AU2011226215A1 - Method for producing crude oil using surfactants based on butylene oxide-containing alkyl alkoxylates - Google Patents
Method for producing crude oil using surfactants based on butylene oxide-containing alkyl alkoxylates Download PDFInfo
- Publication number
- AU2011226215A1 AU2011226215A1 AU2011226215A AU2011226215A AU2011226215A1 AU 2011226215 A1 AU2011226215 A1 AU 2011226215A1 AU 2011226215 A AU2011226215 A AU 2011226215A AU 2011226215 A AU2011226215 A AU 2011226215A AU 2011226215 A1 AU2011226215 A1 AU 2011226215A1
- Authority
- AU
- Australia
- Prior art keywords
- groups
- surfactant
- butylene oxide
- carbon atoms
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004094 surface-active agent Substances 0.000 title claims abstract description 147
- 239000010779 crude oil Substances 0.000 title claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 125000000217 alkyl group Chemical group 0.000 title claims description 20
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 title claims description 17
- 239000000203 mixture Substances 0.000 claims abstract description 51
- 239000002480 mineral oil Substances 0.000 claims abstract description 42
- 235000010446 mineral oil Nutrition 0.000 claims abstract description 42
- 239000004530 micro-emulsion Substances 0.000 claims abstract description 30
- 238000009472 formulation Methods 0.000 claims abstract description 22
- 238000002347 injection Methods 0.000 claims abstract description 14
- 239000007924 injection Substances 0.000 claims abstract description 14
- 239000002563 ionic surfactant Substances 0.000 claims abstract description 6
- 239000003921 oil Substances 0.000 claims description 52
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 33
- -1 propyleneoxy Chemical group 0.000 claims description 28
- 238000000605 extraction Methods 0.000 claims description 27
- RBACIKXCRWGCBB-UHFFFAOYSA-N 1,2-Epoxybutane Chemical compound CCC1CO1 RBACIKXCRWGCBB-UHFFFAOYSA-N 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 22
- 125000004432 carbon atom Chemical group C* 0.000 claims description 21
- 125000002947 alkylene group Chemical group 0.000 claims description 18
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 13
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 12
- 150000007942 carboxylates Chemical group 0.000 claims description 8
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 claims description 8
- 150000001768 cations Chemical class 0.000 claims description 6
- 150000002191 fatty alcohols Chemical class 0.000 claims description 5
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims description 5
- 229920006395 saturated elastomer Polymers 0.000 claims description 5
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 claims description 4
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 2
- 239000004215 Carbon black (E152) Substances 0.000 claims 2
- 125000001931 aliphatic group Chemical group 0.000 claims 2
- 125000003118 aryl group Chemical group 0.000 claims 2
- 229930195733 hydrocarbon Natural products 0.000 claims 2
- 239000011734 sodium Substances 0.000 description 51
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 24
- 230000015572 biosynthetic process Effects 0.000 description 17
- 239000000243 solution Substances 0.000 description 17
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 15
- 239000012071 phase Substances 0.000 description 14
- 239000003054 catalyst Substances 0.000 description 13
- 150000001298 alcohols Chemical class 0.000 description 10
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 10
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- ODCMOZLVFHHLMY-UHFFFAOYSA-N 1-(2-hydroxyethoxy)hexan-2-ol Chemical compound CCCCC(O)COCCO ODCMOZLVFHHLMY-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000010348 incorporation Methods 0.000 description 8
- 239000011435 rock Substances 0.000 description 7
- PQXKWPLDPFFDJP-UHFFFAOYSA-N 2,3-dimethyloxirane Chemical compound CC1OC1C PQXKWPLDPFFDJP-UHFFFAOYSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 5
- 239000008186 active pharmaceutical agent Substances 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 238000006386 neutralization reaction Methods 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 230000008719 thickening Effects 0.000 description 5
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 150000001447 alkali salts Chemical class 0.000 description 4
- 239000003945 anionic surfactant Substances 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- XTHPWXDJESJLNJ-UHFFFAOYSA-N chlorosulfonic acid Substances OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 4
- 239000006184 cosolvent Substances 0.000 description 4
- 238000010926 purge Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000007429 general method Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000007928 solubilization Effects 0.000 description 3
- 238000005063 solubilization Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XULHFMYCBKQGEE-UHFFFAOYSA-N 2-hexyl-1-Decanol Chemical compound CCCCCCCCC(CO)CCCCCC XULHFMYCBKQGEE-UHFFFAOYSA-N 0.000 description 2
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910007564 Zn—Co Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 239000013011 aqueous formulation Substances 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- YRIUSKIDOIARQF-UHFFFAOYSA-N dodecyl benzenesulfonate Chemical compound CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 YRIUSKIDOIARQF-UHFFFAOYSA-N 0.000 description 2
- 229940071161 dodecylbenzenesulfonate Drugs 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000001483 mobilizing effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- SBGFNHWKIOFPRM-UHFFFAOYSA-N 1-[2-(2-hydroxyethoxy)ethoxy]hexan-2-ol Chemical compound CCCCC(O)COCCOCCO SBGFNHWKIOFPRM-UHFFFAOYSA-N 0.000 description 1
- YKGRKSWSVPZYER-UHFFFAOYSA-N 14-methylpentadec-1-ene Chemical compound CC(C)CCCCCCCCCCCC=C YKGRKSWSVPZYER-UHFFFAOYSA-N 0.000 description 1
- GELKGHVAFRCJNA-UHFFFAOYSA-N 2,2-Dimethyloxirane Chemical compound CC1(C)CO1 GELKGHVAFRCJNA-UHFFFAOYSA-N 0.000 description 1
- CAYHVMBQBLYQMT-UHFFFAOYSA-N 2-decyltetradecan-1-ol Chemical compound CCCCCCCCCCCCC(CO)CCCCCCCCCC CAYHVMBQBLYQMT-UHFFFAOYSA-N 0.000 description 1
- DEMBLPGWNXUBIQ-UHFFFAOYSA-N 2-dodecylhexadecan-1-ol Chemical compound CCCCCCCCCCCCCCC(CO)CCCCCCCCCCCC DEMBLPGWNXUBIQ-UHFFFAOYSA-N 0.000 description 1
- GFJMOZYIDADKLJ-UHFFFAOYSA-N 5-bromo-2-chloro-3-methoxypyridine Chemical compound COC1=CC(Br)=CN=C1Cl GFJMOZYIDADKLJ-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000283715 Damaliscus lunatus Species 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 239000004435 Oxo alcohol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000004450 alkenylene group Chemical group 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 150000008055 alkyl aryl sulfonates Chemical class 0.000 description 1
- 125000005529 alkyleneoxy group Chemical group 0.000 description 1
- IYABWNGZIDDRAK-UHFFFAOYSA-N allene Chemical group C=C=C IYABWNGZIDDRAK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229920000469 amphiphilic block copolymer Polymers 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000011552 falling film Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000008398 formation water Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 235000012243 magnesium silicates Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- MHYFEEDKONKGEB-UHFFFAOYSA-N oxathiane 2,2-dioxide Chemical compound O=S1(=O)CCCCO1 MHYFEEDKONKGEB-UHFFFAOYSA-N 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- TZLNJNUWVOGZJU-UHFFFAOYSA-M sodium;3-chloro-2-hydroxypropane-1-sulfonate Chemical compound [Na+].ClCC(O)CS([O-])(=O)=O TZLNJNUWVOGZJU-UHFFFAOYSA-M 0.000 description 1
- BWYYYTVSBPRQCN-UHFFFAOYSA-M sodium;ethenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C=C BWYYYTVSBPRQCN-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000019635 sulfation Effects 0.000 description 1
- 238000005670 sulfation reaction Methods 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- JSPLKZUTYZBBKA-UHFFFAOYSA-N trioxidane Chemical compound OOO JSPLKZUTYZBBKA-UHFFFAOYSA-N 0.000 description 1
- 239000008243 triphasic system Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/58—Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
- C09K8/584—Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/04—Carboxylic acids or salts thereof
- C11D1/06—Ether- or thioether carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/29—Sulfates of polyoxyalkylene ethers
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/34—Derivatives of acids of phosphorus
- C11D1/345—Phosphates or phosphites
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S507/00—Earth boring, well treating, and oil field chemistry
- Y10S507/935—Enhanced oil recovery
- Y10S507/936—Flooding the formation
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Wood Science & Technology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
The invention relates to a method for producing crude oil by means of Winsor type III microemulsion flooding, wherein an aqueous surfactant formulation which comprises at least one ionic surfactant of general formula R-O-(D)-(B)-(A)-XY M is forced though injection wells into a mineral oil deposit and crude oil is removed from the deposit through production wells.
