AU2008202973B2 - Vacuum assisted tissue treatment system - Google Patents
Vacuum assisted tissue treatment system Download PDFInfo
- Publication number
- AU2008202973B2 AU2008202973B2 AU2008202973A AU2008202973A AU2008202973B2 AU 2008202973 B2 AU2008202973 B2 AU 2008202973B2 AU 2008202973 A AU2008202973 A AU 2008202973A AU 2008202973 A AU2008202973 A AU 2008202973A AU 2008202973 B2 AU2008202973 B2 AU 2008202973B2
- Authority
- AU
- Australia
- Prior art keywords
- target pressure
- pressure
- negative pressure
- pump
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000035876 healing Effects 0.000 claims abstract description 16
- 230000004936 stimulating effect Effects 0.000 claims abstract description 10
- 230000001105 regulatory effect Effects 0.000 claims abstract description 9
- 239000006260 foam Substances 0.000 claims description 17
- 230000008859 change Effects 0.000 claims description 8
- 230000003247 decreasing effect Effects 0.000 claims description 7
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 5
- 206010052428 Wound Diseases 0.000 description 70
- 208000027418 Wounds and injury Diseases 0.000 description 68
- 239000012530 fluid Substances 0.000 description 25
- 238000002560 therapeutic procedure Methods 0.000 description 13
- 239000011148 porous material Substances 0.000 description 10
- 238000005070 sampling Methods 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 210000000416 exudates and transudate Anatomy 0.000 description 7
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000029663 wound healing Effects 0.000 description 5
- 230000010261 cell growth Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 230000001174 ascending effect Effects 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 239000003978 infusion fluid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003534 oscillatory effect Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000013536 elastomeric material Substances 0.000 description 1
- 230000036074 healthy skin Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000004855 vascular circulation Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M27/00—Drainage appliance for wounds or the like, i.e. wound drains, implanted drains
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/71—Suction drainage systems
- A61M1/74—Suction control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/71—Suction drainage systems
- A61M1/73—Suction drainage systems comprising sensors or indicators for physical values
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/71—Suction drainage systems
- A61M1/74—Suction control
- A61M1/75—Intermittent or pulsating suction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/71—Suction drainage systems
- A61M1/78—Means for preventing overflow or contamination of the pumping systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/71—Suction drainage systems
- A61M1/78—Means for preventing overflow or contamination of the pumping systems
- A61M1/784—Means for preventing overflow or contamination of the pumping systems by filtering, sterilising or disinfecting the exhaust air, e.g. swellable filter valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/80—Suction pumps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/90—Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
- A61M1/96—Suction control thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M39/00—Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
- A61M39/02—Access sites
- A61M2039/0202—Access sites for taking samples
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/82—Internal energy supply devices
- A61M2205/8206—Internal energy supply devices battery-operated
- A61M2205/8212—Internal energy supply devices battery-operated with means or measures taken for minimising energy consumption
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M39/00—Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
- A61M39/02—Access sites
- A61M39/04—Access sites having pierceable self-sealing members
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Vascular Medicine (AREA)
- Otolaryngology (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- External Artificial Organs (AREA)
- Radiation-Therapy Devices (AREA)
- Prostheses (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Massaging Devices (AREA)
- Materials For Medical Uses (AREA)
Abstract
A system for stimulating healing of tissue at a wound site (12) is described comprising:
a porous pad (11);
a pump (14) for delivering a pressure and adapted to apply a variable reduced pressure to the wound site through said porous pad; and
a controller (84) regulating the pump to vary the pressure by comparing the pressure to a variable target pressure and changing the pressure in predefined pressure intervals between a first reduced pressure and a second reduced pressure in response to the comparison.
Description
-1 AUSTRALIA Patents Act 1990 SPECIFICATION Name of Applicant: KCI Licensing, Inc. Actual Inventors: Thomas Boynton, Teryl Blane Sanders, Keith Heaton, Kenneth Hunt, Mark Beard, David Tumey, Larry Tab Randolph Address for Service: Baldwins Intellectual Property 16 Chisholm Street North Ryde Sydney Invention Title: Vacuum assisted tissue treatment system The following statement is a full description of this invention, including the best method of performing it known to us:- VACUUM ASSISTED TISSUE TREATMENT SYSTEM TECHNICAL FIELD This invention relates generally to tissue treatment systems. More particularly this invention relates to vacuum assisted treatment systems that aid in the healing of open wounds. 5 BACKGROUND ART Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field. Vacuum induced healing of open wounds has recently been popularized by Kinetic 0 Concepts, Inc. of San Antonio, Texas, by its commercially available V.A.C.* product line. The vacuum induced healing process has been described in commonly assigned U.S. patent 4,969,880 issued on November 13, 1990 to Zamierowski, as well as its continuations and continuations in part, U.S. patent 5,100,396, issued on March 311992, U.S. patent 5,261,893, issued November 16, 1993, and U.S. patent 5,527,293, issued June 18,1996, the 5 disclosures of which are incorporated herein by this reference. Further improvements and modifications of the vacuum induced healing process are also described in U.S. patent 6,071,267, issued on June 6, 2000 to Zamierowski and U.S. patents 5,636,643 and 5,645,081 issued to Argenta et al. on June 10, 1997 and July 8, 1997 respectively, the disclosures of which are incorporated by reference as though fully set forth herein. Additional 20 improvements have also been described in U.S. patent 6,142,982, issued on May 13, 1998 to Hunt, et al. In practice, the application to a wound of negative gauge pressure, commercialized by Assignee or its parent under the designation "Vacuum Assisted Closure" (or "V.A.C.*") therapy, typically involves the mechanical-like contraction of the wound with simultaneous 25 removal of excess fluid. In this manner, V.A.C.* therapy augments the body's natural inflammatory process while alleviating many of the known intrinsic side effects, such as the production of edema caused by increased blood flow absent the necessary vascular structure for proper venous return. As a result, V.A.C.* therapy has been highly successful in the promotion of wound closure, healing many wounds previously thought largely untreatable. 30 The frequency at which negative pressure is applied to the wound, as well as the frequency of the pressure change over time, has a direct impact on the rate of wound healing. A variation of pressure change over time, not provided by current vacuum assisted therapy devices, is thought to significantly increase the rate of wound healing. Similarly, a rapid return to normal activities for the patient receiving wound therapy, may also improve the rate - 1of wound healing, as increased physical activity is often accompanied by increased vascular circulation, which in turn leads to improved blood flow at the wound site. One barrier to a return to normal activities is limited battery life, which is a result of the electrical power required to power existing vacuum assisted wound therapy systems. Additionally, frequent 5 inspection of the wound site is required in order to ensure the wound is not becoming infected. However, a rapid return to normal activities must not preclude the precautions that must be utilized during use of vacuum assisted therapy to prevent inadvertent spillage of wound exudates from the canister, or entry of wound exudates into the pumping mechanism. Additional limitations are associated with the use of fixed frequency oscillating 0 pumps in the prior art. Such limitations are the result of the size of the pump required to maintain the desired negative pressure at the wound site, and/or a reduction in battery life due to the power required to operate the oscillating pumps. Oscillating pumps, as known in the art, are typically designed for limited operating conditions. For example, to maximize low pressure flow rate at a fixed frequency. Typically the mass and/or stiffness of various [5 components are altered to change the resonant frequency of the pump under the design operating conditions. If the pressure across the pump increases, the stiffness of the system is increased by back pressure across the diaphragm of the oscillating pump. The resonant frequency of the pump changes and the fixed frequency drive is not driving the pump at the optimum frequency. As a result, flow rate drops quickly and the capability of the pump to 20 drive air at high pressure is limited. Accordingly, in order to provide increased flow rate at higher pressures requires either a sacrifice in flow rate at low pressures, or a pump of significantly greater size, when utilizing a fixed frequency oscillating pump. For the foregoing reasons, there is a need for a vacuum assisted wound treatment system that is capable of automated pressure change over time. Additionally, there is a need 25 for a more efficient vacuum assisted wound treatment system, that allows the patient more mobility, while reducing the risk of exudate spillage or pump contamination. It is therefore an object of the present invention to provide a vacuum assisted wound treatment system that provides a means for increasing the stimulation of cellular growth by a variation of pressure over time. 30 A further object is to provide a system that is capable of extended operation in the absence of an alternating current power supply. An additional object of the present invention is to provide a sanitary and cost effective means for sampling fluids drawn from the wound site without necessitating removal of the canister, or disturbing of the wound site.
Still another object of the present invention is to provide a vacuum assisted wound therapy device that can be secured to an object so as to reduce the likelihood of disturbance to the device, while still allowing convenient placement for its operation. These objects should be read disjunctively with the further object of at least providing a useful alternative. DISCLOSURE OF THE INVENTION Unless the context clearly requires otherwise, throughout the description and the claims, the words 'comprise', 'comprising', and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of "including but not limited to". In accordance with the foregoing objects, the present invention relates in a first aspect to a system for stimulating healing of tissue at a wound site comprising: a porous pad; a pump for applying negative pressure to the wound site through said porous pad that varies over time; and a controller regulating the negative pressure applied by the pump by changing the negative pressure in predefined pressure intervals, the controller comparing the negative pressure to a target pressure and incrementing the target pressure toward a maximum target pressure when the negative pressure has risen to or is greater than the target pressure. - 3- In a second aspect, the present invention relates to a system for stimulating healing of tissue at a wound site comprising: a porous pad; a pump for applying negative pressure to the wound site through said porous pad that varies over time; and a controller regulating the negative pressure applied by the pump by comparing the negative pressure to a target pressure, said controller being adapted to vary the target pressure between a maximum target pressure and a minimum target pressure by either (a) increasing the target pressure when the negative pressure has risen to or is greater than the target pressure, or (b) decreasing the target pressure when the negative pressure has fallen to or is less than the target pressure. In a third aspect, the present invention relates to a system for stimulating healing of tissue at a wound site comprising: a porous pad; a pump for applying negative pressure to the wound site through said porous pad that varies over time; and a controller regulating the negative pressure applied by the pump and adapted to compare the negative pressure to a target pressure and change the target pressure by (a) incrementing the target pressure toward a maximum target pressure when the negative pressure has risen to or is greater than the target pressure and (b) decrementing the target pressure toward a minimum target pressure when the negative pressure has fallen to or is less than the target pressure. -4- In a fourth aspect, the present invention relates to a system for stimulating healing of tissue at a wound site comprising: a porous pad; a pump for applying negative pressure to the wound site through said porous pad that varies over time; and a controller regulating the negative pressure applied by the pump by changing the negative pressure in predefined pressure intervals, the controller comparing the negative pressure to a target pressure and decrementing the target pressure toward a minimum target pressure when the negative pressure has fallen to or is less than the target pressure. The present invention generally comprises a porous pad for insertion substantially into a wound site and a wound drape for air-tight sealing enclosure of the pad at the wound site. A distal end of a tube is connected to the dressing in order to provide negative pressure at the wound site. A fluid sampling port is provided on the tube to allow for sampling of wound fluids being drawn through the tube from the wound site. An electric pump for supplying negative pressure is in conununication with a proximal end of the tube. A collection canister is removably connected to the tube for the connection of fluid removed from the wound during the application of negative pressure. A first filter is incorporated into an opening of the canister, and a second filter is positioned between the canister and the electric pump for applying negative pressure. The electric pump may be supplied by alternating or direct current. Therefore, a power management device, and its associated power management protocol, is incorporated to maximize battery life when the unit is being supplied by direct current. A clamping mechanism is utilized to secure the system to a stationary object, such as a bed rail, or pole, such as that used to suspend a container of intravenous fluid. -5- The pad, comprised of a foam having relatively few open cells in contact with the areas upon which cell growth is to be encouraged so as to avoid unwanted adhesions, but having sufficiently numerous open cells so that drainage and negative pressure therapy may continue unimpaired, is placed in fluid communication with a vacuum source for promotion of fluid drainage, as known in the art The porous pad of the present invention may be comprised of polyvinyl alcohol foam. The fluid communication may be established by connecting a tube to a dressing, such as that described in International Application WO 99/13793, entitled "Surgical Drape and Suction Heads for Wound Treatment," the disclosure of which is incorporated herein. Upon placement of the pad, an airtight seal is foamed over the wound site to prevent vacuum leakage. Such a seal may be provided by placing a drape over the wound, such that the drape adheres to the healthy skin surrounding the wound site, while maintaining an airtight seal over the wound itself. -6- A conduit or tube is placed in fluid communication with the foam pad, its distal end communicating with a fluid drainage canister which is in fluid communication with a vacuum source. A constant or intermitant negative pressure therapy is conducted as described in the prior art. Alternatively, the negative pressure is varied over time, so as to further stimulate 5 cell growth, which in turn may shorten the healing process. The negative pressure induced on the wound adjusts to meet a varying target pressure, which oscillates between a target maximum and target minimum pressure. Flow rate of a variable displacement pump, used in accordance with the present invention, is maximized over a pressure range by varying the drive frequency of the pump. 10 The optimum drive frequency is continuously adjusted by a system that periodically or continuously monitors the pressure across the pump to determine the optimum drive frequency for that pressure. Pump performance is thereby improved over variable displacement pumps utilized in the prior art, without increasing pump size or weight. Similarly, pump performance of a typical variable displacement pump can be achieved with a 15 smaller pump, which in turn reduces the size and weight of the overall system in order to improve ease of use and portability for the patient. An alternative negative pressure source, such as a fixed displacement pump, sometimes referred to as a positive displacement pump, may also be utilized. The power management system is utilized to maximize battery life when the present 20 invention is being supplied with electric power under direct current The power management system comprises deactivation of a backlight to a display terminal, or touch screen liquid crystal display (LCD) control panel, after a predetermined interval. Battery life is further extended when the power management system prevents electric power from reaching an electric motor until the targeted power setting is actually large enough to activate the motor. 25 In such an instance, the motor is utilized to provide negative pressure by driving an electric pump as known in the art. The foregoing has outlined some of the more pertinent objects of the present invention. These objects should be construed to be merely illustrative of some of the more prominent features and applications of the invention. Many other beneficial results can be 30 attained by applying the disclosed invention in a different manner or by modifying the invention as will be described. Accordingly, other objects and a fuller understanding of the invention may be had by referring to the following Detailed Description of the Invention, which includes the preferred embodiment -7- BRIEF DESCRIPTION OF THE DRAWINGS These and other features and advantages of the invention will now be described with reference to the drawings of certain preferred embodiments, which are intended to illustrate and not to limit the invention, and wherein like reference numbers refer to like components, 5 and in which: Figure 1 is a schematic block diagram of a tissue treatment system utilized in accordance with the present invention. Figure 2a is a perspective view of a fluid sampling port utilized in accordance with the present invention. 10 Figure 2b is a perspective view of an alternative embodiment of a fluid sampling port utilized in accordance with the present invention. Figure 3a is a perspective view of the back portion of a pump housing utilized in accordance with the present invention. Figure 3b is a perspective view of the front portion of a pump housing utilized in 15 accordance with the present invention. Figures 4a and 4b are flow charts representing the preferred steps in the implementation of a power management system utilized in accordance with the present invention. Figure 5 is a flow chart illustrating the preferred steps in the implementation of pulse 20 therapy utilized in accordance with the present invention. MODES OF CARRYING OUT THE INVENTION and INDUSTRIAL APPLICABILITY Although those of ordinary skill in the art will readily recognize many alternative embodiments, especially in light of the illustrations provided herein, this detailed description 25 is exemplary of the preferred embodiment of the present invention, the scope of which is limited only by the claims that are drawn hereto. The present invention is a vacuum assisted system for stimulating the healing of tissue. Referring now to Figure 1 in particular, there is illustrated the primary components of 30 a system that operates in accordance with the present invention. The present invention 10 includes a foam pad 11 for insertion substantially into a wound site 12 and a wound drape 13 for sealing enclosure of the foam pad 11 at the wound site 12. The foam pad II may be comprised of a polyvinyl alcohol (PVA) open cell polymer material, or other similar material -8having a pore size sufficient to facilitate wound healing. A pore density of greater than 38 pores per linear inch is preferable. A pore density of between 40 pores per linear inch and 50 pores per linear inch is more preferable. A pore density of 45 pores per linear inch is most preferable. Such a pore density translates to a pore size of approximately 400 microns. 5 Addition of an indicating agent, such as crystal violet, methylene blue, or similar agents known in the art causes a color change in the foam 11 when in the presence of a bacterial agent. As such, a user or health care provider can easily and readily ascertain if an infection is present at the wound site 12. It is contemplated that the indicating agent may also be placed in line of the conduit 16, between the wound site 12 and the canister 18. In 10 such a configuration (not shown), the presence of bacterial contaminants in the wound site 12, could be easily and readily ascertained without disturbing the wound bed, as there would be a nearly immediate color change as bacterially infected wound exudates are drawn from the wound site 12 and through the conduit 16 during application of negative pressure. It is also contemplated that the foam pad 11 may be coated with a bacteriostatic 15 agent. Addition of such an agent, would serve to limit or reduce the bacterial density present at the wound site 12. The agent may be coated or bonded to the foam pad 11 prior to insertion in the wound site, such as during a sterile packaging process. Alternatively, the agent may be injected into the foam pad 11 after insertion in the wound site 12. After insertion into the wound site 12 and sealing with the wound drape 13, the foam 20 pad II is placed in fluid communication with a vacuum source 14 for promotion of fluid drainage and wound healing, as known to those of ordinary skill in the art. The vacuum source 14 may be a portable electrically powered pump, or wall suction as commonly provided in medical care facilities. According to the preferred embodiment of the present invention, the foam pad 11, 25 wound drape 13, and vacuum source 14 are implemented as known in the prior art, with the exception of those modifications detailed further herein. The foam pad 11 preferably comprises a highly reticulated, open-cell polyurethane or polyether foam for effective permeability of wound fluids while under suction. The pad 11 is preferably placed in fluid communication, via a plastic or like material conduit 16, with a 30 canister 18 and a vacuum source 14. A first hydrophobic membrane filter 20 is interposed between the canister 18 and the vacuum source 14, in order to prevent wound exudates from contaminating the vacuum source 14. The first filter 20 may also serve as a fill-sensor for canister 18. As fluid contacts the first filter 20, a signal is sent to the vacuum source 14, -9causing it to shut down. The wound drape 13 preferably comprises an elastomeric material at least peripherally covered with a pressure sensitive adhesive for sealing application over the wound site 12, such that a vacuum seal is maintained over the wound site 12. The conduit 16 may be placed in fluidic communication with the foam 11 by means of an appendage 17 that 5 can be adhered to the drape 13. According to the preferred method of the present invention, a second hydrophobic filter 22 is interposed between the first filter 20 and the vacuum source 14. The addition of the second filter 22 is advantageous when the first filter 20 is also used as a fill sensor for the canister 18. In such a situation, the first filter 20 may act as a fill sensor, while the second 10 filter 22 further inhibits contamination of wound exudates into the vacuum source 14. This separation of functions into a safety device and a control (or limiting) device, allows for each device to be independently engineered. An odor vapor filter 23, which may be a charcoal filter, may be interposed between the first filter 20 and the second filter 22, in order to counteract the production of malodorous vapors present in the wound exudates. In an 15 alternate embodiment (not shown), the odor vapor filter 23 may be interposed between the second hydrophobic filter 23 and the vacuum source 14. A second odor filter 15 may be interposed between the vacuum source 14 and an external exhaust port 25, in order to further reduce the escape of malodorous vapors from the present system. A further embodiment allows for first 20 and second filters 22 to be incorporated as an integral part of the canister 20 18 to ensure that the filters 20, 22, at least one of which are likely to become contaminated during normal use, are automatically disposed of in order to reduce the exposure of the system to any contaminants that may be trapped by the filters 20 and 22. A means for sampling fluids may also be utilized by providing a resealable access port 24 from the conduit 16. The port 24 is-positioned between the distal end 16a of the 25 conduit 16 and the proximal end 16b of the conduit 16. The port 24, as further detailed in Figures 2a and 2b, is utilized to allow for sampling of fluids being suctioned from the wound site 12. Although the port 24 is shown as an appendage protruding from the conduit 16, it is to be understood that a flush mounted port (not shown) will serve an equivalent purpose. The port 24 includes a resealable membrane 26 that after being punctured, such as by a 30 hypodermic needle, the seal is maintained. Various rubber-like materials known in the art for maintaining a seal after puncture can be utilized. The process by which wound fluids are sampled, utilizing the present invention, comprises penetrating the membrane 26 with a fluid sampler 28, such as a hypodermic needle -10or syringe. The sampler 28 is inserted through the membrane 26 and into the port 24 until it is in contact with wound fluids flowing through the inner lumen 30 of the conduit 16. As illustrated in Figure 2b, and further described in U.S. Patent 6,142,982, issued to Hunt, et al. on May 13, 1998, and whose reference is incorporated herein as though fully set forth, the 5 inner lumen 30 may be surrounded by one or more outer lumens 31. The outer lumens 31 may serve as pressure detection conduits for sensing variations in pressure at the wound site 12. In an alternative embodiment (not shown), the outer lumen or lumens 31 may act as the negative pressure conduit, while the inner lumen 30 may act as the pressure detection conduit. In the present invention, the fluid sampling port 24, communicates only with the 10 inner lumen 30, so as not to interfere with pressure detection that may be conducted by the outer lumens 31. In an alternate embodiment (not shown) in which the outer lumen 31 serves as the negative pressure conduit, the fluid sampling port 24 communicates with the outer lumen 31. The vacuum source 14 may consist of a portable pump housed within a housing 32, as 15 illustrated in Figures 3a and 3b. A handle 33 may be formed or attached to the housing 32 to allow a user to easily grasp and move the housing 32. According to the preferred embodiment of the present invention, a means for securing the housing 32 to a stationary object, such as an intravenous fluid support pole for example, is provided in the form of a clamp 34. The clamp 34, which may be a G-clamp as known in the 20 art, is retractable, such that when not in use is in a stored position within a recess 36 of the housing 32. A hinging mechanism 38 is provided to allow the clamp 34 to extend outward from the housing 32, to up to a 90 degree angle from its stored position. An alternative embodiment (not shown) allows the clamp 34 to be positioned at up to a 180 degree angle from its stored position. The hinging mechanism 38 is such that when the clamp 34 is fully 25 extended, it is locked in position, such that the housing 32 is suspended by the clamp 34. A securing device 40, such as a threaded bolt, penetrates through an aperture 42 of the clamp 34, to allow the clamp 34 to be adjustably secured to various stationary objects of varying thickness. Alternatively, the securing device 40, may be comprised of a spring actuated bolt or 30 pin, that is capable of automatically adjusting to various objects, such as intravenous fluid support poles, having varying cross-sectional thicknesses. The present invention also allows for management of a power supply to the vacuum source 14, in order to maximize battery life when the present invention is utilizing a direct - 11 current as its power supply. In the preferred embodiment, as illustrated in the flow chart of Figure 4a, a motor control 44 determines if the actual pressure is less than or equal to a target pressure 46. If the actual pressure is less than the target pressure, a tentative motor drive power required to reach the target pressure is calculated 48. If the tentative motor drive 5 power required to reach the target pressure is greater or equal to the stall power 49, the tentative motor drive power is actually applied to the motor 50. If the actual pressure is greater than the target pressure, the tentative motor drive power is decreased and a determination is made as to whether additional power is needed to overcome the stall power 52. If it is determined that the tentative power is inadequate to overcome the stall power, the 10 tentative power is not supplied to the motor 54. If the tentative power is adequate to overcome the stall power, the tentative power is actually applied to the motor 50. The motor control 44 functions as a closed loop system, such that the actual pressure is continuously measured against the predetermined target pressure. The advantage of such a system is that it prevents power from being supplied to the motor when it is not necessary to maintain the 15 target pressure specified for V.A.C therapy. Accordingly, battery life is extended because power is not needlessly used to power the motor when it is not necessary. Battery life is further extended, as illustrated in the flow chart shown in Figure 4b, by providing a means, such as an integrated software program in a computer processor, for automatically disengaging a backlight of the visual display 19 of the present invention 10 (as 20 seen in Figure 3b). User input of information 55, such as target pressure desired, or duration of therapy, activates 57 a backlight of the visual display 19 shown in Figure 3b. User input 55 may also be simply touching the visual display 19, which may be a touch activated or a pressure sensitive screen as known in the art. Activation of an alarm 55 may also activate 57 the backlight of the display 19. An alarm may be automatically activated if an air leak is 25 detected at the wound site 12. Such a leak may be indicated by a drop or reduction in pressure being detected at the wound site 12. The backlight remains active until a determination is made as to whether a preset time interval has elapsed 58. If the time interval has not elapsed, the backlight remains active 57. If the time interval has elapsed, the backlight is automatically extinguished 59, until such time as the user inputs additional 30 information, or an alarm is sounded 55. Referring now back to Figure 1, battery life is further extended by means of a variable frequency pump drive system 80, when the pump 14, used in accordance with the present invention, is an oscillating pump. The pump drive system 80 consists of a pressure sensor 82, -12a control system 84, and a variable frequency drive circuit 86. In the preferred embodiment the pressure sensor 82 measures the pressure across the pump, which is relayed to the control system 84. The control system 84 determines the optimum drive frequency for the pump 14 given the pressure measured and relayed by the pressure sensor 82. The optimum drive 5 frequency for the pump 14 may be determined by the control system 84 either repeatedly or continuously. The control system 84 adjusts the variable frequency drive circuit 86 to drive the pump at the optimum frequency determined by the control system 84. The use of the variable frequency pump drive system 80 allows the pressure of the pump 14 to be maximized. In tests on sample oscillating pumps, the maximum pressure 10 achieved was doubled by varying the drive frequency by only 30%. Additionally, the system 80 maximizes flow rate over the extended frequency range. As a result, performance of the pump 14 is significantly improved over existing fixed frequency drive system pumps without increasing the pump size or weight. Consequently, battery life is further extended, thus giving the user greater mobility by not having to be tethered to a stationary power source. 15 Alternatively, a similar performance level to the prior art fixed frequency drive system pumps can be achieved with a smaller pump. As a result, patient mobility is improved by improving the portability of the unit. The preferred embodiment also increases the stimulation of cellular growth by oscillating the pressure over time, as illustrated in the flow chart of Figure 5. Such an 20 oscillation of pressure is accomplished through a series of algorithms of a software program, utilized in conjunction with a computer processing unit for controlling the function of the vacuum source or pump. The program is initialized when a user, such as a health care provider, activates the pulsing mode of the pump 60. The user then sets a target pressure maximum peak value and a target pressure minimum peak value 62. The software then 25 initializes the pressure direction to "increasing" 63. The software then enters a software control loop. In this control loop, the software first determines if the pressure is increasing 64. If the actual pressure is increasing in test 64, a determination is then made as to whether a variable target pressure is still less than the maximum target pressure 70. If the 30 variable target pressure is still less than the maximum target pressure the software next determines whether the actual pressure has equaled (risen to) the ascending target pressure 66. If the actual pressure has attained the ascending target pressure, the software increments the variable target pressure by one interval 68. Otherwise, it refrains from doing so until the - 13 actual pressure has equaled the ascending target pressure. If the variable target pressure has reached the maximum target pressure in the test of block 70 the software sets the pressure direction to "decreasing" 69 and the variable target pressure begins to move into the downward part of its oscillatory cycle. 5 The interval may be measured in mmHg or any other common unit of pressure measurement. The magnitude of the interval is preferably in the range of about 1 to 10 mmHg, according to the preference of the user. If the actual pressure is decreasing in test 64, a determination is then made as to whether the variable target pressure is still greater than the minimum target pressure 74. If 10 the variable target pressure is still greater than the minimum target pressure the software next determines whether the actual pressure has attained (fallen to) the descending target pressure 76. If the actual pressure has equaled the descending target pressure the software decrements the variable target pressure by one interval 72. Otherwise it refrains from doing so until the actual pressure has equaled the descending target pressure. If the variable target pressure has 15 reached the minimum target pressure in the test of block 74, the software sets the pressure direction to "increasing" 73 and the variable target pressure begins to move into the upward part of its oscillatory cycle. This oscillatory process continues until the user de-selects the pulsing mode. While- the invention has been described herein with reference to certain preferred 20 embodiments, these embodiments have been presented by way of example only, and not to limit the scope of the invention. Accordingly, the scope of the invention should be identified only in accordance with the claims that follow. -14-
Claims (30)
1. A system for stimulating healing of tissue at a wound site comprising: a porous pad; a pump for applying negative pressure to the wound site through said porous pad that varies over time; and a controller regulating the negative pressure applied by the pump by changing the negative pressure in predefined pressure intervals, the controller comparing the negative pressure to a target pressure and incrementing the target pressure toward a maximum target pressure when the negative pressure has risen to or is greater than the target pressure.
2. The system of claim 1, further comprising a drape for covering the porous pad when the porous pad is positioned at the wound site.
3. The system of claim 2, wherein the drape forms an airtight seal around the porous pad.
4. The system of claim 1, further comprising means for deactivating a backlight to a display after a predetermined time interval.
5. The system of claim I further comprising a clamp for securing said system to a pole.
6. The system of claim 1, wherein said porous pad is comprised of a polyvinyl alcohol foam.
7. The system of claim 1 further comprising a control system to determine an optimum drive frequency for variably driving the pump in order to maximize pump flow.
8. The system of claim 7, further comprising a pressure sensor for measuring the pressure.
9. The system of claim 8, further comprising a variable frequency drive circuit for driving said pump at said optimum drive frequency. - 15 -
10. The system of claim 1, wherein said controller is further adapted to compare the target pressure to the maximum target pressure and begin decreasing the negative pressure when the target pressure has reached the maximum target pressure.
11. The system of claim 10, wherein said controller is further adapted to decrement the target pressure toward a minimum target pressure when the negative pressure has fallen to or is less than the target pressure.
12. The system of claim 11, wherein said controller is further adapted to increase the negative pressure when the target pressure has reached the minimum target pressure, whereby the negative pressure oscillates over time between the maximum target pressure and the minimum target pressure.
13. A system for stimulating healing of tissue at a wound site comprising: a porous pad; a pump for applying negative pressure to the wound site through said porous pad that varies over time; and a controller regulating the negative pressure applied by the pump by comparing the negative pressure to a target pressure, said controller being adapted to vary the target pressure between a maximum target pressure and a minimum target pressure by either (a) increasing the target pressure when the negative pressure has risen to or is greater than the target pressure, or (b) decreasing the target pressure when the negative pressure has fallen to or is less than the target pressure,
14. The system of claim 13, wherein said controller is further adapted to compare the target pressure to the maximum target pressure and begin decreasing the negative pressure when the target pressure has reached the maximum target pressure.
15. The system of claim 13, wherein said controller is further adapted to compare the target pressure to the minimum target pressure and begin increasing the negative pressure when the target pressure has reached the minimum target pressure. -16-
16. The system of claim 13, wherein said controller is further adapted to decrease the negative pressure when the target pressure has reached the maximum target pressure and increase the negative pressure when the target pressure has reached the minimum target pressure, whereby the negative pressure oscillates over time between the maximum target pressure and the minimum target pressure.
17. A system for stimulating healing of tissue at a wound site comprising: a porous pad; a pump for applying negative pressure to the wound site through said porous pad that varies over time; and a controller regulating the negative pressure applied by the pump and adapted to compare the negative pressure to a target pressure and change the target pressure by (a) incrementing the target pressure toward a maximum target pressure when the negative pressure has risen to or is greater than the target pressure and (b) decrementing the target pressure toward a minimum target pressure when the negative pressure has fallen to or is less than the target pressure.
18. The system of claim 17, wherein said controller is further adapted to (a) decrease the negative pressure when the target pressure has reached the maximum target pressure and (b) increase the negative pressure when the target pressure has reached the minimum target pressure, whereby the negative pressure oscillates over time between the maximum target pressure and the minimum target pressure.
19. A system for stimulating healing of tissue at a wound site comprising: a porous pad; a pump for applying negative pressure to the wound site through said porous pad that varies over time; and a controller regulating the negative pressure applied by the pump by changing the negative pressure in predefined pressure intervals, the controller comparing the negative pressure to a target pressure and decrementing the target pressure toward a minimum target pressure when the negative pressure has fallen to or is less than the target pressure.
20. The system of claim 19, further comprising a drape for covering the porous pad when the porous pad is positioned at the wound site. -17-
21. The system of claim 20, wherein the drape forms an airtight seal around the porous pad.
22. The system of claim 19, further comprising means for deactivating a backlight to a display after a predetermined time interval.
23. The system of claim 19 further comprising a clamp for securing said system to a pole.
24. The system of claim 19, wherein said porous pad is comprised of a polyvinyl alcohol foam.
25. The system of claim 19 further comprising a control system to determine an optimum drive frequency for variably driving the pump in order to maximize pump flow.
26. The system of claim 25, further comprising a pressure sensor for measuring the pressure.
27. The system of claim 26, further comprising a variable frequency drive circuit for driving said pump at said optimum drive frequency.
28. The system of claim 19, wherein said controller is further adapted to compare the target pressure to the minimum target pressure and begin increasing the negative pressure when the target pressure has reached the minimum target pressure.
29. The system of claim 28, wherein said controller is further adapted to increment the target pressure toward a maximum target pressure when the negative pressure has risen to or is greater than the target pressure.
