M=982.07g.mol"1
10(b)adl
Mass (ESI+): 982.4 [M+H]+, 999.5 [M+H20]+
NMR 19F (CDCI3, 282.5MHz) (with H coupled): -97.9A99.2 (IF; 2m); -103.4/-104.6 (IF; 2m)
NMR 19F (CDCI3, 282.5MHz) (without H coupled): -98.6 (IF; d; J=261Hz); -104.0 (IF; d; J=261Hz)
10(b)ad2
Mass (ESI+): 982.4 [M+H]+, 999.5 [M+H20]+, 1004.4 [M+Na]+
NMR 19F (CDCI3, 282.5MHz) (with H coupled): -97.5/-98.8 (IF; 2m); -104.4/-105.6 (IF; 2m)
NMR 19F (CDCI3, 282.5MHz) (without H coupled): -98.1 (IF; d; J=260Hz); -105.0 (IF; d; J=260Hz)
Synthesis of compounds ϋβ fliPdl/llBd2)
Compound lOBdl (395 mg; 0.38 mmol) dissolved in a mixture of THF (12 mL) and HCl IN (1,4 mL) and in the presence of Pd/C 10 % was placed under a hydrogen
atmosphere. The mixture was stirred for 48 h, then Millipore-filtered and evaporated to give compound llBdl (182 mg, 0.38 mmol, yield 100 %) quantitatively as a white solid.
Compound HBd2 (187 mg, 0.39 mmol, yield 100 %) was prepared as a white solid in quantitative yield from compound 10Bd2 (399 mg; 0.39 mmol) following the same procedure as forcompound llBdl.
llBdl/llBd2: C16H28CIF2N3O9 M=479.86g.mol"1
Mass (EST): 442.1(M-HC1)
NMR 19F (D20, 282.5MHz) (with H coupled):
llBdl: -102.2/ -103.3 (m, IF); -108.4/ -109.5 (m, IF).
llBd2: -102.8/ -103.7 (m, IF); -107.4/ -108.4 (m, IF).
NMR 19F (D20, 282.5MHz) (without H coupled):
llBdl: -102.7 (d, J=258Hz, IF); -108.9 (d, J=258Hz, IF)
HBd2: -103.3 (d, J=257Hz, IF); -107.9 (d, J=257Hz, IF).
Synthesis of compounds 12(b)a (12(b)adl/12(b)ad2)
Compound 12(b)a: Trifluoroacetic acid (3.4 mL, 45.6 mmol) was added dropwise to a solution of compound 10(b)adl (675 mg, 0.687 mmol, 1 eq) in dichloromethane (3.4 mL) under inert atmosphere. The reaction mixture was stirred for 3 h and was then poured into a NaHC03 saturated aqueous solution. The obtained solution was extracted two times with dichloromethane and the combined organic layers were dried over sodium sulfate, filtered and concentrated. Purification of the crude residue by flash column chromatography (cyclohexane/AcOEt 65/35 to 25/75) afford. compound 12(b)adl (m = 385 mg, n = 0.41 mmol, yield = 60 %) as a white solid.
The compound 12(b)ad2 (m = 368 mg, n = 0.39 mmol, yield = 60 %) was prepared from compound 10(b)ad2 (642 mg, 0.654 mmol, 1 eq) following the same procedure as for compound 12(b)adl.
12(b)adl/12(b¼d2: C52H57F2N3O11 M=938.02g.mol"1
12(b)adl
Mass (ESI+): 938.4 [M+H]+, 955.4 [M+H20]+, 960.4 [M+Na]+
NMR 19F (CDCI3, 282.5MHz) (with H coupled): -97.3Λ98.6 (IF; 2m); -101.6/-102.7 (IF; 2m)
NMR 19F (CDCI3, 282.5MHz) (without H coupled): -97.9 (IF; d; J=262Hz); -102.1 (IF; d; J=262Hz
12(b)ad2
Mass (ESI+): 938.4 [M+H]+ 955.4 [M+H20]+, 960.4 [M+Na]+
NMR 19F (CDCI3, 282.5MHz) (with H coupled): 97.3Λ98.5 (IF; 2m); -103.6/-104.7 (IF; 2m)
NMR 19F (CDCI3, 282.5MHz) (without H coupled): -97.9 (IF; d; J=259Hz); -104.1 (IF; d; J=259Hz) Synthesis of compounds 13(b)a (13(b)adl/13(b)ad2)
Compound 13(b)a: Compound 12(b)adl (395 mg, 0.42 mmol, 1 eq) dissolved in a mixture of THF (13.2 mL) and HCl IN (1.5 mL) and in the presence of Pd/C 10 % (112 mg, 0.25 eq) was placed under a hydrogen atmosphere. The mixture was stirred for 24 h, then Millipore-filtered and evaporated to give compound 13(b)adl (m = 197 mg, n = 0.41 mmol, yield = 97 %)
The compound 13(b)ad2 (m = 172 mg, n = 0.36 mmol, yield = 100 %) was prepared from compound 12(b)ad2 (338 mg, 0.36 mmol, 1 eq) following the same procedure as for compoundl3(b)adl.
13(b)adl/13(b)ad2: Ci6H28ClF2N309 M=479.86 g.mol"
13(b)adl
Mass (ESI+): 444.2 [M-HC1+H]+' 466.2 [M-HCl+Na]+' 482.1 [M-HC1+K]+
NMR 19F (CDCI3, 282.5MHz) (with H coupled): -97.2A98.4 (IF; 2m); -101.8/-103.0
(IF; 2m)
NMR 19F (CDCI3, 282.5MHz) (without H coupled): -97.8 (IF; d; J=256Hz); -102.4 (IF; d; J=256Hz)
13(b)ad2
Mass (ESI+): 444.2 [M-HC1+H]+' 466.2 [M-HC1 +Na]+' 482.1 [M-HC1 +K]
NMR 19F (CDCI3, 282.5MHz) (with H coupled): -97.7Λ98.8 (IF; 2m); -100.5/-101.8 (IF; 2m)
NMR 19F (CDCI3, 282.5MHz) (without H coupled): -98.2 (IF; d; J=257Hz); -101.0 (IF; d; J=257Hz)
Synthesis o compounds
14 15
Compound 15: Compound 14 (3g, 4.50 mmol, 1 eq) obtained from a process described in Synlett 2005, 17, 2627-2630 - see also WO 2004/014928, WO 2007/125203 and WO 2007/125194 was dissolved in anhydrous DMF (45 mL). The solution was cooled to 0°C and sodium hydride (129 mg, 5.40 mmol, 1.2 eq) was added portion wise. After 45 min. stirring at 0°C, benzyl bromide (1.1 mL, 9 mmol, 2 eq.) was added drop wise. The reaction mixture was warmed to room temperature and stirred 5 h 30. A saturated aqueous solution of ammonium chloride was added and the mixture was extracted three times with ethyl acetate. The combined organic layers were washed with water, then with brine before being dried and evaporated. Purification by chromatography (cyclohexane/ethyl acetate 98/2 to 75/25) afford compound 15 (m = 2.61 mg, n = 3.47 mmol, yield = 77 %).