Description
1 As originally filed Process for extracting mineral oil using surfactants based on butylene oxide-containing alkyl alkoxylates 5 Description The invention relates to a process for mineral oil extraction by means of Winsor Type Ill microemulsion flooding, in which an aqueous surfactant formulation comprising at least 10 one ionic surfactant of the general formula
R
1 -O-(D)-(B)m-(A)rXY- M* is injected through injection boreholes into a mineral oil deposit, and crude oil is 15 withdrawn from the deposit through production boreholes. The invention further relates to ionic surfactants of the general formula, and to processes for preparation thereof. In natural mineral oil deposits, mineral oil is present in the cavities of porous reservoir rocks which are sealed toward the surface of the earth by impervious top layers. The 20 cavities may be very fine cavities, capillaries, pores or the like. Fine pore necks may, for example, have a diameter of only about 1 pm. As well as mineral oil, including fractions of natural gas, a deposit comprises water with a greater or lesser salt content. In mineral oil extraction, a distinction is generally drawn between primary, secondary 25 and tertiary extraction. In primary extraction, the mineral oil flows, after commencement of drilling of the deposit, of its own accord through the borehole to the surface owing to the autogenous pressure of the deposit. After primary extraction, secondary extraction is therefore used. In secondary 30 extraction, in addition to the boreholes which serve for the extraction of the mineral oil, the so-called production bores, further boreholes are drilled into the mineral oil-bearing formation. Water is injected into the deposit through these so-called injection bores in order to maintain the pressure or to increase it again. As a result of the injection of the water, the mineral oil is forced slowly through the cavities into the formation, 35 proceeding from the injection bore in the direction of the production bore. However, this only works for as long as the cavities are completely filled with oil and the more viscous oil is pushed onward by the water. As soon as the mobile water breaks through cavities, it flows on the path of least resistance from this time, i.e. through the channel formed, and no longer pushes the oil onward. 40 B09/0888PC 2 By means of primary and secondary extraction, generally only approx. 30 to 35% of the amount of mineral oil present in the deposit can be extracted. It is known that the mineral oil yield can be enhanced further by measures for tertiary 5 oil extraction. A review of tertiary oil extraction can be found, for example, in "Journal of Petroleum Science of Engineering 19 (1998)", pages 265 to 280. Tertiary oil extraction includes, for example, thermal methods in which hot water or steam is injected into the deposit. This lowers the viscosity of the oil. The flow medium used may likewise be gases such as C02 or nitrogen. 10 Tertiary mineral oil extraction also includes methods in which suitable chemicals are used as assistants for oil extraction. These can be used to influence the situation toward the end of the water flow and as a result also to extract mineral oil hitherto held firmly within the rock formation. 15 Viscous and capillary forces act on the mineral oil which is trapped in the pores of the deposit rock toward the end of the secondary extraction, the ratio of these two forces relative to one another being determined by the microscopic oil separation. By means of a dimensionless parameter, the so-called capillary number, the action of these 20 forces is described. It is the ratio of the viscosity forces (velocity x viscosity of the forcing phase) to the capillary forces (interfacial tension between oil and water x wetting of the rock): - -cos0 25 In this formula, p is the viscosity of the fluid mobilizing mineral oil, v is the Darcy velocity (flow per unit area), a is the interfacial tension between liquid mobilizing mineral oil and mineral oil, and 0 is the contact angle between mineral oil and the rock (C. Melrose, C.F. Brandner, J. Canadian Petr. Techn. 58, Oct. - Dec., 1974). The higher the capillary number, the greater the mobilization of the oil and hence also the 30 degree of oil removal. It is known that the capillary number toward the end of secondary mineral oil extraction is in the region of about 10-6 and that it is necessary to increase the capillary number to about 10-3 to 10-2 in order to be able to mobilize additional mineral oil. 35 For this purpose, it is possible to conduct a particular form of the flooding method what is known as Winsor type Ill microemulsion flooding. In Winsor type Ill microemulsion flooding, the injected surfactants should form a Winsor type Ill microemulsion with the water phase and oil phase present in the deposit. A Winsor B09/0888PC 3 type 11 microemulsion is not an emulsion with particularly small droplets, but rather a thermodynamically stable, liquid mixture of water, oil and surfactants. The three advantages thereof are that - a very low interfacial tension a between mineral oil and aqueous phase is thus 5 achieved, - it generally has a very low viscosity and as a result is not trapped in a porous matrix, - it forms with even the smallest energy inputs and can remain stable over an infinitely long period (conventional emulsions, in contrast, require high shear 10 forces which predominantly do not occur in the reservoir, and are merely kinetically stabilized). The Winsor type 11 microemulsion is in an equilibrium with excess water and excess oil. Under these conditions of microemulsion formation, the surfactants cover the oil 15 water interface and lower the interfacial tension a more preferably to values of < 10- mN/m (ultra-low interfacial tension). In order to achieve an optimal result, the proportion of the microemulsion in the water-microemulsion-oil system, with a defined amount of surfactant, should by its nature be at a maximum, since this allows lower interfacial tensions to be achieved. 20 In this manner, it is possible to alter the form of the oil droplets (interfacial tension between oil and water is lowered to such a degree that the smallest interface state is no longer favored and the spherical form is no longer preferred), and they can be forced through the capillary openings by the flooding water. 25 When all oil-water interfaces are covered with surfactant, in the presence of an excess amount of surfactant, the Winsor type Il1 microemulsion forms. It thus constitutes a reservoir for surfactants which cause a very low interfacial tension between oil phase and water phase. By virtue of the Winsor type 11 microemulsion being of low viscosity, 30 it also migrates through the porous deposit rock in the flooding process (emulsions, in contrast, can become trapped in the porous matrix and block deposits). When the Winsor type IlIl microemulsion meets an oil-water interface as yet uncovered with surfactant, the surfactant from the microemulsion can significantly lower the interfacial tension of this new interface, and lead to mobilization of the oil (for example by 35 deformation of the oil droplets). The oil droplets can subsequently combine to a continuous oil bank. This has two advantages: B09/0888PC 4 Firstly, as the continuous oil bank advances through new porous rock, the oil droplets present there can coalesce with the bank. Moreover, the combination of the oil droplets to give an oil bank significantly reduces 5 the oil-water interface and hence surfactant no longer required is released again. Thereafter, the surfactant released, as described above, can mobilize oil droplets remaining in the formation. Winsor type IlIl microemulsion flooding is consequently an exceptionally efficient 10 process, and requires much less surfactant compared to an emulsion flooding process. In microemulsion flooding, the surfactants are typically optionally injected together with co-solvents and/or basic salts (optionally in the presence of chelating agents). Subsequently, a solution of thickened polymer is injected for mobility control. A further variant is the injection of a mixture of thickening polymer and surfactants, co-solvents 15 and/or basic salts (optionally with chelating agent), and then a solution of thickening polymer for mobility control. These solutions should generally be clear in order to prevent blockages of the reservoir. The requirements on surfactants for tertiary mineral oil extraction differ significantly 20 from requirements on surfactants for other applications: suitable surfactants for tertiary oil extraction should reduce the interfacial tension between water and oil (typically approx. 20 mN/m) to particularly low values of less than 10 2 mN/m in order to enable sufficient mobilization of the mineral oil. This has to be done at the customary deposit temperatures of approx. 150C to 1300C and in the presence of water of high salt 25 contents, more particularly also in the presence of high proportions of calcium and/or magnesium ions; the surfactants thus also have to be soluble in deposit water with a high salt content. To fulfill these requirements, there have already been frequent proposals of mixtures of 30 surfactants, especially mixtures of anionic and nonionic surfactants. US 3,890,239 discloses a combination of organic sulfonates with alkyl alkoxylates of the C 8
-C
20 -AO-H type (AO = alkylene oxide having 2 to 6 carbon atoms) with anionic surfactants of the C 8
-C
2 0 -AO-sulfate or C 8
-C