30. The system of claim 29, wherein said controller is further adapted to decrease the negative pressure when the target pressure has reached the maximum target pressure, whereby the negative pressure oscillates over time between the maximum target pressure and the minimum target pressure. - 18-
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2011201730A AU2011201730B2 (en) | 2001-08-24 | 2011-04-18 | Vacuum assisted tissue treatment system |
| AU2011201729A AU2011201729B2 (en) | 2001-08-24 | 2011-04-18 | Vacuum assisted tissue treatment system |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/939,166 US7004915B2 (en) | 2001-08-24 | 2001-08-24 | Negative pressure assisted tissue treatment system |
| US09/939,166 | 2001-08-24 | ||
| PCT/US2002/027070 WO2003018098A2 (en) | 2001-08-24 | 2002-08-23 | Vacuum assisted tissue treatment system |
| AU2002329844A AU2002329844B2 (en) | 2001-08-24 | 2002-08-23 | Vacuum assisted tissue treatment system |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2002329844A Division AU2002329844B2 (en) | 2001-08-24 | 2002-08-23 | Vacuum assisted tissue treatment system |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2011201730A Division AU2011201730B2 (en) | 2001-08-24 | 2011-04-18 | Vacuum assisted tissue treatment system |
| AU2011201729A Division AU2011201729B2 (en) | 2001-08-24 | 2011-04-18 | Vacuum assisted tissue treatment system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| AU2008202973A1 AU2008202973A1 (en) | 2008-07-31 |
| AU2008202973B2 true AU2008202973B2 (en) | 2011-04-21 |
Family
ID=25472655
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2002329844A Expired AU2002329844B2 (en) | 2001-08-24 | 2002-08-23 | Vacuum assisted tissue treatment system |
| AU2008202973A Expired AU2008202973B2 (en) | 2001-08-24 | 2008-06-30 | Vacuum assisted tissue treatment system |
| AU2011201729A Expired AU2011201729B2 (en) | 2001-08-24 | 2011-04-18 | Vacuum assisted tissue treatment system |
| AU2011201730A Expired AU2011201730B2 (en) | 2001-08-24 | 2011-04-18 | Vacuum assisted tissue treatment system |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2002329844A Expired AU2002329844B2 (en) | 2001-08-24 | 2002-08-23 | Vacuum assisted tissue treatment system |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2011201729A Expired AU2011201729B2 (en) | 2001-08-24 | 2011-04-18 | Vacuum assisted tissue treatment system |
| AU2011201730A Expired AU2011201730B2 (en) | 2001-08-24 | 2011-04-18 | Vacuum assisted tissue treatment system |
Country Status (20)
| Country | Link |
|---|---|
| US (5) | US7004915B2 (en) |
| EP (4) | EP1897569B2 (en) |
| JP (6) | JP2005500141A (en) |
| KR (4) | KR100959568B1 (en) |
| CN (3) | CN1973916B (en) |
| AT (2) | ATE424863T2 (en) |
| AU (4) | AU2002329844B2 (en) |
| BR (1) | BR0212058A (en) |
| CA (1) | CA2458285C (en) |
| CY (3) | CY2200163T2 (en) |
| DE (4) | DE07117289T1 (en) |
| DK (2) | DK1418973T4 (en) |
| ES (3) | ES2353863T5 (en) |
| IL (3) | IL160450A0 (en) |
| MX (1) | MXPA04001457A (en) |
| NZ (1) | NZ531268A (en) |
| PT (2) | PT1418973E (en) |
| RU (2) | RU2302263C2 (en) |
| WO (1) | WO2003018098A2 (en) |
| ZA (1) | ZA200401261B (en) |
Families Citing this family (507)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9119705B2 (en) | 1998-06-08 | 2015-09-01 | Thermotek, Inc. | Method and system for thermal and compression therapy relative to the prevention of deep vein thrombosis |
| US6458109B1 (en) * | 1998-08-07 | 2002-10-01 | Hill-Rom Services, Inc. | Wound treatment apparatus |
| WO2000059424A1 (en) | 1999-04-02 | 2000-10-12 | Kinetic Concepts, Inc. | Vacuum assisted closure system with provision for introduction of agent |
| US20070021697A1 (en) * | 2004-07-26 | 2007-01-25 | Kci Licensing, Inc. | System and method for use of agent in combination with subatmospheric tissue treatment |
| US20070014837A1 (en) * | 1999-04-02 | 2007-01-18 | Kci Licensing, Inc. | System and method for use of agent in combination with subatmospheric pressure tissue treatment |
| US6764462B2 (en) | 2000-11-29 | 2004-07-20 | Hill-Rom Services Inc. | Wound treatment apparatus |
| US6824533B2 (en) * | 2000-11-29 | 2004-11-30 | Hill-Rom Services, Inc. | Wound treatment apparatus |
| US8409214B2 (en) * | 2009-01-22 | 2013-04-02 | Meditech Development Incorporated | Portable regulated vacuum pump for medical procedures |
| KR20030042441A (en) * | 2000-05-22 | 2003-05-28 | 아써 씨. 커피 | Combination SIS and vacuum bandage and method |
| US6855135B2 (en) | 2000-11-29 | 2005-02-15 | Hill-Rom Services, Inc. | Vacuum therapy and cleansing dressing for wounds |
| US6685681B2 (en) * | 2000-11-29 | 2004-02-03 | Hill-Rom Services, Inc. | Vacuum therapy and cleansing dressing for wounds |
| US7364565B2 (en) | 2001-07-27 | 2008-04-29 | Ramot At Tel Aviv University Ltd. | Controlled enzymatic removal and retrieval of cells |
| US7004915B2 (en) * | 2001-08-24 | 2006-02-28 | Kci Licensing, Inc. | Negative pressure assisted tissue treatment system |
| SE524111C2 (en) * | 2001-09-28 | 2004-06-29 | Jan Otto Solem | A method and device for organ recovery |
| WO2003030966A1 (en) * | 2001-10-11 | 2003-04-17 | Hill-Rom Services, Inc. | Waste container for negative pressure therapy |
| WO2003057071A2 (en) | 2001-12-26 | 2003-07-17 | Hill-Rom Services, Inc. | Vacuum bandage packing |
| EP1478313B2 (en) * | 2001-12-26 | 2018-03-07 | KCI Medical Resources | Vented vacuum bandage |
| CA2468309A1 (en) | 2001-12-26 | 2003-07-17 | Robert Petrosenko | Wound vacuum therapy dressing kit |
| CN1291761C (en) | 2002-03-04 | 2006-12-27 | 新技术国际交流株式会社 | closed cell culture system |
| WO2003086232A2 (en) | 2002-04-10 | 2003-10-23 | Hill-Rom Services, Inc. | Access openings in vacuum bandage |
| US20030225347A1 (en) * | 2002-06-03 | 2003-12-04 | Argenta Louis C. | Directed tissue growth employing reduced pressure |
| US7896856B2 (en) * | 2002-08-21 | 2011-03-01 | Robert Petrosenko | Wound packing for preventing wound closure |
| US7846141B2 (en) | 2002-09-03 | 2010-12-07 | Bluesky Medical Group Incorporated | Reduced pressure treatment system |
| US7625362B2 (en) | 2003-09-16 | 2009-12-01 | Boehringer Technologies, L.P. | Apparatus and method for suction-assisted wound healing |
| US7815616B2 (en) | 2002-09-16 | 2010-10-19 | Boehringer Technologies, L.P. | Device for treating a wound |
| GB0224986D0 (en) | 2002-10-28 | 2002-12-04 | Smith & Nephew | Apparatus |
| WO2004041346A1 (en) * | 2002-11-07 | 2004-05-21 | Rolf Weidenhagen | Endoscopic wound care treatment system and method |
| US6960190B2 (en) | 2002-12-18 | 2005-11-01 | Amvex Corporation | Vacuum regulator and method |
| US7814932B2 (en) * | 2002-12-18 | 2010-10-19 | David Stinson | Digital pressure gauge |
| US7814021B2 (en) | 2003-01-23 | 2010-10-12 | Verdasys, Inc. | Managed distribution of digital assets |
| ITMO20030079A1 (en) * | 2003-03-21 | 2004-09-22 | Gambro Lundia Ab | DEVICE TO PROTECT MEDICAL EQUIPMENT |
| US7175697B2 (en) | 2003-03-21 | 2007-02-13 | Gambro Lundia Ab | Device for protecting medical apparatus |
| US7169151B1 (en) * | 2003-04-10 | 2007-01-30 | Kci Licensing, Inc. | Bone regeneration device for long bones, and method of use |
| AU2004248138B2 (en) | 2003-05-29 | 2009-09-03 | The Scripps Research Institute | Targeted delivery to legumain-expressing cells |
| US8574278B2 (en) | 2006-05-09 | 2013-11-05 | Thermotek, Inc. | Wound care method and system with one or both of vacuum-light therapy and thermally augmented oxygenation |
| US8128672B2 (en) | 2006-05-09 | 2012-03-06 | Thermotek, Inc. | Wound care method and system with one or both of vacuum-light therapy and thermally augmented oxygenation |
| US7942866B2 (en) * | 2003-08-28 | 2011-05-17 | Boehringer Technologies, L.P. | Device for treating a wound |
| US7361184B2 (en) * | 2003-09-08 | 2008-04-22 | Joshi Ashok V | Device and method for wound therapy |
| GB0325129D0 (en) | 2003-10-28 | 2003-12-03 | Smith & Nephew | Apparatus in situ |
| GB0325126D0 (en) | 2003-10-28 | 2003-12-03 | Smith & Nephew | Apparatus with heat |
| US8758313B2 (en) * | 2003-10-28 | 2014-06-24 | Smith & Nephew Plc | Apparatus and method for wound cleansing with actives |
| US11298453B2 (en) | 2003-10-28 | 2022-04-12 | Smith & Nephew Plc | Apparatus and method for wound cleansing with actives |
| GB0325120D0 (en) * | 2003-10-28 | 2003-12-03 | Smith & Nephew | Apparatus with actives |
| US7143773B2 (en) | 2003-11-18 | 2006-12-05 | Amvex Corporation | Intermittent pressure module for a vacuum regulator |
| US7128735B2 (en) | 2004-01-02 | 2006-10-31 | Richard Scott Weston | Reduced pressure wound treatment appliance |
| US8100887B2 (en) * | 2004-03-09 | 2012-01-24 | Bluesky Medical Group Incorporated | Enclosure-based reduced pressure treatment system |
| US8062272B2 (en) * | 2004-05-21 | 2011-11-22 | Bluesky Medical Group Incorporated | Flexible reduced pressure treatment appliance |
| US7708724B2 (en) * | 2004-04-05 | 2010-05-04 | Blue Sky Medical Group Incorporated | Reduced pressure wound cupping treatment system |
| US10058642B2 (en) | 2004-04-05 | 2018-08-28 | Bluesky Medical Group Incorporated | Reduced pressure treatment system |
| US7909805B2 (en) * | 2004-04-05 | 2011-03-22 | Bluesky Medical Group Incorporated | Flexible reduced pressure treatment appliance |
| US7776028B2 (en) * | 2004-04-05 | 2010-08-17 | Bluesky Medical Group Incorporated | Adjustable overlay reduced pressure wound treatment system |
| US10413644B2 (en) | 2004-04-27 | 2019-09-17 | Smith & Nephew Plc | Wound treatment apparatus and method |
| US8529548B2 (en) | 2004-04-27 | 2013-09-10 | Smith & Nephew Plc | Wound treatment apparatus and method |
| GB0508528D0 (en) * | 2005-04-27 | 2005-06-01 | Smith & Nephew | SAI with macrostress |
| US7753894B2 (en) | 2004-04-27 | 2010-07-13 | Smith & Nephew Plc | Wound cleansing apparatus with stress |
| GB0424046D0 (en) * | 2004-10-29 | 2004-12-01 | Smith & Nephew | Apparatus |
| GB0409446D0 (en) | 2004-04-28 | 2004-06-02 | Smith & Nephew | Apparatus |
| US7998125B2 (en) * | 2004-05-21 | 2011-08-16 | Bluesky Medical Group Incorporated | Hypobaric chamber treatment system |
| US10765785B2 (en) | 2004-07-19 | 2020-09-08 | Thermotek, Inc. | Wound care and infusion method and system utilizing a therapeutic agent |
| US10016583B2 (en) | 2013-03-11 | 2018-07-10 | Thermotek, Inc. | Wound care and infusion method and system utilizing a thermally-treated therapeutic agent |
| EP1771138A4 (en) * | 2004-07-26 | 2009-08-19 | Kci Licensing Inc | Method for coating substrate with antimicrobial agent and product formed thereby |
| US7824384B2 (en) | 2004-08-10 | 2010-11-02 | Kci Licensing, Inc. | Chest tube drainage system |
| SE0500061L (en) | 2005-01-11 | 2006-07-12 | Moelnlycke Health Care Ab | Sealing film dressing |
| DE102005014420A1 (en) * | 2005-03-24 | 2006-09-28 | Inmeditec Medizintechnik Gmbh | Vacuum therapy device |
| US7909773B2 (en) * | 2005-06-03 | 2011-03-22 | Tyco Healthcare Group Lp | Post-operative bacteria test strip spool and method |
| DE102005026771B4 (en) | 2005-06-10 | 2007-04-19 | Erdmann, Alfons, Dr. med. | Device for treating patients suffering from skin lesions distributed on the skin surface as well as body coverage |
| US7438705B2 (en) | 2005-07-14 | 2008-10-21 | Boehringer Technologies, L.P. | System for treating a wound with suction and method detecting loss of suction |
| US7857806B2 (en) * | 2005-07-14 | 2010-12-28 | Boehringer Technologies, L.P. | Pump system for negative pressure wound therapy |
| US20110077605A1 (en) * | 2005-07-14 | 2011-03-31 | Boehringer Technologies, L.P. | Pump system for negative pressure wound therapy |
| AU2005330067B1 (en) * | 2005-07-24 | 2006-12-14 | Carmeli Adahan | Wound closure and drainage system |
| EP1919533A1 (en) * | 2005-07-24 | 2008-05-14 | Carmeli Adahan | Suctioning system, method and kit |
| EP2127690B2 (en) | 2005-07-24 | 2017-06-14 | M.E.A.C. Engineering Ltd. | Wound closure and drainage system |
| US7503910B2 (en) | 2006-02-01 | 2009-03-17 | Carmeli Adahan | Suctioning system, method and kit |
| CA2949821C (en) | 2005-09-06 | 2021-05-18 | Smith & Nephew, Inc. | Self contained wound dressing with micropump |
| US20070055209A1 (en) * | 2005-09-07 | 2007-03-08 | Patel Harish A | Self contained wound dressing apparatus |
| CA2619925A1 (en) | 2005-09-07 | 2007-03-15 | Tyco Healthcare Group Lp | Wound dressing with vacuum reservoir |
| WO2007067685A2 (en) * | 2005-12-06 | 2007-06-14 | Kci Licensing Inc | Wound exudate removal and isolation system |
| CA2633910C (en) * | 2006-01-23 | 2012-07-03 | Kci Licensing, Inc. | System and method for treating a wound using ultrasonic debridement |
| US20090012484A1 (en) * | 2006-02-02 | 2009-01-08 | Brian Nielsen | Pump and System for Treatment of a Wound |
| AU2007211737A1 (en) * | 2006-02-02 | 2007-08-09 | Coloplast A/S | Device, pump and system for stimulating the healing of a wound |
| US8235939B2 (en) * | 2006-02-06 | 2012-08-07 | Kci Licensing, Inc. | System and method for purging a reduced pressure apparatus during the administration of reduced pressure treatment |
| AU2007212480B2 (en) | 2006-02-06 | 2010-04-29 | Solventum Intellectual Properties Company | Systems and methods for improved connection to wound dressings in conjunction with reduced pressure wound treatment systems |
| JP5263882B2 (en) * | 2006-02-07 | 2013-08-14 | コビディエン・リミテッド・パートナーシップ | Surgical wound dressing |
| US20080033324A1 (en) * | 2006-03-14 | 2008-02-07 | Cornet Douglas A | System for administering reduced pressure treatment having a manifold with a primary flow passage and a blockage prevention member |
| US9050402B2 (en) * | 2006-03-14 | 2015-06-09 | Kci Licensing, Inc. | Method for percutaneously administering reduced pressure treatment using balloon dissection |
| US8852149B2 (en) | 2006-04-06 | 2014-10-07 | Bluesky Medical Group, Inc. | Instructional medical treatment system |
| WO2007116399A2 (en) * | 2006-04-10 | 2007-10-18 | Bynet Electronics | Grasping tool |
| SE529829C3 (en) * | 2006-04-26 | 2007-12-27 | Forskarpatent I Syd Ab | Mechanical barrier for use with negative pressure, especially for sternums |
| US7615036B2 (en) * | 2006-05-11 | 2009-11-10 | Kalypto Medical, Inc. | Device and method for wound therapy |
| AU2012258379B2 (en) * | 2006-05-11 | 2015-03-19 | Smith & Nephew, Inc. | Device and method for wound therapy |
| US7779625B2 (en) | 2006-05-11 | 2010-08-24 | Kalypto Medical, Inc. | Device and method for wound therapy |
| US8715267B2 (en) * | 2006-06-02 | 2014-05-06 | Kci Medical Resources | Assemblies, systems, and methods for vacuum assisted internal drainage during wound healing |
| US7699831B2 (en) * | 2006-06-02 | 2010-04-20 | Surgical Design Solutions, Llc | Assemblies, systems, and methods for vacuum assisted internal drainage during wound healing |
| US8025650B2 (en) | 2006-06-12 | 2011-09-27 | Wound Care Technologies, Inc. | Negative pressure wound treatment device, and methods |
| SE0601536L (en) * | 2006-07-11 | 2008-01-12 | Moelnlycke Health Care Ab | Coil connection |
| US20090326488A1 (en) * | 2006-07-24 | 2009-12-31 | Klaus Budig | Canister, Suction Device and System For Vacuum Treatment Securing a Fixed Treatment Pressure |
| WO2008012278A1 (en) * | 2006-07-24 | 2008-01-31 | Coloplast A/S | Canister, suction device and system for vacuum treatment securing a fixed treatment pressure |
| GB0712735D0 (en) * | 2006-07-26 | 2007-08-08 | Smith & Nephew | Dressing |