15: C45H46F2O8 M=752.84g.mol"1
Mass (ESI+): 775.4 [M+Na]+, 791.3 [M+K]+
NMR 19F (CDCI3, 282.5MHz) (with H coupled): -1 11.4 (IF; d; J=265Hz); -1 16.1 (IF; d; J=265Hz) ; -112.0 (IF; d; J=263Hz); -115.3 (IF; dd; J=265Hz ; J=3Hz
Synthesis of compounds 16
15 16
To a cooled (-78°C) solution of Compound 15 (1.34 g, 1.78 mmol, 1 eq) in anhydrous toluene (18 mL) was added a solution of diisobutylaluminium hydride (1.2M in toluene; 2.15 mL; 2.58 mmol; 1.45 eq.) and the resultant mixture was stirred for 5 h at this temperature. The reaction was then quenched with methanol (4 mL) and the solution was warmed to -20°C for 10 min. A Rochelle's salt solution (20 %) was then added and the solution was vigorously stirred for 1 h. The reaction medium was extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over magnesium sulfate, filtered and evaporated in vacuo to give compound 16 (m = 1.3 g, yellow oil). Compound 16 was used in the next step without further purification.
16: C45H48F2O8 M=754.85g.mol"1
Mass (ESI+): 777.4 [M+Na]+, 793.3 [M+K]+
Synthesis o compounds 17dl/17d2
Compound 17: To a mixture of compound 16 (1.56 g, 2.07 mmol, 1 eq), L-proline (L- Pro) (119 mg, 1.04 mmol, 0.5 eq) and Hantzsch ester (70 mg, 2.69 mmol, 1.3 eq) in ethanol (20 ml) was added ethyl nitroacetate (0.3 mL, 3.11 mmol, 1.5 eq). The reaction mixture was stirred 20 hours at 60°C. Ether was added and the organic phase was washed three times with water, dried over sodium sulfate, filtered and evaporated. The residue was then purified by chromatography (cyclohexane/ethyle acetate 80/20) to give compound 17 (17dl/17d2 60/40) (m = 1.3 g, 1.57 mmol, yield = 75 %, yellow solid) as a mixture of diastereomer.
17dl/17d2: C47H49F2NO10 M=825.89g.mol"1
Mass (ESI+): 843.4 [M+H20]+, 848.3 [M+Na]+, 864.3 [M+K]+
Synthesis of compounds 18dl/18d2
17dl/17d2 18dl/18d2
Compound 18: To a solution of compound 17dl/17d2 (17dl/17d2 60/40) (1 .23 g, 1.55 mmol, 1 eq) in THF (4.9 rnL), water (7.3 mL) and acetic acid (7.3 mL), was added Zn dust (2.1 g; 32.5 mmol; 21 eq.). The resultant mixture was stirred at room temperature for 5 hours. The reaction mixture was filtered through Celite and concentrated. A solution of NaHC03 was added to adjust the pH of the aqueous layer to pH8, and the resultant aqueous layer was then extracted with ethyl acetate. The combined organic phase was dried (MgS04), filtered, and concentrated. The crude mixture was purified by chromatography on silica gel (cyclohexane/ethyl acetate 80/20) to give compound 18 (18dl/18d260/40) (m = 780 mg, n = 0.98 mmol, yield = 63 %).
18dl/18d2: C47H51F2NO8 M=795.91g.mol"1
Mass (ESI+): 796.4 [M+H]+, 818.4 [M+Na]+, 834.4 [M+K]+
Synthesis of compounds 19dl/19d2
18dl/18d2 19dl/19d2
Compound 19: To a chilled (0°C) solution of compound 18 (18dl/18d2 60/40) (658 mg, 0.827 mmol, 1 eq) in THF (8 mL) was added benzyl chloroformate (300 μΐ^; 2.07 mmol; 2.5 eq.) and triethylamine (290 μΐ^; 2.07 mmol; 2.5 eq.). The resultant mixture was stirred for 24 h and then extracted with ethyl acetate, washed with a saturated aqueous NaHC03 solution, dried (MgS04), filtered and evaporated. The crude
residue was purified by chromatography (cyclohexane/ethyl acetate 2/98 to 80/20) to give compound 19 (19dl/19d2 60/40) (m = 592 mg, n = 0.637 mmol, yield = 77 %).
19dl/19d2: C55H57F2NO10 M=930.04g.mol"1
Mass (ESI+): 947.44 [M+NH4]+, 953 [M+Na]+, 968.37 [M+K]+
Synthesis of compounds 20dl/20d2
19dl/19d2 20dl/20d2
Compound 20: To a solution of compound 19 (19dl/19d2 60/40) (575 mg, 0.618 mmol, 1 eq) in THF (6 mL) was added LiOH 2N solution (0.93 mL; 1.85 mmol, 3 eq.). The solution was stirred for 12 hours then quenched with IN HCl aqueous solution. The reaction mixture was then extracted with ethyl acetate, dried over sodium sulfate, filtered and evaporated to give compound 20 (20dl/20d2 55/45) as a white solid (m = 526 mg, n =0.583 mmol, yield = 94 %).
20dl/20d2: C53H53F2NO10 M=901.99g.mol"1
Mass (ESI+): 919.4 [M+H20]+, 924.4 [M+Na]+, 940.3 [M+K]+
Synthesis of compounds 21dl/21d2
a. CF3CO2-+3HN-Ala-Ala-OBn; PyBOP/NMM; DMF
20dl/20d2 21dl/21d2
Compound 21 : To a solution of compound 20 (20dl/20d2 55/45) (432 mg, 0.477 mmol, 1 eq) in DMF (4.6 mL) was added CF3COO" +H3NAlaAlaOBn (223 mg; 0.612 mmol, 1.3 eq.), PyBOP (510 mg; 1 mmol, 2.1 eq.) and N-methylmorpholine (160 μί; 1.43 mmol, 3eq.). The reaction mixture was stirred for 18 h. Brine was then added and the reaction mixture was extracted with ethyl acetate. The combined organic phase was
washed with an aqueous acid citric (10 %) solution, water and aqueous NaHC03 (5 %) solution. The organic layer was then dried over sodium sulfate, filtered and evaporated. The crude residue was purified by chromatography (cyclohexane/ethyl acetate 4/96 to 60/40) to give compound 21 (21dl/21d2 55/45) as a colourless oil (m= 453mg, n=0.4mmol, yield= 84%).
2idl/21d2: C66H69F2N3Oi2 M=1134.26g.mol"1
Mass (ESI+): 1134.5 [M+H]+, 1151.5 [M+H20]+, 1156.5 [M+Na]+, 1172.5 [M+K]+ NMR 19F (CDC13, 282.5MHz) (without H coupled): -102.9 (IF ; d ; J=259Hz) ; -103.2 (IF ; d ; J=259Hz), -104.6 (IF ; d ; J=259Hz) ; -104.8 (IF ; d ; J=259Hz) esis of compounds 22dl/22d2
21dl/21d2 22dl/22d2
Compound 22: Compound 21 (21dl/21d255/45) (51 mg; 0.045 mmol) dissolved in a mixture of THF and HCl IN (590 μΐ.) and in the presence of Pd/C 10 % was placed under a hydrogen atmosphere. The mixture was stirred for 48h, then Millipore-filtered and evaporated to give compound 22 (m = 22 mg, n = 0.044 mmol, yield = 99 %).
22dl/22d2: Ci6H28ClF2N3Oio M=495.86g.mol"1
Mass (ESI+): 459.2[M-HC1 +H]+, 477.2 [M-HC1 +H20]+
Synthesis of compounds 23dl/23d2
22dl/22d2 23dl/23d2
Compound 23d1 (174 mg, 0.24 mmol, yield 52 %) was prepared from compound 8(b)adl (m = 355 mg, n = 0.46 mmol) following the same procedure as for compound 12(b)a
Compound 23d2 (228 mg, 0.3 1 mmol, yield 60 %) was prepared from compound 8(b)ad2 (m = 402 mg, n = 0.52 mmol) following the same procedure as for compound 12(b)a
23dl/23d2: C41H45F2NO9 M=733.79g.mol"1
23dl
Masse (ESI+): 756.4 [M+Na]+, 772.4 [M+K]+
NMR 19F (CDCI3, 282.5MHz) (with H coupled): -102.3/-103.5 (IF; 2m); -103.5/-104.7 (IF; 2m)
NMR 19F (CDCI3, 282.5MHz) (without H coupled): -102.9 (IF; d; J=259Hz); -104.2 (IF; d; J=259Hz)
23d2
Mass (ESI+): 756.4 [M+Na]+, 772.4 [M+K]+
NMR 19F (CDCI3, 282.5MHz) (with H coupled): -99.3/-100.6 (IF; 2m); -104.9/-106.2 (IF; 2m)
NMR 19F (CDCI3, 282.5MHz) (without H coupled): -99.9 (IF; d; J=254Hz); -105.5 (IF; d; J=254Hz)
Synthesis of compounds 24dl/24d2
23dl/23d2 24dl/24d2
Compound 24dl (77 mg, 0.1 1 mmol, yield 100 %) was prepared from compound 23dl (m = 80 mg, n = 0.1 1 mmol) following the same procedure as for compound 9(b)adl.
Compound 24d2 (77 mg, 0.1 1 mmol, yield 100 %) was prepared from compound 23dl (m = 80 mg, n = 0.1 1 mmol) following the same procedure as for compound 9(b)adl. 24dl/24d2: C39H41F2NO9 M=705.74g.mol"1
24dl
Masse (ESI+): 706.3 [M+H]+, 723.3 [M+H20]+, 728.3 [M+Na]+
NMR 19F (CDCI3, 282.5MHz) (with H coupled): -100.8/-101.9 (IF; 2m); -102.2/-103.4 (IF; 2m)
NMR 19F (CDCI3, 282.5MHz) (without H coupled): -101.3 (IF; d; J=262Hz); -102.9
(IF; d; J=262Hz)
24d2
Mass (ESI+): 706.3 [M+H]+, 723.3 [M+H20]+, 728.3 [M+Na]+
NMR 19F (CDCI3, 282.5MHz) (with H coupled): -98.2Λ99.3 (IF; 2m); -104.4/-105.7 (IF; 2m)
NMR 19F (CDCI3, 282.5MHz) (without H coupled): -98.7 (IF; d; J=260Hz); -105.0 (IF ; d ; J=260Hz) Synthesis of compounds 25dl/25d2
24dl/24d2 25dl/25d2
Compound 25dl (35 mg, 0.1 1 mmol, yield 100 %) was prepared from compound 24dl (m = 74 mg, n = 0.11 mmol) following the same procedure as for compound 13(b)a.
Compound 25d2 (32 mg, 0.09 mmol, yield 93 %) was prepared from compound 24dl (m = 72 mg, n = 0.10 mmol) following the same procedure as for compound 13(b)a. 25dl/25d2: Ci0Hi8ClF2NO7 M=337.70g.mol"1
25dl
Masse (ESI+): 302.1 [M-HC1+H]+
NMR 19F (CDCI3, 282.5MHz) (with H coupled): -97.2/-98.3 (IF; 2m); -101.9/-103.0 (IF; 2m)
NMR 19F (CDCI3, 282.5MHz) (without H coupled): -97.7 (IF; d; J=256Hz); -102.4 (IF; d; J=256Hz)
25d2
Mass (ESI+): 302.1 [M-HC1+H]+
NMR 19F (CDCI3, 282.5MHz) (without H coupled): -97.9 (IF; d; J=257Hz); -100.9 (IF; d; J=257Hz)
Synthesis o compounds 27
26 27
Compound 26 (24.2 g, 43.6 mmol, 1 eq) obtained from a process described in Org. Lett. 2007, 9, 2477-2480 was dissolved in acetonitrile (58 mL) and the obtained solution was added to a solution of hydroxylamine hydrochloride (5.46 g, 78.5 mmol, 1.8 eq) and sodium acetate (7.15 g, 87.2 mmol, 2 eq) in water (58 mL). The reaction mixture was stirred at room temperature overnight before being evaporated and purified by chromatography (cyclohexane/ethyl acetate 100/0 to 70/30) to give compound 27 (m = 11.59 g, n = 20.3 mmol, yield = 47 %) as a yellow oil.