2 0 -AO-sulfonate type. The specification of 35 the alkylene oxides is only kept very general in the context of the disclosure of US 3,890,239. However, there are only examples which comprise exclusively EO. US 4,448,697 claims the use of alkyl alkoxylates of the Cr1C6 - (AO) 140 - EO, 10 - H type in combination with an anionic surfactant. AO may be 1,2-butylene oxide or 40 2,3-butylene oxide. B09/0888PC 5 US 4,460,481 describes surfactants of the alkylaryl alkoxy sulfate or sulfonate type. The alkylene oxide may be ethylene oxide, propylene oxide or butylene oxide. There exists the proviso that ethylene oxide makes up the majority of the alkylene oxides. There is no more detailed description of the butylene oxide. 5 The use parameters, for example type, concentration and mixing ratio of the surfactants used with respect to one another, are therefore adjusted by the person skilled in the art according to the conditions existing in a given oil formation (for example temperature and salt content). 10 As described above, mineral oil production is proportional to the capillary number. The lower the interfacial tension between oil and water, the higher it is. The higher the mean number of carbon atoms in the crude oil, the more difficult it is to achieve low interfacial tension. Suitable surfactants for low interfacial tensions are those which 15 possess a long alkyl radical. The longer the alkyl radical, the better it is possible to reduce the interfacial tensions. However, the availability of such compounds is very limited. It is therefore an object of the invention to provide a particularly efficient surfactant for 20 use for surfactant flooding, and an improved process for tertiary mineral oil extraction. Accordingly, a process is provided for tertiary mineral oil extraction by means of Winsor type Il microemulsion flooding, in which an aqueous surfactant formulation comprising at least one ionic surfactant is injected through at least one injection borehole into a 25 mineral oil deposit, the interfacial tension between oil and water is lowered to values of <0.1 mN/m, preferably to values of < 0.05 mN/m, more preferably to values of < 0.01 mN/m, and crude oil is withdrawn from the deposit through at least one production borehole, wherein the surfactant formulation comprises at least one surfactant of the general formula 30 R'-0-(D)-(B)m-(A)rXY- M', where
R
1 is a linear or branched, saturated or unsaturated, aliphatic and/or aromatic hydrocarbon radical having 8 to 30 carbon atoms, 35 A is ethyleneoxy, B is propyleneoxy, and D is butyleneoxy, I is from 0 to 99, m is from 0 to 99 and 40 n is from 1 to 99, B09/0888PC 6 X is an alkyl or alkylene group having 0 to 10 carbon atoms, M* is a cation, and Y- is selected from the group of sulfate groups, sulfonate groups, carboxylate groups and phosphate groups, where 5 the A, B and D groups may be distributed randomly, alternatingly, or in the form of two, three, four or more blocks in any sequence, the sum of I + m + n is in the range from 3 to 99 and the proportion of 1,2- butylene oxide, based on the total amount of butylene oxide, is at least 80%. 10 Additionally provided has been a surfactant mixture for mineral oil extraction, which comprises at least one ionic surfactant of the general formula defined above. With regard to the invention, the following should be stated specifically: 15 In the above-described process according to the invention for mineral oil extraction by means of Winsor type Ill microemulsion flooding, an aqueous surfactant formulation comprising at least one surfactant of the general formula is used. It may additionally comprise further surfactants and/or other components. 20 In the process according to the invention for tertiary mineral oil extraction by means of Winsor type Il microemulsion flooding, the use of the inventive surfactant lowers the interfacial tension between oil and water to values of <0.1 mN/m, preferably to < 0.05 mN/m, more preferably to < 0.01 mN/m. The interfacial tension between oil and 25 water is thus lowered to values in the range from 0.1 mN/m to 0.0001 mN/m, preferably to values in the range from 0.05 mN/in to 0.0001 mN/m, more preferably to values in the range from 0.01 mN/m to 0.0001 mN/m. The at least one surfactant can be encompassed by the general formula 30 R'-O-(D)n-(B)m-(A)rXY- M*. As a result of the preparation, it is also possible for a plurality of different surfactants of the general formula to be present in the surfactant formulation. The R' radical is a straight-chain or branched aliphatic and/or aromatic hydrocarbon 35 radical having 8 to 30 carbon atoms, preferably 9 to 30 carbon atoms, more preferably 10 to 28 carbon atoms. In a particularly preferred embodiment of the invention, the R 1 radical is iso-C 17
H
35 or a commercial fatty alcohol mixture consisting of linear C 16
H
33 and C 18
H
37 or derived from 40 the commercially available C16 Guerbet alcohol 2-hexyldecan-1-ol or derived from the B09/0888PC 7 commercially available C24 Guerbet alcohol 2-decyltetradecanol or derived from the commercially available C28 Guerbet alcohol 2-dodecylhexadecanol. More preferably, in linear alcohols n = 3 to 10 and m = 5 to 9, while, in branched 5 alcohols n = 2 to 10 and m = 5 to 9. It is preferred here in each case that D is 1,2 butylene oxide to an extent of more than 80%, and that the alkylene oxides, beginning at the alcohol, have the sequence D - B - A. The alkylene oxides are arranged in blocks to an extent of more than 90%. 10 Particular preference is given to a straight-chain or branched aliphatic hydrocarbon radical, especially a straight-chain or branched aliphatic hydrocarbon radical having 10 to 28 carbon atoms. A branched aliphatic hydrocarbon radical generally has a degree of branching of 0.1 to 15 5.5, preferably 1 to 3.5. The term "degree of branching" is defined here in a manner known in principle as the number of methyl groups in a molecule of the alcohol minus 1. The mean degree of branching is the statistical mean of the degrees of branching of all molecules in a sample. 20 In the above formula, A means ethyleneoxy. B means propyleneoxy and D means butyleneoxy. In the above-defined general formula 1, m and n are each integers. It is, however, clear to the person skilled in the art in the field of polyalkoxylates that this definition is the 25 definition of a single surfactant in each case. In the case of presence of surfactant mixtures or surfactant formulations which comprise a plurality of surfactants of the general formula, the numbers I, m and n are each mean values over all molecules of the surfactants, since the alkoxylation of alcohol with ethylene oxide and/or propylene oxide and/or butylene oxide in each case affords a certain distribution of chain lengths. 30 This distribution can be described in a manner known in principle by the polydispersity D. D = M/M, is the quotient of the weight-average molar mass and the number average molar mass. The polydispersity can be determined by means of the methods known to those skilled in the art, for example by means of gel permeation chromatography. 35 In the above general formula I is from 0 to 99, preferably 1 to 40, more preferably 1 to 20. In the above general formula m is from 0 to 99, preferably 1 to 20, more preferably 5 to 40 9. B09/0888PC 8 In the above general formula n is from 1 to 99, preferably 2 to 30, more preferably 2 to 10. According to the invention, the sum of I + m + n is a number in the range from 3 to 99, 5 preferably in the range from 5 to 50, more preferably in the range from 8 to 39. According to the present invention the proportion of 1,2-butyleneoxy, based on the total amount of butyleneoxy (D), is at least 80%, preferably at least 85%, preferably at least 90%, more preferably at least 95%, of 1,2-butyleneoxy. 10 The ethyleneoxy (A), propyleneoxy (B) and butyleneoxy (D) group(s) are randomly distributed, alternatingly distributed, or are in the form of two, three, four, five or more blocks in any sequence. 15 In a preferred embodiment of the invention, in the presence of a plurality of different alkyleneoxy blocks, the sequence R1, butyleneoxy block, propyleneoxy block, ethyleneoxy block is preferred. The butylene oxide used should comprise 80% of 1,2 butylene oxide, preferably > 90% of 1,2-butylene oxide. 20 In the above general formula, X is an alkylene group or alkenylene group having 0 to 10, preferably 0 to 3 carbon atoms. The alkylene group is preferably a methylene, ethylene or propylene group. In the prior art cited, there is often no specific information with regard to the description 25 of C4 epoxides. This may generally be understood to mean 1,2-butylene oxide, 2,3-butylene oxide, isobutylene oxide, and mixtures of these compounds. The composition is generally dependent on the C 4 olefin used, and to a certain degree on the oxidation process. 