AU2002220069B2 - Methods and instruments for treating pseudoarthrosis - Google Patents
Methods and instruments for treating pseudoarthrosis Download PDFInfo
- Publication number
- AU2002220069B2 AU2002220069B2 AU2002220069A AU2002220069A AU2002220069B2 AU 2002220069 B2 AU2002220069 B2 AU 2002220069B2 AU 2002220069 A AU2002220069 A AU 2002220069A AU 2002220069 A AU2002220069 A AU 2002220069A AU 2002220069 B2 AU2002220069 B2 AU 2002220069B2
- Authority
- AU
- Australia
- Prior art keywords
- mass
- elongated member
- bone
- pseudoarthrosis
- bmp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000000034 method Methods 0.000 title claims description 80
- 208000002607 Pseudarthrosis Diseases 0.000 title claims description 67
- 210000000988 bone and bone Anatomy 0.000 claims description 63
- 230000002138 osteoinductive effect Effects 0.000 claims description 61
- 239000000203 mixture Substances 0.000 claims description 57
- 230000004927 fusion Effects 0.000 claims description 34
- 210000001519 tissue Anatomy 0.000 claims description 24
- 102100026632 Mimecan Human genes 0.000 claims description 12
- 101800002327 Osteoinductive factor Proteins 0.000 claims description 12
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 claims description 11
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 claims description 11
- 229940112869 bone morphogenetic protein Drugs 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 10
- 239000003937 drug carrier Substances 0.000 claims description 9
- 239000001506 calcium phosphate Substances 0.000 claims description 7
- 229910000389 calcium phosphate Inorganic materials 0.000 claims description 7
- 235000011010 calcium phosphates Nutrition 0.000 claims description 7
- 230000001737 promoting effect Effects 0.000 claims description 7
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical group [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 7
- -1 BMP-12 Proteins 0.000 claims description 6
- 230000008468 bone growth Effects 0.000 claims description 6
- 239000004568 cement Substances 0.000 claims description 6
- 102100033337 PDZ and LIM domain protein 7 Human genes 0.000 claims description 5
- 101710121660 PDZ and LIM domain protein 7 Proteins 0.000 claims description 5
- 229920000954 Polyglycolide Polymers 0.000 claims description 4
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 4
- 239000004633 polyglycolic acid Substances 0.000 claims description 4
- 239000004626 polylactic acid Substances 0.000 claims description 4
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 claims description 3
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 claims description 3
- 238000001727 in vivo Methods 0.000 claims description 3
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 claims description 2
- 108010049931 Bone Morphogenetic Protein 2 Proteins 0.000 claims description 2
- 102100024506 Bone morphogenetic protein 2 Human genes 0.000 claims description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 2
- 229920002683 Glycosaminoglycan Polymers 0.000 claims description 2
- 229920005603 alternating copolymer Polymers 0.000 claims description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 2
- 229920002674 hyaluronan Polymers 0.000 claims description 2
- 229960003160 hyaluronic acid Drugs 0.000 claims description 2
- 230000003834 intracellular effect Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 241000701161 unidentified adenovirus Species 0.000 claims description 2
- 208000010392 Bone Fractures Diseases 0.000 claims 2
- 239000000833 heterodimer Substances 0.000 claims 2
- 239000002773 nucleotide Substances 0.000 claims 2
- 125000003729 nucleotide group Chemical group 0.000 claims 2
- 108010049951 Bone Morphogenetic Protein 3 Proteins 0.000 claims 1
- 108010049955 Bone Morphogenetic Protein 4 Proteins 0.000 claims 1
- 108010049976 Bone Morphogenetic Protein 5 Proteins 0.000 claims 1
- 108010049974 Bone Morphogenetic Protein 6 Proteins 0.000 claims 1
- 108010049870 Bone Morphogenetic Protein 7 Proteins 0.000 claims 1
- 102100028726 Bone morphogenetic protein 10 Human genes 0.000 claims 1
- 101710118482 Bone morphogenetic protein 10 Proteins 0.000 claims 1
- 102000003928 Bone morphogenetic protein 15 Human genes 0.000 claims 1
- 108090000349 Bone morphogenetic protein 15 Proteins 0.000 claims 1
- 102100024504 Bone morphogenetic protein 3 Human genes 0.000 claims 1
- 102100024505 Bone morphogenetic protein 4 Human genes 0.000 claims 1
- 102100022526 Bone morphogenetic protein 5 Human genes 0.000 claims 1
- 102100022525 Bone morphogenetic protein 6 Human genes 0.000 claims 1
- 102100022544 Bone morphogenetic protein 7 Human genes 0.000 claims 1
- 102100022545 Bone morphogenetic protein 8B Human genes 0.000 claims 1
- 108010090290 Growth Differentiation Factor 2 Proteins 0.000 claims 1
- 102100040898 Growth/differentiation factor 11 Human genes 0.000 claims 1
- 101710194452 Growth/differentiation factor 11 Proteins 0.000 claims 1
- 102100040892 Growth/differentiation factor 2 Human genes 0.000 claims 1
- 102100035379 Growth/differentiation factor 5 Human genes 0.000 claims 1
- 101710204282 Growth/differentiation factor 5 Proteins 0.000 claims 1
- 102100035368 Growth/differentiation factor 6 Human genes 0.000 claims 1
- 101710204281 Growth/differentiation factor 6 Proteins 0.000 claims 1
- 101000899368 Homo sapiens Bone morphogenetic protein 8B Proteins 0.000 claims 1
- 101710192602 Latent membrane protein 1 Proteins 0.000 claims 1
- 239000000463 material Substances 0.000 description 17
- 239000007943 implant Substances 0.000 description 10
- 238000000429 assembly Methods 0.000 description 8
- 230000000712 assembly Effects 0.000 description 8
- 108091028043 Nucleic acid sequence Proteins 0.000 description 7
- 125000006850 spacer group Chemical group 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 5
- 238000002591 computed tomography Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 239000003102 growth factor Substances 0.000 description 4
- 230000000921 morphogenic effect Effects 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 102000014015 Growth Differentiation Factors Human genes 0.000 description 3
- 108010050777 Growth Differentiation Factors Proteins 0.000 description 3
- 239000000560 biocompatible material Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 150000007523 nucleic acids Chemical group 0.000 description 3
- 230000011164 ossification Effects 0.000 description 3
- 208000008035 Back Pain Diseases 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000002594 fluoroscopy Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000005009 osteogenic cell Anatomy 0.000 description 2
- 230000002188 osteogenic effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 102000018386 EGF Family of Proteins Human genes 0.000 description 1
- 108010066486 EGF Family of Proteins Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 102000012966 Growth Differentiation Factor 5 Human genes 0.000 description 1
- 108010090254 Growth Differentiation Factor 5 Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 102000013275 Somatomedins Human genes 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 241001447056 Uristes Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 208000037873 arthrodesis Diseases 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 208000016097 disease of metabolism Diseases 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000011694 lewis rat Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012978 minimally invasive surgical procedure Methods 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 238000002355 open surgical procedure Methods 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 230000001599 osteoclastic effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 239000012781 shape memory material Substances 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 230000008467 tissue growth Effects 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
- A61K9/0024—Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/4455—Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
- A61F2/446—Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages having a circular or elliptical cross-section substantially parallel to the axis of the spine, e.g. cylinders or frustocones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools for implanting artificial joints
- A61F2/4601—Special tools for implanting artificial joints for introducing bone substitute, for implanting bone graft implants or for compacting them in the bone cavity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/442—Intervertebral or spinal discs, e.g. resilient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
- A61F2002/2817—Bone stimulation by chemical reactions or by osteogenic or biological products for enhancing ossification, e.g. by bone morphogenetic or morphogenic proteins [BMP] or by transforming growth factors [TGF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/30199—Three-dimensional shapes
- A61F2002/30224—Three-dimensional shapes cylindrical
- A61F2002/30235—Three-dimensional shapes cylindrical tubular, e.g. sleeves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30593—Special structural features of bone or joint prostheses not otherwise provided for hollow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30667—Features concerning an interaction with the environment or a particular use of the prosthesis
- A61F2002/30677—Means for introducing or releasing pharmaceutical products, e.g. antibiotics, into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0069—Three-dimensional shapes cylindrical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/252—Polypeptides, proteins, e.g. glycoproteins, lipoproteins, cytokines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/412—Tissue-regenerating or healing or proliferative agents
- A61L2300/414—Growth factors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/64—Animal cells
Landscapes
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Public Health (AREA)
- Transplantation (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Epidemiology (AREA)
- Neurology (AREA)
- Dermatology (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Neurosurgery (AREA)
- Pharmacology & Pharmacy (AREA)
- Molecular Biology (AREA)
- Physical Education & Sports Medicine (AREA)
- Materials For Medical Uses (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Surgical Instruments (AREA)
Description
WO 02/34113 PCT/US01/45479
I
METHODS AND INSTRUMENTS FOR TREATING
PSEUDOARTHROSIS
CROSS-REFERENCE TO RELATED APPLICATION The present application claims the benefit of United States Provisional Application Serial No. 60/242,950 filed on October 24, 2000, which is hereby incorporated by reference in its entirety.