-1
27: C31H33F2NO7 M=569.59g.mol
Mass (ESI+): 570.2 [M+H]+
NMR 19F (CDC13, 282.5MHz) (with H coupled): -109.5 (IF; dd; J=255Hz; J=9Hz); -113.1 (IF; dd; J=255Hz J=23Hz)
NMR 19F (CDCI3, 282.5MHz) (without H coupled): -109.5 (IF; d; J=255Hz); -113.1 (IF; d; J=255Hz)
Synthesis of compounds 28G/28T
27 28G/28T
A solution of compound 27 (5.5 g, 9.66 mmol, 1 eq) in diethyl ether (250 mL) was added drop wise to a suspension of lithium aluminium hydride (3.67 g, 96.6 mmol, 10 eq) in diethyl ether (150 mL) under inert atmosphere. The suspension was stirred for lOmin at room temperature and then refluxed overnight before being cooled to 0°C. A Rochelle's salt aqueous solution was carefully added drop wise. The mixture was then warmed to room temperature and filtered through a pad of Celite. The pad was washed
with diethyl ether. The layers were separated and the aqueous one was extracted with diethyl ether. The combined organic layers were washed with water, dried over sodium sulfate and evaporated. The yellow crude residue obtained was dissolved in methanol (700 mL) and acetic anhydride (10.8 mL, 1 15 mmol, 12 eq) was added. The reaction mixture was stirred at room temperature for 1.5 h, then evaporated to give a mixture of two diastereomers (28T/28G 70/30). Each diastereomer has been isolated by chromatography (cyclohexane/ethyl acetate 60/40 to 35/65) of the crude residue 28T (m = 1.65 g, n = 2.97 mmol, yield = 31 %) and 28G (m = 516 mg, n = 0.93 mmol, yield = 10 %).
28T/28G: C31H35F2NO6 NL-555.61g.mol"1
28T
Mass (ESI+): 562.3 [M+Li]+
NMR 19F (CDCI3, 282.5MHz) (with H coupled): -109.5/-110.7 (IF; 2m); -112.9/-114.6 (IF, 2m)
NMR 19F (CDCI3, 282.5MHz) (without H coupled): -1 10.1 (IF; d; J=261Hz); -113.7 (IF; d; J=261Hz)
28G
Mass (ESI+): 562.3 [M+Li]+ 578.2 [M+Na]+
NMR 19F (CDCI3, 282.5MHz) (with H coupled): -112.2/-113.7 (IF; 2m); -120.3/-121.7 (IF; 2m)
NMR 19F (CDCI3, 282.5MHz) (without H coupled): -1 12.8 (IF; d; J=269Hz); -120.8 (IF; d; J=269Hz)
Synthesis of compounds 29G
28G 29G
Compound 28G (200 mg, 0.36 mmol, 1 eq) was dissolved in dichloromethane (1 mL) under inert atmosphere and Dess Martin periodinane (458 mg, 1.08 mmol, 3 eq) was added . The reacti on mixture was stirred at room temperature overnight. Dichloromethane and water were added and the layers separated. The aqueous layer was
extracted with dichloromethane and the combined organic layers were dried over sodium sulfate. Evaporation and purification by chromatography (dichloromethane/methanol 90/10 to 85/15) afford compound 29G (m = 45 mg, n = 0.079 mmol, yield = 22 %)
29G: C31H33F2NO7 M=569.59g.mol"1
Mass (ESI+): 570.2 [M+H]+, 592.2 [M+Na]+, 608.1 [M+K]+
Synthesis o compounds 30G
29G 30G
Thionyl chloride (21 μΐ., 0.278 mmol, 3.6 eq) was added to a solution of compound 29G (44 mg, 0.077 mmol, 1 eq) in ethanol (510 μΐ.). The reaction mixture was refluxed 1 h, then cooled and slowly added to an aqueous saturated solution of sodium hydrogenocarbonate. The solution was extracted two times with diethyl ether and the combined organic layers were dried over sodium sulfate. Evaporation and purification by chromatography afford compound 30G (m = 6 mg, n = 0.01 mmol, yield =13 %) 30G: C33H37F2NO7 M=597.65g.mol"1
Mass (ESI+): 598.3 [M+H]+, 620.2 [M+Na]+, 636.2 [M+K]+ Synthesis of compounds 31G
30G 31G
The compound 31G (m = 702 mg, n = 1.17 mmol, yield = 89 %) was prepared from compound 30G (790 mg, 1.32 mmol, 1 eq) following the same procedure as for compound 16. The crude mixture containing compound 31G is used in the next step without further purification and without characterization.
Synthesis of compounds 32Gdl/32Gd2
31G 32Gdl/32Gd2
The compound 32Gdl/32Gd2 (m = 365 mg, n = 0.54mmol, yield = 47 %) was prepared from compound 31G (702 mg, 1.17 mmol, 1 eq) following the same procedure as for compound 17.
32Gdl/32Gd2: C35H40F2N2O9 M=670.70g.mol"1
Mass (ESI+): 693.3 [M+Na]+, 709.3 [M+K]+
Synthesis of compounds 33Gdl/33Gd2
32Gdl/32Gd2 33Gdl/33Gd2
The compound 33Gdl/33Gd2 (m = 332 mg, n = 0.52 mmol, yield = 96 %) was prepared from compound 32Gdl/32Gd2 (362 mg, 0.54 mmol, 1 eq) following the same procedure as for compound 18. At this stage, both diastereomers could be isolated by purification on chromatography.
33Gdl/33Gd2: Cssi^F.NzO? M=640.71g.mol"1
Mass (ESI+): 641.4 [M+H]+, 663.4 [M+Na]+, 679.4 [M+K]+
Synthesis of compounds 34Gdl/34Gd2
33Gdl/33Gd2 34Gdl/34Gd2
The compound 34Gdl/34Gd2 (m = 5 1 mg, n = 0.066 mmol, yield = 28 %) was prepared from compound 33Gdl/33Gd2 (150 mg, 0.23 mmol, 1 eq) following the same procedure as for compound 19.
34Gdl/34Gd2: C43H48F2N2O9 M=774.85g.mol"1
Mass (ESI+): 775.3 [M+H]+, 792.3 [M+H20]+, 797.3 [M+Na]+, 813.3 [M+K]+
Synthesis of compounds 35Gdl/35Gd2
34Gdl/34Gd2 35Gdl/35Gd2
The compound 35Gdl/35Gd2 (m = 48 mg, n = 0.065 mmol, yield = 100 %) was prepared from compound 34Gdl/34Gd2 (50 mg, 0.65 mmol, 1 eq) following the same procedure as for compound 20.
35Gdl/35Gd2: C41H44F2N2O9 M=746.79g.mol"1
Mass (ESI+): 747.3 [M+H]+, 764.3 [M+H20]+, 769.3 [M+Na]+, 785.3 [M+K]+
Synthesis of compounds 36Gdl/36Gd2
35Gdl/35Gd2 36Gdl/36Gd2
The compound 36Gdl/36Gd2 (m = 24 mg, n = 0.065 mmol, yield = 100 %) was prepared from compound 35Gdl/35Gd2 (48 mg, 0.065 mmol, 1 eq) following the same procedure as for compound 13(b)a.