30 In the above general formula Y is a sulfonate, sulfate or carboxyl group or phosphate group. In the above formula M* is a cation, preferably a cation selected from the group of Na*, K*, Li', NH 4 *, H*, Mg 2 and Ca 2 + 35 The surfactants of the general formula can be prepared in a manner known in principle by alkoxylating corresponding alcohols R 1 -OH. The performance of such alkoxylation is known in principle to those skilled in the art. It is likewise known to those skilled in the art that the molar mass distribution of the alkoxylates can be influenced through the 40 reaction conditions, especially the selection of the catalyst. B09/0888PC 9 The surfactants of the general formula can preferably be prepared by base-catalyzed alkoxylation. In this case, the alcohol R'-OH can be admixed in a pressure reactor with alkali metal hydroxides, preferably potassium hydroxide, or with alkali metal alkoxides, 5 for example sodium methoxide. Water still present in the mixture can be drawn off by means of reduced pressure (for example < 100 mbar) and/or increasing the temperature (30 to 150*C). Thereafter, the alcohol is present in the form of the corresponding alkoxide. This is followed by intertization with inert gas (for example nitrogen) and stepwise addition of the alkylene oxide(s) at temperatures of 60 to 1800C 10 up to a maximum pressure of 10 bar. In a preferred embodiment, the alkylene oxide is metered in initially at 1300C. In the course of the reaction, the temperature rises up to 170'C as a result of the heat of reaction released. In a further preferred embodiment of the invention, the butylene oxide is first added at a temperature in the range from 135 to 1450C, then the propylene oxide is added at a temperature in the range from 130 to 15 145*C, and then the ethylene oxide is added at a temperature in the range from 125 to 1450C. At the end of the reaction, the catalyst can be centralized, for example, by adding acid (for example acetic acid or phosphoric acid) and filtered off if required. However, the alkoxylation of the alcohols R'-OH can also be undertaken by means of 20 other methods, for example by acid-catalyzed alkoxylation. In addition, it is possible to use, for example double hydroxide clays, as described in DE 4325237 Al, or it is possible to use double metal cyanide catalysts (DMC catalysts). Suitable DMC catalysts are disclosed, for example in DE 10243361 Al, especially in paragraphs [0029] to [0041] and the literature cited therein. For example, it is possible to use 25 catalysts of the Zn-Co type. To perform the reaction, the alcohol R'-OH can be admixed with the catalyst, and the mixture can be dewatered as described above and reacted with the alkylene oxides as described. Typically not more than 1000 ppm of catalyst based on the mixture are used, and the catalyst can remain in the product owing to this small amount. The amount of catalyst may generally be less than 30 1000 ppm, for example 250 ppm or less. The anionic group is finally introduced. This is known in principle to those skilled in the art. In the case of a sulfate group, it is possible, for example, to employ the reaction with sulfuric acid, chlorosulfonic acid or sulfur trioxide in a falling-film reactor with 35 subsequent neutralization. In the case of a sulfonate group it is possible, for example, to employ the reaction with propane sultone and subsequent neutralization, with butane sultone and subsequent neutralization, with vinylsulfonic acid sodium salt, or with 3-chloro-2-hydroxypropanesulfonic acid sodium salt. In the case of a carboxylate group, it is possible, for example, to employ the oxidation of the alcohol with oxygen 40 and subsequent neutralization, or the reaction with chloroacetic acid sodium salt. B09/0888PC 10 Further surfactants In addition to the surfactants of the general formula, the formulation may additionally optionally comprise further surfactants. These are, for example, anionic surfactants of the alkylarylsulfonate or olefinsulfonate (alpha-olefinsulfonate or internal 5 olefinsulfonate) type and/or nonionic surfactants of the alkyl ethoxylate or alkyl polyglucoside type. These further surfactants may especially also be oligomeric or polymeric surfactants. It is advantageous to use such polymeric co-surfactants to reduce the amount of surfactants needed to form a microemulsion. Such polymeric co-surfactants are therefore also referred to as "microemulsion boosters". Examples of 10 such polymeric surfactants comprise amphiphilic block copolymers which comprise at least one hydrophilic block and at least one hydrophobic block. Examples comprise polypropylene oxide-polyethylene oxide block copolymers, polyisobutene-polyethylene oxide block copolymers, and comb polymers with polyethylene oxide side chains and a hydrophobic main chain, where the main chain preferably comprises essentially olefins 15 or (meth)acrylates as monomers. The term "polyethylene oxide" here should in each case include polyethylene oxide blocks comprising propylene oxide units as defined above. Further details of such surfactants are disclosed in WO 2006/131541 Al. Process for mineral oil extraction 20 In the process according to the invention for mineral oil extraction, a suitable aqueous formulation of the surfactants of the general formula is injected through at least one injection borehole into the mineral oil deposit, and crude oil is withdrawn from the deposit through at least one production borehole. The term "crude oil" in this context of course does not mean single-phase oil, but rather the usual crude oil-water emulsions. 25 In general, a deposit is provided with several injection boreholes and with several production boreholes. The main effect of the surfactant lies in the reduction of the interfacial tension between water and oil - desirably to values significantly < 0.1 mN/m. After the injection of the 30 surfactant formulation, known as "surfactant flooding", or preferably the Winsor type I1 "microemulsion flooding", the pressure can be maintained by injecting water into the formation ("water flooding") or preferably a higher-viscosity aqueous solution of a polymer with strong thickening action ("polymer flooding"). Also known, however, are techniques by which the surfactants are first of all allowed to act on the formation. A 35 further known technique is the injection of a solution of surfactants and thickening polymers, followed by a solution of thickening polymer. The person skilled in the art is aware of details of the industrial performance of "surfactant flooding", "water flooding", and "polymer flooding", and employs an appropriate technique according to the type of deposit. 40 B09/0888PC 11 For the process according to the invention, an aqueous formulation which comprises surfactants of the general formula is used. In addition to water, the formulations may optionally also comprise water-miscible or at least water-dispersible organic substances or other substances. Such additives serve especially to stabilize the 5 surfactant solution during storage or transport to the oil field. The amount of such additional solvents should, however, generally not exceed 50% by weight, preferably 20% by weight. In a particularly advantageous embodiment of the invention, exclusively water is used for formulation. Examples of water-miscible solvents include especially alcohols such as methanol, ethanol and propanol, butanol, sec-butanol, pentanol, butyl 10 ethylene glycol, butyl diethylene glycol or butyl triethylene glycol. According to the invention, the proportion of the surfactants of the general formula is at least 30% by weight based on the proportion of all surfactants present, i.e. the surfactants of the general formula and optionally present surfactants. The proportion is 15 preferably at least 50% by weight. The mixture used in accordance with the invention can preferably be used for surfactant flooding of deposits. It is especially suitable for Winsor type 11 microemulsion flooding (flooding in the Winsor III range or in the range of existence of the 20 bicontinuous microemulsion phase). The technique of microemulsion flooding has already been described in detail at the outset. In addition to the surfactants, the formulations may also comprise further components, for example C4- to C8 alcohols and/or basic salts (so-called "alkali surfactant flooding"). 25 Such additives can be used, for example, to reduce retention in the formation. The ratio of the alcohols based on the total amount of surfactant used is generally at least 1:1 however, it is also possible to use a significant excess of alcohol. The amount of basic salts may typically range from 0.1% by weight to 5% by weight. 30 The deposits in which the process is employed generally have a temperature of at least 100C, for example 10 to 150*C, preferably a temperature of at least 150C to 1200C. The total concentration of all surfactants together is 0.05 to 5% by weight, based on the total amount of the aqueous surfactant formulation, preferably 0.1 to 2.5% by weight. The person skilled in the art makes a suitable selection according to the desired 35 properties, especially according to the conditions in the mineral oil formation. It is clear here to the person skilled in the art that the concentration of the surfactants can change after injection into the formation because the formulation can mix with formation water, or surfactants can also be absorbed on solid surfaces of the formation. It is the great advantage of the mixture used in accordance with the invention that the surfactants 40 lead to a particularly good lowering of interfacial tension. B09/0888PC 12 It is of course possible and also advisable first to prepare a concentrate which is only diluted on site to the desired concentration for injection into the formation. In general, the total concentration of the surfactants in such a concentrate is 10 to 45% by weight. 5 The examples which follow are intended to illustrate the invention in detail: Part 1: Synthesis of the surfactants 10 General method 1: Alkoxylation by means of KOH catalysis (applies to use of EO, PO and/or 1,2-BuO) In a 21 autoclave, the alcohol to be alkoxylated (1.0 eq) is admixed with an aqueous KOH solution which comprises 50% by weight of KOH. The amount of KOH is 0.2% by weight of the product to be prepared. While stirring, the mixture is dewatered at 1000C 15 and 20 mbar for 2 h. This is followed by purging three times with N 2 , establishment of a feed pressure of approx. 