AU2009223668B2 - Vitamin D compounds and methods for reducing ocular hypertension (OHT) - Google Patents
Vitamin D compounds and methods for reducing ocular hypertension (OHT)Info
- Publication number
- AU2009223668B2 AU2009223668B2 AU2009223668A AU2009223668A AU2009223668B2 AU 2009223668 B2 AU2009223668 B2 AU 2009223668B2 AU 2009223668 A AU2009223668 A AU 2009223668A AU 2009223668 A AU2009223668 A AU 2009223668A AU 2009223668 B2 AU2009223668 B2 AU 2009223668B2
- Authority
- AU
- Australia
- Prior art keywords
- eye
- vitamin
- iop
- dihydroxyvitamin
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 229930003316 Vitamin D Natural products 0.000 title claims description 118
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 title claims description 118
- 239000011710 vitamin D Substances 0.000 title claims description 118
- 235000019166 vitamin D Nutrition 0.000 title claims description 118
- 229940046008 vitamin d Drugs 0.000 title claims description 118
- 238000000034 method Methods 0.000 title claims description 56
- 206010030043 Ocular hypertension Diseases 0.000 title claims description 47
- -1 Vitamin D compounds Chemical class 0.000 title claims description 34
- 230000004410 intraocular pressure Effects 0.000 claims description 175
- GMRQFYUYWCNGIN-ZVUFCXRFSA-N 1,25-dihydroxy vitamin D3 Chemical compound C1([C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@@H](CCCC(C)(C)O)C)=CC=C1C[C@@H](O)C[C@H](O)C1=C GMRQFYUYWCNGIN-ZVUFCXRFSA-N 0.000 claims description 54
- 150000001875 compounds Chemical class 0.000 claims description 48
- 230000000699 topical effect Effects 0.000 claims description 38
- 208000010412 Glaucoma Diseases 0.000 claims description 27
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 claims description 24
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 20
- 229910052760 oxygen Inorganic materials 0.000 claims description 20
- 239000001301 oxygen Substances 0.000 claims description 20
- 125000003545 alkoxy group Chemical group 0.000 claims description 11
- 125000000217 alkyl group Chemical group 0.000 claims description 11
- 238000002360 preparation method Methods 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 8
- 239000011653 vitamin D2 Substances 0.000 claims description 8
- 230000002829 reductive effect Effects 0.000 claims description 7
- 239000003889 eye drop Substances 0.000 claims description 6
- 229940012356 eye drops Drugs 0.000 claims description 6
- JWUBBDSIWDLEOM-NQZHSCJISA-N 25-hydroxy-3 epi cholecalciferol Chemical compound C1([C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@@H](CCCC(C)(C)O)C)=CC=C1C[C@H](O)CCC1=C JWUBBDSIWDLEOM-NQZHSCJISA-N 0.000 claims description 5
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical class CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 123
- 238000011282 treatment Methods 0.000 description 99
- 150000003710 vitamin D derivatives Chemical class 0.000 description 89
- 241000282693 Cercopithecidae Species 0.000 description 46
- 239000000203 mixture Substances 0.000 description 42
- 239000003981 vehicle Substances 0.000 description 41
- 210000001742 aqueous humor Anatomy 0.000 description 32
- 230000000694 effects Effects 0.000 description 32
- 230000009467 reduction Effects 0.000 description 27
- 239000003814 drug Substances 0.000 description 23
- 241000700159 Rattus Species 0.000 description 22
- 108090000623 proteins and genes Proteins 0.000 description 22
- 230000014509 gene expression Effects 0.000 description 21
- 238000005259 measurement Methods 0.000 description 20
- 210000002966 serum Anatomy 0.000 description 20
- 230000004044 response Effects 0.000 description 19
- 230000015572 biosynthetic process Effects 0.000 description 16
- 230000003247 decreasing effect Effects 0.000 description 16
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 16
- 229940079593 drug Drugs 0.000 description 16
- 238000002474 experimental method Methods 0.000 description 14
- 230000007423 decrease Effects 0.000 description 13
- 230000002146 bilateral effect Effects 0.000 description 12
- 239000011575 calcium Substances 0.000 description 12
- 210000004027 cell Anatomy 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 11
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 11
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 11
- 241001465754 Metazoa Species 0.000 description 11
- 230000033228 biological regulation Effects 0.000 description 11
- 229910052791 calcium Inorganic materials 0.000 description 11
- 239000006196 drop Substances 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 210000002744 extracellular matrix Anatomy 0.000 description 10
- 238000009472 formulation Methods 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 10
- 238000002493 microarray Methods 0.000 description 10
- 210000001585 trabecular meshwork Anatomy 0.000 description 10
- 102100030988 Angiotensin-converting enzyme Human genes 0.000 description 9
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 9
- 102000002274 Matrix Metalloproteinases Human genes 0.000 description 9
- 108090000882 Peptidyl-Dipeptidase A Proteins 0.000 description 9
- 239000007900 aqueous suspension Substances 0.000 description 9
- 239000002876 beta blocker Substances 0.000 description 9
- 210000004369 blood Anatomy 0.000 description 9
- 239000008280 blood Substances 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 201000010099 disease Diseases 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 9
- 230000037361 pathway Effects 0.000 description 9
- 102000007469 Actins Human genes 0.000 description 8
- 108010085238 Actins Proteins 0.000 description 8
- 241000282567 Macaca fascicularis Species 0.000 description 8
- 206010030348 Open-Angle Glaucoma Diseases 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 8
- 210000002159 anterior chamber Anatomy 0.000 description 8
- 230000001747 exhibiting effect Effects 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 239000002674 ointment Substances 0.000 description 8
- 239000003755 preservative agent Substances 0.000 description 8
- 201000006366 primary open angle glaucoma Diseases 0.000 description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 7
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 7
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 239000003963 antioxidant agent Substances 0.000 description 7
- 235000006708 antioxidants Nutrition 0.000 description 7
- 208000035475 disorder Diseases 0.000 description 7
- 239000012530 fluid Substances 0.000 description 7
- 239000000499 gel Substances 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 230000009885 systemic effect Effects 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 7
- QYSXJUFSXHHAJI-YRZJJWOYSA-N vitamin D3 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-YRZJJWOYSA-N 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 241000282412 Homo Species 0.000 description 6
- 241000124008 Mammalia Species 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000036772 blood pressure Effects 0.000 description 6
- 238000007427 paired t-test Methods 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 206010020772 Hypertension Diseases 0.000 description 5
- 206010061218 Inflammation Diseases 0.000 description 5
- 241000288906 Primates Species 0.000 description 5
- 229940097320 beta blocking agent Drugs 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000006071 cream Substances 0.000 description 5
- 210000004292 cytoskeleton Anatomy 0.000 description 5
- 239000002552 dosage form Substances 0.000 description 5
- 230000004438 eyesight Effects 0.000 description 5
- 230000001077 hypotensive effect Effects 0.000 description 5
- 230000004054 inflammatory process Effects 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 229960003299 ketamine Drugs 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 238000011200 topical administration Methods 0.000 description 5
- 229940088594 vitamin Drugs 0.000 description 5
- 229930003231 vitamin Natural products 0.000 description 5
- 235000013343 vitamin Nutrition 0.000 description 5
- 239000011782 vitamin Substances 0.000 description 5
- 239000011647 vitamin D3 Substances 0.000 description 5
- 150000003722 vitamin derivatives Chemical class 0.000 description 5
- 102000010637 Aquaporins Human genes 0.000 description 4
- 108010033547 Carbonic Anhydrase I Proteins 0.000 description 4
- 102100025518 Carbonic anhydrase 1 Human genes 0.000 description 4
- 102100024533 Carcinoembryonic antigen-related cell adhesion molecule 1 Human genes 0.000 description 4
- 101710190843 Carcinoembryonic antigen-related cell adhesion molecule 1 Proteins 0.000 description 4
- 102100037362 Fibronectin Human genes 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 229960005084 calcitriol Drugs 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 210000003169 central nervous system Anatomy 0.000 description 4
- 230000001886 ciliary effect Effects 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 210000000744 eyelid Anatomy 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 210000004877 mucosa Anatomy 0.000 description 4
- 230000010412 perfusion Effects 0.000 description 4
- 150000003180 prostaglandins Chemical class 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 230000001839 systemic circulation Effects 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 108091006112 ATPases Proteins 0.000 description 3
- 102000057290 Adenosine Triphosphatases Human genes 0.000 description 3
- 206010002091 Anaesthesia Diseases 0.000 description 3
- 102400000345 Angiotensin-2 Human genes 0.000 description 3
- 101800000733 Angiotensin-2 Proteins 0.000 description 3
- 102000003846 Carbonic anhydrases Human genes 0.000 description 3
- 108090000209 Carbonic anhydrases Proteins 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 101001027128 Homo sapiens Fibronectin Proteins 0.000 description 3
- CZGUSIXMZVURDU-JZXHSEFVSA-N Ile(5)-angiotensin II Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C=CC=CC=1)C([O-])=O)NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=[NH2+])NC(=O)[C@@H]([NH3+])CC([O-])=O)C(C)C)C1=CC=C(O)C=C1 CZGUSIXMZVURDU-JZXHSEFVSA-N 0.000 description 3
- 206010067013 Normal tension glaucoma Diseases 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 102100024450 Prostaglandin E2 receptor EP4 subtype Human genes 0.000 description 3
- 102000005406 Tissue Inhibitor of Metalloproteinase-3 Human genes 0.000 description 3
- 108010031429 Tissue Inhibitor of Metalloproteinase-3 Proteins 0.000 description 3
- 206010047555 Visual field defect Diseases 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 238000000246 agarose gel electrophoresis Methods 0.000 description 3
- 230000037005 anaesthesia Effects 0.000 description 3
- 229950006323 angiotensin ii Drugs 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- 239000002220 antihypertensive agent Substances 0.000 description 3
- 230000004872 arterial blood pressure Effects 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- GMRQFYUYWCNGIN-NKMMMXOESA-N calcitriol Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@@H](CCCC(C)(C)O)C)=C\C=C1\C[C@@H](O)C[C@H](O)C1=C GMRQFYUYWCNGIN-NKMMMXOESA-N 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000001713 cholinergic effect Effects 0.000 description 3
- 210000004087 cornea Anatomy 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 206010012601 diabetes mellitus Diseases 0.000 description 3
- 235000005911 diet Nutrition 0.000 description 3
- 230000037213 diet Effects 0.000 description 3
- XEYBRNLFEZDVAW-ARSRFYASSA-N dinoprostone Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O XEYBRNLFEZDVAW-ARSRFYASSA-N 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001879 gelation Methods 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 239000000017 hydrogel Substances 0.000 description 3
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 3
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 3
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 3
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 3
- 238000007373 indentation Methods 0.000 description 3
- 210000000936 intestine Anatomy 0.000 description 3
- VCMGMSHEPQENPE-UHFFFAOYSA-N ketamine hydrochloride Chemical compound [Cl-].C=1C=CC=C(Cl)C=1C1([NH2+]C)CCCCC1=O VCMGMSHEPQENPE-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 201000002978 low tension glaucoma Diseases 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 210000003733 optic disk Anatomy 0.000 description 3
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 230000036454 renin-angiotensin system Effects 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000002562 thickening agent Substances 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- MECHNRXZTMCUDQ-RKHKHRCZSA-N vitamin D2 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)/C=C/[C@H](C)C(C)C)=C\C=C1\C[C@@H](O)CCC1=C MECHNRXZTMCUDQ-RKHKHRCZSA-N 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 239000005541 ACE inhibitor Substances 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 102400000344 Angiotensin-1 Human genes 0.000 description 2
- 101800000734 Angiotensin-1 Proteins 0.000 description 2
- 102000004888 Aquaporin 1 Human genes 0.000 description 2
- 108090001004 Aquaporin 1 Proteins 0.000 description 2
- 108010063290 Aquaporins Proteins 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 108091006146 Channels Proteins 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- PWNAWOCHVWERAR-UHFFFAOYSA-N Flumetralin Chemical compound [O-][N+](=O)C=1C=C(C(F)(F)F)C=C([N+]([O-])=O)C=1N(CC)CC1=C(F)C=CC=C1Cl PWNAWOCHVWERAR-UHFFFAOYSA-N 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 2
- MJVAVZPDRWSRRC-UHFFFAOYSA-N Menadione Chemical compound C1=CC=C2C(=O)C(C)=CC(=O)C2=C1 MJVAVZPDRWSRRC-UHFFFAOYSA-N 0.000 description 2
- 239000004909 Moisturizer Substances 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 206010061323 Optic neuropathy Diseases 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 241000514450 Podocarpus latifolius Species 0.000 description 2
- 229920000148 Polycarbophil calcium Polymers 0.000 description 2
- 102000008866 Prostaglandin E receptors Human genes 0.000 description 2
- 108010088540 Prostaglandin E receptors Proteins 0.000 description 2
- 101710195838 Prostaglandin E2 receptor EP4 subtype Proteins 0.000 description 2
- 238000011529 RT qPCR Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 239000000362 adenosine triphosphatase inhibitor Substances 0.000 description 2
- 239000002160 alpha blocker Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 229940044094 angiotensin-converting-enzyme inhibitor Drugs 0.000 description 2
- 230000000840 anti-viral effect Effects 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 229940006133 antiglaucoma drug and miotics carbonic anhydrase inhibitors Drugs 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 229940045988 antineoplastic drug protein kinase inhibitors Drugs 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229960000686 benzalkonium chloride Drugs 0.000 description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 2
- 239000011612 calcitriol Substances 0.000 description 2
- 235000020964 calcitriol Nutrition 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000003489 carbonate dehydratase inhibitor Substances 0.000 description 2
- 230000021164 cell adhesion Effects 0.000 description 2
- 210000004240 ciliary body Anatomy 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 229920006037 cross link polymer Polymers 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 239000002274 desiccant Substances 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 229960002986 dinoprostone Drugs 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 230000004406 elevated intraocular pressure Effects 0.000 description 2
- 239000003974 emollient agent Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000013401 experimental design Methods 0.000 description 2
- 210000001105 femoral artery Anatomy 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000008311 hydrophilic ointment Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000010255 intramuscular injection Methods 0.000 description 2
- 239000007927 intramuscular injection Substances 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- GGXICVAJURFBLW-CEYXHVGTSA-N latanoprost Chemical compound CC(C)OC(=O)CCC\C=C/C[C@H]1[C@@H](O)C[C@@H](O)[C@@H]1CC[C@@H](O)CCC1=CC=CC=C1 GGXICVAJURFBLW-CEYXHVGTSA-N 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 229940074869 marquis Drugs 0.000 description 2
- 238000010208 microarray analysis Methods 0.000 description 2
- 230000001333 moisturizer Effects 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 210000000653 nervous system Anatomy 0.000 description 2
- 210000001328 optic nerve Anatomy 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 235000019271 petrolatum Nutrition 0.000 description 2
- 229950005134 polycarbophil Drugs 0.000 description 2
- VBUNOIXRZNJNAD-UHFFFAOYSA-N ponazuril Chemical compound CC1=CC(N2C(N(C)C(=O)NC2=O)=O)=CC=C1OC1=CC=C(S(=O)(=O)C(F)(F)F)C=C1 VBUNOIXRZNJNAD-UHFFFAOYSA-N 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 230000002335 preservative effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- XEYBRNLFEZDVAW-UHFFFAOYSA-N prostaglandin E2 Natural products CCCCCC(O)C=CC1C(O)CC(=O)C1CC=CCCCC(O)=O XEYBRNLFEZDVAW-UHFFFAOYSA-N 0.000 description 2
- 239000003909 protein kinase inhibitor Substances 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 208000007442 rickets Diseases 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000002889 sympathetic effect Effects 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 2
- 102000009310 vitamin D receptors Human genes 0.000 description 2
- 108050000156 vitamin D receptors Proteins 0.000 description 2
- 229920003176 water-insoluble polymer Polymers 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- QCHFTSOMWOSFHM-WPRPVWTQSA-N (+)-Pilocarpine Chemical compound C1OC(=O)[C@@H](CC)[C@H]1CC1=CN=CN1C QCHFTSOMWOSFHM-WPRPVWTQSA-N 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- GMRQFYUYWCNGIN-UHFFFAOYSA-N 1,25-Dihydroxy-vitamin D3' Natural products C1CCC2(C)C(C(CCCC(C)(C)O)C)CCC2C1=CC=C1CC(O)CC(O)C1=C GMRQFYUYWCNGIN-UHFFFAOYSA-N 0.000 description 1
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 1
- BPKAHTKRCLCHEA-FOPGHSPUSA-N 19-Nor-1-α,25-dihydroxyvitamin D2 Chemical compound C1([C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@@H](C=C[C@H](C)C(C)(C)O)C)=CC=C1C[C@@H](O)C[C@H](O)C1 BPKAHTKRCLCHEA-FOPGHSPUSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- BLYMJBIZMIGWFK-UHFFFAOYSA-N 7-(dipropylamino)-5,6,7,8-tetrahydronaphthalen-2-ol Chemical compound C1=C(O)C=C2CC(N(CCC)CCC)CCC2=C1 BLYMJBIZMIGWFK-UHFFFAOYSA-N 0.000 description 1
- 102100026802 72 kDa type IV collagenase Human genes 0.000 description 1
- ASXGJMSKWNBENU-UHFFFAOYSA-N 8-OH-DPAT Chemical compound C1=CC(O)=C2CC(N(CCC)CCC)CCC2=C1 ASXGJMSKWNBENU-UHFFFAOYSA-N 0.000 description 1
- LPMXVESGRSUGHW-UHFFFAOYSA-N Acolongiflorosid K Natural products OC1C(O)C(O)C(C)OC1OC1CC2(O)CCC3C4(O)CCC(C=5COC(=O)C=5)C4(C)CC(O)C3C2(CO)C(O)C1 LPMXVESGRSUGHW-UHFFFAOYSA-N 0.000 description 1
- 102000015693 Actin Depolymerizing Factors Human genes 0.000 description 1
- 108010038798 Actin Depolymerizing Factors Proteins 0.000 description 1
- 101710170648 Actin, alpha cardiac muscle 1 Proteins 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 102000004881 Angiotensinogen Human genes 0.000 description 1
- 108090001067 Angiotensinogen Proteins 0.000 description 1
- 206010003591 Ataxia Diseases 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 102400000967 Bradykinin Human genes 0.000 description 1
- 101800004538 Bradykinin Proteins 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 108091016585 CD44 antigen Proteins 0.000 description 1
- 108010062802 CD66 antigens Proteins 0.000 description 1
- 229940127291 Calcium channel antagonist Drugs 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- 206010010741 Conjunctivitis Diseases 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 239000011627 DL-alpha-tocopherol Substances 0.000 description 1
- 235000001815 DL-alpha-tocopherol Nutrition 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 102000003915 DNA Topoisomerases Human genes 0.000 description 1
- 108090000323 DNA Topoisomerases Proteins 0.000 description 1
- 241001315286 Damon Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- 208000010201 Exanthema Diseases 0.000 description 1
- 239000001263 FEMA 3042 Substances 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- QXZGBUJJYSLZLT-UHFFFAOYSA-N H-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-OH Natural products NC(N)=NCCCC(N)C(=O)N1CCCC1C(=O)N1C(C(=O)NCC(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CO)C(=O)N2C(CCC2)C(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CCCN=C(N)N)C(O)=O)CCC1 QXZGBUJJYSLZLT-UHFFFAOYSA-N 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 102000005548 Hexokinase Human genes 0.000 description 1
- 108700040460 Hexokinases Proteins 0.000 description 1
- 241001272567 Hominoidea Species 0.000 description 1
- 101000627872 Homo sapiens 72 kDa type IV collagenase Proteins 0.000 description 1
- 101001011906 Homo sapiens Matrix metalloproteinase-14 Proteins 0.000 description 1
- 208000013038 Hypocalcemia Diseases 0.000 description 1
- 208000001953 Hypotension Diseases 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 206010022941 Iridocyclitis Diseases 0.000 description 1
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical class CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 1
- 229910002249 LaCl3 Inorganic materials 0.000 description 1
- 206010024264 Lethargy Diseases 0.000 description 1
- 208000001344 Macular Edema Diseases 0.000 description 1
- 206010025415 Macular oedema Diseases 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102100030216 Matrix metalloproteinase-14 Human genes 0.000 description 1
- 102100026261 Metalloproteinase inhibitor 3 Human genes 0.000 description 1
- 108050006600 Metalloproteinase inhibitor 3 Proteins 0.000 description 1
- BYBLEWFAAKGYCD-UHFFFAOYSA-N Miconazole Chemical compound ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 BYBLEWFAAKGYCD-UHFFFAOYSA-N 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- LPMXVESGRSUGHW-GHYGWZAOSA-N Ouabain Natural products O([C@@H]1[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O1)[C@H]1C[C@@H](O)[C@@]2(CO)[C@@](O)(C1)CC[C@H]1[C@]3(O)[C@@](C)([C@H](C4=CC(=O)OC4)CC3)C[C@@H](O)[C@H]21 LPMXVESGRSUGHW-GHYGWZAOSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 1
- 208000005764 Peripheral Arterial Disease Diseases 0.000 description 1
- 208000030831 Peripheral arterial occlusive disease Diseases 0.000 description 1
- 239000004264 Petrolatum Substances 0.000 description 1
- 241000233805 Phoenix Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010093965 Polymyxin B Proteins 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 101150109738 Ptger4 gene Proteins 0.000 description 1
- 101000885869 Rattus norvegicus Glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 206010057190 Respiratory tract infections Diseases 0.000 description 1
- 108091027981 Response element Proteins 0.000 description 1
- 102000034527 Retinoid X Receptors Human genes 0.000 description 1
- 108010038912 Retinoid X Receptors Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- QCHFTSOMWOSFHM-UHFFFAOYSA-N SJ000285536 Natural products C1OC(=O)C(CC)C1CC1=CN=CN1C QCHFTSOMWOSFHM-UHFFFAOYSA-N 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 244000166550 Strophanthus gratus Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102400000757 Ubiquitin Human genes 0.000 description 1
- 206010046306 Upper respiratory tract infection Diseases 0.000 description 1
- 208000024780 Urticaria Diseases 0.000 description 1
- 108010003205 Vasoactive Intestinal Peptide Proteins 0.000 description 1
- 102400000015 Vasoactive intestinal peptide Human genes 0.000 description 1
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 description 1
- 108010004977 Vasopressins Proteins 0.000 description 1
- 102000002852 Vasopressins Human genes 0.000 description 1
- 208000013449 Visual field disease Diseases 0.000 description 1
- MECHNRXZTMCUDQ-UHFFFAOYSA-N Vitamin D2 Natural products C1CCC2(C)C(C(C)C=CC(C)C(C)C)CCC2C1=CC=C1CC(O)CCC1=C MECHNRXZTMCUDQ-UHFFFAOYSA-N 0.000 description 1
- 229960004150 aciclovir Drugs 0.000 description 1
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000000670 adrenergic alpha-2 receptor antagonist Substances 0.000 description 1
- 239000000695 adrenergic alpha-agonist Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- ORWYRWWVDCYOMK-HBZPZAIKSA-N angiotensin I Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C1=CC=C(O)C=C1 ORWYRWWVDCYOMK-HBZPZAIKSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 201000004612 anterior uveitis Diseases 0.000 description 1
- 230000001384 anti-glaucoma Effects 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004509 aqueous humor production Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 239000003212 astringent agent Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000000721 bacterilogical effect Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 235000013734 beta-carotene Nutrition 0.000 description 1
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 1
- 239000011648 beta-carotene Substances 0.000 description 1
- 229960002747 betacarotene Drugs 0.000 description 1
- 229940098085 betagan Drugs 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 201000005668 blepharoconjunctivitis Diseases 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- QXZGBUJJYSLZLT-FDISYFBBSA-N bradykinin Chemical compound NC(=N)NCCC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(=O)NCC(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CO)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)CCC1 QXZGBUJJYSLZLT-FDISYFBBSA-N 0.000 description 1
- ZDXGFIXMPOUDFF-XLIONFOSSA-N bremazocine Chemical compound C([C@]1(C2=CC(O)=CC=C2C[C@@H]2C1(C)C)CC)CN2CC1(O)CC1 ZDXGFIXMPOUDFF-XLIONFOSSA-N 0.000 description 1
- 229950008841 bremazocine Drugs 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 239000000480 calcium channel blocker Substances 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229940097217 cardiac glycoside Drugs 0.000 description 1
- 239000002368 cardiac glycoside Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000008614 cellular interaction Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000009956 central mechanism Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000003436 cytoskeletal effect Effects 0.000 description 1
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013502 data validation Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003205 diastolic effect Effects 0.000 description 1
- 229960001193 diclofenac sodium Drugs 0.000 description 1
- 208000035497 disorder of visual system Diseases 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 230000000857 drug effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 210000003560 epithelium corneal Anatomy 0.000 description 1
- 229960002061 ergocalciferol Drugs 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011536 extraction buffer Substances 0.000 description 1
- 208000030533 eye disease Diseases 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 210000003191 femoral vein Anatomy 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- SMANXXCATUTDDT-QPJJXVBHSA-N flunarizine Chemical compound C1=CC(F)=CC=C1C(C=1C=CC(F)=CC=1)N1CCN(C\C=C\C=2C=CC=CC=2)CC1 SMANXXCATUTDDT-QPJJXVBHSA-N 0.000 description 1
- 229960000326 flunarizine Drugs 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000003966 growth inhibitor Substances 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 238000005734 heterodimerization reaction Methods 0.000 description 1
- 230000003284 homeostatic effect Effects 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 230000001631 hypertensive effect Effects 0.000 description 1
- 230000000705 hypocalcaemia Effects 0.000 description 1
- 208000021822 hypotensive Diseases 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- VBUWHHLIZKOSMS-RIWXPGAOSA-N invicorp Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)C(C)C)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=C(O)C=C1 VBUWHHLIZKOSMS-RIWXPGAOSA-N 0.000 description 1
- 239000002085 irritant Substances 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 239000002632 kappa opiate receptor agonist Substances 0.000 description 1
- ICAKDTKJOYSXGC-UHFFFAOYSA-K lanthanum(iii) chloride Chemical compound Cl[La](Cl)Cl ICAKDTKJOYSXGC-UHFFFAOYSA-K 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 229960001160 latanoprost Drugs 0.000 description 1
- IXHBTMCLRNMKHZ-LBPRGKRZSA-N levobunolol Chemical compound O=C1CCCC2=C1C=CC=C2OC[C@@H](O)CNC(C)(C)C IXHBTMCLRNMKHZ-LBPRGKRZSA-N 0.000 description 1
- 229960000831 levobunolol Drugs 0.000 description 1
- DNTDOBSIBZKFCP-YDALLXLXSA-N levobunolol hydrochloride Chemical compound [Cl-].O=C1CCCC2=C1C=CC=C2OC[C@@H](O)C[NH2+]C(C)(C)C DNTDOBSIBZKFCP-YDALLXLXSA-N 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 201000010230 macular retinal edema Diseases 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229940101563 micatin Drugs 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 210000001640 nerve ending Anatomy 0.000 description 1
- 210000004126 nerve fiber Anatomy 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 230000003565 oculomotor Effects 0.000 description 1
- 238000002966 oligonucleotide array Methods 0.000 description 1
- 239000002997 ophthalmic solution Substances 0.000 description 1
- 229940005483 opioid analgesics Drugs 0.000 description 1
- 208000020911 optic nerve disease Diseases 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- LPMXVESGRSUGHW-HBYQJFLCSA-N ouabain Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1O[C@@H]1C[C@@]2(O)CC[C@H]3[C@@]4(O)CC[C@H](C=5COC(=O)C=5)[C@@]4(C)C[C@@H](O)[C@@H]3[C@@]2(CO)[C@H](O)C1 LPMXVESGRSUGHW-HBYQJFLCSA-N 0.000 description 1
- 229960003343 ouabain Drugs 0.000 description 1
- 238000002638 palliative care Methods 0.000 description 1
- 230000001734 parasympathetic effect Effects 0.000 description 1
- 229960000987 paricalcitol Drugs 0.000 description 1
- BPKAHTKRCLCHEA-UBFJEZKGSA-N paricalcitol Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@@H](\C=C\[C@H](C)C(C)(C)O)C)=C\C=C1C[C@@H](O)C[C@H](O)C1 BPKAHTKRCLCHEA-UBFJEZKGSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229960001412 pentobarbital Drugs 0.000 description 1
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 229940066842 petrolatum Drugs 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000008024 pharmaceutical diluent Substances 0.000 description 1
- 238000011458 pharmacological treatment Methods 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000019612 pigmentation Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229960001416 pilocarpine Drugs 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229940068918 polyethylene glycol 400 Drugs 0.000 description 1
- 229920000024 polymyxin B Polymers 0.000 description 1
- 229960005266 polymyxin b Drugs 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 239000000018 receptor agonist Substances 0.000 description 1
- 229940044601 receptor agonist Drugs 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 208000020029 respiratory tract infectious disease Diseases 0.000 description 1
- 210000003994 retinal ganglion cell Anatomy 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 150000003338 secosteroids Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 1
- 235000010378 sodium ascorbate Nutrition 0.000 description 1
- 229960005055 sodium ascorbate Drugs 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000011083 sodium citrates Nutrition 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 1
- JGMJQSFLQWGYMQ-UHFFFAOYSA-M sodium;2,6-dichloro-n-phenylaniline;acetate Chemical compound [Na+].CC([O-])=O.ClC1=CC=CC(Cl)=C1NC1=CC=CC=C1 JGMJQSFLQWGYMQ-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 238000012453 sprague-dawley rat model Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000012066 statistical methodology Methods 0.000 description 1
- 238000011146 sterile filtration Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 229930002534 steroid glycoside Natural products 0.000 description 1
- 239000003270 steroid hormone Substances 0.000 description 1
- 201000005428 steroid-induced glaucoma Diseases 0.000 description 1
- 150000008143 steroidal glycosides Chemical class 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 210000002820 sympathetic nervous system Anatomy 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 description 1
- 229920002258 tannic acid Polymers 0.000 description 1
- 229940033123 tannic acid Drugs 0.000 description 1
- 235000015523 tannic acid Nutrition 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- DHCDFWKWKRSZHF-UHFFFAOYSA-L thiosulfate(2-) Chemical compound [O-]S([S-])(=O)=O DHCDFWKWKRSZHF-UHFFFAOYSA-L 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- AOBORMOPSGHCAX-DGHZZKTQSA-N tocofersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2O[C@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-DGHZZKTQSA-N 0.000 description 1
- FUSNMLFNXJSCDI-UHFFFAOYSA-N tolnaftate Chemical compound C=1C=C2C=CC=CC2=CC=1OC(=S)N(C)C1=CC=CC(C)=C1 FUSNMLFNXJSCDI-UHFFFAOYSA-N 0.000 description 1
- 229960004880 tolnaftate Drugs 0.000 description 1
- PIEPQKCYPFFYMG-UHFFFAOYSA-N tris acetate Chemical compound CC(O)=O.OCC(N)(CO)CO PIEPQKCYPFFYMG-UHFFFAOYSA-N 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 229960003726 vasopressin Drugs 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 230000004382 visual function Effects 0.000 description 1
- 235000020799 vitamin D status Nutrition 0.000 description 1
- 235000001892 vitamin D2 Nutrition 0.000 description 1
- 235000012711 vitamin K3 Nutrition 0.000 description 1
- 239000011652 vitamin K3 Substances 0.000 description 1
- 229940041603 vitamin k 3 Drugs 0.000 description 1
- 229940002639 xalatan Drugs 0.000 description 1
- 239000002676 xenobiotic agent Substances 0.000 description 1
- 229940052212 zemplar Drugs 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Description
VITAMIN D COMPOUNDS AND METHODS FOR REDUCING OCULAR
HYPERTENSION (OHT)
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Provisional Application No. 61/035,192, filed March 10, 2008, the entirety of which is hereby incorporated by reference for all purposes.
STATEMENT OF FEDERALLY SPONSORED RESEARCH [0002] Not Applicable.