36Gdl/36Gd2: C12H21CIF2N2O7 M=378.75g.mol"1
Mass (ESI+): 343.2 [M-HC1+H]+, 360.2 [M+ H4]+, 365.2 [M+Na]+
S nthesis of compound 38
37 38
Into a round-bottom flask, under an inert atmosphere, BuLi (1,5 M, 1.6 mL, 5.7 eq.) is added carefully at -78°C to a solution of Weinreb amine (122 mg; 1.25 mmol; 3 eq) in THF anhydrous (2.5 mL). The mixture is left under agitation for 20 minutes, with the media put back at room temperature. The compound 37 (271 mg; 0.420 mmol; 1 eq.) in THF (0.5 mL) is then added at -78°C. Then the media is allowed to get back to room temperature, and stirred for 30 minutes. The mixture is hydrolyzed with HC1 IN to obtained pH 7, extracted three times with Et20, dried over magnesium sulfate, filtered and then evaporated. The crude mixture containing compound 38 is used in the next step without further purification.
38: C38H41F2NO7 M=661.73g.mol"1
Mass (ESI+): 684.4 (M+Na).
Synthesis of compound 39
38 39
Into a round-bottom flask, under an inert atmosphere, MeLi (1.6 M solution in Et20, 0.9 mL, 4 eq.) was added at -78°C to a solution of crude compound 38 (226 mg) in THF (5 mL). The mixture was stirred for 30 minutes. Then, a saturated aqueous solution of NH4CI was added and the mixture was extracted with Et20. The combined organic layers were dried over magnesium sulfate, filtered and evaporated. Then the residue was
purified by chromatography (cyclohexane/ethyl acetate 93/7 to 40/60) to give compound 39 (120 mg, 0.20 mmol).
39: C37H38F2O6 M=616.69g.mol"1
Mass (ESI+): 634.3 [M+H20]+, 639.3 [M+Na]+, 655.2 [M+K]+ .
MR19F (CDCI3, 282.5MHz): -1 15.5 (IF, dd, J=257Hz, J=l lHz); -1 19.6 (IF, ddd, J=257Hz, J=l lHz, J=3Hz).
Synthesis of compound 40
Under an inert atmosphere, a solution of ethyl nitroacetate (0.036 mL, 0.32 mmol) and compound 39 (100 mg, 0.16 mmol) in CH2C12 (1.5 mL) was added to a stirred solution of TiCl4 (1M solution in CH2C12, 0.3 ml, 0.3 mmol) in anhydrous THF (2 mL) at 0°C. The mixture was stirred for 15 min at 0°C and a solution of N-methyl morpholine (NMM) (0.071 mL, 0.65 mmol) in THF (1 mL) was added. Then the reaction mixture was stirred for an additional time of 15 min. at 0°C, allowed to warm to room temperature for 15 h and heated at 60°C for 15 h. Then H20 was added and the mixture was extracted with Et20. The combined organic layers were dried over magnesium sulfate, filtered and evaporated.
40: C4iH43F2N09 M=731.78g.mol"1
Mass (EST ): 732.28 [M+H]+; 749.33 [M+H20]+.
II - Stability of pseudo glycosidic bond
Compound HBdl. llBd2. 12(b)adl. 12(b)ad2. 25dl and 25d2 have all been neutralized using the following process before to be used in the stability test described below.
Compound llBdl (196 mg, 0.41 mmol) was dissolved in methanol (3 mL). Ion exchange resin (Amberlite IRA-67 weakly basic, previously washed with water, then
with methanol) was added and the suspension thus obtained was stirred for 30 min. The mixture was filtered and the resin washed with methanol (10 mL). Evaporation, dissolution in water (25 mL) and freeze drying afford compound Adl (120 mg, 0.27 mmol, yield 66 %) as a white solid.
Using the previous process, compound llBd2 leads to compound Ad2, compound 12(b)adl leads to compound Ddl, compound 12(b)ad2 leads to compound Dd2, compound 25dl leads to compound Edl and compound 25d2 leads to compound Ed2.
• Stability of β-Gal-CF -Ser pseudo-glycosidic bond
The enzymatic stability has been performed with compound Adl and Ad2 according to the invention and compound B used as a reference compound to control the efficacy of the β-galactosidase. Both compounds have been treated with β-galactosidase. The stability of compound Adl and Ad2 has been assessed by mass spectrum (MS) analysis after incubation with β-galactosidase. The samples have been injected and ionized by electrospray (ES) (in positive and negative mode). The procedure has been adapted from Maljaars et al. J Comb. Chem. 2006, 8, 812-819.
Ad2
Test compound Adl (12 μπιοΐ, 5.3 mg) in 1.5 mL ammonium acetate buffer (10 mM, pH 7) was kept 24h at 37°C in the presence and absence of β-galactosidase (4.5 U, 32 μΐ. of a 1 mg.mL"1 solution in ammonium acetate buffer,(48275 sigma, 140 U per mg)). 300 μΐ. of the sample was filtered through a 3-kDa-cutoff centrifugal filter
(Millipore), and the filter was washed with H20 (2 x 300 /L). The obtained solutions were diluted in water/methanol 1 : 1 (3 μΙ_, in lmL).
Test compound Ad2 (12 μπιοΐ, 5.3mg) has been treated in the presence and absence of β-galactosidase following the same process.
These samples of compound Adl and Ad2 in presence of β-galactosidase have been submitted to mass spectra and compared to the mass spectra of compound Adl and Ad2 in absence of β-galactosidase. For both compound Adl (Figures la and lb) and Ad2 (Figures 2a and 2b), the spectra show that no hydrolysis occurs and that both compounds remain intact.
The two samples were also analyzed by F- MR to confirm that the test compound Adl and Ad2 were not cleaved by the β-galactosidase.
In parallel, p-nitrophenyl^-galactoside (compound B, 12 μπιοΐ, 3.6 mg) in 1.5 mL ammonium acetate buffer (10 mM, pH 7) was kept 24 h at 37°C in the presence and absence of β-galactosidase (4.5 U, 32 μΙ_, of a 1 mg.mL"1 solution in ammonium acetate buffer (48275 sigma, 140U per mg)).
During the process in the presence of β-Galactosidase, a yellow coloration was observed that underlines the decomposition of compound B.