1.3 bar of N 2 and a temperature increase to 120 to 1300C. The alkylene oxide is metered in such that the temperature remains between 1250C and 1350C (in the case of ethylene oxide) or 130 and 140*C (in the case of propylene oxide) or 135 and 1450C (in the case of 1,2-butylene oxide). This is followed by stirring 20 at 125 to 1450C for a further 5 h, purging with N 2 , cooling to 700C and emptying of the reactor. The basic crude product is neutralized with the aid of acetic acid. Alternatively, the neutralization can also be effected with commercial magnesium silicates, which are subsequently filtered off. The light-colored product is characterized with the aid of a 1 H NMR spectrum in CDCl 3 , gel permeation chromatography and OH number 25 determination, and the yield is determined. General method 2: Alkoxylation by means of DMC catalysis in the case of 2,3-butylene oxide In a 21 autoclave, the alcohol to be alkoxylated (1.0 eq) is mixed with a double metal 30 cyanide catalyst (for example DMC catalyst of the Zn-Co type from BASF) at 800C. To activate the catalyst, approximately 20 mbar is applied at 80*C for 1 h. The amount of DMC is 0.1% by weight or less of the product to be prepared. This is followed by purging three times with N 2 , establishment of a feed pressure of approx. 1.3 bar of N 2 and a temperature increase to 120 to 130*C. The alkylene oxide is metered in such 35 that the temperature remains between 1250C and 1350C (in the case of ethylene oxide) or 130 and 1400C (in the case of propylene oxide) or 135 and 1450C (in the case of 2,3-butylene oxide). This is followed by stirring at 125 to 1450C for a further 5 h, purging with N 2 , cooling to 700C and emptying of the reactor. The light-colored product is characterized with the aid of a 1 H NMR spectrum in CDC1 3 , gel permeation 40 chromatography and OH number determination, and the yield is determined. B09/0888PC 13 General method 3: Sulfation by means of chlorosulfonic acid In a 11 round-bottom flask, the alkyl alkoxylate to be sulfated (1.0 eq) is dissolved in 1.5-times the amount of dichloromethane (based on percent by weight) and cooled to 5 5 to 100C. Thereafter, chlorosulfonic acid (1.1 eq) is added dropwise such that the temperature does not exceed 100C. The mixture is allowed to warm up to room temperature and is stirred under an N 2 stream at this temperature for 4 h before the above reaction mixture is added dropwise to an aqueous NaOH solution of half the volume at max. 15*C. The amount of NaOH is calculated to give rise to a slight excess 10 based on the chlorosulfonic acid used. The resulting pH is approx. pH 9 to 10. The dichloromethane is removed at max. 50*C on a rotary evaporator under gentle vacuum. The product is characterized by 1 H NMR and the water content of the solution is determined (approx. 70%). 15 For the synthesis, the following alcohols were used. Alcohol Description iC 17 iso-C 17
H
35 -OH; oxo alcohol, prepared by hydroformylating isohexadecene, which is obtained by tetramerizing butene. The mean degree of branching of the alcohol is 3.1. C16C18 Commercially available fatty alcohol mixture consisting of linear C 16
H
33 -OH and C 1 8
H
3 7 -OH C16 Guerbet Commercially available C16 Guerbet alcohol (2-hexyldecan-1-ol) Performance tests 20 The surfactants obtained were used to carry out the following tests in order to assess the suitability thereof for tertiary mineral oil extraction. Description of the test methods 25 Determination of SP* a) Principle of the measurement: The interfacial tension between water and oil was determined in a known manner via the measurement of the solubilization parameter SP*. The determination of the interfacial tension via the determination of the solubilization parameter SP* is a method 30 for approximate determination of the interfacial tension which is accepted in the technical field. The solubilization parameter SP* indicates how many ml of oil are B09/0888PC 14 dissolved per ml of surfactant used in a microemulsion (Winsor type 111). The interfacial tension a (IFT) can be calculated therefrom via the approximate formula IFT ~ 0.3/(SP*) 2 , if equal volumes of water and oil are used (C. Huh, J. Coll. Interf. Sc., Vol. 71, No. 2 (1979)). 5 b) Procedure To determine the SP*, a 100 ml measuring cylinder with a magnetic stirrer bar is filled with 20 ml of oil and 20 ml of water. To this are added the concentrations of the particular surfactants. Subsequently, the temperature is increased stepwise from 20 to 10 900C, and the temperature window in which a microemulsion forms is observed. The formation of the microemulsion can be assessed visually or else with the aid of conductivity measurements. A triphasic system forms (upper oil phase, middle microemulsion phase, lower water phase). When the upper and lower phase are of 15 equal size and do not change over a period of 12 h, the optimal temperature (Topt) of the microemulsion has been found. The volume of the middle phase is determined. The volume of surfactant added is subtracted from this volume. The value obtained is then divided by two. This volume is then divided by the volume of surfactant added. The result is noted as SP*. 20 The type of oil and water used to determine SP* is determined according to the system to be examined. It is possible either to use mineral oil itself or a model oil, for example decane. The water used may either be pure water or saline water, in order better to model the conditions in the mineral oil formation. The composition of the aqueous 25 phase can be adjusted, for example, according to the composition of a particular deposit water. Information regarding the aqueous phase used and the oil phase can be found below in the specific description of the tests. 30 Test results A 1:1 mixture of decane and of an NaCI solution was admixed with butyl diethylene glycol (BDG). Butyl diethylene glycol (BDG) functions as a co-solvent and is not included in the calculation of SP*. To this was added a surfactant mixture composed of 35 3 parts alkyl alkoxysulfate and 1 part dodecylbenzene sulfonate (Lutensit A-LBN 50 ex BASF). The total surfactant concentration is reported in percent by weight of the total volume. In addition a 1:1 mixture out of decane and sodium chloride solution was mixed with butyl diethylene glycol (BDG). Butyl diethylene glycol (BDG) works as cosolvent and 40 was not taken into account for SP*. Surfactant mixture consisting out of three parts B09/0888PC 15 alkyl alkoxy sulfate and one part secondary alkyl sulphonate (Hostapur SAS 60 ex Clariant) was added. Total surfactant concentration in weight percent refers to aqueous phase. 5 In addition, a 1:1 mixture of south German crude oil (API 330) and of an NaCl solution was admixed with butyl diethylene glycol (BDG). Butyl diethylene glycol (BDG) functions as a co-solvent and is not included in the calculation of SP*. To this was added a surfactant mixture composed of 3 parts alkyl alkoxy sulfate and 1 part dodecylbenzenesulfonate (Lutensit A-LBN 50 ex BASF). The total surfactant 10 concentration is reported in percent by weight of the total volume. In two further tests a 1:1 mixture out of crude oil from southern parts of Germany (API 330) and sodium chloride solution or a 1:1 mixture out or crude oil Canada (API 140) and sodium chloride solution was mixed each with butyl diethylene glycol (BDG). Butyl 15 diethylene glycol (BDG) works as cosolvent and was not taken into account for SP*. Surfactant mixture consisting out of three parts alkyl alkoxy sulfate and one part secondary alkyl sulphonate (Hostapur SAS 60 ex Clariant) was added each. Each total surfactant concentration in weight percent refers to aqueous phase. 20 The results for surfactants based on linear and branched alcohols are shown in tables 1 to 7. Table 1 Surfactants based on linear C 16
C
1 8 -alcohol Ex. Alkyl - AO - S0 4 Na : Surfactant BDG NaC Topt SP* IFT
C
12
H
2 5 Ph-SO 3 Na = 3 : 1 [%] [%] [%] [*C] [mN/m] C1 C 1 6 C1 8 - 7 PO - SO 4 Na 2.5 2 5 48 13.3 0.0017 C2 C16C18- 7 PO - SO 4 Na 2.5 2 4 60 17.8 0.0009 C3 C 16 C1 - 9 PO - SO 4 Na 2.5 2 5 52 15.5 0.0012 C4 C1 6 C1- 9 PO - S0 4 Na 2.5 2 4 67 17.8 0.0009 5 C1 6
C
1 8 - 2 "1,2-BuO" - 7 PO - 2.5 2 5 47 16 0.0012
SO
4 Na 6 C16C18 - 2 "1,2-BuO" - 7 PO - 2.5 2 4 65 16.5 0.0011 S0 4 Na C7 C16C18 - 7 PO - 2 "1,2-BuO" - 2.5 2 4 46 11.8 0.0022 S0 4 Na C8 C16C18 - 7 PO - 2 "1,2-BuO" - 2.5 2 3 68 14.3 0.0015 S04Na C9 C 1 6 C1 - 9 PO - S0 4 Na 1.25 2 5 52 14 0.0015 C10 C16C18- 9 PO - S0 4 Na 1.25 2 4 67 13 0.0018 11 C16C18 - 2 "1,2-BuO" - 7 PO - 1.25 2 3.35 72 15 0.0013 S0 4 Na B09/0888PC 16 C12 C 1 6
C
1 8 - 2 "2,3-BuO" - 7 PO - 1.25 2 4.5 74 8 0.0047
SO
4 Na 13 C 16
C
1 8 - 3 "1,2-BuO" - 7 PO - 1.25 2 3 67 23.5 0.0005
SO
4 Na 14 C 16
C
18 - 5 "1,2-BuO" -7 PO - 1.25 2 2 77 34.5 0.0003 S04Na 15 C16C18-5"1,2-BuO"-7PO- 1.25 2 2.15 71 35.5 0.0002
SO
4 Na 16 C 1 6
C
1 8 - 5 "1,2-BuO" - 7 PO - 1.25 2 2.5 49 30.5 0.0003 S04Na As evident from examples C1 and C3 or C2 and C4 in table 1, there are few differences in SP* between C16C18 - 7 PO - sulfate and C16C18 - 9 PO - sulfate. In this respect, it should be noted that a comparison should be carried out at similar T,p in 5 order to rule out temperature effects. These may have a considerable influence in the case of surfactants with nonionic elements. When BuO-containing C 1 6 C1 8 -alkoxy sulfates are used, there are surprising findings. Examples 5 and 6 show that the incorporation of two 1,2-butylene oxide units between 10 the C1 6 C1 8 -fatty alcohol and the seven propylene oxide units leads to a surprisingly stable SP* = 16, no matter whether at 470C or at 620C. A similar picture emerges at reduced total surfactant concentration. In example 11 the SP* is 15 at 720C. Purely PO-containing compounds with the same degree of alkoxylation show greater variations (C3 and C4), or the SP* declines to a somewhat greater degree at a reduced 15 total surfactant concentration (C9 and C10). Arrangement of 1,2-butylene oxide between the propylene oxide block and the sulfate group as in comparative examples C7 and C8 is, in contrast, less favorable. SP* is at a somewhat lower level and varies more significantly on consideration of different 20 temperatures. The use of 2,3-butylene oxide is significantly poorer. As can be seen in C12, SP* is virtually halved at SP* = 8, and hence is poorer than alkyl propoxy sulfates with the same degree of alkoxylation (C9). Surprisingly, not the mere number of carbon atoms 25 but also the spatial arrangement thereof has a great influence on the ability of the surfactants to lower the interfacial tension. An unfavorable arrangement as in the case of 2,3-butylene oxide actually has a disruptive effect and gives poorer values than in the case of corresponding surfactants without alkylene oxide having 4 carbon atoms. US 3890239 or US 4448697 does not describe this. 30 Interestingly, there is an abrupt improvement as soon as the content of 1,2-butylene oxide units is three or greater in the linear C1 6 C1 8 -fatty alcohol. In example 13, the B09/0888PC 17 incorporation of three such units leads to a rise in the SP* to 23.5. This can even be enhanced further by going up to 5 units (examples 14-16). SP* is even above 30 here. Table 2 Surfactants based on branched iC 1 7 -alcohol 5 Ex. Alkyl - AO - SO 4 Na : Surfactant BDG NaC ToP' SP* IFT
C
1 2
H
25 Ph-SO 3 Na = 3 : 1 (%] [%] [%] [Cc] [mN/m] C1 iC17 - 7 PO - S0 4 Na 1.25 2 4 77.5 10.5 0.0027 2 iC 17 - 7 "1,2-BuO' - SO 4 Na 1.25 2 1 82.5 32.5 0.0003 C3 iC 17 - 14 PO - S0 4 Na 1.25 2 4.4 77 6.5 0.0071 4 iC 17 - 7 PO - 7 "1,2-BuO"- 1.25 2 1.65 74.5 17 0.0010
SO
4 Na 5 iC 17 - 7 "1,2-BuO" - 7 PO - 1.25 2 2.5 67.5 31.5 0.0003
SO
4 Na 6 iC 17 - 7 "1,2-BuO" - 7 PO - 1.25 2 3 50 29.5 0.0003 S0 4 Na A similar picture emerges in table 2. Here, alkyl alkoxy sulfates based on the branched iC 17 -alcohol were used to demonstrate that there is an effect which is not attributable to linear alcohols alone. 10 Comparative example C1 and example 2 show very clearly that the use of 1,2-butylene oxide instead of propylene oxide is distinctly advantageous in surfactants with the same degree of alkoxylation. At a similar temperature, the SP* is three times as high. The arrangement of the 1,2-BuO directly on the alkyl moiety (as in examples 5 and 6) 15 also gives lower interfacial tensions than a different arrangement as, for example, in example 4. Table 3 Surfactants based on branched C 1 6 Guerbet alcohol compared to C 1 6
C
18 alcohol-based surfactants Ex. Alkyl - AO - SO 4 Na : Surfactant BDG NaC Top [*C] SP* IFT [mN/m]
C
12
H
25 Ph-SO 3 Na = 3 : 1 [%] [%] [%] C1 C1C1 8 -9 PO - SO 4 Na 1.25 2 4 67 13 0.0018 2 C 16
C
18 - 2 "1,2-BuO" - 7 PO - 1.25 2 3.35 72 15 0.0013 S0 4 Na 3 C 1 6 -Guerbet- 2 ,,1,2-BuO" - 7 1.25 2 2.85 68 27.5 0.0004 PO - SO 4 Na 4 C 16 -Guerbet - 2 ,,1,2-BuO" - 7 1.25 2 3 64 23.5 0.0005 PO - SO 4 Na 5 C 16
C
18 - 3 "1,2-BuO" - 7 PO - 1.25 2 3 67 23.5 0.0005
SO
4 Na 6 C 16 -Guerbet - 7 ,,1,2-BuO" - 7 0.40 2 4.5 73 31 0.0003 PO - 10 EO - S0 4 Na C7 C 16 -Guerbet - 7 PO - SO 4 Na 1.25 2 5 70 6 0.0083 B09/0888PC 18 C8 C 1 6-Guerbet - 9 PO - SO 4 Na 1.25 2 4 71 9 0.0037 C9 C 1 6 -Guerbet - 6 PO - SO 4 Na 1.25 2 5 64 5 0.0120 C10 C 1 6
C
18 - 6 PO - SO 4 Na 1.25 2 5 64 10 0.0030 11 C 1 6 -Guerbet- 1 ,,1,2-BuO" - 7 1.25 2 3.3 73 10.25 0.0029 PO - SO 4 Na As can be seen in table 3, a similar picture applies hereto. If a surfactant based on a linear alcohol comprises more than two 1,2-BuO units, there is a distinct jump in the SP* and hence a lowering of the interfacial tension. Example 2 compared to 5 examples 3 and 4 shows the difference between the surfactant based on the linear
C
1 6
C
1 -alcohol and the surfactant based on the branched C16 Guerbet alcohol. In the Guerbet-based surfactant, a significantly better SP* is already attained on incorporation of 2 1,2-butylene oxide units than when the surfactant is based on a linear alcohol with similar chain length. However, incorporation of a further amount of 1,2-butylene oxide 10 in the case of the linear alcohol can, as can be seen in example 5, achieve an approximately identical SP* level to that in example 4. It can be seen in example 6 that the incorporation of 10 EO between sulfate group and PO block can virtually compensate for the additional hydrophobicity of the 7-BuO block; 15 it is thus possible to make a comparison with comparative example C1 under similar conditions (similar salt content, similar temperature Togt). Without the incorporation of 1,2-butylene oxide, as can be see in comparative examples C7 and C8, the surfactant is merely an average surfactant. Example 11 20 shows that the incorporation of 1 eq of 1,2-BuO only gives a certain improvement in SP*. Only incorporation of 2 eq of 1,2-BuO gives a significant improvement in the case of the C16 Guerbet-based surfactant (example 3). Table 4 Tests with south German crude oil 25 Ex. Alkyl - AO - SO 4 Na : C 12
H
25 Ph- Surfactant BDG NaC Topt SP* IFT
SO
3 Na = 3: 1 [%] [%] (%] [*C] [mN/m] C1 C 16
C
18 -9 PO - SO 4 Na 0.8 2 5 34.5 9.7 0.0032 2 C 16
C
18 - 3 "1,2-BuO" - 7 PO - 0.8 2 3.5 31 15.9 0.0012
SO
4 Na C3 C 1 6 -Guerbet -9 PO - SO 4 Na 0.8 2 5.1 34 5.8 0.0089 4 C 1 6 -Guerbet - 2 ,,1,2-BuO" - 7 PO - 0.8 2 3.5 34 15 0.0013
SO
4 Na As can be seen in table 4, a virtually identical picture also emerges with crude oil compared to the tests with decane model oil. Comparative example C1 gives significantly lower SP* values and hence higher interfacial tensions than the BuO B09/0888PC 19 containing surfactant in example 2 at comparable temperature. Comparative example C3 and example 4 show the advantage of the 1,2-butylene oxide in a similar manner. Table 5 Tests will decane at similar temperature and salinity 5 Ex. Alkyl - AO - SO 4 Na Surfactant BDG NaCI Topt SP* IFT Hostapur SAS 60=3:1 [%] [%] [%] ["C] [mN/m] V1 C 1 sC 1 - 7 PO - 0.1 EO-SO 4 Na 0.4 2 4.7 59.9 18.3 0.0009 2 C 16
C
18 - 7 "1,2-BuO" - 7 PO - 10 0.4 2 4.7 64,8 37 0.0002 EO - SO 4 Na Aqueous surfactant solution mixed with BDG are clearly soluble under optimum conditions (salinity und Topt and give by addition of oil a 3-phase-system (Winsor Typ 111). As shown in table 5 optimum conditions (salinity und Topt) are very close by. Right 10 fine tuning of alkoxylation degree as shown in example 2 lead to surfactant, which has a similar hydrophilic-hydrophobic-balance as the surfactant in example V1. SP* in example 2 is much higher. Consequently interfacial tension is much lower. Table 6 Tests with crude oil from Germany (API 330) at similar temperature and 15 salinity Ex. Alkyl - AO - S0 4 Na: Surfactant BD NaCI Topi SP* IFT Hostapur SAS 60=3:1 [%] G [%) ["C] [mN/m] [%) V1 C1 6 C18 - 7 PO - 0.1 EO-SO 4 Na 0.4 2 3.5 73 24.5 0.0005 2 C1sC 18 - 7 "1,2-BuO" - 7 PO - 10 0.4 2 3.5 78,5 37 0.0002 EO - SO 4 Na Aqueous surfactant solution mixed with BDG are clearly soluble under optimum conditions (salinity und Topt and give by addition of oil a 3-phase-system (Winsor Typ 20 111). As shown in table 6 optimum conditions (salinity und Topt) are very close by. Right fine tuning of alkoxylation degree as shown in example 2 lead to surfactant, which has a similar hydrophilic-hydrophobic-balance as the surfactant in example V1. SP* in example 2 is again much higher. Consequently interfacial tension is much lower. 25 30 B09/0888PC 20 Table 7 Tests with crude oil from Canada (API 14) at similar temperature and salinity Ex. Alkyl - AO - S0 4 Na: Surfactant BDG NaCI Topt SP* IFT Hostapur SAS 60=3:1 [%] [%] [%] [C] [mN/m] V1 C 16
C
1 8 - 7 PO - 0.1 EO-SO 4 Na 0.4 2 7 55 12 0.0021 2 C 16
C
1 8 - 7 "1,2-BuO" - 7 PO - 10 0.4 2 7 57 19,5 0.0008 EO - S0 4 Na: C16C18 - 7 "1,2-BuO" - 7 PO - 8
EO-SO
4 NA=2 5 Aqueous surfactant solution mixed with BDG are clearly soluble under optimum conditions (salinity und Topt and give by addition of oil a 3-phase-system (Winsor Typ 111). As shown in table 7 optimum conditions (salinity und Topi) are very close by. Right fine tuning of alkoxylation degree as shown in example 2 lead to surfactant, which has a similar hydrophilic-hydrophobic-balance as the surfactant in example V1. SP* in 10 example 2 is again much higher. Consequently interfacial tension is much lower. B09/0888PC
Claims (16)
1. A process for mineral oil extraction by means of Winsor type III microemulsion flooding, in which an aqueous surfactant formulation comprising at least one ionic 5 surfactant, for the purpose of lowering the interfacial tension between oil and water to <0.1 mN/m, is injected through at least one injection borehole into a mineral oil deposit, and crude oil is withdrawn from the deposit through at least one production borehole, wherein the surfactant formulation comprises at least one surfactant of the general formula 10 R'-O-(D)n-(B)m-(A)iXY~ M*, where R' is a linear or branched, saturated or unsaturated, aliphatic and/or aromatic hydrocarbon radical having 8 to 30 carbon atoms, 15 A is ethyleneoxy, B is propyleneoxy, and D is butyleneoxy, I is from 0 to 99, m is from 0 to 99 and 20 n is from 1 to 99, X is an alkyl or alkylene group having 0 to 10 carbon atoms, M* is a cation, and Y- is selected from the group of sulfate groups, sulfonate groups, carboxylate groups and phosphate groups, where 25 the A, B and D groups may be distributed randomly, alternatingly, or in the form of two, three, four or more blocks in any sequence, the sum of I + m + n is in the range from 3 to 99 and the proportion of 1,2- butylene oxide, based on the total amount of butylene oxide, is at least 80%. 30
