[go: up one dir, main page]

AU2008229735B8 - A method for determining pump flow rate - Google Patents

A method for determining pump flow rate Download PDF

Info

Publication number
AU2008229735B8
AU2008229735B8 AU2008229735A AU2008229735A AU2008229735B8 AU 2008229735 B8 AU2008229735 B8 AU 2008229735B8 AU 2008229735 A AU2008229735 A AU 2008229735A AU 2008229735 A AU2008229735 A AU 2008229735A AU 2008229735 B8 AU2008229735 B8 AU 2008229735B8
Authority
AU
Australia
Prior art keywords
flow rate
pumps
rate indicator
determining
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2008229735A
Other versions
AU2008229735B2 (en
AU2008229735A1 (en
Inventor
Stuart Mcmillan Duncan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MultiTrode Pty Ltd
Original Assignee
MultiTrode Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2008900591A external-priority patent/AU2008900591A0/en
Application filed by MultiTrode Pty Ltd filed Critical MultiTrode Pty Ltd
Priority to AU2008229735A priority Critical patent/AU2008229735B8/en
Priority to US12/366,580 priority patent/US8956125B2/en
Priority to EP09001716.1A priority patent/EP2088401B1/en
Publication of AU2008229735A1 publication Critical patent/AU2008229735A1/en
Publication of AU2008229735B2 publication Critical patent/AU2008229735B2/en
Application granted granted Critical
Publication of AU2008229735B8 publication Critical patent/AU2008229735B8/en
Priority to US14/478,074 priority patent/US9464925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Measuring Volume Flow (AREA)