The optical density (OD) of the two samples was measured at 420 nm to verify that the β-galactosidase is working and that degradation occurs on compound B (OD42o with β- galactosidase = 1.5786 / OD420 without β-galactosidase = 0.0465).
• Stability of a-Gal-CF?-Ser pseudo-glycosidic bond
The enzymatic stability has been performed with compounds Cdl, Cd2, Ddl and Dd2 according to the invention and compound F was used as a reference compound to control the efficacy of the a-galactosidase. All the compounds have been treated with a- galactosidase. The stability of compounds Cdl, Cd2, Ddl and Dd2 has been assessed by MS analysis after incubation with α-galactosidase. The procedure has been adapted from Maljaars et al. J Comb. Chem. 2006, 8, 812-819.
Test compound Cdl (6 μιηοΐ, 1.8 mg) in 0.75 mL ammonium acetate buffer (10 mM, pH 7) was kept 24 h at 37°C in the presence and absence of a-galactosidase (2.25 U, 41 μΙ_, of a 3.7 mg.mL"1 suspension in ammonium sulphate (G8507 sigma, 14.7 U/mg)). 300 μΙ_, of the samples were filtered through a 3-kDa-cutoff centrifugal filter (Millipore) and the filter was washed with H20 (2 x 300 μΌ). The resultant solutions were diluted in water/methanol 1 : 1 (3 μΙ_, in lmL);
Test compound Cd2 (12 μηιοΐ, 5.3 mg) has been treated in the presence and absence of α-galactosidase following the same process.
The samples of compound Cdl and Cd2 in presence of α-galactosidase have been analyzed by mass spectrometry and their spectra compared to the mass spectra of compound Cdl and Cd2 in absence of α-galactosidase. For both compound Cd l (Figures 3a and 3b) and Cd2 (Figures 4a and 4b), the spectra underline that no hydrolysis occurs and that both compounds remain intact.
The two samples were also analyzed by F- MR to confirm that the test compounds Cdl and Cd2 were not cleaved by a-galactosidase.
The same procedure was applied to compound Ddl (6 μηιοΐ, 2.6 mg) and Dd2 (6 μηιοΐ, 2.6 mg).
The samples of compound Ddl and Dd2 in presence of α-galactosidase have been submitted to mass spectra and compared to the mass spectra of compound Ddl and Dd2
in absence of a-galactosidase. For both compounds Ddl (Figures 5a and 5b) and Dd2 (Figures 6a and 6b), the spectra underline that no hydrolysis occurs on both compounds that remain intact.
The two samples were also analyzed by F-NMR to confirm that the test compounds Ddl and Dd2 were not cleaved by a-galactosidase.
In parallel, p-nitrophenyl-a-galactoside (compound F, 6 μπιοΐ, 1.8mg) in 0.75mL of ammonium acetate buffer (10 mM, pH 7) was kept 24h at 37°C in the presence and absence of α-galactosidase 2.25U, 41 μΙ_, of a 3.7 mg.mL"1 suspension in ammonium sulphate ((G8507 sigma) 14.7 U/mg). The OD of the two samples was measured at 420 nm to verify that the α-galactosidase is working and that degradation occurs on compound F (OD42o with α-galactosidase = 1.6303 / OD42o without α-galactosidase = 0.0124). In conclusion, we showed in these experiments that the CF2 bond is stable and does not undergo hydrolysis in the presence of galactosidase. To the contrary the O-glycosidic bound has been shown to undergo hydrolysis in the presence of galactosidases (vide supra) and as described in the literature (vide infra). Indeed O-glycosidic amino acid such as O-glycosidic serine and threonine can be cleaved by glycosidases (cf Maljaars et al. J Comb. Chem. 2006, 8, 812-819 and Allen et al. Biochem. J. 1978, 171, 665- 674).
Ill - Effect of glycopeptides 13(b)adl and 13(b)ad2 on the preservation of neonatal skin fibroblast under starvation conditions
Materials and Methods
Subculturing
• The neonatal human skin fibroblasts (Cell line: CCD-27SK, ATCC number CRL- 1475) were grown with DMEM medium supplemented with Fetal Bovine Serum 10 % final, antibiotics (Penicillin/Streptomycin) 1 % final and Amphotericin B 0.1 % final.
• Fibroblasts were grown in 75 cm2 culture flask to 80 % confluence, in 37°C and 10 % C02 incubator. The medium was changed every two days by 37°C preheated fresh medium.
Starvation medium
· This medium was composed of 45 % subculture medium without Fetal Bovine Serum mixed with 55 % of Phosphate Buffer Saline IX containing EDTA (final concentration of 0.45 mM). This was referred to as serum free or starvation medium. Product preparation
• The compounds 13(b)adl and 13(b)ad2 (M = 479.9 g/mol) were diluted in starvation medium to 5 mg/ml final and pH was adjusted at 7.4 by addition of NaOH IN.
General Experimental procedure
Assays on 96 well plates
• Fibroblast cells were concentrated to 2.105 cells/ml and ΙΟΟμΙ of cell suspension was added in wells of a 96-well plate and incubated in 37°C and 10 % C02 incubator for 4 hours.
• After cell adhesion the medium was changed and plates were incubated (37°C-10 % CO2) to perform the assay as follow:
o 1 plate for each sampling times: days DO, D3, D4, D5, D6, and D7
o 3 wells for each condition (triplicate count) added with 120μ1 of culture medium, starvation medium, 13(b)adl solution (5 mg/ml) or 13(b)ad2 solution
(5 mg/ml)
Viability assay
Cell Viability was evaluated by the Trypan blue exclusion technique based on the principle that live cells possess intact cell membranes that exclude the Trypan blue dye. So, only the dead cells are blue at microscopic observation.
For sampling, 110 μΐ of Trypan Blue (SIGMA T8154) was added to 110 μΐ of trypsinated cell suspension of matching well for counting.
200 μΐ of the trypan blue/cell mixture are dropped to a hemacytometer. Cells are counting by using a Neubauer-counting chamber. The unstained (viable) and stained (nonviable) cells are counted separately on 9 area of a large square (1 mm2) and added to obtain the total number of cells per sample. An average of three counts was used to calculate the viability percentage as:
[number of viable cells / total number of cells]* 100
The cell viability percentages from cultures under starvation conditions were compared with control culture for several days after their addition (DO, D3, D4, D5, D6, D7).
Results
The results were plotted in the histogram of figure 7 which represents the evolution of fibroblast viability in vitro during a 7 day period while deprived of nutrients.
The viability of 13(b)adl and 13(b)ad2 treated cells remained around 95 % up to 7 days of incubation whereas the cell viability in the nutrient deprivation control decreased from 94 % after 4 days to 89 %, 38 % and 8 % after 5, 6 and 7 days, respectively.