2. The process according to claim 1, wherein the sum of I + m + n is in the range from 5 to 50.
3. The process according to claim 1 or 2, wherein the proportion of 1,2-butylene 35 oxide, based on the total mount of butylene oxide, is at least 90%.
4. The process according to any of claims 1 to 3, wherein the surfactant of the general formula comprises 2 to 15 1,2-butylene oxide units. B09/0888PC 22
5. The process according to any of claims 1 to 4, wherein the concentration of all surfactants together is 0.05 to 5% by weight, based on the total amount of the aqueous surfactant formulation. 5
6. The process according to any of claims 1 to 5, wherein m is from 5 to 9 and n is from 2 to 10, and Y- is selected from the group of sulfate groups, sulfonate groups, and carboxylate groups, where 10 the A, B and D groups are present to an extent of more than 80% in block form in the sequence D,B,A, beginning from R 1 , the sum of I + m + n is in the range from 7 to 49, and the proportion of 1,2-butylene oxide, based on the total amount of butylene oxide in the molecule, is at least 90%. 15
7. The process according to claim 6, wherein R' is a linear fatty alcohol having 16 or 18 carbon atoms and n is from 3 to 10.
8. A surfactant formulation comprising at least one ionic surfactant of the general 20 formula R'-O-(D)n-(B)m-(A)rXY- M*, where R 1 is a linear or branched, saturated or unsaturated, aliphatic and/or aromatic 25 hydrocarbon radical having 8 to 30 carbon atoms, A is ethyleneoxy, B is propyleneoxy, and D is butyleneoxy, I is from 0 to 99, 30 m is from 0 to 99 and n is from 1 to 99, X is an alkyl or alkylene group having 0 to 10 carbon atoms, M* is a cation, and Y' is selected from the group of sulfate groups, sulfonate groups, carboxylate 35 groups and phosphate groups, where the A, B and D groups may be distributed randomly, alternatingly, or in the form of two, three, four or more blocks in any sequence, the sum of I + m + n is in the range from 3 to 99 and the proportion of 1,2- butylene oxide, based on the total 40 amount of butylene oxide, is at least 80%. B09/0888PC 23
9. The surfactant formulation according to claim 8, wherein m is from 5 to 9 and n is from 2 to 10, and 5 Y- is selected from the group of sulfate groups, sulfonate groups, and carboxylate groups, where the A, B and D groups are present to an extent of more than 80% in block form in the sequence D,B,A, beginning from R 1 , the sum of I + m + n is in the range from 10 7 to 49, and the proportion of 1,2-butylene oxide, based on the total amount of butylene oxide in the molecule, is at least 90%.
10. The surfactant formulation according to claim 9, wherein R' is a linear fatty alcohol having 16 or 18 carbon atoms and n is from 3 to 10. 15
11. The surfactant formulation according to claims 8 to 10, wherein the concentration of all surfactants together is 0.05 to 5% by weight, based on the total amount of the aqueous surfactant formulation. 20
12. A surfactant of the general formula R'-O-(A)r(B)m(D)n-XY~ M*, where R 1 is a linear or branched, saturated or unsaturated, aliphatic and/or aromatic 25 hydrocarbon radical having 8 to 30 carbon atoms, A is ethyleneoxy, B is propyleneoxy, and D is butyleneoxy, I is from 0 to 99, 30 m is from 0 to 99 and n is from 1 to 99, X is an alkyl or alkylene group having 0 to 10 carbon atoms, M* is a cation, and Y~ is selected from the group of sulfate groups, sulfonate groups, carboxylate 35 groups and phosphate groups, where the A, B and D groups may be distributed randomly, alternatingly, or in the form of two, three, four or more blocks in any sequence, the sum of I + m + n is in the range from 3 to 99 and the proportion of 1,2- butylene oxide, based on the total 40 amount of butylene oxide, is at least 80%. B09/0888PC 24
13. The surfactant according to claim 12, wherein the sum of I + m + n is in the range from 3 to 49. 5
14. The surfactant according to claim 12 or 13, wherein the proportion of 1,2 butylene oxide, based on the total amount of butylene oxide, is at least 90%.
15. The surfactant according to any of claims 12 to 14, wherein R 1 is a linear or branched, saturated or unsaturated, aliphatic and/or aromatic hydrocarbon 10 radical having 10 to 30 carbon atoms.
16. The surfactant according to any of claims 12 to 15, wherein R 1 is a linear fatty alcohol having 16 or 18 carbon atoms m is from 5 to 9 and 15 n is from 3 to 10, and Y~ is selected from the group of sulfate groups, sulfonate groups, and carboxylate groups, where the A, B and D groups are present to an extent of more than 80% in block form in the sequence D,B,A, beginning from R', the sum of I + m + n is in the range from 7 to 49, and the proportion of 1,2 20 butylene oxide, based on the total amount of butylene oxide in the molecule, is at least 90%. B09/0888PC
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP10002488.4 | 2010-03-10 | ||
| EP10002488 | 2010-03-10 | ||
| PCT/EP2011/053321 WO2011110503A1 (en) | 2010-03-10 | 2011-03-04 | Method for producing crude oil using surfactants based on butylene oxide-containing alkyl alkoxylates |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| AU2011226215A1 true AU2011226215A1 (en) | 2012-09-20 |
Family
ID=43920929
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2011226215A Abandoned AU2011226215A1 (en) | 2010-03-10 | 2011-03-04 | Method for producing crude oil using surfactants based on butylene oxide-containing alkyl alkoxylates |
Country Status (14)
| Country | Link |
|---|---|
| EP (1) | EP2545136A1 (en) |
| JP (1) | JP2013528720A (en) |
| KR (1) | KR20130016266A (en) |
| CN (2) | CN102791824B (en) |
| AR (1) | AR080479A1 (en) |
| AU (1) | AU2011226215A1 (en) |
| BR (1) | BR112012022670A2 (en) |
| CA (1) | CA2791119C (en) |
| EA (1) | EA201401362A1 (en) |
| EC (1) | ECSP12012146A (en) |
| MX (1) | MX340884B (en) |
| MY (1) | MY161638A (en) |
| RU (1) | RU2563642C2 (en) |
| WO (1) | WO2011110503A1 (en) |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9184057B2 (en) | 2011-03-18 | 2015-11-10 | Basf Se | Method for manufacturing integrated circuit devices, optical devices, micromachines and mechanical precision devices having patterned material layers with line-space dimensions of 50 nm and less |
| US9475977B2 (en) * | 2011-10-24 | 2016-10-25 | Basf Se | Process for producing mineral oil using surfactants based on a mixture of C28 Guerbet, C30 Guerbet, C32 Guerbet-containing hydrocarbyl alkoxylates |
| US9475979B2 (en) * | 2011-10-24 | 2016-10-25 | Basf Se | Process for producing mineral oil using surfactants based on a mixture of C20 Guerbet-, C22 Guerbet-, C24 Guerbet-containing hydrocarbyl alkoxylates |
| JP5961274B2 (en) * | 2011-10-24 | 2016-08-02 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Process for producing mineral oil using a hydrocarbyl alkoxylate mixed surfactant containing C28 gel, C30 gel and C32 gel |
| IN2014CN02832A (en) | 2011-10-24 | 2015-07-03 | Basf Se | |
| CA2851421A1 (en) | 2011-10-24 | 2013-05-02 | Basf Se | Process for producing mineral oil using surfactants based on a mixture of c20 guerbet-, c22 guerbet-, c24 guerbet-containing hydrocarbyl alkoxylates |
| US9475978B2 (en) * | 2011-10-24 | 2016-10-25 | Basf Se | Process for producing mineral oil using surfactants based on a mixture of C24 guerbet-, C26 guerbet-, C28-guerbet containing hydrocarbyl alkoxylates |
| CN104736228B (en) * | 2012-09-29 | 2017-08-18 | 陶氏环球技术有限责任公司 | Anionic surfactant compositions and uses thereof |
| WO2014064152A1 (en) * | 2012-10-26 | 2014-05-01 | Basf Se | Process for mineral oil production using surfactants at least comprising a secondary alkanesulphonate and an alkyl ether sulphate/sulphonate/carboxylate/phosphate |
| WO2014063933A1 (en) * | 2012-10-26 | 2014-05-01 | Basf Se | Process for mineral oil production using surfactants based on anionic alkyl alkoxylates which have been formed from glycidyl ethers |
| JP6174722B2 (en) | 2013-03-08 | 2017-08-02 | ダウ グローバル テクノロジーズ エルエルシー | Anionic surfactant composition and use thereof |
| WO2018219654A1 (en) * | 2017-05-30 | 2018-12-06 | Basf Se | Method for extracting petroleum from underground deposits having high temperature and salinity |
| EP3684879A1 (en) | 2017-09-21 | 2020-07-29 | Basf Se | Robust alkyl ether sulfate mixture for enhanced oil recovery |
| CN113797842B (en) * | 2020-06-15 | 2023-08-29 | 中国石油化工股份有限公司 | Hydrocarbyl aryl anionic nonionic surfactant and preparation method thereof |
| CN113801316B (en) * | 2020-06-15 | 2024-01-26 | 中国石油化工股份有限公司 | Alkoxy block polyether sulfonate anionic surfactant and preparation method thereof |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3843706A (en) * | 1969-05-23 | 1974-10-22 | Us Agriculture | Long chain ether alcohol sulfates from propylene oxide and 1,2-butylene oxide |
| US3890239A (en) | 1973-02-01 | 1975-06-17 | Sun Oil Co | Surfactant compositions useful in oil recovery processes |
| JPS5672092A (en) * | 1979-11-16 | 1981-06-16 | Kao Corp | Detergent composition |
| US4393935A (en) * | 1980-05-30 | 1983-07-19 | Basf Wyandotte Corporation | Stimulation of gas wells with phosphate ester surfactants |
| US4460481A (en) * | 1980-09-29 | 1984-07-17 | Texaco Inc. | Surfactant waterflooding enhanced oil recovery process |
| US4448697A (en) | 1982-01-22 | 1984-05-15 | Texaco Inc. | Secondary recovery process |
| US4592875A (en) * | 1984-06-25 | 1986-06-03 | Atlantic Richfield Company | Alkoxylated ether sulfate anionic surfactants from plasticizer alcohol mixtures |
| DE4325237A1 (en) | 1993-07-28 | 1995-02-02 | Basf Ag | Process for the preparation of alkoxylation products in the presence of mixed hydroxides modified with additives |
| CZ28898A3 (en) * | 1995-08-04 | 1998-07-15 | Witco Corporation | Alkoxylated compounds reducing estrogenicity and process for preparing thereof |
| FR2798849B1 (en) * | 1999-09-29 | 2001-11-23 | Oreal | COMPOSITION FOR WASHING KERATIN MATERIALS, BASED ON A DETERGENT SURFACE-ACTIVE AGENT, A DIALKYL DIALLYL AMMONIUM HOMOPOLYMER AND AN ACRYLIC TERPOLYMER |
| CN1091085C (en) * | 1999-12-03 | 2002-09-18 | 山东淄博新华-肯孚制药有限公司 | Process for recovering nitrogen-contained organic alkali |
| DE10243361A1 (en) | 2002-09-18 | 2004-04-01 | Basf Ag | Alkoxylate mixture used in laundry and cleaning detergents for washing and cleaning textiles contains alkoxylates of alkanols with different chain lengths with ethylene oxide and optionally other alkylene oxide(s) |
| DE102005026716A1 (en) | 2005-06-09 | 2006-12-28 | Basf Ag | Surfactant mixtures for tertiary mineral oil production |
| CN101903510B (en) * | 2007-12-28 | 2012-05-23 | 花王株式会社 | Laundry composition for clothing |
-
2011
- 2011-03-04 MX MX2012010276A patent/MX340884B/en active IP Right Grant
- 2011-03-04 KR KR1020127026526A patent/KR20130016266A/en not_active Ceased
- 2011-03-04 CN CN201180013092.1A patent/CN102791824B/en not_active Expired - Fee Related
- 2011-03-04 EA EA201401362A patent/EA201401362A1/en unknown
- 2011-03-04 CA CA2791119A patent/CA2791119C/en not_active Expired - Fee Related
- 2011-03-04 WO PCT/EP2011/053321 patent/WO2011110503A1/en not_active Ceased
- 2011-03-04 AU AU2011226215A patent/AU2011226215A1/en not_active Abandoned
- 2011-03-04 MY MYPI2012003985A patent/MY161638A/en unknown
- 2011-03-04 CN CN201510041875.0A patent/CN104726084A/en active Pending
- 2011-03-04 JP JP2012556466A patent/JP2013528720A/en active Pending
- 2011-03-04 BR BR112012022670-3A patent/BR112012022670A2/en not_active Application Discontinuation
- 2011-03-04 RU RU2012142936/04A patent/RU2563642C2/en not_active IP Right Cessation
- 2011-03-04 EP EP11706292A patent/EP2545136A1/en not_active Withdrawn
- 2011-03-09 AR ARP110100729A patent/AR080479A1/en not_active Application Discontinuation
-
2012
- 2012-09-07 EC ECSP12012146 patent/ECSP12012146A/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| AR080479A1 (en) | 2012-04-11 |
| MY161638A (en) | 2017-04-28 |
| MX340884B (en) | 2016-07-29 |
| CN102791824B (en) | 2016-03-02 |
| KR20130016266A (en) | 2013-02-14 |
| BR112012022670A2 (en) | 2020-08-11 |
| MX2012010276A (en) | 2012-09-28 |
| WO2011110503A1 (en) | 2011-09-15 |
| RU2563642C2 (en) | 2015-09-20 |
| EA201401362A1 (en) | 2015-05-29 |
| CN102791824A (en) | 2012-11-21 |
| RU2012142936A (en) | 2014-04-20 |
| CA2791119C (en) | 2018-05-22 |
| CN104726084A (en) | 2015-06-24 |
| CA2791119A1 (en) | 2011-09-15 |
| ECSP12012146A (en) | 2012-10-30 |
| JP2013528720A (en) | 2013-07-11 |
| EP2545136A1 (en) | 2013-01-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2791119C (en) | Process for extracting mineral oil using surfactants based on butylene oxide-containing alkyl alkoxylates | |
| AU2011226214B2 (en) | Method for producing crude oil using surfactants based on C16C18-containing alkyl-propoxy surfactants | |
| US8607865B2 (en) | Process for extracting mineral oil using surfactants based on butylene oxide-containing alkyl alkoxylates | |
| US9701893B2 (en) | Process for producing mineral oil using surfactants based on a mixture of C32 guerbet-, C34 guerbet-, C36 guerbet-containing alkyl alkoxylates | |
| AU2010305911B2 (en) | Process for tertiary mineral oil production using surfactant mixtures | |
| US9505973B2 (en) | Process for producing mineral oil using surfactants based on C16C18-containing alkyl propoxy surfactants | |
| US10155900B2 (en) | Process for producing mineral oil using surfactants based on a mixture of C24 guerbet, C26 guerbet, C28 guerbet-containing hydrocarbyl alkoxylates | |
| CA2777538A1 (en) | Process for tertiary mineral oil production using surfactant mixtures | |
| CA2851421A1 (en) | Process for producing mineral oil using surfactants based on a mixture of c20 guerbet-, c22 guerbet-, c24 guerbet-containing hydrocarbyl alkoxylates | |
| US9475979B2 (en) | Process for producing mineral oil using surfactants based on a mixture of C20 Guerbet-, C22 Guerbet-, C24 Guerbet-containing hydrocarbyl alkoxylates | |
| US9475977B2 (en) | Process for producing mineral oil using surfactants based on a mixture of C28 Guerbet, C30 Guerbet, C32 Guerbet-containing hydrocarbyl alkoxylates | |
| CA2848961A1 (en) | Process for producing mineral oil using surfactants based on a mixture of c28 guerbet-, c30 guerbet-, c32 guerbet-containing hydrocarbyl alkoxylates | |
| AU2012327277B2 (en) | Method for producing mineral oil using surfactants based on a mixture of C24-Guerbet-, C26-Guerbet-, C28-Guerbet-containing hydrocarbon alkoxylates |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MK4 | Application lapsed section 142(2)(d) - no continuation fee paid for the application |