FIELD OF THE INVENTION
[0003] The present invention relates to compounds and methods for reducing intraocular pressure and treating ocular hypertension in a subject.
BACKGROUND OF THE INVENTION
[0004] Elevated intraocular pressure (IOP) is a component in at least two visual system disorders. The first disorder is primary open angle glaucoma (POAG), which combines elevated IOP with a progressive optic neuropathy and results in characteristic excavation of the optic nerve head and corresponding visual field defects. The second disorder is ocular hypertension (OHT), in which IOP is elevated but no glaucomatous damage to the optic nerve head is observed and the detectable visual field does not change. Elevated IOP is a critical risk factor in the development of glaucomatous optic neuropathy [Armaly, 1980] and other visual field disorders. For example, between 4% [Kass, 2002] and 20% [Ontoso, 1997] of people with OHT will develop visual field defects within five years.
[0005] Although elevated IOP is a component in POAG, some other forms of glaucoma do not involve elevated IOP. Normal tension glaucoma (NTG) is a clinical entity characterized by similar damage of the optic nerve head and similar visual field defects, but without an elevated IOP. POAG is arbitrarily distinguished from NTG using a cut-off point of IOP of 21 mmHg [Vass, 2007].
[0006] Ocular hypertension is the strongest known risk factor for POAG. Intraocular pressure (IOP) is determined by aqueous humor (AqH) production in the ciliary body and by AqH
QBY7556951.1 \
QB960296.00448 drainage through the trabecular meshwork (TM) and uveoscleral drainage pathways. Elevated IOP occurs as a result of increased resistance to drainage of AqH primarily through the conventional outflow system and is associated with the increased extracellular matrix (ECM) deposition and decreased cellularity [Clark, 2003].
[0007] However, the normal regulation of IOP and retinal ganglion cell function remains largely unknown. A general lack of knowledge exists regarding the cellular and biochemical mechanisms behind IOP and OHT, making it difficult to identify the molecular events responsible for OHT. There is little understanding of the genetics of POAG and even less knowledge of the cell biology underlying it [Tan, 2006].
[0008] The main goal of treatment for all forms of glaucoma is the preservation of visual function. The cornerstone of therapy to achieve this goal is the reduction of IOP. Lowering IOP remains the mainstay of therapy in the management of glaucoma, since it has been shown to be effective in reducing optic nerve damage and thus the loss of visual field [Kaufman, 2006]. All antiglaucoma drugs currently in clinical use could be classified into two categories according to their mechanism of action on aqueous flow dynamism. One is the group of drugs suppressing aqueous production (α and β -adrenergic blockers, carbonic anhydrases inhibitors and Na+TK+- ATPase inhibitors) and the other is the group promoting aqueous outflow either by enhancing the pressure-sensitive (presumed trabecular) outflow pathway (cholinergics, MMP activators and protein kinase inhibitors) or by increasing the pressure-insensitive (uveoscleral) outflow (prostaglandins) [Clark, 2003; Institute, 2006; Orihashi, 2005; Marquis, 2005]. The assessment of the amount of flow through each pathway depends upon the measurement technique [Lim, 2008].
[0009] Conventional treatments of OHT, IOP and/or glaucoma have relied on the use of small molecules acting at receptors or acting as mediators in signaling pathways to enhance aqueous humor outflow or decrease aqueous inflow in order to lower IOP. In the current pharmacological treatment of glaucoma, five major classes of medications are presently available for clinical use. These include α-adrenergic agonists, β-adrenergic antagonists (β-blockers), carbonic anhydrase inhibitors (CAIs), cholinergics and prostaglandin (PG) compounds. The IOP is lowered either by decreasing the production of aqueous humor in the eye (α- and β- adrenergic blockers, carbonic anhydrases inhibitors and Na+ZK+- ATPase inhibitors) or by improving its outflow either through the conventional pathway (through the canal of Schlemm such as cholinergics, MMP activators and protein kinase inhibitors) or through the uveoscleral outflow pathway (PGs) [Clark, 2003;
QBV7556951.1 9
QB960296.00448
Institute, 2006; Orihashi, 2005; Marquis, 2005]. Over the course of time, most patients will use more than one medication, singly and in varying combinations, experimenting with differing classes of compounds with varying mechanisms of action. AU of the above-mentioned treatment agents have one or more serious and undesirable side effects [Kaufman, 2006]. [0010] Therefore, a need exists for a new class of effective IOP-lowering compounds which have minimal or beneficial side effects. The search for new, more effective and more selective compounds with fewer side effects for the treatment of ocular hypertension and glaucoma may also contribute to understanding the molecular mechanisms involved in the regulation of intraocular pressure.
SUMMARY OF THE INVENTION
[0011] The present invention provides a method of reducing ocular hypertension in a subject, the method comprising administering to at least one eye a therapeutically effective amount of a vitamin D compound according to the following formula:
(Formula I)
QBY7556951.1
QB960296.00448
wherein R is (E configuration);
(Z configuration); or
wherein R1 and R2 are H, methyl or 3'-hydroxypropylidine, or taken together as =CH2 or methylene; wherein R3 and R4 are selected from H, alkyl (1-3 carbons), alkoxy, and can be the same or different from each other; wherein X is a hydroxyl or protected hydroxyl group; wherein A is oxygen or carbon, with the proviso that if A is oxygen, then R4 is absent; and wherein C and D are H or taken together as =CH2; and wherein the intraocular pressure of the subject is reduced by at least 15%. The compound may be used to reduce intraocular pressure in one or both eyes of a subject, as well as a method of preventing glaucoma in a patient.
[0012] In a preferred version, the compound of the present invention is administered in an amount ranging from about 0.2μg to about lmg per day as a topical preparation, such as eye drops.
[0013] In a further preferred version, the vitamin D compound is selected from the group consisting of lα,25-dihydroxyvitamin D3 (1,25-(OH)2D3); 2-methylene-19-nor-(20S)-lα,25-
QBY7556951.1 A
QB960296.00448 dihydroxyvitamin D3; lα,25-dihydroxy-19-nor- vitamin D2; 2-(3'-hydroxypropylidene)-19-nor- lα,25-dihydroxyvitamin D3 (E-isomer); 17-20 dehydro-2-methylene-19-nor-(20S)-lα,25- dihydroxyvitamin D3 (E- and Z-isomers); 26-homo-lα,25-dihydroxyvitamin D3; 26,27- Dimethyl-lα,25-dihydroxyvitamin D3; or 25-hydroxyvitamin D3.
[0014] A kit is also provided, comprising a compound according to Formula I, and instructions for use. The compounds and methods of the present invention provide many advantages. For instance, the compounds can be used to reduce ocular hypertension in both eyes while only treating one eye. Further, the compounds do not have the serious and unwanted side effects common in conventional ocular hypertension treatments. Further still, the compounds of the present invention are stable and easily formulated.
BRIEF DESCRIPTION OF THE DRAWINGS
[0015] Figure 1 depicts an IOP response (mean=8) after the 5th dose of twice daily treatments with 5ul propylene glycol in one eye and non-treated opposite eye.
[0016] Figure 2 depicts an IOP response after the 5th dose of twice daily treatments with 5μg 1 ,25-Dihydroxyvitamin D3 in 5μl propylene glycol in one eye and vehicle (5μl propylene glycol in opposite eye). (A) (mean=8); (B) (mean=5).
[0017] Figure 3 depicts an IOP response after the 5th dose of twice daily treatments with 5μg AGR in 5μl propylene glycol in one eye and vehicle (5μl propylene glycol) in the opposite eye. [0018] Figure 4 depicts an IOP response after the 5th dose of twice daily treatments with 6μg 2MD in 5μl propylene glycol in one eye and vehicle (5μl propylene glycol) in the opposite eye. [0019] Figure 5 depicts a mean serum Ca2+ Level (n=4) in monkeys during 5 topical applications of 5μl propylene glycol in one eye vs. the untreated opposite eye.
[0020] Figure 6 depicts a mean serum Ca2+ Level (n=8) in monkeys during topical applications #1-5 of 5μg 1,25-Dihydroxyvitamin D3 in 5μl propylene glycol in one eye vs. 5μl propylene glycol in the opposite eye.
[0021] Figure 7 depicts a mean serum Ca2+ Level (n=4) in monkeys after the 5th topical application of 5μg AGR in 5μl propylene glycol in one eye vs. 5μl propylene glycol in the opposite eye.
[0022] Figure 8 depicts a mean serum Ca2+ Level (n=8) in monkeys after the 5th topical application of 6μg 2MD in 5μl propylene glycol in one eye vs. 5μl propylene glycol in the opposite eye.
QBY7556951.1 5
QB960296.00448
[0023] Figure 9A depicts the dose dependence of the IOP decrease after 5 topical unilateral applications of lα, 25-dihydroxyvitamin D3 in monkey eye. Figure 9B is a bar graph depicting the percentage of IOP reduction after application of different vitamin D compounds. Figure 9C is a bar graph indicating the percentage of IOP reduction after application of different vitamin D compounds after subtracting the propylene glycol (PG) effect (10%). If a deltaIOP is negative, the treatment has decreased IOP which is the desired effect.
[0024] Figure 10 depicts the expression of representative genes modulated by vitamin D that are involved in the regulation of IOP (rat intestine data (filled bars), mouse calvarial cells data (open bars). Figure 1OA shows genes down-regulated by 1,25-(OH)2D3: CA I, carbonic anhydrase I; ACE, angiotensin 1 -converting enzyme; ACTAl, actin alpha 1; ACTG2, actin gamma 2; ATPlAl, Na+/K+ transporting ATPase, alpha 1 polypeptide; AQPl, aquaporin 1; CEACAMl, CEA-related cell adhesion molecule 1; FNl, fibronectin 1; CD44, Hyaluronate receptor or cell adhesion molecule (CD44) and TIMP3, tissue inhibitor of metalloproteinases 3. Figure 1OB shows genes up-regulated by 1,25-(OH)2D3: PGER4, prostaglandin E receptor subtype 4; MMP3, MMPI l, MMP13, MMP14, matrix metalloproteinases 3, 11, 13, 14. The fold change is the average of 2-3 rnicroarray experiments.
[0025] Figure 11 depicts IOP-changes, % (mean ± SEM) in (A) Control (vehicle, 5 μl propylene glycol) and (B) vitamin D (1,25-(OH)2D3 in 5 μl of propylene glycol) treated eyes of normotensive cynomolgus monkeys after unilateral topical administration of 0.1 μg (triangles, n=7); lμg (squares, n=7) and 5μg (circles, n=8) 1,25-(OH)2D3 (see Example 3). Pretreatment IOP on day 1 (dl) (mean ± SEM) was 17.5±0.5 in to-be-O.lμg vitamin D-treated eyes and 17.0±0.5 in to-be-control eyes; 19±0.9 in to-be-lμg vitamin D-treated eyes and 20.0±0.9 in to- be-control eyes; 18.9±0.7 mmHg in to-be-5μg vitamin D-treated eyes 18.5±0.9 mmHg in to-be- control eyes. (#), (*) Significantly different from respective day one baseline for lμg or 5μg respectively 1,25-(OH)2D3 treatment experiment by the two-tailed paired t-test (p<0.05). d = day. [0026] Figure 12 depicts outflow facility ratios plotted against time (Mean ± SEM, n=8, combined groups A and B, see Table 2) measured within 30 min intervals (normalized with respect to an initial 90 min baseline). Open squares correspond to perfusion with vehicle (propylene glycol) in Control eye and solid dots correspond to perfusion with vitamin D (1,25- (OH)2D3 in propylene glycol) in contralateral eye of normotensive cynomolgus monkeys (see Example 3). No significant difference was found between eyes when the data for the entire 90
QBV7556951.1 A
QB960296.00448 minutes period was analyzed or when 30 minutes increments were analyzed. Significantly different from 1.0 by the two-tailed paired t-test: *p<0.05.
DETAILED DESCRIPTION OF THE INVENTION I. IN GENERAL
[0027] In the specification and in the claims, the terms "including" and "comprising" are open- ended terms and should be interpreted to mean "including, but not limited to. . . . " These terms encompass the more restrictive terms "consisting essentially of and "consisting of." [0028] As used herein and in the appended claims, the singular forms "a", "an", and "the" include plural reference unless the context clearly dictates otherwise. As well, the terms "a" (or "an"), "one or more" and "at least one" can be used interchangeably herein. It is also to be noted that the terms "comprising", "including", "characterized by" and "having" can be used interchangeably.
[0029] Abbreviations used for Vitamin D Compounds are as follows: PrGl represents Propylene Glycol; 1,25 represents lα,25-dihydroxyvitamin D3 (1,25-(OH)2D3); 2MD represents 2- methylene-19-nor-(20S)-lα,25-dihydroxyvitamin D3; AGR represents 2-(3'- hydroxypropylidene)-19-nor-lα,25-dihydroxyvitamin D3 (E-isomer); BH represents 2- methylene-19-nor-(20S)-l-hydroxy-bishomopregnacalciferol (2MbisP); 20R-2MD represents 2- methylene-19-nor-(20R)-la,25-dihydroxyvitamin D3; ZP represents lα,25-dihydroxy-19-nor- vitamin D2 (Zemplar or Paricalcitol); E or Z represents 17-20 dehydro-2-methylene-19-nor- (20S)-lα,25-dihydroxyvitamin D3 (E- or Z-isomers); 26-Homo represents 26-homo-lα,25- dihydroxyvitamin D3; 26,27-Diethyl represents 26,27-Dimethyl-lα,25-dihydroxyvitamin D3; VUDi represents Vitamin D3; la-(OH)D3 represents lα-hydroxyvitamin D3; and 25(OH)Di represents 25-hydroxyvitamin D3.
[0030] Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. All publications and patents specifically mentioned herein are incorporated by reference in their entirety for all purposes including describing and disclosing the chemicals, instruments, statistical analyses and methodologies which are reported in the publications which might be used in connection with the invention. All references cited in this specification are to be taken as indicative of the level of skill in the art. Nothing herein is to be construed as an
QBY7556951.1 η
QB960296.00448 admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.
II. THE INVENTION
[0031] Since the beginning of the last century, vitamin D has been established as the primary regulator of calcium and phosphorous homeostasis in mammals and the major compound for prevention and treatment of rickets. Decades of research has revealed that vitamin D (its hormonal form, lα,25-dihydroxyvitamin D3 or 1,25-(OH)2D3) is able to prevent and cure a broad spectrum of diseases including cancers, diabetes, autoimmune diseases, hypertension and more [DeLuca, 2008]. However, here we show for the first time that vitamin D (1,25-(OH)2D3) is a very powerful and promising compound for reducing ocular hypertension. As described below, unilateral topical application of vitamin D to the eye greatly reduces the intraocular pressure in both treated and control eyes, thus exhibiting an unprecedentedly strong bilateral hypotensive effect without changing the aqueous humor formation or drainage rates of the eye. [0032] The present invention is a method of reducing ocular hypertension (OHT) in a patient, the method comprising administering to at least one eye of subject exhibiting an elevated ocular pressure in at least one eye a therapeutically effective amount of a vitamin D compound of the following formula:
(Formula I)
QBY7556951.1
QB960296.00448
wherein R is
(E configuration);
Z configuration); or
wherein Ri and R2 are H, methyl or 3'-hydroxypropylidine, or taken together as =CH2 or methylene; wherein R3 and R4 are selected from H, alkyl (1-3 carbons), alkoxy, and can be the same or different from each other; wherein X is a hydroxyl or protected hydroxyl group; wherein A is oxygen or carbon, with the proviso that if A is oxygen, then R4 is absent; and wherein C and D are H or taken together as =CH2, wherein upon administration with the compound according to Formula I, the intraocular pressure is reduced, preferably by at least 15%. [0033] By "ocular hypertension" we mean intraocular pressure that is consistently higher than normal, typically exceeding 21 mmHg.
QBY7556951.1 O
QB960296.00448
[0034] By "reducing" we mean reducing the ocular hypertension of the subject by at least 5%, at least 10 %, and preferably by at least 15% to 50% per eye.
