AU2002239967B2 - Remote metering display with motion sensor - Google Patents
Remote metering display with motion sensorInfo
- Publication number
- AU2002239967B2 AU2002239967B2 AU2002239967A AU2002239967A AU2002239967B2 AU 2002239967 B2 AU2002239967 B2 AU 2002239967B2 AU 2002239967 A AU2002239967 A AU 2002239967A AU 2002239967 A AU2002239967 A AU 2002239967A AU 2002239967 B2 AU2002239967 B2 AU 2002239967B2
- Authority
- AU
- Australia
- Prior art keywords
- display
- display screen
- motion sensor
- power
- user interface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000035945 sensitivity Effects 0.000 claims description 11
- 230000004044 response Effects 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 6
- 230000003213 activating effect Effects 0.000 claims 3
- 238000001514 detection method Methods 0.000 claims 3
- 238000012544 monitoring process Methods 0.000 description 9
- 238000004891 communication Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Description
REMOTE METERING DISPLAY WITH MOTION SENSOR
By
Jeff J. Farago, Don T. McComas, Ken L. McMahon , Michael W. Pyle, M. Jason Thurmond, and Eric M. Lutz
FIELD OF THE INVENTION
The present invention relates generally to power monitoring systems and, more particularly, to a remote metering display with motion sensor for use in a power monitoring system.
BACKGROUND OF THE INVENTION
Power monitoring systems monitor the flow of electrical power in circuits through a plant or other facility. In the POWERLOGIC system manufactured by the instant assignee, circuit monitors and power meters are dedicated to power monitoring, while other compatible devices collect additional equipment information from protective relays, circuit breakers, transformer temperature controllers, and panelboards. Electrical data, such as current, power, energy, waveforms, and equipment status, is passed over a data network to one or more personal computers. The personal computers run power monitoring application software that retrieves, stores, organizes, and displays real-time circuit information in simple, usable formats. The information collected and stored in a power monitoring system helps operate a facility more efficiently. The quality of the data depends upon the accuracy of the instrumentation and the usability of the display formats.
The power meter can replace conventional metering devices such as ammeters, voltmeters, and watt-hour meters while providing other capabilities not offered by analog metering. The power meter's true rms readings reflect non-linear circuit loading more than conventional analog metering devices. The power meter calculates the neutral current, which can assist in identifying overloaded neutrals due to either unbalanced single phase loads or triplen harmonics. Circuits can be closely monitored for available capacity by keeping track of the peak average demand current. The power meter can provide a full complement of rms metering values to a metering display and/or via a standard communication port to a power monitoring and control system. The display is connected to the power meter with a communications cable and allows the user to view metering data and access meter setup and reset menus. Because the display can be mounted at a remote location relative to the power
meter itself, the power meter can be installed in tight equipment spaces without sacrificing a convenient and affordable metering display.
One type of remote metering display includes a character-based display screen that presents power monitoring data such as voltage, current, power and energy. The display is remote from the power meter but is connected to the power meter via an RS-232 or other communications cable that provides both the power metering data and power to the display. By using several user interface buttons, a user can selectively navigate through defined data screens that present specific data. The remote metering display may be mounted on a front switchgear panel while the power meter itself is mounted within the switchgear. In fact, there may be several displays mounted on the same front switchgear panel.
SUMMARY OF THE INVENTION
On the one hand, to allow the power monitoring data to be highly visible to a user, it is desirable for the data to be presented in such a way that it can be viewed from several feet away from the display. Also, it is desirable to have the display continuously present power metering data so that a user can immediately approach the display and record the data.
On the other hand, it is desirable for the remote metering display to automatically power down or "go to sleep" when there is no activity on the buttons for a predetermined period of time. The display powers down for the following reasons: (a) reduce the power consumption of the remote metering display from the power meter; (b) lengthen the total life span of the display screen which can degrade while in continuous operation; and (c) prevent "burn in" of the display screen while in continuous operation over several hours.
To satisfy these objectives, the present invention provides a remote metering display having a display screen controlled by a motion sensor. The motion sensor is used to prolong the life span of the display screen by reducing its total hours of operation or "power on" time. Specifically, in response to detecting a person's presence within a predetermined distance of the display, the motion sensor
automatically sends an activation signal to the display screen. This, in turn, allows the person to view or "power on" the display screen without physically interacting with it (e.g., pressing a function key). After a predefined period of idle time (e.g., 10 minutes) when no motion is detected by the motion sensor and no keys have been depressed, the display places the display screen in a "power off mode. Thus, the total hours of operation of the display screen are reduced.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:
FIG. 1 is a perspective view of a power metering arrangement having a remote metering display and having portions of a switchgear panel broken away to reveal internal structure;
FIG. 2 is a diagrammatic view of a multi-level menu structure employed by the remote metering display;
FIG. 3 is a block diagram of the components of the motion sensor;
FIG. 4a is a front view of a pyroelectric detector that is a component of a motion sensor used to automatically activate the remote metering display;
FIG. 4b is a first side view of the pyroelectric detector; FIG. 4c is a second side view of the pyroelectric detector; and
FIG. 4d is a bottom view of the pyroelectric detector.
While the invention is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
DESCRIPTION OF SPECIFIC EMBODIMENTS
Turning now to the drawings and referring initially to FIG. 1, there is depicted a power metering arrangement embodying the present invention. The power metering
arrangement includes a power meter 10, a remote metering display 12, and a switchgear 14. The power meter 10 is mounted within the switchgear 14 while the remote metering display 12 is mounted either to a front panel of the switchgear 14 or elsewhere. The remote metering display 12 is linked to the power meter 10 by either a wired or wireless connection. If the remote metering display 12 derives its power from the power meter and is therefore not self-powered, then the connection between the display 12 and the power meter 10 is wired.
The power meter 10 is preferably located in a distributed power network carrying a power-related waveform. An example of such a power meter 10 is disclosed in U.S. Patent No. 5,831,428 to Pyle et al., which is incorporated herein by reference in its entirety. Briefly, the power meter 10 is disposed adjacent to an associated one of the branches in the network for sensing power-related signals in that branch and for generating and transmitting data based on the power-related signals to the remote metering display 12 and possibly a central control station. The power meter 10 is coupled to the lines of the network branch by current and potential transformers and collects analog samples of the power-related signals sensed by these transformers. The analog samples are conditioned, digitized, and evaluated by power- related calculations that determine such power parameters as the average demands of current in each of the three phases and of real power, the predicted demand of real power, the peak demand of current in each of the three phases and of real power, the accumulated real and reactive energy, rms calculations of voltage and current, and power quality calculations such as total harmonic distortion.
The remote metering display 12 includes a flat panel display screen 16 such as a vacuum florescent display (NFD), liquid crystal display (LCD), plasma display, field emission display, digital micromirror display (DMD), dot matrix display, or other display type. The display screen 16 preferably shows four lines of information at a time. The remote metering display 12 also includes buttons that allow a user to scroll through and select information, move from menu to menu, and adjust the contrast. Specifically, the arrow buttons 18 are used to scroll up and down the option on a menu. Also, when a value can be changed, the arrow buttons are used to scroll through the values that are available. If the value is a number, holding the arrow
button down increases the speed in which the numbers increase or decrease. Each time the user presses a menu button 20, the display 12 takes the user back one menu level. The menu button 20 also prompts the user to save if the user made changes to any options within that menu structure. The enter button 22 is used to select an option on a menu or select a value to be edited. The contrast button 24 is pressed to darken or lighten the display screen 16.
FIG. 2 illustrates a multi-level menu structure employed by the remote metering display 12. The menu structure includes a Main Menu 26 and a plurality of first-level sub-menus 28a, 28b, 28c, 28d, 28e, 28f, and 28g accessed via the Main Menu 26. The menus contain menu options that the user can use to set up and control the power meter and its accessories and view metered data and alarms. The Main Menu 26 contains seven menu options: Meters, Min/Max, View Alarms, I/O Display, Resets, Setup, and Diagnostics. Selection of one of these options brings up a corresponding one of the sub-menus 28a-g. The Meters sub-menu 28a lets the user view metered values that provide information about power usage and power quality. The Min/Max sub-menu 28b lets the user view the minimum and maximum metered values since the last reset of the min/max values with their associated dates and times. The View Alarms sub-menu 28c lets the user view a list of all active alarms, regardless of priority. In addition, the user can view a log of high priority alarms, which contains ten of the most recent high priority alarms. From the I/O Display submenu 28d, the user can view the designation and status of each input or output. The Resets sub-menu 28e lets the user reset peak demand. From the Diagnostics submenu 28g, the user can initiate a wiring error test. Also, the user can use this submenu to read and write registers and view information about the power meter 10 such as its firmware version and serial number.
From the Setup sub-menu 28f, the user can creating custom quantities and custom screens is also an option on this sub-menu. In addition, the user can use this sub-menu to set up power meter parameters such as circuit transformer and potential transformer ratios. The Setup sub-menu 28f is also where the user can define communications, alarms, I Os and passwords. Finally, as can be seen in FIG. 2, the user can access a second-level Display Setup sub-menu 30 to define the settings for
the remote metering display 12. One of these definable settings is "Display Timer," which allows the user to select the number of minutes the display screen remains illuminated after inactivity. The available values for selection are 1, 5, 10, and 15 minutes, where the default value is 5 minutes. Another definable setting is "NFD Sensitivity," which allows the user to select the sensitivity value for a motion sensor 32 (see FIG. 1) mounted to the remote metering display 12. The available values for selection include:
In response to detecting a person's presence within a predetermined distance (range) associated with the setting under "NFD Sensitivity," the motion sensor 32 automatically illuminates the display screen 16. When no motion is detected by the motion sensor 32 and no buttons are pressed for the number of minutes associated with the setting under "Display Time," the display screen 16 is turned off.
Referring to FIG. 3, the motion sensor 32 includes four major components: a pyroelectric detector 34, fresnel lens 36, operational amplifiers 38, and an analog-to- digital converter 40. The pyroelectric detector 34 senses the presence of infrared waves projected from a human body (around 10 mm wavelength) and generates an analog signal based on the sensed infrared waves. FIGS. 4a, 4b, 4c, and 4d illustrate the pyroelectric detector 34. In a preferred embodiment, the pyroelectric detector 34 is implemented with a dual element pyroelectric detector, model no. P7178, commercially available from Hamamatsu Corporation of Bridgewater, New Jersey. Referring back to FIG. 3, this detector provides a suitable spectral response range (7 to 20 mm) with minimal noise characteristics and employs the fresnel lens 36 to focalize the infrared waves to the detector's active window area. The fresnel lens 36 concentrates visible light or infrared waves from a wide horizontal and vertical zone to a defined focal point for image processing. For infrared signals, Fresnel Technologies of Fort Worth, Texas provides a fresnel lens molded from POLY IR® infrared-transmitting plastic, which is suitable for this
application due to its low absorption losses. In one embodiment, the fresnel lens 36 is implemented with item #0.1 Fresnel lens molded from POLY IR®-4 material commercially available from Fresnel Technologies. This lens is 12 mm x 50 mm in size and is only 0.38 mm thick. The fresnel lens 36 provides the desired focalization of the specified infrared signal to detect a person within about 1 to 20 feet of the remote metering display 12, depending upon the selected sensitivity value for the motion sensor. The fresnel lens 36 is adhered into the display casing at a proper focal length to maximize the infrared s^nal passed to the pyroelectric detector 34.
An active optical filter and operational amplifiers 38 are used to filter and amplify an analog output signal transmitted from the pyroelectric detector 34. This amplified analog signal is then fed to a single analog-to-digital converter 40 located within the remote metering display's main processor. The digital signal generated by the analog-to-digital converter 40 is further processed and filtered by the processor, and human presence is determined when a transient in the analog signal is detected. Sensitivity levels associated with the foregoing filtering procedure allow the remote metering display 12 to be configured for high traffic areas or turned off completely. If the display is in the "off state, the only way to activate the display screen 16 is to press a function button on the display panel.
While the present invention has been described with reference to one or more particular embodiments, those skilled in the art will recognize that many changes may be made thereto without departing from the spirit and scope of the present invention. Each of these embodiments and obvious variations thereof is contemplated as falling within the spirit and scope of the claimed invention, which is set forth in the following claims.
Claims (18)
1. A remote metering display for displaying power-related information generated by a power meter linked to the display, the remote metering display comprising: a display screen; a plurality of user interface buttons for navigating through menu options depicted on the display screen; and a motion sensor for activating the display screen in response to detection of a person's presence within a predetermined distance of the motion sensor.
2. The display of claim 1, wherein the display screen is a vacuum florescent display screen.
3. The display of claim 1, wherein the display screen is deactivated in response to no motion being detected by the motion sensor and none of the user interface buttons being pressed for a predefined period of idle time.
4. The display of claim 3, wherein the predefined period of idle time is definable in one of the menu options using the user interface buttons.
5. The display of claim 1, wherein the motion sensor includes a plurality of selectable sensitivity levels for varying the predetermined distance, one of the sensitivity levels being selected in one of the menu options using the user interface buttons.
6. The display of claim 1, wherein the motion sensor senses infrared waves projected from a person's body.
7. The display of claim 1, wherein the motion sensor includes a pyroelectric detector for sensing infrared waves projected from a person's body, and includes a fresnel lens for focalizing the infrared waves to a window area of the pyroelectric detector.
8. The display of claim 7, wherein the pyroelectric detector generates an analog output signal, and wherein the motion sensor further includes an analog-to-digital converter for receiving and digitizing the analog output signal.
9. A remote metering display for displaying power-related information generated by a power meter linked to the display, the remote metering display comprising: a processing unit; a display screen coupled to the processing unit; a plurality of user interface buttons, coupled to the processing unit, for navigating through menu options depicted on the display screen; and a motion sensor, coupled to the processing unit, for activating the display screen in response to detection of a person's presence within a predetermined distance of the motion sensor.
10. The display of claim 9, wherein the display screen is a vacuum florescent display screen.
11. The display of claim 9, wherein the display screen is deactivated by the processing unit in response to no motion being detected by the motion sensor and none of the user interface buttons being pressed for a predefined period of idle time.
12. The display of claim 9, wherein the predefined period of idle time is definable in one of the menu options using the user interface buttons.
13. The display of claim 9, wherein the motion sensor includes a plurality of selectable sensitivity levels for varying the predetermined distance, one of the sensitivity levels being selected in one of the menu options using the user interface buttons.
14. A power metering arrangement, comprising: a power meter, coupled to a power line, for sensing power-related signals traveling through the power line and for generating power-related information based on the power-related signals; and a remote metering display for displaying the power-related information, the remote metering display being linked to the power meter, the remote metering display including: a display screen; a plurality of user interface buttons for navigating through menu options depicted on the display screen; and a motion sensor for activating the display screen in response to detection of a person's presence within a predetermined distance of the motion sensor.
15. The display of claim 14, wherein the display screen is a vacuum florescent display screen.
16. The display of claim 14, wherein the display screen is deactivated in response to no motion being detected by the motion sensor and none of the user interface buttons being pressed for a predefined period of idle time.
17. The display of claim 14, wherein the predefined period of idle time is definable in one of the menu options using the user interface buttons. .
18. The display of claim 14, wherein the motion sensor includes a plurality of selectable sensitivity levels for varying the predetermined distance, one of the sensitivity levels being selected in one of the menu options using the user interface buttons.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/765,860 | 2001-01-18 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| AU2002239967A1 AU2002239967A1 (en) | 2003-02-13 |
| AU2002239967B2 true AU2002239967B2 (en) | 2007-03-08 |
Family
ID=
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2402996C (en) | Remote metering display with motion sensor | |
| CA2198675C (en) | Electrical system monitoring apparatus with programmable custom display | |
| US7660684B2 (en) | System and method utilizing virtual switching for substation automation | |
| US6711512B2 (en) | Pole transformer load monitoring system using wireless internet network | |
| US5428342A (en) | Analyzing system for operating condition of electrical apparatus | |
| US5754440A (en) | Apparatus for harmonic analysis of waveforms in an AC electrical system | |
| US20120239321A1 (en) | Surge arrestor condition monitoring | |
| JP2000193695A (en) | Power usage monitoring method and device | |
| CN100562030C (en) | Mobile terminal with radiation detection function | |
| CA2950903A1 (en) | Industrial audio noise monitoring system | |
| HK1045271A1 (en) | Portable apparatus and method for predicting skin condition | |
| US5570028A (en) | Method for detecting faults in electrical cables and apparatus for implementing same | |
| JP3456909B2 (en) | Home automation device including remote control device and home appliance controlled by it | |
| US9588159B2 (en) | Energy management apparatus, system, method, and storage medium storing program | |
| CN109916530B (en) | Temperature monitor | |
| AU2002239967B2 (en) | Remote metering display with motion sensor | |
| GB2148565A (en) | Monitoring devices | |
| JP2009300368A (en) | Electricity use amount notification system and its power saving method | |
| JP2002305597A (en) | House monitoring system | |
| JP2009300367A (en) | Electricity use amount notification system and its abnormality determination method | |
| KR20010044452A (en) | Portable phone for diet | |
| KR20000054059A (en) | Device and method for recording voltage data of power distribution line | |
| KR20050031578A (en) | Three phase recorder and recording method thereof | |
| CN107560725B (en) | Ultraviolet intensity monitoring method and system, and mobile terminal | |
| JP2005038000A (en) | Flame detector |