Compounds 13(b)adl and 13(b)ad2 showed thus a preservative effect on skin fibroblasts since cells have been maintained in a healthy state under unfavorable conditions for growth.
ABBREVIATIONS
Ala Alanin
Bn Benzyl
Cbz Benzyloxycarbonyl
de Diastereomeric excess
DIB AH Diisobutylaluminium hydride
DMF Dimethylformamide
DMSO Dimethylsulfoxide
eq. Equivalent
Et Ethyl
g Gram
Hz Hertz
mg Milligram
MHz MegaHertz
Min Minute
mL Mililitre
mmol Millimole
μηιοΐ Micromole
MOM Methoxymethyl
Ms Mesyl
NMM N-methylmorpholine
nmol Nanomole
NMR Nuclear Magnetic Resonance
PyBOP ( 1 H-Benzotriazol- 1 -yloxy )tripyrrolidinophosphonium hexafluorophosphate
Rf Retardation factor
THF Tetrahydrofuran
TLC Thin Layer chromatography
TMS Trimethylsilyl
Claims (21)
1. A compound of formula I):
(I)
or a pharmaceutically acceptable salt thereof, a tautomer, a stereoisomer or a mixture of stereoisomers in any proportion, in particular a mixture of enantiomers, and particularly a racemate mixture,
wherein:
- Y represents a CN, N02, ReR? or CHi ReR? group,
- Z represents H or CH3,
- R represents a hydrogen or fluorine atom or a CH3, CH2F, CH2OSiRalRblRcl, CH2OR8, CH2OC(0)R9, CH2OCO2Ri0, CH2OC(0) RnRi2, CH2OP(0)(ORi3)2 or CH2OS03Ri4 group,
- Ri and R2 represent, independently from one another, a fluorine atom or an OSiRa2Rb2Rc2, ORis, OC(0)R16, OC02Ri7, OC(0) Ri8Ri9, OP(O)(OR20)2 or
OS03R2i group,
- R3 represents a fluorine atom or an OSiRa3Rb3Rc3, OR22, OC(0)R23, OC02R24, OCO R25R26, OP(0)(OR27)2, OS03R28, N3, phtalimidyl, R29R30, R3iC(0)R32, R33C(0)OR34, N(C(0)R35)C(0)R36, N(C(0)R37)C(0)OR38 and N(C(0)OR39)C(0)OR4o group,
- R4 represents a hydrogen or halogen atom or an OSiRa4Rb4Rc4, OR^, OC(0)R42, OC02R43, OCO R44R45, OP(0)(OR46)2 or OS03R47 group,
or R and Ri, together with the carbon atoms carrying them, form a cyclic acetal having the following formula:
and/or (Ri and R2), (R2 and R3), and/or (R3 and R4), together with the carb carr ing them, form a cyclic acetal having the following formula:
- R5 represents a hydrogen or halogen atom or a R48, OR49 or R50R51 group, with:
■ 5 representing:
- a hydrogen atom,
- a (Ci-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)cycloalkyl, 5- to 7- membered heterocycloalkyl, aryl, heteroaryl, aryl-(Ci-C6)alkyl, heteroaryl-(Ci- C6)alkyl, (Ci-C6)-alkyl-aryl or (Ci-C6)-alkyl-heteroaryl group, this group being possibly substituted with one or more groups chosen among a halogen atom, OH, COOH and CHO,
- a C(0)R52 group, or
- a C(0)OR53 group,
■ R7 representing:
- a hydrogen atom,
- a (Ci-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)cycloalkyl, 5- to 7- membered heterocycloalkyl, aryl, heteroaryl, aryl-(Ci-C6)alkyl, heteroaryl-(Ci- C6)alkyl, (Ci-C6)-alkyl-aryl or (Ci-C6)-alkyl-heteroaryl group, this group being possibly substituted with one or more groups chosen among a halogen atom,
OH, COOH and CHO,
- a C(0)R52 group,
- a C(0)OR53 group, or
- a N-protecting group,
■ R8, Ri5, R22 and R41 representing, independently from one another, a hydrogen atom; an O-protecting group; or a (Ci-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)cycloalkyl, 5- to 7-membered heterocycloalkyl, aryl, heteroaryl, aryl-(Ci- C6)alkyl, heteroaryl-(Ci-C6)alkyl, (Ci-Ce)-alkyl-aryl, (Ci-C6)-alkyl-heteroaryl, saccharidic or polysaccharidic group, this group being possibly substituted with one or more groups chosen among a halogen atom, OH, COOH and CHO, ■ R9, Rio, Ri6, Ri7, R23, R24, R32, R34 to R40, R42, R43, R48, R52 and R53 representing, independently from one another, a (Ci-Ce)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)cycloalkyl, 5- to 7-membered heterocycloalkyl, aryl, heteroaryl, aryl-(Ci- C6)alkyl, heteroaryl-(Ci-C6)alkyl, (Ci-C6)-alkyl-aryl or (Ci-C6)-alkyl-heteroaryl group, this group being possibly substituted with one or more groups chosen among a halogen atom, OH, COOH and CHO,
■ R11, R12, Ri8, Ri9, R25, R26, R29 to R31, R33, R44, R45, R50 and R51 representing, independently from one another, a hydrogen atom or a (Ci-C6)alkyl, (C2- C6)alkenyl, (C2-C6)alkynyl, aryl, heteroaryl, aryl-(Ci-Ce)alkyl, heteroaryl-(Ci- C6)alkyl, (Ci-Ce)-alkyl-aryl or (Ci-C6)-alkyl-heteroaryl group, this group being possibly substituted with one or more groups chosen among a halogen atom, OH, COOH and CHO,
■ Ri3, Ri4, R20, R21, R27, R28, R46 and R47 representing, independently from one another, a hydrogen atom or a (Ci-C6)alkyl group,
■ R49 representing:
- a hydrogen atom,
- a (Ci-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)cycloalkyl, 5- to 7- membered heterocycloalkyl, aryl, heteroaryl, aryl-(Ci-C6)alkyl, heteroaryl-(Ci- C6)alkyl, (Ci-C6)-alkyl-aryl or (Ci-C6)-alkyl-heteroaryl group, this group being possibly substituted with one or more groups chosen among an halogen atom,
OH, COOH and CHO, or
- a O-protecting group,
■ Ral to Ra4, Rbl to RM and Rcl to Rc4 representing, independently from one another, a (Ci-C6)alkyl, aryl or aryl-(Ci-C6)alkyl group, and
■ Rd and Re representing, independently from one another, a hydrogen atom or a (Ci- C6)alkyl group.