BACKGROUND OF THE INVENTION The present invention relates generally to methods and instruments for treating pseudoarthrosis.
Back pain affects millions of individuals and is a common cause of disability for the middle-aged working population. A frequent cause of back pain is rupture or degeneration of intervertebral discs. In many instances, the only relief from the symptoms of these conditions is a discectomy, or surgical removal of all or a portion of an intervertebral disc. Additionally, the disc space height must be maintained or restored.
One solution to the stabilization of an excised disc space is to fuse the adjacent vertebrae between their respective endplates. Typically a spacer or implant is inserted into the treated or prepared disc space until complete arthrodesis is achieved. The spacer/implant must provide temporary support and allow bone ingrowth. Success of the discectomy and fusion procedure requires development of a contiguous growth of bone or an osseous bridge to create a solid mass between the vertebrae to withstand the compressive loads on the spine for the life of the patient.
Several metal spacers have been developed to fill the void formed by the discectomy and to promote fusion. Sofamor Danek Group, Inc., (Memphis, TN) markets a number of hollow spinal cages, and a wide variety of other such cages are known in the art. For example, U.S. Patent Nos.
5,015,247 and 5,984,967 to Michelson et al. and Zdeblick et al., respectively, WO 02/34113 PCT/USU1/45479 2 disclose threaded spinal cages. The cages are hollow and can be filled with osteoinductive material, such as autograft and allograft, prior to insertion into the intervertebral disc space. Apertures defined in the cages communicate with the hollow interior to provide a path for tissue growth between the vertebral endplates.
Although some success with respect to spinal fusions has generally been obtained with respect to interbody fusions or intertransverse process fusions, the incidence of pseudoarthrosis, also known as pseudarthrosis, or failure of a spinal fusion, may be relatively high in certain circumstances. For example, the incidence of pseudoarthrosis has been reported as high as for smokers, as well as for patients having multilevel fusions and unrecognized metabolic disease. Pseudoarthrosis has been shown to be the contributing cause of symptoms in 78% of symptomatic patients requiring reoperation, with each reparative procedure decreasing the probability of success. Moreover, at least about 90% of attempted posterolateral intertransverse process fusions with autogenous iliac crest bone grafting in Lewis rats fail.
In order to treat symptomatic pseudoarthrosis, a conventional, open surgical procedure includes direct exposure of the fusion mass, decortication, bone regrafting and possibly reinstrumentation or addition of new graft and/or new instrumentation. The repair procedure can be very complex, is highly invasive and additional posterior fusion procedures may need to be performed to stabilize the spine after a fusion has failed. Thus, simpler, less invasive methods for treating spinal pseudoarthrosis are needed.
-3- SUMMARY OF THE INVENTION
O
SAccording to a first aspect of the present invention, there is provided a method of treating pseudoarthrosis, comprising: identifying a site of spinal pseudarthrosis; and delivering to a location of the pseudoarthrosis an effective amount of injectible IN osteoinductive composition, in a pharmaceutically acceptable carrier, effective for 0 promoting bone growth for treating said pseudoarthrosis.
According to a second aspect of the present invention, there is provided a method of 0 treating spinal pseudoarthrosis in a patient, comprising: advancing a first elongated 1to member having a proximal end, a distal end and a lumen extending longitudinally therethrough to a location of spinal pseudoarthrosis in the patient; and advancing an injectible osteoinductive composition through said lumen of said first elongated member to said location, said osteoinductive composition comprising an osteoinductive factor in a pharmaceutically acceptable carrier.
According to a third aspect of the present invention, there is provided a method of treating spinal pseudoarthrosis in a patient, comprising: advancing an elongated member into a pseudoarthrotic mass in said patient, said elongated member having a proximal end, a distal end and a lumen extending longitudinally therethrough, said distal end of said member having at least one bone cutting edge; and advancing an osteoinductive composition through said lumen of said elongated member to said pseudoarthritic mass, said osteoinductive composition extending across said pseudoarthrotic mass, said osteoinductive composition comprising an osteoinductive factor in a pharmaceutically acceptable carrier and effective in promoting bone growth for treating said spinal pseudoarthrosis.
It has been discovered that administration of an osteoinductive composition to a location of pseudoarthrosis, such as spinal pseudoarthrosis, is effective in promoting bone growth for treating the pseudoarthrosis. Accordingly, in one aspect of the invention, methods of treating spinal pseudoarthrosis are provided.
In one form of the invention, a method includes delivering to a location of pseudoarthrosis an effective amount of an osteoinductive composition. Preferably the osteoinductive composition is combined with an acceptable carrier, such as a calcium phosphate-containing carrier. The osteoinductive composition is effective in promoting bone growth for treating the spinal pseudoarthrosis.
[R:\LIBFF113073 .doc:hig -3a- In preferred forms, the method includes advancing a first elongated member to a z location of spinal pseudoarthrosis in a patient. The first elongated member has a proximal end, a distal end and a lumen extending longitudinally therethrough. The method further includes advancing the osteoinductive composition described herein through the lumen of the first elongated member. In other preferred forms of the invention, the osteoinductive I composition is advanced through the lumen of the elongated member to a pseudoarthrotic Smass into and extending across the pseudoarthrotic mass.
C The methods described herein may be accomplished with or without decortication Sand, in the case of a failed interbody fusion, without removal of the implant. Further the S 1to methods can use minimally invasive surgical procedures that can significantly reduce morbidity associated with surgery, reduce the duration of a hospital stay and reduce patient recovery times.
In other aspects of the invention, surgical instruments -are provided. The instruments are advantageously configured for use in the methods of treating spinal pseudoarthrosis described herein. In one form of the invention, a cannulated drill is provided that includes an elongated member having a [R:\LIBFF1 I 3073.doc:hig WO 02/34113 PCT/US01/45479 4 proximal end, a distal end, an inner surface, and an outer surface. The inner surface defines a lumen that extends along the length of the elongated member and is sized to receive an elongated obturator The distal end of the elongated member has at least one bone cutting edge. The proximal end of the elongated member has a connector configured for matingly engaging a distal end of a syringe to the proximal end of the elongated member. The elongated member is preferably formed of a biocompatible material.
Surgical instrument assemblies are also provided including at least the cannulated drill described herein and a syringe. The syringe has a housing that defines a cavity and has a proximal end and a distal end. The distal end of the syringe is matingly engageable to the proximal end of the elongated member.
The lumen of the elongated member and the cavity of the housing are in fluid communication when the distal end of the syringe and the proximal end of the elongated member are matingly engaged.
WO 02/34113 PCT/USU1/45479 BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a side elevation view of one embodiment of a drill provided according to the present invention.
FIG. 2 is a first end view of the drill of FIG. 1 FIG. 3 is a side elevation of an alternative embodiment of a drill having a plurality of apertures extending along a length of the drill for use in the present invention.
FIG. 4 is a side elevation view of an elongated obturator for use in a drill according to the present invention.
FIG. 5 is a first end view of the obturator of FIG. 4.
FIG. 6A is a side elevation view partially broken away of an obturator/drill assembly according to the present invention.
FIG. 6B is a first end view of the obturator/drill assembly of FIG. 6.
FIG. 7 is a side elevation view of an alternative embodiment of a drill for use in the present invention.
FIG. 8A is an exploded view of a syringe-drill assembly provided according to the present invention.
FIG. 8B is a side elevation view of the syringe-drill assembly of FIG.
8A.
FIG. 8C is an exploded view of an alternative embodiment of a syringe-drill assembly provided according to the present invention.
FIG. 9 is a side elevation view an elongated delivery member having apertures extending along a length of the member provided according to the present invention.
FIG. 10A is a side elevation view of a pair of vertebrae depicting pseudoarthrosis at an intertransverse process fusion site.
FIG. 10B is a side elevation view of the pseudoarthrosis of the pair of vertebrae of FIG. 10A with a guide wire inserted into a pseudoarthrotic mass.
FIG. 11 is an enlarged view of the pseudoarthrosis site of FIG. illustrating a cannula positioned adjacent the treatment site.
WO 02/34113 PCT/USU1/45479 6 FIG. 12 is a side elevation view of the pseudoarthrotic mass of FIG. 11 depicting a cannulated drill having an obturator disposed in its lumen.
FIG. 13 is a side elevation view of FIG. 12 depicting a drill in a bored hole in the pseudoarthrotic mass.
FIG. 14 is a side elevation view of the pseudoarthrotic mass of FIG. 13 depicting the drill without the obturator.
FIG. 15 is a side elevation view of the pseudoarthrotic mass of FIG. 14 depicting a syringe connected to the drill according to the present invention.
FIG. 16 is a side elevation view of the pseudoarthrotic site of FIG. partially broken away and depicting delivery of an osteoinductive composition into a bored hole in the pseudoarthrotic mass according to the present invention.
FIG. 17 is a side elevation view of the pseudoarthrotic mass of FIG. 11 depicting a plurality of holes bored into the mass according to one embodiment of the present invention.
FIG. 18 is a side elevation view in partial section illustrating a fusion cage between a pair of vertebrae wherein a drill is positioned in a pseudoarthrotic mass located within a fusion cage according to another embodiment of the present invention.
FIG. 19 is a cross-section view taken along line 19-19 of FIG. 18, illustrating a intervertebral implant, between adjacent vertebrae depicting a plurality of bore holes drilled in the pseudoarthrotic mass inside the implant chamber, as well as in the superior vertebral bodies, adjacent to the implant.
WO 02/34113 PCT/USU1/45479 7 DESCRIPTION OF THE EMBODIMENTS For the purposes of promoting an understanding of the principles of the invention, reference will now be made to embodiments and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications of the invention, and such further applications of the principles of the invention as illustrated herein, being contemplated as would normally occur to one skilled in the art to which the invention relates.
The present invention relates to methods and instruments for treating pseudoarthrosis. Pseudoarthrosis, also known as pseudarthrosis, refers to a condition that arises due to an incomplete bone fusion process. With respect to spinal pseudoarthrosis, this includes failure of adjacent vertebrae to fuse or the presence of some other bone discontinuity in the fusion mass. That is, the bone of the spinal fusion is not contiguous, such that a non-union, or a gap between the bone, exists. In a first aspect of the invention, embodiments of methods include delivering to a location of spinal pseudoarthrosis an effective amount of an osteoinductive composition. The composition advantageously includes an osteoinductive factor, such as in a pharmaceutically acceptable carrier. The osteoinductive composition is effective in promoting bone growth to treat the spinal pseudoarthrosis.
In a second aspect of the invention, embodiments of surgical instruments are provided. In one form, a surgical instrument includes a cannulated drill including an elongated member formed of a biocompatible material and having a proximal end, a distal end, an inner surface, and an outer surface. The inner surface defines a lumen that extends along the length of the elongated member and is sized to receive an elongated obturator. The distal end of the elongated member has at least one bone cutting edge. The proximal end of the elongated member has, or otherwise defines, a connector configured to matingly engage a distal end of a syringe. Embodiments of surgical instrument assemblies are also provided that include the drill described herein WO 02/34113 PCT/US01/45479 and a syringe. In addition or in the alternative, the surgical assemblies can include a cannulated drill and obturator for sliding engagement within an interior region of the cannulated drill. One or more of the surgical assemblies can be provided for delivery of a flowable or injectible osteoinductive composition into a desired treatment site. Embodiments of kits for treating pseudoarthrosis that include a combination of the surgical instruments and/or instrument assemblies described herein are also provided.
As disclosed above, in one aspect of the invention, surgical instruments may be advantageously utilized in a procedure for treating pseudoarthorosis.
Embodiments of these instruments will be described first in order to facilitate the discussion herein of the methods of treating spinal pseudoarthrosis. In one embodiment, a surgical instrument includes an elongated channel-forming and delivery member such as a drill 10 as seen in FIGS. 1 and 2. Drill comprises an elongated member 20 having a proximal end 21, a distal end 22, an exterior surface 23 and an inner surface 24. Distal end 22 has at least one bone cutting edge 26, and preferably about two to about four cutting edges for cutting bone. Alternately, the drill may include any device capable of forming a passageway or channel in or adjacent to the site of pseudoarthrosis, such as a piercing device, milling device, etc.
Inner surface 24 defines a lumen 25 extending along the length of elongated member 20, typically from proximal end 21 to distal end 22.
Lumen 25 is illustrated as a cylindrical channel having a first opening 11 adjacent to proximal end 21, and a second opening 12 proximate to distal end 22 permitting access through the interior of drill 10. Moreover, lumen 25 of elongated member 20 is sized to receive an obturator (not shown). In another embodiment, lumen 25 is sized to receive a guide wire, such as, a K-wire. The guide wire can be selected to be any desired diameter and/or length. The guide wire can be inserted into a treatment site to facilitate desired placement of drill 10 during treatment.
Proximal end 21 of elongated member 20 is advantageously configured for mating with a syringe. Proximal end 21 of elongated member 20 may WO 02/34113 PCT/USU1/45479 9 therefore include, or otherwise define, a connector 27 that matingly engages the distal end of a syringe to proximal end 21 of elongated member 20. The connector may be formed integral with the elongated member or may be separately connected thereto, such as by use of press-fit threaded connectors, adhesives and any other securing methods or combinations thereof. A wide variety of connectors may be utilized, including luer-lock connectors, Moorse taper connectors and snap-lock connectors.
Figure 3 illustrates an alternative embodiment of a drill 10' for use in the present invention. Drill 10' is formed similar to drill 10 and like reference numbers with a prime are used to denote like elements. Drill 10' includes a plurality of apertures 28 extending through exterior surface 23' to inner surface 24'. Preferably, apertures 28 are provided in a desired size, number and location along a length of the drill 10'. In one embodiment, the apertures are sized and located to effectively deposit an osteoinductive material across a pseudoarthrotic region of the spine with minimal or no repositioning of the drill. In the illustrated embodiment a plurality of apertures 28 are located proximate to distal end 22'.
Referring now to FIGS. 4 and 5, one embodiment of a lumen-blocking device such as obturator 30 comprises an elongated member 40 having a proximal end 41, a distal end 42, an outer surface 43 and an inner surface 44.
Inner surface 44 defines a lumen 45 that extends along the length of elongated member 40, typically from proximal end 41 to distal end 42. Obturator may be advantageously designed and configured to conform to inner surface 24 of elongated member 20 of drills 10 and/or 10' and/or be slidably received within lumen 25 and/or 25'. Although obturator 30 may be variously shaped, in one form of the invention obturator 30 is cylindrical. For example, obturator 30 is slidably disposed in lumen 20 of drill 10 to provide assembly as best seen in FIG. 6A and FIG. 6B. Obturator 30 can be sized and configured to inhibit material from entering the lumen of the drill during the drilling process.
WO 02/34113 PCT/US01/45479 In other forms of the invention, yet other drills may be utilized.
Referring to FIG. 7, a drill 10" is shown. Drill 10" is formed similar to drill and like reference numbers with a double prime are used to denote like elements. Drill 10" advantageously may have a built-in depth gauge 29.
Depth gauge 29 can be movably secured to a portion of surface 23" that limits the drilling depth of drill 10". Depth gauge 29 may be positionable during surgery. For example, the surgeon can determine a desired depth to bore into a bone or pseudoarthrotic site using x-ray, Computer Tomography (CT), fluoroscopy or other techniques. The surgeon can then measure a distance from distal end 26" toward proximal end 21" equal to the desired bore depth.
The surgeon can then position depth gauge 29 at a position 36 from the distal end of drill 10" equal to the desired bore depth. Depth gauge 29 can be secured in the desired position using a set screw, or other locking mechanism.
The drills and obturators described herein may be formed of biocompatible materials. In preferred forms of the invention, the drill and obturator may be formed from metallic materials, including stainless steel, titanium, and alloys thereof. Other suitable materials include nitinol, or other shape memory materials.
In another aspect of the invention, embodiments of surgical instrument assemblies are provided. Referring now to FIG. 8A, in one form of the invention, a surgical instrument assembly 50 includes drill 10 and syringe While drill 10 is illustrated it is understood that any of drills 10, 10' and/or can be included in the assembly. Syringe 60 may be any device capable of delivering an osteoinductive composition.
In one embodiment, syringe 60 includes a barrel, or housing, 61 having a proximal end 62 and a distal end 63. Housing 61 defines a cavity, or chamber, 64 for retaining a composition to be delivered. Plunger 66 having a plunger head 67 is disposed in cavity 64 of syringe 60. Distal end 63 defines a connector portion 68, such as a luer-lock connector provided to relesably engage connector 27 of drill WO 02/34113 PCT/USU1/45479 11 Referring additionally to FIG. 8B, distal end 63 of syringe 60 is matingly engaged to proximal end 21 of drill 10. When so engaged, chamber 64 of syringe 60 is in fluid communication with lumen 25 of drill 10 to form surgical instrument assembly 50. Syringe 60 may be formed of a material that does not react with osteoinductive compositions, such as polymeric materials, including metal, glass, and synthetic polymers, such as polyalkenes, including polyethylene, polypropylene, poly(vinyl chloride), and polystryrene.
Referring to FIG. 8C, an alternative surgical instrument assembly is shown that includes drill 10 and syringe 60'. As above noted while drill 10 is illustrated in assembly 50' any of drills 10, 10' and 10" can be combined with syringe 60'. Syringe 60' is formed similar to syringe 60, and thus like reference numbers denote similar components but are denoted with a prime.
Plunger 66' includes one or more threads 68 extending along a length of plunger shaft 69. Threads 68 can facilitate incremental adjustment of plunger 66 in chamber 64, and, consequently, facilitate withdrawing or expulsion of material into or out of chamber 64.
As seen in FIG. 9, in another embodiment, an elongated delivery member 70 fluidly connectable with an osteoinductive material delivery device includes an elongated member 71 having a proximal end 72, a distal end 73, an outer surface 74 and an inner surface 75. Inner surface 75 defines a lumen 76 extending along the length of elongated member 71, typically from proximal end 72 to distal end 73. In one embodiment, distal end 73 can be closed. Alternatively, distal end 73 can include one or more openings extending therethrough providing communication with lumen 76.
Furthermore, elongated member 71 may have a plurality of apertures, or other openings or perforations, 78 extending through outer surface 74 anywhere along a length of elongated member 71, such as adjacent to distal end 73.
Proximal end 72 may have a connector 77 for matingly engaging a syringe and may be similar to the connectors 27 described above for the drill In another form, the invention provides methods for treating pseudoarthrosis. The methods may be minimally invasive. For example, an WO 02/34113 PCT/USU1/45479 12 incision is typically made that is no greater than about 30 mm in length so as to substantially reduce exposure of internal body components. In such methods, a cannula is inserted into the body through which the necessary tools may be delivered to, and manipulated at, the surgical site. The methods are thus typically performed percutaneously. Although the methods may be used to treat a wide variety of pseudoarthroses, including long bone non-unions, they are advantageously used to treat spinal pseudoarthroses, especially spinal pseudoarthroses at an interbody fusion site, such as at the location of a damaged or diseased spinal disc, or a transverse process fusion site, such as an intertransverse process fusion site.
In one embodiment of the invention, a treatment method includes delivering to a desired location proximate to a spinal pseudoarthrosis an effective amount of an osteoinductive composition. The osteoinductive composition is advantageously injected, or otherwise placed, proximate to or directly into the pseudoarthrotic mass.
As defined herein, a pseudoarthrotic mass is a collection of tissue found at a location of pseudoarthrosis, including bone pieces, or fragments thereof, that have not completely united with each other to provide a desired bone mass or joined as desired to adjacent bone. The bone pieces and/or fragments can be interspersed, or otherwise dispersed, among fibrous tissue.
Additionally or alternatively the bone mass can include undesired discontinuities. Additionally a pseudoarthrotic mass can include a unitary bone mass having undesirable cracks or voids extending thereon. That is, the bone may not be continuous from one end or side of the pseudoarthrotic mass to the other end or side as desired.
Channels, boreholes or other spaces, are created in the bone adjacent to the pseudoarthrotic mass. Drilling into the pseduoarthrosis will create some bleeding bone releasing osteogenic cells that can respond to the presence of bone morphogenic proteins. (BMP). The BMP causes these osteogenic cells or stem cells to become osteoblast, which go on to form bone.
WO 02/34113 PCT/USU1/45479 13 Additionally after the boreholes are formed, an osteoinductive composition can be injected into the channels may be on both sides of the nonunion, as well as across the non-union, or bone discontinuity cracks and/or voids. That is, the osteoinductive composition, after injection, will extend from channels or other spaces created in the bone on one side of the fibrous tissue of the pseudoarthrotic mass, through the fibrous tissue of the mass and into the channels or other spaces created in the bone on an opposing, or other side of the fibrous tissue.
Although not being limited by theory, it is believed that the osteoinductive composition will be released into the fibrous tissue and bone mass resulting in new bone formation. The osteoinductive composition may then cause an initial osteoclastic resorption followed by a spurt of new bone formation in and/or adjacent to the area of injection. The osteoinductive composition can thus lead to ossification of soft tissue, such as scar or other tissue in a failed fusion. It is further believed that, once a solid connection is made across the pseudoarthrotic mass and thus allowing the bone at the site to be substantially continuous, the new bone and host bone will remodel due to the new loading environment and continue to become stronger, thus adapting to the new loads.
In performing the methods, the area of non-union in the pseudoarthrotic mass may be first located by Computer Tomography
(CT).
The non-union is seen as a radiolucent area representing fibrous tissue. In pseudoarthroses at interbody fusion sites, the radiolucent areas are frequently seen at the interface of the intervertebral spacer, or fusion cage, and the adjacent vertebral body.
In another aspect of the invention, kits for treating spinal pseudoarthrosis are provided. Embodiments of the kits may include one or more drills 10, 10', 10", syringes 60 and 60', obturator 30 and/or delivery number 70 as described herein. Preferably the drills 10, 10', 10", syringes 60' and/or obturator 30 are provided to interengage with one another to form one or more surgical assemblies. In addition or in the alternative, the kits can WO 02/34113 PCT/USU1/45479 14 include drills, syringes, obturator, guide wires for treatment that do not interengage with each other. Furthermore, the kits may include an obturator, a syringe, an elongated delivery member and a cannulated drill having a proximal end without connector.
Referring now to FIGS. 10A and 10B, a pseudoarthrotic mass or defect adjacent to bone tissue B is seen at a failed intertransverse process fusion site involving transverse process T 1 and T2 of vertebra V 1 and V 2 respectively.
In one embodiment of treating this spinal pseudoarthrosis, a K-wire 80, or other similar guide wire having a pointed or otherwise sharpened or piercing distal end 81, is inserted percutaneously through skin surface S and through bone adjacent to the area of non-union or pseudoarthrotic mass 85, through the non-union and into bone on the other side of the non-union under fluoroscopic guidance as seen in FIG. 10B. Thus, K-wire 80 extends from bone tissue on one side of the fibrous tissue of pseudoarthrotic mass 85, through a defect or fibrous tissue of the pseudoarthrotic mass and into bone on the other side of the defect or fibrous tissue. Placement of wire 80 can be monitored using CT, fluoroscopy or other techniques during surgery.
Referring now to FIGS. 11-14, an incision 86 is made in the outer tissue layers. Incision 86 allows ready placement and positioning of cannula 90. Incision 86 may be sufficient by small and minimally invasive to decrease disruption of adjacent tissue, minimize patient discomfort, and promote rapid patient recovery.
Distal end 92 of cannula 90 is advanced through incision 86 adjacent to the selected treatment site, along K-wire 80. Cannula may include a distal end that is rounded to facilitate insertion of the cannula and to reduce complications that may arise during its insertion, such as tissue injury. A cannulated drill such as drill 10 having disposed in its lumen obturator 30 is then advanced along K-wire 80 from proximal end 91 of cannula 90 and through lumen 93 of cannula 90 to the selected location for treatment of the spinal pseudoarthrosis and adjacent distal end 92 of cannula 90 as seen in FIG.
12.
WO 02/34113 PCT/USU1/45479 The drill, with obturator 30 disposed in its lumen, is then advanced so as to cut into the bone adjacent the pseudoarthrotic mass 85 as desired. At least one bore is drilled through the non-union, to the other side of the nonunion as seen in FIG. 13. This procedure creates at least one channel 95 or other space for disposing the osteoinductive composition. At this point, Kwire 80 can be removed if desired. Obturator 30 can then be removed from lumen 25 of drill 10 as seen in FIG. 14 wherein K-wire 80 also has been removed. Distal end 62 of syringe 60 may then be matingly engaged, or otherwise fluidly connected, to proximal end 21 of drill 10 as seen in FIG. Syringe 50 is advantageously filled with a desired amount of osteoinductive composition 96. The syringe 60 and drill 10 assembly can be used to deliver an osteogenic material to a pseudoarthrotic site.
Referring now to FIG. 16, drill 10 can be, but is not required to be, retracted, or otherwise backed out of the channel, at the same time that plunger 66 is depressed so as to deliver osteoinductive composition 96 under pressure into the channel, or space, 95 and into at least a portion of the pseudoarthrotic mass 85. It should be understood that drill 10' or 10" can be used in the assemblies and methods described herein. When utilizing such a drill having apertures along a length of the drill, the osteoinductive material may be delivered to the fibrous tissue of the pseudoarthrotic mass 85 and may advantageously displace the fibrous tissue in or around the pseudoarthrotic site or be disposed throughout it. It is also realized that the osteoinductive composition may be injected under pressure with a syringe having a screw drive mechanism or ratcheting mechanism. In one embodiment, drill 10' or a delivery member 70 having apertures along a length of the drill or delivery member may be utilized to deliver osteoinductive material to a pseudoarthrotic site. The drill 10' or delivery number 70 can be positioned so that apertures 28 or 78 provided therein are adjacent to the pseudoarthrotic defect, channel and/or spanning the entire pseudoarthrotic mass, or region, so that the osteoinductive material can be effectively deposited across the mass with minimal or no repositioning of the drill or delivery member. It is further noted WO 02/34113 PCT/USU1/45479 16 when utilizing drill 10', should the apertures become restricted or otherwise clogged from cellular or other debris, the lumen of drill 10' may be perfused with a biocompatible solution, such as a biological saline solution, and the debris removed under pressure through the proximal end of drill 10'. Further, when utilizing an elongated member having apertures along a length of the member, that the guide wire may remain positioned in vivo during delivery of the osteogenic composition, so that the composition will be delivered primarily into the surrounding fibrous tissue.
Referring now to FIG. 17, in a alternative embodiment, any one of drill 10, 10' and 10" can be utilized to form channel 95. Drills 10 or 10' can be provided with or without connector 27, 27' for engagement with a syringe.
After forming one or more bores or channels 95, drill 10, 10' or 10" can be partially or fully withdrawn from the treatment site. A syringe may then be connected on the proximal end of elongated delivery member 70 through which an osteoinductive composition cam be delivered.
In another aspect, while only a single incision, or other entry point, need be made in the skin and only a single injection of osteoinductive composition may be required, a plurality of channels 95 or other openings may be created by drill 10, 10' or 10". A plurality of channels 95 or other spaces can subsequently be filled with the osteoinductive composition as described herein. Alternately, a large incision may be made that fully exposes the pseudoarthritic site.
In performing the procedure to treat spinal pseudoarthrosis at an interbody fusion site, such as a lumbar or cervical fusion site, a similar procedures may be performed, further including holes, or other apertures, 99 into and optionally adjacent to the intervertebral spacer or fusion cage.
In another embodiment of treating pseudoarthrosis, referring to FIGS.
18 and 19, a pseudoarthrotic mass 100 is shown at a location within an intervertebral spacer 98. Drill 10 is operably positioned in and adjacent to a pseudoarthrotic mass in a fusion cage 98 to form channels or bores 99, In one embodiment, cannulated drill 10 is disposed about a K-wire 88 in the lumen of WO 02/34113 PCT/USU1/45479 17 cannula 90, positioned adjacent to the pseudoarthrotic mass 100. Bores or channels 99 are formed by drill 10 perforating pseudoarthrotic mass 100 and superior (upper) and inferior (lower) vertebral areas U and L, respectively, adjacent to the fusion cage 98.
It will be understood that while the present invention has been illustrated as a treatment of a pseudoarthrosis located at an intertransverse process fusion site, this invention can also be used to treat pseudoarthrosis in and about other bone tissue. For example, the load bearing bones or long bones of the limbs, can be advantageously treated according to the present invention. Pseudorthrisis of any of the different bone classes, long bones short bones, flat bones and irregular bones can be treated according to the present invention. Further all animals containing a skeletal structure including humans can be treated according to the present invention.
A osteoinductive composition for use in the invention may include an osteoinductive factor in a pharmaceutically acceptable carrier. A wide variety of osteoinductive factors can be used, including growth factors such as bone morphogenetic proteins (BMPs) and LIM mineralization proteins (LMPs) and Growth Differentiation Factors (GDFs). A wide variety of bone morphogenetic proteins are contemplated, including bone morphogenetic proteins designated as BMP-2 through BMP-18, including heterodimers thereof and combinations thereof. Other suitable growth factors include platelet-derived growth factors, insulin-like growth factors, epidermal growth factors, cartilage-derived morphogenic proteins, growth differentiation factors, such as growth differentiation factor 5, and transforming growth factors, including TGF-a and TGF-P, or other growth factors having osteoinductive properties. Proteins may include recombinant proteins, such as recombinant human proteins. Suitable recombinant human bone morphogenetic proteins (rhBMPs) include rhBMP-2 and rhBMP-7. but may also be derived from any other bone morphogenetic proteins described herein, heterodimers thereof and combinations thereof.
WO 02/34113 PCT/USU1/45479 18 Bone morphogenic proteinds (BMPs) are available from Genetics Institute, Inc., Cambridge, Massachusetts and may also be prepared by one skilled in the art as described in U.S. Patent Nos. 5,187,076 to Wozney et al.; 5,366,875 to Wozney et al.; 4,877,864 to Wang et al.; 5,108,922 to Wang et al.; 5,116,738 to Wang et al.; 5,013,649 to Wang et al.; 5,106,748 to Wozney et al.; and PCT Patent Nos. W093/00432 to Wozney et al.; W094/26893 to Celeste et al.; and W094/26892 to Celeste et al. A wide variety of bone morphogenic proteins are contemplated whether obtained as above or isolated from bone.
Methods for isolating bone morphogenetic protein from bone are described, for example, in U.S. Patent No. 4,294,753 to Urist and Urist et al., 81 PNAS 371, 1984.
The osteoinductive factors may be dispersed, or otherwise carried in, a wide variety of carriers. The carriers may be resorbable. Suitable carriers include aqueous buffers, collagen, gelatin, and synthetic resorbable polymers such as polylactic acid, polyglycolic acid, alternating copolymers of polylactic acid and polyglycolic acid, carboxymethylcellulose, mineral-containing materials, hyaluronic acid and other glycosaminoglycans, and combinations thereof. In certain forms of the invention, the carrier is a resorbable mineralcontaining cement, such as a calcium phosphate cement.
Such calcium phosphate cements may be synthetic calcium phosphate materials that include a poorly or low crystalline calcium phosphate, such as a low or poorly crystalline apatite, including hydroxyapatite, available from Etex Corporation and as described, for example, in U.S. Patent Nos.
5,783,217; 5,676,976; 5,683,461; and 5,650,176, and PCT International Publication Nos. WO 98/16268, WO 96/39202 and WO 98/16209, all to Lee et al.. As defined in the recited patents and herein, the terms "poorly or low crystalline" calcium phosphate material refer to a material that is amorphous, having little or no long range order and/or a material that is nanocrystalline, exhibiting crystalline domains on the order of nanometers or Angstroms. The calcium: phosphate ratio of the carrier is typically in the range of about 0.3 to about 0.7, and in another embodiment is about 0.4 to about 0.6.
WO 02/34113 PCT/USU1/45479 19 The osteoinductive compositions may include the osteoinductive factors, or nucleotide sequences that encode the respective osteoinductive factors so that the osteoinductive factor may be produced in vivo, in a pharmaceutically acceptable carrier. The nucleotide sequences therefore may be operably linked to a promoter sequence and may be inserted in a vector, including a plasmid vector and viral vectors. A nucleic acid sequence is "operably linked" to another nucleic acid sequence when it is placed in a specific functional relationship with the other nucleic acid sequence.
Furthermore, predetermined cell-specific, inducible and constitutive promoters may be selected based on the operative environmental. In one embodiment, cells, including eukaryotic cells such as animal cells, may be transformed with nucleotide sequences encoding the osteoinductive factor and the osteoinductive composition will then include the transformed cells in a pharmaceutically acceptable carrier. In other forms, the osteoinductive composition includes a virus such as, for example, an adenovirus capable of eliciting intracellular production of a LIM mineralization protein.
A cell sustaining component can also be included in a resorbable cement carrier, a cell-sustaining component. The cell-sustaining component is one that provides nutrients to the cells so that they are able to produce the osteoinductive factor. The cell-sustaining component may be selected so that it does not substantially alter or otherwise modify the rate at which the carrier is resorbed. Such cell-sustaining components include collagen, and various cell culture media utilized for ex vivo cell culture, including an infusible media such as normal saline supplemented with about 5% human serum albumen (HSA), Dulbecco's Modified Eagle's medium (DMEM), or RPMI 1640 supplemented with fetal bovine serum or serum-free medium formulations such as the X VIVO products, or the components include a combination thereof. In yet other embodiments, the nucleotide sequences may be combined directly with the carrier for delivery.
The desired amount of osteoinductive factor included in the carrier, and the desired amount applied to the treatment site, is typically an amount WO 02/34113 PCT/USU1/45479 effective in forming new bone to treat the spinal pseudoarthrosis. This amount will depend on a variety of factors, including the osteoinductive potential of the factor, the nature of the carrier, and the extent of pseudoarthrosis. In one embodiment, for example, the amount is in the range of about 0.5 mg BMP/ml carrier to about 4 mg BMP/ml carrier (corresponding to a weight ratio of BMP:dry carrier in the range of about 1:2000 to about 1:250). Further compositions embodiments may include about 1 mg BMP/ml carrier to about 3 mg BMP/ml carrier (corresponding to a weight ratio of BMP:dry carrier of about 1:1000 to about 1:333), while other embodiments include at least about 2 mg BMP/ml carrier (corresponding to a weight ratio of BMP:dry carrier of at least about 1:500). The amount of the osteoinductive composition applied to the fusion site will also vary due to factors as described above. For example, the amount in one embodiment is sufficient to deliver about 2 mg BMP to about 40 mg BMP, about 4 mg BMP to about 20 mg BMP in another embodiment and at least about 12 mg BMP in yet another embodiment.
The procedure may be performed at interbody fusion sites involving a wide variety of implants, such as those having a chamber therein that is open towards an anterior or posterior site. Such implants include those found in U.S. Patent Nos. 4,961,740; 5,015,247 and 5,423,817, wherein an end cap is not used to close the chamber of these implants from access by an anterior or posterior approach. The procedure herein may be performed at sites including implants with end caps after penetration or removal of the end cap.
While embodiments of the invention have been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that all changes and modifications that come within the spirit of the invention are desired to be protected. In addition, all references cited herein are hereby incorporated by reference in their entirety.
Claims (24)
- 2. The method of claim 1, wherein said osteoinductive composition comprises a N bone morphogenetic protein.
- 3. The method of claim 2, wherein said bone morphogenetic protein is selected S 10 from the group consisting of BMP-2, BMP-3, BMP-4, BMP-5, BMP-6, BMP-7, BMP-8, BMP-9, BMP-10, BMP-11, BMP-12, BMP-13, BMP-14, BMP-15, BMP-16, BMP-17, BMP-18, a mixture thereof and a heterodimer thereof.
- 4. The method of claim 3, wherein said bone morphogenetic protein is a recombinant protein.
- 5. The method of claim 4, wherein said recombinant protein is selected from the group consisting of rhBMP-2, rhBMP-7, a mixture thereof and a heterodimer thereof.
- 6. The method of any one of claims 1 to 5, wherein said osteoinductive composition comprises an adenovirus capable of eliciting intracellular production of a LIM mineralization protein.
- 7. The method of claim 6, wherein said LIM mineralization protein is LMP-1.
- 8. The method of any one of claims 1 to 7, wherein said carrier is a calcium phosphate cement.
- 9. The method of any one of claims 1 to 7, wherein said carrier is selected from the group consisting of a resorbable cement, carboxymethylcellulose, polylactic acid, polyglycolic acid, alternating copolymers of polylactic acid and polyglycolic acid, hyaluronic acid, glycosaminoglycan and mixtures thereof. The method of any one of claims 1 to 9, wherein said delivering comprises: advancing an elongated member having a proximal end, a distal end and a lumen extending longitudinally therethrough to said location of pseudoarthrosis; and advancing said osteoinductive composition through said lumen of said elongated member to said location of pseudoarthrosis.
- 11. The method of claim 10, wherein said elongated member is connected to a osteoinductive composition delivery device. [R:\LIBFFII3073.doc:hjg IS -22-
- 12. The method of claim 10 or 11, wherein said elongated member comprises at least one bone removing surface.
- 13. The method of any one of claims 1 to 12, further comprising forming at least one channel in a tissue mass at the location of the spinal pseudoarthrosis.
- 14. The method of any one of claims 1 to 13, wherein said location of pseudoarthrosis has a pseudoarthrotic mass, said method further comprising creating a channel in the bone adjacent the pseudoarthrotic mass, and delivering said osteoinductive composition such that it extends from the channel within the bone on one side of the fibrous tissue of the pseudoarthrotic mass, through a fibrous tissue and into the channel to created in the bone on the opposing side of the fibrous tissue. The method of any one of claims 1 to 14, wherein said location of spinal pseudoarthrosis has a pseudoarthrotic mass and said pseudoarthrotic mass is located at an interbody fusion site.
- 16. The method of any one of claims 1 to 14, wherein said location of pseudoarthrosis has a pseudoarthrotic mass and said pseudoarthrotic mass is located at a transverse process fusion site of one or more vertebral bodies.
- 17. The method of any one of claims 1 to 14, wherein said pseudoarthrotic mass is located proximal to a bone fracture.
- 18. The method of claim 17, wherein the bone fracture has at least partially healed.
- 19. The method of any one of claims 1 to 14, wherein said pseudoarthrotic mass is located proximal to a long bone. A method of treating spinal pseudoarthrosis in a patient, comprising: advancing a first elongated member having a proximal end, a distal end and a lumen extending longitudinally therethrough to a location of spinal pseudoarthrosis in the patient; and advancing an injectible osteoinductive composition through said lumen of said first elongated member to said location, said osteoinductive composition comprising an osteoinductive factor in a pharmaceutically acceptable carrier.
- 21. The method of claim 20, wherein said advancing a first elongated member comprises advancing said first elongated member into fibrous tissue of a pseudoarthrotic mass of said location.
- 22. The method of claim 20 or 21, wherein said first elongated member has a distal end with at least one bone cutting edge. [R:\LIBFF113073.doc:hjg -23-
- 23. The method of claim 20, 21 or 22, wherein said first elongated member has a z plurality of apertures extending along at least a portion of a length of said first elongated member.
- 24. The method of any one of claims 20 to 23, wherein said location of spinal pseudoarthrosis has a pseudorathrotic mass, said method further comprising creating a channel in a bone adjacent the pseudorathrotic mass, and delivering said osteoinductive Scomposition such that it extends from the channel within the bone on one side of a fibrous tissue of the pseudoarthrotic mass, through the fibrous tissue and into the channel created Sin the bone on the other side of the fibrous tissue. 10 25. The method of any one of claims 20 to 24, wherein said method further comprises: advancing a second elongated member to a location of spinal pseudoarthrosis prior to advancing said first elongated member, said second member having a proximal end, a distal end and a lumen extending longitudinally therethrough, said distal end having at least one bone cutting edge; and retracting said second elongated member.
- 26. The method of claim 25, wherein said second elongated member has a plurality of apertures extending along at a length of said second elongated member.
- 27. A method of treating spinal pseudoarthrosis in a patient, comprising: advancing an elongated member into a pseudoarthrotic mass in said patient, said elongated member having a proximal end, a distal end and a lumen extending longitudinally therethrough, said distal end of said member having at least one bone cutting edge; and advancing an osteoinductive composition through said lumen of said elongated member to said pseudoarthritic mass, said osteoinductive composition extending across said pseudoarthrotic mass, said osteoinductive composition comprising an osteoinductive factor in a pharmaceutically acceptable carrier and effective in promoting bone growth for treating said spinal pseudoarthrosis.
- 28. The method of claim 27, wherein said osteoinductive composition includes cells transformed with a nucleotide sequence encoding an osteoinductive factor, said nucleotide sequence operably connected to a promoter sequence, whereby said osteoinductive factor is produced in vivo. [R:\LIBFF] 13073.doc:hig 'p -24-
- 29. A method of treating pseudoarthrosis or spinal pseudoarthrosis substantially z as hereinbefore described with reference to any one of the accompanying drawings. Dated 15 November, 2005 s SDGI Holdings, Inc. O SPatent Attorneys for the Applicant/Nominated Person ?C SPRUSON FERGUSON [R:\LIBFF 113073.doc:hig
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US24295000P | 2000-10-24 | 2000-10-24 | |
| US60/242,950 | 2000-10-24 | ||
| PCT/US2001/045479 WO2002034113A2 (en) | 2000-10-24 | 2001-10-24 | Methods and instruments for treating pseudoarthrosis |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| AU2002220069A1 AU2002220069A1 (en) | 2002-07-11 |
| AU2002220069B2 true AU2002220069B2 (en) | 2005-12-15 |
Family
ID=22916758
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2002220069A Ceased AU2002220069B2 (en) | 2000-10-24 | 2001-10-24 | Methods and instruments for treating pseudoarthrosis |
| AU2006902A Pending AU2006902A (en) | 2000-10-24 | 2001-10-24 | Methods and instruments for treating pseudoarthrosis |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2006902A Pending AU2006902A (en) | 2000-10-24 | 2001-10-24 | Methods and instruments for treating pseudoarthrosis |
Country Status (5)
| Country | Link |
|---|---|
| EP (1) | EP1335771A4 (en) |
| JP (1) | JP2004512078A (en) |
| AU (2) | AU2002220069B2 (en) |
| CA (1) | CA2426402A1 (en) |
| WO (1) | WO2002034113A2 (en) |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020114795A1 (en) | 2000-12-22 | 2002-08-22 | Thorne Kevin J. | Composition and process for bone growth and repair |
| US8002775B2 (en) | 2001-10-24 | 2011-08-23 | Warsaw Orthopedic, Inc. | Methods and instruments for treating pseudoarthrosis |
| JP2005524710A (en) * | 2002-05-06 | 2005-08-18 | ジェネンテック・インコーポレーテッド | Use of VEGF in the treatment of bone defects |
| FR2860422A1 (en) * | 2003-10-02 | 2005-04-08 | Emmanuel Berque | Biocompatible adhesive substance applying device for prosthetic implant, has inner valve for closing catheters distal end and for opening distal end when manual thrust is applied on piston of syringe with respect of body |
| JP2008538111A (en) * | 2005-03-22 | 2008-10-09 | ウォーソー・オーソペディック・インコーポレーテッド | Mechanism of bone induction by LIM mineralized protein-1 (LMP-1) |
| US8083722B2 (en) | 2005-04-29 | 2011-12-27 | Warsaw Orthopedic, Inc | Instrumentation for injection of therapeutic fluid into joints |
| US7850656B2 (en) | 2005-04-29 | 2010-12-14 | Warsaw Orthopedic, Inc. | Devices and methods for delivering medical agents |
| WO2010040076A2 (en) * | 2008-10-02 | 2010-04-08 | Trans1, Inc. | Method and apparatus for bone graft insertion |
| JP5272279B2 (en) * | 2010-03-09 | 2013-08-28 | 国立大学法人神戸大学 | Interspinous process implant |
| IT201900003947A1 (en) * | 2019-03-19 | 2020-09-19 | Mt Ortho S R L | Granule in biocompatible metal material for vertebroplasty. |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4013080A (en) * | 1974-10-03 | 1977-03-22 | Froning Edward C | Cannula connector and direction indicator means for injection system |
| WO2000049978A1 (en) * | 1999-02-22 | 2000-08-31 | Guagliano Peter A | Method of treating an intervertebral disk |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS58155867A (en) * | 1982-03-12 | 1983-09-16 | テルモ株式会社 | Drill needle and medical container with drill needle |
| US6241734B1 (en) * | 1998-08-14 | 2001-06-05 | Kyphon, Inc. | Systems and methods for placing materials into bone |
| JP3424049B2 (en) * | 1994-03-09 | 2003-07-07 | 山之内製薬株式会社 | Bone formation implant |
| GB9407135D0 (en) * | 1994-04-11 | 1994-06-01 | Aberdeen University And Plasma | Treatment of osteoporosis |
| JP3125579B2 (en) * | 1994-05-24 | 2001-01-22 | 三菱マテリアル株式会社 | Biological cement filling equipment |
| US5584839A (en) * | 1994-12-12 | 1996-12-17 | Gieringer; Robert E. | Intraarticular drill guide and arthroscopic methods |
| US5676976A (en) * | 1995-05-19 | 1997-10-14 | Etex Corporation | Synthesis of reactive amorphous calcium phosphates |
| US6039762A (en) * | 1995-06-07 | 2000-03-21 | Sdgi Holdings, Inc. | Reinforced bone graft substitutes |
| US5779708A (en) * | 1996-08-15 | 1998-07-14 | Cyberdent, Inc. | Intraosseous drug delivery device and method |
| WO1998016268A2 (en) * | 1996-10-16 | 1998-04-23 | Etex Corporation | Method of preparing a poorly crystalline calcium phosphate and methods of its use |
| IL128261A0 (en) * | 1999-01-27 | 1999-11-30 | Disc O Tech Medical Tech Ltd | Expandable element |
| CA2297489A1 (en) * | 1997-07-30 | 1999-02-11 | Emory University | Novel bone mineralization proteins, dna, vectors, expression systems |
| JPH11313674A (en) * | 1998-04-30 | 1999-11-16 | Hoechst Marion Roussel Kk | Human BMP-4 promoter and method for searching for bone-related substances using the same |
-
2001
- 2001-10-24 CA CA002426402A patent/CA2426402A1/en not_active Abandoned
- 2001-10-24 AU AU2002220069A patent/AU2002220069B2/en not_active Ceased
- 2001-10-24 AU AU2006902A patent/AU2006902A/en active Pending
- 2001-10-24 WO PCT/US2001/045479 patent/WO2002034113A2/en not_active Ceased
- 2001-10-24 JP JP2002537173A patent/JP2004512078A/en active Pending
- 2001-10-24 EP EP01988541A patent/EP1335771A4/en not_active Withdrawn
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4013080A (en) * | 1974-10-03 | 1977-03-22 | Froning Edward C | Cannula connector and direction indicator means for injection system |
| WO2000049978A1 (en) * | 1999-02-22 | 2000-08-31 | Guagliano Peter A | Method of treating an intervertebral disk |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2426402A1 (en) | 2002-05-02 |
| EP1335771A2 (en) | 2003-08-20 |
| JP2004512078A (en) | 2004-04-22 |
| WO2002034113A3 (en) | 2002-10-24 |
| EP1335771A4 (en) | 2006-06-07 |
| AU2006902A (en) | 2002-05-06 |
| WO2002034113A2 (en) | 2002-05-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8002775B2 (en) | Methods and instruments for treating pseudoarthrosis | |
| US11969354B2 (en) | Medical implant for fixation and integration with hard tissue | |
| CA2269342C (en) | Spinal spacer | |
| JP4159255B2 (en) | Spinal fixation implant | |
| US5989289A (en) | Bone grafts | |
| US7329259B2 (en) | Articulating spinal implant | |
| US7608077B2 (en) | Method and apparatus for spinal distraction and fusion | |
| US7727263B2 (en) | Articulating spinal implant | |
| US20090171394A1 (en) | Devices And Methods For The Treatment Of Facet Joint Disease | |
| US20050165483A1 (en) | Bone grafts | |
| JP2002534211A5 (en) | ||
| AU2002220069B2 (en) | Methods and instruments for treating pseudoarthrosis | |
| AU2002220069A1 (en) | Methods and instruments for treating pseudoarthrosis | |
| EP3203941B1 (en) | Bone scaffold improvements | |
| US20120310348A1 (en) | Bone grafts | |
| AU773116B2 (en) | Spinal spacer | |
| CA2547680A1 (en) | Spinal spacer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FGA | Letters patent sealed or granted (standard patent) | ||
| PC | Assignment registered |
Owner name: WARSAW ORTHOPEDIC, INC. Free format text: FORMER OWNER WAS: SDGI HOLDINGS, INC. |
|
| MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |