AU2005201364A1 - Fluid dispenser - Google Patents
Fluid dispenser Download PDFInfo
- Publication number
- AU2005201364A1 AU2005201364A1 AU2005201364A AU2005201364A AU2005201364A1 AU 2005201364 A1 AU2005201364 A1 AU 2005201364A1 AU 2005201364 A AU2005201364 A AU 2005201364A AU 2005201364 A AU2005201364 A AU 2005201364A AU 2005201364 A1 AU2005201364 A1 AU 2005201364A1
- Authority
- AU
- Australia
- Prior art keywords
- fluid dispenser
- fluid
- valve
- dispenser according
- silver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 title claims description 102
- 239000000463 material Substances 0.000 claims description 56
- 244000052616 bacterial pathogen Species 0.000 claims description 26
- 229910052709 silver Inorganic materials 0.000 claims description 26
- 239000004332 silver Substances 0.000 claims description 26
- 239000013543 active substance Substances 0.000 claims description 25
- 238000005202 decontamination Methods 0.000 claims description 21
- 230000003588 decontaminative effect Effects 0.000 claims description 21
- 239000007788 liquid Substances 0.000 claims description 16
- 229910001220 stainless steel Inorganic materials 0.000 claims description 15
- 239000010935 stainless steel Substances 0.000 claims description 13
- 238000000576 coating method Methods 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 8
- 229940100890 silver compound Drugs 0.000 claims description 8
- 150000003379 silver compounds Chemical class 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 150000003839 salts Chemical group 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 229910052593 corundum Inorganic materials 0.000 claims description 4
- 239000010431 corundum Substances 0.000 claims description 4
- -1 molybdenium Chemical compound 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 239000004411 aluminium Substances 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 239000002537 cosmetic Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 229940079593 drug Drugs 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 23
- 239000003570 air Substances 0.000 description 11
- 238000011109 contamination Methods 0.000 description 7
- 230000000845 anti-microbial effect Effects 0.000 description 5
- 239000006196 drop Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 150000003378 silver Chemical class 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000003889 eye drop Substances 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 229940012356 eye drops Drugs 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 230000002906 microbiologic effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000002070 germicidal effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002103 nanocoating Substances 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012010 media fill test Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000011169 microbiological contamination Methods 0.000 description 1
- 238000012009 microbiological test Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
Landscapes
- Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Medical Preparation Storing Or Oral Administration Devices (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Description
1 -1-
AUSTRALIA
PATENTS ACT 1990 COMPLETE
SPECIFICATION
FOR A STANDARD PATENT
ORIGINAL
Name of Applicant/s: Actual Inventor/s: Ursapharm Arzneimittel GmbH Co. KG Detmar Buxmann Address for Service is: SHELSTON IP Margaret Street SYDNEY NSW 2000 CCN: 3710000352 Attorney Code: SW Telephone No: Facsimile No.
(02) 9777 1111 (02) 9241 4666 Invention Title: FLUID DISPENSER The following statement is a full description of this invention, including the best method of performing it known to me/us:- File: 45596AUP00 500564429_1.DOC/5844 -la- Fluid dispenser TECHNICAL FIELD OF THE INVENTION The invention relates to a fluid dispenser for germ-free fluids.
DESCRIPTION OF RELATED ART In the Pharmazeutische Zeitung, 124, No. 20, of 17th May 1979, on pages 949 and 950, a fluid dispenser is described that has the form of a dropping pipette and is attached to a container containing eye-drops. Inside the dropping pipette a silver deposit consisting of a layer of silver or a difficultly-soluble silver salt is disposed so that airborne germs drawn in with the drops that run back into the container have to pass an antimicrobial (oligodynamical) active silver layer before they enter the container. It is also stated that ceramic rings with silver chloride embedded and having a diameter of 9 mm have been found to be suitable. These ceramic rings can be firmly installed in the droppers of all the usual kinds of pharmaceuticals, eye-dropper bottles simply by pushing them in. This method of introducing the silver deposit into the droppers has the disadvantage that only the drops running back along the walls of the dropper come into contact with the silver deposit, but not the portions of the liquid in the interior of the column of fluid which flows back into the container from the dropper after use in the usual way with the dropper facing downwards. Each use of the eye-drop container thus leads to contamination of the eye-drops. A further disadvantage is that the interior of the container is in contact with the ambient air through the dropper, so that even while it is not being used germs constantly find their way in and lead to contamination of the eyedrops in the container.
From DE 40 27 320 C2 a fluid dispenser for germ-free fluid is known which comprises a through passage connecting an inlet opening for fluid and a delivery opening for said fluid and having therein an oligodynamically antimicrobial active substance. The device includes a metering pump and inlet and outlet valves. The oligodynamical germicidal active substance is present in the region of the inlet valve and/or the outlet valve.