Description

AUSTRALIA PATENTS ACT 1990 COMPLETE SPECIFICATION STANDARD PATENT A METHOD FOR DETERMINING PUMP FLOW RATE The following statement is a full description of this invention including the best method of performing it known to me: 1 A METHOD FOR DETERMINING PUMP FLOW RATE TECHNICAL FIELD 5 The present invention generally relates to pumping stations. The present invention has particular, although not exclusive application to waste water pumping stations. BACKGROUND 10 The reference to any prior art in this specification is not, and should not be taken as an acknowledgement or any form of suggestion that the prior art forms part of the common general knowledge. 15 Pumping stations 2 for emptying sewage wells (Figure 1a) and filling water wells (Figure 1b) are known. As shown in Figure 1a, waste water and sewage is supplied to the well 4 via an inlet 7 and the pumps 10 are configured to empty the well 4. In contrast, Figure lb shows that water drains from the water well via outlet 9 and the pumps 10 are instead configured to fill the well 20 4. These pumping stations 2 include the well 4 in which liquid 6 is located, a level sensor 8 for sensing the liquid level in the well 4, a pair of pumps 10a, 10b for pumping liquid into or out of the well 4 as required, and a controller 25 (not shown) in communication with sensor 8 and for controlling the operation of the pumps 1Oa, 1Ob based on the sensed liquid level in the well 4. Figure 1 shows various level trigger-points along the level sensor 8 in the form of liquid sensing electrodes. The controller independently activates or de-activates the pumps 10a, 10b with hysteresis in response to it sensing the liquid level via 30 the electrodes. The controller can display the instantaneous output flow rate of the pumps 10 upon a display which a pumping station supervisor can monitor. The instantaneous flow rate can be sensed using a flow meter, however, such 2 sensors are undesirably expensive. As a cheaper alternative, the flow rate for each pump cycle can instead be estimated. A known flow rate estimation method is now briefly described with reference 5 to Figure la. The inflow rate () through inlet 7 can be readily determined, when the pumps 10 are deactivated, as follows: I = V"," (1) At 10 where A Vwei, is the change in liquid volume in the well 4 that can be measured using liquid sensor 8 and At is the change in time. Upon activation of one or both of the pumps 10, the output flow rate (F) of the pumps 10 can be determined by the following equation: 15 F= " +I (2) At where the inflow () is measured once immediately prior to the activation of the pumps 10. However, the inflow (l) may be prone to variation during a pump 20 activation cycle. Therefore the output flow rates of the pumps can instead be determined by averaging a number of prior calculations of the flowrate. When the pumps 10 are continuously activated for a long period of time during a pumping cycle, the output flow rate (F) of the pumps 10 can instead be 25 determined, by averaging a number of prior inflow rates (l) determined when the pumps 10 were deactivated, as follows: F = "" + AV (3) At 3 where J, is the average inflow rate determined by averaging a number of previous inflow rates (/) determined in accordance with Eq. 1 (e.g. ten previous inflow rates). 5 However, the flow rate (F) determined in accordance with Eq. 3 can become inaccurate under certain circumstances including, for example, when the actual inflow rate suddenly changes significantly (e.g. during a downpour). In this event, the displayed flow rate (F) is reduced and the pumping station supervisor cannot reliably ascertain whether a pump 10 is blocked or the 10 actual inflow rate through inlet 7 has increased, which is clearly undesirable. It is an object of the present invention to provide a method of more accurately determining the output flow rate (F) of the activated pumps than the method described above in relation to Eq. 3. 15 SUMMARY OF THE INVENTION According to an aspect of the present invention, there is provided a method for determining a flow rate indicator relating to the output flow rate of one or 20 more activated pumps of a pumping station, the pumping station including a well to be at least partially emptied by the pumps and an inlet through which inflow can be supplied into the well, the method including the steps of: determining, using computational means, a pump operating condition of the activated pumps; 25 temporarily deactivating the pumps and determining an inflow rate indicator relating to the inflow using the computational means, responsive to the determination of the pump operating condition; and determining, using the computational means, the flow rate indicator using the determined inflow rate indicator. 30 The operating condition may be that the flow rate indicator is less than a predetermined flow rate threshold. The predetermined flow rate threshold may be calculated as a percentage reduction of a prior flow rate indicator.
4 The operating condition may be that the pumps have been activated for a period more than a predetermined time threshold. The predetermined time threshold may be calculated as a percentage increase of a prior duration that 5 the pumps were activated. Prior to the step of temporarily deactivating the pumps, the method may further include the step of determining that the well level does not exceed a predetermined well level threshold. 10 The step of temporarily deactivating the pumps typically involves deactivating the pumps for a predetermined period of time and determining the inflow rate indicator over that period. 15 The step of determining the flow rate indicator may involve using a determined well volume rate indicator. The method may further include the step of displaying any one or more of the determined: inflow rate indicator, flow rate indicator and well volume rate 20 indicator. According to another aspect of the present invention, there is provided a method for determining a pump flow rate indicator relating to the output flow rate of one or more activated pumps of a pumping station, the pumping station 25 including a well configured to receive or supply fluid flow, the method including the steps of: determining, using computational means, a pump operating condition of the activated pumps; temporarily deactivating the pumps and determining a well flow rate 30 indicator relating to the fluid flow using the computational means, responsive to the determination of the pump operating condition; and determining, using the computational means, the pump flow rate indicator using the determined well flow rate indicator.
5 According to another aspect of the present invention, there is provided a method for determining a flow rate indicator relating to the output flow rate of one or more activated pumps of a pumping station, the pumping station 5 including a well to be at least partially filled by the pumps and an outlet through which outflow can exit from the well, the method including the steps of: determining, using computational means, a pump operating condition of the activated pumps; 10 temporarily deactivating the pumps and determining an outflow rate indicator relating to the outflow using the computational means, responsive to the determination of the pump operating condition; and determining, using the computational means, the flow rate indicator using the determined outflow rate indicator. 15 According to a further aspect of the present invention, there is provided the computational means configured to perform any one or more of the preceding methods. Preferably, the computational means is a pump controller. 20 According to a further aspect of the present invention, there is provided a pump controller for determining a pump flow rate indicator relating to the output flow rate of one or more activated pumps, the pump controller being configured to: 25 determine a pump operating condition of the activated pumps; temporarily deactivate the pumps and determine a well flow rate indicator relating to fluid flow of a well, responsive to the determination of the pump operating condition; and determine the pump flow rate indicator using the determined well flow 30 rate indicator. According to another aspect of the invention there is provided a pump controller for determining a pump flow rate indicator relating to the output flow rate of one or more activated pumps, the pump controller including: 6 a processor in communication with ports for connection to one or more activated pumps; and a memory in communication with the processor, the memory containing a software product including: 5 routines for determining a pump operating condition of the activated pumps; routines for temporarily deactivating the pumps and determining a well flow rate indicator relating to fluid flow of a well, responsive to the determination of the pump operating condition; and 10 routines for determining the pump flow rate indicator using the determined well flow rate indicator. According to a further aspect of the present invention, there is provided a media, such as a magnetic or optical disk or solid state memory, containing 15 computer readable instructions for execution by a processor to thereby perform any one or more of the preceding methods. BRIEF DESCRIPTION OF THE DRAWINGS 20 Preferred features, embodiments and variations of the invention may be discerned from the following Detailed Description which provides sufficient information for those skilled in the art to perform the invention. The Detailed Description is not to be regarded as limiting the scope of the preceding Summary of the Invention in any way. The Detailed Description will make 25 reference to a number of drawings as follows: Figure 1a is a schematic diagram of a pumping station for emptying a sewage well; 30 Figure 1b is a schematic diagram of a pumping station for filling a water well; Figure 2 is a block diagram showing a pump controller suitable for use with either pumping station of Figure 1a or Figure 1b; and 7 Figure 3 is a flowchart showing a method in accordance with an embodiment of the present invention, the method being suitable for determining a pump flow rate for the pumps of the pumping station of Figure la and performed by the controller of Figure 2. 5 DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS An embodiment of the present invention will now be described with reference to a controller 14 shown in Figure 2 that is configured to control the pumping 10 station 2 shown in Figure 1a. Referring initially to Figure 1a, the pumping station 2 includes a level sensor 8 for sensing the liquid level in a well 4, and a pair of pumps 10a, 10b (e.g. three-phase variable speed drive pumps) for pumping liquid out of the well 4 15 to at least partially empty the well 4. Waste water including storm water flows into the well 4 through inlet 7. The controller 14 is suitable for controlling the activation and deactivation of the pumps 10 based on the sensed liquid level in the well 4. The activation and deactivation trigger points along the level sensor 8 for a first pump 10a and a second pump 10b are clearly shown in 20 Figure 1a. The controller 14 can also determine a well volume indicator (in the form of a variable or value), relating to the liquid volume in the well 4, using the liquid level sensor 8. Typically, the level sensor 8 includes an array of equidistant electrode sensing stations, and the uppermost triggered station corresponds to the well liquid level which, in turn, can be correlated to a 25 corresponding liquid volume in the well 4 (using a look-up table). Referring to Figure 2, a user interface 12 is provided to enable the pumping station supervisor to input data to the controller 14 and review controller data relating to the operation of the pumping station 2 on a display. For example, 30 the controller 14 is configured to display a flow rate indicator (F) relating to the output flow rate of the activated pumps 10a, 10b, an inflow rate indicator () relating to the inflow through inlet 7, and a net well volume rate indicator (i.e. F - /). The user interface 12 is fixedly wired to fixed input/output (1/0) ports 16 of 8 the controller 14 which, in turn, are interfaced using suitable circuitry to a microprocessor 19 that executes a software product 20. The level sensor 8 and pumps 10 are wired to variable 1/O ports 18 of the 5 controller 14 which, in turn, are interfaced using suitable circuitry to the microprocessor 19. The wiring configuration between the variable 1/O ports 18 and the peripheral hardware is prone to variation depending upon the type of peripheral hardware (e.g. level sensor 8, pumps 10, etc.) used in the pumping station 2. The software product 20 includes instructions for processor 19 to 10 execute, and enable controller 14 to perform the method 50 for determining a flow rate indicator (F) relating to the output flow rate of the activated pumps 10 of the pumping station 2. Software product 20 (including software routines) is typically provided in a memory device 17 of microprocessor 19, or on a magnetic or optical disc 21 which microprocessor 19 can access by means of 15 disc drive 23. According to an embodiment of the present invention, there is provided the method 50 performed by controller 14 and for determining a flow rate indicator (F) relating to the output flow rate of the activated pumps 10 of the pumping 20 station 2. The method 50 is described in detail below with reference to Figure 3. Initially, the method begins at step 52 when the controller 14 activates at least one of the pumps 10a, 10b upon determining that corresponding activation 25 trigger points of the level sensor 8 have been triggered. Prior to activating the pumps 10, the controller 14 periodically calculates the inflow rate indicator (/) using Eq. 1 and stores this variable value. Upon activating the pumps 10, the controller initialises a pump activation cycle timer to measure the duration of the present pump activation cycle. 30 At step 54, the controller 14 determines an output flow rate indicator (F) using Eq. 2. The inflow rate indicator (/) used is either determined prior to activating the pumps 10 at step 52, or updated at step 64 as described in detail below. The flow rate indicator (F) is also determined using the well volume rate 9 indicator A" determined by the controller 14 using measurements from At the liquid level sensor 8. The controller 14 displays the determined output flow rate indicator (F), measured inflow rate indicator (/) and measured well volume rate indicator on a display. 5 At steps 56 and 58, the controller 14 determines respective operating conditions relating to the activated pumps 10. If either operating condition is satisfied, then the method 50 proceeds to step 60. Otherwise, the method 50 proceeds to step 68. 