2. The compound according to claim 1, characterized in that it corresponds to a compound of formulas (la) or (Ιβ):
with R, Ri, R2, R3, R4, R5, Z and Y as defined in claim 1.
3. The compound according to any of claims 1 and 2, characterized in that R represents a CH2OR8 group; Ri and R2 represent, independently from one another, an
OR15 group; and R3 represents an OR22 or R3iC(0)R32 group, R8, R15 and R22 representing advantageously a hydrogen atom or an O-protecting group, R31 representing advantageously a hydrogen atom and R32 representing a (Ci-Ce)alkyl group.
4. The compound according to any of claims 1 to 3, characterized in that R4 represents a hydrogen atom or an OR41 group, R41 representing advantageously a hydrogen atom or an O-protecting group.
5. The compound according to any of claims 1 to 4, characterized in that Y represents a NR5R7 or CH2 R6R7 group, with 5 and R7 as defined in claim 1 and notably with 5 representing a hydrogen atom or a (Ci-Ce)alkyl group and R7 representing:
- a hydrogen atom,
- a (Ci-Ce)alkyl, aryl or aryl-(Ci-C6)alkyl group,
- a C(0)R52 group, with R52 as defined above and representing in particular a (Ci-C6)alkyl, aryl or aryl-(Ci-C6)alkyl group,
- a C(0)OR53 group, with R53 as defined above and representing in particular a (Ci-C6)alkyl, aryl or aryl-(Ci-C6)alkyl group, or
- an N-protecting group.
6. The compound according to any of claims 1 to 5, characterized in that R5 represents an OR49 group, with R49 as defined in claim 1 and advantageously representing a hydrogen atom, a (Ci-C6)alkyl group or an O-protecting group.
7. The compound according to any of claims 1 to 6, characterized in that Y represents a R6R-7 or CH2 R6R7 group and R5 represents an OR49 group, with:
- R6 and R7 representing each a hydrogen atom and R49 representing an O- protecting group such as a (Ci-Ce)alkyl group, or
- R49 and 5 representing each a hydrogen atom and R7 representing a N- protecting group.
8. The compound according to any of claims 1 to 7, characterized in that it is chosen among the following compounds:
9. A process for preparing a compound of formula (I) according to any of cl to 8 with Z = H, comprising the following successive steps:
a) dehydration of a compound of formula (II):
in which R, Ri, R2, R3, R4, R5 and Y are as defined in claim 1,
to give a compound of formula (III):
in which R, Ri, R2, R3, R4, R5 and Y are as defined in claim 1, and b) hydrogenation of the compound of formula (III) obtained in the previous step to give a compound of formula (I) with Z = H.
10. A process for preparing a compound of formula (I) according to any of claims 1o 8 with Z = CH3, comprising the following successive steps:
i) reaction of a compound of formula (VII):
in which R, Ri, R2, R3 and R4 are as defined in claim 1,
with a compound of formula (V):
in which R5 is as defined in claim 1 and Y = N02 or CN,
to give a compound of formula (VIII):
in which R, Ri, R2, R3, R4 and R5 are as defined in claim 1 and Y = N02 or CN, ii) optionally reduction of the compound of formula (VIII) obtained in the previous step i) to give a compound of formula (I) with Z = CH3 and Y = N02 or CN, iii) optionally reduction of the N02 or CN function of the compound of formula (I) obtained in the previous step ii) to give a compound of formula (I) with Z = CH3 and Y = NH2 or CH2NH2, and
iv) optionally substitution of the amino function of the compound of formula (I) obtained in the previous step iii) to give a compound of formula (I) with Z = CH3 and Y = NR5R7 or CH2NReR7, with the proviso that at least 5 or R7 is not a hydrogen atom.
11. The use of a compound of formula (I) according to claim 1 with Y = NH2 or CH2 H2 and/or R5 = OH, and in particular a compound of formula (I) according to claim 7, in the synthesis of a peptide, in place of an amino acid such as a serine or a threonine.
12. A peptide (VI) in which at least one amino acid, such as a serine or a threonine, has been replaced with a compound of formula (I) according to claim 1 in which Y = HR7 or CH2 HR7, and notably HR7, and/or R5 = OH, the Y and/or R5 group being linked to an amino acid of the peptide by means of peptide bond.
13. The peptide according to claim 12 selected from the following compounds:
14. A peptide (VI) according to claim 12 for use as medicament.
15. A peptide (VI) according to claim 12 for use as medicament intended for the treatment or the prevention of viral, bacterial or inflammatory diseases or for use as cancer vaccine.
16. A peptide (VI) according to claim 15 for use as cancer vaccine, characterized in that the compound of formula (I) integrated in the said peptide represents a mimic of antigen Tn.
17. The use of a compound of formula (I) according to any of claims 1 to 8 as a mimic of antigen Tn.
18. A pharmaceutical or cosmetic composition comprising at least one peptide (VI) according to claim 12 and a pharmaceutically acceptable carrier, for example a hapten, protein, chemical scaffold or carrier matrix.
19. The use of a peptide (VI) according to claim 12 in preservation of biological materials such as cells, tissues and organs, notably at a temperature below 37°C, such as a temperature below 0°C.
20. The cosmetic use of a peptide (VI) according to claim 12.
21. The cosmetic use according to claim 20 for skin anti-aging applications.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP10306493.7 | 2010-12-22 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| AU2011347203A1 true AU2011347203A1 (en) | 2013-08-08 |
Family
ID=
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7601686B2 (en) | Hepatitis C virus inhibitors | |
| EP1276491B9 (en) | Tamandarin and didemnin analogs and methods of making and using them | |
| US8030279B2 (en) | Tamandarin analogs and fragments thereof and methods of making and using | |
| CA2022692A1 (en) | Renin inhibitors | |
| US6509315B1 (en) | Didemnin analogs and fragments and methods of making and using them | |
| JP6629285B2 (en) | Glycopeptide derivatives for preservation and protection of biomaterials and microorganisms | |
| EP2655353B1 (en) | Derivatives of glyco-cf2-serine and glyco-cf2-threonine | |
| CA2588801C (en) | Gem difluorinated c-glycopeptides, their preparation and their use for the preservation of biological materials and/or in cryosurgery | |
| AU2011347203A1 (en) | Derivatives of glyco-CF2-serine and glyco-CF2-threonine | |
| US6159940A (en) | Method for modulating hemopoiesis | |
| Blagodarov et al. | Improving the synthesis of hemin derivatives and their effect on bacterial biofilms | |
| CN108976210A (en) | Piperazine -2,5- diketone of 3S- indole methyl -6R- ArAA modification, synthesis, activity and application |