| BRPI0715075B1 (en) | 2006-08-03 | 2021-11-30 | The Board Of Trustees Of The Leland Stanford Junior University | BANDAGE TO IMPROVE THE FORMATION OF A SCAR OR KELOID AT AN INJURY SITE |
| US20080097252A1 (en) * | 2006-08-25 | 2008-04-24 | Eilaz Babaev | Ultrasound and Pressure Therapy Wound Care Device |
| US8366690B2 (en) * | 2006-09-19 | 2013-02-05 | Kci Licensing, Inc. | System and method for determining a fill status of a canister of fluid in a reduced pressure treatment system |
| US7876546B2 (en) * | 2006-09-19 | 2011-01-25 | Kci Licensing Inc. | Component module for a reduced pressure treatment system |
| BRPI0714993A2 (en) | 2006-09-19 | 2013-07-30 | Kci Licensing Inc | reduced pressure treatment system and one-place fabric treatment method |
| US8725528B2 (en) * | 2006-09-19 | 2014-05-13 | Kci Licensing, Inc. | System and method for managing history of patient and wound therapy treatment |
| US8061360B2 (en) | 2006-09-19 | 2011-11-22 | Kci Licensing, Inc. | System and method for locating fluid leaks at a drape of a reduced pressure delivery system |
| US9820888B2 (en) | 2006-09-26 | 2017-11-21 | Smith & Nephew, Inc. | Wound dressing |
| JP5043946B2 (en) * | 2006-09-26 | 2012-10-10 | ボリンジャー・テクノロジーズ・エル・ピー | Negative pressure wound therapy pump system |
| DE602007004546D1 (en) | 2006-09-28 | 2010-03-18 | Tyco Healthcare | Portable wound therapy system |
| BRPI0715320A2 (en) * | 2006-10-13 | 2013-07-09 | Kci Licensing Inc | manually activated reduced pressure treatment system, activating method of a reduced pressure treatment pump and low profile reduced pressure treatment system |
| US8287507B2 (en) * | 2006-10-13 | 2012-10-16 | Kci Licensing, Inc. | Reduced pressure indicator for a reduced pressure source |
| ES2564519T3 (en) * | 2006-10-13 | 2016-03-23 | Bluesky Medical Group Inc. | Pressure control of a medical vacuum pump |
| JP5548454B2 (en) * | 2006-10-17 | 2014-07-16 | ブルースカイ・メディカル・グループ・インコーポレーテッド | Auxiliary power negative pressure wound treatment apparatus and method |
| US7967810B2 (en) | 2006-10-20 | 2011-06-28 | Mary Beth Kelley | Sub-atmospheric wound-care system |
| US20080103489A1 (en) * | 2006-10-26 | 2008-05-01 | The University Of North Carolina At Chapel Hill | Vacuum adherent dressings, systems and methods of use for same |
| US20080103462A1 (en) * | 2006-10-30 | 2008-05-01 | Stuart Wenzel | Wound healing patch with integral passive vacuum and electrostimulation |
| US7931651B2 (en) | 2006-11-17 | 2011-04-26 | Wake Lake University Health Sciences | External fixation assembly and method of use |
| ATE539721T1 (en) | 2006-11-30 | 2012-01-15 | Medela Holding Ag | DEVICE FOR WOUND TREATMENT |
| US8377016B2 (en) | 2007-01-10 | 2013-02-19 | Wake Forest University Health Sciences | Apparatus and method for wound treatment employing periodic sub-atmospheric pressure |
| US20080215020A1 (en) * | 2007-01-22 | 2008-09-04 | Reeves William H | Apparatuses and methods for healing wounds |
| US7758476B2 (en) * | 2007-02-06 | 2010-07-20 | Fitness Botics | Inflatable cushion bag for striking |
| WO2008100446A2 (en) * | 2007-02-09 | 2008-08-21 | Kci Licensing Inc. | Apparatus and method for administering reduced pressure treatment to a tissue site |
| US8267908B2 (en) * | 2007-02-09 | 2012-09-18 | Kci Licensing, Inc. | Delivery tube, system, and method for storing liquid from a tissue site |
| KR101217918B1 (en) * | 2007-02-09 | 2013-01-02 | 케이씨아이 라이센싱 인코포레이티드 | Apparatus and method for managing reduced pressure at a tissue site |
| MX348111B (en) | 2007-02-09 | 2017-05-26 | Kci Licensing Inc | System and method for applying reduced pressure at a tissue site. |
| JP4808811B2 (en) | 2007-02-20 | 2011-11-02 | ケーシーアイ ライセンシング インコーポレイテッド | System and method for identifying leaks from disengaged canisters in a decompression therapy system |
| EP2216057A3 (en) | 2007-05-07 | 2012-05-30 | Carmeli Adahan | Suction system |
| EP2157948B1 (en) | 2007-05-24 | 2017-02-15 | Applied Tissue Technologies Llc | Wound treatment device employing negative pressure |
| US9101357B2 (en) * | 2007-06-08 | 2015-08-11 | Board Of Trustees Of The University Of Arkansas | Physiologic abdominal closure |
| GB0715276D0 (en) * | 2007-08-06 | 2007-09-12 | Smith & Nephew | Pump control |
| GB0712757D0 (en) * | 2007-07-02 | 2007-08-08 | Smith & Nephew | Pressure control |
| GB0712759D0 (en) * | 2007-07-02 | 2007-08-08 | Smith & Nephew | Measuring pressure |
| GB0712737D0 (en) * | 2007-07-02 | 2007-08-08 | Smith & Nephew | Apparatus |
| GB0715259D0 (en) | 2007-08-06 | 2007-09-12 | Smith & Nephew | Canister status determination |
| GB0712739D0 (en) | 2007-07-02 | 2007-08-08 | Smith & Nephew | Apparatus |
| GB0712758D0 (en) * | 2007-07-02 | 2007-08-08 | Smith & Nephew | Battery recharging |
| GB0712763D0 (en) | 2007-07-02 | 2007-08-08 | Smith & Nephew | Apparatus |
| GB0715263D0 (en) * | 2007-08-06 | 2007-09-12 | Smith & Nephew | Determining pressure |
| GB0712764D0 (en) | 2007-07-02 | 2007-08-08 | Smith & Nephew | Carrying Bag |
| GB0712736D0 (en) * | 2007-07-02 | 2007-08-08 | Smith & Nephew | Apparatus |
| US9408954B2 (en) | 2007-07-02 | 2016-08-09 | Smith & Nephew Plc | Systems and methods for controlling operation of negative pressure wound therapy apparatus |
| US7790946B2 (en) * | 2007-07-06 | 2010-09-07 | Tyco Healthcare Group Lp | Subatmospheric pressure wound therapy dressing |
| GB2450926A (en) * | 2007-07-12 | 2009-01-14 | Talley Group Ltd | Medical apparatus for collecting fluid |
| US20120226306A1 (en) | 2011-03-03 | 2012-09-06 | Jasper Jackson | Controlled strain skin treatment devices and methods |
| US9358009B2 (en) | 2007-08-03 | 2016-06-07 | Neodyne Biosciences, Inc. | Skin straining devices and methods |
| US20090043268A1 (en) * | 2007-08-06 | 2009-02-12 | Eddy Patrick E | Wound treatment system and suction regulator for use therewith |
| US12121648B2 (en) | 2007-08-06 | 2024-10-22 | Smith & Nephew Plc | Canister status determination |
| GB0715212D0 (en) * | 2007-08-06 | 2007-09-12 | Smith & Nephew | Apparatus |
| CA2697040C (en) * | 2007-08-21 | 2016-10-25 | Richard Paul Mormino | Reduced-pressure system and method employing a gasket |
| US20090099519A1 (en) * | 2007-09-07 | 2009-04-16 | Albert Einstein Healthcare Network | Advanced abdominal dressing for the treatment of the postoperative hypothermic patients with an open abdomen |
| US9023001B2 (en) * | 2007-09-12 | 2015-05-05 | Heal-Ex, Llc | Systems and methods for providing a debriding wound vacuum |
| USD601692S1 (en) * | 2007-09-17 | 2009-10-06 | Kci Licensing, Inc. | Wound therapy device |
| US8834520B2 (en) | 2007-10-10 | 2014-09-16 | Wake Forest University | Devices and methods for treating spinal cord tissue |
| WO2009049232A1 (en) * | 2007-10-11 | 2009-04-16 | Spiracur, Inc. | Closed incision negative pressure wound therapy device and methods of use |
| ES2715605T3 (en) | 2007-11-21 | 2019-06-05 | Smith & Nephew | Wound dressing |
| EP2987510B1 (en) | 2007-11-21 | 2020-10-28 | T.J. Smith & Nephew Limited | Suction device and dressing |
| JP5613566B2 (en) | 2007-11-21 | 2014-10-22 | スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company | Wound dressing |
| GB0722820D0 (en) | 2007-11-21 | 2008-01-02 | Smith & Nephew | Vacuum assisted wound dressing |
| WO2009068667A2 (en) * | 2007-11-30 | 2009-06-04 | Coloplast A/S | Collecting container for wound exudate |
| US11253399B2 (en) | 2007-12-06 | 2022-02-22 | Smith & Nephew Plc | Wound filling apparatuses and methods |
| GB0723855D0 (en) | 2007-12-06 | 2008-01-16 | Smith & Nephew | Apparatus and method for wound volume measurement |
| GB0723875D0 (en) | 2007-12-06 | 2008-01-16 | Smith & Nephew | Wound management |
| US20130096518A1 (en) | 2007-12-06 | 2013-04-18 | Smith & Nephew Plc | Wound filling apparatuses and methods |
| GB0723876D0 (en) | 2007-12-06 | 2008-01-16 | Smith & Nephew | Apparatus and method for topical negative pressure therapy |
| GB0723872D0 (en) | 2007-12-06 | 2008-01-16 | Smith & Nephew | Apparatus for topical negative pressure therapy |
| EP2214750B1 (en) | 2007-12-07 | 2016-02-24 | Medela Holding AG | Wound cover connecting device |
| GB0724564D0 (en) * | 2007-12-18 | 2008-01-30 | Smith & Nephew | Portable wound therapy apparatus and method |
| GB2455962A (en) | 2007-12-24 | 2009-07-01 | Ethicon Inc | Reinforced adhesive backing sheet, for plaster |
| US8366692B2 (en) | 2008-01-08 | 2013-02-05 | Richard Scott Weston | Sustained variable negative pressure wound treatment and method of controlling same |
| AU2009204094B2 (en) | 2008-01-09 | 2014-07-24 | Wake Forest University Health Sciences | Device and method for treating central nervous system pathology |
| US20090177051A1 (en) * | 2008-01-09 | 2009-07-09 | Heal-Ex, Llc | Systems and methods for providing sub-dressing wound analysis and therapy |
| US8085720B2 (en) * | 2008-01-25 | 2011-12-27 | At&T Mobility Ii Llc | Channel element packing and repacking |
| US20090216204A1 (en) * | 2008-02-27 | 2009-08-27 | Sai Bhavaraju | Auto-replenishing, wound-dressing apparatus and method |
| JP5118212B2 (en) | 2008-03-05 | 2013-01-16 | ケーシーアイ ライセンシング インコーポレイテッド | Method for applying pressure to a dressing and a tissue site to collect and contain liquid from the tissue site |
| US8298200B2 (en) | 2009-06-01 | 2012-10-30 | Tyco Healthcare Group Lp | System for providing continual drainage in negative pressure wound therapy |
| US9033942B2 (en) | 2008-03-07 | 2015-05-19 | Smith & Nephew, Inc. | Wound dressing port and associated wound dressing |
| US8021347B2 (en) | 2008-07-21 | 2011-09-20 | Tyco Healthcare Group Lp | Thin film wound dressing |
| AU2009223037A1 (en) | 2008-03-12 | 2009-09-17 | Smith & Nephew Plc | Negative pressure dressing and method of using same |
| US20090234306A1 (en) | 2008-03-13 | 2009-09-17 | Tyco Healthcare Group Lp | Vacuum wound therapy wound dressing with variable performance zones |
| GB0804654D0 (en) | 2008-03-13 | 2008-04-16 | Smith & Nephew | Vacuum closure device |
| EP2262548B1 (en) * | 2008-03-13 | 2018-09-26 | KCI Licensing, Inc. | System for reduced pressure charging |
| US8152785B2 (en) * | 2008-03-13 | 2012-04-10 | Tyco Healthcare Group Lp | Vacuum port for vacuum wound therapy |
| US8986270B2 (en) | 2008-04-09 | 2015-03-24 | Mölnlycke Health Care Ab | Device for treatment of wounds and a method for manufacturing of wound pads |
| SE533167C2 (en) * | 2008-04-09 | 2010-07-13 | Moelnlycke Health Care Ab | Device for treating wounds and means for making wound pads |
| CN103893841B (en) | 2008-05-02 | 2016-05-11 | 凯希特许有限公司 | There is the manual activation reduced pressure treatment pump that regulates pressure capability |
| US20090281526A1 (en) * | 2008-05-09 | 2009-11-12 | Tyco Healthcare Group Lp | Negative Pressure Wound Therapy Apparatus Including a Fluid Line Coupling |
| US8414519B2 (en) | 2008-05-21 | 2013-04-09 | Covidien Lp | Wound therapy system with portable container apparatus |
| US10912869B2 (en) | 2008-05-21 | 2021-02-09 | Smith & Nephew, Inc. | Wound therapy system with related methods therefor |
| US8177763B2 (en) | 2008-09-05 | 2012-05-15 | Tyco Healthcare Group Lp | Canister membrane for wound therapy system |
| EP2288321B1 (en) * | 2008-05-27 | 2019-10-23 | Smith & Nephew, Inc. | Control unit with pump module for a negative pressure wound therapy device |
| AU2009251810B2 (en) * | 2008-05-27 | 2013-03-28 | Smith & Nephew, Inc. | Negative pressure wound therapy device |
| MX2010013068A (en) | 2008-05-30 | 2010-12-21 | Kci Licensing Inc | Reduced-pressure, linear wound closing bolsters and systems. |
| MX2010013133A (en) * | 2008-05-30 | 2010-12-20 | Kci Licensing Inc | Dressing assemblies for wound treatment using reduced pressure. |
| CN102065919B (en) * | 2008-06-04 | 2014-12-10 | 凯希特许有限公司 | Reduced pressure liquid collection tank with multi-directional filter |
| WO2009149203A1 (en) | 2008-06-04 | 2009-12-10 | Kci Licensing, Inc. | Detecting infection in reduced pressure wound treatment |
| GB0811572D0 (en) * | 2008-06-24 | 2008-07-30 | Smith & Nephew | Negitive pressure wound theraphy device |
| WO2009158480A2 (en) * | 2008-06-26 | 2009-12-30 | Kci Licensing, Inc. | Stimulation of cartilage formation using reduced pressure treatment |
| US8257326B2 (en) | 2008-06-30 | 2012-09-04 | Tyco Healthcare Group Lp | Apparatus for enhancing wound healing |
| JP5571663B2 (en) | 2008-07-08 | 2014-08-13 | スミス アンド ネフュー インコーポレイテッド | Portable negative pressure wound therapy device |
| WO2010006182A2 (en) * | 2008-07-11 | 2010-01-14 | Kci Licensing, Inc. | Manually-actuated, reduced-pressure systems for treating wounds |
| RU2544093C2 (en) | 2008-07-18 | 2015-03-10 | Уэйк Форест Юниверсити Хелс Сайенсиз | Device and method for cardiac tissue modulation by local application of pressure below atmospheric for minimising cell death and injury |
| US20100022990A1 (en) * | 2008-07-25 | 2010-01-28 | Boehringer Technologies, L.P. | Pump system for negative pressure wound therapy and improvements thereon |
| US20100036333A1 (en) * | 2008-08-06 | 2010-02-11 | Schenk Iii Albert A | Fluid level sensor for a container of a negative pressure wound treatment system |
| HUE037556T2 (en) | 2008-08-08 | 2018-09-28 | Smith & Nephew Inc | Wound dressing of continuous fibers |
| RU2472534C2 (en) * | 2008-08-08 | 2013-01-20 | КейСиАй ЛАЙСЕНЗИНГ, ИНК. | Low pressure therapeutic systems comprising reservoir controls |
| US8827983B2 (en) | 2008-08-21 | 2014-09-09 | Smith & Nephew, Inc. | Sensor with electrical contact protection for use in fluid collection canister and negative pressure wound therapy systems including same |
| US20200171217A9 (en) * | 2008-08-21 | 2020-06-04 | Smith & Nephew, Inc. | Canister for a negative pressure wound therapy system |
| US8251979B2 (en) | 2009-05-11 | 2012-08-28 | Tyco Healthcare Group Lp | Orientation independent canister for a negative pressure wound therapy device |
| US8216198B2 (en) | 2009-01-09 | 2012-07-10 | Tyco Healthcare Group Lp | Canister for receiving wound exudate in a negative pressure therapy system |
| US9414968B2 (en) | 2008-09-05 | 2016-08-16 | Smith & Nephew, Inc. | Three-dimensional porous film contact layer with improved wound healing |
| CN104189964B (en) | 2008-11-18 | 2016-10-05 | 凯希特许有限公司 | Reduced-pressure, composite manifolds |
| WO2010059730A2 (en) | 2008-11-19 | 2010-05-27 | Kci Licensing, Inc. | Dynamic, reduced-pressure treatment systems and methods |
| DE102008061535A1 (en) * | 2008-12-03 | 2010-06-10 | Aesculap Ag | Medical absorbent body, in particular for the removal of wound fluids from human and / or animal body cavities, and method for its production |
| US20100150991A1 (en) * | 2008-12-15 | 2010-06-17 | Bernstein Brent H | Combination Wound Therapy |
| US8529528B2 (en) * | 2008-12-24 | 2013-09-10 | Kci Licensing, Inc. | Reduced-pressure wound treatment systems and methods employing microstrain-inducing manifolds |
| US8708984B2 (en) * | 2008-12-24 | 2014-04-29 | Kci Licensing, Inc. | Reduced-pressure wound treatment systems and methods employing manifold structures |
| US8486032B2 (en) * | 2008-12-24 | 2013-07-16 | Kci Licensing, Inc. | Reduced-pressure treatment systems and methods employing debridement mechanisms |
| EP2370009B1 (en) * | 2008-12-30 | 2017-08-02 | KCI Licensing, Inc. | Reduced pressure augmentation of microfracture for cartilage repair |
| KR20110102931A (en) * | 2008-12-31 | 2011-09-19 | 케이씨아이 라이센싱 인코포레이티드 | Manifolds, Systems and Methods of Decompression of Subcutaneous Tissue Sites |