[0035] By reducing the OHT in a subject, the compounds and methods of the present invention provide a novel treatment for glaucoma and other disorders exhibiting an elevated intraocular pressure. For purposes of the present invention, "treating" or "treatment" describes the management and care of a subject for the purpose of combating the disease, condition, or disorder. The terms embrace both preventative, i.e., prophylactic, and palliative treatment. Treating includes the administration of a compound of present invention to prevent the onset of the symptoms or complications, alleviating the symptoms or complications, or eliminating the disease, condition, or disorder.
[0036] In a preferred embodiment, one would evaluate the success of the treatment described above in several ways. Typically, one would measure the intraocular pressure of the affected eye or eyes and calculate a percentage OHT reduction [Kass, 2002]. By "measure" we mean determine the IOP ("tonometry") through any method known to the art, including but not limited to digital tonometry (Indentation method), Maklakov tonometer (Impression-Applanation Tonometry), Tonomat instrument (Impression-Applanation Tonometry), Wolfe Tonometer (Indentation tonometer), Goldmann Tonometry (Applanation Tonometry), and/or a non-contact tonometer (Indentation tonometry). Alternatively, one may directly measure changes in vision. [0037] By "subject" we mean mammals and non-mammals. "Mammals" means any member of the class Mammalia including, but not limited to, humans, non-human primates such as chimpanzees and other apes and monkey species; farm animals such as cattle, horses, sheep, goats, and swine; domestic animals such as rabbits, dogs, and cats; laboratory animals including rodents, such as rats, mice, and guinea pigs; and the like. Examples of non-mammals include, but are not limited to, birds, and the like. The term "subject" does not denote a particular age or sex. [0038] By "administering" we mean any means for introducing a colchicines neoglycoside into the body, preferably into the systemic circulation. Examples include but are not limited to oral, buccal, sublingual, pulmonary, transdermal, transmucosal, as well as subcutaneous, intraperitoneal, intravenous, and intramuscular injection.
[0039] By "therapeutically effective amount" we mean amount of a compound that, when administered to a subject for treating a disease, is sufficient to effect such treatment for the disease. The "therapeutically effective amount" will vary depending on the compound, the disease state being treated, the severity or the disease treated, the age and relative health of the
QBY755695U \Q
QB960296.00448 subject, the route and form of administration, the judgment of the attending medical or veterinary practitioner, and other factors. In a preferred embodiment, a therapeutically effective amount means an amount of vitamin D compound sufficient to reduce ocular hypertension between at least 10% and 50% in each eye. Reducing OHT by at least 20% will slow the progression of glaucoma in most patients suffering from glaucoma. Lowering OHT by at least 20% also produces a 50% protective benefit in patients with ocular hypertension but no optic disc or visual field deterioration [Kass, 2002; Kanner, 2006; National Eye Institute website at www.nei.nih.gov] .
[0040] By "vitamin D compound" we mean any compound or derivative of the vitamin D formula described above, including lα,25-dihydroxyvitamin D3 (1,25-(OH)2D3); 2-methylene- 19-nor-(20S)-lα,25-dihydroxyvitamin D3 (E-isomer); 1 α,25-dihydroxy-19-nor- vitamin D2; 2- methylene- 19-nor-(20S)- 1 -hydroxy-bishomopregnacalciferol; 2-(3 '-hydroxypropylidene)- 19- nor-lα,25-dihydroxyvitamin D3 (E-isomer); 17-20 dehydro-2~methylene-19-nor-(20S)-lα,25- dihydroxyvitamin D3 (E- and Z-isomers); 26-homo-lα,25-dihydroxyvitamin D3; 26,27- Dimethyl-lα,25-dihydroxyvitamin D3; Vitamin D3; 25-hydroxyvitamin D3. [0041] The invention also provides a method of preventing glaucoma in a subject at risk of developing glaucoma, comprising administering to at least one eye of the at risk subject a therapeutically effective amount of a vitamin D compound of the following formula:
(Formula I)
QBY7556951.1 11
QB960296.00448
wherein R is
(E configuration);
Z configuration); or
wherein R1 and R2 are H, methyl or 3'-hydroxypropylidine, or taken together as =CH2 or methylene; wherein R3 and R4 are selected from H, alkyl (1-3 carbons), alkoxy, and can be the same or different from each other; wherein X is a hydroxyl or protected hydroxyl group; wherein A is oxygen or carbon, with the proviso that if A is oxygen, then R4 is absent; and wherein C and D are H or taken together as =CH2; wherein after administering the compound of formula I, the subject does not develop glaucoma.
[0042] By "glaucoma" we mean an eye disease that damages the optic nerve and impairs vision (sometimes progressing to blindness).
QBY7556951.1 12
QB960296.00448
[0043] By "at risk for developing" glaucoma we mean any subject with a family history of ocular hypertension, or any subject exhibiting any risk factors of ocular hypertension, including poor eyesight, poor physical health, and the like.
[0044] Applicants note that the result of uniocular treatment is a bilateral IOP response. Therefore, treatment may be in both eyes or in either eye and result in successful treatment of OHT. For instance, OHT in a first eye may be reduced by treating either the first eye exhibiting the OTH, or in some cases, by treating only the second eye. In a preferred method, the eye exhibiting OHT is treated with the compounds of the present invention to reduce the OHT by at least 10%.
[0045] However, in a situation where a first eye is exhibiting OHT but direct treatment of that eye with the compounds of the present invention is not advisable (because, for instance, the eye is thoroughly bandaged and not receptive to eye drops), the OHT in the first eye may be reduced by treating the second eye (which may or may not be exhibiting OHT) with the compounds of the present inventions. The OHT in the first untreated eye typically experiences approximately 20% less reduction in OHT as compared to the treated eye. One of skill in the art will understand how to accommodate treatment to compensate for this bilateral response. [0046] Administration and Dose. The composition of the present invention is intended to therapeutically treat conditions of the eye itself or the tissue surrounding the eye. The composition of the present invention may be incorporated in the topical delivery systems of this invention in therapeutically active amounts, usually in amounts ranging from about 0.2μg - lmg per day, preferably 5μg, most preferably lOμg (+/- 10%) per day.
[0047] The composition may be applied to the patient daily. In one preferred embodiment, the composition may be applied to the patient one to two times daily, for each eye to be directly treated. The composition may be applied to the entire surface of the eye in a therapeutically effective amount, the exact amount depending on the factors such as age and general health condition of the patient to whom the composition of the present invention is being administered must be considered. Thus, a patient under age 10 will be treated with a concentration of the vitamin D compound of the present invention which may be less than that used for an older patient. These variations in concentration can be adjusted readily by the skilled practitioner. The details set out herein when coupled with a physician's skills will readily enable the physician to maximize the treatment regime for a particular patient.
QBY7556951.1 13
QB960296.00448
[0048] The composition of the present invention can be administered to the eye by known means of administering other medicaments to the eye. For example, the composition, suitably formulated, can be administered in the form of eye drops or with ocular inserts. Suitable formulations may also incorporate standard eye vehicles which are physiologically acceptable to the eye. Such vehicles can be solutions or ointments, as desired. Further, the composition of the present invention can be formulated in unit dosage form with non-active opthalmologically- acceptable carriers well known in the art, or with other active medicaments where treatment of other conditions of the eye, for example, infection, allergy or inflammation, is prescribed. [0049] The term "unit dosage form" as used herein refers to physically discrete units suitable as unitary dosages for human and animal subjects, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required pharmaceutical diluent, carrier or vehicle. The specifications for the novel unit dosage forms of this invention are dictated by and are directly dependent on (a) the unique characteristics of the active material and the particular therapeutic effect to be achieved, and (b) the limitation inherent in the art of compounding such an active material for therapeutic use in humans. Examples of suitable unit dosage forms in accord with this invention are tablets, capsules, ocular inserts, dropperfuls, segregated multiples of any of the foregoing, and other forms as are known in the art. The composition of the present invention may be easily prepared in unit dosage form with the employment of pharmaceutical materials which themselves are available in the art and can be prepared by established procedures.
[0050] The composition of the present invention may be applied to eyes without further formulation as eye drops. The composition of the present invention may also be formulated in solutions, ointments, creams, gels, sprays or any other form together with pharmaceutically acceptable carriers for topical application. The composition of the present invention may be also applied alone, in either diluted or concentrated form, without further formulation as a topical pharmaceutical agent. Solutions, i.e., dilute aqueous preparations containing the composition of the present invention and preservatives but without substantial concentrations of thickeners, can be sprayed upon the affected surface as by an aerosol pump. This type of delivery may be of value for treating larger areas, or for use with subjects having trouble administering eye drops. [0051] The composition of the present invention may also be used in a pharmaceutical formulation containing antimicrobials, including antibiotics, antifungals, and other anti-viral compounds, which may complement or supplement the activity of the basic composition.
QBY7556951.1 14
QB960296.00448
Suitable antibiotics include tetracycline, polymyxin B or other common antibiotics used in topical compositions, especially over-the-counter formulations. Examples of useful antifungals include tolnaftate and micatin. Examples of anti-virals include interferon, either natural or recombinant, as well as nucleoside analogs, e.g., acyclovir. Counter-irritants such as camphor and menthol, drying agents such as benzyl alcohol, resorcinol and phenol, and astringents such as zinc sulfate and tannic acid can also be added to the composition as can other types of agents such as emollients, preservatives, antioxidants, color additives, lubricants or moisturizers. [0052] The composition of the present invention may be prepared in almost any relatively inert topical carrier. Generally, the composition could take several forms, e.g., a polymer, a hydrogel, a cream, a gel, an ointment, a wax and/or a solution, capable of effectively retaining the physiologically active compounds of the present invention. Each of these formulations may contain the composition of the present invention as well as microorganism growth inhibitors (preservatives) and other additives above noted. Many such carriers are routinely used and can be obtained by reference to standard pharmaceutical texts. Examples include polyethylene glycols (PEG), polypropylene glycol copolymers, and some water soluble gels. A preferred carrier is an emulsified cream, but other common carriers such as certain petrolatum or mineral oil-based ointments in which the composition of the present invention is dispersible can be substituted.
[0053] Gels, i.e., thickened aqueous polymer or alcoholic solutions, containing the composition of the present invention and stabilizers may be clear and/or colored with suitable dyes. Suitable thickeners may include carboxymethylcellulose, polyvinylpyrrolidone or polyacrylic acid salts. Hydrogels may be used to provide a delayed-release of the physiologically active compounds of the present invention to the eye [Eremeev, 2006].
[0054] Ointments employed in practicing the present invention may be prepared utilizing known pharmaceutical techniques with conventional vehicles. For instance, hydrophilic or hydrophobic ointments may also be employed as carriers. However, hydrophobic ointments, such as petroleum jelly, which are based upon hydrocarbon and wax derivatives may not be as efficacious as the hydrophilic ointments because they may impede penetration into the skin. Hydrophilic ointments such as those based upon propylene glycol, polyalkylene glycols, and the propylene glycol copolymers are therefore preferred for ointment formulations. Propylene glycol, as a base, is preferable to polyethylene glycol. Wax formulations may also be employed in some situations where ease of application is a primary objective.
QBY7556951.1 \ 5
QB960296.00448
[0055] The composition of this invention can be formulated in any other suitable manner. For example, diclofenac sodium may be dissolved and added by sterile filtration to a preparation containing sodium chloride, hydroxypropyl methyl cellulose and surfactant. This mixture may then be adjusted to the appropriate pH by known techniques, for example by the addition of sodium hydroxide. Other methods will be apparent to one skilled in the art. [0056] The composition of the present invention may also contain surfactants and, if desired, adjuvants, including additional medicaments, buffers, antioxidants, tonicity adjusters, preservatives, thickeners or viscosity modifiers, and the like. Additives in the formulation may desirably include sodium chloride, EDTA (disodium edetate), and/or BAK (benzalkonium chloride) or sorbic acid. Additional additives may include antioxidants, fragrance, color, water, preservatives (either antioxidants or antimicrobials), lubricants, moisturizers, or drying agents. [0057] The composition may be formulated as an aqueous suspension. In general, aqueous suspensions suitable for topical ophthalmic administration may be formulated and administered in accordance with techniques familiar to persons skilled in the art. The finished suspensions are preferably stored in opaque or brown containers to protect them from light exposure, and under an inert atmosphere. These aqueous suspensions can be packaged in preservative-free, single- dose non-reclosable containers. This permits a single dose of the medicament to be delivered to the eye as a drop or ribbon, with the container then being discarded after use. Such containers eliminate the potential for preservative-related irritation and sensitization of the corneal epithelium, as has been observed to occur particularly from ophthalmic medicaments containing mercurial preservatives. Multiple dose containers can also be used, if desired, particularly since the relatively low viscosities of the aqueous suspensions of this invention permit constant, accurate dosages to be administered dropwise to the eye as many times each day as necessary. [0058] Aqueous suspensions of the present invention may be formulated so that they retain the same or substantially the same viscosity in the eye that they had prior to administration to the eye. Alternatively, suspensions of the present invention may be formulated so that there is increased gelation upon contact with tear fluid. For instance, when a formulation containing DURASITE™ is administered to the eye at a lower pH, the DURASITE™ system swells upon contact with tears. This gelation or increase in gelation leads to entrapment of the suspended drug particles, thereby extending the residence time of the composition in the eye. [0059] Aqueous solutions used in accordance with this invention may be formulated, for example, in accordance with the procedures set forth in Chapter 83 of Remington's
QBY7556951.1 16
QB960296.00448
Pharmaceutical Sciences, 14th Edition, Mack Publishing Company. Such ophthalmic solutions are sterile and may contain a bacteriological preservative to maintain sterility during use. The quaternary ammonium bacteriostats such as benzalkonium chloride are satisfactory for this purpose. An antioxidant may also be employed if desired. By way of example, suitable antioxidants include sodium bisulfite, N-acetylcysteine salts, sodium ascorbate and other water soluble ophthalmologically acceptable antioxidants known to the pharmaceutical art. [0060] In one embodiment, the composition of the present invention incorporates insoluble polymers to provide a gel or liquid drops which release the drug over time. The composition may contain water soluble polymers or water insoluble polymers as the suspending agent. Examples of such soluble polymers are cellulosic polymers like hydroxypropyl methylcellulose. Water insoluble polymers are preferably crosslinked carboxy-vinyl polymers. The polymer may comprise about 0.1 to about 6.5%, more preferably about 1.0 to about 1.3% by weight based on the total weight of the suspension of a cross-linked carboxy-containing polymer. Suitable carboxy-containing polymers for use in the present invention and method for making them are described in U.S. Pat. No. 5,192,535 to Davis et al. which is hereby incorporated by reference and relied upon. These polymer carriers include lightly cross-linked carboxy-containing polymers (such as polycarbophil), dextran, cellulose derivatives, polyethylene glycol 400 and other polymeric demulcents such as polyvinylpyrolidone, polysaccaride gels and GELRITE™. A carboxy-containing polymer system such as DURASITE™, containing polycarbophil, a sustained release topical ophthalmic delivery system that releases the drug at a controlled rate, may also be used.
[0061] Aqueous mixtures of this invention may also contain amounts of suspended lightly cross- linked polymer particles ranging from about 0.1% to about 6.5% by weight, and preferably from about 0.5% to about 4.5% by weight, based on the total weight of the aqueous suspension. They will preferably be prepared using pure, sterile water, preferably deionized or distilled, having no physiologically or ophthalmologically harmful constituents, and will be adjusted to a pH of from about 4.0 to about 6.8, and preferably from about 5.5 to about 6.5, using any physiologically and ophthalmologically acceptable pH adjusting acids, bases or buffers, e.g., acids such as acetic, boric, citric, lactic, phosphoric, hydrochloric, or the like, bases such as sodium hydroxide, sodium phosphate, sodium borate, sodium citrate, sodium acetate, sodium lactate, THAM (trishydroxymethylamino-methane), or the like and salts and buffers such as citrate/dextrose, sodium bicarbonate, ammonium chloride and mixtures of the aforementioned acids and bases.