10 Elaborating further in relation to the operating condition of step 56, the controller 14 determines whether the pump flow rate indicator (F) determined at step 54 is less than a predetermined flow rate threshold (X). The controller 14 calculates the predetermined flow rate threshold (X) as a percentage 15 reduction (e.g. 10%) of a prior flow rate indicator (F). Elaborating further in relation to the operating condition of step 58, the controller 14 determines, using the pump activation cycle timer, whether the pumps have been activated for a period more than a predetermined time 20 threshold (Y). The controller 14 calculates the predetermined time threshold (Y) as a percentage increase (e.g. 10%) of a prior duration that the pumps were activated in the previous pump activation cycle. Responsive to the determination of one of the operating conditions at step 56 25 or step 58, at step 60 the controller 14 determines whether or not the instantaneous well liquid level measured with level sensor 8 exceeds a predetermined maximum safe well level threshold (L). If the measured liquid level in the well 4 exceeds the safe well level threshold (L), then the pumps remain safely activated and the method 50 proceeds to step 68. Alternatively, 30 if the measured liquid level in the well 4 does not exceed the safe well level threshold (L), then the method 50 proceeds to step 62. At step 62, the controller 14 temporarily deactivates any activated pumps 10.
10 At step 64, the controller 14 re-determines and updates inflow rate indicator (/) using Eq. 1. The updated inflow rate indicator (l) can later be used when calculating the pump flow rate indicator (F) at step 54. 5 At step 66, the controller 14 reactivates any pumps which were deactivated in step 62. Steps 62 to 66 typically have an introduced delay for a predetermined period 10 of time (Z) to enable enough time for an accurate inflow rate indicator (l) to be determined at step 64. The predetermined period of time (Z) would typically be short (e.g. 10 seconds) when compared with the pump activation cycle (e.g. of the order of minutes). 15 At step 68, the controller 14 determines whether the liquid level in the well has dropped below the deactivation trigger-points along the level sensor 8 for both pumps 10a, 10b. If this operating condition is not met, the method 50 proceeds to step 54. Alternatively, if this operating condition is met, the method 50 proceeds to step 70 where the controller 14 deactivates the pumps 20 10a, 10b and stops the pump activation cycle timer. Accordingly, the pump activation cycle has ended. The method 50 provides for the accurate determination of the output flow rate indicator (F) of the pumps 10, by temporarily deactivating the pumps 10 during 25 a pumping cycle to accurately measure the inflow rate and obtain the corresponding flow rate indicator (l). A person skilled in the art will appreciate that many embodiments and variations can be made without departing from the ambit of the present 30 invention. The preferred embodiment was described with reference to a pumping station 2 for emptying a sewage well as shown in Figure 1a. The skilled person will readily appreciate that the present invention is similarly applicable to the 11 pumping station for filling a water well as shown in Figure 1b. Accordingly, a method can be provided for determining a flow rate indicator (F) relating to the output flow rate of the activated pumps 10 of the pumping station 2 shown in Figure 1b. That pumping station 2 includes a well 4 to be at least partially filled 5 by the pumps 10 and an outlet 9 through which outflow can exit from the well 4. The method includes the step of determining, using the controller 14, an operating condition relating to the activated pumps 10. The method further includes the step of temporarily deactivating the pumps 10 and determining an outflow rate indicator relating to the outflow using the pump controller 14, 10 responsive to the determination of the operating condition. The method also involves determining, using the pump controller 14, the flow rate indicator (F) using the determined outflow rate indicator. The foregoing embodiments were described in relation to pumping stations 2 15 including a pair of pumps 10a, 10b, although any number of pumps may be used. In the preferred embodiment, the volume of liquid in the well 4 was determined using the liquid level sensor 8. In an alternative embodiment, the 20 pumping station 2 may include either a pressure sensor or an ultrasonic sensor located at the base of the well 4 to be used by the controller 14 to determine the volume of liquid in the well 4. In compliance with the statute, the invention has been described in language 25 more or less specific to structural or methodical features. It is to be understood that the invention is not limited to specific features shown or described since the means herein described comprises preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims 30 appropriately interpreted by those skilled in the art.

Claims (18)

1. A method for determining a flow rate indicator relating to the output flow rate of one or more activated pumps of a pumping station, the pumping station including a well to be at least partially emptied by the pumps and an inlet through which inflow can be supplied into the well, the method including the steps of: determining, using computational means, a pump operating condition of the activated pumps; temporarily deactivating the pumps and determining an inflow rate indicator relating to the inflow using the computational means, responsive to the determination of the pump operating condition; and determining, using the computational means, the flow rate indicator using the determined inflow rate indicator.
2. A method as claimed in claim 1, wherein the pump operating condition is that the flow rate indicator is less than a predetermined flow rate threshold.
3. A method as claimed in claim 2, wherein the predetermined flow rate threshold is calculated as a percentage reduction of a prior flow rate indicator.
4. A method as claimed in claim 1, wherein the pump operating condition is that the pumps have been activated for a period more than a predetermined time threshold.
5. A method as claimed in claim 4, wherein the predetermined time threshold is calculated as a percentage increase of a prior duration that the pumps were activated.
6. A method as claimed in any one of the preceding claims which, prior to the step of temporarily deactivating the pumps, further includes the step of determining that the well level does not exceed a predetermined well level threshold. 13
7. A method as claimed in any one of the preceding claims, wherein the step of temporarily deactivating the pumps involves deactivating the pumps for a predetermined period of time and determining the inflow rate indicator over that period of time.
8. A method as claimed in any one of the preceding claims, wherein the step of determining the flow rate indicator involves using a determined well volume rate indicator.
9. A method as claimed in claim 8, further including the step of displaying any one or more of the determined: inflow rate indicator, flow rate indicator and well volume rate indicator.
10. A method for determining a pump flow rate indicator relating to the output flow rate of one or more activated pumps of a pumping station, the pumping station including a well configured to receive or supply fluid flow, the method including the steps of: determining, using computational means, a pump operating condition of the activated pumps; temporarily deactivating the pumps and determining a well flow rate indicator relating to the fluid flow using the computational means, responsive to the determination of the pump operating condition; and determining, using the computational means, the pump flow rate indicator using the determined well flow rate indicator.
11. A method for determining a flow rate indicator relating to the output flow rate of one or more activated pumps of a pumping station, the pumping station including a well to be at least partially filled by the pumps and an outlet through which outflow can exit from the well, the method including the steps of: determining, using computational means, a pump operating condition of the activated pumps; 14 temporarily deactivating the pumps and determining an outflow rate indicator relating to the outflow using the computational means, responsive to the determination of the pump operating condition; and determining, using the computational means, the flow rate indicator using the determined outflow rate indicator.
12. A computational means configured to perform a method as claimed in any one of the preceding claims.
13. A storage media containing computer readable instructions for execution by a processor to perform a method as claimed in any one of claims 1 to 13.
14. A pump controller for determining a pump flow rate indicator relating to the output flow rate of one or more activated pumps, the pump controller being configured to: determine a pump operating condition of the activated pumps; temporarily deactivate the pumps and determine a well flow rate indicator relating to fluid flow of a well, responsive to the determination of the pump operating condition; and determine the pump flow rate indicator using the determined well flow rate indicator.
15. A pump controller as claim 16 which, prior to temporarily deactivating the pumps, is further configured to determine that the well level does not pass a predetermined well level threshold.
16. A pump controller as claimed in claim 16 or claim 17, wherein temporarily deactivating the pumps involves deactivating the pumps for a predetermined period of time, and the controller is further configured to determine the inflow rate indicator over that period of time using a determined well volume rate indicator. 15
17. A pump controller for determining a pump flow rate indicator relating to the output flow rate of one or more activated pumps, the pump controller including: a processor in communication with ports for connection to one or more activated pumps; and a memory in communication with the processor, the memory containing a software product including: routines for determining a pump operating condition of the activated pumps; routines for temporarily deactivating the pumps and determining a well flow rate indicator relating to fluid flow of a well, responsive to the determination of the pump operating condition; and routines for determining the pump flow rate indicator using the determined well flow rate indicator.
18. A method substantially as herein described with reference to Figure 3. Dated this 2 1 st day of January 2010 MULTITRODE PTY LTD by its attorneys Cullens Patent and Trade Mark Attorneys EDITORIAL NOTE APPLICATION NUMBER - 2008229735 It should be noted that there are no pages 16-17. The next page is numbered 18.
AU2008229735A 2008-02-08 2008-10-01 A method for determining pump flow rate Active AU2008229735B8 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2008229735A AU2008229735B8 (en) 2008-02-08 2008-10-01 A method for determining pump flow rate
US12/366,580 US8956125B2 (en) 2008-02-08 2009-02-05 Method for determining pump flow rate
EP09001716.1A EP2088401B1 (en) 2008-02-08 2009-02-06 A method for determining pump flow rate
US14/478,074 US9464925B2 (en) 2008-02-08 2014-09-05 Method for determining pump flow rate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2008900591A AU2008900591A0 (en) 2008-02-08 A method for determining pump flow rate
AU2008900591 2008-02-08
AU2008229735A AU2008229735B8 (en) 2008-02-08 2008-10-01 A method for determining pump flow rate

Publications (3)

Publication Number Publication Date
AU2008229735A1 AU2008229735A1 (en) 2009-08-27
AU2008229735B2 AU2008229735B2 (en) 2010-02-18
AU2008229735B8 true AU2008229735B8 (en) 2010-02-25

Family

ID=41010799

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2008229735A Active AU2008229735B8 (en) 2008-02-08 2008-10-01 A method for determining pump flow rate

Country Status (1)

Country Link
AU (1) AU2008229735B8 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4001528A1 (en) * 2020-11-24 2022-05-25 Xylem Europe GmbH Method for monitoring the operation of a pump station

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669308A (en) * 1985-04-09 1987-06-02 Jorritsma Johannes N Method and apparatus for determining liquid flow rates
EP0134990B1 (en) * 1983-07-14 1987-10-28 CERPAM S.r.l. Method and instruments to measure the flow rate in sewer systems
US4999117A (en) * 1988-06-08 1991-03-12 Oy E. Sarlin Ab Monitoring method for wastewater pump station and compatible apparatus
US5385056A (en) * 1992-01-02 1995-01-31 Marsh-Mcbirney, Inc. Pump station flowmeter
DE19507698A1 (en) * 1995-03-04 1996-09-05 Klein Schanzlin & Becker Ag Determining amount removed from container filled by non-pressure supply amount
US5831174A (en) * 1995-06-05 1998-11-03 Beaudoin; Benoit Pump station flowmeter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0134990B1 (en) * 1983-07-14 1987-10-28 CERPAM S.r.l. Method and instruments to measure the flow rate in sewer systems
US4669308A (en) * 1985-04-09 1987-06-02 Jorritsma Johannes N Method and apparatus for determining liquid flow rates
US4999117A (en) * 1988-06-08 1991-03-12 Oy E. Sarlin Ab Monitoring method for wastewater pump station and compatible apparatus
US5385056A (en) * 1992-01-02 1995-01-31 Marsh-Mcbirney, Inc. Pump station flowmeter
DE19507698A1 (en) * 1995-03-04 1996-09-05 Klein Schanzlin & Becker Ag Determining amount removed from container filled by non-pressure supply amount
US5831174A (en) * 1995-06-05 1998-11-03 Beaudoin; Benoit Pump station flowmeter

Also Published As

Publication number Publication date
AU2008229735B2 (en) 2010-02-18
AU2008229735A1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
US9464925B2 (en) Method for determining pump flow rate
EP3187735B1 (en) Pump system as well as a method for determining the flow in a pump system
US5601413A (en) Automatic low fluid shut-off method for a pumping system
US4455870A (en) Method and apparatus for determining liquid flow rates
US4669308A (en) Method and apparatus for determining liquid flow rates
JP2014520230A (en) Method to automatically alternate between pumps
US5497664A (en) Method and apparatus for calculating flow rates through a pumping station
AU2008229735B2 (en) A method for determining pump flow rate
CN113907604A (en) Water outlet control method and device, electronic equipment and water outlet system
CN106768127B (en) Pulse type flow accurate measurement and control system and method
AU2008229836B2 (en) Pump Control Method
JP3984006B2 (en) Inflow liquid amount prediction calculation apparatus and inflow liquid amount prediction calculation method below lower limit liquid level of pump equipment
CA2223074A1 (en) A pump totalizer system
CN102032929B (en) Method in connection with pump drive
CN115562373A (en) Water tank emptying method, device, computer equipment and storage medium
AU2012200620B2 (en) A Pump Operation Method
US11713991B2 (en) Drop test measuring system and method(s) of use thereof
JP4037627B2 (en) Inflow liquid amount prediction calculation apparatus and inflow liquid amount prediction calculation method for pump equipment
EP2270461A1 (en) Loss detection system for open channel networks
EP4490484A1 (en) Method and system for leakage detection in a fluid system
CA2118144C (en) Improved method and apparatus for calculating flow rates through a pumping station
RU1784841C (en) Water header mud accumulation detecting device
WO2022144218A1 (en) Method and system for leakage detection in a fluid system
JPH10170322A (en) Display of flow meter
CN115531661A (en) Anti-interference venous transfusion flow velocity measurement method, device and system

Legal Events

Date Code Title Description
TH Corrigenda

Free format text: IN VOL 24, NO 7, PAGE(S) 766 UNDER THE HEADING APPLICATIONS ACCEPTED - NAME INDEX UNDER THE NAME MULTITRODE PTY LTD, APPLICATION NO. 2008229735, UNDER INID (72) CORRECT THE INVENTOR TO DUNCAN, STUART MC- MILLAN

FGA Letters patent sealed or granted (standard patent)