| RU2011122544A (en) | 2008-12-31 | 2013-02-10 | КейСиАй Лайсензинг Инк. | SYSTEMS FOR MAKING A FLOW OF A FLUID TO A NERVOUS FABRIC |
| GB0900423D0 (en) | 2009-01-12 | 2009-02-11 | Smith & Nephew | Negative pressure device |
| US8162907B2 (en) | 2009-01-20 | 2012-04-24 | Tyco Healthcare Group Lp | Method and apparatus for bridging from a dressing in negative pressure wound therapy |
| US20100204752A1 (en) * | 2009-02-10 | 2010-08-12 | Tyco Healthcare Group Lp | Negative Pressure and Electrostimulation Therapy Apparatus |
| GB0902368D0 (en) | 2009-02-13 | 2009-04-01 | Smith & Nephew | Wound packing |
| US7873772B2 (en) * | 2009-02-17 | 2011-01-18 | Tyco Healthcare Group Lp | Portable and programmable medical device |
| GB0902816D0 (en) | 2009-02-19 | 2009-04-08 | Smith & Nephew | Fluid communication path |
| US8882678B2 (en) | 2009-03-13 | 2014-11-11 | Atrium Medical Corporation | Pleural drainage system and method of use |
| US8444614B2 (en) | 2009-04-10 | 2013-05-21 | Spiracur, Inc. | Methods and devices for applying closed incision negative pressure wound therapy |
| EP3235525B1 (en) | 2009-04-10 | 2018-11-07 | KCI Licensing, Inc. | Devices for applying closed incision negative pressure wound therapy |
| EP2419157A4 (en) | 2009-04-17 | 2018-01-03 | Kalypto Medical, Inc. | Negative pressure wound therapy device |
| US8591485B2 (en) * | 2009-04-23 | 2013-11-26 | Prospera Technologies, LLC | System, method, and pump to prevent pump contamination during negative pressure wound therapy |
| US20100305523A1 (en) * | 2009-05-27 | 2010-12-02 | Tyco Healthcare Group Lp | Active Exudate Control System |
| US20110196321A1 (en) | 2009-06-10 | 2011-08-11 | Tyco Healthcare Group Lp | Fluid Collection Canister Including Canister Top with Filter Membrane and Negative Pressure Wound Therapy Systems Including Same |
| US20100318043A1 (en) * | 2009-06-10 | 2010-12-16 | Tyco Healthcare Group Lp | Negative Pressure Wound Therapy Systems Capable of Vacuum Measurement Independent of Orientation |
| US20100324516A1 (en) | 2009-06-18 | 2010-12-23 | Tyco Healthcare Group Lp | Apparatus for Vacuum Bridging and/or Exudate Collection |
| US20110015585A1 (en) * | 2009-07-14 | 2011-01-20 | Pal Svedman | Method and device for providing intermittent negative pressure wound healing |
| US20110112490A1 (en) * | 2009-07-14 | 2011-05-12 | Vogel David C | Releasably Sealable Wound Dressing for NPWT |
| US20110015589A1 (en) * | 2009-07-14 | 2011-01-20 | Pal Svedman | Disposable therapeutic device |
| US8444613B2 (en) * | 2009-07-14 | 2013-05-21 | Richard Vogel | Pump leak monitor for negative pressure wound therapy |
| US20110015590A1 (en) * | 2009-07-14 | 2011-01-20 | Pal Svedman | Disposable therapeutic device |
| US20110015619A1 (en) * | 2009-07-16 | 2011-01-20 | Pal Svedman | Wound dressings for negative pressure therapy in deep wounds and method of using |
| CA2770182C (en) | 2009-08-05 | 2016-09-27 | Tyco Healthcare Group Lp | Surgical wound dressing incorporating connected hydrogel beads having an embedded electrode therein and related methods therefor |
| IN2012DN02159A (en) | 2009-08-11 | 2015-08-07 | Neodyne Biosciences Inc | |
| DE102009038130A1 (en) * | 2009-08-12 | 2011-02-17 | ATMOS Medizin Technik GmbH & Co. KG | A user portable device for providing negative pressure for medical applications |
| DE102009038131A1 (en) * | 2009-08-12 | 2011-02-17 | ATMOS Medizin Technik GmbH & Co. KG | A user portable device for providing negative pressure for medical applications |
| US8447375B2 (en) | 2009-08-13 | 2013-05-21 | J&M Shuler Medical, Inc. | Methods and dressing systems for promoting healing of injured tissue |
| US8690844B2 (en) * | 2009-08-27 | 2014-04-08 | Kci Licensing, Inc. | Re-epithelialization wound dressings and systems |
| US20110054420A1 (en) * | 2009-08-27 | 2011-03-03 | Christopher Brian Locke | Reduced-pressure wound dressings and systems for re-epithelialization and granulation |
| US20110112574A1 (en) * | 2009-09-11 | 2011-05-12 | Svedman Pal Paul | Device for manual traction wound closure |
| EP2481442B1 (en) * | 2009-09-22 | 2020-01-22 | Wuhan VSD Medical Science & Technology Co., Ltd. | Vacuum sealing drainage device for healing wound on body surface |
| US8529526B2 (en) * | 2009-10-20 | 2013-09-10 | Kci Licensing, Inc. | Dressing reduced-pressure indicators, systems, and methods |
| US20110106058A1 (en) * | 2009-10-29 | 2011-05-05 | Pal Svedman | Adhesive Flange Attachment Reinforcer For Suction Port |
| US20110106027A1 (en) * | 2009-11-05 | 2011-05-05 | Tyco Healthcare Group Lp | Chemically Coated Screen for Use with Hydrophobic Filters |
| ES2338855B2 (en) * | 2009-11-18 | 2011-12-30 | Nicolas Anthony Costovici | DEVICE FOR THE INSUFLATE OF GAS AND COLLECTION OF CORPORATE CAVITY EFFLUENTS OF AN INDIVIDUAL. |
| KR101063342B1 (en) | 2009-12-04 | 2011-09-07 | 주식회사 바이오알파 | Portable vacuum generator and medical suction device using same |
| AU2010341491B2 (en) | 2009-12-22 | 2015-05-14 | Smith & Nephew, Inc. | Apparatuses and methods for negative pressure wound therapy |
| US8066243B2 (en) * | 2010-01-08 | 2011-11-29 | Richard C. Vogel | Adapter for portable negative pressure wound therapy device |
| WO2011090986A2 (en) | 2010-01-20 | 2011-07-28 | Kci Licensing, Inc. | Wound-connection pads for fluid instillation and negative pressure wound therapy, and systems and methods |
| US8791315B2 (en) | 2010-02-26 | 2014-07-29 | Smith & Nephew, Inc. | Systems and methods for using negative pressure wound therapy to manage open abdominal wounds |
| US8430867B2 (en) * | 2010-03-12 | 2013-04-30 | Kci Licensing, Inc. | Reduced-pressure dressing connection pads, systems, and methods |
| US8814842B2 (en) | 2010-03-16 | 2014-08-26 | Kci Licensing, Inc. | Delivery-and-fluid-storage bridges for use with reduced-pressure systems |
| US8604265B2 (en) | 2010-04-16 | 2013-12-10 | Kci Licensing, Inc. | Dressings and methods for treating a tissue site on a patient |
| US9061095B2 (en) | 2010-04-27 | 2015-06-23 | Smith & Nephew Plc | Wound dressing and method of use |
| US8623047B2 (en) | 2010-04-30 | 2014-01-07 | Kci Licensing, Inc. | System and method for sealing an incisional wound |
| USRE48117E1 (en) | 2010-05-07 | 2020-07-28 | Smith & Nephew, Inc. | Apparatuses and methods for negative pressure wound therapy |
| US8403902B2 (en) * | 2010-05-18 | 2013-03-26 | Kci Licensing, Inc. | Reduced-pressure medical systems and methods employing a moisture processing device |
| USD692565S1 (en) | 2010-06-03 | 2013-10-29 | Smith & Nephew, Inc. | Organ protection layer |
| US10639404B2 (en) | 2010-06-03 | 2020-05-05 | Wound Healing Technologies, Llc | Wound dressing |
| GB201011173D0 (en) | 2010-07-02 | 2010-08-18 | Smith & Nephew | Provision of wound filler |
| DE102010034819A1 (en) * | 2010-08-19 | 2012-02-23 | Paul Hartmann Ag | Use of a polyurethane foam as wound dressing in negative pressure therapy |
| GB201015656D0 (en) | 2010-09-20 | 2010-10-27 | Smith & Nephew | Pressure control apparatus |
| CA3089920C (en) | 2010-10-12 | 2024-01-09 | Smith & Nephew, Inc. | A medical device configured to communicate with a remote computer system |
| CA140189S (en) | 2010-10-15 | 2011-11-07 | Smith & Nephew | Medical dressing |
| CA140188S (en) | 2010-10-15 | 2011-11-07 | Smith & Nephew | Medical dressing |
| EP3053608B1 (en) * | 2010-11-17 | 2017-10-18 | KCI Licensing, Inc. | Systems for managing reduced pressure at a plurality of wound sites |
| EP3090765B1 (en) * | 2010-11-17 | 2018-02-28 | KCI Licensing, Inc. | Systems for subcutaneous administration of reduced pressure employing reconfigurable lumens |
| JP5715383B2 (en) * | 2010-11-18 | 2015-05-07 | 学校法人 久留米大学 | Negative pressure wound therapy equipment |
| CN103403095B (en) | 2010-11-25 | 2016-12-14 | 史密夫及内修公开有限公司 | Compositions I - II and their products and uses |
| GB201020005D0 (en) | 2010-11-25 | 2011-01-12 | Smith & Nephew | Composition 1-1 |
| JP6241877B2 (en) | 2010-12-01 | 2017-12-06 | ダニエル・エデュアード・クライナー | Instruments used for intraluminal decompression therapy |
| US8944067B2 (en) * | 2010-12-15 | 2015-02-03 | Kci Licensing, Inc. | Targeted delivery of magnetically tagged active agents in combination with negative pressure wound therapy |
| EP2654821B1 (en) | 2010-12-22 | 2019-05-08 | Smith & Nephew, Inc. | Apparatuses for negative pressure wound therapy |
| USD714433S1 (en) | 2010-12-22 | 2014-09-30 | Smith & Nephew, Inc. | Suction adapter |
| CN103415272B (en) | 2011-01-07 | 2015-04-29 | 尼欧迪纳生物科学公司 | Wound or skin treatment devices and methods |
| US9050175B2 (en) | 2011-01-20 | 2015-06-09 | Scott Stephan | Therapeutic treatment pad |
| GB2488749A (en) | 2011-01-31 | 2012-09-12 | Systagenix Wound Man Ip Co Bv | Laminated silicone coated wound dressing |
| CN103501709B (en) | 2011-02-04 | 2016-11-09 | 马萨诸塞州大学 | Negative pressure wound closure device |
| US9421132B2 (en) | 2011-02-04 | 2016-08-23 | University Of Massachusetts | Negative pressure wound closure device |
| DE102011011831A1 (en) * | 2011-02-10 | 2012-08-16 | Paul Hartmann Ag | Apparatus for providing negative pressure for medical applications |
| US9610389B2 (en) | 2011-02-28 | 2017-04-04 | The United States Of America As Represented By The Secretary Of The Navy | Self-contained cryothetrapy and suction system |
| CN103517665B (en) * | 2011-03-11 | 2016-06-29 | L&R国际有限责任及两合公司 | Vacuum systems and endoscopic devices for endoscopic vacuum therapy |
| US9302034B2 (en) | 2011-04-04 | 2016-04-05 | Smith & Nephew, Inc. | Negative pressure wound therapy dressing |
| RU2462207C1 (en) * | 2011-04-13 | 2012-09-27 | Государственное образовательное учреждение высшего профессионального образования "Ярославская государственная медицинская академия" Министерства здравоохранения и социального развития | Method of treating ulcer defects of mucous membrane of gastrointestinal tract |
| GB201106491D0 (en) | 2011-04-15 | 2011-06-01 | Systagenix Wound Man Ip Co Bv | Patterened silicone coating |
| DE102011075844A1 (en) | 2011-05-13 | 2012-11-15 | Paul Hartmann Ag | Device for providing negative pressure for the negative pressure treatment of wounds |
| GB201108229D0 (en) | 2011-05-17 | 2011-06-29 | Smith & Nephew | Tissue healing |
| AU2011368701A1 (en) | 2011-05-24 | 2013-12-12 | Smith & Nephew, Inc. | Device with controller and pump modules for providing negative pressure for wound therapy |
| US9058634B2 (en) | 2011-05-24 | 2015-06-16 | Kalypto Medical, Inc. | Method for providing a negative pressure wound therapy pump device |
| US9067003B2 (en) | 2011-05-26 | 2015-06-30 | Kalypto Medical, Inc. | Method for providing negative pressure to a negative pressure wound therapy bandage |
| EP3299041B1 (en) * | 2011-05-27 | 2021-05-19 | 3M Innovative Properties Company | Systems and methods for delivering fluid to a wound therapy dressing |
| WO2012168678A1 (en) | 2011-06-07 | 2012-12-13 | Smith & Nephew Plc | Wound contacting members and methods |
| CN102218189A (en) * | 2011-06-13 | 2011-10-19 | 朱新生 | Special-purposed flexible cushion for negative pressure treatment |
| EP2731564B1 (en) | 2011-07-14 | 2019-04-24 | Smith & Nephew PLC | Wound dressing and method of treatment |
| US10512587B2 (en) | 2011-07-27 | 2019-12-24 | Thermotek, Inc. | Method and apparatus for scalp thermal treatment |
| CA3058744A1 (en) * | 2011-08-31 | 2013-03-07 | Christopher Brian Locke | Inline storage pouches for use with body fluids |
| US9327063B2 (en) * | 2011-09-13 | 2016-05-03 | Kci Licensing, Inc. | Reduced-pressure canisters having hydrophobic pores |
| US9393354B2 (en) | 2011-11-01 | 2016-07-19 | J&M Shuler Medical, Inc. | Mechanical wound therapy for sub-atmospheric wound care system |
| US9084845B2 (en) | 2011-11-02 | 2015-07-21 | Smith & Nephew Plc | Reduced pressure therapy apparatuses and methods of using same |
| US20150159066A1 (en) | 2011-11-25 | 2015-06-11 | Smith & Nephew Plc | Composition, apparatus, kit and method and uses thereof |
| US10561359B2 (en) | 2011-12-02 | 2020-02-18 | Neodyne Biosciences, Inc. | Elastic devices, methods, systems and kits for selecting skin treatment devices |
| US10940047B2 (en) | 2011-12-16 | 2021-03-09 | Kci Licensing, Inc. | Sealing systems and methods employing a hybrid switchable drape |
| CN111419540A (en) | 2011-12-16 | 2020-07-17 | 凯希特许有限公司 | Releasable medical drape |
| US10213350B2 (en) | 2012-02-08 | 2019-02-26 | Neodyne Biosciences, Inc. | Radially tensioned wound or skin treatment devices and methods |
| EP3338821B1 (en) | 2012-03-12 | 2020-05-06 | Smith & Nephew plc | Dressing for reduced pressure wound therapy |
| JP6276251B2 (en) | 2012-03-20 | 2018-02-07 | スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company | Operation control of decompression therapy system based on dynamic determination of duty cycle threshold |
| US8858517B2 (en) | 2012-04-05 | 2014-10-14 | Oakwell Distribution, Inc. | Power saving control system for negative pressure wound therapy pumps |
| US20130267918A1 (en) | 2012-04-05 | 2013-10-10 | Li Pan | Negative Pressure Wound Therapy Pump with Tilt and Fill Sensors |
| WO2013162728A1 (en) | 2012-04-24 | 2013-10-31 | Thermotek, Inc. | Method and system for therapeutic use of ultra-violet light |
| DE102012008301A1 (en) * | 2012-04-26 | 2013-10-31 | Paul Hartmann Ag | Fastening device for a negative pressure therapy device |
| AU346291S (en) | 2012-05-15 | 2013-01-09 | Smith & Nephew | Medical dressing |
| US9427505B2 (en) | 2012-05-15 | 2016-08-30 | Smith & Nephew Plc | Negative pressure wound therapy apparatus |
| WO2013173739A2 (en) | 2012-05-18 | 2013-11-21 | Basf Se | An encapsulated particle |
| BR112014028751B1 (en) | 2012-05-18 | 2020-12-22 | Basf Se | encapsulated particle, and method for forming an encapsulated particle |
| MX2014014265A (en) | 2012-05-22 | 2015-06-23 | Smith & Nephew | Wound closure device. |
| CA2874392A1 (en) | 2012-05-22 | 2013-11-28 | Smith & Nephew Plc | Apparatuses and methods for wound therapy |
| ES2673223T3 (en) | 2012-05-23 | 2018-06-20 | Smith & Nephew Plc. | Apparatus for negative pressure wound therapy |
| JP6285421B2 (en) | 2012-05-24 | 2018-02-28 | スミス アンド ネフュー インコーポレイテッド | Device and method for treating and closing wounds with negative pressure |
| ES2762228T3 (en) | 2012-06-03 | 2020-05-22 | Daniel Eduard Kleiner | Endoluminal vacuum therapy device |
| US9138514B2 (en) * | 2012-06-12 | 2015-09-22 | H. George Brennan | Medical suction system and disposable container |
| US9962295B2 (en) | 2012-07-16 | 2018-05-08 | Smith & Nephew, Inc. | Negative pressure wound closure device |
| US10076449B2 (en) | 2012-08-01 | 2018-09-18 | Smith & Nephew Plc | Wound dressing and method of treatment |
| RU2015106112A (en) | 2012-08-01 | 2016-09-20 | СМИТ ЭНД НЕФЬЮ ПиЭлСи | Wound dressing |
| IN2015DN02866A (en) | 2012-09-14 | 2015-09-11 | Kci Licensing Inc | |
| DE202012009246U1 (en) | 2012-09-25 | 2012-11-09 | Norbert Neubauer | Device for the removal of wound secretions from body cavities and wounds |
| WO2014066057A1 (en) * | 2012-10-25 | 2014-05-01 | Kci Licensing, Inc. | Wound connection pad with pneumatic connection confirmation ability |
| CN103800955A (en) * | 2012-11-09 | 2014-05-21 | 苏州工业园区职业技术学院 | Ultrasonic wave trauma cleaning equipment |
| DE202012010776U1 (en) | 2012-11-10 | 2012-11-29 | Norbert Neubauer | Device for the removal of wound secretions from body cavities and wounds |
| DE202012010969U1 (en) | 2012-11-15 | 2012-12-13 | Norbert Neubauer | Device for the removal of wound secretions from body cavities and wounds |
| EP3669842B1 (en) | 2012-11-16 | 2023-09-27 | 3M Innovative Properties Company | Medical drape with pattern adhesive layers |
| JP6516677B2 (en) | 2012-11-16 | 2019-05-22 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Encapsulated particles |
| GB201222770D0 (en) | 2012-12-18 | 2013-01-30 | Systagenix Wound Man Ip Co Bv | Wound dressing with adhesive margin |
| GB201317746D0 (en) | 2013-10-08 | 2013-11-20 | Smith & Nephew | PH indicator |
| ES2655788T5 (en) | 2013-01-28 | 2024-05-22 | Moelnlycke Health Care Ab | Suction device |
| US8926587B2 (en) * | 2013-02-18 | 2015-01-06 | King Abdullah International Medical Research Center | Pneumatic device for treating intussusception |
| US10300180B1 (en) | 2013-03-11 | 2019-05-28 | Thermotek, Inc. | Wound care and infusion method and system utilizing a therapeutic agent |
| CA2902776C (en) | 2013-03-13 | 2023-03-07 | Smith & Nephew Inc. | Wound treatment apparatus and use thereof |
| JP2016517290A (en) | 2013-03-14 | 2016-06-16 | スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company | Compressible wound filler and system and method for use in treating wounds with negative pressure |
| US9737649B2 (en) | 2013-03-14 | 2017-08-22 | Smith & Nephew, Inc. | Systems and methods for applying reduced pressure therapy |
| EP2968706B1 (en) | 2013-03-14 | 2022-12-07 | Smith & Nephew, Inc. | Systems and methods for applying reduced pressure therapy |
| USD764654S1 (en) | 2014-03-13 | 2016-08-23 | Smith & Nephew, Inc. | Canister for collecting wound exudate |
| US10695226B2 (en) | 2013-03-15 | 2020-06-30 | Smith & Nephew Plc | Wound dressing and method of treatment |
| EP2968647B1 (en) | 2013-03-15 | 2022-06-29 | Smith & Nephew plc | Wound dressing sealant and use thereof |
| CN105407932A (en) | 2013-03-15 | 2016-03-16 | 史密夫及内修公开有限公司 | Wound dressing and method of treatment |
| CN109730806B (en) | 2013-03-15 | 2023-01-24 | 伊瑟拉医疗公司 | Vascular treatment device and method |
| US20160120706A1 (en) | 2013-03-15 | 2016-05-05 | Smith & Nephew Plc | Wound dressing sealant and use thereof |
| AU2014266943B2 (en) | 2013-05-10 | 2018-03-01 | Smith & Nephew Plc | Fluidic connector for irrigation and aspiration of wounds |
| DE202013005824U1 (en) | 2013-06-28 | 2013-09-03 | Norbert Neubauer | wound film |
| CA2918157A1 (en) | 2013-07-16 | 2015-01-22 | Smith & Nephew Plc | Apparatus for wound therapy |
| RU2016108629A (en) | 2013-08-13 | 2017-09-19 | Смит Энд Нефью, Инк. | SYSTEMS AND METHODS FOR USING LOW PRESSURE THERAPY |
| EP3038667B1 (en) | 2013-08-26 | 2019-10-09 | KCI Licensing, Inc. | Dressing interface with moisture controlling feature and sealing function |
| WO2015061352A2 (en) | 2013-10-21 | 2015-04-30 | Smith & Nephew, Inc. | Negative pressure wound closure device |
| US10946124B2 (en) | 2013-10-28 | 2021-03-16 | Kci Licensing, Inc. | Hybrid sealing tape |
| ES2670710T3 (en) | 2013-10-30 | 2018-05-31 | Kci Licensing, Inc. | Dressing with differentially sized perforations |
| US9956120B2 (en) | 2013-10-30 | 2018-05-01 | Kci Licensing, Inc. | Dressing with sealing and retention interface |
| EP3513773A1 (en) | 2013-10-30 | 2019-07-24 | KCI Licensing, Inc. | Condensate absorbing and dissipating system |
| EP3062833B1 (en) | 2013-10-30 | 2019-04-17 | KCI Licensing, Inc. | Absorbent conduit and system |
| US9669233B2 (en) | 2013-11-11 | 2017-06-06 | Thermotek, Inc. | Method and system for wound care |
| WO2015110409A1 (en) | 2014-01-21 | 2015-07-30 | Smith & Nephew Plc | Wound treatment apparatuses |
| MX2016009477A (en) | 2014-01-21 | 2016-10-13 | Smith & Nephew | FOLDING BANDAGE FOR THE TREATMENT OF WOUNDS WITH NEGATIVE PRESSURE. |
| CN103877670B (en) * | 2014-02-28 | 2016-06-15 | 昆山韦睿医疗科技有限公司 | Negative pressure wound therapy device |
| US11026844B2 (en) | 2014-03-03 | 2021-06-08 | Kci Licensing, Inc. | Low profile flexible pressure transmission conduit |
| CN103861199B (en) * | 2014-03-31 | 2016-02-10 | 陈克明 | The Portable wound surface of tool closed negative pressure drainage and pre-washing function is protected and therapy system |
| US10406266B2 (en) | 2014-05-02 | 2019-09-10 | Kci Licensing, Inc. | Fluid storage devices, systems, and methods |
| EP3142590B1 (en) | 2014-05-16 | 2020-05-13 | Smith & Nephew plc | Reduced pressure wound therapy kit and packaging |
| USD764048S1 (en) | 2014-05-28 | 2016-08-16 | Smith & Nephew, Inc. | Device for applying negative pressure to a wound |
| USD764653S1 (en) | 2014-05-28 | 2016-08-23 | Smith & Nephew, Inc. | Canister for collecting wound exudate |
| USD764047S1 (en) | 2014-05-28 | 2016-08-16 | Smith & Nephew, Inc. | Therapy unit assembly |
| USD770173S1 (en) | 2014-06-02 | 2016-11-01 | Smith & Nephew, Inc. | Bag |
| USD765830S1 (en) | 2014-06-02 | 2016-09-06 | Smith & Nephew, Inc. | Therapy unit assembly |
| USD758851S1 (en) | 2014-06-03 | 2016-06-14 | Smith & Nephew Plc | Packaging for a wound therapy system |
| EP3151795B1 (en) | 2014-06-05 | 2017-09-27 | KCI Licensing, Inc. | Dressing with fluid acquisition and distribution characteristics |
| US10610414B2 (en) | 2014-06-18 | 2020-04-07 | Smith & Nephew Plc | Wound dressing and method of treatment |
| US11007082B2 (en) | 2014-07-23 | 2021-05-18 | Innovative Therapies Inc. | Foam laminate dressing |
| US12133789B2 (en) | 2014-07-31 | 2024-11-05 | Smith & Nephew, Inc. | Reduced pressure therapy apparatus construction and control |
| CA2956572C (en) | 2014-07-31 | 2023-06-27 | Smith & Nephew, Inc. | Systems and methods for applying reduced pressure therapy |
| US9770369B2 (en) | 2014-08-08 | 2017-09-26 | Neogenix, Llc | Wound care devices, apparatus, and treatment methods |
| DE102014116910A1 (en) * | 2014-11-19 | 2016-05-19 | Paul Hartmann Ag | Electronic fluid sensor for negative pressure therapy device |
| EP3233001B1 (en) | 2014-12-17 | 2020-06-17 | KCI Licensing, Inc. | Dressing with offloading capability |
| JP6725528B2 (en) | 2014-12-22 | 2020-07-22 | スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company | Device and method for negative pressure wound therapy |
| DE102014226890A1 (en) * | 2014-12-23 | 2016-06-23 | Paul Hartmann Ag | Apparatus for providing negative pressure for medical applications |
| JP6813489B2 (en) | 2014-12-30 | 2021-01-13 | スミス アンド ネフュー インコーポレイテッド | Systems and methods for performing decompression therapy |
| US10556045B2 (en) | 2014-12-30 | 2020-02-11 | Smith & Nephew, Inc. | Synchronous pressure sampling and supply of negative pressure in negative pressure wound therapy |
| DE202015001257U1 (en) | 2015-02-17 | 2015-03-20 | Norbert Neubauer | Device for the removal of wound secretions from body cavities and wounds |
| DE202015001326U1 (en) | 2015-02-19 | 2015-03-20 | Norbert Neubauer | Device for the treatment of wounds and skin lesions |
| KR20160105709A (en) | 2015-02-28 | 2016-09-07 | 서현배 | Indirect suction type portable aspirator |
| CN104689390A (en) * | 2015-03-04 | 2015-06-10 | 昆山韦睿医疗科技有限公司 | Negative-pressure wound treatment device |
| KR20160115619A (en) | 2015-03-28 | 2016-10-06 | 서현배 | Indirect suction type vacuum drainage system |
| AU2016256204C1 (en) | 2015-04-27 | 2022-03-31 | Smith & Nephew Plc | Reduced pressure apparatuses |
| JP2018519864A (en) | 2015-04-29 | 2018-07-26 | スミス アンド ネフュー インコーポレイテッド | Negative pressure wound closure device |
| EP3294245B1 (en) | 2015-05-08 | 2019-09-04 | KCI Licensing, Inc. | Low acuity dressing with integral pump |
| US10076594B2 (en) | 2015-05-18 | 2018-09-18 | Smith & Nephew Plc | Fluidic connector for negative pressure wound therapy |
| CN107580509B (en) | 2015-05-18 | 2021-06-15 | 史密夫及内修公开有限公司 | Negative pressure wound therapy device and method |
| WO2016184918A1 (en) * | 2015-05-18 | 2016-11-24 | Smith & Nephew Plc | Heat-assisted pumping systems for use in negative pressure wound therapy |
| US10583228B2 (en) | 2015-07-28 | 2020-03-10 | J&M Shuler Medical, Inc. | Sub-atmospheric wound therapy systems and methods |
| JP2018529407A (en) | 2015-08-13 | 2018-10-11 | スミス アンド ネフュー インコーポレイテッド | System and method for applying negative pressure therapy |
| US10702292B2 (en) * | 2015-08-28 | 2020-07-07 | Incuvate, Llc | Aspiration monitoring system and method |
| US11096830B2 (en) | 2015-09-01 | 2021-08-24 | Kci Licensing, Inc. | Dressing with increased apposition force |
| US11052178B2 (en) * | 2015-09-10 | 2021-07-06 | Excitus As | Arrangements and methods for avoiding spreading of infectious agents and improving electric safety and suction performance of a medical aspirator |
| US10828401B2 (en) | 2015-09-11 | 2020-11-10 | Smith & Nephew, Inc. | Systems and methods for applying reduced negative pressure therapy |
| EP3349807B1 (en) | 2015-09-17 | 2021-02-24 | 3M Innovative Properties Company | Hybrid silicone and acrylic adhesive cover for use with wound treatment |
| JP6942698B2 (en) | 2015-10-07 | 2021-09-29 | スミス アンド ネフュー インコーポレイテッド | Systems and methods for performing decompression therapy |
| TWI641397B (en) * | 2015-12-15 | 2018-11-21 | 雃博股份有限公司 | Pressure control method and system |
| US10814049B2 (en) | 2015-12-15 | 2020-10-27 | University Of Massachusetts | Negative pressure wound closure devices and methods |
| US10575991B2 (en) | 2015-12-15 | 2020-03-03 | University Of Massachusetts | Negative pressure wound closure devices and methods |
| US11471586B2 (en) | 2015-12-15 | 2022-10-18 | University Of Massachusetts | Negative pressure wound closure devices and methods |
| US11364150B2 (en) | 2015-12-30 | 2022-06-21 | Smith & Nephew Plc | Negative pressure wound therapy apparatus |
| EP3397219B1 (en) | 2015-12-30 | 2020-10-21 | Smith & Nephew plc | Absorbent negative pressure wound therapy dressing |
| CN105477695A (en) * | 2016-01-19 | 2016-04-13 | 戴慧芳 | Embedment-based negative pressure drainage apparatus for emergency treatment |
| EP3413945B1 (en) | 2016-02-12 | 2024-04-24 | Smith & Nephew, Inc. | Systems and methods for detecting operational conditions of reduced pressure therapy |
| EP3416568A4 (en) | 2016-02-16 | 2019-10-16 | Insera Therapeutics, Inc. | Aspiration devices and anchored flow diverting devices |
| USD796735S1 (en) | 2016-02-29 | 2017-09-05 | Smith & Nephew Plc | Mount apparatus for portable negative pressure apparatus |
| JP1586116S (en) | 2016-02-29 | 2017-09-19 | ||
| CN109069708B (en) | 2016-03-04 | 2022-04-12 | 史密夫及内修公开有限公司 | Negative pressure wound therapy device for wounds after breast surgery |
| CN114053031A (en) | 2016-03-07 | 2022-02-18 | 史密夫及内修公开有限公司 | Wound treatment devices and methods utilizing a negative pressure source integrated into a wound dressing |
| JP7027332B2 (en) | 2016-04-26 | 2022-03-01 | スミス アンド ネフュー ピーエルシー | Wound dressing and usage with an integrated negative pressure source with fluid infiltration prevention components |
| EP3452129B1 (en) | 2016-05-03 | 2022-03-23 | Smith & Nephew plc | Negative pressure wound therapy device activation and control |
| US11173240B2 (en) * | 2016-05-03 | 2021-11-16 | Smith & Nephew Plc | Optimizing power transfer to negative pressure sources in negative pressure therapy systems |
| WO2017191158A1 (en) | 2016-05-03 | 2017-11-09 | Smith & Nephew Plc | Systems and methods for driving negative pressure sources in negative pressure therapy systems |
| EP3454917B1 (en) | 2016-05-13 | 2022-04-06 | Smith & Nephew, Inc | Automatic wound coupling detection in negative pressure wound therapy systems |
| TW201805034A (en) * | 2016-07-08 | 2018-02-16 | 美商康瓦鐵克科技股份有限公司 | Flexible negative pressure system |
| WO2018034932A1 (en) | 2016-08-18 | 2018-02-22 | Kci Licensing, Inc. | In-line diagnostic tool for negative-pressure therapy |
| CN109561994B (en) | 2016-08-25 | 2022-03-15 | 史密夫及内修公开有限公司 | Absorbent negative pressure wound therapy dressing |
| CN109640903A (en) * | 2016-08-30 | 2019-04-16 | 史密夫及内修公开有限公司 | For applying the system of reduced pressure therapy |
| JP7032384B2 (en) | 2016-08-31 | 2022-03-08 | スミス アンド ネフュー ピーエルシー | Systems and methods for controlling the operation of decompression therapy systems to detect leaks |
| WO2018047997A1 (en) * | 2016-09-09 | 2018-03-15 | (주)대성마리프 | Wound healing device |
| US11096832B2 (en) | 2016-09-27 | 2021-08-24 | Smith & Nephew Plc | Wound closure devices with dissolvable portions |
| US12263294B2 (en) | 2016-09-28 | 2025-04-01 | T.J.Smith And Nephew, Limited | Systems and methods for operating negative pressure wound therapy devices |
| US11369730B2 (en) | 2016-09-29 | 2022-06-28 | Smith & Nephew, Inc. | Construction and protection of components in negative pressure wound therapy systems |
| AU2017336305B2 (en) | 2016-09-30 | 2023-01-19 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
| EP3519001B1 (en) | 2016-09-30 | 2025-05-21 | Smith & Nephew plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
| GB2555584B (en) | 2016-10-28 | 2020-05-27 | Smith & Nephew | Multi-layered wound dressing and method of manufacture |
| CA3042673A1 (en) | 2016-11-02 | 2018-05-11 | Smith & Nephew Inc. | Wound closure devices |
| DE202016007052U1 (en) | 2016-11-17 | 2017-01-10 | Norbert Neubauer | Softdrain for the removal of wound secretions from body cavities and wounds |
| WO2018108784A1 (en) | 2016-12-12 | 2018-06-21 | Smith & Nephew Plc | Wound dressing |
| JP7570177B2 (en) | 2016-12-12 | 2024-10-21 | スミス アンド ネフュー ピーエルシー | Pressure Wound Therapy Status Indication via External Device |
| WO2018150267A2 (en) | 2017-02-15 | 2018-08-23 | Smith & Nephew Pte. Limited | Negative pressure wound therapy apparatuses and methods for using the same |
| JP2020508794A (en) * | 2017-03-06 | 2020-03-26 | ケーシーアイ ライセンシング インコーポレイテッド | System and method for improving battery life in portable negative pressure therapy through hysteresis control |
| US11974903B2 (en) | 2017-03-07 | 2024-05-07 | Smith & Nephew, Inc. | Reduced pressure therapy systems and methods including an antenna |
| US11123471B2 (en) | 2017-03-08 | 2021-09-21 | Smith & Nephew Plc | Negative pressure wound therapy device control in presence of fault condition |
| WO2018170151A1 (en) | 2017-03-15 | 2018-09-20 | Smith & Nephew, Inc. | Pressure control in negative pressure wound therapy systems |
| WO2018195101A1 (en) | 2017-04-19 | 2018-10-25 | Smith & Nephew, Inc. | Negative pressure wound therapy canisters |
| WO2018206420A1 (en) | 2017-05-09 | 2018-11-15 | Smith & Nephew Plc | Redundant controls for negative pressure wound therapy systems |
| EP3638169B1 (en) | 2017-06-13 | 2024-11-13 | Smith & Nephew PLC | Collapsible structure and method of use |
| CN110662516B (en) | 2017-06-13 | 2022-02-22 | 史密夫及内修公开有限公司 | Wound closure devices and methods of use |
| WO2018229011A1 (en) | 2017-06-14 | 2018-12-20 | Smith & Nephew Plc | Collapsible structure for wound closure and method of use |
| CN110662517B (en) | 2017-06-14 | 2022-04-12 | T.J.史密夫及内修有限公司 | Negative pressure wound therapy equipment |
| AU2018285239B2 (en) | 2017-06-14 | 2023-09-21 | Smith & Nephew Plc | Collapsible sheet for wound closure and method of use |
| EP3638173A1 (en) | 2017-06-14 | 2020-04-22 | Smith & Nephew, Inc | Control of wound closure and fluid removal management in wound therapy |
| EP3638332A1 (en) | 2017-06-14 | 2020-04-22 | Smith & Nephew, Inc | Fluid removal management and control of wound closure in wound therapy |
| US11554051B2 (en) | 2017-06-30 | 2023-01-17 | T.J. Smith And Nephew, Limited | Negative pressure wound therapy apparatus |
| FR3068595B1 (en) | 2017-07-10 | 2023-01-27 | Gilles Touati | SUCTION DEVICE ADAPTED TO BE PLACED OVER A WOUND AND/OR INCISION |
| WO2019014141A1 (en) | 2017-07-10 | 2019-01-17 | Smith & Nephew, Inc. | Systems and methods for directly interacting with communications module of wound therapy apparatus |
| EP3658090B1 (en) | 2017-07-27 | 2021-11-10 | Smith & Nephew PLC | Customizable wound closure device |
| US10729826B2 (en) | 2017-07-29 | 2020-08-04 | Edward D. Lin | Wound cover apparatus and related methods of use |
| US11559622B2 (en) | 2017-07-29 | 2023-01-24 | Edward D. Lin | Deformation resistant wound therapy apparatus and related methods of use |
| US10780201B2 (en) | 2017-07-29 | 2020-09-22 | Edward D. Lin | Control apparatus and related methods for wound therapy delivery |
| US11712373B2 (en) | 2017-07-29 | 2023-08-01 | Edward D. Lin | Wound therapy apparatus with scar modulation properties and related methods |
| US12036353B2 (en) | 2017-07-29 | 2024-07-16 | Edward D. Lin | Apparatus and methods for pressure management within a wound chamber |
| US11590030B2 (en) | 2017-08-07 | 2023-02-28 | Smith & Nephew Plc | Wound closure device with protective layer and method of use |
| US11375923B2 (en) | 2017-08-29 | 2022-07-05 | Smith & Nephew Plc | Systems and methods for monitoring wound closure |
| CA3074780A1 (en) | 2017-09-13 | 2019-03-21 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
| GB201718070D0 (en) | 2017-11-01 | 2017-12-13 | Smith & Nephew | Negative pressure wound treatment apparatuses and methods with integrated electronics |
| US11389582B2 (en) | 2017-09-29 | 2022-07-19 | T.J. Smith And Nephew, Limited | Negative pressure wound therapy apparatus with removable panels |
| US11318244B2 (en) * | 2017-10-26 | 2022-05-03 | Kci Licensing, Inc. | Negative pressure wound therapy device with automated filter purging |
| US11497653B2 (en) | 2017-11-01 | 2022-11-15 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
| GB201718072D0 (en) | 2017-11-01 | 2017-12-13 | Smith & Nephew | Negative pressure wound treatment apparatuses and methods with integrated electronics |
| GB201718014D0 (en) | 2017-11-01 | 2017-12-13 | Smith & Nephew | Dressing for negative pressure wound therapy with filter |
| GB201718054D0 (en) | 2017-11-01 | 2017-12-13 | Smith & Nephew | Sterilization of integrated negative pressure wound treatment apparatuses and sterilization methods |
| GB201813282D0 (en) | 2018-08-15 | 2018-09-26 | Smith & Nephew | System for medical device activation and opertion |
| CN107899101A (en) * | 2017-12-29 | 2018-04-13 | 胡晓予 | A kind of portable wound therapy device |
| USD847864S1 (en) | 2018-01-22 | 2019-05-07 | Insera Therapeutics, Inc. | Pump |
| US10624794B2 (en) | 2018-02-12 | 2020-04-21 | Healyx Labs, Inc. | Negative pressure wound therapy systems, devices, and methods |
| GB201804347D0 (en) | 2018-03-19 | 2018-05-02 | Smith & Nephew Inc | Securing control of settings of negative pressure wound therapy apparatuses and methods for using the same |
| GB201806988D0 (en) | 2018-04-30 | 2018-06-13 | Quintanar Felix Clarence | Power source charging for negative pressure wound therapy apparatus |
| USD888225S1 (en) | 2018-04-30 | 2020-06-23 | Smith & Nephew Asia Pacific Pte. Limited | Pump and canister assembly for negative pressure wound therapy |
| US11559619B2 (en) | 2018-04-30 | 2023-01-24 | Smith & Nephew Asia Pacific Pte. Limited | Systems and methods for controlling dual mode negative pressure wound therapy apparatus |
| GB201808438D0 (en) | 2018-05-23 | 2018-07-11 | Smith & Nephew | Systems and methods for determining blockages in a negative pressure wound therapy system |
| GB201811449D0 (en) | 2018-07-12 | 2018-08-29 | Smith & Nephew | Apparatuses and methods for negative pressure wound therapy |
| USD898925S1 (en) | 2018-09-13 | 2020-10-13 | Smith & Nephew Plc | Medical dressing |
| RU2734442C2 (en) * | 2018-10-02 | 2020-10-16 | Общество с ограниченной ответственностью "ВИТ МЕДИКАЛ" | Device for treating infected and purulent wounds |
| GB201820388D0 (en) | 2018-12-14 | 2019-01-30 | Smith & Nephew | Changing therapy devices or wound dressings in reduced pressure wound therapy |
| GB201820668D0 (en) | 2018-12-19 | 2019-01-30 | Smith & Nephew Inc | Systems and methods for delivering prescribed wound therapy |
| AU2020221341B2 (en) * | 2019-02-11 | 2024-06-13 | Xpella (Pty) Ltd | Fluid drainage device |
| GB201903774D0 (en) | 2019-03-20 | 2019-05-01 | Smith & Nephew | Negative pressure wound treatment apparatuses and methods with integrated electronics |
| GB201907716D0 (en) | 2019-05-31 | 2019-07-17 | Smith & Nephew | Systems and methods for extending operational time of negative pressure wound treatment apparatuses |
| GB201911693D0 (en) | 2019-08-15 | 2019-10-02 | Smith & Nephew | Systems and methods for monitoring essential performance of wound therapy |
| GB201914283D0 (en) | 2019-10-03 | 2019-11-20 | Smith & Nephew | Apparatuses and methods for negative pressure wound therapy |
| WO2021080631A1 (en) * | 2019-10-24 | 2021-04-29 | Hydrofera, Llc | Wound dressing containing a vacuum pump |
| US20220379018A1 (en) | 2019-12-10 | 2022-12-01 | Neodyne Biosciences, Inc. | Tensioned infusion systems with removable hubs |
| GB202000574D0 (en) | 2020-01-15 | 2020-02-26 | Smith & Nephew | Fluidic connectors for negative pressure wound therapy |
| US11160917B2 (en) | 2020-01-22 | 2021-11-02 | J&M Shuler Medical Inc. | Negative pressure wound therapy barrier |
| GB202001212D0 (en) | 2020-01-29 | 2020-03-11 | Smith & Nephew | Systems and methods for measuring and tracking wound volume |
| GB202005928D0 (en) | 2020-04-23 | 2020-06-10 | Smith & Nephew | Dual mode negative pressure source operation for provision of negative pressure wound therapy |
| US11618856B2 (en) * | 2021-02-08 | 2023-04-04 | Philergos Group Foundation | Methods of preparing solid formations of non-volatile bituminous materials suitable for reducing carbon dioxide emissions during transport |
| KR200497494Y1 (en) * | 2021-04-30 | 2023-11-29 | 곽인숙 | Negative pressure aspirator for the treatment of bedsores |
| US12220139B2 (en) | 2022-03-20 | 2025-02-11 | Von Vascular, Inc. | System, devices and methods for removing obstructions in body lumens |
| USD1099288S1 (en) | 2022-03-23 | 2025-10-21 | T.J. Smith And Nephew, Limited | Device for applying negative pressure to a wound |
| CN119267189B (en) * | 2024-11-14 | 2025-11-28 | 佛山市黑子科技有限公司 | Multifunctional intelligent system integrating emergency power supply and air pump |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1996008573A1 (en) * | 1994-09-15 | 1996-03-21 | Centre National De La Recherche Scientifique | Phytopathogenic dna virus resistant transgenic plants and seeds and methods for obtaining same |
| WO2000061206A1 (en) * | 1999-04-09 | 2000-10-19 | Kci Licensing, Inc. | Wound therapy device |
| WO2001037922A2 (en) * | 1999-11-29 | 2001-05-31 | Hill-Rom Services, Inc. | Wound treatment apparatus |
Family Cites Families (166)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1355846A (en) | 1920-02-06 | 1920-10-19 | David A Rannells | Medical appliance |
| US2547758A (en) | 1949-01-05 | 1951-04-03 | Wilmer B Keeling | Instrument for treating the male urethra |
| US2632443A (en) | 1949-04-18 | 1953-03-24 | Eleanor P Lesher | Surgical dressing |
| GB692578A (en) | 1949-09-13 | 1953-06-10 | Minnesota Mining & Mfg | Improvements in or relating to drape sheets for surgical use |
| US2682873A (en) | 1952-07-30 | 1954-07-06 | Johnson & Johnson | General purpose protective dressing |
| NL189176B (en) | 1956-07-13 | 1900-01-01 | Hisamitsu Pharmaceutical Co | PLASTER BASED ON A SYNTHETIC RUBBER. |
| US2969057A (en) | 1957-11-04 | 1961-01-24 | Brady Co W H | Nematodic swab |
| US3066672A (en) | 1960-09-27 | 1962-12-04 | Jr William H Crosby | Method and apparatus for serial sampling of intestinal juice |
| US3367332A (en) | 1965-08-27 | 1968-02-06 | Gen Electric | Product and process for establishing a sterile area of skin |
| US3520300A (en) | 1967-03-15 | 1970-07-14 | Amp Inc | Surgical sponge and suction device |
| US3568675A (en) | 1968-08-30 | 1971-03-09 | Clyde B Harvey | Fistula and penetrating wound dressing |
| US3682180A (en) | 1970-06-08 | 1972-08-08 | Coilform Co Inc | Drain clip for surgical drain |
| US3712298A (en) † | 1970-08-25 | 1973-01-23 | Nat Res Dev | Medical treatment apparatus |
| BE789293Q (en) | 1970-12-07 | 1973-01-15 | Parke Davis & Co | MEDICO-SURGICAL DRESSING FOR BURNS AND SIMILAR LESIONS |
| US3826254A (en) | 1973-02-26 | 1974-07-30 | Verco Ind | Needle or catheter retaining appliance |
| DE2527706A1 (en) | 1975-06-21 | 1976-12-30 | Hanfried Dr Med Weigand | DEVICE FOR THE INTRODUCTION OF CONTRAST AGENTS INTO AN ARTIFICIAL INTESTINAL OUTLET |
| US4003373A (en) † | 1975-06-23 | 1977-01-18 | Spelio Peter N | Variable pulsating vacuum device |
| DE2640413C3 (en) | 1976-09-08 | 1980-03-27 | Richard Wolf Gmbh, 7134 Knittlingen | Catheter monitor |
| NL7710909A (en) | 1976-10-08 | 1978-04-11 | Smith & Nephew | COMPOSITE STRAPS. |
| GB1562244A (en) | 1976-11-11 | 1980-03-05 | Lock P M | Wound dressing materials |
| US4080970A (en) | 1976-11-17 | 1978-03-28 | Miller Thomas J | Post-operative combination dressing and internal drain tube with external shield and tube connector |
| US4139004A (en) | 1977-02-17 | 1979-02-13 | Gonzalez Jr Harry | Bandage apparatus for treating burns |
| US4184510A (en) | 1977-03-15 | 1980-01-22 | Fibra-Sonics, Inc. | Valued device for controlling vacuum in surgery |
| US4165748A (en) | 1977-11-07 | 1979-08-28 | Johnson Melissa C | Catheter tube holder |
| US4245637A (en) | 1978-07-10 | 1981-01-20 | Nichols Robert L | Shutoff valve sleeve |
| SE414994B (en) | 1978-11-28 | 1980-09-01 | Landstingens Inkopscentral | VENKATETERFORBAND |
| GB2047543B (en) | 1978-12-06 | 1983-04-20 | Svedman Paul | Device for treating tissues for example skin |
| US4266545A (en) | 1979-04-06 | 1981-05-12 | Moss James P | Portable suction device for collecting fluids from a closed wound |
| US4284079A (en) | 1979-06-28 | 1981-08-18 | Adair Edwin Lloyd | Method for applying a male incontinence device |
| US4261363A (en) | 1979-11-09 | 1981-04-14 | C. R. Bard, Inc. | Retention clips for body fluid drains |
| US4569348A (en) | 1980-02-22 | 1986-02-11 | Velcro Usa Inc. | Catheter tube holder strap |
| ATE14835T1 (en) | 1980-03-11 | 1985-08-15 | Schmid Eduard | SKIN GRAFT PRESSURE BANDAGE. |
| US4297995A (en) | 1980-06-03 | 1981-11-03 | Key Pharmaceuticals, Inc. | Bandage containing attachment post |
| US4333468A (en) | 1980-08-18 | 1982-06-08 | Geist Robert W | Mesentery tube holder apparatus |
| US4465485A (en) | 1981-03-06 | 1984-08-14 | Becton, Dickinson And Company | Suction canister with unitary shut-off valve and filter features |
| US4392853A (en) | 1981-03-16 | 1983-07-12 | Rudolph Muto | Sterile assembly for protecting and fastening an indwelling device |
| US4373519A (en) | 1981-06-26 | 1983-02-15 | Minnesota Mining And Manufacturing Company | Composite wound dressing |
| US4392858A (en) | 1981-07-16 | 1983-07-12 | Sherwood Medical Company | Wound drainage device |
| US4419097A (en) | 1981-07-31 | 1983-12-06 | Rexar Industries, Inc. | Attachment for catheter tube |
| AU550575B2 (en) | 1981-08-07 | 1986-03-27 | Richard Christian Wright | Wound drainage device |
| NZ201698A (en) | 1981-08-31 | 1985-12-13 | S L Gaffin | Composition of antibodies specific to endotoxins |
| SE429197B (en) | 1981-10-14 | 1983-08-22 | Frese Nielsen | SAR TREATMENT DEVICE |
| DE3146266A1 (en) | 1981-11-21 | 1983-06-01 | B. Braun Melsungen Ag, 3508 Melsungen | COMBINED DEVICE FOR A MEDICAL SUCTION DRAINAGE |
| DE3147686A1 (en) † | 1981-12-02 | 1983-06-16 | Hölter, Heinz, Dipl.-Ing., 4390 Gladbeck | Device for extraction of odours arising on expulsion of digested food and/or of flatulence |
| US4551139A (en) | 1982-02-08 | 1985-11-05 | Marion Laboratories, Inc. | Method and apparatus for burn wound treatment |
| US4475909A (en) | 1982-05-06 | 1984-10-09 | Eisenberg Melvin I | Male urinary device and method for applying the device |
| EP0100148B1 (en) | 1982-07-06 | 1986-01-08 | Dow Corning Limited | Medical-surgical dressing and a process for the production thereof |
| US4569674A (en) † | 1982-08-03 | 1986-02-11 | Stryker Corporation | Continuous vacuum wound drainage system |
| NZ206837A (en) | 1983-01-27 | 1986-08-08 | Johnson & Johnson Prod Inc | Thin film adhesive dressing:backing material in three sections |
| US4548202A (en) | 1983-06-20 | 1985-10-22 | Ethicon, Inc. | Mesh tissue fasteners |
| US4540412A (en) | 1983-07-14 | 1985-09-10 | The Kendall Company | Device for moist heat therapy |
| US4543100A (en) | 1983-11-01 | 1985-09-24 | Brodsky Stuart A | Catheter and drain tube retainer |
| US4468219A (en) † | 1983-12-20 | 1984-08-28 | International Business Machines Corporation | Pump flow rate compensation system |
| US4525374A (en) | 1984-02-27 | 1985-06-25 | Manresa, Inc. | Treating hydrophobic filters to render them hydrophilic |
| CA1286177C (en) | 1984-05-03 | 1991-07-16 | Smith And Nephew Associated Companies Plc | Adhesive wound dressing |
| US4897081A (en) | 1984-05-25 | 1990-01-30 | Thermedics Inc. | Percutaneous access device |
| US5215522A (en) | 1984-07-23 | 1993-06-01 | Ballard Medical Products | Single use medical aspirating device and method |
| GB8419745D0 (en) | 1984-08-02 | 1984-09-05 | Smith & Nephew Ass | Wound dressing |
| US4872450A (en) | 1984-08-17 | 1989-10-10 | Austad Eric D | Wound dressing and method of forming same |
| US4826494A (en) | 1984-11-09 | 1989-05-02 | Stryker Corporation | Vacuum wound drainage system |
| US4655754A (en) | 1984-11-09 | 1987-04-07 | Stryker Corporation | Vacuum wound drainage system and lipids baffle therefor |
| US4605399A (en) | 1984-12-04 | 1986-08-12 | Complex, Inc. | Transdermal infusion device |
| US5037397A (en) | 1985-05-03 | 1991-08-06 | Medical Distributors, Inc. | Universal clamp |
| US4640688A (en) | 1985-08-23 | 1987-02-03 | Mentor Corporation | Urine collection catheter |
| US4710165A (en) | 1985-09-16 | 1987-12-01 | Mcneil Charles B | Wearable, variable rate suction/collection device |
| US4758220A (en) | 1985-09-26 | 1988-07-19 | Alcon Laboratories, Inc. | Surgical cassette proximity sensing and latching apparatus |
| US4733659A (en) | 1986-01-17 | 1988-03-29 | Seton Company | Foam bandage |
| EP0256060A1 (en) | 1986-01-31 | 1988-02-24 | OSMOND, Roger L. W. | Suction system for wound and gastro-intestinal drainage |
| US4838883A (en) | 1986-03-07 | 1989-06-13 | Nissho Corporation | Urine-collecting device |
| JPS62281965A (en) | 1986-05-29 | 1987-12-07 | テルモ株式会社 | Catheter and catheter fixing member |
| GB8621884D0 (en) | 1986-09-11 | 1986-10-15 | Bard Ltd | Catheter applicator |
| GB2195255B (en) | 1986-09-30 | 1991-05-01 | Vacutec Uk Limited | Apparatus for vacuum treatment of an epidermal surface |
| US4743232A (en) | 1986-10-06 | 1988-05-10 | The Clinipad Corporation | Package assembly for plastic film bandage |
| DE3634569A1 (en) | 1986-10-10 | 1988-04-21 | Sachse Hans E | CONDOM CATHETER, A URINE TUBE CATHETER FOR PREVENTING RISING INFECTIONS |
| JPS63135179A (en) | 1986-11-26 | 1988-06-07 | 立花 俊郎 | Subcataneous drug administration set |
| GB8628564D0 (en) | 1986-11-28 | 1987-01-07 | Smiths Industries Plc | Anti-foaming agent suction apparatus |
| GB8706116D0 (en) | 1987-03-14 | 1987-04-15 | Smith & Nephew Ass | Adhesive dressings |
| US5002539A (en) * | 1987-04-08 | 1991-03-26 | Coble Stephen J | IV rate meter |
| US4787888A (en) | 1987-06-01 | 1988-11-29 | University Of Connecticut | Disposable piezoelectric polymer bandage for percutaneous delivery of drugs and method for such percutaneous delivery (a) |
| US4863449A (en) | 1987-07-06 | 1989-09-05 | Hollister Incorporated | Adhesive-lined elastic condom cathether |
| US5002529A (en) † | 1987-07-10 | 1991-03-26 | Solco Basle, Inc. | Postoperative wound drainage |
| JPH01120646A (en) * | 1987-11-05 | 1989-05-12 | Fujitsu Ltd | Monitor device for computer system |
| US5176663A (en) | 1987-12-02 | 1993-01-05 | Pal Svedman | Dressing having pad with compressibility limiting elements |
| US4826949A (en) | 1987-12-22 | 1989-05-02 | Basf Corporation | High shrinkage polyester fibers and method of preparation |
| US4906240A (en) | 1988-02-01 | 1990-03-06 | Matrix Medica, Inc. | Adhesive-faced porous absorbent sheet and method of making same |
| JPH01120646U (en) | 1988-02-08 | 1989-08-16 | ||
| US4985019A (en) | 1988-03-11 | 1991-01-15 | Michelson Gary K | X-ray marker |
| GB8812803D0 (en) | 1988-05-28 | 1988-06-29 | Smiths Industries Plc | Medico-surgical containers |
| US4919654A (en) | 1988-08-03 | 1990-04-24 | Kalt Medical Corporation | IV clamp with membrane |
| US5000741A (en) | 1988-08-22 | 1991-03-19 | Kalt Medical Corporation | Transparent tracheostomy tube dressing |
| US4976694A (en) † | 1988-12-15 | 1990-12-11 | Gary Schreibman | Apparatus and method for preventing infection |
| US5059596A (en) | 1989-01-16 | 1991-10-22 | Roussel Uclaf | Azabicyclo compounds |
| US5004149A (en) * | 1989-01-24 | 1991-04-02 | Kabushiki Kaisha Toshiba | Central air conditioning system having compensating control function for total heat load in a plurality of rooms |
| GB8906100D0 (en) | 1989-03-16 | 1989-04-26 | Smith & Nephew | Laminates |
| US5100396A (en) | 1989-04-03 | 1992-03-31 | Zamierowski David S | Fluidic connection system and method |
| US5261893A (en) | 1989-04-03 | 1993-11-16 | Zamierowski David S | Fastening system and method |
| US5527293A (en) | 1989-04-03 | 1996-06-18 | Kinetic Concepts, Inc. | Fastening system and method |
| US4969880A (en) | 1989-04-03 | 1990-11-13 | Zamierowski David S | Wound dressing and treatment method |
| US5358494A (en) | 1989-07-11 | 1994-10-25 | Svedman Paul | Irrigation dressing |
| JP2719671B2 (en) | 1989-07-11 | 1998-02-25 | 日本ゼオン株式会社 | Wound dressing |
| US5225158A (en) † | 1989-07-14 | 1993-07-06 | Amad Tayebi | Apparatus for collection and decontamination of hazardous and infectious waste and carrier air |
| US5232453A (en) | 1989-07-14 | 1993-08-03 | E. R. Squibb & Sons, Inc. | Catheter holder |
| GB2235877A (en) * | 1989-09-18 | 1991-03-20 | Antonio Talluri | Closed wound suction apparatus |
| US5134994A (en) | 1990-02-12 | 1992-08-04 | Say Sam L | Field aspirator in a soft pack with externally mounted container |
| US5092858A (en) | 1990-03-20 | 1992-03-03 | Becton, Dickinson And Company | Liquid gelling agent distributor device |
| JPH03277369A (en) | 1990-03-27 | 1991-12-09 | Olympus Optical Co Ltd | Solubilization medical device |
| US5149331A (en) | 1991-05-03 | 1992-09-22 | Ariel Ferdman | Method and device for wound closure |
| JP3204695B2 (en) * | 1991-09-25 | 2001-09-04 | 三菱レイヨン株式会社 | Liquid intrusion prevention device |
| US5278100A (en) | 1991-11-08 | 1994-01-11 | Micron Technology, Inc. | Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers |
| US5645081A (en) | 1991-11-14 | 1997-07-08 | Wake Forest University | Method of treating tissue damage and apparatus for same |
| US7198046B1 (en) * | 1991-11-14 | 2007-04-03 | Wake Forest University Health Sciences | Wound treatment employing reduced pressure |
| US5636643A (en) | 1991-11-14 | 1997-06-10 | Wake Forest University | Wound treatment employing reduced pressure |
| US5279550A (en) | 1991-12-19 | 1994-01-18 | Gish Biomedical, Inc. | Orthopedic autotransfusion system |
| US5167613A (en) | 1992-03-23 | 1992-12-01 | The Kendall Company | Composite vented wound dressing |
| FR2690617B1 (en) | 1992-04-29 | 1994-06-24 | Cbh Textile | TRANSPARENT ADHESIVE DRESSING. |
| DE4306478A1 (en) | 1993-03-02 | 1994-09-08 | Wolfgang Dr Wagner | Drainage device, in particular pleural drainage device, and drainage method |
| US6241747B1 (en) | 1993-05-03 | 2001-06-05 | Quill Medical, Inc. | Barbed Bodily tissue connector |
| US5342376A (en) | 1993-05-03 | 1994-08-30 | Dermagraphics, Inc. | Inserting device for a barbed tissue connector |
| US5344415A (en) | 1993-06-15 | 1994-09-06 | Deroyal Industries, Inc. | Sterile system for dressing vascular access site |
| US5466229A (en) † | 1993-08-06 | 1995-11-14 | Davstar, Inc. | Fluid collection system |
| US5437651A (en) | 1993-09-01 | 1995-08-01 | Research Medical, Inc. | Medical suction apparatus |
| US5549584A (en) | 1994-02-14 | 1996-08-27 | The Kendall Company | Apparatus for removing fluid from a wound |
| US5701917A (en) † | 1994-03-30 | 1997-12-30 | Khouri Biomedical Research, Inc. | Method and apparatus for promoting soft tissue enlargement and wound healing |
| US5607388A (en) | 1994-06-16 | 1997-03-04 | Hercules Incorporated | Multi-purpose wound dressing |
| US5556375A (en) | 1994-06-16 | 1996-09-17 | Hercules Incorporated | Wound dressing having a fenestrated base layer |
| US5664270A (en) | 1994-07-19 | 1997-09-09 | Kinetic Concepts, Inc. | Patient interface system |
| ATE172377T1 (en) * | 1994-08-22 | 1998-11-15 | Kinetic Concepts Inc | WOUND DRAINAGE DEVICE |
| EP1130536B1 (en) * | 1994-12-16 | 2004-04-28 | Hyundai Electronics America | Digitizer stylus apparatus and method |
| US5637093A (en) * | 1995-03-06 | 1997-06-10 | Sabratek Corporation | Infusion pump with selective backlight |
| US6261276B1 (en) † | 1995-03-13 | 2001-07-17 | I.S.I. International, Inc. | Apparatus for draining surgical wounds |
| DE29504378U1 (en) | 1995-03-15 | 1995-09-14 | MTG Medizinisch, technische Gerätebau GmbH, 66299 Friedrichsthal | Electronically controlled low-vacuum pump for chest and wound drainage |
| US5634893A (en) † | 1995-04-24 | 1997-06-03 | Haemonetics Corporation | Autotransfusion apparatus |
| CA2229024A1 (en) * | 1995-08-04 | 1997-02-20 | The Procter & Gamble Company | Use of fluconazole for inhibiting the growth of cancers |
| GB9523253D0 (en) * | 1995-11-14 | 1996-01-17 | Mediscus Prod Ltd | Portable wound treatment apparatus |
| DE19722075C1 (en) | 1997-05-27 | 1998-10-01 | Wilhelm Dr Med Fleischmann | Medication supply to open wounds |
| US6135116A (en) | 1997-07-28 | 2000-10-24 | Kci Licensing, Inc. | Therapeutic method for treating ulcers |
| GB9719520D0 (en) | 1997-09-12 | 1997-11-19 | Kci Medical Ltd | Surgical drape and suction heads for wound treatment |
| AU755496B2 (en) | 1997-09-12 | 2002-12-12 | Kci Licensing, Inc. | Surgical drape and suction head for wound treatment |
| US6071267A (en) | 1998-02-06 | 2000-06-06 | Kinetic Concepts, Inc. | Medical patient fluid management interface system and method |
| RU2145241C1 (en) * | 1998-02-24 | 2000-02-10 | Кировский государственный медицинский институт | Device for treating immature fistulas |
| US6458109B1 (en) | 1998-08-07 | 2002-10-01 | Hill-Rom Services, Inc. | Wound treatment apparatus |
| US6544202B2 (en) * | 1998-08-12 | 2003-04-08 | Mcewen James Allen | Apparatus and method for applying an adaptable pressure waveform to a limb |
| US6488643B1 (en) | 1998-10-08 | 2002-12-03 | Kci Licensing, Inc. | Wound healing foot wrap |
| US6093230A (en) | 1998-10-12 | 2000-07-25 | Allegiance Corporation | Filter assembly comprising two filter elements separated by a hydrophobic foam |
| GB9822341D0 (en) | 1998-10-13 | 1998-12-09 | Kci Medical Ltd | Negative pressure therapy using wall suction |
| JP2000176009A (en) | 1998-12-17 | 2000-06-27 | Nissho Corp | Indwelling needle puncturing hole forming tool |
| US6982358B1 (en) † | 1999-01-26 | 2006-01-03 | Ark Therapeutics, Ltd. | Protective cover for injured limbs |
| US6235039B1 (en) * | 1999-02-23 | 2001-05-22 | Roger C. Parkin | Skin abrasion device |
| US6287316B1 (en) | 1999-03-26 | 2001-09-11 | Ethicon, Inc. | Knitted surgical mesh |
| KR100661203B1 (en) | 1999-04-02 | 2006-12-22 | 케이씨아이 라이센싱, 아이엔씨. | Negative Pressure Wound Treatment System with Cold Heat Supply |
| US20070021697A1 (en) * | 2004-07-26 | 2007-01-25 | Kci Licensing, Inc. | System and method for use of agent in combination with subatmospheric tissue treatment |
| WO2000059424A1 (en) | 1999-04-02 | 2000-10-12 | Kinetic Concepts, Inc. | Vacuum assisted closure system with provision for introduction of agent |
| US6856821B2 (en) | 2000-05-26 | 2005-02-15 | Kci Licensing, Inc. | System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure |
| US7799004B2 (en) | 2001-03-05 | 2010-09-21 | Kci Licensing, Inc. | Negative pressure wound treatment apparatus and infection identification system and method |
| GB9909301D0 (en) | 1999-04-22 | 1999-06-16 | Kci Medical Ltd | Wound treatment apparatus employing reduced pressure |
| US6991643B2 (en) | 2000-12-20 | 2006-01-31 | Usgi Medical Inc. | Multi-barbed device for retaining tissue in apposition and methods of use |
| GB9926538D0 (en) * | 1999-11-09 | 2000-01-12 | Kci Medical Ltd | Multi-lumen connector |
| JP2001207984A (en) * | 1999-11-17 | 2001-08-03 | Teijin Seiki Co Ltd | Vacuum exhaust device |
| EP1257313B1 (en) | 2000-02-24 | 2004-05-12 | Venetec International, Inc. | Universal catheter anchoring system |
| US6348777B1 (en) * | 2000-02-29 | 2002-02-19 | Alaris Medical Systems, Inc. | Power management system |
| US6540705B2 (en) | 2001-02-22 | 2003-04-01 | Core Products International, Inc. | Ankle brace providing upper and lower ankle adjustment |
| US7108683B2 (en) * | 2001-04-30 | 2006-09-19 | Kci Licensing, Inc | Wound therapy and tissue management system and method with fluid differentiation |
| JP2004534595A (en) * | 2001-07-12 | 2004-11-18 | ヒル−ロム サービシズ,インコーポレイテッド | Control of vacuum rate of change |
| US7004915B2 (en) | 2001-08-24 | 2006-02-28 | Kci Licensing, Inc. | Negative pressure assisted tissue treatment system |
| RU2219954C2 (en) * | 2001-10-04 | 2003-12-27 | Общество с ограниченной ответственностью "Витта" | Wound healing bandage |
| US7976519B2 (en) | 2002-12-31 | 2011-07-12 | Kci Licensing, Inc. | Externally-applied patient interface system and method |
-
2001
- 2001-08-24 US US09/939,166 patent/US7004915B2/en not_active Expired - Lifetime
-
2002
- 2002-08-23 RU RU2004109161/14A patent/RU2302263C2/en active
- 2002-08-23 ES ES02766098.4T patent/ES2353863T5/en not_active Expired - Lifetime
- 2002-08-23 KR KR1020087013734A patent/KR100959568B1/en not_active Expired - Fee Related
- 2002-08-23 KR KR1020047002583A patent/KR100842895B1/en not_active Expired - Fee Related
- 2002-08-23 AU AU2002329844A patent/AU2002329844B2/en not_active Expired
- 2002-08-23 DE DE07117289T patent/DE07117289T1/en active Pending
- 2002-08-23 PT PT02766098T patent/PT1418973E/en unknown
- 2002-08-23 KR KR1020097013323A patent/KR101017355B1/en not_active Expired - Fee Related
- 2002-08-23 IL IL16045002A patent/IL160450A0/en active IP Right Grant
- 2002-08-23 CN CN2006101659967A patent/CN1973916B/en not_active Expired - Lifetime
- 2002-08-23 DE DE07117293T patent/DE07117293T1/en active Pending
- 2002-08-23 DE DE60231575T patent/DE60231575D1/en not_active Expired - Lifetime
- 2002-08-23 PT PT07117289T patent/PT1897569E/en unknown
- 2002-08-23 NZ NZ531268A patent/NZ531268A/en not_active IP Right Cessation
- 2002-08-23 EP EP07117289.4A patent/EP1897569B2/en not_active Expired - Lifetime
- 2002-08-23 EP EP02766098.4A patent/EP1418973B2/en not_active Expired - Lifetime
- 2002-08-23 DK DK02766098.4T patent/DK1418973T4/en active
- 2002-08-23 WO PCT/US2002/027070 patent/WO2003018098A2/en not_active Ceased
- 2002-08-23 MX MXPA04001457A patent/MXPA04001457A/en active IP Right Grant
- 2002-08-23 ES ES07117293T patent/ES2299413T1/en active Pending
- 2002-08-23 CA CA002458285A patent/CA2458285C/en not_active Expired - Lifetime
- 2002-08-23 BR BR0212058-5A patent/BR0212058A/en not_active Application Discontinuation
- 2002-08-23 AT AT07117289T patent/ATE424863T2/en active
- 2002-08-23 CN CNB028207750A patent/CN1297325C/en not_active Expired - Lifetime
- 2002-08-23 DK DK07117289.4T patent/DK1897569T4/en active
- 2002-08-23 KR KR1020077012145A patent/KR100867345B1/en not_active Expired - Fee Related
- 2002-08-23 EP EP07117293A patent/EP1900383A1/en not_active Withdrawn
- 2002-08-23 CN CN200910208056.5A patent/CN101791443B/en not_active Expired - Lifetime
- 2002-08-23 EP EP09152614A patent/EP2052750A1/en not_active Withdrawn
- 2002-08-23 DE DE60237827T patent/DE60237827D1/en not_active Expired - Lifetime
- 2002-08-23 JP JP2003522611A patent/JP2005500141A/en active Pending
- 2002-08-23 AT AT02766098T patent/ATE482730T2/en active
- 2002-08-23 ES ES07117289.4T patent/ES2299412T5/en not_active Expired - Lifetime
-
2004
- 2004-02-17 ZA ZA2004/01261A patent/ZA200401261B/en unknown
- 2004-02-18 IL IL160450A patent/IL160450A/en not_active IP Right Cessation
-
2006
- 2006-02-28 US US11/364,264 patent/US7811269B2/en not_active Expired - Fee Related
-
2007
- 2007-01-31 IL IL181087A patent/IL181087A/en not_active IP Right Cessation
- 2007-02-09 RU RU2007105006/14A patent/RU2370285C2/en active
-
2008
- 2008-04-14 CY CY20082200006T patent/CY2200163T2/en unknown
- 2008-04-14 CY CY20082200007T patent/CY2200164T2/en unknown
- 2008-06-30 AU AU2008202973A patent/AU2008202973B2/en not_active Expired
- 2008-12-16 JP JP2008320110A patent/JP4667497B2/en not_active Expired - Lifetime
-
2009
- 2009-06-11 CY CY20091100615T patent/CY1109138T1/en unknown
- 2009-07-15 JP JP2009167189A patent/JP4709299B2/en not_active Expired - Lifetime
- 2009-08-07 JP JP2009184982A patent/JP4709302B2/en not_active Expired - Lifetime
-
2010
- 2010-08-25 US US12/862,885 patent/US20110022013A1/en not_active Abandoned
- 2010-11-19 JP JP2010258432A patent/JP5242663B2/en not_active Expired - Lifetime
-
2011
- 2011-04-18 AU AU2011201729A patent/AU2011201729B2/en not_active Expired
- 2011-04-18 AU AU2011201730A patent/AU2011201730B2/en not_active Expired
- 2011-10-21 JP JP2011231605A patent/JP5628773B2/en not_active Expired - Lifetime
-
2014
- 2014-05-20 US US14/282,208 patent/US9352076B2/en not_active Expired - Fee Related
-
2016
- 2016-04-29 US US15/142,665 patent/US10434227B2/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1996008573A1 (en) * | 1994-09-15 | 1996-03-21 | Centre National De La Recherche Scientifique | Phytopathogenic dna virus resistant transgenic plants and seeds and methods for obtaining same |
| WO2000061206A1 (en) * | 1999-04-09 | 2000-10-19 | Kci Licensing, Inc. | Wound therapy device |
| WO2001037922A2 (en) * | 1999-11-29 | 2001-05-31 | Hill-Rom Services, Inc. | Wound treatment apparatus |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2008202973B2 (en) | Vacuum assisted tissue treatment system | |
| AU2002329844A1 (en) | Vacuum assisted tissue treatment system | |
| HK1126994A (en) | Vacuum assisted tissue treatment system | |
| HK1110813A (en) | Vacuum assisted tissue treatment system | |
| HK1061982B (en) | Vacuum assisted tissue treatment system | |
| HK1110812A1 (en) | Vacuum assisted tissue treatment system | |
| HK1110812B (en) | Vacuum assisted tissue treatment system | |
| HK1143097A (en) | Vacuum assisted tissue treatment system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FGA | Letters patent sealed or granted (standard patent) | ||
| PC | Assignment registered |
Owner name: 3M INNOVATIVE PROPERTIES COMPANY Free format text: FORMER OWNER(S): KCI LICENSING, INC. |
|
| MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |