AU2003272505A1 - Improved silver plating method and articles made therefrom - Google Patents
Improved silver plating method and articles made therefrom Download PDFInfo
- Publication number
- AU2003272505A1 AU2003272505A1 AU2003272505A AU2003272505A AU2003272505A1 AU 2003272505 A1 AU2003272505 A1 AU 2003272505A1 AU 2003272505 A AU2003272505 A AU 2003272505A AU 2003272505 A AU2003272505 A AU 2003272505A AU 2003272505 A1 AU2003272505 A1 AU 2003272505A1
- Authority
- AU
- Australia
- Prior art keywords
- silver
- organic substrate
- solution
- metallization
- aqueous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 title claims description 72
- 229910052709 silver Inorganic materials 0.000 title claims description 72
- 239000004332 silver Substances 0.000 title claims description 72
- 238000000034 method Methods 0.000 title claims description 48
- 238000007747 plating Methods 0.000 title claims description 20
- 239000000758 substrate Substances 0.000 claims description 82
- 239000000243 solution Substances 0.000 claims description 62
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 claims description 40
- 238000001465 metallisation Methods 0.000 claims description 39
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 claims description 32
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical group [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 28
- 239000012266 salt solution Substances 0.000 claims description 25
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 21
- 239000011734 sodium Substances 0.000 claims description 20
- 239000004094 surface-active agent Substances 0.000 claims description 20
- 239000003638 chemical reducing agent Substances 0.000 claims description 18
- 239000008139 complexing agent Substances 0.000 claims description 17
- 239000006260 foam Substances 0.000 claims description 17
- 239000000835 fiber Substances 0.000 claims description 16
- 229910001923 silver oxide Inorganic materials 0.000 claims description 16
- 229910021626 Tin(II) chloride Inorganic materials 0.000 claims description 15
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 14
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical group [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 13
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 10
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical class [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 10
- 238000000151 deposition Methods 0.000 claims description 10
- 230000008021 deposition Effects 0.000 claims description 10
- 150000007522 mineralic acids Chemical class 0.000 claims description 10
- 238000009991 scouring Methods 0.000 claims description 10
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 9
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 claims description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 235000011006 sodium potassium tartrate Nutrition 0.000 claims description 8
- 229910000510 noble metal Inorganic materials 0.000 claims description 7
- -1 tin halide Chemical class 0.000 claims description 7
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 6
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 6
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 6
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 claims description 6
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 claims description 5
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 claims description 5
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 4
- 239000001476 sodium potassium tartrate Substances 0.000 claims description 4
- 239000001119 stannous chloride Substances 0.000 claims description 4
- 235000011150 stannous chloride Nutrition 0.000 claims description 4
- 239000004753 textile Substances 0.000 claims description 4
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 3
- 150000001299 aldehydes Chemical group 0.000 claims description 3
- RAXSQXIANLNZAF-UHFFFAOYSA-N boron;hydrazine Chemical compound [B].NN RAXSQXIANLNZAF-UHFFFAOYSA-N 0.000 claims description 3
- RJTANRZEWTUVMA-UHFFFAOYSA-N boron;n-methylmethanamine Chemical compound [B].CNC RJTANRZEWTUVMA-UHFFFAOYSA-N 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 239000008121 dextrose Substances 0.000 claims description 3
- 239000008103 glucose Substances 0.000 claims description 3
- 229960001031 glucose Drugs 0.000 claims description 3
- 229940015043 glyoxal Drugs 0.000 claims description 3
- 239000012279 sodium borohydride Substances 0.000 claims description 3
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 3
- 229960004418 trolamine Drugs 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 24
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 21
- 239000008367 deionised water Substances 0.000 description 18
- 239000000463 material Substances 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 235000011114 ammonium hydroxide Nutrition 0.000 description 11
- 229920001778 nylon Polymers 0.000 description 11
- 235000011121 sodium hydroxide Nutrition 0.000 description 8
- 239000004677 Nylon Substances 0.000 description 7
- 239000011368 organic material Substances 0.000 description 7
- 238000010998 test method Methods 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- 238000005303 weighing Methods 0.000 description 5
- AFHIIJICYLMCSH-VOTSOKGWSA-N 5-amino-2-[(e)-2-(4-benzamido-2-sulfophenyl)ethenyl]benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC(N)=CC=C1\C=C\C(C(=C1)S(O)(=O)=O)=CC=C1NC(=O)C1=CC=CC=C1 AFHIIJICYLMCSH-VOTSOKGWSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000000356 contaminant Substances 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 101710134784 Agnoprotein Proteins 0.000 description 3
- NEIHULKJZQTQKJ-UHFFFAOYSA-N [Cu].[Ag] Chemical compound [Cu].[Ag] NEIHULKJZQTQKJ-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- YCKOAAUKSGOOJH-UHFFFAOYSA-N copper silver Chemical compound [Cu].[Ag].[Ag] YCKOAAUKSGOOJH-UHFFFAOYSA-N 0.000 description 3
- BDOYKFSQFYNPKF-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;sodium Chemical compound [Na].[Na].OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O BDOYKFSQFYNPKF-UHFFFAOYSA-N 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 241000191967 Staphylococcus aureus Species 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000005789 organism growth Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000001235 sensitizing effect Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- KFDNQUWMBLVQNB-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;sodium Chemical compound [Na].[Na].[Na].[Na].OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KFDNQUWMBLVQNB-UHFFFAOYSA-N 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 239000003109 Disodium ethylene diamine tetraacetate Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 241001085205 Prenanthella exigua Species 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 235000019301 disodium ethylene diamine tetraacetate Nutrition 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- OTCVAHKKMMUFAY-UHFFFAOYSA-N oxosilver Chemical group [Ag]=O OTCVAHKKMMUFAY-UHFFFAOYSA-N 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 150000003378 silver Chemical class 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2046—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
- C23C18/2073—Multistep pretreatment
- C23C18/2086—Multistep pretreatment with use of organic or inorganic compounds other than metals, first
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1635—Composition of the substrate
- C23C18/1644—Composition of the substrate porous substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1655—Process features
- C23C18/1658—Process features with two steps starting with metal deposition followed by addition of reducing agent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
- C23C18/285—Sensitising or activating with tin based compound or composition
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/42—Coating with noble metals
- C23C18/44—Coating with noble metals using reducing agents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12556—Organic component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12896—Ag-base component
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemically Coating (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Description
WO 2004/027113 PCT/US2003/029293 IMPROVED SILVER PLATING METHOD AND ARTICLES MADE THEREFROM FIELD OF THE INVENTION [0001] The present invention relates to an improved, electroless silver plating method particularly suitable for the production of articles having antimicrobial and anti-static properties. BACKGROUND OF THE INVENTION [00021 Metallization of organic substrates (e.g., polymeric materials) with silver and other noble metals is well known in the art. One such technique is described in U.S. Patent No. 3,877,965 to Broadbent et al., which describes metallizing nylon substrates with silver and is incorporated herein by reference. Articles metallized with silver have found a wide variety of uses due to the inherent antimicrobial and anti-static properties of silver. For example, silver plated nylon fibers are commonly woven into textile materials which in turn are used for consumer products (e.g., socks, wound dressings) and for electromagnetic interference (EMI) shielding applications for electronic equipment (e.g., cellular telephones, computers). [00031 However, current processes for metallizing substrates with silver do have certain disadvantages. For example, the process described in Patent No: 3,877,965 has been found to exhibit several disadvantages. First, with most metallization processes, the pre metallization steps require the tin salt (e.g., stannous or stannic chloride) to be dissolved with the aid of a water-soluble alcohol (e.g., a C-C 4 alcohol). The use of an alcohol results in significant evaporation problems. [00041 A more significant problem is the use of a surfactant (e.g., sodium lauryl sulfate) during the metallization process. For example, the surfactant can lead to gelling of -1- WO 20041027113 PCT/US2003/029293 the plating bath if the bath temperature is too low. Likewise, the surfactant can cause significant foaming in the plating bath, which is difficult to remove after metallization is completed. Typically, foam generated during the metallization process ends up on the surface of the fibers. Once on the fiber surface, the foam becomes difficult to rinse off properly. This in turn potentially results in inhibiting silver ion release and also present adhesion issues due to the surface cracking when exposed to high temperatures. Cracking occurs as the contaminants (e.g., entrained air) are forced out under pressure from beneath the surface of the silver layer. 100051 In addition, the use of a surfactant results in the color of the deposited silver being a very dark gray/silver (and sometimes even brown). This alternative color of the deposited silver lowers the aesthetic value of the product since consumers normally expect metallized silver to exhibit a bright metallic color. [00061 However, one of the most significant problems associated with the use of a surfactant is the environmental impact and the associated costs of removing the surfactant from the waste effluent. Local sewer authorities, the Environmental Protection Agency (EPA) and other similar organizations now mandate very low discharge levels of "Methylene Blue Activated Substance" (i.e., MBAS). Surfactants such as sodium lauryl sulfate fall within the category of MBAS. In order to reduce MBAS to acceptable limits (typically 5 parts per million (ppm) or lower), significant effort and expense are required on waste treatment which in turn increase productions costs and time. Typically, removal of MBAS requires the use activated charcoal chemistries along with high-grade adsorbent (activated charcoal) filters, which must be changed frequently due to clogging by particulate. Likewise, the amount of silver recovered from the waste is problematic because the recovered silver is in a low concentration as a percentage of the amount of sludge (e.g., around about 1 percent by weight). -2- WO 20041027113 PCT/US2003/029293 [0007] In view of the disadvantages associated with surfactants, other metallization processes have been developed that use non-surfactant baths. Typically, these processes employ disodium ethylenediaminetetraacetic acid (EDTA) as a ligand instead of a surfactant. Representative patents relating to the use of disodium EDTA in silver plating are U.S. Patent Nos. 5,318,621 and 5,322,553, both assigned Applied Electroless Concepts. Another example is U.S. Patent No. 5,158,604 assigned to Monsanto Company. However, this technology is not without problems since high amounts of caustic soda must be used to dissolve and adjust pH of the plating bath. SUMMARY OF THE INVENTION [00081 The present invention advantageously provides an improved method for plating an organic substrate with silver that avoids many of the disadvantages associated with prior silver plating methods. The method of the invention entails at least three (3) steps followed in sequence: (a) scouring; (b) pre-metallization; and (c) plating. Organic substrates to be plated can be in the form of fibers, a textile woven from fibers, or a polymeric foam (e.g., an open cell foam). In accordance with invention, the organic substrate is first scoured to prepare the surface for pre-metallization. Preferably, an aqueous cleaning solution is used. [0009] Once the organic substrate has been sufficiently cleaned, the scoured, organic substrate is contacted with an aqueous, pre-metallization solution including a tin salt and an inorganic acid. In one embodiment, pre-metallization solution omits a water-soluble or water-miscible solvent. In another embodiment, the pre-metallization solution omits a surfactant. Tin salts to be used include stannous chloride, stannic chloride, and mixtures thereof. Inorganic acids to be used include hydrochloric acid, sulfuric acid, and mixtures thereof. -3- WO 20041027113 PCT/US2003/029293 [000101 The pre-metallized, organic substrate is thereafter plated with silver, which comprises@l) contacting the pre-metallized, organic substrate with an aqueous Na4EDTA solution;(ii) subsequently contacting the pre-metallized, organic substrate with an additional aqueous, silver salt solution to effect deposition of a silver oxide on the organic substrate, wherein the silver salt solution further includes a complexing agent; and (iii) contacting the organic substrate having the deposited silver oxide with a reducing agent thereby effecting formation of metallic silver on the organic substrate. Particularly preferred silver salts and complexing agents are silver nitrate and aqueous ammonia, respectively. A preferred class of reducing agents is reducing agents including an aldehyde functional group. Representative examples of reducing agents include formaldehyde, rochelle salts (sodium potassium tartrate), hydrazine, dextrose, triethanol amine, glyoxal, inverted sugar, glucose, sodium borohydride, dimethyl amineborane, hydrazine borane and mixtures thereof. In another embodiment, all of the solutions in the plating step preferably omit a surfactant. [00011] The present invention also provides articles prepared in accordance with the method of the invention. In one embodiment, the organic substrate further includes at least one layer of a non-noble metal disposed thereon, and is preferably disposed on the plated metallic silver layer. One particularly preferred non-noble metal is copper. In accordance with the invention, the metallic silver layer is least 5 percent by weight of the article, with at least 10 percent by weight being more preferred. [000121 Advantageously, the method of the invention allows the use of surfactants to be omitted while increasing the recovery of silver from waste products. Thus, environmental concerns can be alleviated through the use of the invention as compared to prior processes. -4- WO 20041027113 PCT/US2003/029293 BRIEF DESCRIPTION OF THE DRAWING [000131 FIG. 1 is an electron micrograph at 960x magnification of nylon fibers plated with the silver using the method of the invention. [00014] FIG. 2 is an electron micrograph at 5000x magnification of nylon fibers plated with the silver using a prior art process. DETAILED DESCRIPTION OF THE INVENTION [00015] The present invention provides an improved method for plating an organic substrate with metallic silver while avoiding many of the disadvantages associated with the prior art. The method of the invention entails first scouring the organic substrate to prepare the surface for pre-metallization. Once the organic substrate has been sufficiently scoured, the organic substrate is contacted with an aqueous, pre-metallization solution including a tin salt and an inorganic acid. Plating is thereafter accomplished by contacting the pre metallized, organic substrate with an aqueous Na 4 EDTA solution that in turn is followed by contacting the pre-metallized, organic substrate with an aqueous, silver salt solution to effect deposition of a silver oxide on the organic substrate. The silver salt solution further includes a known complexing agent. The deposited silver oxide is converted (i.e., reduced ) to metallic silver by contacting the organic substrate with a reducing agent thereby effecting formation of metallic silver. [000161 In accordance with the invention, organic substrates to be metallized with silver include any organic material capable of receiving a deposited metallic layer. The organic material can be synthetic or natural with synthetic (e.g., polymeric) materials being preferred. Examples of synthetic polymeric materials to be used include, but are not limited to, nylon, polyester, acrylic, rayon, and polyurethane. Examples of natural materials include, -5- WO 20041027113 PCT/US2003/029293 but are not limited to, cellulose, and silk. The organic materials can be in any physical form capable of receiving the deposited metallic layer. For example, the organic material can be in the form of filaments, fabrics, staple, chopped fibers, micronized fiber, foams, particulates and filler materials. Preferably, the organic material is in the form of a fiber or filament, or a textile matrix made therefrom. If the organic material is in the form of a foam, an open-cell foam (i.e., has a three-dimensional interconnected network of cells) is preferred to allow metallization throughout. [000171 The organic substrate is first prepared for pre-metallization by scouring to remove debris and/or to remove any coatings or film on the material that may interfere with metallization. Scouring is a technique well known in the art and thus does not require much discussion. Typically, the material is washed with an aqueous cleaning solution that may or may not contain a surfactant (e.g., a nonionic surfactant). In accordance with the invention, reference to "aqueous" means at least a majority of the medium is water with the remaining portion being a water-soluble or water-miscible organic solvent. The organic material can also be abraded using a scouring brush or equivalent device. In a preferred embodiment, scouring is accomplished with a high-speed water spray, which facilitates in-line processing and avoids the necessity of a scouring brush. [00018] Once the organic substrate has been sufficiently scoured, the material is subjected to pre-metallization with an aqueous solution of a tin salt and an inorganic acid. As will be apparent to one skilled in the art, such a solution is often referred to as a "sensitizing" solution. However, unlike prior art "sensitizing" solutions, the pre-metallization solution preferably omits a surfactant and/or a water-soluble or water-miscible organic solvent such as a C-C 4 alcohol. Preferably, the tin salt is a halide such as stannous chloride, stannic chloride, or mixtures thereof. Examples of inorganic acids include, but are not limited to, -6- WO 20041027113 PCT/US2003/029293 hydrochloric acid, sulfuric acid, and mixtures thereof. In a more preferred embodiment, the tin salt is stannous chloride and the inorganic acid is hydrochloric acid. Ranges of the two components are set forth in Table 1: Table 1 Tin Salt Inorganic Acid (grams/liter) (% by Volume) Preferred 1-30 1-20 More Preferred 2-25 3-18 Optimal 4-20 6-15 [00019] Once the organic substrate has been pre-metallized, the organic substrate is preferably washed to remove excess salt and acid from the organic substrate that can interfere with subsequent metallization. For example, the organic substrate can be washed with a counter flow rinse with controlled water flow. This enables the removal of any excess salts and acids from the substrate material while leaving optimal amount of activated sites on the surface of the substrate. Preferred levels of water flow to wash the substrate range from about 25 to about 55 gallons per minute (gpm), with 30 to 50 gpm being more preferred, and 35 to 45 gpm being more preferred. [000201 In accordance with the present invention, metallization is accomplished in three (3) substeps. An aqueous tetrasodium ethylenediaminetetraacetic acid (Na 4 EDTA) is prepared into which the pre-metallized organic substrate is contacted preferably by immersing the substrate in the aqueous solution. The aqueous solution is preferably prepared using de-ionized (DI) water to avoid possible contamination. The DI water should have a resistance of about 0.4 to about 20 megaohms, with 0.8 to 10 megaohms being preferred, and 3 to 7 megaohms being more preferred. The concentration of the aqueous Na 4 EDTA solution should range from about 5 to about 30 percent by weight (wt. %), with 10 to 25 wt. % being preferred, and 10 to 20 wt. % being even more preferred. Preferably, the Na 4 EDTA solution -7- WO 20041027113 PCT/US2003/029293 omits a surfactant as is typically found in conventional silver plating processes. Likewise, the Na 4 EDTA solution also preferably omits caustic soda as typically found in Na 2 EDTA solutions. Advantageously, the use of Na 4 EDTA facilitates the deposition of metallic silver with a tighter grain structure, which in turn leads to a relatively smoother surface as evidenced by examination of silver-plated nylon fiber by electron microscopy. Likewise, Na4EDTA allows a surfactant to be omitted thus alleviating environmental concerns regarding levels of surfactant in the waste effluent. [00021] An aqueous silver salt solution is also prepared for subsequent contacting of the organic substrate. Preferably, the organic substrate is contacted with the silver salt solution by adding the silver salt solution directly to the bath containing the organic substrate and the aqueous Na 4 EDTA solution. Thus, the organic substrate is contemporaneously immersed in both solutions, which is referred to as the "metallization bath." Alternatively, the organic substrate can be removed from the Na 4 EDTA solution and subsequently immersed in the silver salt solution. One particularly preferred silver salt is silver nitrate (i.e., AgNO 3 ). The silver salt solution additionally includes a complexing agent as known in the art, which form a complex in situ with the dissolved silver salt. One particularly preferred complexing agent is aqueous or aqua ammonia (i.e., NH 4 0H) which is commonly used as a complexing agent for silver nitrate. As with the Na 4 EDTA solution, the silver salt solution preferably omits a surfactant. [00022] The silver salt solution is preferably prepared by first dissolving the silver salt in water. Once the silver salt has been dissolved, the complexing agent is added to the solution. A precipitate of a silver oxide can form and is re-dissolved through the addition of excess complexing agent. The addition of excess complexing agent is believed to form a complex of the silver salt and the complexing agent. For example, when silver nitrate and -8- WO 20041027113 PCT/US2003/029293 aqua ammonia are used, a precipitate of silver oxide forms in situ which is re-dissolved upon the addition of excess aqua ammonia to provide a metallization bath having a light amber color. Preferred initial weight/volume ratios of silver salt (i.e., AgX) to water (H 2 0) and of percent by volume of complexing agent are set forth in Table 2. Preferred molar ratios of silver salt to complexing agent in the final metallization bath (i.e., upon re-dissolution of the silver precipitate) are set forth in Table 3. Table 2 AgX:H 2 0 Complexing Agent (weight:volume) (percent by volume) Preferred 0.25:2 to 1.75:2 17 to 38 More Preferred .5:2 to L.5:2 20 to 35 Optimal 0.75:2 to 1.25:2 25 to 31 Table 3 Molar Ratio of Complexing Agent:AgX Preferred 2.5:1 to 5.5:1 More Preferred 3:1 to 5:1 Optimal 3.5:1 to 4.5:1 [00023] In accordance with the invention, immersion of the organic substrate in the metallization bath results in the deposition of silver oxide on the substrate surface. As will be apparent to one skilled in the art, deposition can be confirmed by a visual inspection of the substrate undergoing a change in color due to the deposited silver oxide. For example, in the case of AgNO 3 :N1 3 one will typically observe the substrate to develop a shade of brown on the surface which correlating to a silver oxide layer. Preferably, the organic substrate is immersed in the metallization bath prior to the addition of the reducing agent for about 30 seconds, with 20 seconds being more preferred. The temperature of the metallization bath is not critical and can range from about 15 to about 45'C, with 20 to 30'C being more preferred. These parameters can be easily determined by one skilled in the art. [000241 The organic substrate with the silver oxide thereon is subsequently contacted with a reducing agent to convert the silver oxide to metallic silver. Preferably, contacting is -9- WO 20041027113 PCT/US2003/029293 accomplished by adding the reducing agent directly to the metallization bath. Alternatively, the organic substrate is removed from the metallization bath and is separately contacted (e.g., immersed) with an aqueous solution of the reducing agent. Reducing agents to be used in accordance with the invention are well known in the art. Examples of reducing agents to be used include, but are not limited to, formaldehyde, rochelle salts (sodium potassium tartrate), hydrazine, dextrose, triethanol amine, glyoxal, inverted sugar, glucose, sodium borohydride, dimethyl amineborane, hydrazine borane. More preferred are reducing agents containing an aldehyde functional group such as formaldehyde. In the case where AgNO 3
:NH
3 is used, the addition of the reducing agent (e.g., formaldehyde) results in the silver oxide layer on the substrate changing color to a bright gold or gray-gold color as the silver oxide is converted to metallic silver. Preferably, the amount of reducing agent used ranges from about 5 to about 40 percent by weight of substrate, with 6 to 25 percent by weight being more preferred, and 8 to 22 percent by weight being even more preferred. [00025] Once sufficient metallic silver has been converted, the organic substrate is removed from the metallization bath and washed. Preferably, the silver-plated substrate is immersed in hot water. The silver-plated substrate is then preferably immersed in a weak solution of sodium hydroxide, which brightens the silver plating to a light gold color or a light gray color. This indicates that a pure layer of silver deposited on the substrate. The article can be subjected to multiple rinse cycles to ensure the cleanliness of product. [000261 As will be apparent to one skilled in the art, the amount of metallic silver deposited on the organic substrate is a function of immersion time. In accordance with the invention, the time for complete deposition of the metallic silver layer will be less than 4 hours. However, time periods for immersing the substrate in the various solutions can easily be altered depending on the amount of deposited silver desired. The amount of silver -10- WO 20041027113 PCT/US2003/029293 deposited on the organic substrate can range from 0.1% to 15% by weight, depending on the specific characteristics desired for the final product. Preferably, the deposited silver layer is at least 5 percent by weight, with at least 10 percent by weight being more preferred. The actual amount of silver deposited on the substrate is easily calculated by a simple titration such as the Vollard process. [000271 Unlike the prior art process of U.S. Patent No: 3,877,965, the remaining metallization bath is treated with ease. The pH of the metallization bath is raised to approximately 13 which results in the dissolved silver being converted into a colloidal form. The pH is then lowered to around 2 typically with the help of an inorganic acid (e.g., sulfuric acid). The colloidal silver precipitates and settles down at the bottom of the container after several hours. The purity of the silver precipitated has been found to be up to 50 percent by weight. [000281 As will be apparent to one skilled in the art, the adhesion of the plated silver is easily ascertained. One simple test for adhesion of the silver to the substrate requires placing a sample into an oven at 200'C for about 5 minutes and then boiling the same sample for 1 hour in water. The resistance of the sample before and after heating and boiling are compared. A variation in resistance of no more than about 20 percent indicates excellent adhesion. In a more preferred embodiment, the variation of resistance is no more than 10 percent. [00029] In another embodiment of the invention, the silver-plated substrate is additionally plated with a non-noble metal such as copper as described in U.S. Patent No. 3,877,965. Copper is auto-catalytic on silver and thus can reduce itself easily for form a copper layer. Using such process up to 30% by weight of copper is deposited on to the - 11 - WO 20041027113 PCT/US2003/029293 silver-plated substrate. Commercial plating solutions are available from Atotech USA, Enthone OMI, and MacDermid Corporation. [00030] The following non-limiting examples illustrate the use of the method of the invention to plate organic substrates with metallic silver layers. EXAMPLES Example 1 [00031] A 30/10 knit sample of nylon weighing 25 grams was scoured to remove any contaminants. The knit sample was wrapped into a skein and scoured in counter flow de ionized water. The sample was pre-metallized with a solution containing 1 % by volume HCL and 10 grams of anhydrous tin chloride (SnCl 2 ) for about 2 minutes. A silver salt solution was prepared by dissolving 0.04 grams of silver nitrate (0.1 % silver by weight target) in de-ionized water. The silver salt was then complexed with 0.045 mL of 27 % by volume aqua ammonia. A tetrasodium EDTA solution was prepared by dissolving 0.002 grams Na 4 EDTA in 1 liter of de-ionized water. The skein was placed in the reactor containing the Na 4 EDTA solution and made to revolve. The silver salt solution (i.e., complexed silver nitrate and ammonia) was added to the reactor slowly until all contents were emptied. This was followed by 0.016 mL formaldehyde. After three hours the sample was removed and subjected to hot water rinse. A 0.1 % by volume NaOH solution (1 liter) was prepared with a temperature of 70'C. The metallized skein was then dipped into the solution and rinsed thoroughly. The sample was subjected to Dow Coming Corporate Test Method 0923: organism - Staphylocococcus aureaus ATCC 7538; sample size - 0.75 grams; results - percent reduction in colony >99.9%. -12- WO 20041027113 PCT/US2003/029293 Example 2 [000321 As in example 1, a 30/10 knit sample of nylon weighing 25 grams was scoured to remove any contaminants. The knit sample was wrapped into a skein and scoured in counter flow de-ionized water. The sample was pre-metallized with a solution containing 1 % by volume HCL and 10 grams of anhydrous tin chloride (SnCl 2 ) for about 2 minutes. A silver salt solution was prepared by dissolving 1.95 grams of silver nitrate (5 % silver by weight target) in de-ionized water. The silver salt was then complexed with 2.25 ml of 27 % by volume aqua ammonia. A tetrasodium EDTA solution was prepared by dissolving 0.1 grams of Na 4 EDTA in 1 liter of de-ionized water. Skein was placed in the reactor containing the Na 4 EDTA solution and made to revolve. The silver salt solution (i.e., complexed silver nitrate and ammonia) was added to the reactor followed by 0.8 mL of formaldehyde. After three hours the sample was removed and subjected to hot water rinse. The metallized skein was rinsed in a NaOH solution as in Example 1. The sample was subjected to Dow Corning Corporate Test Method 0923: organism - Staphylocococcus aureaus ATCC 7538; sample size - 0.75 grams; results - percent reduction in colony >99.9%. Example 3 [000331 A 25 grams sample of ripstop fabric was processed following the procedure of examples 1 and 2. The silver-plated sample was then subjected to Dow Corning Corporate Test Method 0923: organism - Staphylocococcus aureaus ATCC 7538; sample size - 0.75 grams; results - percent reduction in colony >99.9%. - 13 - WO 20041027113 PCT/US2003/029293 Example 4 [00034] A 25 gram sample of filler material including nano powders (i.e., powder made from nylon and polyethylene) was processed following the procedure of examples 1 and 2. The silver-plated sample was then subjected to Dow Coming Corporate Test Method 0923: organism - Staphylocococcus aureaus ATCC 7538; sample size - 0.75 grams; results percent reduction in colony >99.9%. Example 5 [00035] A 30/10 knit sample of nylon weighing 118 grams was scoured to remove any contaminants. The knit sample was wrapped into a skein and scoured in counter flow de ionized water. The sample was pre-metallized with a solution containing 10 % by volume HCL and 100 grams of anhydrous tin chloride (SnC1 2 ) for about 2 minutes. A silver salt solution was prepared by dissolving 45 grams of silver nitrate (about 22 % silver by weight target) in de-ionized water. The silver salt was then complexed with 52 mL of 27 % by volume aqua ammonia. A tetrasodium EDTA solution was prepared by dissolving 2.2 grams Na 4 EDTA in 6 liters of de-ionized water. The skein was placed in the reactor containing the Na4EDTA solution and made to revolve. The silver salt solution (i.e., complexed silver nitrate and ammonia) was added to the reactor slowly until all contents were emptied. This was followed by 18 mL of formaldehyde. After three hours the sample was removed and subjected to hot water rinse. A 0.1 % by volume NaOH solution (5 liters) was prepared with a temperature of 70'C. The metallized skein was then dipped into the solution and rinsed thoroughly. The color changed to light almost gold colored silver. The sample was dried and then sent for an adhesion check. The results were as follows: as is - 484 Ohms (50 cm -14- WO 20041027113 PCT/US2003/029293 distance) using a Keithley 580 micro-ohmmeter; after heat - 345 Ohms; and after boil - 365 Ohms. Example 6 [000361 A sample obtained from the silver-plated materials from example 5 was cut to make a 1.5 gram sleeve. The sleeve was then placed in a beaker with 5 % by volume sodium chloride solution for a 24-hour period. The solution after the 24-hour period was then tested for silver ions using a Perkin Elmer Analyst 300. The same test was repeated over a period of 7 days. The release of ions was consistent each day at 0.5 ppm illustrating the sustained release of silver prepared in accordance with the invention. Example 7 [00037] A sample obtained from the silver-plated materials from example 5 was cut to weigh 0.75 grams and subjected to Dow Corning Corporate Test Method 0923. Organism used was Staphylococcus aureus ATCC 6538. The sample reduced organism growth by over 99.9%. Example 8 [000381 A 210/34 knit nylon sample weighing 118 grams was cleaned. The sample was wrapped into a skein and scoured with a counter flow of de-ionized water. The skein was pre-metallized in a solution of 10 % by volume HCL and 100 grams of anhydrous tin chloride (SnCl 2 ) for 2 minutes. A silver salt solution was prepared by dissolving 45 grams of silver nitrate in de-ionized water. The silver salt was then complexed with 52 ml of 27 % by volume aqua ammonia. A tetrasodium EDTA solution was prepared by dissolving 2.2 grams of Na 4 EDTA in 6 liters of de-ionized water. Skein was placed in the reactor -15 - WO 20041027113 PCT/US2003/029293 containing the Na4EDTA solution and made to revolve. The silver salt complex was added to the reactor and followed by 18 mL of formaldehyde. After three hours the sample was removed and subjected to hot water rinse. As in the previous examples, a 0.1% by volume NaOH solution was prepared and the metallized skein was dipped into the solution. The color changed from grey to a light almost gold colored silver. [00039] The silver-plated sample was then metallized with commercially available copper chemistry from Atotech USA. The metallization process was carried out following the instructions suggested by supplier. Completion of the deposition of copper can be visually determined when the bath changes color from a deep blue to colorless, which indicates a complete reduction of the metal. [00040] A 10.6 grams sample of the silver-copper material was then cut and placed in a beaker filled with 2.1 grams of Rochelle salt (i.e., sodium potassium tartrate) dissolved with de-ionized water. A silver salt complex made up of 3.6 grams of silver nitrate and 4.3 mL of aqua ammonia was then poured into the sample under constant agitation. The pink color of silver-copper changed to a light brown at this time. A few drops of further diluted aqua ammonia were added drop wise into the bath with an ink dropper under constant agitation. The color of the sample then started to change to a dull white and eventually a bright white color. This step took about 35 minutes to complete. At that time sample is removed from bath and rinsed thoroughly with de-ionized water for 15 minutes. Silver was calculated to provide a 15% by weight gain. The resistance of the material after deposition of each metallic layer was also recorded; resistance with Silver - 80 Ohms/50 cm using a Keithley 580 micro-ohmmeter; resistance with Silver-Copper - 25 Ohms/50 cm; and resistance with Silver-Copper-Silver - 18 Ohms/50 cm. -16- WO 20041027113 PCT/US2003/029293 Example 9 [00041] A sample of the silver-copper-silver material from example 8 was cut into a 1.5 gram sleeve. The sleeve was then placed in a beaker with 5 % by volume sodium chloride solution for a 24-hour period. The solution after a 24-hour period was then tested for silver and copper ions using a Perkin Elmer Analyst 300. The same test was repeated over a period of 7 days. The release of ions was consistent each day at 2 ppm of silver and 3 ppm of copper. Example 10 [000421 A sample of the silver-copper-silver material from example 8 was cut to weight 0.75 grams and subjected to Dow Corning Corporate Test Method 0923. Organism used was Staphylococcus aureus ATCC 6538 and the material caused a reduction of organism growth by over 99.9%. Example 11 [000431 A quenched foam sample weighing 11.8 grams was cleaned with non-ionic surfactant Triton X-100 and rinsed thoroughly. A 83 % by weight sulfuric acid solution was prepared and the foam was dipped in the solution for 25 seconds to 45 seconds to ensure proper etching of the surface. Immediately the sample was rinsed with copious amounts of de-ionized water. The foam was pre-metallized with solution containing 12 % by volume HCL and 120 grams of anhydrous tin chloride (SnCl 2 ) for 2 minutes. The foam sample was then rinsed in counter flow de-ionized water. A tetrasodium EDTA solution was prepared by dissolving 0.22 grams of Na 4 EDTA was dissolved in 2 liters of de-ionized water. The pre metallized foam was placed in reactor containing the Na 4 EDTA solution and made to -17- WO 20041027113 PCT/US2003/029293 revolve. A silver salt solution was prepared by dissolving 4.5 grams of silver nitrate in de ionized water. The silver salt solution was then complexed with 5.2 mL of 27 % by volume aqua ammonia. The silver salt complex was added to the reactor and followed by 18 mL of formaldehyde. After three hours the sample was removed and subjected to hot water rinse. The metallized foam was dipped into a NaOH solution as prepared in the previous examples. The color changed to a dull, white silver. Sample was dried and evaluated for resistance. The silver-plated foam exhibited a resistance of 0.5 Ohms/50 cm using a Keithley 580 micro ohmmeter. Example 12 [00044] Samples of silver-plated fiber prepared in accordance with the invention were compared to silver-plated fibers prepared following the procedure set forth in U.S. Patent No. 3,877,965. Samples of both samples of fiber were examined with a scanning electron microscope. A photomicrograph of the inventive fibers is found in FIG. 1, while a photomicrograph of the comparative fibers is found in FIG. 2. As can be clearly seen from the photomicrographs, the fibers plated with the inventive method exhibit a smoother surface as compared to fibers prepared with the prior art process. This is believed due to the tighter grain structure of the silver plating provided by the method of the present invention. - 18 -
Claims (19)
1. An improved method for plating an organic substrate with silver, which comprises: (a) scouring the organic substrate to prepare the surface for pre-metallization; (b) contacting the scoured, organic substrate with an aqueous, pre-metallization solution including a tin salt and an inorganic acid; and C plating the pre-metallized, organic substrate with silver, which comprises: (i) contacting the pre-metallized, organic substrate with an aqueous Na 4 EDTA solution; (ii) subsequently contacting the pre-metallized, organic substrate with an additional aqueous, silver salt solution to effect deposition of a silver oxide on the organic substrate, wherein the silver salt solution further includes a complexing agent; and (iii) contacting the organic substrate having the deposited silver oxide with a reducing agent thereby effecting formation of metallic silver on the organic substrate.
2. The method of claim 1, wherein the organic substrate is in the form of fibers.
3. The method of claim 2, wherein the fibers are woven into a textile.
4. The method of claim 1, wherein the organic substrate is in the form of a polymeric foam.
5. The method of claim 4, wherein the polymeric foam is an open cell foam.
6. The method of claim 1, wherein scouring comprises washing the organic substrate with an aqueous cleaning solution.
7. The method of claim 1, wherein the tin salt is a tin halide selected from the group consisting of stannous chloride, stannic chloride, and mixtures thereof. - 19 - WO 20041027113 PCT/US2003/029293
8. The method of claim 1, wherein the inorganic acid is selected from the group consisting of hydrochloric acid, sulfuric acid, and mixtures thereof.
9. The method of claim 1, wherein the silver salt is silver nitrate and the complexing agent is aqueous ammonia.
10. The method of claim 1, wherein the reducing agent includes an aldehyde functional group.
11. The method of claim 1, wherein the reducing agent is selected from the group consisting of formaldehyde, rochelle salts (sodium potassium tartrate), hydrazine, dextrose, triethanol amine, glyoxal, inverted sugar, glucose, sodium borohydride, dimethyl amineborane, hydrazine borane and mixtures thereof.
12. The method of claim 1, wherein the pre-metallization solution omits a water-soluble or water-miscible solvent.
13. The method of claim 1, wherein the pre-metallization solution, the Na 4 EDTA solution, and the silver salt solution omit a surfactant.
14. An article having a layer of metallic silver thereon, the article being prepared by the process comprising: (a) scouring the organic substrate to prepare the surface for pre-metallization; (b) contacting the scoured, organic substrate with an aqueous, pre-metallization solution including a tin salt and an inorganic acid; and (c) plating the pre-metallized, organic substrate with silver, which comprises: (i) contacting the pre-metallized, organic substrate with an aqueous Na4EDTA solution; - 20- WO 20041027113 PCT/US2003/029293 (ii) subsequently contacting the pre-metallized, organic substrate with an additional aqueous, silver salt solution to effect deposition of a silver oxide on the organic substrate, wherein the silver salt solution further includes a complexing agent; and (iii) contacting the organic substrate having the deposited silver oxide with a reducing agent thereby effecting formation of metallic silver on the organic substrate.
15. The article of claim 14, wherein the organic substrate further includes at least one layer of a non-noble metal disposed thereon.
16. The article of claim 15, wherein the non-noble metal is copper.
17. The article of claim 14, wherein the non-noble metal is disposed on the metallic silver layer.
18. The article of claim 14, wherein the metallic silver layer comprises at least 5 percent by weight.
19. The article of claim 14, wherein the metallic silver layer comprises at least 10 percent by weight. -21-
Applications Claiming Priority (9)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US41230202P | 2002-09-20 | 2002-09-20 | |
| US41230102P | 2002-09-20 | 2002-09-20 | |
| US41230302P | 2002-09-20 | 2002-09-20 | |
| US41230602P | 2002-09-20 | 2002-09-20 | |
| US60/412,301 | 2002-09-20 | ||
| US60/412,306 | 2002-09-20 | ||
| US60/412,302 | 2002-09-20 | ||
| US60/412,303 | 2002-09-20 | ||
| PCT/US2003/029293 WO2004027113A2 (en) | 2002-09-20 | 2003-09-19 | Improved silver plating method and articles made therefrom |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| AU2003272505A1 true AU2003272505A1 (en) | 2004-04-08 |
Family
ID=32034411
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2003272505A Abandoned AU2003272505A1 (en) | 2002-09-20 | 2003-09-19 | Improved silver plating method and articles made therefrom |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US20040173056A1 (en) |
| EP (1) | EP1590499A3 (en) |
| JP (1) | JP2006514713A (en) |
| KR (1) | KR20050074951A (en) |
| AU (1) | AU2003272505A1 (en) |
| CA (1) | CA2539656A1 (en) |
| WO (1) | WO2004027113A2 (en) |
Families Citing this family (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6605751B1 (en) | 1997-11-14 | 2003-08-12 | Acrymed | Silver-containing compositions, devices and methods for making |
| DE60028415T2 (en) | 1999-12-30 | 2007-06-06 | Acrymed, Portland | METHOD AND COMPOSITIONS FOR IMPROVED DISPENSING SYSTEMS |
| US8486426B2 (en) | 2002-07-29 | 2013-07-16 | Kimberly-Clark Worldwide, Inc. | Methods and compositions for treatment of dermal conditions |
| NZ592438A (en) | 2004-07-30 | 2012-11-30 | Kimberly Clark Co | Antimicrobial compositions of silver nanoparticles |
| US8361553B2 (en) * | 2004-07-30 | 2013-01-29 | Kimberly-Clark Worldwide, Inc. | Methods and compositions for metal nanoparticle treated surfaces |
| CN102783499A (en) | 2004-07-30 | 2012-11-21 | 金伯利-克拉克环球有限公司 | Antimicrobial devices and compositions |
| EP1786621A4 (en) * | 2004-08-23 | 2008-08-13 | Noble Fiber Technologies Llc | Process of metallizing polymeric foam to produce an anti-microbial and filtration material |
| EP1809264B1 (en) | 2004-09-20 | 2016-04-13 | Avent, Inc. | Antimicrobial amorphous compositions |
| US20060130700A1 (en) * | 2004-12-16 | 2006-06-22 | Reinartz Nicole M | Silver-containing inkjet ink |
| US7297373B2 (en) * | 2005-11-18 | 2007-11-20 | Noble Fiber Technologies, Llc | Conductive composites |
| AU2007215443C1 (en) * | 2006-02-08 | 2014-06-12 | Avent, Inc. | Methods and compositions for metal nanoparticle treated surfaces |
| EP2015722B1 (en) | 2006-04-28 | 2016-11-16 | Avent, Inc. | Antimicrobial site dressings |
| DE102006055763B4 (en) * | 2006-11-21 | 2011-06-22 | Militz, Detlef, 15366 | Process for metallizing polyester, metallized polyester and its use |
| KR100891353B1 (en) * | 2007-07-10 | 2009-04-08 | (주)골드터치코리아 | Spray type silver film coating method using plasma |
| US20120047636A1 (en) * | 2010-08-24 | 2012-03-01 | Christopher Fehmel | Sports helmet |
| US9192625B1 (en) | 2011-07-01 | 2015-11-24 | Mangala Joshi | Antimicrobial nanocomposite compositions, fibers and films |
| KR101250778B1 (en) * | 2012-11-05 | 2013-04-08 | 신상규 | Method for recovering silver, electrolysis device for purification of silver and regenerating method thereby |
| CL2014003397A1 (en) * | 2014-12-12 | 2015-08-07 | Leyton Nelson Roberto Osses | Cyanide-free chemical composition for coating metal surfaces in situ; and method for coating metal surfaces in situ in an autocatalytic manner. |
| KR102316361B1 (en) * | 2017-02-28 | 2021-10-25 | 한국전자기술연구원 | Dispersion liquid having silver nano wire and method for manufacturing high flexible, transparent and conductive coating substrate using the same |
| US11533972B2 (en) | 2019-01-16 | 2022-12-27 | Salt Athletic, Inc. | Anti-bacterial and deodorizing athletic bag |
| CN116083891B (en) * | 2022-12-30 | 2024-10-18 | 湖北铭宇水晶饰品有限公司 | Silver plating method and silver plating system for water drill on plastic suction sheet |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3960573A (en) * | 1972-08-07 | 1976-06-01 | Photocircuits Division Of Kollmorgan Corporation | Novel precious metal sensitizing solutions |
| US3993845A (en) * | 1973-07-30 | 1976-11-23 | Ppg Industries, Inc. | Thin films containing metallic copper and silver by replacement without subsequent accelerated oxidation |
| US3978271A (en) * | 1975-04-15 | 1976-08-31 | Ppg Industries, Inc. | Thin metallic nickel-silver films by chemical replacement |
| US4204013A (en) * | 1978-10-20 | 1980-05-20 | Oxy Metal Industries Corporation | Method for treating polymeric substrates prior to plating employing accelerating composition containing an alkyl amine |
| US4312913A (en) * | 1980-05-12 | 1982-01-26 | Textile Products Incorporated | Heat conductive fabric |
| US4716055A (en) * | 1985-08-05 | 1987-12-29 | Basf Corporation | Conductive fiber and method of making same |
| JP2894493B2 (en) * | 1988-02-09 | 1999-05-24 | 三菱マテリアル株式会社 | Method for producing silver-coated organic fiber |
| JP2832247B2 (en) * | 1990-07-24 | 1998-12-09 | 三井金属鉱業株式会社 | Method for producing silver-coated copper powder |
| US5218171A (en) * | 1991-11-25 | 1993-06-08 | Champlain Cable Corporation | Wire and cable having conductive fiber core |
| US5302415A (en) * | 1992-12-08 | 1994-04-12 | E. I. Du Pont De Nemours And Company | Electroless plated aramid surfaces and a process for making such surfaces |
| US5322553A (en) * | 1993-02-22 | 1994-06-21 | Applied Electroless Concepts | Electroless silver plating composition |
| US5466485A (en) * | 1995-01-30 | 1995-11-14 | E. I. Du Pont De Nemours And Company | Process for batch-plating aramid fibers |
| US5648003A (en) * | 1995-05-01 | 1997-07-15 | Liang; David H. | Surgical glove that protects against infection by providing heat in response to penetration thereof by a medical instrument and method therefor |
| US6861570B1 (en) * | 1997-09-22 | 2005-03-01 | A. Bart Flick | Multilayer conductive appliance having wound healing and analgesic properties |
| US6395402B1 (en) * | 1999-06-09 | 2002-05-28 | Laird Technologies, Inc. | Electrically conductive polymeric foam and method of preparation thereof |
-
2003
- 2003-09-19 AU AU2003272505A patent/AU2003272505A1/en not_active Abandoned
- 2003-09-19 EP EP03754690A patent/EP1590499A3/en not_active Withdrawn
- 2003-09-19 WO PCT/US2003/029293 patent/WO2004027113A2/en not_active Ceased
- 2003-09-19 US US10/666,568 patent/US20040173056A1/en not_active Abandoned
- 2003-09-19 JP JP2004537944A patent/JP2006514713A/en not_active Withdrawn
- 2003-09-19 CA CA002539656A patent/CA2539656A1/en not_active Abandoned
- 2003-09-19 KR KR1020057004857A patent/KR20050074951A/en not_active Withdrawn
Also Published As
| Publication number | Publication date |
|---|---|
| EP1590499A2 (en) | 2005-11-02 |
| CA2539656A1 (en) | 2004-04-01 |
| KR20050074951A (en) | 2005-07-19 |
| WO2004027113A2 (en) | 2004-04-01 |
| EP1590499A3 (en) | 2005-12-14 |
| JP2006514713A (en) | 2006-05-11 |
| WO2004027113A3 (en) | 2005-10-27 |
| US20040173056A1 (en) | 2004-09-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20040173056A1 (en) | Silver plating method and articles made therefrom | |
| EP1279750B1 (en) | Pretreating agent for metal plating | |
| CN106471155B (en) | Compositions and methods for metallizing non-conductive plastic surfaces | |
| CA1169720A (en) | Process for activating surfaces for currentless metallization | |
| EP0271466A2 (en) | Selective catalytic activation of polymeric films | |
| US20100215971A1 (en) | Method for metallizing polyester and metallized polyester | |
| JPWO2001049898A1 (en) | Metal plating method, pretreatment agent, semiconductor wafer and semiconductor device using the same | |
| JP6180518B2 (en) | Method for metallizing non-conductive plastic surfaces | |
| EP0142691B1 (en) | Process for activating substrates for electroless plating | |
| US4328266A (en) | Method for rendering non-platable substrates platable | |
| CN101195911B (en) | Preprocessing solution and method for forming coating metal layer on substrate with plastic surface | |
| EP2639332A1 (en) | Method for metallising non-conductive plastic surfaces | |
| DE69206510T2 (en) | Process for applying metal coatings on cubic boron nitride. | |
| US20040258914A1 (en) | Enhanced metal ion release rate for anti-microbial applications | |
| CN1738924A (en) | Improved silver plating method and articles made therefrom | |
| KR100568389B1 (en) | Surface treatment agent, surface treatment material using it and electroless nickel plating method | |
| JP2000336486A (en) | Substrate provided with catalyst nucleus, method of catalytically treating substrate and electroless plating method | |
| HK1088933A (en) | Improved silver plating method and articles made therefrom | |
| CA2578100C (en) | Process of metallizing polymeric foam to produce an anti-microbial and filtration material | |
| DE2946343C2 (en) | Process for pretreating the surface of polyamide substrates for chemical metallization | |
| KR100344958B1 (en) | Method for making conductive fabric | |
| JP2000282245A (en) | CONDITIONER COMPOSITION AND METHOD FOR INCREASING AMOUNT OF Pd-Sn COLLOIDAL CATALYST TO BE ADSORBED USING THE SAME | |
| JPH02104671A (en) | Palladium activator and electroless plating method for ceramic substrates | |
| KR19990073268A (en) | The method preparing for textiles of conductivity |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MK4 | Application lapsed section 142(2)(d) - no continuation fee paid for the application |