According to Fig. 1 of this document the springs are shown which can be coated with silver. Likewise, the valve ball functioning as the inlet valve consists of corundum having embedded therein a silver material as an oligodynamically effective substance. A disadvantage of this device is that often compatability problems occur due to the presence of silver and oxidation processes which produce undesired by-products, which often results in a limited choice of appropriate formulation.
SUMMARY OF THE INVENTION One aspect of the present invention provides a fluid dispenser of the kind as referred to in DE 40 27 320 C2 which does not cause compatibility problems and prevents the formation of by-products while simultaneously an adequate and comparable microbiological safety germ-free application) of the system is maintained.
The present invention relates to a fluid dispenser for germ-free fluid comprising a through passage connecting an inlet opening for fluid contained in a supply container made of flexible material amd a delivery opening for dispensing said fluid and having therein at least one oligodynamically active substance that is in contact with the fluid; a metering pump operating without air pressure compensation, whereby no pressure compensation takes place in the container through the inflow of air during the operation of said metering pump, said pump having a spring means being in contact with the fluid, an inlet valve for closing said inlet opening, and an outlet valve; and an outlet passage being part of said through passage leading from said outlet valve to the delivery opening, wherein a decontamination means is provided in the upper part of said outlet passage said decontamination means comprising a material capable of interacting with germs via an oligodynamical substance selected from the group consisting of silver, silver salts, other silver compounds, alloys and nanomers thereof in either metallic or salt form or as a chemical compound thereof.
The present invention rela;es further to the use of the fluid dispenser of the invention.
The fluid dispenser of the present invention is suitable for dispensing minute amounts of a liquid in various fields such as pharmaceutics, cosmetics and medical devices. The liquids are usually topically applied. Preferred liquids are ophthalmic and nasal compositions.
The term "interacting" should be defined in the context of the present invention as a type of a surface reaction. The theory is that the interaction takes place close to or preferably on the surface of the material capable of interacting with the germs contained in the liquid. The germs may hereby derive from a contamination of the unprotected outer part of the delivery opening tha: comes in contact with the environment. The germs hereby may be contained in the fluid, or in other substances coming into contact with the fluid dispenser, such as air, lachrymal liquor, mucosa or the like. One possible mechanism could be that the contaminated liquid comes into contact with ions derived from metal oxides which has been foimed directly on the surface of the material. This contact results in an antimicrobial effect. A general rule can be seen in the relationship of the material surface and its size: the larger the surface is, the better the decontamination effect is. Different levels of interaction with the germs are hereby possible. For example, the interaction could result in a slowing down or stopping of the growth of the germs in the fluid. A strong level of interaction is e. g. the oligodynamic effect in which an oligodynamically active substance actually kills germs in the fluid.
According to the fluid dispenser of the invention, the decontamination means is provided in the outlet passage and preferably in the upper part of the outlet passage. The term "upper part" comprises the region of the outlet passage where still an optimum decontamination can be ensured.
According to the inventiorn, a particularly intensive germicidal action results from the position of the outlet valve and the decontamination means. Due to the specific technical construction the moveable: outlet valve does not come into direct contact with the environment, which results in a reduction of the risk of a contamination during the movement of the outlet valve. As a results an oligodynamically active substance has to be provided on the outside of the outlet valve, which is realised by the decontamination means. Further, with this construction the fluid in the container does not come constantly into contact with the oligodynamically active substances, which reduces the above mentioned unwanted reactions of the fluid with the oligodynamically substance. The metering pump operates without air pressure compensation, so that contamination of the fluid supply through the air flows into the container to effect the pressure compensation in the operation of conventional metering pumps is prevented. The fluid dispenser of the invention ensures that the fluid in the supply container is kept germ-free even during use, so that it is not necessary either to add preservatives or to introduce the oligodynamically active substance in other regions of the container.
The oligodynamically active substance is located at or near to the outlet passage to prevent microbiological contamination by reducing count of potential arising germs from the environment.
I
The materials and elements of the metering pump and the container which are in contact with the fluid could be any Idnd of elements and materials which are compatible with the respective fluid. In some applications, it is not necessary to provide any material capable of interacting with germs inside the metering pump and the container. However, in other applications it might be advantageous to use materials capable of interacting with germs within the metering pump md the container. For example, it might be advantageous if the inlet valve and/or the spring means comprise a material capable of interacting with germs. Hereby, the material could be selected from the group consisting of silver, silver salts, other silver compounds, stainless steel and nanomers thereof in either metallic or salt form or as a chemical compound thereof. In this case, the stainless steel could contain at least one element selected from the group consisting of chromium, nickel, molybdenium, copper, tungsten, aluminium, titanium, niob and tantal, the remainder being iron as the main component. Among the above materials, all materials comprising silver, silver salts or other silver compounds usually are oligodynamically active.
