AU2002233039A1 - A method of enhancing the photosensitivity of a material - Google Patents
A method of enhancing the photosensitivity of a materialInfo
- Publication number
- AU2002233039A1 AU2002233039A1 AU2002233039A AU2002233039A AU2002233039A1 AU 2002233039 A1 AU2002233039 A1 AU 2002233039A1 AU 2002233039 A AU2002233039 A AU 2002233039A AU 2002233039 A AU2002233039 A AU 2002233039A AU 2002233039 A1 AU2002233039 A1 AU 2002233039A1
- Authority
- AU
- Australia
- Prior art keywords
- selected region
- hydrogen
- radiation
- region
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 40
- 239000000463 material Substances 0.000 title claims description 38
- 206010034972 Photosensitivity reaction Diseases 0.000 title claims description 18
- 230000036211 photosensitivity Effects 0.000 title claims description 18
- 230000002708 enhancing effect Effects 0.000 title claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 35
- 239000001257 hydrogen Substances 0.000 claims description 35
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 29
- 230000003287 optical effect Effects 0.000 claims description 29
- 239000013307 optical fiber Substances 0.000 claims description 21
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 10
- 230000005855 radiation Effects 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 230000005670 electromagnetic radiation Effects 0.000 claims description 2
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 2
- 239000000835 fiber Substances 0.000 description 26
- 206010070834 Sensitisation Diseases 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000005253 cladding Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000010420 art technique Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 206010073306 Exposure to radiation Diseases 0.000 description 1
- OCYROESYHWUPBP-CIUDSAMLSA-N Pro-Ile Chemical compound CC[C@H](C)[C@@H](C([O-])=O)NC(=O)[C@@H]1CCC[NH2+]1 OCYROESYHWUPBP-CIUDSAMLSA-N 0.000 description 1
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- -1 germano silicate Chemical compound 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 239000005360 phosphosilicate glass Substances 0.000 description 1
- 108010015796 prolylisoleucine Proteins 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Description
A METHOD OF ENHANCING THE PHOTOSENSITIVITY OF A MATERIAL
Field of the Invention
The present invention relates broadly to a uthod of enhancing the photosensitivity of a photosensit.Lve light transmissive material and to a method of creating an optical structure within a photosensitive light transmissive material. The present invention has applications in the creation of gratings and similar structures within optical waveguides, including in optical fibres, and the invention is hereinafter described in that context. However, it will be understood that the invention does have broader applications, including to the enhancement of the photosensitivity of various typns of photosensitive light transmissive materials, and in various forms such as in planar form or in optical fibre form.
Background of the Invention
The creation of optical structures within photosensitive light transmissive materials, such tis the writing of gratings in an optical fibre, is a sign-.ficant process within optical technologies such as the technology of wavelength division multiplexing.
In the writing of gratings it is typically de-sirable to achieve high refractive index contrasts within i. selected region of the optical fibre, the regions of different refractive index forming the optical grating structure.
Different techniques have been utilised to erhance the photosensitivity of optical fibres to facilitate subsequent formation of optical structures.
In one technique, the photosensitivity of an optical fibre is increased by exposing a region of the _ib:.*e to optical radiation until the fluence has reached a predetermined level, the fluence level being selected to render the exposed region of the fibre substantially thermally stable at temperatures up to 250°C. Gra ings are then written into the fibre in the conventional way using UV radiation at a level sufficient to vary the refractive index of the material . This technique may also include the step of hydrogen- loading the selected region prior to the initial e;-posure to radiation, and may also include the step of removing the loaded hydrogen by out-diffusion after the initial exposure to radiation. However, this technique has a disadvantage in that it requires two steps of laser irradiation of the optr.cal fibre in order to create relatively stable grating.;.
An alternative technique for enhancing tho photosensitivity of optical fibres is based on an assumption that the photosensitivity of an optical fibre is enhanced because of the presence of hydrides and/or hydroxyls in the material of the fibre. Following this assumption, techniques have been developed to increase the formation of hydrides and/or hydroxyls in the fibr«>.. One such technique includes the steps of hydrogen-load:'. g an optical fibre, and heating the fibre to very high temperatures of the order of 1000-1300°C using an even or C02 laser such that OH species are formed. A supposed correlation between OH ormation and photosensi ive ty has been reported.
However, the presence of OH species produces undesirable optical attenuation and fibre brittleno.ss in the resultant optical structure.
Summary of the Invention
Experiments by the applicant have indicated t hat the photosensitivity of silica-based optical fibres do not always correlate with the concentration of OH specz.es in the fibre, indicating that OH formation is not necessarily a requirement for enhancing the photosensitivity o. a photosensitive material.
In accordance with a first aspect of the present invention, there is provided a method of creating ,m optical structure within a selected region of a photosensitive light transmissive material, the met.hod comprising the steps of: hydrogen loading the selected region of the material whilst maintaining the selected region substantially at a predetermined temperature for a predetermined period of time; followed by removing at least some of the loaded hydrogen, from the selected region; followed by exposing at least one portion of the selected region to TJV radiation at a level sufficient to change th refractive index of the material within the selected region to form the optical structure; wherein the predetermined temperature and t e: predetermined period of time are selected to enhance the photosensitivity of the selected region and to substantially avoid formation of hydroxyl species :.n the selected region during the hydrogen loading step.
The hydrogen loading may be carried out at a hydrogen pressure of at least 100 atmospheres (atm) of substantially pure hydrogen, preferably at least 2CO atm of substantially pure hydrogen. In one embodiment, the hydrogen pressure during loading is substantially f'OQ atm,
and in another embodiment the hydrogen pressure is substantially 1000 atm.
Preferably, substantially all unreacted loa ed hydrogen is removed from the selected region before the step of exposing the material to the UV radiation. The unreacted loaded hydrogen is conveniently removed by allowing it to out-diffuse from the selected region.
Preferably, the predetermined temperature is less than 1000°C. However, the predetermined temperature is preferably above room temperature in order to speed up the reaction time. In one embodiment, the predetermined temperature is 80°C. In another embodiment, the predetermined temperature is greater than 100°C anc less than 500°C. Preferably, the predetermined period of time is greater than the time required for saturation of hydrogen in the material by diffusion at the selected hydrogen pressure and predetermined temperature. The predetermined period of time will depend on the predetermined temperature, the selected hydrogen pressure and the: type of material. However, the predetermined time may be shortened when higher hydrogen pressures and higher temperatures are used. For a phosphosilicate glass; fibre loaded with hydrogen at a pressure of 200 atm and temperature of 80°C, the predetermined time may be approximately 14 days.
In one embodiment, the step of hydrogen loading the material includes the step of heating the hydrogen loaded into the material using microwave radiation. In one embodiment, the selected region comprises an intended optical grating region and the step of exposing the at least one portion of the selected region to the UV radiation comprises exposing regions within the gre ting
region to create an optical grating structure within the region. For example, the optical grating structure may be a Bragg grating.
The photosensitive light transmissive material may be in the form of a waveguide such as an optical fibre or a planar optical waveguide. The selected region may comprise the core of the fibre, or the core plus cladding. The selected region may extend along the entire length of the fibre, or it may extend along a limited section of the fibre. An entire reel of fibre may be sensitised. The selected region may include at least one radiation-absorbing region which is doped with a radiation-absorbing medium selected to undergo heating when exposed to a predetermined wavelength of electromagnetic radiation. Incorporating such a medium in the optically-transmissive material enables localised heating of the at least one radiation-absorbing recion. For example, the at least one radiation-absorbing region may comprise a core of an optical fibre in which ir. the radiation-absorbing medium comprises a rare-earth dopant. Where the optically-transmissive material is in the form of an optical fibre, the fibre preferably comp ises a phosphosilicate fibre. However, fibres containing other types of dopants, such as germanium oxide, can alsc be used.
In accordance with a second aspect of the present invention, there is provided a method of enhancing the photosensitivity of a selected region of a photoser. sitive light transmissive material, the method comprising: -hydrogen loading the selected region whilst simultaneously maintaining the selected region substantially at a predetermined temperature for a predetermined period of time; followed by
-removing at least some of the loaded hydrogen from the selected region; wherein the predetermined temperature and the predetermined period of time are selected to enhance the photosensitivity of the selected region and to substantially avoid formation of hydroxyl species ..n the selected region.
In accordance with a third aspect of the present invention, there is provided an optical structure -formed in a photosensitive light transmissive material by the method described in the first aspect of the present invention.
In accordance with a fourth aspect of the present invention, there is provided a photosensitive light transmissive material having an enhanced photoεens..tivity achieved by the method described in the second aspect of the present invention.
The invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
Brief Description of the Drawings
Figures la to lc are diagrammatic representations of a thermal senεitisation process in accordance with an embodiment of the present invention; Figures 2 and 3 are plots of index modulation. evolution and average index evolution versus fluence for an optical fibre constructed in accordance with the; embodiment of Figure 1;
Figure 4 is a plot showing decay at room temperature of grating strength for an optical fibre having gratings produced without presensitisation;
Figure 5 is a plot showing decay of grating strength due to thermal annealing at various temperatures for an optical fibre constructed in accordance with a prior art technique and for an optical fibre constructed In accordance with the embodiment of Figure 1; and
Figure 6 is a plot showing absorption profiles for a pristine optical fibre, an optical fibre after the.rmal sensitisation, and a thermally sensitised optical :':ibre after grating writing.
Detailed Description of the Preferred Embodiment
Example: Thermal sensitisation and subsequent grating wri ting with 193nm
The procedure for sensitising a fibre 10 is outlined in Figure 1. The fibre 10 in this embodiment is formed of phosphosilicate material (45cm, 17mol%P205) . The fibre 10 in this example is also dual- oded so that photosensitivity changes in the core and at the core/cladding interface can be compared. However, it will be understood that the method is equally applicable to single- oded fibres.
The fibre 10 was loaded with hydrogen 12 at _. temperature of 80°C and pressure of 200 atm for 14 days, which is well beyond the diffusion saturation time normally required under these temperature and pressure conditions. It will be understood that any appropriate mechanism may be used to heat the optical fibre. Tor example, microwaves may be used to heat the hydrogen which is loaded into the optical ibre.
The fibre 10 was then left to stand at room temperature for a further 18 days to allow complete out- diffusion of the remaining free-hydrogen, as shown in Figure lb. One centimetre gratings 14 were then written
into the core 115 at a total cumulative fluence of ~82kJ/cm2 by scanning a 193nm beam from an ArF laser source over one or more passes, as shown in Figure lc. This wavelength was chosen since it has been shown to be efficient in writing gratings, whilst maintaining . ow hydroxyl formation in the material.
For reference, gratings were also written into a second fibre which was not presensitised. The growth profiles for both index modulation and average index are shown in Figures 2 and 3. The index modulation fits with a single exponential and the average index fits with an exponent which is less than one and approaches that; of a linear fit.
Without sensitisation, the maximum grating strength achieved is 3dB and the decay profile is of the order of several minutes only, as shown in Figure 4. With thermal sensitisation, the decay profile is stabilised significantly, Figure 5 showing data for a presensitised optical fibre subjected to thermal annealing at selected temperatures for 30 minutes. It can been seen that, the core index change observed for the P0ι mode is slightly more stable than the cladding index change observed for the LPii mode. This indicates that there is a contribution to the index change from the core/cladding interface. The fact that the LPn mode probes a stronger grating modulation indicates that the grating index change does not extend uniformly across the core. This is bel eved to be due to a reduction in index pro ile of the fibre; at the centre of the fibre due to substantial boiloff during fabrication, with the index change following the p205 concentration .
For comparison purposes, Figure 5 also incluc.es a corresponding plot of reflectivity verses annealin'
temperature for an optical fibre presensitised using UV light. Comparable results are obtained.
In Figure 6, absorption profiles are shown for an optical fibre prior to thermal sensitisation 16, a.rter thermal sensitisation 18 and after grating writing 20. As can be seen by the absorption profile for the pristine fibre 16 and the fibre after thermal sensitisation 18, the hydrogen-loading step does not itself induce noticeable attenuation due to presence of hydroxyls. In contrast, as shown in the absorption profile for the fibre after grating writing 20, a band corresponding to Si-OH at approximately 1397nm is present which indicates that hydrogen is being released du:.ing grating writing. The band at approximately 1.55μm is believed to correspond to P-OH or Si-H since it is relatively narrow.
It will be appreciated that although absorption due to hydroxyls still occurs in an optical fibre constructed in accordance with the present invention, the hydroxyl formation is less compared to gratings produced by the prior art techniques of hydrogen-loading and heating to very high temperature, and presensitisation using hydrogen-loading and UV light.
It will also be appreciated that instead of carrying out the presensitisation step at a temperature of approximately 80°C for 14 days, a higher temperature could be used together with a lower time period, or a lower temperature could be used together with a greater time period. For example, a temperature which is higher than 80°c but less than 1000°C may be used with a relatively short time period. However, the chosen temperature will preferably be less than 100°C.
The above example concerns sensitisation of <ι fibre of phosphorus silicate material. The present invention is not limited to sensitisation of phosphorus silicate fibres, but can be applied fibres and waveguides for other materials, for example, germano silicate. In the ease of ger ano silicate, it is believed that a suitable temperature for sensitisation would be between 300' C and 400°C, preferably 320°C.
It will be appreciated by a person skilled in the art that numerous variations and/or modifications may be made to the present invention as shown in the specif Lc embodiment without departing from the spirit or scope of the invention as above described. The present embodiment is, therefore, to be considered in all respects to be illustrative and not restrictive.
Claims
1. A method of creating an optical struct; re within a selected region of a photosensitive light transmissive material, the method comprising tho steps of: hydrogen loading the selected region of the naterial whilst maintaining the selected region substantially at a predetermined temperature for a predetermined period of time; followed by removing at least some of the loaded hydrogen from the selected region; followed by e_qposing at least one portion of the selected region to UV radiation at a level sufficient to change the refractive index of the material within the selected region to form the optical structure; wherein the predetermined temperature and the predetermined period of time are selected to enhance the photosensitivity of the selected region and to substantially avoid formation of hydroxyl species ;n the selected region during the hydrogen loading step.
2. The method according to claim 1, wherein substantially all unreacted loaded hydrogen is removed from the selected region before the step of irradiέ ting the material .
3. The method according to claim 1 or claim 2, wherein the predetermined temperature is less than 1000°C.
4. The method according to any one of claims 1-3, wherein the predetermined temperature is greater tl an 22°C and less than 500°C.
5. The method according to claim 1 or claim 2, wherein the predetermined temperature is substanti. lly 80°C.
6. The method according to any one of the preceding claims, wherein the predetermined period of time is greater than the time required for diffusion-saturation of hydrogen in the material .
7. The method according to claim 7, wherein the predetermined period of time is substantially 14 days.
8. The method according to any one of the preceding claims wherein the hydrogen loading i,'_ carried out at a pressure of at least 200 atmospheres of hydrogen.
9. The method according to any one of the preceding claims, wherein the step of hydrogen-loading includes a step of heating the hydrogen loaded into the material using microwave radiation.
10. The method according to any one of the preceding claims wherein the selected region includes at least one radiation-absorbing region which is doped with a radiation-absorbing medium selected to undergo heating when exposed to a predetermined wavelength of electromagnetic radiation.
11. The method according to claim 10 wherein the radiation-absorbing medium comprises atoms of at least one rare-earth element.
12. The method according to either claim 1( or 11 wherein the radiation-absorbing region comprises a core of a waveguide.
13. The method according to any one of the preceding claims, wherein the selected region includes an intended optical grating region and the step of exposing the at least one portion of the selected region to the UV radiation comprises exposing regions within the grating region to create an optical grating structure with:,n the regio .
14. The method according to any one of the preceding claims, wherein the photosensitive light transmissive material is in the form of an optical fibre.
15. An optical structure formed in a photosensitive light transmissive material in accordance with the method as de ined in any one of the preceding claims .
16. A method of enhancing the photosensitivity of a selected region of a photosensitive light transmissive material, the method comprising:
-hydrogen loading the selected region whilst simultaneously maintaining the selected region substantially at a predetermined temperature for a predetermined period of time; followed by
-removing at least some of the loaded hydrogen from the selected region; wherein the predetermined temperature and the predetermined period of time are selected to enhance the photosensitivity of the selected region and to substantially avoid formation of hydroxyl species :.n the selected region.
17. A photosensitive light transmissive material having an enhanced photosensitivity achieved by the method as defined in claim 16.
18. A method of creating an optical structure substantially as hereinbefore described with reference to the example of the accompanying drawings.
19. An optical structure substantially as hereinbefore described with reference to the examp. e and the accompanying drawings.
20. A method of enhancing the phσtoεensitix ity of a photosensi ive light transmissive material substantially as hereinbefore described with reference to the example and the accompanying drawings.
21. A photosensitive light transmissive material substantially as hereinbefore described with reference to the example and the accompanying drawings.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AUPR3353 | 2001-02-26 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| AU2002233039A1 true AU2002233039A1 (en) | 2002-09-12 |
Family
ID=
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5235659A (en) | Method of making an article comprising an optical waveguide | |
| US5930420A (en) | Method for producing photo induced grating devices by UV irradiation of heat-activated hydrogenated glass | |
| EP0569182B1 (en) | Photoinduced refractive index change in hydrogenated germano-silicate waveguide | |
| US5495548A (en) | Photosensitization of optical fiber and silica waveguides | |
| US5500031A (en) | Method for increasing the index of refraction of a glassy material | |
| JP3462051B2 (en) | Method of manufacturing optical fiber refractive index grating, optical fiber communication system including optical fiber refractive index grating, and optical fiber sensor | |
| JP3929495B2 (en) | Optical waveguide with photosensitive refractive index cladding | |
| Canning | Photosensitization and photostabilization of laser-induced index changes in optical fibers | |
| KR20010102214A (en) | Methods of photosensitizing glasses with hydrogen or deuterium and waveguides resulting therefrom | |
| KR100351218B1 (en) | Method for making stable optical devices employing radiation-induced index changes | |
| JPH0881231A (en) | Method for forming photo-induced bragg lattice | |
| JPH08248249A (en) | Radiolytic correction of birefringence in silica planar waveguide structures. | |
| KR100487888B1 (en) | A method of providing an optical element and a process of forming an optical element | |
| US7515792B2 (en) | Method of increasing photosensitivity of glasses to ultrafast infrared laser radiation using hydrogen or deuterium | |
| WO2002069003A1 (en) | A method of enhancing the photosensitivity of a material | |
| US6706455B1 (en) | Method for creating an optical structure within a photosensitive light transmissive material and of enhancing the photosensitivity of the photosensitive light transmissive material | |
| AU2002233039A1 (en) | A method of enhancing the photosensitivity of a material | |
| EP0622343A2 (en) | Method for increasing the index of refraction of a glassy material | |
| Niay et al. | Does photosensitivity pave the way towards the fabrication of miniature coherent light sources in inorganic glass waveguides? | |
| JP3374990B2 (en) | Optical circuit characteristic adjustment method | |
| Chen et al. | Vacuum-ultraviolet laser-induced refractive-index change and birefringence in standard optical fibers | |
| JP3578376B2 (en) | Optical circuit manufacturing method | |
| CA2115906C (en) | Photosensitization of optical fiber and silica waveguides | |
| Chen et al. | Enhancement and tuning of fibre Bragg grating reflection by 157 nm F2-laser post exposure | |
| Riziotis et al. | Rapid heat treatment for photosensitivity locking in deuterium-loaded planar optical waveguides |