QBV7556951.1 17
QB960296.00448
[0062] When formulating the aqueous suspensions, the osmotic pressure may be adjusted to from about 10 milliosmolar (mOsM) to about 400 mOsM, using appropriate amounts of physiologically and ophthalmologically acceptable salts. Sodium chloride is preferred to approximate physiologic fluid, and amounts of sodium chloride ranging from about 0.01% to about 1% by weight, and preferably from about 0.05% to about 0.45% by weight, based on the total weight of the aqueous suspension, will give osmolalities within the above-stated ranges. Equivalent amounts of one or more salts made up of cations such as potassium, ammonium and the like and anions such as chloride, citrate, ascorbate, borate, phosphate, bicarbonate, sulfate, thiosulfate, bisulfate, sodium bisulfate, ammonium sulfate, and the like can also be used in addition to or instead of sodium chloride to achieve osmolalities within the above-stated ranges. Sugars like mannitol, dextrose, glucose or other polyols may be added to adjust osmolality. [0063] The amounts of insoluble lightly cross-linked polymer particles, the pH, and the osmotic pressure chosen from within the above-stated ranges will be correlated with each other and with the degree of cross-linking to give aqueous suspensions having viscosities ranging from about 500 to about 100,000 centipoise, and preferably from about 5,000 to about 30,000 or about 5,000 to about 20,000 centipoise, as measured at room temperature (about 250C) using a Brookfield Digital LVT Viscometer equipped with a number 25 spindle and a 13R small sample adapter at 12 rpm. Formulations of the present invention should have a viscosity that is suited for the selected route of administration. Viscosity up to about 30,000=drop. About 30,000 to about 100,000 centipoise is an advantageous viscosity range for ophthalmic administration in ribbon form. When water soluble polymers are used, such as hydroxypropyl methylcellulose, the viscosity will typically be about 10 to about 400 centipoises, more typically about 10 to about 200 centipoises or about 10 to about 25 centipoises.
[0064] Kits, hi an alternate embodiment of the invention, a kit for conducting the methods of the present invention is provided. La one embodiment, the kit comprises a vitamin D compound according to the present invention and instructions for use.
[0065] hi a preferred embodiment, the kit comprises a powdered form of at least one vitamin D compound according to the present invention, wherein the powdered vitamin D compound is hydrated by the user for immediate use, such as in a dual syringe device to form a precursor liquid that rapidly gels. Optionally, the kit may contain a solution for dissolving the vitamin D. [0066] hi an alternate embodiment, the kit comprises at least one vitamin D compound according to the present invention formulated, delivered and stored for use in physiologic conditions.
QBY7556951.1 Ig
QB960296.00448
[0067] By "instructions for use" we mean a publication, a recording, a diagram, or any other medium of expression which is used to communicate the usefulness of the invention for one of the purposes set forth herein. The instructional material of the kit can, for example, be affixed to a container which contains the present invention or be shipped together with a container which contains the invention. Alternatively, the instructional material can be shipped separately from the container or provided on an electronically accessible form on a internet website with the intention that the instructional material and the biocompatible hydrogel be used cooperatively by the recipient.
[0068] The following examples are, of course, offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and the following examples and fall within the scope of the appended claims.
III. EXAMPLES
[0069] The Examples described below show that the vitamin D compounds of the present invention can reduce intraocular pressure (IOP) and ocular hypertension (OHT) in subjects suffering therefrom. These examples provide the basis for the further development of vitamin D compounds for treating and preventing disorders such as glaucoma, Given that vitamin D is the endogenously synthesized "magic pill" or "sunshine" vitamin [Holick, 2008] able to prevent and to cure a number of diseases, its use for the treatment of ocular hypertension and glaucoma may provide other positive, beneficial side effects.
Example 1: Treatment of OHT with 1.25 (OH)2D3, AGR and 2MD
[0070] The Examples below disclose compounds and methods used to reduce OHT by reducing primate intraocular pressure (IOP).
[0071] Materials and Methods. 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3), AGR and 2MD compounds were >= 98% pure.
[0072] Animals, Anesthesia. Ocular normotensive adult cynomolgus monkeys (Macaca fascicularis), of either sex, weighing 3-7kg were anesthetized with i.m. ketamine HCl (3-
25mg/kg, supplemented with 1-lOmg/kg) for IOP and topical drop administration. All monkeys
QBY7556951.1 19
QB960296.00448 were free of any ocular abnormalities according to slit lamp biomicroscopy at the time measurements were taken. The monkeys were provided by the Primate Center at the University of Wisconsin-Madison. All experiments were done in accordance with the ARVO Statement on the Use of Animals in Ophthalmic and Vision Research.
[0073] Treatments and IOP measurements. The intraocular pressure (IOP) was determined with a "minified" Goldrnann applanation tonometer [Kaufman, 1980] using HALF AND HALF™ creamer solution (Borden) as the tear film indicator [Croft, 1997] with the monkey lying prone in a head holder and the eyes positioned 4 to 8 cm above the heart. AU monkeys were examined by slit-lamp before the first IOP measurement in each protocol. For each eye, two or three IOP measurements were averaged as a baseline.
[0074] Under ketamine anesthesia (KETA JECT™, Phoenix Pharmaceutical, St Joseph, MO (3- 25 mg/kg i.m., supplemented with 1-10 mg/kg i.m. as needed) baseline IOP was determined, usually between 7:30 and 9am (2 readings, 5 minutes apart; if IOP baseline measurements were not within 2-3mm Hg of each other, a 3rd reading was taken 5 min later). Baseline IOP was at least 15mmHg if possible. A baseline blood sample was taken from the femoral artery or vein, or sometimes the brachial vein (l-2ml). This was allowed to clot and then spun down (3000rpm for 10 min, Damon/IEC NH-SII centrifuge) and the serum removed and frozen at -20C for no more than 1 week. Baseline systolic, diastolic and mean arterial pressure as well as heart rate were recorded with the Dinamap monitor from a cuff placed around the arm or the leg. [0075] After baseline measurements, the monkey was place supine with the eye pointing up and the eyelid held open. A 5μl drop of test material or vehicle was delivered to opposite eyes. The eyelid was held open for at least 30 sec and the eye was maintained in the upward position for an additional 30 sec. The monkey was then returned to its cage and allowed to wake up. In the afternoon, at least 6 hours after the morning treatment, another treatment was administered. On the second day, dosing was repeated in the am and pm.
[0076] On the 3rd day, prior to the 5th treatment, baseline IOP, biomicroscopy and MAP were determined. Preliminary studies indicated an effect was observed after these treatments but not after a single treatment. Following the 5th dose, IOP was measured at 1, 2, 3, 4, 5, 6, 7, 8, 12 (if possible), 24, and sometimes 48 hr. Biomicroscopy was done at 1, 3, 6, 24 and sometimes 48 hr. MAP on day 3 (some protocols) was determined at 1, 2, 3, 4, 5, 6, 7, 8, 24 and sometimes 48 hr if possible. Blood samples after the 5th treatment were collected at 6, 24, and sometimes 48hr. For some protocols, IOP was also measured prior to each treatment; MAP was measured prior to
QBY7556951.1 20
QB960296.00448 the morning treatment; blood was collected prior to the afternoon treatment. Subsequent screening protocols will not include the MAP and blood collections and will only measure IOP at baseline and prior to and for l-6hr after the 5 treatment.
[0077] Data Analysis. Empirically, we found that approximately 8-10 experiments are required for any drug dose in order to obtain a reliable quantitative, statistically testable estimate of the response. Formal sample size calculations have corroborated this impression, as hereafter described. Generally speaking, we wished to identify mean physiologic responses that were >25% of the baseline value (adjusted for non-drug or non-stimulus-related baseline drift) and >1.5 SD of the mean response. The following standard equation for sample size calculation was used: N=2 (Zα.+Zβ)2/δ/σ)2, where Za=I .645 or 1.960 for one-sided and two-sided 5% significance, respectively; Zβ=0.84 or 1.282 for 80% and 90% power, respectively; δ δ=population standard deviation; σ =the difference (i.e., response) in the parameter being measured (δ and σ must have the same units). From that equation, it was determined that 5.5 experiments were required to detect differences of 1.5 standard deviations in a paired test at a one-sided 5% significance level with 80% power, while 9.3 experiments were needed to detect such a difference at a two-sided 5% significance level with 90% power.
[0078] Data are expressed as the mean±s.e.m. Significance was determined by the two-tailed paired t-test for ratios compared to 1.0 or differences compared to 0.0.
Results.
[0079] Vitamin D compounds as ocular hypotensive agents (Fig. 1). The effects of propylene glycol vehicle alone on IOP were compared to diurnal IOP in the untreated opposite eye. Prior to the first treatment, baseline IOP in treated and control eyes was 18.8±1.2 and 19.3±1.3 mmHg, respectively (n=8). Prior to the 5th treatment, there was no difference in IOP in either eye compared to baseline. After the 5th treatment, IOP gradually decreased by 4-15% over the next 8 hr in both eyes. IOP in the treated eye was consistently, but not significantly, less than in the control eye at nearly all time points. The diurnal decline in IOP has been previously reported [Gabelt, 1994]. There was no ocular inflammation at any time-point.
[0080] 1,25-Dihydroxyvitamin D3 (Fig. 2 A and 2B). Prior to the first treatment, baseline IOP in treated and control eyes was 18.9±0.7 and 18.5±0.9 mmHg, respectively (n=8). Prior to the 5th treatment, IOP in both treated and control eye was approximately 3-4 mmHg (~17%, p<0.05, n=8)) less than at baseline. After the 5th treatment, IOP continued to decrease by an additional 1-
QBY7556951.1 21
QB960296.00448
2mmHg (total reduction of ~ 20-30%, p<0.02) from hr 1-4 followed by a gradual recovery toward baseline by 24-48 hr. IOP in the treated eye was consistently, but not significantly less than in the control eye at nearly all time points. There was no ocular inflammation at any time- point.
[0081] AGR (FIG. 3). Prior to the first treatment, baseline IOP in treated and control eyes was 16.5±1.3 and 15.9±1.6 mmHg, respectively (n=4). Prior to the 5th treatment, IOP in both treated and control eye was no different than at baseline. After the 5th treatment, IOP was not significantly decreased in the treated eye except at the 3 hr time point. There was no change in IOP in the control eye and no difference between the eyes at any time-point. There was no ocular inflammation at any time-point.
[0082] 2MD (Fig. 4). Prior to the first treatment, baseline IOP in treated and control eyes was 18.9±1.0 and 18.8±0.8 mmHg, respectively (n=8). Prior to the 5th treatment, IOP in both treated and control eye was no different than at baseline. After the 5th treatment, IOP gradually decreased over the next 8 hours similar to the diurnal decline seen with vehicle alone. There may have been a small drug effect at 6 and 7 hours. There was no ocular inflammation at any time-point.
[0083] Serum Ca2+ level after the ocular topical applications of vitamin D compounds. There were no significant serum Ca2+ level increase past treatments (Fig. 5-8), indicating that vitamin D3 compounds probably do not enter into systemic circulation.
Discussion.
[0084] Propylene glycol (vehicle) did not change the IOP in monkeys. Vitamin D3 compounds applied at the same dose: 5 uniocular topical treatments (2 topical treatments at 10 μg per day) exhibited ocular hypotensive effect depending on the compound's structure (1,25(OH)2D3 > 2MD > AGR). The strongest response (up to 40% IOP decrease) was observed for 1,25(OH)2D3. The IOP decrease was bilateral or the treatment of one eye caused the IOP decrease in the opposite contralateral eye by unknown mechanism.
[0085] The bilateral IOP lowering response following unilateral topical administration 1,25(OH)2D3 may be due to systemic absorption or transfer to the contralateral eye by the monkey rubbing its eyes. Transfer via systemic absorption is possible since the dose of 1,25(OH)2D3 was very high even though the volume administered was small (5μl). It is also possible the monkey could have transferred material to the opposite eye by rubbing although that
QBY7556951.1 22
QB960296.00448 would not explain the effect after the 5th dose since the monkey was anesthetized the entire time following this dose while the IOP experiment was conducted. The fact that serum Ca2+ level is not significantly increased after 5 doses of any compound's administration (Fig. 6-8) argues against vitamin D3 compounds' entering into the system. Since the vitamin D3 compounds are highly lipid soluble, they could potentially penetrate the blood-brain barrier and mediate IOP effects via a yet unidentified central mechanism as has been proposed for some other compounds through CNS [Gabelt, 1994]. Another possibility is an afferent-to-efferent mechanism within the eye. Testing with lower doses of 1,25(OH)2D3 may help elucidate some of these possibilities. [0086] The contralateral effect of topically administered β-blockers on intraocular pressure was further confirmed in the Ocular Hypertension Treatment Study (OHTS) with 1,636 human subjects. The most widely accepted theory regarding the mechanism of the contralateral effect of topically applied β-blockers is that systemic absorption of the β-blocker, primarily through the nasolacrimal mucosa, results in transport of the β-blocker to the contralateral eye through the bloodstream. Alternatively, systemic absorption may also result in centrally mediated effects on intraocular pressure control in the contralateral eye. The factor most strongly correlated with the magnitude of the contralateral effect was the magnitude of the IOP reduction in the treated eye. The greater the therapeutic effect, the greater the IOP reduction in the contralateral eye. Thus, the therapeutic effect may be underestimated if the contralateral eye is used as a "control". [0087] The second most influential factor was the baseline IOP of the contralateral eye. The higher the baseline IOP of the contralateral eye, the greater the IOP reduction in the contralateral eye and this again would result in an underestimate of the therapeutic effect if the contralateral eye was used as a "control" [Piltz, 2000]. Contamination of the untreated eye by medication instilled into the tested eye has also been suggested. Another less widely held hypothesis is the consensual ophthalmotonic reaction in which alterations in the intraocular pressure of one eye result in a reflex intraocular pressure change in the fellow eye [Piltz, 2000]. [0088] In same cases, the contralateral IOP response is mediated, in part, through an effect in central nervous system. As was shown for topical administration of radiolabeled 8-hydroxy-2- dipropylaminotetralin, the redistribution of the drug through the systemic circulation to the contralateral eyes was minimal, which argues against redistribution of drug as being the reason for the contralateral ocular hypotensive response [Chidlow, 1999]. The topical, unilateral application of 7-hydroxy-2-dipropylaminotetralin (7-OH-DPAT) (75 mg), a dopamine D3- preferring receptor agonist, decreased the intraocular pressure (IOP) bilaterally in a dose-
QBY7556951.1 23
QB960296.00448 dependent manner. The primary site of D3 receptor-mediated action of 7-OH-DPAT is located on postganglionic sympathetic nerve endings in the ciliary body of rabbit. Suppression of activity of the peripheral sympathetic nervous system plays a role in the suppression of aqueous humor flow by 7-OH-DPAT [Chu, 2000].
[0089] Contralateral response was also observed after Selective Laser Trabeculoplasty procedure in treatment of glaucoma patients.
Example 2: Measuring IOP Reduction Following Treatment with Vitamin D Compounds. [0090] Monkeys Treatments and Intraocular Pressure (IOP) Measurements. Adult cynomolgus monkeys (Macaca fascicularis) of either sex were anesthetized with intramuscular ketamine HCl (lOmg/kg initial, 5mg/kg supplemental). Baseline pretreatment IOP was determined by Goldmann applanation tonometry [Kaufman, 1980] with cream used as a tear film indicator [Croft, 1997]. Two baseline IOP measurements were taken 5 minutes apart. Monkeys were then treated topically with 5μl of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) (0.1 -5μg) in propylene glycol to one eye and vehicle (propylene glycol) to the opposite eye twice a day for 5 treatments total. Drops were administered to the central cornea, one min apart, while the monkeys were in a supine position with their eyelids held open for at least 30 sec post drops. IOP was also measured prior to the afternoon treatment. On the third day, IOP was measured prior to the morning treatment. Following the fifth treatment, IOP was measured hourly for 8 hours and also at 12, 24 and 48 hours. Slit lamp examination (to determine the presence of biomicroscopic cells or flare) was performed prior to the 1st IOP measurement and at hours 3 and 6 (24 and 48 hr where appropriate). Biomicroscopy was performed prior to the first and fifth treatment and at 3 and 6 hours after the fifth treatment. Monkeys were allowed to rest for at least 2 weeks between studies. There were 8 monkeys for each treatment group.
[0091] Figures 9B and 9C show a summary of maximal ocular hypotensive effects (as a percentage of IOP reduction) of different vitamin D compounds as the result of 5 topical unilateral applications in monkey eye. Most compounds were tested in a group of 4 monkeys. If number of monkeys in the group was different, it is indicated in the box located next to the bar. Some compounds (at the same dose) are represented by two bars: one with all monkeys used in the group and the second bar is represented after exclusion of monkeys that had original low IOP or that had something wrong with them during the experiment (again the number in that group is shown in the box next to bar).
QB\7556951.1 24
QB960296.00448
Example 3: Reducing the Intraocular Pressure without Changing the Aqueous Humor Dynamics
[0092] Materials and methods. All animal experiments were conducted in accordance with the University of Wisconsin IACUC and National Institutes of Health guidelines, and with the ARVO statement for the Use of Animals in Ophthalmic and Vision Research. [0093] Animals and Diets. Male Sprague-Dawley weanling rats were obtained from Harlan (Indianapolis, IN) and maintained on a highly purified vitamin D-deficient diet, containing 0.47% calcium and 0.3% phosphorus (Pi) supplemented 3 times a week with 500μg DL-α- tocopherol, 60μg menadione, and 40μg β-carotene in 0.1 ml soybean oil (AEK) [Suda, 1970]. Rats were housed in hanging wire cages and maintained on a 12 h light/dark cycle. Rats fed the vitamin D-deficient diet were maintained in a room with incandescent lighting, and all potential sources of ultraviolet light and vitamin D were excluded. At 14 wk of age, blood was taken from the tail for measurement of serum calcium concentration. Severe hypocalcemia was used to confirm vitamin D depletion.
[0094] Animals and Anesthesia. Ocular normotensive adult cynomolgus monkeys, of either sex, weighing 3-7kg were anesthetized with i.m. ketamine HCl (3-25mg/kg, supplemented with 1- lOmg/kg) for IOP, topical drop administration and aqueous humor flow measurements. All monkeys were free of any ocular abnormalities according to slit lamp biomicroscopy at the time measurements were taken. For outflow facility measurements, animals were given intravenous sodium pentobarbital (15mg/kg, supplemented with 5-lOmg/kg) following i.m. ketamine induction.
[0095] Serum Calcium Analysis. Blood samples from rats were obtained from the tail artery. Blood samples from monkeys were obtained from femoral arteries. Whole blood was centrifuged at 1100 x g for 15 min at 25°C to yield serum. Serum calcium concentration was determined on serum, diluted 1:40 with lg/L LaCl3 (Halloran and DeLuca, 1981) using a 3110 atomic absorption spectrometer (Perkin Elmer, Norwalk, CT).
[0096] Experimental Design for Rat Microarrays Study. Vitamin D-deficient rats were given one bolus intravenous dose of 730ng of 1,25-(OH)2D3 /kg of body weight in ethanol or ethanol vehicle (control). Rats were anesthetized with isofluorane and decapitated 1, 3, 6, 10 and 24 h after injection of the dose or vehicle. There were three rats in each group for each time point. Blood was collected at the same time for determination of changes in serum calcium
QBY7556951.1 25
QB960296.00448 concentration. For each rat, the first 15 cm of intestine (duodenum) was removed, slit longitudinally and scraped with a glass slide. The mucosa was placed in a vial with GTC extraction buffer supplemented with 2% of β-mercaptoethanol (PolyATtract System 1000, Promega Corp., Madison, WI), homogenized at high speed with PowerGen 700 (Fisher Scientific, Pittsburgh, PA), flash frozen in liquid N2 and stored at -80° C. Experiments were done in duplicate.
[0097] Rat mRNA Preparation. For each time point, PoIy(A+) RNA was isolated from pooled homogenized mucosa of three 1,25-(OH)2D3 or three vehicle treated rats. The mRNA was isolated using the PolyATtract System 1000 (Promega Corp., Madison, WI). The mRNA was purified using an RNeasy kit (Qiagen, Chatsworth, CA). The quality, integrity and quantity of the PoIy(A+) RNA were determined by agarose gel electrophoresis, UV absorption spectrophotometry and the use of Agilent Bioanalyser 2100 (Agilent Technologies, Palo Alto, CA).
[0098] Experimental Design and RNA Preparation for Mouse Microarrays Study. Primary fetal mouse calvarial cells were isolated and cultured in αMEM containing 10% FBS as described [Shevde, 2002]. Cells were plated in the 2 x 6-well plates (5x105 cells/well) and cultured with medium changes performed on days 1 and 4. On day 4 cells on 1 plate were treated with 1,25(OH)2D3 (10 nM final concentration). Second plate was used as the control. After 24 h of incubation with 1,25(OH)2D3, cells were harvested and total RNA was isolated with Trizol reagent (Invitrogen Life Technologies, Carlsbad, CA). The mRNA was further purified using an RNeasy kit (Qiagen, Chatsworth, CA). The quality, integrity and quantity of the total RNA were assessed by agarose gel electrophoresis and UV absorption spectrophotometry. Experiments were done in triplicates.
[0099] Microarray Probe Preparation. Double-stranded cDNA was synthesized from 3μg of rat polyadenylated poly(A+) RNA or 13μg mouse total RNA using the Superscript Choice system (Invitrogen Life Technologies, Carlsbad, CA), all according to the Affymetrix Gene Expression manual (Affymetrix, Inc., Santa Clara, CA). Following phenol/chloroform extraction and ethanol precipitation, a biotin-labeled in vitro transcription reaction was performed using the cDNA template and BioArray High Yield hi Vitro Transcription kit (Enzo Life Sciences, Farmingdale, NY). The cRNA was fragmented at 0.7 - 1.1 μg/μl final concentration in IX fragmentation buffer (40 mM Tris-acetate, pH 8.1, 100 mM potassium acetate, 30 mM magnesium acetate).
QBY7556951.1 26
QB960296.00448
The size of cRNA before (0.5 kb and longer) and after (35-200 base fragments) fragmentation was checked by agarose gel electrophoresis.
[00100] Microarray Hybridization Procedure. The hybridization reaction and the automated hybridization procedure were performed by the Gene Expression Center at the Biotechnology Center at the University of Wisconsin-Madison as described (Kutuzova, 2004). Each probe was tested on an Affymetrix Test3 Array and the quality of the cDNA and cRNA was determined by a 375' ratio of housekeeping genes within the array (ubiquitin, rat glyceraldehyde 3-phosphate dehydrogenase, β-actin, and hexokinase). If the sample passed the quality control on the Affymetrix Test3 Array, it was hybridized to Affymetrix high-density rat oligonucleotide arrays (Rat Expression Array 230 2.0) or to mouse arrays (Mouse Genome 430 2.0 Arrays). (Affymetrix GeneChip® Expression Analysis Technical Manual; http://wΛvw.affyme1rix.com/support/technical/manuayexpressionmanual.affx). Expression data were analyzed using the Affymetrix Microarrray Suite software version 5.0 (MAS 5.0). Comparison tables for each time point for 1,25-(OH)2D3 vs. vehicle-treated rats were generated in EXCEL (Microsoft). For each comparison, e.g. 1,25-(OH)2D3 treated relative to control (vehicle treated), and for each cDNA represented in the array, a ratio (e.g. l,25-(OH)2D3/control) and an absolute difference of intensities for 1,25-(OH)2D3 and vehicle treated were calculated. Microarray data validation was done by Quantitative Real Time PCR (Q-PCR) as described previously (Kutuzova, 2004).
[00101] Monkeys Treatments and Intraocular Pressure (IOP) Measurements. Baseline pretreatment IOP was determined by Goldmann applanation tonometry [Kaufman, 1980] with cream used as a tear film indicator [Croft, 1997]. Two baseline IOP measurements were taken 5 minutes apart. Monkeys were then treated topically with 5μl of 1,25-dihydroxyvitamin D3 (1,25- (OH)2D3) (0.1 -5μg) to one eye and vehicle (propylene glycol) to the opposite eye twice a day for
5 treatments total. Drops were administered to the central cornea, one min apart, while the monkeys were in a supine position with their eyelids held open for at least 30 sec post drops. IOP was also measured prior to the afternoon treatment. On the third day, IOP was measured prior to the morning treatment. Following the fifth treatment, IOP was measured hourly for 8 hours and, in some cases, also at 12, 24, and 48 hours. Slit lamp examination (to determine the presence of biomicroscopic cells or flare) was performed prior to the 1st IOP measurement and at hours 3 and
6 (24 and 48 hr where appropriate). Monkeys were allowed to rest for at least 2 weeks between studies. There were 8 monkeys for each treatment group.
QBY7556951.1 27
QB960296.00448
[00102] Aqueous Humor Formation Study. Aqueous humor formation rate was determined by ocular scanning fluorophotometry (Fluorotron Master, OcuMetrics Inc, Mountain View, CA) as previously described [Rasmussen, 2007]. Fluorescein drops were administered at least 30 minutes after the fourth treatment (see above) with vitamin D or vehicle. On day 3, prior to the fifth treatment, IOP and biomicroscopy were done. Following the fifth treatment scans were taken hourly, beginning 1 hour after treatment, until 6 duplicates scans were collected. Baseline scans were collected for 6 hours within 2 weeks before and at least 2 weeks after the treatment study. Post treatment aqueous humor formation rates were compared to the average of the pre and post baseline scans and to the vehicle treated eyes by the paired t-test for ratios different from 1.0. There were 8 monkeys for each treatment group.
[00103] Outflow Facility Study. Outflow facility was determined in pentobarbital- anesthetized monkeys [Gabelt, 2004] by two-level constant pressure perfusion of the anterior chamber with Barany's perfusand [Barany, 1964] (n=8). Four monkeys (group A) received the single bolus injection of lμl of lμg vitamin D 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) into the anterior chamber of one eye (Treated eye) or lμl of propylene glycol into the anterior chamber of fellow eye (Control eye). Four monkeys (group B) were treated topically with 5μg of vitamin D in 5μl of propylene glycol or vehicle (5μl of propylene glycol) twice daily for two days. [00104] Following baseline outflow facility measurements on the third day, the fifth treatment was administered as a single bolus injection of lμl of lμg vitamin D 1,25- dihydroxyvitamin D3 (1,25-(OH)2D3) into the anterior chamber of one eye (Treated eye) or lμl of propylene glycol into the anterior chamber of fellow eye (Control eye). Following injections, the treatment bolus was allowed to wash in for 5 min with flow from the reservoirs. Then the contents of the anterior chamber were mixed by blowing cold air on the cornea to create convection. Reservoirs were closed for 75 minutes, then reopened and outflow facility measured for 60-90 minutes. Data were averaged for the entire 60-90 minute period and for 30-minute intervals and then were compared to baseline and to the vehicle treated eyes. Ratios were compared by the two-tailed paired t-test for ratios different from 1.0.
Results.
[00105] Vitamin D Modulates the Expression of Genes Involved in Regulating IOP. We used rat and mouse microarrays for identification of a novel vitamin D target genes that we selected as described in [Kutuzova, 2004]. Comprehensive microarray data analysis showed that
QBY7556951.1 28
QB960296.00448
1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) altered expression of genes known to be involved in the regulation of IOP. The largest relevant changes found included strong reductions in mRNA expression for carbonic anhydrase I (CAI), angiotensin I converting enzyme (ACE) and actin alpha (ACTAl) (Fig. 10A). Significantly down-regulated by 1,25-(OH)2D3 were actin gamma (ACTG2), Na+/K+ ATPase alpha 1 (ATPlAl), aquaporins 1 (AQPl), carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM), fibronectin 1 (FNl), CD44 and tissue inhibitor of metalloproteinase 3 (TIMP3) (Fig. 10A). Significant increases were found in the expression of prostaglandin E receptor 4 for PGE2 (PTGER4) and matrix metalloproteinases 3 (MMP3), 11 (MMPI l) and 13 (MMP13) (Fig. 10B). In our study, vitamin D decreased expression of several other genes (vasoactive intestinal peptide, topoisomerase I, MMP2) (the data are not shown) that were found consistently up-regulated in the human trabecular meshwork (TM) during a pressure-induced homeostatic response [Vittitow, 2004].
[00106] Topical Application of la,25-dihydroxyvitamin D3 Strongly Reduces IOP in
Nonhuman Primates Bilaterally. Pretreatment IOP on day 1 (dl) (mean ± SEM) was 18.9±0.7 mmHg in eyes to-be-treated with 5 μg of vitamin D and 18.5±0.9 mmHg in to-be-control eyes. Prior to the fifth treatment on day 3 (d3), IOP had significantly decreased by approximately 20% (3 mmHg) in both eyes (p<0.05) (Fig. HA, B). Following the fifth topical treatment with vitamin D compound of the present invention or vehicle, IOP decreased bilaterally by an additional 7% (1.5 mmHg) in control eyes and by 10% (2.5 mmHg) in vitamin D treated eyes over the next 1-4 hours before gradually returning to near pretreatment baseline after 48 hours (Fig. 11). There appeared to be a slightly greater IOP reduction in the 5 μg vitamin D treated eye as compared to the control eyes (30% vs. 27%) but there were no significant differences between the two eyes except for the time period of 12 h or longer (Fig. 11). In a separate experiment, the vehicle (propylene glycol) alone with no treatment of the contralateral eye had little or no effect on IOP (data not shown).
[00107] The IOP reduction by vitamin D was dose-dependent. Unilateral topical treatment with 1 μg of vitamin D decreased IOP bilaterally but to a lesser extent than treatment with 5 μg of 1,25-(OH)2D3 (20% vs. 30%) with stronger IOP reduction in the fellow control eyes than in the treated eyes (Fig. 11). Unilateral 0.1 μg of 1,25-(OH)2D3 did not have any significant effect on IOP in either eyes (Fig. 11).
[00108] Vitamin D Does Not Change the Serum Calcium Level in Monkeys. Since vitamin
D functions to maintain blood serum calcium level [DeLuca, 2008], we monitored the serum
QBY7556951.1 29
QB960296.00448 calcium levels in monkeys as the indicator of whether or not the topically applied vitamin D reaches the sufficient levels to produce the systemic effects. In monkeys treated for 3 days with 5μg of 1,25-(OH)2D3 (total 5 topical applications) by unilateral topical application in one eye, blood serum calcium levels did not change (Fig. 6) indicating that 1,25-(OH)2D3 did not enter the systemic circulation in sufficient levels to cause systemic effects characterized by the elevation of blood serum calcium level.
[00109] Vitamin D Has no Effect on the Aqueous Humor Dynamics in Monkeys. There were no changes in the aqueous humor formation rates in vehicle control or in 5μg vitamin D treated eyes compared to the baseline or to each other post treatment at any time interval when IOP was strongly decreased bilaterally (Table 1, Fig. 11).
QBY7556951.1 30
QB960296.00448
[00110] Table 1. Aqueous humor formation (AHF) (μl/min) in eyes of cynomolgus monkeys after topical application of 5μg vitamin D (1,25-(OH)2D3) or vehicle (propylene glycol).
[00111] Aqueous humor formation was measured by fluorophotometry during the interval
1-6 hr after the 5th topical bid treatment with vitamin D or vehicle to opposite eyes (see Materials and Methods). Units for aqueous humor formation are μl/min. Data are Mean ± Sem. Rx, treatment (Vitamin D or vehicle) n=6.
[00112] Baseline outflow facilities were studied in two groups (A and B) of monkeys
(Materials and Methods). Group A (n=4) was treated with single bolus intracameral injection of lμg vitamin D (1,25-(OH)2D3) in lμl propylene glycol in one eye and lμl vehicle, propylene glycol in the control eye (Table 2, A). Group B (n=4) was treated topically with 5μg of vitamin D in 5μl of propylene glycol or vehicle (5μl of propylene glycol) twice daily for two days. Then, following baseline outflow facility measurements on the third day, the fifth treatment was administered as a single bolus injection of lμl of lμg vitamin D 1,25-dihydroxyvitamin D3
QBY7556951.1 31
QB960296.00448
(1,25-(OH)2D3) into the anterior chamber of one eye (Treated eye) or lμl of propylene glycol into the anterior chamber of fellow eye (Control eye).
[00113] Table 2. Cumulative 90 min outflow facility in monkey eyes after topical and/or intracameral application of vitamin D (1,25-(OH)2D3) (Treated eye) or vehicle (propylene glycol) (Control eye).
[00114] Data are Mean ± SEM. Outflow facility units are μl/min/mmHg; ratios are unitless. Following baseline measurements, intracameral 1 μg of vitamin D was administered to one eye; vehicle (lμl) to the opposite eye. Outflow facility measurement post treatment were begun 75 minutes after Vitamin D administration and continued for 90 minutes. Topical administration of 5μg of vitamin D or vehicle for 2 days (4 treatments) with intracameral treatment same as in Group A on the third day (see Materials and Methods for details). No significant difference was found between eyes when the data for the entire 90 minutes period
QBY755695U 32
QB960296.00448 was analyzed or when 30 minutes increments were analyzed. Significantly different from 1.0 by the two-tailed paired t-test: *p<0.05.
[00115] We compared the cumulative 90 min outflow facilities between vitamin D or vehicle treated eyes in each treatment groups A and B (Table 2) and compared them to baseline facilities. There was increase in outflow facilities for entire 90 min period for both eyes in each treatment group, but no significant differences were found neither between the vitamin D or vehicle treated eyes (Table 2) nor between both groups or when we combined data for both groups (Table 2). Also no significant difference was found between eyes when the data for the entire 90 minutes period was analyzed or when 30 minutes increments were analyzed. [00116] For the time course of outflow facilities ratios (as 30 min intervals) the results of both groups of monkeys were combined (n=8) since there was no obvious difference in the responses (Table 2, Fig. 12). There was a slight non-significant increase in outflow facilities in both eyes during the first 30 min after the bolus injection (33% in control eyes, 10% in vitamin D treated eyes) (Fig. 12) followed by a significant increase of 80-60% at 60 min and 100-115% at 90 min in both vehicle and vitamin D treated eyes respectively (Fig. 12). Since outflow facilities in both eyes (vitamin D and vehicle treated) were increased over the baseline to the same moderate extent (about 100% at 90 min after the intracameral injections), similar to what was described in [Rasmussen, 2007] we consider these bilateral outflow facilities increase as simply the "washout" phenomenon known to occur in all non-human species [Scott, 2007]. Still there might be some probability that it was due to a true bilateral outflow facility increase, which stimulated the strong bilateral IOP reduction by vitamin D we discovered (Fig. 12). Additional experiments to provide insight as to whether or not uveoscleral outflow may be involved in the IOP - lowering effect of vitamin D are warranted. Due to the bilateral nature of the IOP response, the most promising approach would involve constricting the ciliary muscle with pilocarpine to block the uveoscleral outflow pathway [Crawford, 1987] prior to vitamin D treatment.
Discussion.
[00117] Previously, microarray studies identified numerous novel vitamin D target genes in rat intestine involved in Ca2+ absorption and immunomodulation suggesting a novel pathway for vitamin D-induced Ca + absorption [Kutuzova, 2004]. The comprehensive microarray data analysis in rats and mice presented herein shows the novel vitamin D-modulated genes that are
QBY7556951.1 33
QB960296.00448 known to be involved in the regulation of IOP. Many changes in gene expression that we observed after the vitamin D treatment are relevant to the regulation of aqueous humor formation and drainage. Our microarray studies also show that vitamin D modulated expression of genes may negate the events associated with dexamethasone treatment of trabecular meshwork cells, thereby providing a treatment for steroid-induced glaucoma in susceptible individuals [Rozsa, 2006].
[00118] hi addition to the microarray studies mentioned above, we investigated the effect of vitamin D on IOP, aqueous humor formation and outflow facility in nonhuman primates following topical and/or intracameral administration.
[00119] It has long been suggested that extracellular matrix (ECM) components of the ocular drainage pathways are crucial determinants of resistance to aqueous humor outflow and consequently of the IOP [Kaufman, 1984]. ECM molecules and factors that affect their metabolism, synthesis, and response to changing environments are important components of susceptibility to ocular hypertension. Enhancing trabecular outflow can be achieved by disrupting the actin cytoskeleton. Compounds with cytoskeletal effects offer therapeutic possibilities for substantial long-term IOP reduction. Most current IOP-reducing agents either suppress aqueous humor production or increase outflow through the ciliary muscle, thus reducing aqueous humor flow through the TM. All currently known IOP lowering agents have more or less severe side effects [Kaufman, 2006].
[00120] Conventional treatments for lowering IOP, such as BETAGAN® (levobunolol) or
XALATAN® (latanoprost), can cause side effects including transient ocular burning and stinging, blepharoconjunctivitis, decreases in heart rate and blood pressure, iridocyclitis, headache, transient ataxia, dizziness, lethargy, urticaria, macular edema, pruritus, a decreased corneal sensitivity, upper respiratory tract infections/flu and/or a rash or allergic reactions. None of these side effects have been seen in the compounds of the present invention. [00121] Vitamin D is able to prevent and cure a broad spectrum of diseases such as rickets, cancers, diabetes and autoimmune diseases [DeLuca, 2004, 2008]. Another biological function of vitamin D is to regulate genes responsible for detoxification of endo- and xenobiotics [Kutuzova, 2007]. The active form of vitamin D is 1,25 dihydroxyvitamin D3 or calcitriol (1,25(OH)2D3), a seco-steroid hormone, that in association with high affinity vitamin D receptor (VDR) and following heterodimerization with the retinoid X receptor acts as a ligand-activated transcription factor and binds to specific DNA - vitamin D response elements (VDREs),
QBY7556951.1 34
QB960296.00448 transactivating or transrepressing a large variety of genes [Jones, 1998]. From our microarray study in rats (in vivo) [Kutuzova, 2004] and mice (in vitro) treated with the active form of vitamin D (1,25(OH)2D3) we discovered that vitamin D-modulated genes of the cell cytoskeleton, extracellular matrix, cell adhesion and genes of other proteins and enzymes that are known to be involved in IOP regulation (Fig. 10).
[00122] Cytoskeleton dynamics has been implicated in trabecular meshwork function and aqueous humour outflow regulation since actin-depolymerizing drugs increased outflow facility and decreased IOP. Agents, which disrupt the actin cytoskeleton lower IOP and increase outflow facility in vivo. We show here for the first time that vitamin D strongly down-regulates the expression of the major cytoskeleton proteins (actins, alpha and gamma), decreases expression of proteins involved in cell adhesion (CEACAM and CD44) and fibronectin I - one of the major ECM proteins involved in ECM organization and cell interaction (Fig 10A). Actin disruptions can lead to alterations in cellular adhesions resulting in relaxation of the trabecular meshwork to enhance the area available for fluid outflow [Tian, 2008]. CEACAM has not been investigated in the outflow pathways but reductions in cell adhesion molecules in general would be expected to enhance outflow through the trabecular meshwork [Kuespert, 2006]. Reductions in fibronectin 1 and in CD44 that we observed after the vitamin D treatment might also lead to enhanced fluid outflow by decreasing the outflow resistance as the result of disruption of the cellular adhesions and reductions in contractility molecules [Wordinger, 2007; Acott, 2008; Tan, 2006]. [00123] Vitamin D increased expression of matrix metalloproteinases (Fig. 10B) and decreased expression of their inhibitors (Fig. 10A). Matrix metalloproteinases (MMPs) and their inhibitors remodel ECM material. Elevated levels of matrix metalloproteinases can remodel the extracellular matrix resulting in enhancement of fluid outflow and in the reduction of IOP [Tan, 2006].
[00124] The other class of genes down-regulated by vitamin D that we present here for the first time, and which are also known to be involved in IOP reduction, are transporters and channels: aquaporin 1 (Aqpl) and sodium-potassium ATPase (ATPlAl) (Fig. 10A). Aqpl is the water channel and is expressed at sites of aqueous fluid production and outflow. Mice deficient in aquaporin water channel genes have lower aqueous humor inflow and lower IOP than normal controls [Zhang, 2002]. Therefore, inhibiting aquaporins could be utilized for glaucoma therapy. ATPlAl in the non-pigmented ciliary epithelium is involved in aqueous humor formation [Riley, 1986]. Inhibiting the ciliary process ATPlAl by cardiac glycosides (e.g. ouabain) or
QBV7556951.1 35
QB960296.00448 vanadate significantly reduces the rate of aqueous humor formation and IOP in experimental animals [Podos, 1984; Dismuke, 2009] and humans [Podos, 1989].
[00125] Previously [Kutuzova, 2004] we identified other genes whose expression was drastically suppressed by vitamin D and that are relevant to IOP reduction including angiotensin I converting enzyme (ACE) and carbonic anhydrase (CAI) (Fig. 10A). Carbonic anyhydrase inhibitors are widely employed for glaucoma therapy to lower IOP by suppressing aqueous humor formation [Mincione, 2007; Supuran, 2008].
[00126] ACE is known to be a key part of the renin angiotensin system that regulates blood pressure by converting angiotensin I (Angl) to angiotensin II (Angll), which then increases vasopressin release. ACE can also inactivate the vasodilatator bradykinin. Both of these effects elevate arterial blood pressure. ACE inhibitors are widely used for the treatment of hypertension. There also is evidence that the eye contains a renin-angiotensin system and that it may be involved in the regulation of IOP. The presence of ACE activity, the concentrations of angiotensinogen and angiotensin II, and the density of angiotensin- II ATI receptors in ocular tissues and fluids have been demonstrated in several species, including humans [Wallow, 1993; Cullinane, 2002; Vaajanen, 2008]. The recent studies in hypertensive rats suggested the strong positive correlation between the blood pressure and IOP [Vaajanen, 2008]. [00127] A strong correlation between blood pressure and IOP was established also in a human comprehensive study suggesting a common mechanism or common genes that may be controlling pressure both in the eye and in the vascular system [Klein, 2005; Duggal, 2007]. Topical and oral administration of ACE inhibitors has been shown to lower IOP in animal models and in humans; they are currently under development as glaucoma therapeutic agents [Constad, 1988; Costagliola, 1995]. Epidemiological and clinical studies of many years established an inverse relationship between vitamin D and blood pressure in human population (Li, Y.C., 2003). Vitamin D is a potent suppressor of the renin-angiotensin system and can reduce blood pressure [Li, 2004]. The strong inhibition of ACE expression by vitamin D described previously [Kutuzova, 2004] could be one of many genetic factors responsible for the vitamin D lowering effect of both arterial blood pressure and IOP.
[00128] The significant vitamin D induced increase in the expression of prostaglandin E receptor 4 (EP4) for prostaglandin E2 (Fig. 10B) could also contribute to IOP reduction, since ocular hypotensive effect of prostaglandin E2 (PGE2) analogs is mediated by multiple EP receptors present in the eye [Takamatsu, 2000]. Prostaglandins induce matrix metalloproteinases
QBY7556951.1 36
QB960296.00448 that degrade the ECM in the TM to enhance outflow. Therefore the increased expression of the EP4 receptor stimulated by vitamin D could also contribute to IOP reduction. [00129] The current study demonstrates that topically applied vitamin D indeed is able to substantially lower IOP in non-human primates and thus vitamin D and the whole class of its compounds have the potential to be used as glaucoma therapeutics. The only known previous study supporting the potential use of vitamin D to lower IOP took place more than 50 years ago, when a single intramuscular injection of vitamin D2 (not vitamin D3) was administered to several patients with glaucoma and IOP reduction was observed in some patients [Guist, 1953]. [00130] However, these data were not statistically significant, have never been repeated and thus the question on the reproducibility of the results remained open. Moreover vitamin D2 or ergocalciferol, often plant-sourced, is not the endogenous human form of vitamin D (which is vitamin D3) and has far less effect in the body. The other indirect evidence supporting our idea that vitamin D plays the role in IOP regulation and thus in POAG comes from epidemiological studies showing the prevalent susceptibility of African-descent population to POAG as compared to Caucasian populations [Miao, 2008; Lucas, 2008]. Individuals with African ancestry are known to have approximately two-fold lower levels of serum vitamin D (25(OH)D) compared with individuals of European ancestry [Harris, 2006; Zadshir, 2005] due to the fact that pigmentation reduces vitamin D production in the skin. Lower vitamin D status may account for this population being more prone to high blood pressure, diabetes [Harris, 2006] and a higher prevalence of peripheral arterial disease [Reis, 2008].
[00131] We showed that IOP is significantly lowered in nonhuman primates following the topical 1,25 dihydroxyvitamin D3 or calcitriol application in a dose-dependent manner with prolonged effects lasting more than 12 hours (Fig. 11). The reduction in IOP occurred bilaterally after unilateral topical application even at lower doses (Fig. HA). The mechanism of the bilateral IOP decrease by some agents is not clearly understood or explained. One possible mechanism for the contralateral effect is systemic absorption of the topically applied drug through the nasolacrimal mucosa into the blood circulation to the contralateral eye (Piltz, 2000) e.g. detectable plasma levels of the calcium channel blocker flunarizine were reported in rabbits after its topical administration [Maltese, 2003].
[00132] Another possibility is that the compound acts through the CNS or peripheral nervous systems [Trzeciakowski, 1987]. Some investigators have emphasized that the nervous system must be considered as the most important regulator of IOP, since changes in IOP were
QBY7556951.1 37
QB960296.00448 recorded after stimulation of sensory, sympathetic and parasympathetic (both oculomotor and facial) nerve fibers [tenTusscher, 1994]. The cannabioids, opioids and prostaglandins also decrease IOP bilaterally but not to the same extent as vitamin D [Rasmussen, 2007; Kaufman 2008]. Ca2+ channel blockers, α2- and β- adrenergic antagonists also cause bilateral IOP decrease, which is usually less prominent in the control eye than in the treated eye [Wang, 2008; Gabelt, 1994; Piltz, 2000]. This suggests that the compounds of the present invention may be useful in treatin disorders of the nervous system (CNS/PNS) such as depression, brain cancer, Alzherimer's, Parkinson and the like
[00133] As the first step in the investigation we studied the aqueous humor formation process. It has became clearly obvious from our experiments that vitamin D does not change the aqueous humor formation (Table 1). Next we studied the aqueous humor outflow facility in vitamin D treated monkey eyes and showed that both vehicle and vitamin D treated eyes experienced the identical increase in outflow facilities (Table 2, Fig. 12). The moderate degree of outflow facility increase, stimulated by vitamin D in both, vehicle and vitamin D treated eyes, is likely the result of "washout" phenomenon common in all species except humans, and in which perfusion of an eye at physiological pressure results in a volume-dependent increase in the measured facility of aqueous humor outflow [Scott, 2007]. Similar results were observed for outflow facilities bilateral increase that was considered as "washout" in monkeys treated with kappa opioid agonist bremazocine [Rasmussen, 2007].
[00134] In our study vitamin D did not change either the aqueous humor flow or the outflow facilities and thus did not effect the aqueous humor dynamics in nonhuman primates. This is in stark contrast to all other known ocular hypotensive agents, suggesting that vitamin D's mechanism of lowering IOP may be different from that of other ocular hypotensive agents. Given the variety of vitamin D target genes presented here involved in IOP regulation, there is a strong evidence to suggest that vitamin D has the potential to lower IOP via several mechanisms.
[00135] It should be noted that the above description, attached figures and their descriptions are intended to be illustrative and not limiting of this invention. Many themes and variations of this invention will be suggested to one skilled in this and, in light of the disclosure. AU such themes and variations are within the contemplation hereof. For instance, while this invention has been described in conjunction with the various exemplary embodiments outlined above, various alternatives, modifications, variations, improvements, and/or substantial
QBY7556951.1 3g
QB960296.00448 equivalents, whether known or that rare or may be presently unforeseen, may become apparent to those having at least ordinary skill in the art. Various changes may be made without departing from the spirit and scope of the invention. Therefore, the invention is intended to embrace all known or later-developed alternatives, modifications, variations, improvements, and/or substantial equivalents of these exemplary embodiments.
QBY7556951.1 39
QB960296.00448
References
1. Acott TS, Kelley MJ. Exp Eye Res. (2008) Apr;86(4):543-61.
2. Armaly et al. Arch. Ophthalmol. (1980), 98:2163-2171.
3. Barany EH. Invest Ophthalmol. (1964) 3:135-143.
4. Chidlow et al. Exp. Eye Res. (1999) 69:587-593.
5. Chu et al. J. Phamracology and Experimental Therapeutics. (2000) 293 :710-716.
6. Clark AF, Yorio T. Nat Rev Drug Discov. (2003) June;2(6):448-59.
7. Constad et al. Am J Ophthalmol. (1988) 105:674-677.
8. Costagliola et al. Eur J Ophthalmol. (1995)5:19-25.
9. Crawford K, Kaufman PL. Arch Ophthalmol. (1987)105:1112-1116.
10. Croft et al. Basic and Clinical Applications of Vision Science. (1997) 60:213-216.
11. Cullinane et al. Br. J. Ophthalmol. (2002) 86:676-683.
12. DeLuca HF. Am. J. Clin. Nutr. (2004) 80: 1689S-1696S.
13. DeLuca HF. Nutrition Reviews (2008) 66(Suppl. 2):S73-S87.
14. Dismuke et al. Br. J. Ophthalmol. (2009) Jan;93(l):104-9.
15. Duggal et al. Arch. Ophthalmol. (2007) Jan;125(l):74-9.
16. Ereemeev et al., Pharm. Chem. Journal. (2006) 41 (1): 36-39.
17. Gabelt et al. Invest Ophthalmol. Vis. Sd. (2004)45:2732-2736.
18. Gabelt et al. Exp. Eye Res. (1994) Dec;59(6):633-44.
19. Guist G, Steffen C. Klin. Monatsbl. Augenheilkd. (1953) 123(5):555-68.
20. Halloran BP, DeLuca HF. Biochem. Biophys. (1981) 208;N2, 477-486.
20. Harris. J. Nutr. (2006) Apr;136(4):l 126-9.
21. Holick MF. MoI. Aspects Med. (2008) Dec;29(6):361 -8.
21. Institute NE. National Plan for Eye and Vision Research.
22. Ontoso et al. European Journal of Epidemiology, (1997) Jan; 13(1): 19-23.
23. Jones et al. Physiological Reviews. (1998) 78:1193-1231.
24. Kanner E, Tsai JC. Drugs Aging (2006) 23(4):321-332.
25. Kass et al. Arch. Ophthalmol. (2002) 120:701-713.
26. Kaufinan PL. Curr. Top. Eye Res. (1984) 4:97-138.
27. Kaufman PL. Exp. Eye Res. (2008) Jan;86(l):3-17.
28. Kaufman PL, Davis GE. Arch Ophthalmol. (1980) 98:542-546.
29. Kaufman PL, Gabelt BT. Essentials in Ophthalmology. (2006).
30. Klein et al. Br. J. Ophthalmol. (2005) 89:284-287.
31. Kuespert K, PiIs S. Curr. Opin. Cell. Biol. (2006)18:565-571.
32. Kutuzova GD, DeLuca HF. Arch. Biochem. Biophys. (2004)432:152-166.
33. Kutuzova GD, DeLuca HF. Toxicol. Appl. Pharmacol. (2007)218:37-44.
34. Li. J. Cell. Biochem. (2003) Feb 1 ;88(2):327-31.
35. Li et al. J. Steroid Biochem. MoI. Biol. (2004)89-90:387-392.
36. Libby et al. Annu. Rev. Genomics Hum. Genet. (2005) Sep 22;6: 15-44.
37. Lim et al. Ophthalmology. (2008) May;l 15(5):790-795.
38. Lukas et al. Genome Biol. (2008) 9(7):R111.1-Rl 11.19.
39. Maltese A, Bucolo C. J. Ocul. Pharmacol. Ther. (2003);19:171-179.
40. Marquis RE, Whitson JT. Aging. (2005);22(l): 1-21.
41. Miao et al. PLoS ONE. (2008) Aug 6;3(8):e2847.
42. Mincione et al. Curr. Top Med. Chem. (2007)7:849-854.
43. National Eye Institute Website: www.nei.nih.gov.
44. Orihashi et al. Biol. Pharm. Bull. (2005) Jan;28(l):65-8.
QBY7556951.1 40
QB960296.00448
45. Piltz et al. Am. J. Ophthalmol. (2000) Oct;130(4):441-53.
46. Pintor. Curr. Opin. Invest. Drugs (2005) 6:76-80.
47. Podos et al. Australian & New Zealand! Ophthalmol. (1989) 17:129-135.
48. Podos et al. Invest. Ophthalmol. Vis. ScL (1984)25:359-361.
49. Rasmussen et al. Trans. Am. Ophthalmol. Soc. (2007);105:225-38.
50. Reis et al. Am. J. Clin. Nutr. (2008) Dec;88(6): 1469-77.
51. Riley MV, Kishida K. Exp. Eye Res. (1968) 42:559-568.
52. Rozsa et al. MoI. Vis. (2006) Feb 27; 12: 125-41.
53. Scott et al. Exp. Eye Res. (2007) Mar;84(3):435-43.
54. Shevde et al. Proc. Natl. Acad. ScL USA. (2002) Oct 15;99(21):13487-91.
55. Suda et al. J. Nutr. (1970) 100:1049-1052.
56. Supuran CT. Nat. Rev. Drug Discov. (2008) Feb;7(2): 168-81.
57. Takamatsu et al. Exp. Eye Res. (2000) 70:623-628.
58. Tan et al. Curr. Opin. Ophthalmol. (2006) Apr; 17(2): 168-74.
59. T et al. Doc. Ophthalmol. (1994);87(4):291-313.
60. Tian et al. Exp. Eye Res. (2008), doi:10.1016/j.exer.2008.08.008 available at www. elsevier. com/locate/yexer
61. Trzeciakowski JP. J. Ocul. Pharmacol. (1987) 3(4):367-78.
62. Vaajanen et al. Ann. Med. (2008) 40(6):418-27.
63. Vaajanen et al. Curr. Eye Res. (2008) Apr;33(4):325-32.
64. Vittitow J, Borras T. J. Cell. Physiol. (2004) Oct;201(l): 126-37.
65. Wallow et al. Curr. Eye Res. 12:945-950.
66. Wang et al. J. Glaucoma. (2008) Jan-Feb;17(l):73-8.
67. Wordinger et al. Invest. Ophthalmol. Vis. ScL (2007) Mar;48(3): 1191 -2000.
68. Zadshir et al. Data from the NHANESIII, Ethn. Dis. (2005) S5-97-S5-101.
69. Zhang et al. J. Gen. Physiol (2002) 119:561 -569.
70. Zimmerman, Kaufman. Arch. Ophthalmol. (1977) 95:601-604.
QBY7556951.1 41
Claims
1. A method of reducing ocular hypertension in a subject, the method comprising administering to at least one eye a therapeutically effective amount of a vitamin D compound according to the following formula:
(Formula I)
wherein R is (E configuration);
QBV7556951.1 42 QB960296.00448
(Z configuration); or
wherein R1 and R2 are H, methyl or 3'-hydroxypropylidine, or taken together as =CH2 or methylene; wherein R3 and R4 are selected from H, alkyl (1-3 carbons), alkoxy, and can be the same or different from each other; wherein X is a hydroxyl or protected hydroxyl group; wherein A is oxygen or carbon, with the proviso that if A is oxygen, then R4 is absent; and wherein C and D are H or taken together as =CH2; and wherein the intraocular pressure of the subject is reduced by at least 15%.
QBY755695U 43 QB960296.00448
2. The method of claim 1 wherein the R is
(E configuration),
wherein R3 and R4 are selected from H, alkyl (1-3 carbons), alkoxy, and can be the same or different from each other; wherein X is a hydroxyl or protected hydroxyl group; and wherein A is oxygen or carbon, with the proviso that if A is oxygen, then R4 is absent.
3. The method of claim 1 wherein R is
(Z configuration) wherein R3 and R4 are selected from H, alkyl (1-3 carbons), alkoxy, and can be the same or different from each other; and wherein X is a hydroxyl or protected hydroxyl group.
QBY7556951.1 44 QB960296.00448
4. The method of claim 1 wherein R is
wherein R3 and R4 are selected from H, alkyl (1-3 carbons), alkoxy, and can be the same or different from each other; wherein X is a hydroxyl or protected hydroxyl group; and wherein A is oxygen or carbon, with the proviso that if A is oxygen, then R4 is absent.
5. The method of claim 1 wherein the compound is administered in an amount ranging from about 0.2μg to about lmg per day.
6. The method of claim 1 wherein the compound is administered as a topical preparation.
7. The method of claim 6 wherein the topical preparation is eye drops.
8. The method of claim 1 wherein the vitamin D compound is selected from the group consisting of lα,25-dihydroxyvitamin D3 (1,25-(OH)2D3); 2-methylene-19-nor-(20S)-lα,25- dihydroxyvitamin D3; lα,25-dihydroxy-19-nor-vitamin D2; 2-(3'-hydroxypropylidene)-19-nor- lα,25-dihydroxyvitamin D3 (E-isomer); 17-20 dehydro-2-methylene-19-nor-(20S)-lα,25- dihydroxyvitamin D3 (E- and Z-isomers); 26-homo-lα,25-dihydroxyvitamin D3; 26,27- Dimethyl-lα,25-dihydroxyvitamin D3; 25-hydroxyvitamin D3.
QBY7556951.1 45 QB960296.00448
9. A method of preventing glaucoma in a subject, the method comprising administering to a subject at risk of developing glaucoma a therapeutically effective amount of a vitamin D compound according to the following formula:
(Formula I)
wherein R is (E configuration);
QBY7556951.1 46 QB960296.00448
(Z configuration); or
wherein R1 and R2 are H, methyl or 3'-hydroxypropylidine, or taken together as =CH2 or methylene; wherein R3 and R4 are selected from H, alkyl (1-3 carbons), alkoxy, and can be the same or different from each other; wherein X is a hydroxyl or protected hydroxyl group; wherein A is oxygen or carbon, with the proviso that if A is oxygen, then R4 is absent; and wherein C and D are H or taken together as =CH2; and wherein glaucoma is prevented from developing.
10. The method of claim 9 wherein the compound is administered to at least one eye in an amount ranging from about 0.2μg to about lmg/day.
11. The method of claim 9 wherein the compound is administered at a dose higher than 5μg/day.
12. The method of claim 9 wherein the compound is administered as a topical preparation.
QBY7556951.1 47 QB960296.00448
13. A method of reducing intraocular pressure in a subject's eyes, the method comprising the steps of: a) determining a baseline intraocular pressure of a first eye; b) determining a baseline intraocular pressure of a second eye b) administering to the first and second eye a therapeutically effective amount of a vitamin D compound according to the following formula:
(Formula I)
wherein R is (E configuration);
QBY7556951.1 48 QB960296.00448
(Z configuration); or
wherein R1 and R2 are H, methyl or 3'-hydroxypropylidine, or taken together as =CH2 or methylene; wherein R3 and R4 are selected from H, alkyl (1-3 carbons), alkoxy, and can be the same or different from each other; wherein X is a hydroxyl or protected hydroxyl group; wherein A is oxygen or carbon, with the proviso that if A is oxygen, then R4 is absent; and wherein C and D are H or taken together as =CH2; and; c) measuring the intraocular pressure of the first and second eye; wherein the ocular hypertension in the first and second eye is reduced by at least 15%.
14. The method of claim 13 wherein the compound is administered in an amount ranging from about 0.2μg to about lmg/day.
15. The method of claim 13 wherein the compound is administered as a topical preparation.
QBY7556951.1 49 QB960296.00448
16. A method of reducing intraocular pressure in a subject's eyes, the method comprising the steps of: a) determining a baseline intraocular pressure of a first eye; b) determining a baseline intraocular pressure of a second eye; b) administering to the first eye a therapeutically effective amount of a vitamin D compound according to the following formula:
(Formula I)
wherein R is (E configuration);
QBY7556951.1 50 QB960296.00448
(Z configuration); or
wherein R1 and R2 are H, methyl or 3'-hydroxypropylidine, or taken together as =CH2 or methylene; wherein R3 and R4 are selected from H, alkyl (1-3 carbons), alkoxy, and can be the same or different from each other; wherein X is a hydroxyl or protected hydroxyl group; wherein A is oxygen or carbon, with the proviso that if A is oxygen, then R4 is absent; and wherein C and D are H or taken together as =CH2; and; c) measuring the intraocular pressure of the first and second eye; wherein the ocular hypertension in the first and second eye is reduced by at least 15%.
17. The method of claim 16 wherein the compound is administered in an amount ranging from about 0.2μg to about lmg/day.
18. The method of claim 16 wherein the compound is administered in a topical preparation.
QBY7556951.1 51 QB960296.00448
19. The method of claim 16 wherein the compound is selected from lα,25-dihydroxyvitamin D3 (1,25-(OH)2D3); 2-methylene-19-nor-(20S)-lα,25-dihydroxyvitamin D3 ; 1 α,25-dihydroxy- 19-nor- vitamin D2; 2-(3'-hydroxypropylidene)-19-nor-lα,25-dihydroxyvitamin D3 (E-isomer); 17-20 dehydro-2-methylene-19-nor-(20S)-lα,25-dihydroxyvitamin D3 (E- and Z-isomers); 26- homo-lα,25-dihydroxyvitamin D3; 26,27-Dimethyl-lα,25-dihydroxyvitamin D3; 25- hydroxyvitamin D3.
20. A kit comprising: a) a vitamin D compound according to the following formula:
(Formula I)
QBY7556951.1 52 QB960296.00448
wherein R is (E configuration);
(Z configuration); or
wherein R1 and R2 are H, methyl or 3'-hydroxypropylidine, or taken together as =CH2 or methylene; wherein R3 and R4 are selected from H, alkyl (1-3 carbons), alkoxy, and can be the same or different from each other; wherein X is a hydroxyl or protected hydroxyl group; wherein A is oxygen or carbon, with the proviso that if A is oxygen, then R4 is absent; and wherein C and D are H or taken together as =CH2; and b) instructions for use.
QBY7556951.1 53
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US3519208P | 2008-03-10 | 2008-03-10 | |
| US61/035,192 | 2008-03-10 | ||
| PCT/US2009/036679 WO2009114540A2 (en) | 2008-03-10 | 2009-03-10 | Vitamin d compounds and methods for reducing ocular hypertension (oht) |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| AU2009223668A1 AU2009223668A1 (en) | 2009-09-17 |
| AU2009223668B2 true AU2009223668B2 (en) | 2013-08-08 |
Family
ID=
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103338758B (en) | Folate-ramipril combination: ophthalmic compositions with cytoprotective, neuroprotective and retinoprotective properties | |
| EP2262476B1 (en) | Drug delivery to the anterior and posterior segments of the eye using eye drops. | |
| Kutuzova et al. | 1α, 25-Dihydroxyvitamin D3 and its analog, 2-methylene-19-nor-(20S)-1α, 25-dihydroxyvitamin D3 (2MD), suppress intraocular pressure in non-human primates | |
| CN105813578A (en) | Formulations and methods for increasing or reducing mucus | |
| US9452177B2 (en) | Vitamin D compounds and methods for reducing ocular hypertension (OHT) | |
| US9901580B2 (en) | Methods of eye treatment using therapeutic compositions containing dipyridamole | |
| AU2009223668B2 (en) | Vitamin D compounds and methods for reducing ocular hypertension (OHT) | |
| US20120108632A1 (en) | Prenyltransferase inhibitors for ocular hypertension control and the treatment of glaucoma | |
| EP4106761A1 (en) | Treatment of corneal vascularisation | |
| WO2025009608A1 (en) | Concentration regulator for in-vivo substance or drug in in-vivo semi-closed system | |
| HK1190067B (en) | Folic acid - ramipril combination: cellprotective, neuroprotective and retinoprotective ophtalmologic compositions | |
| Ussa et al. | Association between SNPs of Metalloproteinases and Prostaglandin F2a Receptor Genes and Latanoprost Response in Open-Angle Glaucoma |