Stainless steel materials are believed to be usually not oligodynamically active or, if they are, only to a very small extend. However, the stainless steel materials are believed to be able to interact with the germs by slowing down or stopping their growth.
Advantageously, said through passage is constantly filled, at least in the region of said inlet valve with said fluid. Further advantageously, the oligodynamically active substance is provided on the inner side of a cap that can be fitted onto said fluid dispenser to cover said delivery opening. Hereby, the cap may be provided with a pin and a hole. Further, the pin may fit in the delivery opening located in the head.
Further advantageously, said inner valve further includes a valve seat cooperating with the closure member wherein said valve seat is provided with said oligodynamically active substance. Further advantageously, the outlet valve further includes a valve seat cooperating with the closure member. Further advantageously, the inlet valve is a ball valve and a valve housing cooperating with a closure member of the inlet valve is provided, said valve housing being provided with said oligodynamically active substance. Advantageously, the outlet valve is a piston valve and a valve housing cooperating with a closure member of said outlet valve. Further advantageously, the decontamination means is of a material having a circular shape. Hereby, the decontamination means may be a ring, a spiral or a coating. The material may be corundum having embedded therein the oligodynamically active compound.
Alternatively, the material can be silver.
BRIEF DESCRIPTION OF THE DRAWINGS The invention will now be described in more detail, by way of example, with reference to the single Figure of the dirawings, which shows in longitudinal section an embodiment of the invention.
DETAILED DESCRIPTION OF THE INVENTION As shown in the Figure, the device comprises a metering pump consisting of a cylindrical pump body 1, an operating plunger 2 and a cap 3.
The pump body 1 comprises a first hollow cylindrical body part 4, shown in the drawing as open at the bottom, a second hollow cylindrical body part 5 of bigger diameter (part is part of the operating plunger open at the top in the drawing, and a hollow cylinder 6 that is open at both ends lnd is fixed centrally on an inwardly directed annular flange 7 in the transition region between the two parts 4,5 of the pump body. The first body part 4 may have an internal screw thread into which a container 9 filled with a germ-free fluid and indicated only generalhy, can be screwed. As an alternative, instead of the internal screw thread, a snap on closure can be used as shown in the Figure. A seal 11 is provided on the underside (in the drawing) of the annular flange 7 to ensure an air-tight seal between the container 9 and the pump body 4. In the neighborhood of the outlet from the first body part 4 of the pump the hollow cylinder 6 has a conically tapereddown transition part 12 that connects with a cylindrical valve section 14 of smaller diameter leading to a rising tube, if available. The open bottom end of the rising tube forms the inlet opening 15 of the metering pump. As an alternative, the rising tube may be omitted, as shown in the Figure.
The operating plunger 2 comprises an outer hollow cylindrical part 17, shown in the drawing as open at the bottom and closed at the top by a head 16, and a hollow inner cylindrical part 18 extending centrally downwards from the head 16. The diameter of the hollow outer cylindrical part 17 is smaller than that of the first pump body part 4.
A piston 19 that fits inside the hollow cylinder 6 and has a through bore 20 is fixed at its top end in the inner hollow cylinder part 18. A piston valve 21 of an outlet valve 22 that fits inside the hollow cylindrical part 18 is supported between the end part of the piston 19 at one end and at the olher end on the head 16 via a spring 23. An outlet passage leading to a delivery opening 24 on the head 16 is connected to the interior of the inner hollow cylindrical part 18 at the level of the piston valve 21.
In the upper part of the outlet passage 25 or preferably in the upper part of the outer hollow cylindrical part 17 a decontamination means 33 is provided which comprises a material capable of interacting via an an oligodynamically active substance selected from the group consisting of silver, silver salts, other silver compounds and alloys thereof or nanomers in either metallic or salt form or chemical compounds thereof close to the surface thereof. The decontamination means 33 may hereby be provided at the inner and/or the outer wall of the outlet passage Silver exhibits the most favourable therapeutically index in terms of concentration in parts per billion. Depending on economical considerations, the means can be made of silver, of another metal coated with silver or of a material having embedded therein the oligodynamically germicidally active substance. In a preferred embodiment of the invention, the means decontamination 33 has a circular shape such as a ring or a spiral.
It has been shown that corundum can be one of the convenient materials, when the oligodynamically active substance is embedded in a carrier material.
Depending on the construction of the fluid dispenser and its intended use, the decontamination means 33 can be also provided as a coating. As an example, the coating can be disposed on the ouler hollow cylindrical part 17 in the upper part of the outlet passage 25. It is possible to provide a coating made of silver or a coating of a suitable material having embedded iherein silver or a silver compound.
It has been shown that in the case of using a coating in the upper part of the outlet passage 25, the silver coating may be suitably a nanocoating comprised of nanomeres.
For example, a desired nanocoating comprising silver colloids is described in DE 01 128 625 Al.
As already explained the piston valve 21 which functions as outlet valve is not located directly at the delivery opening 24. Instead the piston valve 21 is located in the inner hollow cylindrical part 18 and an outlet passage 25 is provided leading from the piston valve 21 to the delivery opening 24. The through bore 20 and the outlet passage 25 are thereby separated by the pi;ton valve 21. The function of the piston valve 21 is hereby to allow a delivery of the fluid 10 from the container 9 through the inner space 32, the through bore 20 and the outlet passage 25 to the delivery opening 24 but to prevent a flowing back of the fluid 10 from the outlet passage 25 to the through bore With the piston valve 21 a closed system is established, i.e. a system into which no fluid flows back once the fluid 10 has left the system. Thereby, the intrusion of germs and
I
-7bacteria into the closed sysl:em is effectively prevented. This results in the possibility to use any suitable material for the components within the closed system as the necessity of using materials capable of interacting with germs or oligodynamically active substances is not present due to the fact that the intrusion of germs is prevented. However, it might be advantageous to use materials which are able to interact with germs by stopping or slowing down their growth or even to use oligodynamically active substances.
The outlet passage 25 is provided as a very thin and small capillary thereby reducing the dead volume, i.e. the volume of the fluid outside the closed system and coming into contact with the decontamination means.
According to embodiments of the invention it is possible to provide antimicrobial coatings on parts of the inlet valve 26 and on parts of the pump housing. Said coatings may be applied directly to plastic elements and steel components of the pump.
An inlet valve 26 comprising a ball 28 cooperating with a valve seat 27 is formed in the valve part 14. A spring 29 fixed to the piston 19 is supported on a projection 30 on the valve part 14 and supports the pumping action. The space inside the hollow cylinder 6 between the piston 19 and the valve part 14 is indicated by the reference numeral 32.
The valve ball 28 can comprise a material capable of interacting with germs eventually even via an oligodynamically active substance. In addition the valve seat 27 and the inner side of the inner hollow cylinder part 18 in the region of the piston valve 21 may be coated with a material capable of interacting with germs eventually even via an oligodynamically active substance. The piston valve 21 can be made of any inert material such as plastic.
The spring means 29 may also comprise a material capable of interacting with germs eventually even via an oligodynamically active substance. In principle, any suitable material may be used, as long as the material is compatible with the formulation.
It has been shown that a preferred material for the above device components is a stainless steel. Generally, a stainless steel contains relatively high amounts of alloy elements such as chromiurn, nickel, molybdenium, copper, tungsten, aluminium, tantal, niob and titanium, while iron being the remainder representing the major part of the alloy.
It is known that stainless steels are corrosion-resistent. The corrosion resistance is due to an extremely thin and very tough chromium oxide layer on the surface of the steel.
Chromium as well as other heavy metals in very small amounts can act as an oligodynamically active substance which may also reduce microbial growth. For example, useful stainless steel materials include such as materials 1.4034 and 1.4401. In various embodiments of the invention, an effective killing of germs may be achieved when a suitable steel such as stainless steel chromium is used as an oligodynamically active substance for the spiral 29 and the inlet valve 26. As the upper spring 23 does not come into contact with the fluid to be filled, the upper spring 23 may be made of a stainless steel material.
From the viewpoint of compatibility of the stainless steels, especially under consideration of possible allergic reactions, a nickel-free stainless steel or a stainless steel comprising very low amounts of nickel should be used.
It is to be noted, that within the closed system particularly for the inlet valve 26, the ball 28, the valve seat 27, the inner part of the hollow cylindrical part 18, the spring means 19 and for every part of the fluid dispenser that comes into contact with the fluid 10, any material capable of interacting with germs can be used such as silver, silver salts, other silver compounds, stainless, steel and nanomers thereof in either metallic or salt form or as a chemical compound thereof or plastic.
On the other hand, the material and elements used in the closed system can be free of any oligodynamically active substances.
The metering pump of the invention operates without air pressure compensation, that is to say, no pressure compensation takes place in the container 9 through the inflow of air during its operation. Thereby the intrusion of germs or bacteria into the container 9 or the closed system over the air is prevented.
The metering pump of the invention operates as follows: when the user removes the cap 3 and depresses the operating plunger 2 so as to push it into the second pump body part a corresponding movement of the piston 19 against the force of the spring 29 simultaneously takes place. This presses the ball 28 harder against the valve seat 27 and applies pressure to the liquid 10 that has been sucked into the inner space 32 and the through bore 20 during the previous operation of the metering pump. This pressure displaces the piston valve 21 of the outlet valve 22 against the force of the spring 23, so that the connection to the outlet passage 25 is opened and a precisely measured quantity -9of the liquid 10 is delivered through the delivery opening 24. As soon as the piston 19 reaches its dead centre position, the pressure in the inner space 32 and in the through bore 20 drops so far that the outlet valve 22 closes and the inlet valve 26 opens, so that liquid 10 is sucked out of the container 9. The inlet valve 26 then closes again.
Thereupon the user replaces the cap 3 on the plunger 2 and thereby closes the delivery opening 24.
Liquid remaining at the delivery opening 24, in the outlet passage 25, and in the through bore 20, as well as in the inner space 32 and in the inlet valve 29, come into contact with the various locations where the oligodynamically germicidally substances are in contact with the fluid.
The container 9 filled with a germ-free fluid may be made of a flexible material such as a plastic material. In some cases depending on the final use of the device, the container 9 may be composed of an at least two bag system comprising an external part and an internal bag as the main reservoir for the germ-free fluid.
In a preferred embodiment the container 9 consists of an outer container and of an inner container containing the fluid 10. The inner container is made of a flexible material and with every operation of the metering pump the inner flexible container contracts in order to compensate the pressure within the flexible container when the fluid 10 is sucked out.
Thereby a pressure compensation within the flexible container is achieved without the inflow of air into the inner flexible container. The outer container preferably is made of an unflexible material in order to allow the user of the fluid dispenser to hold the fluid dispenser properly and to operate the metering pump. Further, with the outer container the inner flexible container can be protected from destruction. In order to allow the inner flexible container to contract during the operation of the metering pump and to avoid a negative pressure between the two containers at least one small opening in the outer container is provided.
With the above explained system an inflow of air into the container is prevented.
Further, the inner flexible container contracts, i. e. reduces in volume, with every operation of the metering pump. This results in a constant contact of the fluid 10 with the inlet opening 15 of the metering pump. Thereby, fluid 10 can be delivered through the inlet opening 15 independent of the orientation of the fluid dispenser, i.e.
independent of the way the: user holds the fluid dispenser. This allows a 360°-application of the fluid dispenser, i.e. an operation of the fluid dispenser in upright, head first or any other position.
In addition, most of the components contained within the container 9, other than the decontamination means 33, and including the operating plunger 2 and pump body 4, may be formed of flexible material such as plastic material due to its recognised cost and manufacturing advantages. For other strength or load bearing components, such as the springs 23, 29, the plastic material should be strong enough to maintain spring integrity throughout the lifetime of use of the container 9. Further, in the case of wearable components such as the valve ball 28, inlet valve 26, and outlet valve 22, the plastic material should be a wear resistant plastic material. Also, as stated above, the decontamination means 33 may be formed of plastic material coated with the oligodynamically active substance.
One embodiment of the present invention provides a fluid dispenser that includes a cap 3 to cover and to seal the delivery opening 23. The cap 3 is provided with a pin 3a and a hole 3b. The pin 3a fits in the delivery opening 24 located in the head 16. The hole 3b functions as an aeration means. By passing air through this hole 3b, the excess fluid remaining after use is allcwed to evaporate, thus giving still more protection against contamination.
The fluid dispenser according to the invention is perfectly for dispensing minute amounts of liquids of any kinds, preferably a liquid pharmaceutical composition. In a preferred embodiment of t:he invention the fluid dispenser may be used for suspensing liquid pharmaceutical compositions, such as an ophthalmicum or nasalium. Further administrations are fluids applied as medical devices or cosmetics. The fluid dispenser according to the invention may be available in any size depending on the end use.
While the invention has been described in connection with one or more embodiments, it is to be understood that the specific mechanisms and techniques which have been described are merely illustrative of the principles of the invention, numerous modifications may be made to the methods and apparatus described without departing from the spirit and scope of the invention as defined by the appended claims.
Example 1 Microbiological Test: The microbiological safety of the fluid dispenser has been confirmed by the Media Fill Test and the Dye Test. These tests focused on evaluating the tightness of the system and the protection of the opening of the fluid dispenser. The opening of the fluid dispenser was protected from microbiological growth by the design of the area cf the opening. It is believed that the geometry and the small diameter of the tip area as well as the length of the capillary tube increases the difficulty for microbes to enter the fluid dispenser. The antimicrobial effect is especially achieved -11 by the location of the outlet valve and the construction of the dead volume at the outlet part, which had been designed to be difficult to reach for microbial contamination. There may be a hole in the covering cap of the fluid dispenser through which humidity evaporates. Additionally, to reduce any residual risk, a silver spiral was positioned directly behind the opening of the fluid dispenser. The metallic silver exerted an oligodynamic effect.
Example 2 In-Use Test: A simulated daily use microbial challenge study to simulate the In-Use application of the fluid dispenser was conducted. The objective was to determine if microbes would be introduced into the fluid dispenser after rugged usage. Microbes which are typically encountered by the consumer were tested by dispensing drops from the fluid dispenser. The drops were also placed at the tip of the fluid dispenser. At the conclusion of the testing period, sterility of the reservoir was conducted. The results of the In-Use study indicated that there was no ingress of the test microorganisms into the reservoir of the fluid dispenser during the simulated daily use of the dispenser.
Claims (22)
1. A fluid dispenser fir germ-free fluid comprising a through passage connecting an inlet opening for fluid contained in a supply container made of flexible material and a delivery opening for dispensing said fluid and having therein at least one oligodynamically active substance that is in contact with the fluid; a metering pump operating without air pressure compensation, whereby no pressure compensation takes place in the container through the inflow of air during the operation of said metering pump, said pump having a spring means being in contact with the fluid, an inlet valve for closing said inlet opening, and an outlet valve, and an outlet passage being part of said through passage leading from said outlet valve to the delivery opening, wherein a decontaminaticn means is provided in the upper part of said outlet passage said decontamination means comprising a material capable of interacting with germs via an oligodynamical substance selected from the group consisting of silver, silver salts, other silver compounds, alloys and nanomers thereof in either metallic or salt form or as a chemical compound thereof.
2. The fluid dispenser according to claim 1, wherein the inlet valve and/or the spring means comprise a material capable of interacting with germs.
3. The fluid dispenser according to claim 2, wherein the material is selected from the group consisting of silver, silver salts, other silver compounds, stainless steel and nanomers thereof in either metallic or salt form or as a chemical compound thereof.
4. The fluid dispenser according to claim 3, wherein the stainless steel contains at least one element selected from the group consisting of chromium, nickel, molybdenium, copper, tungsten, aluminium, titanium, niob and tantal, the remainder being iron as the main component.
The fluid dispen3er according to claim 1, wherein said through passage is constantly filled, at least in the region of said inlet valve with said fluid.
6. The fluid dispenser according to claim 1, wherein said oligodynamically aclive substance is provided on the inner side of a cap that can be fitted on to said fluid dispenser to cover said delivery opening.
7. The fluid dispenser according to claim 6, wherein the cap is provided with a pin and a hole. -13-
8. The fluid dispenser according to claim 7, wherein the pin fits in the delivery opening located in the head.
9. The fluid dispenser according to claim 2, wherein said inlet valve further includes a valve seat cooperating with the closure member wherein said valve seat is provided with said oligodynamically active substance.
The fluid dispenser according to claim 2, wherein said outlet valve further includes a valve seat cooperating with the closure member.
11. The fluid dispenser according to claim 2, wherein said inlet valve is a ball valve end a valve housing cooperating with a closure member of said inlet valve is provided, said valve housing being provided with said material.
12. The fluid dispenser according to claim 1, wherein said outlet valve is a piston valve and a valve housing cooperating with a closure member of said outlet valve.
13. The fluid dispenser according to claim 1, wherein the decontamination means is of a material having a circular shape.
14. The fluid dispenser according to claim 13, wherein the decontamination means is a ring.
15. The fluid dispenser according to claim 13, wherein the decontamination means is a spiral.
16. The fluid dispenser according to claims 1, wherein the decontamination means is a coating.
17. The fluid dispenser according to claim 13, wherein the material is corundum having embedded therein the oligodynamically active compound.
18. The fluid dispenser according to claim 13, wherein the material is silver. -14-
19. Use of a fluid dispenser according to claim 1 for dispensing minute amounts of a liquid in the field ofpharmaceutics, cosmetics and medical devices.
The use according to claim 19, wherein the liquids are topically applied.
21. The use of claim 20, wherein the liquid is an ophthalmicum or nasalium.
22. A fluid dispenser for germ-free fluid substantially as herein described with reference to any one of the embodiments of the invention illustrated in the accompanying drawings and/or examples. DATED this 3 1 st Day of March 2005 Shelston IP Attorneys for: Ursapharm Arzneimittel GmbH Co. KG
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/019,861 | 2004-12-22 | ||
| US11/019,861 US7249693B2 (en) | 2003-04-09 | 2004-12-22 | Fluid dispenser |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| AU2005201364A1 true AU2005201364A1 (en) | 2006-07-06 |
| AU2005201364B2 AU2005201364B2 (en) | 2010-08-12 |
Family
ID=36660060
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2005201364A Expired AU2005201364B2 (en) | 2004-12-22 | 2005-03-31 | Fluid dispenser |
Country Status (3)
| Country | Link |
|---|---|
| JP (1) | JP4914018B2 (en) |
| AU (1) | AU2005201364B2 (en) |
| MX (1) | MXPA05001982A (en) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9545487B2 (en) | 2012-04-13 | 2017-01-17 | Boehringer Ingelheim International Gmbh | Dispenser with encoding means |
| US9682202B2 (en) | 2009-05-18 | 2017-06-20 | Boehringer Ingelheim International Gmbh | Adapter, inhalation device, and atomizer |
| US9724482B2 (en) | 2009-11-25 | 2017-08-08 | Boehringer Ingelheim International Gmbh | Nebulizer |
| US9744313B2 (en) | 2013-08-09 | 2017-08-29 | Boehringer Ingelheim International Gmbh | Nebulizer |
| US9757750B2 (en) | 2011-04-01 | 2017-09-12 | Boehringer Ingelheim International Gmbh | Medicinal device with container |
| US9827384B2 (en) | 2011-05-23 | 2017-11-28 | Boehringer Ingelheim International Gmbh | Nebulizer |
| US9943654B2 (en) | 2010-06-24 | 2018-04-17 | Boehringer Ingelheim International Gmbh | Nebulizer |
| US10004857B2 (en) | 2013-08-09 | 2018-06-26 | Boehringer Ingelheim International Gmbh | Nebulizer |
| US10011906B2 (en) | 2009-03-31 | 2018-07-03 | Beohringer Ingelheim International Gmbh | Method for coating a surface of a component |
| US10016568B2 (en) | 2009-11-25 | 2018-07-10 | Boehringer Ingelheim International Gmbh | Nebulizer |
| US10099022B2 (en) | 2014-05-07 | 2018-10-16 | Boehringer Ingelheim International Gmbh | Nebulizer |
| US10124129B2 (en) | 2008-01-02 | 2018-11-13 | Boehringer Ingelheim International Gmbh | Dispensing device, storage device and method for dispensing a formulation |
| US10124125B2 (en) | 2009-11-25 | 2018-11-13 | Boehringer Ingelheim International Gmbh | Nebulizer |
| US10195374B2 (en) | 2014-05-07 | 2019-02-05 | Boehringer Ingelheim International Gmbh | Container, nebulizer and use |
| US10722666B2 (en) | 2014-05-07 | 2020-07-28 | Boehringer Ingelheim International Gmbh | Nebulizer with axially movable and lockable container and indicator |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102007023012B4 (en) * | 2007-05-15 | 2025-04-30 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | atomizer |
| DE102011086755A1 (en) * | 2011-11-21 | 2013-05-23 | Aptar Radolfzell Gmbh | Dispenser for dispensing pharmaceutical liquids |
| FR2988015B1 (en) * | 2012-03-19 | 2015-12-11 | Rexam Healthcare La Verpillier | LIQUID DISPENSING DEVICE WITH REMOVABLE CAP |
| JP6378681B2 (en) * | 2012-09-07 | 2018-08-22 | グラクソ グループ リミテッドGlaxo Group Limited | Droplet dispenser |
| CN104058180B (en) * | 2013-03-18 | 2017-03-01 | F·霍尔泽有限责任公司 | Medicament dispenser |
| CN104058181B (en) * | 2013-03-18 | 2017-05-17 | F·霍尔泽有限责任公司 | Dosage dispenser |
| DE102016204953A1 (en) * | 2016-03-24 | 2017-09-28 | F. Holzer Gmbh | Metering pump for a metering device and metering device |
| FR3075650B1 (en) * | 2017-12-22 | 2020-01-03 | Aptar France Sas | DEVICE FOR DISPENSING FLUID PRODUCT. |
| KR102235831B1 (en) * | 2018-09-07 | 2021-04-05 | 주식회사 하나프로테크 | Liquid medicine dispenser |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE4027320C2 (en) * | 1990-08-29 | 1993-09-30 | Ursapharm Arzneimittel Gmbh | Fluid dispenser for aseptic fluid |
| US6053368A (en) * | 1995-11-17 | 2000-04-25 | Ursatec Verpackung-Gmbh | Anti-contamination dispensing apparatus for fluids |
| FR2746657B1 (en) * | 1996-03-29 | 1998-06-26 | Sofab | ANTIBACTERIAL DEVICE FOR SPRAYING A LIQUID PRODUCT |
| ATE315962T1 (en) * | 2003-04-09 | 2006-02-15 | Ursapharm Arzneimittel Gmbh | MEDIA DONOR |
-
2005
- 2005-02-18 MX MXPA05001982 patent/MXPA05001982A/en active IP Right Grant
- 2005-03-31 JP JP2005101630A patent/JP4914018B2/en not_active Expired - Lifetime
- 2005-03-31 AU AU2005201364A patent/AU2005201364B2/en not_active Expired
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10124129B2 (en) | 2008-01-02 | 2018-11-13 | Boehringer Ingelheim International Gmbh | Dispensing device, storage device and method for dispensing a formulation |
| US10011906B2 (en) | 2009-03-31 | 2018-07-03 | Beohringer Ingelheim International Gmbh | Method for coating a surface of a component |
| US9682202B2 (en) | 2009-05-18 | 2017-06-20 | Boehringer Ingelheim International Gmbh | Adapter, inhalation device, and atomizer |
| US10124125B2 (en) | 2009-11-25 | 2018-11-13 | Boehringer Ingelheim International Gmbh | Nebulizer |
| US10016568B2 (en) | 2009-11-25 | 2018-07-10 | Boehringer Ingelheim International Gmbh | Nebulizer |
| US9724482B2 (en) | 2009-11-25 | 2017-08-08 | Boehringer Ingelheim International Gmbh | Nebulizer |
| US9943654B2 (en) | 2010-06-24 | 2018-04-17 | Boehringer Ingelheim International Gmbh | Nebulizer |
| US9757750B2 (en) | 2011-04-01 | 2017-09-12 | Boehringer Ingelheim International Gmbh | Medicinal device with container |
| US9827384B2 (en) | 2011-05-23 | 2017-11-28 | Boehringer Ingelheim International Gmbh | Nebulizer |
| US9545487B2 (en) | 2012-04-13 | 2017-01-17 | Boehringer Ingelheim International Gmbh | Dispenser with encoding means |
| US10220163B2 (en) | 2012-04-13 | 2019-03-05 | Boehringer Ingelheim International Gmbh | Nebuliser with coding means |
| US10894134B2 (en) | 2013-08-09 | 2021-01-19 | Boehringer Ingelheim International Gmbh | Nebulizer |
| US10004857B2 (en) | 2013-08-09 | 2018-06-26 | Boehringer Ingelheim International Gmbh | Nebulizer |
| US9744313B2 (en) | 2013-08-09 | 2017-08-29 | Boehringer Ingelheim International Gmbh | Nebulizer |
| US11642476B2 (en) | 2013-08-09 | 2023-05-09 | Boehringer Ingelheim International Gmbh | Nebulizer |
| US10716905B2 (en) | 2014-02-23 | 2020-07-21 | Boehringer Lngelheim International Gmbh | Container, nebulizer and use |
| US10099022B2 (en) | 2014-05-07 | 2018-10-16 | Boehringer Ingelheim International Gmbh | Nebulizer |
| US10722666B2 (en) | 2014-05-07 | 2020-07-28 | Boehringer Ingelheim International Gmbh | Nebulizer with axially movable and lockable container and indicator |
| US10195374B2 (en) | 2014-05-07 | 2019-02-05 | Boehringer Ingelheim International Gmbh | Container, nebulizer and use |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2006175199A (en) | 2006-07-06 |
| MXPA05001982A (en) | 2006-06-21 |
| AU2005201364B2 (en) | 2010-08-12 |
| JP4914018B2 (en) | 2012-04-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2005201364B2 (en) | Fluid dispenser | |
| EP1466668B1 (en) | Fluid dispenser | |
| US7249693B2 (en) | Fluid dispenser | |
| US5232687A (en) | Fluid dispenser for germ-free fluid | |
| CA2492255A1 (en) | Fluid dispenser | |
| US6053368A (en) | Anti-contamination dispensing apparatus for fluids | |
| EP1140369B1 (en) | Squeeze bottle for dispensing a liquid in a metered and substantially germ-free manner | |
| JP3946770B2 (en) | Antibacterial device for spraying liquid products | |
| AU651128B2 (en) | Container for dispensing preservative-free preparations | |
| IS5298A (en) | Pressure spray tank cap | |
| US7182226B2 (en) | Dosing device comprising a medium reservoir and corresponding pump device | |
| DE20018518U1 (en) | Atomizer for nasal spray | |
| IS5299A (en) | Pressure spray tank cap | |
| RU2322379C2 (en) | One-way valve device | |
| RU2326795C2 (en) | One-way free-flowing material feed valve | |
| AU2015335223A1 (en) | Pump head for a metering device, metering device, and applications | |
| WO2001083010A1 (en) | Anti-microbial dispenser | |
| WO2004052434A1 (en) | Atomizer for liquids |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FGA | Letters patent sealed or granted (standard patent) | ||
| MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |