AU2006273840A1 - Apparatus for cooling systems - Google Patents
Apparatus for cooling systems Download PDFInfo
- Publication number
- AU2006273840A1 AU2006273840A1 AU2006273840A AU2006273840A AU2006273840A1 AU 2006273840 A1 AU2006273840 A1 AU 2006273840A1 AU 2006273840 A AU2006273840 A AU 2006273840A AU 2006273840 A AU2006273840 A AU 2006273840A AU 2006273840 A1 AU2006273840 A1 AU 2006273840A1
- Authority
- AU
- Australia
- Prior art keywords
- pipe
- fluid
- passage
- volume
- portions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000001816 cooling Methods 0.000 title claims description 67
- 239000012530 fluid Substances 0.000 claims description 114
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 32
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 16
- 239000001569 carbon dioxide Substances 0.000 claims description 16
- 238000004891 communication Methods 0.000 claims description 15
- 230000008859 change Effects 0.000 claims description 11
- 238000012544 monitoring process Methods 0.000 claims description 11
- 230000001010 compromised effect Effects 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 5
- 238000013500 data storage Methods 0.000 claims description 4
- 238000009434 installation Methods 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000006378 damage Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 239000013529 heat transfer fluid Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 206010003497 Asphyxia Diseases 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000246 remedial effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20218—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/005—Arrangement or mounting of control or safety devices of safety devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
- G01M3/16—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
- G01M3/16—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
- G01M3/18—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
- G01M3/182—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for tubes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
- G01M3/16—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
- G01M3/18—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
- G01M3/183—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for pipe joints or seals
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20218—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
- H05K7/20272—Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/22—Preventing, detecting or repairing leaks of refrigeration fluids
- F25B2500/222—Detecting refrigerant leaks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Examining Or Testing Airtightness (AREA)
Description
WO 2007/012855 PCT/GB2006/002799 1 Apparatus for Cooling Systems This invention relates to apparatus and methods for detecting the escape of fluids (e.g. liquids and gases) from a passage. In particular, although not 5 exclusively, this application relates to apparatus and methods for detecting the escape of a heat transfer fluid from a cooling system / heat exchanger, such as may be used for cooling information technology (IT) servers. Improvements in semiconductor technology have allowed manufacturers to 10 double the number of transistors in a microprocessor roughly every 18 to 24 months since 1965. , As the number of transistors increases, the heat dissipated during microprocessor operation also increases. This problem has been further exacerbated by the recent development of blade servers, which sit vertically rather than horizontally in cabinets, and therefore can be packed 15 in at a far higher density. As a result, traditional IT cooling systems, such as all air or combination water / air systems (water being the primary coolant and air being the secondary coolant), are unable to absorb and transfer the excess heat 20 generated by these new microprocessors. Furthermore, adaptation of such traditional cooling systems has proved impractical due to size, weight, noise and cooling capacity constraints.
WO 2007/012855 PCT/GB2006/002799 2 In order to increase the heat transfer capacity of cooling systems for use in high heat gain applications of IT equipment, cooling systems have been produced that employ volatile fluids rather than air or air / water as the heat transfer fluid. Volatile fluids, such as carbon dioxide, provide a very energy 5 efficient means of cooling, and so can cool cabinets having a much higher heat load than would be possible using traditional systems. They also provide an opportunity to save energy, especially when compared to propelling large volumes of air through a piece of equipment, and they only require relatively narrow diameter pipes to operate, so saving space. Such a cooling apparatus 10 is described in our co-pending GB patent application no. 0421232.0. Volatile fluids, such as carbon dioxide, are generally electrically benign and so may be used safely in such applications, despite the very high pressures over 50 Bar for carbon dioxide - which are needed to obtain adequate cooling. 15 However, when carbon dioxide (or another volatile fluid) is contained at such high pressures, the parts of the apparatus containing it are subject to greater levels of strain than conventional water coils / heat exchangers and therefore, potential failure and resultant escape of fluid, is a greater issue for these systems. 20 IT equipment is often housed in confined spaces and required to operate 24 hours a day, 7 days a week. Hence, the monitoring of degradation or failure of IT cooling systems is critical for: (a) averting catastrophic damage to the IT equipment due to over-heating, in the event of a local failure in a cooling WO 2007/012855 PCT/GB2006/002799 3 system; and (b) implementing strategies for maintaining operations and recovery actions. In addition to the potential risk to IT equipment; in the event of a fluid leak, 5 carbon dioxide can also present a health and safety issue, if adequate precautions are not taken. Whilst the quantities of carbon dioxide are small, it is volatile, used at high pressure, and often in confined or small spaces. The main hazards associated with the use of carbon dioxide at high pressure 10 are: (a) its asphyxiation properties; and (b) the very low local temperature associated with the escaped fluid (which may affect people or equipment in the vicinity). Therefore, (whilst it is not intended that the present invention should be a 15 substitute for the general area carbon dioxide monitoring and safety systems used to meet health and safety requirements for rooms where carbon dioxide is being used), a need exists for the effective monitoring of cooling systems for apparatus such as IT equipment. 20 Although this problem has been discussed in relation to IT systems, it is also relevant to monitoring other systems that operate using compressed, volatile and / or hazardous fluids, such as heating and cooling apparatus and storage tanks, e.g. boilers, refrigerators, etc.; especially those used on an industrial scale or where a leak could be potentially dangerous to people or equipment.
WO 2007/012855 PCT/GB2006/002799 4 Accordingly, the present invention provides an apparatus for detecting the escape of a fluid from a cooling system having a passage, comprising: a housing defining a volume abutting one or more portions of 5 said passage; and sensor means adapted to detect the presence of said fluid within said volume; wherein the housing is adapted to collect the escaped fluid such that the sensor can detect the escaped fluid before the operation of the cooling 10 system is compromised. This invention recognises that by collecting any escaped fluids in a relatively small volume compared to the surface area of the passages or pipes abutted by the volume, any such fluid escape is more likely to be detected rapidly, and 15 before the operation of the cooling system / heat exchanger is compromised. The invention further provides a cooling system or a heat exchanger comprising the apparatus of the invention. In another aspect of the invention there is provided a monitoring system comprising the apparatus of the 20 invention. In yet another aspect of the invention there is provided a computer installation comprising the apparatus of the invention. Aspects of this invention may comprise apparatus wherein the housing abuts a portion of the passage or pipe that is under a locally elevated level of WO 2007/012855 PCT/GB2006/002799 5 mechanical stress. By targeting the portions of the passages or pipes of a cooling system / heat exchanger that are potentially most prone to failure, any failure due to escape of heat exchange fluid can be rapidly detected, i.e. before the operation of the cooling system / heat exchanger is compromised. 5 The invention also relates to a method for detecting the escape of a fluid from a cooling system / heat exchanger having a passage containing the fluid, comprising the steps of: defining a first volume containing one or more portions of said passage; and detecting the presence of said fluid in said first 10 volume by indirect or direct means. Furthermore, there is disclosed a method for detecting the escape of a fluid from a portion of a passage or pipe in a cooling system or heat exchanger containing the fluid, using the apparatus of the invention. 15 In preferred arrangements the apparatus is adapted to detect the presence of a gas in the volume. Preferably, the fluid in the passage or pipe of the cooling system is a gas and preferably the fluid escaping from the passage or pipe (in the event of a leak, for example) is a gas. Preferably the apparatus is adapted to detect fluid which escapes from the passage in the form of a gas. 20 Arranging for the fluid escaping from the passage or pipe to be in the form of a gas can be particularly beneficial since consideration of the action of gravity on the escaping fluid is less important than where the escaping fluid is, for example, a liquid. In particular, the volume in which the fluid is detected can WO 2007/012855 PCT/GB2006/002799 6 be arranged other than beneath the passage, for example laterally adjacent or indeed above the relevant portion of the passage or pipe. Preferably the fluid is a volatile fluid, preferably carbon dioxide. 5 In preferred examples the sensor is adapted to detect the presence of a volatile fluid. Preferably the fluid does not comprise water. This is particularly preferred where the cooling system is adapted to cool electronic equipment, for example computer equipment, where it is deceived to be undesirable to 10 have water in the vicinity of the electronic equipment, in view of the perceived increased risk of electric malfunction. Thus the sensor is preferably not arranged for the detection of the presence of moisture. Preferably the detection of the fluid does not rely on a change of state of the 15 fluid, for example a change in pressure on evaporation of a liquid. In preferred examples, the length of the passage or pipe of the cooling system abutting the volume is less than 50%, preferably less than 25%, 10% or less than 5% of the total length of the pipe. In some arrangements, the length of 20 the passage or pipe abutting the volume may be less than I % of the total length of the pipe. In some examples the volume is arranged adjacent only those (or some of those) areas of the passage or pipe for which the perceived risk of leakage is the greatest.
WO 2007/012855 PCT/GB2006/002799 7 Embodiments of the invention will now be described, purely by way of example, with reference to the accompanying drawings, in which: 5 FIGURE 1 shows schematically a perspective view of a typical cooling system; FIGURE 2 shows schematically a perspective view of a cooling system fitted with two embodiments; 10 FIGURE 3 shows schematically a perspective view of a cooling system fitted with two embodiments, wherein each apparatus also includes a discharge pipe; 15 FIGURE 4 shows schematically a perspective view of a cooling system fitted with two embodiments that are in fluid communication, and that have a common discharge pipe; FIGURE 5 shows schematically a perspective view of a cooling system fitted 20 with three embodiments, each of which is fitted with a discharge pipe; FIGURE 6 shows schematically a perspective view of a cooling system fitted with three embodiments, two of which are in fluid communication and share a common discharge pipe; and WO 2007/012855 PCT/GB2006/002799 8 FIGURE 7 shows schematically a perspective view of a cooling system fitted with three embodiments, wherein each apparatus is in fluid communication with the others and all share a common discharge pipe. 5 Cooling Systems and Heat Exchangers Cooling systems and heat exchangers are designed to absorb heat from a 10 first zone that it is desirable to cool and to dissipate the absorbed heat in a second zone where it is safe and desirable to do so. Cooling systems include freezers, refrigerators, and air conditioning units. Typically, IT / computer cooling equipment comprises a circuit for a heat 15 transfer fluid containing a condenser and an evaporator. The apparatus described herein is particularly useful for monitoring and detecting the escape of fluid from such equipment, especially wherein the heat transfer fluid is a volatile fluid, such as carbon dioxide. Such a cooling apparatus is described in our co-pending GB patent application no. 0421232.0. 20 In such apparatus, the heat exchange fluid is kept under high pressure. Typically, at above 25 bar, above 50 bar, above 75 bar or even at above 100 bar. The apparatus described herein is suitable for detecting the escape of fluid from all such systems.
WO 2007/012855 PCT/GB2006/002799 9 Figure 1 depicts a typical cooling system that may suitably take advantage of the embodiments described herein. The cooling system contains a heat transfer circuit comprising a passage or pipe - generally of copper 5 construction - that allows the heat exchange fluid to circulate around the system so that it is able to absorb heat energy generated by the IT equipment at a first zone and discharge heat energy at a second zone where the heat will not be reabsorbed by the IT equipment. A stream of air (indicated with an arrow) helps to remove heat from the system in the downstream direction. 10 As used herein the term "passage" means any suitable means that is adapted to permit the movement of fluid (e.g. a gas or a liquid) either by diffusion or otherwise (such as under a mechanical force), and may include joints, valves, attachments etc. Preferably, a passage is a pipe. 15 The passage or pipe has a number of portions of differing construction. As used herein, a "portion" of a passage / pipe means a longitudinal length of pipe, which may be relatively short (for example, approximately 1 cm or more, such as 2, 3, 5, 10 cm or more), or may be relatively long (for example, 20 approximately 1 m, 2, 3, 5, 10 m or more). A portion of a pipe may comprise a relatively minor proportion of the overall length of the pipe (for example, 0.01% or more, such as 0.1, 0.5, 1% or more), or may comprise a relatively major proportion of the overall length of pipe (such as 10% or more, e.g. 20, 50, 75, 90% or more). Also, as used herein, a portion of a pipe may include WO 2007/012855 PCT/GB2006/002799 10 the longitudinal region across a joint or point of attachment, such that said portion comprises longitudinal lengths of two or more pipes / passages which are physically connected to each other. 5 For example, with reference to Figure 1, separate portions of a pipe used in a typically cooling system include; U-bends 1, which connect adjacent flow and return pipes 2. Passages or pipes may be connected to further passages / pipes at connections 3. 10 All pipes used in such cooling systems are subject to production tests using at least 1.5 times working pressure (e.g. up tol 50 bar) to ensure that the product is leak free when manufactured. However, prolonged use under conditions where the pipes are subject to high stress due to the compressed heat exchange fluid contained within could eventually cause a leak to appear. A 15 leak that allows the escape of fluid from the passage or pipe may be caused by, for example, a loose or damaged joint, a crack or fracture in the passage / pipe, or a hole. We have recognised that passages and pipes are most at risk of developing a 20 leak at portions of relative weakness, or where the apparatus has suffered damage. We have recognised that in such portions, this risk can occur at pressures below, perhaps well below, those where the risk has previously been recognised, particularly in straight passages or pipes.
WO 2007/012855 PCT/GB2006/002799 11 Testing of a complete coil / heat exchanger to destruction by progressively increasing the fluid pressure has shown that the first critical location is the outside area of a copper pipe U-bend, which ruptured at a pressure of 240 bar. Up to these pressures there was no failure of the portions of straight 5 pipes or the flow and return connections at the entry and exit from the coil / heat exchanger. Thus, the portions of passages / pipes that are most at risk of developing a leak are; in order of decreasing risk: 10 (1) The U-bends 1 or other portions that contain angles or bends; (2) The flow and return connections to the passages / pipes 3, where one portion of a pipe is connected to 15 another; and (3) The straight portions of the passage / pipe within the coil / heat exchanger 2. The regions we have identified are likely to be most at risk of developing a 20 leak because they either contain portions that are inherently less strong than the average strength of the pipe; e.g. a joint may be less able to form an air tight seal, or may be less able to resist the stress exerted on it by the pressurised fluid inside, in comparison to a single length of pipe (of comparable material). Similarly, portions of a pipe that are not straight; e.g.
WO 2007/012855 PCT/GB2006/002799 12 that contain an angle or curve may be: (i) inherently stressed due to the bend or angle; and (ii) subjected to increased stress by the compressed gas, compared to a straight portion of pipe. Consequently, the straight portions of the pipes 2 are least at risk of leakage, unless damaged by an external force. 5 In general, the portions of pipe that are most at risk of failure are either subject to elevated levels of stress compared to the average level of stress in / on the passage; or contain regions of reduced or variable strength (resilience to force) compared to the average strength of the passage, such as the 10 strength of the passage / pipe in straight, uninterrupted portions. This leads to a greater strain in these portions, and so a greater risk of rupture / failure. By "stress" as used herein, it is meant any force per unit area exerted on the inside or outside of the portion of passage / pipe by means of the fluid 15 contained inside the pipe, or any external forces that may be exerted onto the portion of pipe. Generally, by "stress" in this context it is meant the force per unit area exerted on the internal surfaces of the passage / pipe by the compressed fluid inside the pipe. 20 A portion of pipe that is not straight is angled or curved by any degree in relation to the longitudinal direction of the pipe; e.g. at any degree above 0', for example, from 0.10 to 3600 or above. A coil is an example of a curved pipe having a longitudinal curve of over 3600. A pipe / passage may be considered to be angled when its longitudinal direction changes extremely sharply, for WO 2007/012855 PCT/GB2006/002799 13 example, forming a corner. Preferably, a curved or angled passage / pipe displays a change in its longitudinal direction of at least 300, at least 450, at least 600, at least 900, at least 1200, at least 1800 or above. Most preferably, the pipe (or portion of pipe) is curved by approximately 1800; i.e. the portion of 5 pipe contains a U-bend. Detecting Escape of Fluid The apparatus described herein can be used for the local monitoring of portions of the passages or pipes of apparatus such as cooling systems / heat 10 exchangers and its associated connections, for the detection of leaks in pipes or joints, particularly at regions having increased risk of leakage. Figure 2 depicts an embodiment wherein the U bends at each end of the cooling system are enclosed by two physically discrete housings 4, 5, one at 15 the top of the system and one at the bottom of the system as depicted. Each of the two housings may incorporate the existing metal end plates 29 (see Figure 1) of the cooling system as one wall of the housing, or alternatively the housing can be constructed to independently enclose the U-bends. The metal end plates 29 are typically L-shaped, having holes punched out of one surface 20 to accommodate the passages / pipes of the cooling system. In this arrangement, the housings each contain more than one portion of a pipe and at least a part of each portion is curved (i.e. a U-bend). Alternatively, however, each housing may contain 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more portions of (one or more) pipe, e.g. in the range of 10 to 20 portions or more.
WO 2007/012855 PCT/GB2006/002799 14 In the embodiments described, the housing preferably defines a volume abutting portions of the passages or pipes of a cooling system / heat exchanger that are most prone to failure. Thus, any such failure due to 5 escape of heat exchange fluid can be rapidly detected, i.e. before the operation of the cooling system / heat exchanger is compromised. Moreover, by. collecting any escaped fluids in a relatively small volume compared to the surface area of the passages or pipes abutted by the volume, any such fluid escape is more likely to be detected rapidly, and before the operation of the 10 cooling system / heat exchanger is compromised. Accordingly, a function of the housing is to collect any escaped fluid before it can dissipate or diffuse into the atmosphere. Therefore, the dilution of escaped fluid into the atmosphere is retarded by the housing to such an 15 extent, and for a period of time sufficient, to enable the sensor to detect the escaped fluid. This will allow, for example, the implementation of strategies for maintaining operations and recovery actions. Thus, the design of the housing is adapted to suit the properties of the sensor used in the particular embodiment. Furthermore, the housing is adapted to allow the sensor to 20 detect the escape of fluid before the amount of fluid that has escaped reaches a level at which the operation of the cooling system / heat exchanger is compromised. In a preferred embodiment the housing is substantially air tight, in that there is virtually no free movement of fluid between the volume enclosed by the housing and the atmosphere.
WO 2007/012855 PCT/GB2006/002799 15 In particularly preferred embodiments the surface area to volume ratio of the surface area of the portion(s) of pipe(s) enclosed by the housing to volume enclosed by the housing abutting the portion(s) of pipe(s) enclosed is small, 5 e.g. 1 : 30. Preferably, the surface area to volume ratio is less than 1 : 1000, less than 1 : 500, less than 1 : 100, or less than 1 : 50. More preferably, the ratio is in the range of 1 : 50 to 1 : 1, still more preferably in the range of 1 : 50 to 1 : 10, even more preferably in the range of 1 : 40 to 1 : 20; and most preferably in the range 1 : 35 to 1 : 25. 10 In a particularly preferred embodiment, as depicted in Figure 2, the housing defines a volume abutting a series of U-bends in relatively close proximity, such that the surface area of pipe to volume ratio of housing can be minimised. 15 Sensors 6 and 7 are mounted onto each housing and are adapted to monitor the physical and / or chemical properties of the volume defined by the inside wall of the housing and the outside surface of the portion of pipe (the first volume). However, the sensors can equally be positioned remotely from the 20 apparatus. The sensors are adapted to detect the presence of heat exchange fluid inside the above-mentioned first volume, by direct or indirect means, or a combination of both. For instance, each sensor may detect changes in any one of, or a combination of, or all of the following properties: WO 2007/012855 PCT/GB2006/002799 16 (a) presence of heat exchange fluid (for example, presence of carbon dioxide); (b) local temperature (for example, release of compressed volatile fluid may result in an immediate fall in local 5 temperature); (c) local pressure (for example, escape of fluid at high pressure i.e. at above atmospheric pressure in the pipe can result in a pressure increase inside the housing). 10 In the above example, (a) represents a "direct" means of detection, for instance, the sensor may monitor the concentration of the particular fluid inside the housing, or may detect the fluid by means of a chemical reaction / effect caused by the presence of the particular fluid at a particular concentration. Points (b) and (c) above are examples of "indirect" means of 15 detecting the presence of the fluid, because the effects of the escaped fluid are detected, rather than the fluid itself. Preferably, the sensor is adapted to signal to an alarm means, such as an audio and / or visual means of attracting attention or alerting an operator to 20 the fact that escaped fluid has been detected. The sensor may alternatively, or in addition, signal to a data storage or data processing means, such as a computer installation, or other IT equipment, to monitor and record the data received and to alert an operator, if necessary, by alarm or other communication means (such as telecommunication). The sensor or WO 2007/012855 PCT/GB2006/002799 17 monitoring or data processing means may also activate or cause to be activated any manual or automated remedial action systems, as designed. The sensor may be mounted inside the housing, or may be positioned 5 elsewhere (i.e. remotely), provided it is adapted to monitor the volume enclosed by the housing. In a further embodiment, particularly suited to monitoring the straight pipes of the coil / heat exchanger, a sensor or set of sensors (for example, trace 10 temperature sensing means) can be adapted to monitor the volume abutting the straight pipe sections 2, for example, by mounting a sensor or set of sensors 30 to the downstream edges of the coil / heat exchanger fins. In this way, the whole discharge area of the coil between the top enclosure 4 and the bottom enclosure 5 can be monitored. For example, at least 90% of the 15 straight portions of passage / pipe in the heat exchanger abut the volume defined by the housing. Preferably, at least 92%, at least 95%, at least 98%, or at least 99% of the straight portions of passage / pipe in the heat exchanger abut the volume defined by the housing. Most preferably in this embodiment, 100% of the straight portions of passage / pipe in the heat 20 exchanger abut the volume defined by the housing. Figure 3 depicts an embodiment wherein each housing 4, 5, is adapted to connect to a discharge pipe 8, 9, such that the first volume enclosed by the housing may be in fluid communication with one or more additional volumes.
WO 2007/012855 PCT/GB2006/002799 18 Such "additional volumes" may be enclosed / defined by additional housings (as already described), but an additional volume may also include the volume enclosed or defined by additional, physically discrete storage means (e.g. for 5 collecting escaped gas). An additional volume may be a much larger volume / space into which it is safe to release the fluid. By "safe" it is meant that the release of the fluid into that volume or space will not cause an unacceptable risk of harm to either animal life or the environment in general. A safe space may be the atmosphere; however, if the fluid is particularly toxic it may be 10 necessary to collect it in an alternative, preferably air-tight storage medium. By "physically discrete" it is meant a volume or equipment that is spatially / physically separated from another volume or equipment, but which may be connected, for example, by a means of fluid communication, such as a pipe. 15 In an alternative to the embodiment depicted in Figure 3, the sensors 6, 7, may be mounted remotely in the discharge pipes 8 and 9. In such an embodiment where the volume inside a housing is in fluid communication with an additional volume, such as by means of a discharge 20 pipe, if a sensor is adapted to detect a change in pressure in the first volume, then the discharge pipe can be fitted with a valve 10, or other suitable orifice plate or restriction to provide a pressure differential for sensing purposes.
WO 2007/012855 PCT/GB2006/002799 19 The embodiment depicted in Figure 4 shows a pair of physically discrete housings that are in fluid communication with each other by means of a pipe 14. In such an embodiment it is not always necessary for each housing to be provided with its own sensor. For example, one sensor 12 or set of sensors 5 may be provided in only one or in both housings. Alternatively, one sensor or one set of sensors may be located in the interconnecting pipe. The pipe connecting the two housings may additionally include means of connecting to other apparatus or means for permitting fluid communication 10 with additional volumes. Such a means may include a T-connection 13 to allow the safe discharge of the escaped volatile fluid into a safe space or the atmosphere. Again, in this embodiment, if a sensor is adapted to detect a change in pressure, then a valve or other suitable orifice plate or restriction 10 may be fitted inside the discharge pipe or connecting pipe to provide a 15 pressure differential for sensing purposes. In such an embodiment one sensor or one set of sensors may be located in the T-connection pipe 13. The apparatus described herein is particularly useful for detecting the escape of fluid from a point of attachment or a joint between pipes. There are a 20 number of reasons why a portion of pipe may comprise a point of attachment or a joint, such as to connect the flow and return pipes of the cooling system / heat exchanger and the high or low level pipe work 18 that provides the volatile fluid (e.g. the carbon dioxide) to each cooling system, that distributes it between separate systems, and that removes it from the system.
WO 2007/012855 PCT/GB2006/002799 20 There are several ways in which these points of attachment / joints may be formed. For instance, if the cooling system / heat exchanger is located on a fixed panel then the connections / joints may be hard piping with suitable 5 unions, or flexible pipes with suitable unions. If however the cooling system is located on, for example, a door, which swings open for access, then the connections may be flexible pipes with suitable unions or purpose designed connections located approximately in line with the door hinges, to provide sealed assemblies of fixed pipes with rotary knuckle joints to accommodate 10 the door movement. A consequence is that such joints / points of attachment are more susceptible to leaks than uninterrupted straight piping. The embodiment of Figure 5 further comprises a housing adapted to contain a portion of pipe that includes a point of attachment or connection / a joint. The 15 joint depicted in this embodiment is the point of attachment between the flow and return pipes of the cooling system / heat exchanger and the high or low level pipe work that provides the volatile fluid and that removes it from the system. 20 A housing 15 contains a portion of pipe that includes the flow and return connections / joint 3 (as described above), with the sensor 16 employed to detect escaped fluid by indirect (e.g. temperature and / or pressure change) or direct (e.g. chemical composition / concentration) means.
WO 2007/012855 PCT/GB2006/002799 21 The embodiment depicted also has a discharge pipe 17 provided with a valve 19, to allow the volume inside the housing to communicate with the atmosphere or another volume, such as a safe space. The discharge pipe 17 may also incorporate a remote sensor for detecting the presence of heat 5 exchanger fluid. In an alternative embodiment a portion of the flow pipe that carries fluid to the cooling system and a portion of the return pipe that carries fluid from the cooling system may be contained in two physically discrete housings, which 10 may be in fluid communication with each other. In the embodiment of Figure 6, the housing containing a portion of the flow and return pipes 16 is in fluid communication via pipe 20 to a physically discrete housing 12 that encloses a plurality of U-bends in portions of pipe at 15 the bottom of the cooling system depicted. In such an arrangement one sensor or one set of sensors 21 located in any one of the two housings or in the interconnecting pipe can be employed. Alternatively, sensors can be adapted to monitor each enclosure. 20 The connecting pipe 20 is also fitted with a T-connection and discharge pipe 22 to permit safe discharge of escaped fluid to another safe area or to the atmosphere. Again, the pipe 22 may be fitted with a valve 23 to regulate movement of fluid in the discharge pipe, particularly if the sensor(s) is / are adapted to detect changes in pressure.
WO 2007/012855 PCT/GB2006/002799 22 In an alternative embodiment to that depicted, the discharge pipe 22 may alternatively or additionally incorporate a remote sensor for detecting the presence of heat exchanger fluid. 5 Figure 7 shows an embodiment in which top 4, bottom 5 and flow and return 16 housings are in fluid communication via pipes 24. This allows the use of one sensor or one set of sensors to detect escape of fluid from any one on the portions of pipe that are contained in the three housings. For example, one 10 sensor or a set of sensors may be adapted to monitor the escape of fluid at one or more of positions 25 or 26. In the embodiment depicted, the interconnecting pipe 24 is fitted with a T connection and discharge pipe 27 having a valve 28, to permit safe discharge 15 of any volatile fluid such as carbon dioxide to a safe area or to the atmosphere. In an alternative embodiment, the discharge pipe 27 may also / alternatively incorporate a remote sensor for detecting the presence of heat exchanger 20 fluid. The apparatus disclosed herein also allows for methods for detecting the escape of fluid from a portion of a passage or pipe, such as from a pipe of a WO 2007/012855 PCT/GB2006/002799 23 cooling system or heat exchanger, by using the apparatus disclosed herein, as described hereinbefore. The person of skill in the art will appreciate how the apparatus and methods 5 described herein may also be suitable for detecting the escape of a fluid, such as a volatile fluid (e.g. carbon dioxide) from an apparatus other than a cooling system or heat exchanger, such as a gas storage tank etc.
Claims (55)
1. Apparatus for detecting the escape of a fluid from a cooling system having a passage, comprising: 5 a housing defining a volume abutting one or more portions of said passage; and sensor means adapted to detect the presence of said fluid within said volume; wherein the housing is adapted to collect the escaped fluid such that 10 the sensor can detect the escaped fluid before the operation of the cooling system is compromised.
2. Apparatus according to Claim 1, wherein said fluid is a volatile fluid. 15
3. Apparatus according to Claim 2, wherein said fluid is carbon dioxide.
4. Apparatus according to any of Claims 1 to 3, wherein the sensor is adapted to detect the presence of a gas. 20
5. Apparatus according to any of claims 1 to 4, wherein the apparatus is adapted to detect fluid which escapes from the passage in the form of a gas. WO 2007/012855 PCT/GB2006/002799 25
6. Apparatus according to any of Claims 1 to 3, wherein the sensor is adapted to detect the escape of fluid into said volume by indirect or direct means. 5
7. Apparatus according to Claim 6, wherein said indirect means is a change in pressure within the volume.
8. Apparatus according to Claim 6, wherein said indirect means is a change in temperature within the volume. 10
9. Apparatus according to Claim 6, wherein said direct means is a chemical change such as a change in chemical concentration in the volume. 15
10. Apparatus according to any preceding claim, wherein said sensor is located remotely to said housing.
11 Apparatus according to any preceding claim, wherein said passage is a pipe and said one or more portions of a passage is one or more 20 portions of a pipe.
12. Apparatus according to any of Claims 1 to 11, wherein said cooling system comprises a heat exchanger comprising said passage or pipe. WO 2007/012855 PCT/GB2006/002799 26
13. Apparatus according to any preceding claim, wherein the ratio of the surface area of said one or more portions of passage or pipe to the volume defined by said housing abutting said one or more portions of passage or pipe is less than 1 : 100. 5
14. Apparatus according to Claim 13, wherein the surface area to volume ratio is less than 1 : 50.
15. Apparatus according to Claim 13, wherein the surface area to volume 10 ratio is in the range 1 : 50 to 1 :10.
16. Apparatus according to Claim 13, wherein the surface area to volume ratio is in the range 1 : 40 to 1: 20. 15
17. Apparatus according to Claim 13, wherein the surface area to volume ratio is in the range 1 : 35 to 1: 25.
18. Apparatus according to Claim 13, wherein the surface area to volume ratio is approximately 1 : 30. 20
19. Apparatus according to any preceding claim, wherein the housing abuts a portion of the passage or pipe that is under a locally elevated level of mechanical stress. WO 2007/012855 PCT/GB2006/002799 27
20. Apparatus according to any preceding claim, wherein the housing abuts a portion of the passage or pipe that is curved or angled in the longitudinal direction of the pipe. 5
21. Apparatus according to Claim 20, wherein said curve or angle is at least 30'.
22. Apparatus according to Claim 20, wherein said curve or angle is at least 600. 10
23. Apparatus according to Claim 20, wherein said curve or angle is at least 1200.
24. Apparatus according to Claim 20, wherein said curve or angle is at 15 least 180*.
25. Apparatus according to any preceding claim, wherein at least a one of said one or more portions of a passage or pipe is curved at an angle of approximately 1800 (e.g. a U-bend). 20
26. Apparatus according to any of Claims 1 to 19, wherein said sensor is adapted to monitor straight portions of passage / pipe. WO 2007/012855 PCT/GB2006/002799 28
27. Apparatus according to Claim 26, wherein said sensor is adapted to detect a change in temperature within the volume.
28. Apparatus according to Claim 26 or Claim 27, wherein said sensor is 5 mounted on the downstream edge of the coil / heat exchanger fin.
29. Apparatus according to Claim 28, wherein the volume defined by said housing abuts substantially all of the straight portions of passage / pipe in a heat exchanger. 10
30. Apparatus according to any preceding claim, wherein the volume defined by said housing abuts one or more portions of a passage or pipe having a joint. 15
31. Apparatus according to any preceding claim, wherein the housing contains 2 or more portions of said passage or pipe.
32. Apparatus according to any preceding claim, wherein the housing contains 10 or more portions of said passage or pipe. 20
33. Apparatus according to any preceding claim, wherein the housing contains 10 to 20 portions of said passage or pipe. WO 2007/012855 PCT/GB2006/002799 29
34. Apparatus according to any preceding claim, wherein the length of the passage or pipe of the cooling system abutting the volume is less than 50%, preferably less than 25% or more preferably less than 10% of the total length of the pipe. 5
35. Apparatus according to any preceding claim, wherein said volume is in fluid communication with one or more spaced apart additional volumes.
36. Apparatus according to Claim 35, wherein the means of fluid 10 communication is a discharge or connecting pipe.
37. Apparatus according to Claim 36, wherein said discharge or connecting pipe is provided with a valve to regulate the rate of fluid communication between said one or more additional volumes. 15
38. Apparatus according to Claim 36 or Claim 37, wherein the sensor is mounted on or in said discharge or connecting pipe.
39. Apparatus according to any of Claims 35 to 38, wherein said one or 20 more additional volumes are defined by one or more additional housings. WO 2007/012855 PCT/GB2006/002799 30
40. Apparatus according to any of Claims 35 to 39, wherein one or more of said additional volumes is a safe space, such as an air-tight storage means or the atmosphere. 5
41. Apparatus according to any preceding claim, comprising a plurality of housings as defined in any preceding claim.
42. Apparatus according to any preceding claim, comprising two or more sensors as defined in any of Claims 1 to 10. 10
43. Apparatus according to Claim 42, wherein each of said two or more sensors is adapted to detect the escape of fluid by the same or by different indirect or direct means. 15
44. Apparatus according to any preceding claim, adapted to signal to an alarm means.
45. Apparatus according to any preceding claim, further comprising an alarm means. 20
46. Apparatus according to any preceding claim, adapted to signal to a data storage or processing means. WO 2007/012855 PCT/GB2006/002799 31
47. Apparatus according to Claim 46, wherein said data storage or processing means is a computer installation.
48. Apparatus according to Claim 46, wherein said data storage or 5 processing means is a monitoring system.
49. Apparatus according to any preceding claim, wherein said housing defines a volume abutting a series of U-bends. 10
50. Apparatus substantially as described herein and / or as depicted in the accompanying figures.
51. A cooling system comprising the apparatus of any of Claims I to 50. 15
52. A heat exchanger comprising the apparatus of any of Claims 1 to 50.
53. A monitoring system comprising the apparatus of any of Claims 1 to 50. 20
54. A computer installation comprising the apparatus of any of claims 1 to 50. WO 2007/012855 PCT/GB2006/002799 32
55. A method for detecting the escape of a heat exchange fluid from a cooling system or heat exchanger using the apparatus of any of Claims 1 to 50. 5
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB0515399A GB2428896A (en) | 2005-07-26 | 2005-07-26 | Detecting a leak in a cooling system |
| GB0515399.4 | 2005-07-26 | ||
| PCT/GB2006/002799 WO2007012855A1 (en) | 2005-07-26 | 2006-07-26 | Apparatus for cooling systems |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| AU2006273840A1 true AU2006273840A1 (en) | 2007-02-01 |
Family
ID=34976674
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2006273840A Abandoned AU2006273840A1 (en) | 2005-07-26 | 2006-07-26 | Apparatus for cooling systems |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20090094999A1 (en) |
| EP (1) | EP1907771A1 (en) |
| AU (1) | AU2006273840A1 (en) |
| GB (1) | GB2428896A (en) |
| WO (1) | WO2007012855A1 (en) |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1854534A1 (en) * | 2006-05-12 | 2007-11-14 | Methanol Casale S.A. | Isothermal reactor |
| GB2476475B (en) * | 2009-12-23 | 2014-03-12 | 2Oc | Data centre, and power and cooling system therefor |
| JP5916360B2 (en) * | 2011-11-30 | 2016-05-11 | 三菱重工業株式会社 | Turbo refrigerator |
| EP2812640B1 (en) | 2012-02-10 | 2018-08-08 | Carrier Corporation | Method for detection of loss of refrigerant |
| JP5818849B2 (en) * | 2013-08-26 | 2015-11-18 | 三菱電機株式会社 | Air conditioner and refrigerant leakage detection method |
| JP2018028392A (en) * | 2014-12-25 | 2018-02-22 | 三菱電機株式会社 | Refrigerant leak detection device and refrigeration cycle device provided with the same |
| GB2533936B (en) | 2015-01-07 | 2017-10-25 | Homeserve Plc | Flow detection device |
| GB201501935D0 (en) | 2015-02-05 | 2015-03-25 | Tooms Moore Consulting Ltd And Trow Consulting Ltd | Water flow analysis |
| CN105549703A (en) * | 2015-12-11 | 2016-05-04 | 曙光信息产业(北京)有限公司 | Cooling system and method of server |
| CN105511578A (en) * | 2015-12-23 | 2016-04-20 | 曙光信息产业(北京)有限公司 | Heat dissipation method and device of server |
| USD800591S1 (en) | 2016-03-31 | 2017-10-24 | Homeserve Plc | Flowmeter |
| JP2018124009A (en) * | 2017-01-31 | 2018-08-09 | ダイキン工業株式会社 | Refrigeration equipment |
| EP3817932B1 (en) * | 2018-07-02 | 2025-08-13 | Carrier Corporation | Isolated evaporator piping pod |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3734182A1 (en) * | 1987-10-09 | 1989-04-27 | Thyssen Stahl Ag | METHOD FOR MONITORING METALLURGICAL VESSELS |
| US5351500A (en) * | 1993-12-03 | 1994-10-04 | Texas Medical Center Central Heating And Cooling Cooperative Association | Refrigerant leak detector system |
| JP3494188B2 (en) * | 1994-03-17 | 2004-02-03 | 富士通株式会社 | Cooling device for integrated circuit elements |
| JPH10288429A (en) * | 1997-04-14 | 1998-10-27 | Sanden Corp | Alarming device for air-conditioning refrigerant carbon dioxide gas |
| US6569158B1 (en) * | 1999-01-25 | 2003-05-27 | Cryocath Technologies, Inc. | Leak detection system |
| JP2000355213A (en) * | 1999-06-11 | 2000-12-26 | Mitsubishi Heavy Ind Ltd | Air conditioning device for vehicle |
| JP4042481B2 (en) * | 2002-06-26 | 2008-02-06 | 株式会社デンソー | Air conditioner |
| DE102004019929B4 (en) * | 2004-04-21 | 2006-07-20 | Siemens Ag | Air conditioning system carbon dioxide refrigerant gas leak detection unit has sound sensor coupled to cold circuit air channel |
-
2005
- 2005-07-26 GB GB0515399A patent/GB2428896A/en not_active Withdrawn
-
2006
- 2006-07-26 AU AU2006273840A patent/AU2006273840A1/en not_active Abandoned
- 2006-07-26 US US11/988,901 patent/US20090094999A1/en not_active Abandoned
- 2006-07-26 EP EP06765120A patent/EP1907771A1/en not_active Withdrawn
- 2006-07-26 WO PCT/GB2006/002799 patent/WO2007012855A1/en not_active Ceased
Also Published As
| Publication number | Publication date |
|---|---|
| GB0515399D0 (en) | 2005-08-31 |
| EP1907771A1 (en) | 2008-04-09 |
| US20090094999A1 (en) | 2009-04-16 |
| WO2007012855A1 (en) | 2007-02-01 |
| GB2428896A (en) | 2007-02-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20090094999A1 (en) | Apparatus for cooling systems | |
| KR940008382B1 (en) | Electronic device and cooling method of electronic device | |
| EP3505842B1 (en) | Retrofitting r-410a hvac products to handle flammable refrigerants | |
| CA2871678C (en) | Process fluid flow transmitter with finned coplanar process fluid flange | |
| US20190234659A1 (en) | Cooling module | |
| US5425267A (en) | Corrosion simulator and method for simulating corrosion activity of a process stream | |
| EP2741046A2 (en) | Expansion relief header for protecting heat transfer coils in HVAC systems | |
| JP2007234791A (en) | Electronic apparatus cooling device | |
| CN218119059U (en) | Be applied to online leak hunting bellows compensator of gas pipeline | |
| KR101409487B1 (en) | System for detecting inside leakage of valve | |
| US20060042363A1 (en) | Method for detecting corrosion in industrial process equipment | |
| US5333468A (en) | Apparatus for prevention of loss of refrigerant | |
| JPH0694338A (en) | Safety device of ammonia absorption freezer machine | |
| US12345355B2 (en) | Air release valve monitoring systems and methods | |
| CN113483251B (en) | Storage tank structure capable of effectively preventing hydrogen leakage | |
| CN220038856U (en) | Refrigerating unit and refrigerating environment space | |
| GB2439977A (en) | Cooling apparatus and methods for cooling | |
| McKay et al. | Fire and explosion hazards with thermal fluid systems. | |
| CN116086102A (en) | Refrigerating unit and refrigerating environment space | |
| JP3133519B2 (en) | Heat transfer circuit of absorption refrigerator | |
| JP3187878B2 (en) | Absorption refrigerator protection device | |
| US20250369637A1 (en) | Air conditioner housing containing refrigerant sensor | |
| CN221037010U (en) | Detachable rigid integral protective cover with leakage detection for plate heat exchanger | |
| TW201334665A (en) | Scanner protection casing and system of reading the height of the pellet bed of grid cars inside a grid furnace comprising a scanner protected by said casing | |
| GB2555092A (en) | Air conditioning apparatus & method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MK1 | Application lapsed section 142(2)(a) - no request for examination in relevant period |