AU2002252625A1 - Spinal alignment apparatus and methods - Google Patents
Spinal alignment apparatus and methodsInfo
- Publication number
- AU2002252625A1 AU2002252625A1 AU2002252625A AU2002252625A AU2002252625A1 AU 2002252625 A1 AU2002252625 A1 AU 2002252625A1 AU 2002252625 A AU2002252625 A AU 2002252625A AU 2002252625 A AU2002252625 A AU 2002252625A AU 2002252625 A1 AU2002252625 A1 AU 2002252625A1
- Authority
- AU
- Australia
- Prior art keywords
- alignment system
- spinal alignment
- connector
- spinal
- rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title description 17
- 230000007246 mechanism Effects 0.000 claims description 14
- 230000006835 compression Effects 0.000 claims description 9
- 238000007906 compression Methods 0.000 claims description 9
- 230000007480 spreading Effects 0.000 claims description 2
- 238000003892 spreading Methods 0.000 claims description 2
- 238000012937 correction Methods 0.000 description 14
- 239000007787 solid Substances 0.000 description 10
- 206010058907 Spinal deformity Diseases 0.000 description 6
- 238000009434 installation Methods 0.000 description 5
- 210000000115 thoracic cavity Anatomy 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- 208000007623 Lordosis Diseases 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 210000004705 lumbosacral region Anatomy 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 206010023509 Kyphosis Diseases 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 206010039722 scoliosis Diseases 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 208000031636 Body Temperature Changes Diseases 0.000 description 1
- 208000010392 Bone Fractures Diseases 0.000 description 1
- 206010017076 Fracture Diseases 0.000 description 1
- 208000024248 Vascular System injury Diseases 0.000 description 1
- 208000012339 Vascular injury Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 206010003549 asthenia Diseases 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003280 down draw process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 206010041569 spinal fracture Diseases 0.000 description 1
- 208000016258 weakness Diseases 0.000 description 1
- 210000002517 zygapophyseal joint Anatomy 0.000 description 1
Description
SPINAL ALIGNMENT APPARATUS AND METHODS
Field of the Invention This invention relates generally to instrumentation, tools and techniques associated with spinal fixation and, in particular, to apparatus and methods facilitating spinal correction in multiple dimensions.
Background of the Invention
The human spine exhibits some degree of curvature at different levels to facilitate normal physiologic function. Correction may be required when this curvature deviates substantially. A common problem is lateral deviation of the spine, commonly termed scoliosis. Spinal deformity occurs when a patient has abnormal frontal or sagittal plane alignment. At the same time, the cervical and lumbar spine exhibit lordosis, while the thoracic spine has kyphosis. Thus, when performing spinal fusion, surgeons may be required to preserve or restore both front plane and sagittal alignment while taking lordosis and kyphosis into account. As discussed in U.S. Patent No. 5,540,689, the first successful internal fixation method for surgically treating scoliosis used the Harrington instrumentation system. According to this technique, a rigid rod with hooks at each end is implanted adjacent the concave side of the scoliotic spine. The spine is manually straightened to a desired extent and a distraction rod is used to maintain the correction by exerting vertical forces at each end. The rod commonly has a ratcheted end over which hooks are slidably mounted and locked in place. To accommodate lordosis, a compression rod is sometimes placed on
the convex side of the scoliotic spine.
The Harrington instrumentation system has been used successfully for some time, but because the distraction rod is fixed to the spine in only two places, failure at either end causes the entire system to fail. Another deficiency with existing mechanisms and approaches is that the single rod used to correct the defects must be contoured to fit various attachment sites. In patients having compound spinal deformity, this may be extremely difficult. A further problem is that the contoured rod frequently limits further correction of certain types of deformities. That is, once the rod is in position, further correction of the deformity is difficult, since existing systems tend to limit incremental alignment procedures.
An alternative treatment has since evolved which takes advantage of segmented fixation. According to this method, a rod is fixed to the spine at multiple points by means of a sublaminar wires which run underneath the lamina of the vertebra and around the rod. The use of multiple fixation sites enhances stability and reduces the need for additional post-operative bracing.
Sublaminar fixation utilizing current devices has two primary weaknesses, however. First, the wires are simply wrapped around the rod, resulting in a rod to cable junction which is not rigid. Second, the thin wires can cut in some instances right through the lamina. U.S. Patent No. 6,019,759 uses multiple longitudinal members with flat plates that attach using hooks or screws. However, the plates are stacked on top of one another at each attachment site, resulting in an overall structure that tends to be quite thick. Systems have a high sagittal profile are often thick enough to be felt through the skin. Additionally, the teachings of the '759 patent do not allow for easy correction or preservation of sagittal alignment.
The need remains, therefore, for a system and method that allows incremental correction of spinal defects, ideally in all three dimensions.
Summary of the Invention
This invention resides in spinal alignment apparatus, including implantable components, instrumentation, and methods of use. In broad and general terms, the preferred embodiment includes bodies which connect to the vertebra to be aligned, and elongated elements that connect to the bodies. The elements are preferably adjustable relative to the bodies in multiple dimensions, with locking mechanisms that allow the alignment to proceed in an orderly fashion until a desired degree of correction is achieved.
Each rigid, elongated element has at least one end terminating in the first portion of the lockable coupling mechanism. The vertebral connector bodies each include a feature for attaching the body to a respective vertebrae, and the second portion of the lockable coupling mechanism. This arrangement permits the elongated elements to be adjusted in multiple dimensions relative to a given connector body prior to being lockingly coupled thereto.
The feature for attaching the body to its respective vertebrae may include a pedicle screw or, alternatively, a shape such as a hook adapted for sublaminar engagement. The elongated elements may also preferably include a length adjustment mechanism, such as a telescoping or threaded section, to provide a desired length in conjunction with a desired degree of alignment.
Various coupling mechanisms are disclosed to provide multiple degrees of freedom prior to fixation. In the preferred embodiment, the mechanism includes a fixed or adjustable-length rod having ball-shaped ends coupled to a vertebral
connector providing multiple degrees of freedom before being locked into position once a desired orientation is achieved.
Brief Description of the Drawings FIGURE 1A is a frontal view of elongated rods and hooks currently used to correct spinal defects;
FIGURE IB shows the use of two rods in place, attached to multiple vertebrae;
FIGURE 1C illustrates the way in which a typical prior-art hook is positioned under the spinal lamina for rod insertion; FIGURE 2A is a frontal view of basic instrumentation according to the invention utilizing elongated members in the form of links of different length as opposed to longer rods;
FIGURE 2B shows the instrumentation of Figure 2A in place relative to multiple vertebrae; FIGURE 3 A illustrates components associated with a preferred embodiment of the invention, including a one- and multiple-opening pedicle screws, compound rods, tightening bands, and fasteners;
FIGURE 3B is a detail drawing of a single-opening pedicle screw according to the invention; FIGURE 3C is a top-down view of the single-opening pedicle screw of Figure
3B;
FIGURE 3D is a detail drawing of a multi-opening pedicle screw according to the invention;
FIGURE 3E is a top-down view of the multi-opening pedicle screw of Figure 3D;
FIGURE 3F is a drawing that shows a preferred set-screw fastener according to the invention for use with the single- and multi-opening fasteners of Figures 3A through 3E;
FIGURE 3G is a drawing which shows the way in which caps may be added to elongated members according to the invention to produce spherical or semi- spherical endings;
FIGURE 3H is a drawing which shows the way in which multiple elongated members may be interconnected to produce a single spherical or semi-spherical joint region;
FIGURE 31 illustrates components associated with an alternative embodiment of the invention, including a pedicle screw, swivel connector and locking links;
FIGURE 3 J illustrates an embodiment of the invention similar to that depicted in Figure 31, but wherein the pedicle screw includes a threaded end as opposed to a ball-end-socket type of connection;
FIGURE 3K is a side view of a preferred transverse connector according to the invention;
FIGURE 3L is a top view of the transverse connector of Figure 3K; FIGURE 3M is a top view of the transverse connector of Figure 3K, illustrating multiple degrees of freedom made possible by the arrangement;
FIGURE 3N depicts multiple views of the preferred transverse connector of Figure 3K, showing various degrees of angulation;
FIGURE 3o illustrates the use of a ball joint which permits the preferred transverse connector to accommodate non-parallel rods;
FIGURE 3P is an end view of the preferred transverse connector used to illustrate the desirability of reduced dimensions;
FIGURE 4A illustrates a sublaminar hook according to the invention having a ball-shaped connector; FIGURE 4B illustrates a sublaminar hook according to the invention having a threaded connector;
FIGURE 4C illustrates a sublaminar hook embodiment of the invention featuring two opposing spherical joints;
FIGURE 4D illustrates a sublaminar hook embodiment of the invention featuring a single spherical joint;
FIGURE 5A illustrates one use of cross-links according to the invention;
FIGURE 5B illustrates an alternative cross-link configuration according to the invention;
FIGURE 6A shows the use of clamps as part of a first step to realign vertebrae for use with at least one embodiment of the invention;
FIGURE 6B shows the vertebrae in alignment using the clamps of Figure 6A;
FIGURE 6C shows the installation of linking rods to align the vertebrae, enabling the clamps to be removed;
FIGURE 7A shows a first step associated with restoring frontal alignment according to the invention;
FIGURE 7B illustrates an initial application of rods to restore frontal alignment;
FIGURE 7C illustrates an intermediate rod installation;
FIGURE 7D illustrates a completed rod-and-connector structure to restore frontal alignment;
FIGURE 8A illustrates a first step associated with restoring sagittal alignment;
FIGURE 8B shows two vertebrae with appropriate sagittal alignment in preparation for rod insertion;
FIGURE 8C shows the vertebrae of Figures 8A and 8B, with a linking rod in place and a tool and the tool removed;
FIGURE 9 illustrates the use of a tool used to remove a connector from a ball- tip type of pedicle screw according to the invention;
FIGURE 10 is a drawing of an alternative embodiment of the invention, wherein connectors include multiple apertures for linking bars; FIGURE 11A shows the configuration of Figure 10 with lines indicating a desired placement of cross-members;
FIGURE 11B shows the linking members of Figures 10 and 11A with optional sublaminar cabling;
FIGURE 12A is a drawing of an alternative connector having multiple apertures for linking bars or other elements;
FIGURE 12B shows the alternative connector of Figure 12A with lines indicating one possibility for cross-linking;
FIGURE 13 is a drawing which shows the use of diagonal connectors according to the invention for use with existing rod- or plate-alignment systems; FIGURE 14 shows diagonal connectors for use with existing rod or plate systems, but with attachment made relative to the pedicle screws as opposed to the linking members;
FIGURE 15A illustrates an alternative embodiment wherein struts are stacked over one another onto pedicle screws;
FIGURE 15B illustrates the use of cross-link member in conjunction with the embodiment of Figure 15 A;
FIGURE 16 is a side-view drawing of yet a further alternative connector according to the invention wherein more space is provided to tighten and loosen associated pedicle screws;
FIGURE 17 is a drawing which shows a telescoping rod that may be adapted for use with any of the embodiments described herein;
FIGURE 18A is a drawing of a sublaminar hook having swivel connectors to which the ends of the telescoping rod of Figure 17 may attach; FIGURE 18B is an top-down view of the hook of Figure 18 A;
FIGURE 18C is a cross-sectional view of the hook of Figure 18 A;
FIGURE 19 illustrates a pedicle-screw version of the hook of Figure 18 A, also including locking connectors that swivel;
FIGURE 20 is a side-view of the spine utilizing hook and pedicle-screw connectors according to one embodiment of the invention;
FIGURE 21 is a top-view drawing of the spine, showing the use of cross connectors employed in an angular fashion to maximize rigidity;
FIGURE 22A is a drawing which shows the way in which a telescoping connector according to the invention is installed; FIGURE 22B illustrates an intermediate adjustment procedure associated with the use of a telescoping rod according to the invention;
FIGURE 22C shows the telescoping rod locked into place once a desired level of alignment is achieved;
FIGURE 23 is a drawing of a threaded cross-connector according to the invention;
FIGURE 24 is a drawing of a telescoping rod according to the invention having an arch feature that allows placement over arched lamina;
FIGURE 25 is a cross-sectional drawing of a transverse connector according to the invention associated with a rod junction; FIGURE 26A illustrates the use of a further alternative embodiment of the invention featuring a telescoping rod that engages with hooks having one or more posts;
FIGURE 26B shows the rod of Figure 26A being rotated to achieve a desired level of alignment; FIGURE 26C is a close-up view of the rotation procedure;
FIGURE 27 is a drawing of an alternative connector according to invention providing the ability to vary angulation in two planes;
FIGURE 28 is an alternative connector according to the invention which also affords multiples degrees of freedom; FIGURE 29 A is a drawing of an alternative connector according to the invention which uses a ball and socket held in position with a threaded fastener;
FIGURE 29B shows the alternative connector of Figure 29A locked into a desired orientation;
FIGURE 30A is a drawing which shows an embodiment of the invention wherein a connector body and elongated element are integrally formed to achieve a low-profile interconnection scheme;
FIGURE 30B shows the configuration of Figure 30A in an assembled condition;
FIGURE 30C shows the way in which connector bodies having multiple male and female connectors may be joined together in succession;
FIGURE 31A is a drawing which shows a swiveling, socket-type connector according to the invention on a body attached to a pedicle screw;
FIGURE 3 IB shows the arrangement of Figure 31 A in an assembled condition; FIGURE 31C is a series of top-down drawings illustrating the swiveling feature of the embodiments of Figures 31 A and 3 IB;
FIGURE 32 is a drawing which shows a sublaminar hook having outward projections to receive swivel connectors;
FIGURE 33A is a drawing of a top-down view of a screw connector having two posts;
FIGURE 33B is a top view of a screw connector according to the invention having a single post;
FIGURE 33C is a top view of a single hook connector;
FIGURE 33D is an oblique drawing which shows the use of frictional surfaces to lock in the swivel action upon achieving a desired orientation;
FIGURE 33E shows how one or more manually adjustable fasteners may be added to help control rotation of a connector according to the invention;
FIGURE 34A shows how a combined longitudinal member and connector may have different lengths and angles to address different alignment situations; FIGURE 34B illustrates an assembled version of an angled unit;
FIGURE 35 is a series of drawings which show a variety of longitudinal members in straight and curved configurations;
FIGURE 36A shows how a telescoping member may be assembled through a pair of nuts, then joined;
FIGURE 36B shows a joined assembled version of the assembly of Figure 36A;
FIGURE 37 illustrates the combined use of ball-and-socket connectors and rigid link plates; FIGURE 38 illustrates the overlapping of rigid link plates at different vertebral levels;
FIGURE 39 is a side view of a connector according to the invention including a cross link;
FIGURES 40A-40F provide different views of a central lumbar connector according to the invention;
FIGURES 41A-41G depict different views of a lumbar connector adapted to the cephalad end;
FIGURES 42A-42E show different views of a thoracic connectors according to the invention; FIGURES 43 A and 43B show an exploded and assembled views of sublaminar hooks with thoracic connectors attached thereto;
FIGURES 44A-44C are top views showing swiveling before and after locking into a straightened configuration;
FIGURE 45 is a drawing of a pedicle screw used to discuss different sizes and diameters;
FIGURE 46 is a perspective view of the pedicle screw of Figure 45 including a ball connector and link bar;
FIGURE 47 is a drawing of the configuration of Figure 46 in an assembled state;
FIGURE 48 is an assembled connector having two opposing ball-receiving sockets;
FIGURE 49 is a drawing of an exploded and assembled view of a pedicle screw having independent double connectors; FIGURE 50 shows how a non-round (in this case, oval) interconnection may be used to prevent rotation of the pedicle screw relative to a connector body;
FIGURE 51 is a drawing used to introduce the use of a hinged connector according to the invention;
FIGURE 52A shows the hinge connector in an open condition; FIGURE 52B shows a hinge connector locked onto a rod;
FIGURES 53A-53M illustrate the alternative use of straps according to the invention for rod movement and stabilization;
FIGURE 54 is a side view of a turnbuckle rod according to the invention;
FIGURE 55 is a drawing which shows the combined use of ball-and-socket connectors in criss-cross link bars;
FIGURE 56 shows how a half -washer may be used in conjunction with a nut opening that is large enough to slide over the sphere at the end of a rod;
FIGURE 57 shows an alternative use of a slotted washer permitting a nut to slide over the spherical end of a solid rod; FIGURE 58 A is a drawing which shows a modified connector adapted may be used to reduce impingement;
FIGURE 58B is a drawing of an anti -impingement connector utilizing a ball- and-socket arrangement;
FIGURES 59A and 59B are different views of a transverse connector according to the invention;
FIGURE 60 shows the combined use of transverse connectors and hinged hooks which lock onto a solid rod;
FIGURE 61 is a close-up, end view of a hinged connector associated with an octagonal rod; FIGURE 62A illustrates the use of a continuous shaped rod, in this case having a grooved cross-section;
FIGURE 62B illustrates how the modification along the rod may be interrupted according to the invention;
FIGURE 63 is a drawing which shows a bevel connector; FIGURE 64 illustrates the use of multiple rods on either side of the spine;
FIGURE 65A is a drawing which shows a stabilization clamp for use with various embodiments disclosed herein;
FIGURE 65B is an end of the configuration of Figure 65A;
FIGURE 66A is a different alternative embodiment of a stabilizing assembly; FIGURE 66B is a cross-section of the assembly of Figure 66A; and
FIGURE 67A-67C illustrate the use of lockable swivel-type connectors which may be fastened to one or, preferably a pair, of alignment rods to provide a desired degree of alignment and correction.
Detailed Description of the Invention Figures 1A through 1C present simplified representations regarding the way in which prior-art hooks and rods are used to treat spinal deformities. Figure 1A shows a plurality of vertebrae 102 in need of alignment. In accordance with existing practice, hooks 104 are fastened to the vertebrae at points deemed to be useful by the attending surgeon. Tools are used in an attempt to align the vertebrae, at which time
rods 106 are contoured at the time of the procedure to engage with the hooks 104 to maintain a desired degree of straightening, as shown in Figure IB. Figure 1C illustrates the way in which a typical prior-art hook is positioned under the spinal lamina for rod insertion. Figure 2A illustrates basic instrumentation according to one embodiment of the invention. As opposed to the hooks 104 of prior-art devices, rotating swiveling connectors 204 are instead used. In addition, as opposed to the rods 106 which currently must be contoured, links 206 of varying fixed or adjustable length are coupled to the connectors, and the entire structure locked into a preferred orientation, as shown in Figure 2B. Although rotating/swiveling connectors having two rod- receiving positions are shown, the preferred embodiment of Figure 3 shows how compound elements may be used for a single compression fitting and very low profile.
Figure 3A illustrates a preferred system according to the invention, depicted generally at 10. Broadly, the system includes single-opening bodies 20, multiple- opening bodies 40, and rods 80. To afford additional degrees of freedom in multiple dimensions, the invention contemplates the use of rods having ball-shaped ends as well as the flattened plates of Figures 31 and 3J. Although the ball-shaped ends are shown as joinable to permit a single compression fastener as described below, it will be appreciated that solid members with integral spherical/shaped ends may be used, as well at the telescoping and other configurations disclosed with reference to the various alternative embodiments.
Figure 3B is a detail drawing of a single-opening connector according to the invention, and Figure3C is a top-down view of the single-opening device of Figure 3B. The structure 20 includes a rod-receiving body 22 coupled to a pedicle screw 24.
The body includes one opening 23 configured for a constrained connection and a second opening 25 adapted for multiple degrees of freedom before compression fastener 28 is tightened into threaded area 30. To provide a solid mass, tension band 26 is positioned onto recesses 27 before tightening fastener 28. Figure 3C shows the recesses 27 from above, as well as the bottom of hemispherical well 34 within the body 22.
Figure 3D is a detail drawing of a multiple-opening connector according to the invention, and Figure3E is a top-down view of the multi-opening device of Figure 3D, in this case a two-port device. The structure 40 includes a rod-receiving body 42 coupled to a pedicle screw 44. The body includes one opening 43 configured for a first rod moveable in multiple dimensions, and a second opening 45 for a second rod, also adapted for multiple degrees of freedom before compression fastener 28 is tightened into threaded area 50. To provide a solid mass, a tension band 26 is positioned onto recesses 47 before tightening fastener 28. Figure 33 shows the recesses 47 from above, as well as the bottom of the hemispherical well within the body 42. Note that in the preferred embodiment the same tightening band 26 and set screw 28 may be used for both the single- and multi-opening configurations.
Figure 3F is a cross-sectional drawing of the preferred compression fastener, in this case a set screw 28 having an allen-wrench-receiving top portion 62 and a hemispherical bottom portion 64.
Figure 3G is a drawing which shows the way in which caps may be added to elongated members according to the invention to produce spherical or semi-spherical endings. Figure 3H is a drawing which shows the way in which multiple elongated members may be interconnected to produce a single spherical or semi-spherical joint region. In the preferred embodiment, link members 80 have male/female half spheres
allowing either caps or additional rods to be attached. This now only reduces the numbers of devices on the surgeon's tray, it also allows two rods to form a single ball unit for a smaller profile.
In Figure 3G, end 82 includes a male post 83, which receives end cap 84 having female aperture 85. The other end of the rod functions in like manner, with the male and female roles reversed. Although the posts and apertures are not technically necessary, they do allow the surgeon to pre-assemble components which hold together prior to installation, thereby maximizing the use of both hands. As shown in Figure 3H, two rods may be connected to one another as opposed to the end caps, thereby allowing the fastener of Figures 3D and 3E to have rods extending from both sides. Note that the rods of Figure 3H may be turned at the joint region prior to installation, thereby permitting the rods to extend from the connector of Figures 3D and 3E at various angles prior to tightening.
Figure 31 illustrates a preferred connector system according to the invention in greater detail. A pedicle screw 302 having a hemispherical head 303 is driven into the vertebrae, again, at points useful for alignment. A slot 306 may be provided to drive the pedicle screw 302 or, alternatively, a hex head or other suitable tool-engaging feature may be used.
A connector body 204 is placed over the exposed end of the screw 302 so that the head 303 engages with a corresponding opening 304 in the bottom of the connector. A set screw 307 or other fastener is used to lock the body 204 in place relative to screw 302 and vertebrae to which it is attached. Note that until the devices are locked into place, the body 204 is able to swivel in three dimensions.
Link bars 206, preferably with enlarged ends are placed into recesses 308 into the body 204, and these are locked into place with set screws 312 or other suitable
fasteners. Again, until the set screws 312 are tightened down, the links 206 may have at least some play until locked into place. Although short bars 206 of equal length are illustrated, it will become apparent that the system is quite flexible, and may take advantage of bars of different or adjustable lengths and profiles. An aperture such as 314 may be provided to enable a tool to move the connectors into a desired position, or remove the body 204 from the screw 302, as appropriate.
Figure 3J illustrates an alternative embodiment of the invention, wherein the swivel joint between the pedicle screw and connector body is replaced with a screw 402 having a threaded end 406. The threaded end 406 now protrudes through a larger hole 414 in the connector body 404, enabling a nut 407 or other suitable fastener to lock the body 404 onto the screw 402. Similar to the embodiment of Figure 3A, however, link bars 206 fit into recesses 408 in the body 404, and set screws 412, which mate with threads 410, are similarly used to lock the link bars into place once a desired orientation is achieved. Figure 3K is a side view of a preferred transverse connector according to the invention. Figure 3L is a top view of the transverse connector of Figure 3K, showing how bodies 92 clamp onto rods 90. Figure 3M is a top view of the transverse connector of Figure 3K, illustrating multiple degrees of freedom made possible by the arrangement. Figure 3N depicts multiple views of the preferred transverse connector of Figure 3K, showing various degrees of angulation. Figure 3o illustrates the use of a ball joint which permits the preferred transverse connector to accommodate non- parallel rods. FIGURE 3P is an end view of the preferred transverse connector used to illustrate the desirability of reduced dimensions. In particular, dimensions X and Y are both reduced according to the invention, and fastener 96 is not engaged until the two halves of the unit are brought into close proximity.
Figures 4A and 4B are drawings of improved sublaminar hooks constructed according to the invention. Broadly, these devices include bodies such as 442 having a recess such as 443 configured for engagement with sublamina, but in contrast to existing devices, either a hemispherical connector 444 or threaded connector 446 are provided on the body to engage with the inventive link connectors discussed, for example, with reference to Figures 3 A and 3B. Figure 4C illustrates a sublaminar hook embodiment of the invention featuring two opposing spherical joints. Figure 4D illustrates a sublaminar hook embodiment of the invention featuring a single spherical joint. Figures 5A and 5B illustrate, respectively, two ways in which connectors according to the invention may be cross-linked, with the understanding that additional variations are certainly possible. In Figure 5A, longer link members 502 are used to link the sides of the connector in criss-cross fashion, whereas, in Figure 5B, shorter link members 504 are used in a manner transverse to those oriented from foot-to-head along the spine. Note also that the plate and rod connectors may be used separately or together; that is while it may be advantageous to use plates at 502 and 504 for transverse interconnection, spherical joints may be preferred longitudinally along the spine, as in locations 510.
Figures 6A-6C illustrate the way in which instrumentation may be used to • obtain a desired degree of vertebral correction, at which time the link members may be added to maintain the structure in correct alignment. In Figure 6A, vertebrae 610 and 620 are mal-aligned, and instruments 602 and 604 are used to adjust them into a proper orientation. Generally speaking, instrument 602 is used to urge apart the connectors shown in the left part of the drawing, where the vertebrae are too close to one another, whereas instrument 604 is used to pull the vertebrae together.
Figure 6B is a drawing which shows a desired orientation of the connectors 612 and 622, without the vertebrae being shown, and Figure 6C illustrates how, having achieved a desired final position, link members 630 and 632 are tightened onto the connectors 612 and 622, at which time the instruments may be removed. This process is more or less repeated, on adjacent vertebral levels, until an overall desired level of alignment is achieved. Given the ease with which the link members and the connectors themselves may be readjusted, the surgeon may readily go back over areas in need of further refinement, as appropriate.
This process is shown in Figures 7A through 7D with respect to the restoration of a frontal alignment. In Figure 7A the spine is curved as shown, with seven connectors being positioned by the surgeon on the various vertebrae to begin the correction process. In Figure 7B, the connectors shown upwardly in the drawing are first brought into alignment, and in Figure 7C, cross-links and additional link members have been added further down the spine. In Figure 7D, all of the connectors are linked up, with fine adjustments being made in three dimensions, as necessary, for a desired degree of correction. Again, although two rod-receiving position are shown with respect to each body, use of the bodies and link members of Figures 3D through 3H would proceed in like fashion.
In restoring the frontal alignment just described, the manual instruments of the type shown in Figures 6A-6C would be appropriate, though they are not shown in Figures 7A-7C. To restore sagittal alignment, a different form of instrument is preferred, to raise and lower connectors as opposed to pushing and spreading. Instruments according to the invention for this purpose are shown in Figures 8A-8C. In Figure 8 A, a tool 802 is inserted into connectors 804 and 806, and in Figure 8B, the
connectors are brought into sagittal alignment. In Figure 8C, a link member 810 is fastened to the connectors, and the tool 802 removed.
In all of the rod-receiving bodies described herein, small apertures or slots may be provided to receive a tool for corrective positioning and, with the aid of a specialized instrument such as 900 depicted in Figure 9. Using such a tool, the body may be removed from the ball-tipped hooks or pedicle screws previously described, as appropriate. Such a tool would preferably include side portions 902 and a central pin 906 which may be forced down through the opening 314 by handle 910, thereby applying force between the body and hook or screw to remove the connector for repositioning or removal.
Figure 10 is a side-view drawing of an alternative connector system according to the invention, wherein angled, preferably reinforced components 1002 are fastened to pedicle screws 1004. The members 1002 provide one or more holes, better seen in Figures 11 and 12, to which link members such as 1110 may be fastened. Note that the pieces 1102 would preferably be provided in various heights and sizes better accommodate a given patient physiology.
Figure 11A is a drawing which shows one way in which the connectors introduced with respect to Figure 10 would be used in practice. Six connectors such as 1102 are shown, each having four holes to receive link bars. With this many fastening points, multiple reinforcements may be used; in particular, both lateral and diagonal cross members are readily accommodated. Moreover, as shown in Figure 11B, the holes may be used for devices other than the link members. For example, cables 1110 may be used, where appropriate, and, in some cases, they may be wrapped around the lamina (subliminally) as depicted with numerical reference 1112.
Rigid link members and cables may also be used with the alternative connector 1202 of Figure 12A, which includes holes 1204 on one side for link bars and additional holes 1206 on the other side for cables. Figure 12B shows the alternative connector of Figure 12A in use, with a combination of cables 1216 and rigid link members 1214 (shown as lines) being used to establish a stable, cross- coupled structure.
Figure 13 illustrates an alternative arrangement according to the invention, wherein cables 1302 are applied to an existing rod/plate system to impart further structural integrity. Four diagonally oriented cable paths are used, though more or fewer may be employed, depending upon the needs of the patient. In contrast to interconnection of the cables to the rods themselves, as shown in Figure 13, cables 1402 may be applied to the screws 1406 binding the rods to the vertebrae, as shown in Figure 14.
Figures 15 A and 15B illustrate yet a further, different embodiment of the invention, wherein a rigid link bar 1502 is attached to pedicle screws 1504 using nuts 1506 or other appropriate fasteners. With a sufficiently long exposed threaded end, multiple link members may be used in conjunction with each pedicle screw in a stacking arrangement, thereby allowing for a criss-crossed structural assembly, as shown in Figure 15B. As opposed to rigid link members of a fixed length, the invention also anticipates the use of telescoping members, including the type shown generally at 1700 in Figure 17. Each end of such a device would include a flat plate, ball, or fastener such as 1702 and 1703 appropriate to one of the connector systems disclosed herein, but with the length being variable in telescoping or sliding fashion. Preferably, one or more setscrews 1704 would be used to lock the member in
accordance with a desired length at any time, including in the midst of an adjustment procedure. Any cross-sectional geometry may be used, so long as a telescoping action is provided. In particular, whereas a cylindrical geometry may allow for twisting as well as extension prior to locking in place, non-circular cross-sections may be used to permit extension/contraction without twisting, as desired.
Figures 18A-18C illustrate a sublaminar connector 1800 according to the invention, having discs 1802, preferably which swivel, to which the telescoping rods of the type shown in Figure 17 may be adjustably attached. Figure 18A presents one view of such a device, showing a lower hook 1820 adapted for sublaminar engagement. Figure 18B shows a top-view of the device, and Figure 18C is a cross- sectional view, with arrows used to indicate the preferred swivel action.
Figure 19 is a drawing of a further alternative device 1900 having connectors 1902, which also preferably swivel, but include a pedicle screw 1904 for fixation as opposed to a sublaminar engaging portion, as shown in Figures 18A-18C. Note that although the body of the device 1900 is depicted integrally with the pedicle screw 1904, the body may be connected to lower screw portion through a connector shown with broken lines at 1910.
Installation and operation of the devices of Figures 18 and 19 are shown in Figures 20 and 21, incorporating the sublaminar device of Figure 18, pedicle screw unit of Figure 19, and threaded rod of Figure 23. Figure 20 is a lateral view of an assembly utilizing these devices, whereas Figure 21 is a posterior-anterior view.
A preferred way in which the telescoping rods and fixation devices discussed above will now be described to align a problem with curvature. In Figure 22A, a telescoping rod 2202 is sized relative to a pair of connectors 2204 and 2204' to be aligned, with fasteners 2206 with nuts 2208 being provided for tightening purposes.
Figure 22B shows the telescoping rod 2202 attached to the connectors 2204, with the arrows being indicative of the way in which the segments of the rod are moved to displace the connectors prior to tightening. Figure 22C shows how the segments of the rod are locked onto the connectors in an extended position, enabling the vertebrae to be distracted and aligned. It will be clear to one of skill that, as opposed to extension, the segments of the rod 2202 may be brought together, as the case may be, to provide a desired amount of compression.
Figure 23 is a side-view drawing of a preferred cross-connector 2300 according to the invention, which may be used in conjunction, or in place of, the extensible rods just described. The assembly includes a threaded rod 2300, onto which the preferably swiveling attachment mechanisms 2304, 2304' of the connectors are journaled. On either side of the connectors, washers such as 2306, 2306' and nuts such as 2308, 2308' are also preferably used for a precise, yet stable alignment when tightening. Although the telescoping and threaded rods have thus far been depicted as straight, they may be curved or bent for different situations. In the case of the telescoping rod, both ends may additionally be adjustable, as shown in Figure 24. The connector bodies may be attached to the rods such as 2500 in various ways, including the use of a set screw 2502 or other fastener, as shown in the cross-section of Figure 25.
Figures 26A-26C illustrate an alternative interconnection mechanism which may be used in conjunction with, or in place of, the circular swivel-type connectors described above. In this case, the connectors bodies 2602, 2602', which may feature pedicle screws or sublaminar hooks 2608, as shown, would include one or more posts such as 2620 extending therefrom, onto which elongated elements 2630 having
closed-fork ends such as 2632, 2632' would be journaled, adjusted, then tightened for a desired level of alignment. Although a telescoping rod is shown, threaded arrangements should also be apparent to those of skill, as described above with reference to the swivel-type arrangements. Figure 26A shows a telescoping version of this embodiment prior to placement onto bodies 2602, 2602'. Figure 26B shows the fork-shaped ends 2632, 2632' being placed onto the posts, and Figure 26C shows the way in which the ends are tightened onto the posts, preferably through the use of a set screw 2608 which applies pressure to the cylindrical portion of the hook to lock it into position. The setscrews are locked onto the connectors to avoid the frustration of inserting the setscrew into a small space on the hook itself. Using the arrangement of the invention, the setscrews may be tightened or loosened, but will not be removed from the connector and inadvertently lost. Preferably, the cylindrical projections from the hook or pedicle screw bodies have an enlargement at their ends to help prevent the connector from sliding off the hook once it is tightened in place.
Figure 27 is a top-view drawing of an alternative connector adapted for use with any of the swivel-type embodiments described herein, the configuration permitting variable angulation in two additional planes. Figure 28 is a further adaptation of the device of Figure 28, also providing lockable angulation with multiple degrees of freedom.
Figures 29A and B will be used to introduce a series of drawings which depict an alternative connector system according to the invention. Broadly, the system uses a ball-shaped connector 2902 on a rod 2904 or other member, and wherein the spherical end 2902 fits into a socket 2906 on member 2908. Journaled over the
element 2904 is a threaded nut 2910 which engages with threads 2912 on element 2908, thereby locking the device into a desired orientation, as shown in Figure 29B
Figure 30A is a drawing which shows an embodiment of the invention wherein a connector body and elongated element are integral, providing a low-profile solution particularly for shorter interconnections. Longitudinal member such as 3002 is incorporated into the connector to facilitate insertion into adjacent vertebrae. As such, the combined unit is inherently shorter. Also, note that the connector on the middle screw 3004 is attached to the pedicle screw through a threaded post. Once again, this shortens the unit, particularly in areas of the spine where the attachments to the vertebrae are farther apart and where more spinal deformity may be present. Multiple connectors may also be used to increase the allowed angulation between vertebrae, as shown in Figures 30B and 30C.
Figure 31A is a drawing which shows swiveling socket-type connectors on a body attached to a pedicle screw. Figure 3 IB shows the arrangement of Figure 31 A in an assembled condition. Figure 3 IC is a top view illustrating the swiveling feature of the embodiments of Figures 31 A and 3 IB. Such swivel connectors may also be incorporated into a sublaminar hook configuration. Hooks and sublaminar attachments do not require the connector-connector feature, however, since devices of this type are slid into position. Figure 32, for example, is a drawing which shows a sublaminar hook having outward projections to receive the swivel connectors.
Figure 33A is a drawing of a top view of a screw connector having two posts. Figure 33B is a top view of a screw connector according to the invention having a single post. Figure 33C is a top view of a hook connector. Figure 33D is an oblique drawing which shows a preferred use of frictional surfaces to lock in the swivel action upon achieving a desired orientation. The friction surface may also be incorporated
between the connectors and the screws or hooks. Figure 33E shows how a set screw (or screws) may be added to help control rotation of a connector according to the invention.
The combined longitudinal member-connector unit may feature a variety of lengths for the longitudinal members, as well as angles between the longitudinal member and connector. Figure 34A, for example, shows how a combined longitudinal member and connector may have a particular length and angle to address a particular situation. Figure 34B illustrates an assembled version of the angled unit of Figure 34A. Figure 35 is a series of drawings which show a variety of longitudinal members in straight and curved configurations. The longitudinal members shown in Figure 35 are preferably pre-fabricated in various sizes and shapes with the nuts attached. They are used when the space between the attachment sites on the vertebrae are close together. Depending upon material choice, they may be further bent by the surgeon at the time of surgery as necessary. When the space between the vertebrae attachment sites is larger than the telescoping longitudinal member, a turnbuckle-like longitudinal member would preferably be used. It will be appreciated that these and other ball-ended configuration may incorporate the cap configurations of Figures 3G.
The telescoping/turnbuckle members with nuts could also be assembled by the surgeon. For example, Figure 36A shows how a telescoping member may be assembled through a pair of nuts then joined. Figure 36B shows a joined assembled version of the assembly of Figure 36A.
The cross links may also be attached to the top of the central posts in many different configurations. Figure 37 illustrates one embodiment of the cross-link which are plate-like. This embodiment shows only one cross-link end per connector.
Alternatively, for more rigidity, the cross links could be stacked. Figure 38 shows an embodiment with two cross-link ends/connector. The longitudinal members are connectors were not drawn to show cross-links better. The cross links illustrated in Figure 38 are preferably thinner than the rigid longitudinal members in Figures 14 and 15. Figure 39 is a side view of a connector including a cross link;
This section of the description provides details of various connector configurations according to the invention, including designs particularly suited to different vertebral levels. In the accompanying drawings, the central connector bodies are threaded at the ends where engage with the longitudinal members. As discussed elsewhere herein, the central connectors may be threaded on either end, though the connectors at the end of a construct are preferably threaded on one end only. The central portion of the connector may include a flat surface, or may be square or rectangular to accommodate a wrench to stabilize the connector while tightening the nut and facilitate attachment to pedicle screw. The central portion of the connector may further include a pedicle hole to attach the connector to a pedicle screw. A friction surface may be provided between the connector (interior surface) and the pedicle screw superior surface.
Figures 40A-40F provide different views of a central lumbar connector according to the invention. In the lumbar region in particular, the connectors should be as short as possible. The pedicle screws may be 3 cm apart or closer. In this and in other embodiments, a friction surface may be provided between the rod ends and the connector seat. The connectors should be as small as possible in every dimension, since prominent hardware could cause the patient to experience pain.
Figures 41A-41G depict different views of a connector adapted to the cephalad end. As shown in Figures 41B and 41G, in particular, such connectors may
have a special shape to avoid impingement on the first mobile facet joint of the spine. This is perhaps better visualized in Figures 58 A and 58B. Note that if the inferior surface has a friction surface left and right units may be provided. Without a friction surface, however, the connector may be turned over for the other side. A special wrench (not shown) may also be provided to hold the connector while tightening the nut. The wrench could be the female version of the non-threaded portion of the connector attached to a handle.
The caudal end may use same connector as used in cephalad end. A reduced profile is not necessary, and the connector is similar in every other way to the cephalad connector. These connectors may also be used in other positions in patients with spinal deformities. Two connectors will preferably be used per pedicle screw or hook. The portion of the connector that attaches the hook or screw should be as small as possible to allow the connector to rotate. The connector should be as strong as possible to prevent fatigue fracture. If the connector is strong enough, it could also be used in the lumbar spine rather than the end connectors described above. This arrangement could reduce manufacturing costs by using a single type of end connector.
Figures 42A-42E show different views of a thoracic connector according to the invention. Figures 43A and 43B show an exploded and assembled views of sublaminar hooks with thoracic connectors attached thereto. Figures 44A-44C are top views showing swiveling before and after locking into a straightened configuration. The connectors rotate until tightening to allow for spinal deformity. They can be loosened and retightened to provide a desired level of correction.
Figure 45 is a drawing of a pedicle screw used to discuss different sizes and diameters according to the invention. In the preferred embodiments, the pedicle
screws feature a tapered minor diameter. Most screws break at the connection to the rod, since the bone near the tip of the screw is cancellous, whereas bone near the connector end is cortical. The deeper thread near the tip and constant major diameter for most of the screw serves to enhance pull-out strength. However, a relatively blunt tips are preferred to avoid vascular injury if the screw tip extends through the vertebra. Generally a tap is used to provide a pathway for the screw. The bone is soft and some surgeons avoid the tapping step. Often a surgeon uses a tap for a 5.5 mm screw but insets a 6.5 mm screw.
Figure 46 is a perspective view of the pedicle screw of Figure 45 including a ball connector and link bar. Figure 47 is a drawing of the configuration of Figure 46 in an assembled state. Figure 48 is an assembled connector having two opposing ball- receiving sockets. Note that pedicle screws for independent double connectors may require a different (i.e., longer) design. Figure 49 is a drawing of an exploded and assembled view of a pedicle screw having independent double connectors. Figure 50 shows how a non-round interconnection may be used to prevent rotation of the pedicle screw relative to a connector body.
This invention also provides 'open' pedicle screws which may be deployed when there is not enough room at 5100 between screws to allow connectors, as shown in Figure 51. Figure 52A shows such a hinged connector in an open condition, whereas Figure 52B shows the hinged connector locked onto a rod. Indeed, it will be appreciated that most, if not all, of the various embodiments described herein may, at least in some way, be adapted for use with spinal rods of the type now in common use.
Figures 53A-53M illustrate the alternative use of straps according to the invention for rod movement and stabilization. Figure 53A depicts a pedicle screw
5300 having lower threads 5304 and body 5302 with rod-receiving area 5306 and threads 5308 for a compression fastener (not shown). An indentation 5310 is provided on the side for grasping. Typically, surgeons force spinal rods into such pedicle screws and vertebral hooks with bulky clamps and threaded "rod pushers" as depicted schematically in Figure 53B. This presents significant disadvantages. For one, the clamps and rod pushers are bulky. The large clamps and pushers also frequently impinge on one another. To avoid impingement, surgeons often place excessive force on a single screw or hook to allow placement of a setscrew to hold to hold the rod in place, enabling the surgeon to remove the clamp. The excessive force on a hook or screw can crack the vertebra, and the bulky clamps may interfere with setscrew placement.
The embodiment of Figures 53D through 53M uses wires, cables, or straps to force spinal rods into pedicle screws and hooks. The preferred embodiment uses plastic straps cable ties (5344) as tightening tools. The straps may be removed (Figure 53L) once the rod is held in place using setscrews or nuts. Figure 53D shows the use of a strap piece 5340 for such purpose. As shown in Figures 53E and 53F, the strap piece 5340 is preferably rotatable beneath the both of the rod fastener.
Figure 53G shows a cable tie 5344 engaged with the strap piece 5340 prior to tightening. Figure 53H shows the cable tie tightened and the rod in place within the pedicle screw. Figure 531 shows the alternative use of a removable strap piece 5350. Figure 53J shows a cable tie 5344 engaged with the strap piece 5350 prior to tightening. Figure 53K shows the cable tie tightened and the rod in place within the pedicle screw. Figure 53M shows how this and other aspects of the invention are not limited to pedicle screws, but may also be configured for sublaminar hooks and other devices.
The use of cable ties and straps has several advantages. The straps are less bulky than the clamps and pushers currently in use. Straps, with locking mechanisms, hold tension after the tightening tool is removed. As such, the tightening tool can be removed from the wound, giving the surgeon more room to work. Straps can be tightened repeatedly as the rod advances into several hooks or screws. Thus, the loads are shared by multiple spinal attachment sites rather than a single attachment site. Vertebral fracture is therefore less likely. The straps, cables, and wires are lateral to the hook and screw rod connection. Accordingly, the lateral position does not interfere with setscrew placement. The elongated members or rods according to the invention may also be provided in a variety of configurations, including solid-, non-telescoping, telescoping, turnbuckle, and different lengths and shapes. The solid rods with spherical ends may be manufactured with the nuts in position, or half washers may be used as shown in Figures 56 and 57 to reduce costs. Rods with single spherical end rods may use nuts added by the surgeon in lengths which may be cut at the time of surgery to customize.
Figure 54 is a side view of a turnbuckle rod according to the invention.
Preferably, such a device exhibits a contracted length on the order of 3 cm while being expandable to 10 cm or beyond. Many different sizes may be provided as necessary to accommodate a greater range. Figure 55 is a drawing which shows the combined use of ball-and-socket connectors in conjunction with optional criss-cross link bars. Such bars are preferably narrow, on the order of 2 mm thick, in 2 cm - 10 cm lengths with 3 mm increments.
As discussed above, the nuts may be added to solid rods after the rods are manufactured using half- or slotted washers. Figure 56 shows how a half-washer may be used in conjunction with a nut opening that is large enough to slide over the
sphere at the end of a rod. Figure 57 shows an alternative use of a slotted washer permitting a nut to slide over the spherical end of a solid rod.
Prior-art spinal rods, screws, and plates risk impingement on the first mobile facet cephalad to the fusion. For example, the inferior facet of L4 may impinge on the plate, rod, nut, or connector extending from L5 to Si in a L5-Sι fusion. Impingement can lead to pain, facet arthritis, facet fracture, and additional surgery. What is needed is a reduced profile connector to prevent impingement. Figure 58A is a drawing which shows a modified connector adapted to reduce impingement. Figure 58B is a drawing of an anti-impingement connector utilizing a ball-and-socket arrangement. Figures 59 A and 59B are different views of a transverse connector according to the invention. The transverse connector (cross brace) fits on the rods between the hooks. Figure 60 shows the combined use of transverse connectors and hinged hooks which lock onto a solid rod. The convex solid rod may be placed after the modular system to restore the spine to its proper alignment. The convex rod may include an octagonal or other cross-section to prevent rotation of cross brace on the rod, as shown in Figure 61. For example, the convex rod may have longitudinal grooves. Such features may travel the length of the rod or be interrupted. Figure 62A illustrates the use of a continuous shaped rod, in this case having a grooved cross- section. Figure 62B illustrates how the modification along the rod may be interrupted along its length.
Figure 63 is a drawing which shows a bevel connector embodiment according to the invention. Such a connector allows 15-20 (or more) degrees of angulation before tightening. Although this type of connector is used in current spine implants, prior art configurations use only one rod on each side of spine. This embodiment of the invention allows use of multiple rods/side as shown in Figure 64. Indeed, it is
believed that the modular hooks and screws according to the invention represent the only system that allows two rods to be attached to a single rod hook or screw.
Figure 65A is a drawing which shows a stabilization clamp for use with various embodiments disclosed herein. Figure 65B is an end of the configuration of Figure 65A. Figure 66A is a different alternative embodiment of a stabilizing assembly, and Figure 66B is a cross-section of the assembly of Figure 66A.
Figures 67A-67C illustrate the use of lockable swivel-type connectors 6704, 6704' , which may be fastened to one or, preferably a pair, of parallel (or non-parallel) rods 6702, 6702' to provide a desired degree of alignment and correction. This particular embodiment uses a modified hook structure and setscrew arrangement, which may be moved along the rod, as shown in Figure 67B, until a desired degree of separation/ orientation is achieved, at which point all of the various components may be tightened into place with fasteners 6710, 6710'.
To ensure stable interconnections that do not loosen through movement or degrade with time, the invention may take advantage of materials and/or geometries to enhance structural integrity. For example, shape-memory technology may be used to assist in locking the screws, rods, caps, joints and other components to one another.
Such interfaces may be mobile until body temperature changes the dimensions to promote a tighter fit, where applicable. In addition, particularly with respect to threaded fastneners, the thread sizes may be slightly mismatched to promote a slight galling for an even tighter fit.
I claim:
Claims (31)
1. A spinal alignment system, comprising: a rigid elongated element terminating in a shaped end; a connecter body having a lower portion configured for spinal engagement, and an upper portion configured to receive the shaped end such that the elongated element is temporarily angularly movable relative to the connector body; and a fastener for locking the shaped end into position once a desired angular relationship is established between the rigid element and the connector body.
2. The spinal alignment system of claim 1, wherein the lower portion configured for spinal engagement is a pedicle screw.
3. The spinal alignment system of claim 1, wherein the lower portion configured for spinal engagement is a sublaminar hook.
4. The spinal alignment system of claim 1, wherein the elongated element has two ends, each terminating in a shaped end to be received by a connector body.
5. The spinal alignment system of claim 1, wherein: the shaped end is at least partially spherical; and the upper portion includes a cup-shaped socket to receive the spherical end, and a side opening through which the elongated element extends.
6. The spinal alignment system of claim 5, wherein the elongated element has two spherical ends, each to be received by a different one of the connector bodies.
7. The spinal alignment system of claim 6, including a plurality of elongated elements with ends that terminate in half spheres, enabling the ends of such elements to be mated to form a single spherical joint.
8. The spinal alignment system of claim 7, wherein the upper portion of the connector body includes a cup-shaped socket to receive the spherical joint, and opposing side openings through which each of the mated elongated elements extend.
9. The spinal alignment system of claim 8, wherein the mated elongated elements may be angled relative to one another while maintaining the spherical joint, such that the fastener may be used to lock the spherical joint into position to achieve a desired angular relationship between each element and the connector body.
10. The spinal alignment system of claim 7, further including half spherical caps that fit over the ends of the elongated elements that terminate in half spheres, thereby forming a ball-shaped end to be received by the upper portion of the connector body.
11. The spinal alignment system of claim 7, wherein: the half spherical ends of the elongated elements include a flat surface; and the elements mate by positioning one flat surface against another.
12. The spinal alignment system of claim 11, including an elongated element that defines an axis, and the flat surface is not perpendicular to the axis.
13. The spinal alignment system of claim 7, further including a feature to maintain the spherical shape of the joint as the elements with the half spherical ends are angled relative to one another.
14. The spinal alignment system of claim 1, further including an elongated element having a length-adjustment mechanism.
15. The spinal alignment system of claim 14, wherein the length- adjustment mechanism includes a telescoping portion and locking fastener.
16. The spinal alignment system of claim 14, wherein the length- adjustment mechanism includes a turnbuckle.
17. The spinal alignment system of claim 1, wherein the upper portion of the connector body includes a top opening to receive the shaped end and fastener, and a side opening in communication with the top opening through which the elongated element extends.
18. The spinal alignment system of claim 17, wherein: the fastener is a threaded compression fastener; and a tension band configured for positioning around the upper portion of the connector body when the shaped end is compressed by the fastener to minimize spreading of the top opening.
19. The spinal alignment system of claim 1, wherein the upper portion of the connector body includes a top opening to receive the shaped end and opposing side openings in communication with the top opening.
20. The spinal alignment system of claim 19, wherein the top opening is also capable of receiving an alignment rod without a shaped end when extending from both of the side openings when locked into position by the fastener.
21. The spinal alignment system of claim 20, further including a strap engagement feature associated with the connector body, enabling a cable tie to be placed around the engagement feature and alignment rod and tightened to pull the rod into the top opening of the upper portion.
22. The spinal alignment system of claim 1, wherein the upper portion is configured to receive the shaped ends of two elongated elements such that each element lockingly extends from opposing sides of the connector body.
23. The spinal alignment system of claim 22, further including a mechanism that clamps onto both of the elongated elements at points away from the connector body for added structural stability.
24. The spinal alignment system of claim 1, further including: a separate connecter body having a first portion configured for locking engagement to an alignment rod without a shaped end, and an second portion configured to receive the shaped end such that the elongated element is temporarily angularly movable relative to the separate connector body; and a fastener for locking the shaped end into position once a desired angular relationship is established between the rigid element and the separate connector body.
25. The spinal alignment system of claim 1, wherein the cross section of the alignment rod is a circle or regular polygon.
26. The spinal alignment system of claim 1, wherein the cross section of the alignment rod is hexagonal.
27. The spinal alignment system of claim 24, wherein first portion is also configured for locking engagement to one of the elongated elements having a shaped end.
28. The spinal alignment system of claim 24, including an elongated member having opposing shaped ends, enabling the separate connector bodies to be locked onto alignment rods and used for cross-bracing.
29. The spinal alignment system of claim 1, wherein the shaped end is a flat disk.
30. The spinal alignment system of claim 29, wherein the flat disks may be stacked onto one another such that multiple elongated elements extend from the connector body.
31. The spinal alignment system of claim 1, wherein: the upper portion includes a post; the shaped end of the elongated element includes a hook having opposing tines that straddle the post; and the fastener squeezes the tines together to lock the element into position.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US27891001P | 2001-03-26 | 2001-03-26 | |
| US60/278,910 | 2001-03-26 | ||
| PCT/US2002/011301 WO2002076315A1 (en) | 2001-03-26 | 2002-03-26 | Spinal alignment apparatus and methods |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| AU2002252625A1 true AU2002252625A1 (en) | 2003-03-27 |
| AU2002252625B2 AU2002252625B2 (en) | 2007-06-28 |
| AU2002252625C1 AU2002252625C1 (en) | 2008-03-13 |
Family
ID=23066909
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2002252625A Expired AU2002252625C1 (en) | 2001-03-26 | 2002-03-26 | Spinal alignment apparatus and methods |
Country Status (5)
| Country | Link |
|---|---|
| US (5) | US6802844B2 (en) |
| EP (1) | EP1381323A1 (en) |
| JP (1) | JP4288074B2 (en) |
| AU (1) | AU2002252625C1 (en) |
| WO (1) | WO2002076315A1 (en) |
Families Citing this family (916)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6283967B1 (en) * | 1999-12-17 | 2001-09-04 | Synthes (U.S.A.) | Transconnector for coupling spinal rods |
| US7122036B2 (en) * | 1999-07-01 | 2006-10-17 | Spinevision, S.A. | Connector for an osteosynthesis system intended to provide a connection between two rods of a spinal osteosynthesis system, osteosynthesis system using such a connector, and method of implanting such an osteosynthesis system |
| US20050261770A1 (en) * | 2004-04-22 | 2005-11-24 | Kuiper Mark K | Crossbar spinal prosthesis having a modular design and related implantation methods |
| US6974478B2 (en) * | 1999-10-22 | 2005-12-13 | Archus Orthopedics, Inc. | Prostheses, systems and methods for replacement of natural facet joints with artificial facet joint surfaces |
| US7674293B2 (en) | 2004-04-22 | 2010-03-09 | Facet Solutions, Inc. | Crossbar spinal prosthesis having a modular design and related implantation methods |
| US7691145B2 (en) | 1999-10-22 | 2010-04-06 | Facet Solutions, Inc. | Prostheses, systems and methods for replacement of natural facet joints with artificial facet joint surfaces |
| US8187303B2 (en) | 2004-04-22 | 2012-05-29 | Gmedelaware 2 Llc | Anti-rotation fixation element for spinal prostheses |
| US20020133155A1 (en) * | 2000-02-25 | 2002-09-19 | Ferree Bret A. | Cross-coupled vertebral stabilizers incorporating spinal motion restriction |
| FR2812185B1 (en) | 2000-07-25 | 2003-02-28 | Spine Next Sa | SEMI-RIGID CONNECTION PIECE FOR RACHIS STABILIZATION |
| FR2812186B1 (en) | 2000-07-25 | 2003-02-28 | Spine Next Sa | FLEXIBLE CONNECTION PIECE FOR SPINAL STABILIZATION |
| US7833250B2 (en) | 2004-11-10 | 2010-11-16 | Jackson Roger P | Polyaxial bone screw with helically wound capture connection |
| US6802844B2 (en) * | 2001-03-26 | 2004-10-12 | Nuvasive, Inc | Spinal alignment apparatus and methods |
| US8353932B2 (en) | 2005-09-30 | 2013-01-15 | Jackson Roger P | Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member |
| US10258382B2 (en) | 2007-01-18 | 2019-04-16 | Roger P. Jackson | Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord |
| US7862587B2 (en) | 2004-02-27 | 2011-01-04 | Jackson Roger P | Dynamic stabilization assemblies, tool set and method |
| US10729469B2 (en) | 2006-01-09 | 2020-08-04 | Roger P. Jackson | Flexible spinal stabilization assembly with spacer having off-axis core member |
| US8292926B2 (en) | 2005-09-30 | 2012-10-23 | Jackson Roger P | Dynamic stabilization connecting member with elastic core and outer sleeve |
| ATE476930T1 (en) | 2002-02-20 | 2010-08-15 | Stephen Ritland | DEVICE FOR CONNECTING HAND SCREWS |
| US6966910B2 (en) * | 2002-04-05 | 2005-11-22 | Stephen Ritland | Dynamic fixation device and method of use |
| EP1585427B1 (en) | 2002-05-08 | 2012-04-11 | Stephen Ritland | Dynamic fixation device |
| US7306603B2 (en) * | 2002-08-21 | 2007-12-11 | Innovative Spinal Technologies | Device and method for percutaneous placement of lumbar pedicle screws and connecting rods |
| JP4423197B2 (en) * | 2002-08-25 | 2010-03-03 | ザ ユニヴァーシティ オブ ホンコン | Spinal deformity correction device |
| US8876868B2 (en) | 2002-09-06 | 2014-11-04 | Roger P. Jackson | Helical guide and advancement flange with radially loaded lip |
| AU2005304849B8 (en) | 2002-09-06 | 2009-09-03 | Roger P. Jackson | Helical guide and advancement flange with break-off extensions |
| US7066938B2 (en) | 2002-09-09 | 2006-06-27 | Depuy Spine, Inc. | Snap-on spinal rod connector |
| US7615070B2 (en) | 2002-10-11 | 2009-11-10 | Spineco, Inc. | Electro-stimulation and medical delivery device |
| US20040111088A1 (en) * | 2002-12-06 | 2004-06-10 | Picetti George D. | Multi-rod bone attachment member |
| US20050055096A1 (en) * | 2002-12-31 | 2005-03-10 | Depuy Spine, Inc. | Functional spinal unit prosthetic |
| US7101398B2 (en) * | 2002-12-31 | 2006-09-05 | Depuy Acromed, Inc. | Prosthetic facet joint ligament |
| US7621918B2 (en) | 2004-11-23 | 2009-11-24 | Jackson Roger P | Spinal fixation tool set and method |
| US6716214B1 (en) | 2003-06-18 | 2004-04-06 | Roger P. Jackson | Polyaxial bone screw with spline capture connection |
| US8540753B2 (en) | 2003-04-09 | 2013-09-24 | Roger P. Jackson | Polyaxial bone screw with uploaded threaded shank and method of assembly and use |
| US7473267B2 (en) * | 2003-04-25 | 2009-01-06 | Warsaw Orthopedic, Inc. | System and method for minimally invasive posterior fixation |
| US20040230304A1 (en) | 2003-05-14 | 2004-11-18 | Archus Orthopedics Inc. | Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces |
| US7608104B2 (en) | 2003-05-14 | 2009-10-27 | Archus Orthopedics, Inc. | Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces |
| US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
| US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
| US7377923B2 (en) | 2003-05-22 | 2008-05-27 | Alphatec Spine, Inc. | Variable angle spinal screw assembly |
| US7749251B2 (en) | 2003-06-13 | 2010-07-06 | Aeolin, Llc | Method and apparatus for stabilization of facet joint |
| US8137386B2 (en) | 2003-08-28 | 2012-03-20 | Jackson Roger P | Polyaxial bone screw apparatus |
| US7766915B2 (en) | 2004-02-27 | 2010-08-03 | Jackson Roger P | Dynamic fixation assemblies with inner core and outer coil-like member |
| US7776067B2 (en) | 2005-05-27 | 2010-08-17 | Jackson Roger P | Polyaxial bone screw with shank articulation pressure insert and method |
| US8936623B2 (en) | 2003-06-18 | 2015-01-20 | Roger P. Jackson | Polyaxial bone screw assembly |
| US8377102B2 (en) | 2003-06-18 | 2013-02-19 | Roger P. Jackson | Polyaxial bone anchor with spline capture connection and lower pressure insert |
| US8398682B2 (en) | 2003-06-18 | 2013-03-19 | Roger P. Jackson | Polyaxial bone screw assembly |
| US8092500B2 (en) | 2007-05-01 | 2012-01-10 | Jackson Roger P | Dynamic stabilization connecting member with floating core, compression spacer and over-mold |
| US7967850B2 (en) | 2003-06-18 | 2011-06-28 | Jackson Roger P | Polyaxial bone anchor with helical capture connection, insert and dual locking assembly |
| US8366753B2 (en) | 2003-06-18 | 2013-02-05 | Jackson Roger P | Polyaxial bone screw assembly with fixed retaining structure |
| US8814911B2 (en) | 2003-06-18 | 2014-08-26 | Roger P. Jackson | Polyaxial bone screw with cam connection and lock and release insert |
| US7074238B2 (en) | 2003-07-08 | 2006-07-11 | Archus Orthopedics, Inc. | Prostheses, tools and methods for replacement of natural facet joints with artificial facet joint surfaces |
| US7753958B2 (en) | 2003-08-05 | 2010-07-13 | Gordon Charles R | Expandable intervertebral implant |
| US7785351B2 (en) | 2003-08-05 | 2010-08-31 | Flexuspine, Inc. | Artificial functional spinal implant unit system and method for use |
| US7204853B2 (en) * | 2003-08-05 | 2007-04-17 | Flexuspine, Inc. | Artificial functional spinal unit assemblies |
| US7909869B2 (en) | 2003-08-05 | 2011-03-22 | Flexuspine, Inc. | Artificial spinal unit assemblies |
| US8070785B2 (en) | 2003-09-16 | 2011-12-06 | Spineco, Inc. | Bone anchor prosthesis and system |
| US7955355B2 (en) | 2003-09-24 | 2011-06-07 | Stryker Spine | Methods and devices for improving percutaneous access in minimally invasive surgeries |
| US7815665B2 (en) | 2003-09-24 | 2010-10-19 | N Spine, Inc. | Adjustable spinal stabilization system |
| US8979900B2 (en) | 2003-09-24 | 2015-03-17 | DePuy Synthes Products, LLC | Spinal stabilization device |
| US20050203513A1 (en) * | 2003-09-24 | 2005-09-15 | Tae-Ahn Jahng | Spinal stabilization device |
| US20050065516A1 (en) | 2003-09-24 | 2005-03-24 | Tae-Ahn Jahng | Method and apparatus for flexible fixation of a spine |
| US7763052B2 (en) | 2003-12-05 | 2010-07-27 | N Spine, Inc. | Method and apparatus for flexible fixation of a spine |
| US7481827B2 (en) * | 2003-10-09 | 2009-01-27 | Synthes (U.S.A.) | Linking transconnector for coupling spinal rods |
| US7967826B2 (en) | 2003-10-21 | 2011-06-28 | Theken Spine, Llc | Connector transfer tool for internal structure stabilization systems |
| US7905907B2 (en) | 2003-10-21 | 2011-03-15 | Theken Spine, Llc | Internal structure stabilization system for spanning three or more structures |
| US20050085814A1 (en) * | 2003-10-21 | 2005-04-21 | Sherman Michael C. | Dynamizable orthopedic implants and their use in treating bone defects |
| US7588588B2 (en) | 2003-10-21 | 2009-09-15 | Innovative Spinal Technologies | System and method for stabilizing of internal structures |
| US20050131406A1 (en) * | 2003-12-15 | 2005-06-16 | Archus Orthopedics, Inc. | Polyaxial adjustment of facet joint prostheses |
| US7666188B2 (en) | 2003-12-16 | 2010-02-23 | Depuy Spine, Inc. | Methods and devices for spinal fixation element placement |
| US7179261B2 (en) | 2003-12-16 | 2007-02-20 | Depuy Spine, Inc. | Percutaneous access devices and bone anchor assemblies |
| US11419642B2 (en) | 2003-12-16 | 2022-08-23 | Medos International Sarl | Percutaneous access devices and bone anchor assemblies |
| US7527638B2 (en) * | 2003-12-16 | 2009-05-05 | Depuy Spine, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
| US7806914B2 (en) * | 2003-12-31 | 2010-10-05 | Spine Wave, Inc. | Dynamic spinal stabilization system |
| US20050143737A1 (en) * | 2003-12-31 | 2005-06-30 | John Pafford | Dynamic spinal stabilization system |
| US7833251B1 (en) | 2004-01-06 | 2010-11-16 | Nuvasive, Inc. | System and method for performing spinal fixation |
| EP2468179A3 (en) * | 2004-01-13 | 2017-08-16 | The University of Toledo | Noninvasive birefringence compensated sensing polarimeter |
| HU0400305D0 (en) * | 2004-01-30 | 2004-03-29 | Sanatmetal Ortopediai Es Traum | Set for spine-fixture |
| EP1711112A4 (en) * | 2004-02-06 | 2009-03-04 | Depuy Spine Inc | Devices and methods for inserting a spinal fixation element |
| ITRM20040082A1 (en) * | 2004-02-16 | 2004-05-16 | Sic Brevetti S R L | POST STERNOTOMY OR STERNAL FRACTURE REINFORCEMENT DEVICE. |
| US9451990B2 (en) * | 2004-02-17 | 2016-09-27 | Globus Medical, Inc. | Facet joint replacement instruments and methods |
| US8562649B2 (en) * | 2004-02-17 | 2013-10-22 | Gmedelaware 2 Llc | System and method for multiple level facet joint arthroplasty and fusion |
| US11241261B2 (en) | 2005-09-30 | 2022-02-08 | Roger P Jackson | Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure |
| US9050148B2 (en) | 2004-02-27 | 2015-06-09 | Roger P. Jackson | Spinal fixation tool attachment structure |
| US8152810B2 (en) | 2004-11-23 | 2012-04-10 | Jackson Roger P | Spinal fixation tool set and method |
| EP1720468A4 (en) | 2004-02-27 | 2010-01-27 | Roger P Jackson | Orthopedic implant rod reduction tool set and method |
| US7160300B2 (en) | 2004-02-27 | 2007-01-09 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
| US7547318B2 (en) * | 2004-03-19 | 2009-06-16 | Depuy Spine, Inc. | Spinal fixation element and methods |
| US7214227B2 (en) | 2004-03-22 | 2007-05-08 | Innovative Spinal Technologies | Closure member for a medical implant device |
| US8236028B2 (en) * | 2004-03-31 | 2012-08-07 | Depuy Spine Sarl | Spinal rod connector |
| US7909852B2 (en) | 2004-03-31 | 2011-03-22 | Depuy Spine Sarl | Adjustable-angle spinal fixation element |
| US7717939B2 (en) | 2004-03-31 | 2010-05-18 | Depuy Spine, Inc. | Rod attachment for head to head cross connector |
| US7645294B2 (en) | 2004-03-31 | 2010-01-12 | Depuy Spine, Inc. | Head-to-head connector spinal fixation system |
| US7686833B1 (en) * | 2004-04-02 | 2010-03-30 | Muhanna Nabil L | Ball jointed pedicle screw and rod system |
| JP2007532258A (en) * | 2004-04-16 | 2007-11-15 | カイフォン インコーポレイテッド | Screw assembly |
| US7648520B2 (en) | 2004-04-16 | 2010-01-19 | Kyphon Sarl | Pedicle screw assembly |
| US7618418B2 (en) | 2004-04-16 | 2009-11-17 | Kyphon Sarl | Plate system for minimally invasive support of the spine |
| US7524323B2 (en) | 2004-04-16 | 2009-04-28 | Kyphon Sarl | Subcutaneous support |
| US7811311B2 (en) | 2004-12-30 | 2010-10-12 | Warsaw Orthopedic, Inc. | Screw with deployable interlaced dual rods |
| US7678139B2 (en) | 2004-04-20 | 2010-03-16 | Allez Spine, Llc | Pedicle screw assembly |
| US7938831B2 (en) | 2004-04-20 | 2011-05-10 | Spineco, Inc. | Implant device |
| US7406775B2 (en) | 2004-04-22 | 2008-08-05 | Archus Orthopedics, Inc. | Implantable orthopedic device component selection instrument and methods |
| US20080082171A1 (en) * | 2004-04-22 | 2008-04-03 | Kuiper Mark K | Crossbar spinal prosthesis having a modular design and systems for treating spinal pathologies |
| US7914556B2 (en) | 2005-03-02 | 2011-03-29 | Gmedelaware 2 Llc | Arthroplasty revision system and method |
| WO2006055186A2 (en) | 2004-10-25 | 2006-05-26 | Archus Orthopedics, Inc. | Spinal prosthesis having a modular design |
| FR2869523A1 (en) * | 2004-04-28 | 2005-11-04 | Frederic Fortin | FLEXIBLE AND MODULAR VERTEBRAL CONNECTION DEVICE HAVING AN ADJUSTABLE ELEMENT FOR WORKING MULTIDIRECTIONALLY |
| US7776051B2 (en) * | 2004-05-03 | 2010-08-17 | Theken Spine, Llc | System and method for displacement of bony structures |
| US20050261692A1 (en) * | 2004-05-21 | 2005-11-24 | Scimed Life Systems, Inc. | Articulating tissue removal probe and methods of using the same |
| US7935135B2 (en) | 2004-06-09 | 2011-05-03 | Zimmer Spine, Inc. | Spinal fixation device |
| US7955357B2 (en) | 2004-07-02 | 2011-06-07 | Ellipse Technologies, Inc. | Expandable rod system to treat scoliosis and method of using the same |
| US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
| US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
| US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
| US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
| US20060036259A1 (en) * | 2004-08-03 | 2006-02-16 | Carl Allen L | Spine treatment devices and methods |
| US7658753B2 (en) | 2004-08-03 | 2010-02-09 | K Spine, Inc. | Device and method for correcting a spinal deformity |
| US8114158B2 (en) | 2004-08-03 | 2012-02-14 | Kspine, Inc. | Facet device and method |
| US7611526B2 (en) * | 2004-08-03 | 2009-11-03 | K Spine, Inc. | Spinous process reinforcement device and method |
| US7854752B2 (en) | 2004-08-09 | 2010-12-21 | Theken Spine, Llc | System and method for dynamic skeletal stabilization |
| US8398681B2 (en) | 2004-08-18 | 2013-03-19 | Gmedelaware 2 Llc | Adjacent level facet arthroplasty devices, spine stabilization systems, and methods |
| US7717938B2 (en) | 2004-08-27 | 2010-05-18 | Depuy Spine, Inc. | Dual rod cross connectors and inserter tools |
| US7959653B2 (en) | 2004-09-03 | 2011-06-14 | Lanx, Inc. | Spinal rod cross connector |
| US9737339B2 (en) | 2004-09-08 | 2017-08-22 | Nuvasive, Inc. | Posterio spinal fixation |
| US7799081B2 (en) | 2004-09-14 | 2010-09-21 | Aeolin, Llc | System and method for spinal fusion |
| WO2006034436A2 (en) | 2004-09-21 | 2006-03-30 | Stout Medical Group, L.P. | Expandable support device and method of use |
| BRPI0419057A (en) * | 2004-09-22 | 2007-12-11 | Kyung-Woo Park | spinal fixation |
| US7651502B2 (en) | 2004-09-24 | 2010-01-26 | Jackson Roger P | Spinal fixation tool set and method for rod reduction and fastener insertion |
| US20060085076A1 (en) | 2004-10-15 | 2006-04-20 | Manoj Krishna | Posterior spinal arthroplasty-development of a new posteriorly inserted artificial disc and an artificial facet joint |
| US7935134B2 (en) | 2004-10-20 | 2011-05-03 | Exactech, Inc. | Systems and methods for stabilization of bone structures |
| US8267969B2 (en) | 2004-10-20 | 2012-09-18 | Exactech, Inc. | Screw systems and methods for use in stabilization of bone structures |
| US8162985B2 (en) | 2004-10-20 | 2012-04-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
| US8226690B2 (en) * | 2005-07-22 | 2012-07-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for stabilization of bone structures |
| US8025680B2 (en) | 2004-10-20 | 2011-09-27 | Exactech, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
| US7604655B2 (en) | 2004-10-25 | 2009-10-20 | X-Spine Systems, Inc. | Bone fixation system and method for using the same |
| EP1814473B1 (en) | 2004-10-25 | 2012-12-05 | X-spine Systems, Inc. | Pedicle screw systems |
| US9463012B2 (en) | 2004-10-26 | 2016-10-11 | P Tech, Llc | Apparatus for guiding and positioning an implant |
| US8926672B2 (en) | 2004-11-10 | 2015-01-06 | Roger P. Jackson | Splay control closure for open bone anchor |
| US7569061B2 (en) | 2004-11-16 | 2009-08-04 | Innovative Spinal Technologies, Inc. | Off-axis anchor guidance system |
| CA2587952A1 (en) * | 2004-11-19 | 2006-05-26 | Alphaspine, Inc. | Rod-coupling assemblies |
| US9168069B2 (en) | 2009-06-15 | 2015-10-27 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer |
| US8444681B2 (en) | 2009-06-15 | 2013-05-21 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert |
| US8308782B2 (en) | 2004-11-23 | 2012-11-13 | Jackson Roger P | Bone anchors with longitudinal connecting member engaging inserts and closures for fixation and optional angulation |
| US7488323B2 (en) * | 2004-11-23 | 2009-02-10 | Biomet Sports Medicine, Llc | Method and apparatus for manipulating bone during a surgical procedure |
| US9216041B2 (en) | 2009-06-15 | 2015-12-22 | Roger P. Jackson | Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts |
| US9980753B2 (en) | 2009-06-15 | 2018-05-29 | Roger P Jackson | pivotal anchor with snap-in-place insert having rotation blocking extensions |
| ATE524121T1 (en) | 2004-11-24 | 2011-09-15 | Abdou Samy | DEVICES FOR PLACING AN ORTHOPEDIC INTERVERTEBRAL IMPLANT |
| EP1719468A1 (en) * | 2004-12-17 | 2006-11-08 | Zimmer GmbH | Intervertebral stabilization system |
| US9339301B2 (en) | 2004-12-30 | 2016-05-17 | Mark A. Barry | System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions |
| US7776072B2 (en) | 2004-12-30 | 2010-08-17 | Barry Mark A | System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions |
| US7670358B2 (en) * | 2004-12-30 | 2010-03-02 | Barry Mark A | System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions |
| US7604654B2 (en) | 2005-02-22 | 2009-10-20 | Stryker Spine | Apparatus and method for dynamic vertebral stabilization |
| US10076361B2 (en) | 2005-02-22 | 2018-09-18 | Roger P. Jackson | Polyaxial bone screw with spherical capture, compression and alignment and retention structures |
| US7901437B2 (en) | 2007-01-26 | 2011-03-08 | Jackson Roger P | Dynamic stabilization member with molded connection |
| US8696707B2 (en) * | 2005-03-08 | 2014-04-15 | Zyga Technology, Inc. | Facet joint stabilization |
| US20060229608A1 (en) * | 2005-03-17 | 2006-10-12 | Foster Thomas A | Apparatus and methods for spinal implant with dynamic stabilization system |
| US20060229609A1 (en) * | 2005-03-18 | 2006-10-12 | Chao-Jan Wang | Microadjustment spinal joint fixture |
| US8496686B2 (en) | 2005-03-22 | 2013-07-30 | Gmedelaware 2 Llc | Minimally invasive spine restoration systems, devices, methods and kits |
| US20060241600A1 (en) * | 2005-03-23 | 2006-10-26 | Ensign Michael D | Percutaneous pedicle screw assembly |
| ES2318917B1 (en) * | 2005-03-30 | 2010-02-04 | Sdgi Holdings Inc. | SYSTEM FOR THE THREE-DIMENSIONAL CORRECTION OF THE CURVATURE OF THE VERTEBRAL COLUMN IN PROBLEMS OF SCHOLIOSIS BY COPLANAR ALIGNMENT OF THE PEDICULAR SCREWS. |
| US8163261B2 (en) * | 2005-04-05 | 2012-04-24 | Voltaix, Llc | System and method for making Si2H6 and higher silanes |
| US8177817B2 (en) | 2005-05-18 | 2012-05-15 | Stryker Spine | System and method for orthopedic implant configuration |
| US7799060B2 (en) * | 2005-06-20 | 2010-09-21 | Warsaw Orthopedic, Inc. | Multi-directional spinal stabilization systems and methods |
| US7828825B2 (en) * | 2005-06-20 | 2010-11-09 | Warsaw Orthopedic, Inc. | Multi-level multi-functional spinal stabilization systems and methods |
| WO2007009107A2 (en) | 2005-07-14 | 2007-01-18 | Stout Medical Group, P.L. | Expandable support device and method of use |
| AU2006269900A1 (en) * | 2005-07-19 | 2007-01-25 | Stephen Ritland | Rod extension for extending fusion construct |
| US8523865B2 (en) | 2005-07-22 | 2013-09-03 | Exactech, Inc. | Tissue splitter |
| US7717943B2 (en) | 2005-07-29 | 2010-05-18 | X-Spine Systems, Inc. | Capless multiaxial screw and spinal fixation assembly and method |
| US7766943B1 (en) * | 2005-08-11 | 2010-08-03 | Medicine Lodge Inc. | Modular percutaneous spinal fusion system and method |
| US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
| US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
| US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
| US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
| US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
| US8365976B2 (en) | 2006-09-29 | 2013-02-05 | Ethicon Endo-Surgery, Inc. | Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same |
| US8991676B2 (en) | 2007-03-15 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Surgical staple having a slidable crown |
| US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
| US7846093B2 (en) | 2005-09-26 | 2010-12-07 | K2M, Inc. | Minimally invasive retractor and methods of use |
| WO2007038429A1 (en) | 2005-09-27 | 2007-04-05 | Endius, Inc. | Methods and apparatuses for stabilizing the spine through an access device |
| US7879074B2 (en) | 2005-09-27 | 2011-02-01 | Depuy Spine, Inc. | Posterior dynamic stabilization systems and methods |
| US8105368B2 (en) | 2005-09-30 | 2012-01-31 | Jackson Roger P | Dynamic stabilization connecting member with slitted core and outer sleeve |
| US7686835B2 (en) | 2005-10-04 | 2010-03-30 | X-Spine Systems, Inc. | Pedicle screw system with provisional locking aspects |
| US7857833B2 (en) * | 2005-10-06 | 2010-12-28 | Abdou M Samy | Devices and methods for inter-vertebral orthopedic device placement |
| GB0521582D0 (en) | 2005-10-22 | 2005-11-30 | Depuy Int Ltd | An implant for supporting a spinal column |
| US8097025B2 (en) | 2005-10-25 | 2012-01-17 | X-Spine Systems, Inc. | Pedicle screw system configured to receive a straight or curved rod |
| US8137385B2 (en) | 2005-10-31 | 2012-03-20 | Stryker Spine | System and method for dynamic vertebral stabilization |
| US20070106317A1 (en) * | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
| US8100946B2 (en) | 2005-11-21 | 2012-01-24 | Synthes Usa, Llc | Polyaxial bone anchors with increased angulation |
| FR2894129B1 (en) * | 2005-12-07 | 2008-08-22 | Alain Tornier | DEVICE FOR STABILIZING THE RACHIS |
| US20070135817A1 (en) * | 2005-12-08 | 2007-06-14 | Ensign Michael D | Percutaneous screw assembly |
| US7704271B2 (en) | 2005-12-19 | 2010-04-27 | Abdou M Samy | Devices and methods for inter-vertebral orthopedic device placement |
| US7517359B2 (en) * | 2005-12-20 | 2009-04-14 | Sdgi Holdings, Inc. | Vertebral rod assemblies and methods |
| EP2055251B1 (en) * | 2005-12-23 | 2011-08-17 | BIEDERMANN MOTECH GmbH | Bone anchoring element |
| US20070162132A1 (en) | 2005-12-23 | 2007-07-12 | Dominique Messerli | Flexible elongated chain implant and method of supporting body tissue with same |
| GB0600662D0 (en) * | 2006-01-13 | 2006-02-22 | Depuy Int Ltd | Spinal support rod kit |
| US8348952B2 (en) | 2006-01-26 | 2013-01-08 | Depuy International Ltd. | System and method for cooling a spinal correction device comprising a shape memory material for corrective spinal surgery |
| US7497869B2 (en) * | 2006-01-27 | 2009-03-03 | Warsaw Orthopedic, Inc. | Methods and devices for a minimally invasive placement of a rod within a patient |
| US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
| US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
| US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
| US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
| US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
| US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
| US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
| US20110290856A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument with force-feedback capabilities |
| US20110024477A1 (en) | 2009-02-06 | 2011-02-03 | Hall Steven G | Driven Surgical Stapler Improvements |
| US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
| US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
| CA2637684C (en) | 2006-02-06 | 2011-09-13 | Stryker Spine | Rod contouring apparatus and method for percutaneous pedicle screw extension |
| US8029545B2 (en) * | 2006-02-07 | 2011-10-04 | Warsaw Orthopedic Inc. | Articulating connecting member and anchor systems for spinal stabilization |
| US8118869B2 (en) | 2006-03-08 | 2012-02-21 | Flexuspine, Inc. | Dynamic interbody device |
| US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
| US8236010B2 (en) | 2006-03-23 | 2012-08-07 | Ethicon Endo-Surgery, Inc. | Surgical fastener and cutter with mimicking end effector |
| US8025681B2 (en) | 2006-03-29 | 2011-09-27 | Theken Spine, Llc | Dynamic motion spinal stabilization system |
| US8328853B2 (en) | 2006-04-03 | 2012-12-11 | Ib Medical, Llc | Static compression device |
| WO2007114834A1 (en) | 2006-04-05 | 2007-10-11 | Dong Myung Jeon | Multi-axial, double locking bone screw assembly |
| US7837714B2 (en) | 2006-04-10 | 2010-11-23 | Warsaw Orthopedic, Inc. | Methods and devices for the interconnection of bone attachment devices |
| US7722648B2 (en) | 2006-04-10 | 2010-05-25 | Warsaw Orthopedic, Inc. | Crosslink interconnection of bone attachment devices |
| WO2007123920A2 (en) | 2006-04-18 | 2007-11-01 | Joseph Nicholas Logan | Spinal rod system |
| US20070270817A1 (en) * | 2006-04-24 | 2007-11-22 | Sdgi Holdings, Inc. | Connector apparatus |
| US8435267B2 (en) * | 2006-04-24 | 2013-05-07 | Spinefrontier Inc | Spine fixation method and apparatus |
| EP2013425B1 (en) * | 2006-04-27 | 2014-06-04 | Jeffrey Alan Packer | Structural connectors |
| EP2023864B1 (en) | 2006-05-01 | 2019-07-10 | Stout Medical Group, L.P. | Expandable support device |
| US20070270838A1 (en) * | 2006-05-08 | 2007-11-22 | Sdgi Holdings, Inc. | Dynamic spinal stabilization device with dampener |
| US7785350B2 (en) * | 2006-05-08 | 2010-08-31 | Warsaw Orthopedic, Inc. | Load bearing flexible spinal connecting element |
| US8012179B2 (en) * | 2006-05-08 | 2011-09-06 | Warsaw Orthopedic, Inc. | Dynamic spinal stabilization members and methods |
| US8337528B2 (en) * | 2006-11-28 | 2012-12-25 | Anova Corporation | Methods and apparatus for stabilizing a spinal segment |
| US20080015601A1 (en) * | 2006-06-14 | 2008-01-17 | Michael Castro | Reduction device and method of use |
| US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
| WO2008008511A2 (en) | 2006-07-14 | 2008-01-17 | Laszlo Garamszegi | Pedicle screw assembly with inclined surface seat |
| AU2007277124A1 (en) * | 2006-07-24 | 2008-01-31 | Nuvasive, Inc. | Systems and methods for dynamic spinal stabilization |
| US20080051780A1 (en) * | 2006-08-04 | 2008-02-28 | Zimmer Spine, Inc. | Spinal rod connector |
| US8702755B2 (en) | 2006-08-11 | 2014-04-22 | Gmedelaware 2 Llc | Angled washer polyaxial connection for dynamic spine prosthesis |
| US7806913B2 (en) | 2006-08-16 | 2010-10-05 | Depuy Spine, Inc. | Modular multi-level spine stabilization system and method |
| US20080058805A1 (en) * | 2006-08-28 | 2008-03-06 | Microdexterity Systems, Inc. | Spinal fusion implant |
| US7922746B2 (en) * | 2006-08-31 | 2011-04-12 | Warsaw Orthopedic, Inc. | Spinal rod extenders and methods of use |
| US7766942B2 (en) * | 2006-08-31 | 2010-08-03 | Warsaw Orthopedic, Inc. | Polymer rods for spinal applications |
| US8177816B2 (en) * | 2006-09-05 | 2012-05-15 | Schwab Frank J | Vertebral anchor |
| US7988711B2 (en) * | 2006-09-21 | 2011-08-02 | Warsaw Orthopedic, Inc. | Low profile vertebral stabilization systems and methods |
| US8979848B2 (en) * | 2006-09-25 | 2015-03-17 | Stryker Spine | Force limiting persuader-reducer |
| US7686809B2 (en) * | 2006-09-25 | 2010-03-30 | Stryker Spine | Rod inserter and rod with reduced diameter end |
| DE602007014385D1 (en) | 2006-09-25 | 2011-06-16 | Stryker Spine | PERCUTANEOUS COMPRESSION AND DISTRACTION SYSTEM |
| AU2007300144A1 (en) | 2006-09-26 | 2008-04-03 | Synthes Gmbh | Transconnector |
| US7918857B2 (en) | 2006-09-26 | 2011-04-05 | Depuy Spine, Inc. | Minimally invasive bone anchor extensions |
| US20080077137A1 (en) * | 2006-09-27 | 2008-03-27 | Balderston Richard A | Posterior stabilization for fixed center of rotation anterior prosthesis of the intervertebral disc |
| US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
| US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
| US20080086130A1 (en) * | 2006-10-06 | 2008-04-10 | Depuy Spine, Inc. | Torsionally stable fixation |
| US7947045B2 (en) * | 2006-10-06 | 2011-05-24 | Zimmer Spine, Inc. | Spinal stabilization system with flexible guides |
| US20090012563A1 (en) * | 2006-10-11 | 2009-01-08 | Nas Medical Technologies, Inc. | Spinal fixation devices and methods |
| US7862502B2 (en) | 2006-10-20 | 2011-01-04 | Ellipse Technologies, Inc. | Method and apparatus for adjusting a gastrointestinal restriction device |
| US8096996B2 (en) | 2007-03-20 | 2012-01-17 | Exactech, Inc. | Rod reducer |
| US8361117B2 (en) * | 2006-11-08 | 2013-01-29 | Depuy Spine, Inc. | Spinal cross connectors |
| US8066744B2 (en) | 2006-11-10 | 2011-11-29 | Warsaw Orthopedic, Inc. | Keyed crown orientation for multi-axial screws |
| US8162990B2 (en) * | 2006-11-16 | 2012-04-24 | Spine Wave, Inc. | Multi-axial spinal fixation system |
| US8262662B2 (en) * | 2006-11-20 | 2012-09-11 | Depuy Spine, Inc. | Break-off screw extensions |
| US8162993B2 (en) * | 2006-11-28 | 2012-04-24 | Anova Corporation | Methods of anterior fixation and stabilization of a spinal segment |
| WO2008070716A2 (en) | 2006-12-05 | 2008-06-12 | Spine Wave, Inc. | Dynamic stabilization devices and methods |
| WO2008070840A1 (en) * | 2006-12-07 | 2008-06-12 | Alpinespine Llc | Press-on pedicle screw assembly |
| JP2010512178A (en) | 2006-12-08 | 2010-04-22 | ロジャー・ピー・ジャクソン | Tool system for dynamic spinal implants |
| US20080161853A1 (en) * | 2006-12-28 | 2008-07-03 | Depuy Spine, Inc. | Spine stabilization system with dynamic screw |
| US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
| US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
| US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
| US8632535B2 (en) | 2007-01-10 | 2014-01-21 | Ethicon Endo-Surgery, Inc. | Interlock and surgical instrument including same |
| US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
| US8540128B2 (en) | 2007-01-11 | 2013-09-24 | Ethicon Endo-Surgery, Inc. | Surgical stapling device with a curved end effector |
| US7931676B2 (en) | 2007-01-18 | 2011-04-26 | Warsaw Orthopedic, Inc. | Vertebral stabilizer |
| US8475498B2 (en) | 2007-01-18 | 2013-07-02 | Roger P. Jackson | Dynamic stabilization connecting member with cord connection |
| US8366745B2 (en) | 2007-05-01 | 2013-02-05 | Jackson Roger P | Dynamic stabilization assembly having pre-compressed spacers with differential displacements |
| US8940022B2 (en) | 2007-01-19 | 2015-01-27 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
| US20080177326A1 (en) * | 2007-01-19 | 2008-07-24 | Matthew Thompson | Orthosis to correct spinal deformities |
| US8435268B2 (en) * | 2007-01-19 | 2013-05-07 | Reduction Technologies, Inc. | Systems, devices and methods for the correction of spinal deformities |
| US8568453B2 (en) | 2007-01-29 | 2013-10-29 | Samy Abdou | Spinal stabilization systems and methods of use |
| US20080195153A1 (en) * | 2007-02-08 | 2008-08-14 | Matthew Thompson | Dynamic spinal deformity correction |
| US8012177B2 (en) | 2007-02-12 | 2011-09-06 | Jackson Roger P | Dynamic stabilization assembly with frusto-conical connection |
| US8308801B2 (en) * | 2007-02-12 | 2012-11-13 | Brigham Young University | Spinal implant |
| US9314346B2 (en) * | 2007-02-12 | 2016-04-19 | Brigham Young University | Spinal implant |
| US8267943B2 (en) * | 2007-02-13 | 2012-09-18 | Anova Corporation | Methods and devices for bone, joint, and ligament reconstruction with bands |
| US8097022B2 (en) * | 2007-02-20 | 2012-01-17 | Warsaw Orthopedic, Inc. | Flexible coupling members for spinal stabilization members |
| US20080234691A1 (en) * | 2007-02-21 | 2008-09-25 | Helmut Schwab | Flex-Rod, Curvature-Adaptable |
| WO2008106140A2 (en) | 2007-02-26 | 2008-09-04 | Abdou M Samy | Spinal stabilization systems and methods of use |
| US20080255615A1 (en) * | 2007-03-27 | 2008-10-16 | Warsaw Orthopedic, Inc. | Treatments for Correcting Spinal Deformities |
| US8893946B2 (en) | 2007-03-28 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Laparoscopic tissue thickness and clamp load measuring devices |
| AU2008233124A1 (en) * | 2007-03-30 | 2008-10-09 | Exactech, Inc. | Multi-level minimally invasive spinal stabilization system |
| US20080269805A1 (en) * | 2007-04-25 | 2008-10-30 | Warsaw Orthopedic, Inc. | Methods for correcting spinal deformities |
| US10383660B2 (en) | 2007-05-01 | 2019-08-20 | Roger P. Jackson | Soft stabilization assemblies with pretensioned cords |
| US8979904B2 (en) | 2007-05-01 | 2015-03-17 | Roger P Jackson | Connecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control |
| US20080281362A1 (en) * | 2007-05-09 | 2008-11-13 | Jeremy Lemoine | Device and system for cranial support |
| US8353937B2 (en) * | 2007-05-22 | 2013-01-15 | Warsaw Orthopedic, Inc. | Spinal stabilization systems and methods |
| CA2690038C (en) | 2007-05-31 | 2012-11-27 | Roger P. Jackson | Dynamic stabilization connecting member with pre-tensioned solid core |
| US11564682B2 (en) | 2007-06-04 | 2023-01-31 | Cilag Gmbh International | Surgical stapler device |
| US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
| CA2689965A1 (en) | 2007-06-06 | 2008-12-18 | Kspine, Inc. | Medical device and method to correct deformity |
| US8313515B2 (en) * | 2007-06-15 | 2012-11-20 | Rachiotek, Llc | Multi-level spinal stabilization system |
| US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
| US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
| US9439681B2 (en) | 2007-07-20 | 2016-09-13 | DePuy Synthes Products, Inc. | Polyaxial bone fixation element |
| US8343189B2 (en) | 2007-09-25 | 2013-01-01 | Zyga Technology, Inc. | Method and apparatus for facet joint stabilization |
| US20090088803A1 (en) * | 2007-10-01 | 2009-04-02 | Warsaw Orthopedic, Inc. | Flexible members for correcting spinal deformities |
| US8414588B2 (en) | 2007-10-04 | 2013-04-09 | Depuy Spine, Inc. | Methods and devices for minimally invasive spinal connection element delivery |
| US8157844B2 (en) | 2007-10-22 | 2012-04-17 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a variable length elongated member |
| US8267965B2 (en) | 2007-10-22 | 2012-09-18 | Flexuspine, Inc. | Spinal stabilization systems with dynamic interbody devices |
| US8187330B2 (en) | 2007-10-22 | 2012-05-29 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a variable length elongated member |
| US8162994B2 (en) | 2007-10-22 | 2012-04-24 | Flexuspine, Inc. | Posterior stabilization system with isolated, dual dampener systems |
| US8523912B2 (en) | 2007-10-22 | 2013-09-03 | Flexuspine, Inc. | Posterior stabilization systems with shared, dual dampener systems |
| US8182514B2 (en) | 2007-10-22 | 2012-05-22 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a fixed length elongated member |
| US8911477B2 (en) | 2007-10-23 | 2014-12-16 | Roger P. Jackson | Dynamic stabilization member with end plate support and cable core extension |
| GB0720762D0 (en) | 2007-10-24 | 2007-12-05 | Depuy Spine Sorl | Assembly for orthopaedic surgery |
| US20090112266A1 (en) * | 2007-10-25 | 2009-04-30 | Industrial Technology Research Institute | Spinal dynamic stabilization device |
| US20090112263A1 (en) | 2007-10-30 | 2009-04-30 | Scott Pool | Skeletal manipulation system |
| US20090171392A1 (en) * | 2007-12-04 | 2009-07-02 | Javier Garcia-Bengochea | Guide wire mounting collar for spinal fixation using minimally invasive surgical techniques |
| US9232965B2 (en) * | 2009-02-23 | 2016-01-12 | Nexus Spine, LLC | Press-on link for surgical screws |
| US8894687B2 (en) | 2011-04-25 | 2014-11-25 | Nexus Spine, L.L.C. | Coupling system for surgical construct |
| US12446928B2 (en) | 2011-04-25 | 2025-10-21 | Nexus Spine, LLC | Surgical construct coupling system |
| US8021400B2 (en) * | 2007-12-13 | 2011-09-20 | Trinity Orthopedics Llc | Spinal transverse connector |
| US20090171395A1 (en) * | 2007-12-28 | 2009-07-02 | Jeon Dong M | Dynamic spinal rod system |
| USD620109S1 (en) | 2008-02-05 | 2010-07-20 | Zimmer Spine, Inc. | Surgical installation tool |
| JP2009207877A (en) * | 2008-02-07 | 2009-09-17 | Showa Ika Kohgyo Co Ltd | Rod connector |
| JP5410110B2 (en) | 2008-02-14 | 2014-02-05 | エシコン・エンド−サージェリィ・インコーポレイテッド | Surgical cutting / fixing instrument with RF electrode |
| US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
| US8758391B2 (en) | 2008-02-14 | 2014-06-24 | Ethicon Endo-Surgery, Inc. | Interchangeable tools for surgical instruments |
| US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
| US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
| US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
| US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
| US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
| US9615826B2 (en) | 2010-09-30 | 2017-04-11 | Ethicon Endo-Surgery, Llc | Multiple thickness implantable layers for surgical stapling devices |
| US11272927B2 (en) | 2008-02-15 | 2022-03-15 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
| US9060813B1 (en) | 2008-02-29 | 2015-06-23 | Nuvasive, Inc. | Surgical fixation system and related methods |
| US11202707B2 (en) | 2008-03-25 | 2021-12-21 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant system |
| US9033985B2 (en) * | 2008-05-01 | 2015-05-19 | Linares Medical Devices, Llc | Composite and surface mounted brace, kit and assembly for supporting a fractured bone |
| US8414584B2 (en) | 2008-07-09 | 2013-04-09 | Icon Orthopaedic Concepts, Llc | Ankle arthrodesis nail and outrigger assembly |
| EP2339976B1 (en) | 2008-07-09 | 2016-03-16 | Icon Orthopaedic Concepts, LLC | Ankle arthrodesis nail and outrigger assembly |
| WO2010147639A1 (en) | 2008-08-01 | 2010-12-23 | Jackson Roger P | Longitudinal connecting member with sleeved tensioned cords |
| EP2153786B1 (en) | 2008-08-12 | 2011-10-26 | BIEDERMANN MOTECH GmbH | Modular system for the stabilization of the spinal column |
| US20100049252A1 (en) * | 2008-08-21 | 2010-02-25 | Southern Spine, Llc | Transverse Connector Device for Extending an Existing Spinal Fixation System |
| US8252025B2 (en) * | 2008-09-03 | 2012-08-28 | Zimmer Spine, Inc. | Vertebral fixation system |
| US8870924B2 (en) | 2008-09-04 | 2014-10-28 | Zimmer Spine, Inc. | Dynamic vertebral fastener |
| EP2484300B1 (en) * | 2008-09-05 | 2015-05-20 | Biedermann Technologies GmbH & Co. KG | Stabilization device for bones, in particular for the spinal column |
| US8979905B2 (en) * | 2008-09-10 | 2015-03-17 | Life Spine, Inc. | Spinal rod |
| EP2337512B1 (en) | 2008-09-12 | 2012-03-14 | Synthes GmbH | Spinal stabilizing and guiding fixation system |
| US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
| US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
| US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
| US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
| RU2011117307A (en) | 2008-09-29 | 2012-11-10 | Зинтес Гмбх (Ch) | MULTI-AXIS ASSEMBLY ENTERING BOTTOM SCREW AND ROD |
| US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
| US11241257B2 (en) * | 2008-10-13 | 2022-02-08 | Nuvasive Specialized Orthopedics, Inc. | Spinal distraction system |
| US20100094302A1 (en) * | 2008-10-13 | 2010-04-15 | Scott Pool | Spinal distraction system |
| ES2417308T3 (en) * | 2008-10-15 | 2013-08-07 | Zimmer Spine | Vertebral construction assembly comprising an interconnection device |
| US20100114167A1 (en) * | 2008-10-31 | 2010-05-06 | Warsaw Orthopedic, Inc. | Transition rod |
| BRPI0920181A2 (en) | 2008-11-03 | 2015-12-29 | Synthes Gmbh | uni-planar bone fixation set |
| GB2465335B (en) * | 2008-11-05 | 2012-08-15 | Dalmatic Lystrup As | Bone fixation device |
| GB2465156B (en) | 2008-11-05 | 2012-09-26 | Dalmatic Lystrup As | Bone fixation system |
| US8382756B2 (en) | 2008-11-10 | 2013-02-26 | Ellipse Technologies, Inc. | External adjustment device for distraction device |
| US8828058B2 (en) | 2008-11-11 | 2014-09-09 | Kspine, Inc. | Growth directed vertebral fixation system with distractible connector(s) and apical control |
| WO2010056895A1 (en) | 2008-11-12 | 2010-05-20 | Stout Medical Group, L.P. | Fixation device and method |
| US20100211176A1 (en) | 2008-11-12 | 2010-08-19 | Stout Medical Group, L.P. | Fixation device and method |
| US20100137908A1 (en) * | 2008-12-01 | 2010-06-03 | Zimmer Spine, Inc. | Dynamic Stabilization System Components Including Readily Visualized Polymeric Compositions |
| US8043338B2 (en) * | 2008-12-03 | 2011-10-25 | Zimmer Spine, Inc. | Adjustable assembly for correcting spinal abnormalities |
| US9055979B2 (en) * | 2008-12-03 | 2015-06-16 | Zimmer Gmbh | Cord for vertebral fixation having multiple stiffness phases |
| IT1392200B1 (en) * | 2008-12-17 | 2012-02-22 | N B R New Biotechnology Res | MODULAR VERTEBRAL STABILIZER. |
| BRPI0919600A2 (en) | 2008-12-17 | 2015-12-08 | Synthes Gmbh | posterior and dynamic spinal stabilizer |
| WO2010075555A2 (en) | 2008-12-26 | 2010-07-01 | Scott Spann | Minimally-invasive retroperitoneal lateral approach for spinal surgery |
| US8137356B2 (en) * | 2008-12-29 | 2012-03-20 | Zimmer Spine, Inc. | Flexible guide for insertion of a vertebral stabilization system |
| US20100198262A1 (en) * | 2009-01-30 | 2010-08-05 | Mckinley Laurence M | Axial offset bone fastener system |
| US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
| US8444036B2 (en) | 2009-02-06 | 2013-05-21 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector |
| WO2010090940A1 (en) | 2009-02-06 | 2010-08-12 | Ethicon Endo-Surgery, Inc. | Driven surgical stapler improvements |
| US8182512B2 (en) * | 2009-02-13 | 2012-05-22 | Muhanna Nabil L | Facet joint prosthetic replacement and method |
| CA2743721A1 (en) * | 2009-02-19 | 2010-08-26 | Anton E. Bowden | Compliant dynamic spinal implant |
| US8197490B2 (en) | 2009-02-23 | 2012-06-12 | Ellipse Technologies, Inc. | Non-invasive adjustable distraction system |
| US8998961B1 (en) | 2009-02-26 | 2015-04-07 | Lanx, Inc. | Spinal rod connector and methods |
| US8091305B2 (en) * | 2009-02-27 | 2012-01-10 | Skeeter Jane A | Recycled glass structural and decorative barrier or building, lighting and furniture component |
| US8357183B2 (en) | 2009-03-26 | 2013-01-22 | Kspine, Inc. | Semi-constrained anchoring system |
| WO2010120989A1 (en) | 2009-04-15 | 2010-10-21 | Synthes Usa, Llc | Revision connector for spinal constructs |
| CA2759249A1 (en) | 2009-04-23 | 2010-10-28 | Spinal Elements, Inc. | Transverse connectors |
| US8333791B2 (en) * | 2009-04-24 | 2012-12-18 | Warsaw Orthopedic, Inc. | Medical implant with tie configured to deliver a therapeutic substance |
| US9622792B2 (en) | 2009-04-29 | 2017-04-18 | Nuvasive Specialized Orthopedics, Inc. | Interspinous process device and method |
| US8372120B2 (en) | 2009-05-20 | 2013-02-12 | Spine Wave, Inc. | Multi-axial cross connector |
| US8419772B2 (en) * | 2009-06-08 | 2013-04-16 | Reduction Technologies, Inc. | Systems, methods and devices for correcting spinal deformities |
| US8430913B2 (en) * | 2009-06-10 | 2013-04-30 | Spine Wave, Inc. | Devices and methods for adding an additional level of fixation to an existing construct |
| WO2013043218A1 (en) | 2009-06-15 | 2013-03-28 | Jackson Roger P | Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet |
| US9668771B2 (en) | 2009-06-15 | 2017-06-06 | Roger P Jackson | Soft stabilization assemblies with off-set connector |
| US8998959B2 (en) | 2009-06-15 | 2015-04-07 | Roger P Jackson | Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert |
| US11229457B2 (en) | 2009-06-15 | 2022-01-25 | Roger P. Jackson | Pivotal bone anchor assembly with insert tool deployment |
| BRPI1012921A2 (en) | 2009-06-17 | 2016-04-05 | Synthes Gmbh | revision connector for spinal construction |
| US8876869B1 (en) | 2009-06-19 | 2014-11-04 | Nuvasive, Inc. | Polyaxial bone screw assembly |
| US8876867B2 (en) | 2009-06-24 | 2014-11-04 | Zimmer Spine, Inc. | Spinal correction tensioning system |
| US8506598B1 (en) | 2009-06-26 | 2013-08-13 | Nuvasive, Inc. | Anchors for spinal fixation and correcting spinal deformity |
| TW201102043A (en) * | 2009-07-03 | 2011-01-16 | Accumis Inc | Flexible spinal fixation device and rod thereof |
| US8394125B2 (en) | 2009-07-24 | 2013-03-12 | Zyga Technology, Inc. | Systems and methods for facet joint treatment |
| US8657856B2 (en) * | 2009-08-28 | 2014-02-25 | Pioneer Surgical Technology, Inc. | Size transition spinal rod |
| CN102905625B (en) | 2009-09-04 | 2015-09-09 | 埃利普斯科技有限公司 | Bone growth device and method |
| US9168071B2 (en) | 2009-09-15 | 2015-10-27 | K2M, Inc. | Growth modulation system |
| AU2010303934B2 (en) | 2009-10-05 | 2014-03-27 | Roger P. Jackson | Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit |
| US8236032B2 (en) | 2009-10-20 | 2012-08-07 | Depuy Spine, Inc. | Spinal implant with a flexible extension element |
| US9157497B1 (en) | 2009-10-30 | 2015-10-13 | Brigham Young University | Lamina emergent torsional joint and related methods |
| CN102821673B (en) | 2009-11-10 | 2016-06-08 | 纽瓦西弗公司 | Retractor systems |
| US8328849B2 (en) * | 2009-12-01 | 2012-12-11 | Zimmer Gmbh | Cord for vertebral stabilization system |
| US8764806B2 (en) | 2009-12-07 | 2014-07-01 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
| US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
| US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
| US8636655B1 (en) | 2010-01-19 | 2014-01-28 | Ronald Childs | Tissue retraction system and related methods |
| US9050138B2 (en) | 2010-01-28 | 2015-06-09 | Warsaw Orthopedic, Inc. | Vertebral rod connector and methods of use |
| US8740945B2 (en) | 2010-04-07 | 2014-06-03 | Zimmer Spine, Inc. | Dynamic stabilization system using polyaxial screws |
| US8535380B2 (en) | 2010-05-13 | 2013-09-17 | Stout Medical Group, L.P. | Fixation device and method |
| US12383311B2 (en) | 2010-05-14 | 2025-08-12 | Roger P. Jackson | Pivotal bone anchor assembly and method for use thereof |
| US9198696B1 (en) | 2010-05-27 | 2015-12-01 | Nuvasive, Inc. | Cross-connector and related methods |
| US9233006B2 (en) | 2010-06-15 | 2016-01-12 | Zyga Technology, Inc. | Systems and methods for facet joint treatment |
| US8663293B2 (en) | 2010-06-15 | 2014-03-04 | Zyga Technology, Inc. | Systems and methods for facet joint treatment |
| US8512383B2 (en) | 2010-06-18 | 2013-08-20 | Spine Wave, Inc. | Method of percutaneously fixing a connecting rod to a spine |
| US8394108B2 (en) | 2010-06-18 | 2013-03-12 | Spine Wave, Inc. | Screw driver for a multiaxial bone screw |
| US8202274B2 (en) | 2010-06-18 | 2012-06-19 | Spine Wave, Inc. | Apparatus and method for detecting a connecting rod during percutaneous surgery |
| US8777954B2 (en) | 2010-06-18 | 2014-07-15 | Spine Wave, Inc. | Pedicle screw extension for use in percutaneous spinal fixation |
| US8454664B2 (en) | 2010-06-18 | 2013-06-04 | Spine Wave, Inc. | Method for fixing a connecting rod to a thoracic spine |
| CN102293680B (en) | 2010-06-24 | 2014-04-16 | 华沙整形外科股份有限公司 | Coplanar straightening system |
| US9248043B2 (en) | 2010-06-30 | 2016-02-02 | Ellipse Technologies, Inc. | External adjustment device for distraction device |
| US8920471B2 (en) | 2010-07-12 | 2014-12-30 | K2M, Inc. | Transverse connector |
| US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
| WO2012021378A2 (en) | 2010-08-09 | 2012-02-16 | Ellipse Technologies, Inc. | Maintenance feature in magnetic implant |
| WO2012027490A2 (en) | 2010-08-24 | 2012-03-01 | Stout Medical Group, L.P. | Support device and method for use |
| US8382803B2 (en) | 2010-08-30 | 2013-02-26 | Zimmer Gmbh | Vertebral stabilization transition connector |
| WO2012033532A1 (en) | 2010-09-08 | 2012-03-15 | Roger Jackson P | Dynamic stabilization members with elastic and inelastic sections |
| US12213666B2 (en) | 2010-09-30 | 2025-02-04 | Cilag Gmbh International | Tissue thickness compensator comprising layers |
| US20120080336A1 (en) | 2010-09-30 | 2012-04-05 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising staples positioned within a compressible portion thereof |
| US9517063B2 (en) | 2012-03-28 | 2016-12-13 | Ethicon Endo-Surgery, Llc | Movable member for use with a tissue thickness compensator |
| US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
| US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
| US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
| US9272406B2 (en) | 2010-09-30 | 2016-03-01 | Ethicon Endo-Surgery, Llc | Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator |
| US11925354B2 (en) | 2010-09-30 | 2024-03-12 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
| US9386988B2 (en) | 2010-09-30 | 2016-07-12 | Ethicon End-Surgery, LLC | Retainer assembly including a tissue thickness compensator |
| US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
| US9364233B2 (en) | 2010-09-30 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators for circular surgical staplers |
| US9839420B2 (en) | 2010-09-30 | 2017-12-12 | Ethicon Llc | Tissue thickness compensator comprising at least one medicament |
| US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
| DE112011104028A1 (en) | 2010-11-02 | 2013-12-12 | Roger P. Jackson | Polyaxial bone anchor with quick-release shaft and rotatable holder |
| US9149286B1 (en) | 2010-11-12 | 2015-10-06 | Flexmedex, LLC | Guidance tool and method for use |
| EP2468200A1 (en) | 2010-12-21 | 2012-06-27 | Zimmer Spine | Orthopaedic device and methods for its pre-assembly and assembly |
| US9198692B1 (en) | 2011-02-10 | 2015-12-01 | Nuvasive, Inc. | Spinal fixation anchor |
| US8715282B2 (en) | 2011-02-14 | 2014-05-06 | Ellipse Technologies, Inc. | System and method for altering rotational alignment of bone sections |
| US8740949B2 (en) | 2011-02-24 | 2014-06-03 | Spinal Elements, Inc. | Methods and apparatus for stabilizing bone |
| US9247964B1 (en) | 2011-03-01 | 2016-02-02 | Nuasive, Inc. | Spinal Cross-connector |
| US9387013B1 (en) | 2011-03-01 | 2016-07-12 | Nuvasive, Inc. | Posterior cervical fixation system |
| US8672978B2 (en) | 2011-03-04 | 2014-03-18 | Zimmer Spine, Inc. | Transverse connector |
| WO2012128825A1 (en) | 2011-03-24 | 2012-09-27 | Jackson Roger P | Polyaxial bone anchor with compound articulation and pop-on shank |
| US8388687B2 (en) | 2011-03-25 | 2013-03-05 | Flexuspine, Inc. | Interbody device insertion systems and methods |
| JP6026509B2 (en) | 2011-04-29 | 2016-11-16 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Staple cartridge including staples disposed within a compressible portion of the staple cartridge itself |
| US9307972B2 (en) | 2011-05-10 | 2016-04-12 | Nuvasive, Inc. | Method and apparatus for performing spinal fusion surgery |
| US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
| WO2012167105A1 (en) | 2011-06-03 | 2012-12-06 | Kspine, Inc. | Spinal correction system actuators |
| WO2012177412A2 (en) | 2011-06-07 | 2012-12-27 | Brigham Young University | Serpentine spinal stability device and associated methods |
| JP2014529445A (en) | 2011-08-23 | 2014-11-13 | フレックスメデックス,エルエルシー | Tissue removal apparatus and method |
| US8845728B1 (en) | 2011-09-23 | 2014-09-30 | Samy Abdou | Spinal fixation devices and methods of use |
| US10743794B2 (en) | 2011-10-04 | 2020-08-18 | Nuvasive Specialized Orthopedics, Inc. | Devices and methods for non-invasive implant length sensing |
| JP2014533136A (en) | 2011-10-05 | 2014-12-11 | マーク・エイ・ドッドソン | Module retractor and related methods |
| US8657855B2 (en) * | 2011-10-17 | 2014-02-25 | Warsaw Orthopedic, Inc. | Spinal fixation implant for mounting to spinous processes and related method |
| US20130103091A1 (en) * | 2011-10-20 | 2013-04-25 | Frank Lugo ACOSTA, JR. | Spinal fusion instrumentation and systems and methods thereof |
| USD739935S1 (en) | 2011-10-26 | 2015-09-29 | Spinal Elements, Inc. | Interbody bone implant |
| US10016220B2 (en) | 2011-11-01 | 2018-07-10 | Nuvasive Specialized Orthopedics, Inc. | Adjustable magnetic devices and methods of using same |
| WO2014172632A2 (en) | 2011-11-16 | 2014-10-23 | Kspine, Inc. | Spinal correction and secondary stabilization |
| US9451987B2 (en) | 2011-11-16 | 2016-09-27 | K2M, Inc. | System and method for spinal correction |
| US8920472B2 (en) | 2011-11-16 | 2014-12-30 | Kspine, Inc. | Spinal correction and secondary stabilization |
| US9468468B2 (en) | 2011-11-16 | 2016-10-18 | K2M, Inc. | Transverse connector for spinal stabilization system |
| US9468469B2 (en) | 2011-11-16 | 2016-10-18 | K2M, Inc. | Transverse coupler adjuster spinal correction systems and methods |
| US9526627B2 (en) | 2011-11-17 | 2016-12-27 | Exactech, Inc. | Expandable interbody device system and method |
| US8657826B2 (en) | 2011-12-08 | 2014-02-25 | Spine Wave, Inc. | Apparatus and devices for percutaneously extending an existing spinal construct |
| WO2013106217A1 (en) | 2012-01-10 | 2013-07-18 | Jackson, Roger, P. | Multi-start closures for open implants |
| US9125703B2 (en) | 2012-01-16 | 2015-09-08 | K2M, Inc. | Rod reducer, compressor, distractor system |
| US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
| US20130226240A1 (en) | 2012-02-22 | 2013-08-29 | Samy Abdou | Spinous process fixation devices and methods of use |
| RU2014143258A (en) | 2012-03-28 | 2016-05-20 | Этикон Эндо-Серджери, Инк. | FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS |
| JP6105041B2 (en) | 2012-03-28 | 2017-03-29 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Tissue thickness compensator containing capsules defining a low pressure environment |
| RU2644272C2 (en) | 2012-03-28 | 2018-02-08 | Этикон Эндо-Серджери, Инк. | Limitation node with tissue thickness compensator |
| US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
| US20130338714A1 (en) | 2012-06-15 | 2013-12-19 | Arvin Chang | Magnetic implants with improved anatomical compatibility |
| US10327818B2 (en) * | 2012-06-18 | 2019-06-25 | Bruce Francis Hodgson | Method and apparatus for the treatment of scoliosis |
| EP2866686A1 (en) | 2012-06-28 | 2015-05-06 | Ethicon Endo-Surgery, Inc. | Empty clip cartridge lockout |
| US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
| US9204879B2 (en) | 2012-06-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Flexible drive member |
| US20140001234A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Coupling arrangements for attaching surgical end effectors to drive systems therefor |
| US12383267B2 (en) | 2012-06-28 | 2025-08-12 | Cilag Gmbh International | Robotically powered surgical device with manually-actuatable reversing system |
| US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
| US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
| BR112014032776B1 (en) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM |
| US11202631B2 (en) | 2012-06-28 | 2021-12-21 | Cilag Gmbh International | Stapling assembly comprising a firing lockout |
| EP2877109A4 (en) * | 2012-07-24 | 2016-03-23 | Carbofix In Orthopedics Llc | Spine system and kit |
| US9198767B2 (en) | 2012-08-28 | 2015-12-01 | Samy Abdou | Devices and methods for spinal stabilization and instrumentation |
| EP2908749B1 (en) * | 2012-10-17 | 2019-11-20 | K2M, Inc. | Spinal correction adjustment systems |
| US9044281B2 (en) | 2012-10-18 | 2015-06-02 | Ellipse Technologies, Inc. | Intramedullary implants for replacing lost bone |
| US9320617B2 (en) | 2012-10-22 | 2016-04-26 | Cogent Spine, LLC | Devices and methods for spinal stabilization and instrumentation |
| US10130405B2 (en) | 2012-10-29 | 2018-11-20 | Nuvasive Specialized Orthopedics, Inc. | Adjustable devices for treating arthritis of the knee |
| KR20150087273A (en) | 2012-11-15 | 2015-07-29 | 지가 테크놀로지 인코포레이티드 | Systems and methods for facet joint treatment |
| US8911478B2 (en) | 2012-11-21 | 2014-12-16 | Roger P. Jackson | Splay control closure for open bone anchor |
| US10058354B2 (en) | 2013-01-28 | 2018-08-28 | Roger P. Jackson | Pivotal bone anchor assembly with frictional shank head seating surfaces |
| US8852239B2 (en) | 2013-02-15 | 2014-10-07 | Roger P Jackson | Sagittal angle screw with integral shank and receiver |
| US9492288B2 (en) | 2013-02-20 | 2016-11-15 | Flexuspine, Inc. | Expandable fusion device for positioning between adjacent vertebral bodies |
| JP6382235B2 (en) | 2013-03-01 | 2018-08-29 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Articulatable surgical instrument with a conductive path for signal communication |
| JP6345707B2 (en) | 2013-03-01 | 2018-06-20 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Surgical instrument with soft stop |
| US9179938B2 (en) | 2013-03-08 | 2015-11-10 | Ellipse Technologies, Inc. | Distraction devices and method of assembling the same |
| US9421044B2 (en) | 2013-03-14 | 2016-08-23 | Spinal Elements, Inc. | Apparatus for bone stabilization and distraction and methods of use |
| CA2846149C (en) | 2013-03-14 | 2018-03-20 | Stryker Spine | Systems and methods for percutaneous spinal fusion |
| US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
| US10470762B2 (en) | 2013-03-14 | 2019-11-12 | Ethicon Llc | Multi-function motor for a surgical instrument |
| US9827020B2 (en) | 2013-03-14 | 2017-11-28 | Stryker European Holdings I, Llc | Percutaneous spinal cross link system and method |
| US9668789B2 (en) | 2013-03-15 | 2017-06-06 | Ebi, Llc | Reduction instrument, surgical assembly including a reduction instrument and related method |
| US9393045B2 (en) | 2013-03-15 | 2016-07-19 | Biomet Manufacturing, Llc. | Clamping assembly for external fixation system |
| BR112015026109B1 (en) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | surgical instrument |
| US9867612B2 (en) | 2013-04-16 | 2018-01-16 | Ethicon Llc | Powered surgical stapler |
| US9295500B2 (en) | 2013-06-12 | 2016-03-29 | Spine Wave, Inc. | Screw driver with release for a multiaxial bone screw |
| US10226242B2 (en) | 2013-07-31 | 2019-03-12 | Nuvasive Specialized Orthopedics, Inc. | Noninvasively adjustable suture anchors |
| US9801734B1 (en) | 2013-08-09 | 2017-10-31 | Nuvasive, Inc. | Lordotic expandable interbody implant |
| US10478097B2 (en) | 2013-08-13 | 2019-11-19 | Innovative Surgical Solutions | Neural event detection |
| US10478096B2 (en) | 2013-08-13 | 2019-11-19 | Innovative Surgical Solutions. | Neural event detection |
| JP6416260B2 (en) | 2013-08-23 | 2018-10-31 | エシコン エルエルシー | Firing member retractor for a powered surgical instrument |
| US20150053743A1 (en) | 2013-08-23 | 2015-02-26 | Ethicon Endo-Surgery, Inc. | Error detection arrangements for surgical instrument assemblies |
| EP3038552B1 (en) | 2013-09-01 | 2020-08-12 | Carbofix In Orthopedics LLC | Composite material spinal implant |
| US9468471B2 (en) | 2013-09-17 | 2016-10-18 | K2M, Inc. | Transverse coupler adjuster spinal correction systems and methods |
| US10376209B2 (en) | 2013-09-20 | 2019-08-13 | Innovative Surgical Solutions, Llc | Neural locating method |
| US10376208B2 (en) | 2013-09-20 | 2019-08-13 | Innovative Surgical Solutions, Llc | Nerve mapping system |
| US10449002B2 (en) | 2013-09-20 | 2019-10-22 | Innovative Surgical Solutions, Llc | Method of mapping a nerve |
| US9839450B2 (en) | 2013-09-27 | 2017-12-12 | Spinal Elements, Inc. | Device and method for reinforcement of a facet |
| US9456855B2 (en) * | 2013-09-27 | 2016-10-04 | Spinal Elements, Inc. | Method of placing an implant between bone portions |
| US9517089B1 (en) | 2013-10-08 | 2016-12-13 | Nuvasive, Inc. | Bone anchor with offset rod connector |
| US10751094B2 (en) | 2013-10-10 | 2020-08-25 | Nuvasive Specialized Orthopedics, Inc. | Adjustable spinal implant |
| US9566092B2 (en) | 2013-10-29 | 2017-02-14 | Roger P. Jackson | Cervical bone anchor with collet retainer and outer locking sleeve |
| US10159579B1 (en) | 2013-12-06 | 2018-12-25 | Stryker European Holdings I, Llc | Tubular instruments for percutaneous posterior spinal fusion systems and methods |
| US9744050B1 (en) | 2013-12-06 | 2017-08-29 | Stryker European Holdings I, Llc | Compression and distraction system for percutaneous posterior spinal fusion |
| US9408716B1 (en) | 2013-12-06 | 2016-08-09 | Stryker European Holdings I, Llc | Percutaneous posterior spinal fusion implant construction and method |
| US9717533B2 (en) | 2013-12-12 | 2017-08-01 | Roger P. Jackson | Bone anchor closure pivot-splay control flange form guide and advancement structure |
| CA2874390C (en) | 2013-12-13 | 2018-03-06 | Stryker European Holdings I, Llc | Tissue retraction and vertebral displacement devices, systems, and methods for posterior spinal fusion |
| US9451993B2 (en) | 2014-01-09 | 2016-09-27 | Roger P. Jackson | Bi-radial pop-on cervical bone anchor |
| US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
| CN106232029B (en) | 2014-02-24 | 2019-04-12 | 伊西康内外科有限责任公司 | Fastening system including firing member lock |
| US20150272571A1 (en) | 2014-03-26 | 2015-10-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument utilizing sensor adaptation |
| US12232723B2 (en) | 2014-03-26 | 2025-02-25 | Cilag Gmbh International | Systems and methods for controlling a segmented circuit |
| US10004497B2 (en) | 2014-03-26 | 2018-06-26 | Ethicon Llc | Interface systems for use with surgical instruments |
| BR112016021943B1 (en) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE |
| US9733663B2 (en) | 2014-03-26 | 2017-08-15 | Ethicon Llc | Power management through segmented circuit and variable voltage protection |
| US9801627B2 (en) | 2014-09-26 | 2017-10-31 | Ethicon Llc | Fastener cartridge for creating a flexible staple line |
| US10542988B2 (en) | 2014-04-16 | 2020-01-28 | Ethicon Llc | End effector comprising an anvil including projections extending therefrom |
| US20150297223A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
| BR112016023825B1 (en) | 2014-04-16 | 2022-08-02 | Ethicon Endo-Surgery, Llc | STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT |
| JP6532889B2 (en) | 2014-04-16 | 2019-06-19 | エシコン エルエルシーEthicon LLC | Fastener cartridge assembly and staple holder cover arrangement |
| BR112016023698B1 (en) | 2014-04-16 | 2022-07-26 | Ethicon Endo-Surgery, Llc | FASTENER CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT |
| US10398565B2 (en) | 2014-04-24 | 2019-09-03 | Choice Spine, Llc | Limited profile intervertebral implant with incorporated fastening and locking mechanism |
| US9517144B2 (en) | 2014-04-24 | 2016-12-13 | Exactech, Inc. | Limited profile intervertebral implant with incorporated fastening mechanism |
| CN106456215B (en) | 2014-04-28 | 2020-04-10 | 诺威适骨科专科公司 | External adjustment device for adjusting a medical implant |
| US10064658B2 (en) | 2014-06-04 | 2018-09-04 | Roger P. Jackson | Polyaxial bone anchor with insert guides |
| US9597119B2 (en) | 2014-06-04 | 2017-03-21 | Roger P. Jackson | Polyaxial bone anchor with polymer sleeve |
| US9642651B2 (en) | 2014-06-12 | 2017-05-09 | Brigham Young University | Inverted serpentine spinal stability device and associated methods |
| US10045781B2 (en) | 2014-06-13 | 2018-08-14 | Ethicon Llc | Closure lockout systems for surgical instruments |
| AU2015302333B2 (en) | 2014-08-13 | 2020-05-07 | Nuvasive, Inc. | Minimally disruptive retractor and associated methods for spinal surgery |
| US9724094B2 (en) | 2014-09-05 | 2017-08-08 | Ethicon Llc | Adjunct with integrated sensors to quantify tissue compression |
| BR112017004361B1 (en) | 2014-09-05 | 2023-04-11 | Ethicon Llc | ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT |
| US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
| US11478275B2 (en) | 2014-09-17 | 2022-10-25 | Spinal Elements, Inc. | Flexible fastening band connector |
| US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
| JP6648119B2 (en) | 2014-09-26 | 2020-02-14 | エシコン エルエルシーEthicon LLC | Surgical stapling buttress and accessory materials |
| US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
| AU2015330972B2 (en) | 2014-10-09 | 2021-03-25 | Spinal Developments Pty Ltd | Spinal alignment and securement |
| US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
| US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
| DK3209226T3 (en) | 2014-10-23 | 2021-02-01 | Nuvasive Specialized Orthopedics Inc | Interactive bone restructuring implant, which can be adjusted remotely |
| US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
| US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
| US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
| CN107530108A (en) | 2014-12-03 | 2018-01-02 | S.马利 理查德 | Bone implant with tether |
| CA3008161C (en) | 2014-12-09 | 2023-09-26 | John A. Heflin | Spine alignment system |
| US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
| RU2703684C2 (en) | 2014-12-18 | 2019-10-21 | ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи | Surgical instrument with anvil which is selectively movable relative to staple cartridge around discrete fixed axis |
| US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
| US10004501B2 (en) | 2014-12-18 | 2018-06-26 | Ethicon Llc | Surgical instruments with improved closure arrangements |
| US10117649B2 (en) | 2014-12-18 | 2018-11-06 | Ethicon Llc | Surgical instrument assembly comprising a lockable articulation system |
| US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
| US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
| US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
| US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
| KR102560581B1 (en) | 2014-12-26 | 2023-07-26 | 누베이시브 스페셜라이즈드 오소페딕스, 인크. | System and method for distraction |
| US10238427B2 (en) | 2015-02-19 | 2019-03-26 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for vertebral adjustment |
| US9993258B2 (en) | 2015-02-27 | 2018-06-12 | Ethicon Llc | Adaptable surgical instrument handle |
| US10245028B2 (en) | 2015-02-27 | 2019-04-02 | Ethicon Llc | Power adapter for a surgical instrument |
| US10180463B2 (en) | 2015-02-27 | 2019-01-15 | Ethicon Llc | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
| US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
| US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
| US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
| US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
| US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
| US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
| US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
| US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
| US10045776B2 (en) | 2015-03-06 | 2018-08-14 | Ethicon Llc | Control techniques and sub-processor contained within modular shaft with select control processing from handle |
| US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
| US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
| JP2020121162A (en) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement |
| US10213201B2 (en) | 2015-03-31 | 2019-02-26 | Ethicon Llc | Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw |
| US10178992B2 (en) | 2015-06-18 | 2019-01-15 | Ethicon Llc | Push/pull articulation drive systems for articulatable surgical instruments |
| US20170049482A1 (en) * | 2015-08-17 | 2017-02-23 | Spinal Usa, Inc. | Spinal screws and methods of using the same |
| US10617418B2 (en) | 2015-08-17 | 2020-04-14 | Ethicon Llc | Implantable layers for a surgical instrument |
| US10188394B2 (en) | 2015-08-26 | 2019-01-29 | Ethicon Llc | Staples configured to support an implantable adjunct |
| US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
| US10363036B2 (en) | 2015-09-23 | 2019-07-30 | Ethicon Llc | Surgical stapler having force-based motor control |
| US10076326B2 (en) | 2015-09-23 | 2018-09-18 | Ethicon Llc | Surgical stapler having current mirror-based motor control |
| US10327769B2 (en) | 2015-09-23 | 2019-06-25 | Ethicon Llc | Surgical stapler having motor control based on a drive system component |
| US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
| US10085751B2 (en) | 2015-09-23 | 2018-10-02 | Ethicon Llc | Surgical stapler having temperature-based motor control |
| US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
| US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
| US10736633B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Compressible adjunct with looping members |
| US10172620B2 (en) | 2015-09-30 | 2019-01-08 | Ethicon Llc | Compressible adjuncts with bonding nodes |
| US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
| US9439692B1 (en) | 2015-10-09 | 2016-09-13 | Spine Wave, Inc. | Minimally invasive spinal fixation system and method therefor |
| US10857003B1 (en) | 2015-10-14 | 2020-12-08 | Samy Abdou | Devices and methods for vertebral stabilization |
| JP2018534983A (en) | 2015-10-16 | 2018-11-29 | ニューベイシブ スペシャライズド オーソペディックス,インコーポレイテッド | Adjustable device to treat knee arthritis |
| US10639078B2 (en) * | 2015-11-17 | 2020-05-05 | Warsaw Orthopedic, Inc. | Spinal implant system and method |
| EP4275631B1 (en) | 2015-12-10 | 2025-10-01 | NuVasive Specialized Orthopedics, Inc. | External adjustment device for distraction device |
| EP3181075B1 (en) * | 2015-12-17 | 2021-04-14 | Ozer, Ali Fahir | Double-headed pedicle screw |
| US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
| US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
| US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
| EP3656323B1 (en) | 2016-01-28 | 2021-06-23 | NuVasive Specialized Orthopedics, Inc. | Systems for bone transport |
| JP6911054B2 (en) | 2016-02-09 | 2021-07-28 | エシコン エルエルシーEthicon LLC | Surgical instruments with asymmetric joint composition |
| US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
| US10588625B2 (en) | 2016-02-09 | 2020-03-17 | Ethicon Llc | Articulatable surgical instruments with off-axis firing beam arrangements |
| WO2017139548A1 (en) | 2016-02-10 | 2017-08-17 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for controlling multiple surgical variables |
| WO2017139782A1 (en) | 2016-02-12 | 2017-08-17 | Nuvasive, Inc. | Post-operatively adjustable angled rod |
| US11446063B2 (en) | 2016-02-12 | 2022-09-20 | Nuvasive, Inc. | Post-operatively adjustable angled rod |
| US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
| US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
| US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
| US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
| US10376263B2 (en) | 2016-04-01 | 2019-08-13 | Ethicon Llc | Anvil modification members for surgical staplers |
| US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
| US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
| US10405859B2 (en) | 2016-04-15 | 2019-09-10 | Ethicon Llc | Surgical instrument with adjustable stop/start control during a firing motion |
| US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
| US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
| US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
| US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
| US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
| US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
| US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
| US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
| US10426469B2 (en) | 2016-04-18 | 2019-10-01 | Ethicon Llc | Surgical instrument comprising a primary firing lockout and a secondary firing lockout |
| US10004538B2 (en) * | 2016-04-27 | 2018-06-26 | Warsaw Orthopedic, Inc. | Surgical instrument and method |
| JP7139313B2 (en) | 2016-08-16 | 2022-09-20 | デピュイ・シンセス・プロダクツ・インコーポレイテッド | bone fixation system |
| US10548673B2 (en) | 2016-08-16 | 2020-02-04 | Ethicon Llc | Surgical tool with a display |
| US10321833B2 (en) | 2016-10-05 | 2019-06-18 | Innovative Surgical Solutions. | Neural locating method |
| US10543022B2 (en) | 2016-10-11 | 2020-01-28 | Warsaw Orthopedic, Inc. | Spinal implant system and method |
| US10973648B1 (en) | 2016-10-25 | 2021-04-13 | Samy Abdou | Devices and methods for vertebral bone realignment |
| US10744000B1 (en) | 2016-10-25 | 2020-08-18 | Samy Abdou | Devices and methods for vertebral bone realignment |
| US10898240B2 (en) | 2016-11-18 | 2021-01-26 | Jgmg Bengochea, Llc | Implants and instruments for enhancing vertebral alignment and sagittal balance |
| US10588632B2 (en) | 2016-12-21 | 2020-03-17 | Ethicon Llc | Surgical end effectors and firing members thereof |
| US10918385B2 (en) | 2016-12-21 | 2021-02-16 | Ethicon Llc | Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system |
| JP7010957B2 (en) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | Shaft assembly with lockout |
| US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
| US10568626B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Surgical instruments with jaw opening features for increasing a jaw opening distance |
| US20180168598A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Staple forming pocket arrangements comprising zoned forming surface grooves |
| US20180168625A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with smart staple cartridges |
| US20180168608A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical instrument system comprising an end effector lockout and a firing assembly lockout |
| JP2020501779A (en) | 2016-12-21 | 2020-01-23 | エシコン エルエルシーEthicon LLC | Surgical stapling system |
| US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
| CN110114003A (en) | 2016-12-21 | 2019-08-09 | 爱惜康有限责任公司 | Surgical stapling system |
| CN110114014B (en) | 2016-12-21 | 2022-08-09 | 爱惜康有限责任公司 | Surgical instrument system including end effector and firing assembly lockout |
| US10835246B2 (en) | 2016-12-21 | 2020-11-17 | Ethicon Llc | Staple cartridges and arrangements of staples and staple cavities therein |
| US10524789B2 (en) | 2016-12-21 | 2020-01-07 | Ethicon Llc | Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration |
| US10485543B2 (en) | 2016-12-21 | 2019-11-26 | Ethicon Llc | Anvil having a knife slot width |
| US10980536B2 (en) | 2016-12-21 | 2021-04-20 | Ethicon Llc | No-cartridge and spent cartridge lockout arrangements for surgical staplers |
| US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
| JP6983893B2 (en) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | Lockout configuration for surgical end effectors and replaceable tool assemblies |
| US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
| US10758229B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument comprising improved jaw control |
| JP7010956B2 (en) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | How to staple tissue |
| US10675026B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Methods of stapling tissue |
| US10716553B2 (en) | 2017-04-19 | 2020-07-21 | Pantheon Spinal, Llc | Spine surgery retractor system and related methods |
| US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
| US12490980B2 (en) | 2017-06-20 | 2025-12-09 | Cilag Gmbh International | Surgical instrument having controllable articulation velocity |
| USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
| US10390841B2 (en) | 2017-06-20 | 2019-08-27 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
| US10327767B2 (en) | 2017-06-20 | 2019-06-25 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
| US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
| US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
| US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
| USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
| USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
| US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
| US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
| US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
| US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
| US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
| US10368864B2 (en) | 2017-06-20 | 2019-08-06 | Ethicon Llc | Systems and methods for controlling displaying motor velocity for a surgical instrument |
| US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
| US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
| US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
| US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
| US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
| US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
| US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
| US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
| US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
| US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
| US11090049B2 (en) | 2017-06-27 | 2021-08-17 | Cilag Gmbh International | Staple forming pocket arrangements |
| US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
| USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
| US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
| USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
| US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
| US10695057B2 (en) | 2017-06-28 | 2020-06-30 | Ethicon Llc | Surgical instrument lockout arrangement |
| US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
| US10211586B2 (en) | 2017-06-28 | 2019-02-19 | Ethicon Llc | Surgical shaft assemblies with watertight housings |
| USD854151S1 (en) | 2017-06-28 | 2019-07-16 | Ethicon Llc | Surgical instrument shaft |
| US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
| US11484310B2 (en) | 2017-06-28 | 2022-11-01 | Cilag Gmbh International | Surgical instrument comprising a shaft including a closure tube profile |
| EP3420947B1 (en) | 2017-06-28 | 2022-05-25 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
| US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
| USD851762S1 (en) | 2017-06-28 | 2019-06-18 | Ethicon Llc | Anvil |
| US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
| US10398434B2 (en) | 2017-06-29 | 2019-09-03 | Ethicon Llc | Closed loop velocity control of closure member for robotic surgical instrument |
| US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
| US10258418B2 (en) | 2017-06-29 | 2019-04-16 | Ethicon Llc | System for controlling articulation forces |
| US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
| US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
| US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
| US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
| US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
| USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
| US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
| USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
| USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
| US10729501B2 (en) | 2017-09-29 | 2020-08-04 | Ethicon Llc | Systems and methods for language selection of a surgical instrument |
| US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
| US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
| US10796471B2 (en) | 2017-09-29 | 2020-10-06 | Ethicon Llc | Systems and methods of displaying a knife position for a surgical instrument |
| US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
| US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
| US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
| US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
| US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
| US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
| US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
| US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
| US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
| US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
| US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
| US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
| US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
| US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
| US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
| US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
| US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
| US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
| US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
| US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
| US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
| USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
| US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
| US12336705B2 (en) | 2017-12-21 | 2025-06-24 | Cilag Gmbh International | Continuous use self-propelled stapling instrument |
| US11751867B2 (en) | 2017-12-21 | 2023-09-12 | Cilag Gmbh International | Surgical instrument comprising sequenced systems |
| US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
| US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
| US12185986B2 (en) * | 2018-01-30 | 2025-01-07 | Orthopediatrics Corp. | Segmental tensioning of spinal tethers |
| US10869616B2 (en) | 2018-06-01 | 2020-12-22 | DePuy Synthes Products, Inc. | Neural event detection |
| US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
| US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
| US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
| US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
| US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
| US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
| US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
| US20200054321A1 (en) | 2018-08-20 | 2020-02-20 | Ethicon Llc | Surgical instruments with progressive jaw closure arrangements |
| US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
| US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
| US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
| USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
| US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
| US11179248B2 (en) | 2018-10-02 | 2021-11-23 | Samy Abdou | Devices and methods for spinal implantation |
| US10870002B2 (en) | 2018-10-12 | 2020-12-22 | DePuy Synthes Products, Inc. | Neuromuscular sensing device with multi-sensor array |
| CN111134911B (en) * | 2018-11-06 | 2022-03-01 | 贵州澳特拉斯科技有限公司 | Bionic artificial spinal joint |
| EP3922039A1 (en) | 2019-02-07 | 2021-12-15 | NuVasive Specialized Orthopedics, Inc. | Ultrasonic communication in medical devices |
| US11589901B2 (en) | 2019-02-08 | 2023-02-28 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device |
| US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
| US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
| US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
| US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
| US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
| US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
| US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
| US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
| US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
| US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
| US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
| WO2020236229A1 (en) | 2019-05-22 | 2020-11-26 | Spinal Elements, Inc. | Bone tie and bone tie inserter |
| US11457959B2 (en) | 2019-05-22 | 2022-10-04 | Spinal Elements, Inc. | Bone tie and bone tie inserter |
| US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
| US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
| US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
| US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
| US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
| US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
| US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
| US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
| US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
| US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
| US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
| US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
| US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
| US11350938B2 (en) | 2019-06-28 | 2022-06-07 | Cilag Gmbh International | Surgical instrument comprising an aligned rfid sensor |
| US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
| US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
| US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
| US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
| US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
| US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
| US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
| US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
| US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
| US11311317B2 (en) | 2019-09-25 | 2022-04-26 | Stelios KOUTSOUMBELIS | Spinal fixation device with rotatable connector |
| US11399777B2 (en) | 2019-09-27 | 2022-08-02 | DePuy Synthes Products, Inc. | Intraoperative neural monitoring system and method |
| US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
| US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
| US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
| US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
| US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
| US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
| US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
| US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
| US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
| US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
| US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
| US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
| US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
| US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
| US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
| US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
| WO2021144636A1 (en) * | 2020-01-19 | 2021-07-22 | Inno4Spine Ag | Connector implant for extending a spinal construct |
| US11304733B2 (en) | 2020-02-14 | 2022-04-19 | Spinal Elements, Inc. | Bone tie methods |
| USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
| USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
| USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
| USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
| USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
| USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
| USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
| US12064107B2 (en) | 2020-07-28 | 2024-08-20 | Cilag Gmbh International | Articulatable surgical instruments with articulation joints comprising flexible exoskeleton arrangements |
| US12171470B2 (en) | 2020-07-31 | 2024-12-24 | Mazor Robotics Ltd. | Surgical fixation systems, methods, and devices |
| WO2022055678A1 (en) | 2020-09-08 | 2022-03-17 | Nuvasive Specialized Orthopedics, Inc. | Remote control module for adjustable implants |
| US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
| US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
| US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
| US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
| USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
| US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
| US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
| USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
| US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
| US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
| US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
| US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
| US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
| US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
| US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
| US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
| US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
| US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
| US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
| US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
| US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
| US12471982B2 (en) | 2020-12-02 | 2025-11-18 | Cilag Gmbh International | Method for tissue treatment by surgical instrument |
| US11806054B2 (en) | 2021-02-23 | 2023-11-07 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant, system and methods |
| US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
| US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
| US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
| US12324580B2 (en) | 2021-02-26 | 2025-06-10 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
| US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
| US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
| US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
| US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
| US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
| US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
| US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
| US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
| US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
| US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
| US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
| US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
| US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
| US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
| US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
| US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
| US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
| US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
| US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
| US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
| US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
| US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
| US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
| US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
| US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
| US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
| US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
| US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
| US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
| US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
| US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
| US11737787B1 (en) | 2021-05-27 | 2023-08-29 | Nuvasive, Inc. | Bone elongating devices and methods of use |
| US11918217B2 (en) | 2021-05-28 | 2024-03-05 | Cilag Gmbh International | Stapling instrument comprising a staple cartridge insertion stop |
| JP2024528989A (en) | 2021-08-03 | 2024-08-01 | ニューベイシブ スペシャライズド オーソペディックス,インコーポレイテッド | Adjustable implants |
| US11331125B1 (en) | 2021-10-07 | 2022-05-17 | Ortho Inventions, Llc | Low profile rod-to-rod coupler |
| US12239317B2 (en) | 2021-10-18 | 2025-03-04 | Cilag Gmbh International | Anvil comprising an arrangement of forming pockets proximal to tissue stop |
| US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
| US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
| US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
| US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
| US12432790B2 (en) | 2021-10-28 | 2025-09-30 | Cilag Gmbh International | Method and device for transmitting UART communications over a security short range wireless communication |
| US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
| WO2023108007A2 (en) | 2021-12-10 | 2023-06-15 | Spinal Elements, Inc. | Bone tie and portal |
| US12458417B2 (en) | 2022-08-15 | 2025-11-04 | Nuvasive Specialized Orthopedics Inc. | Intermedullary lengthening implant with integrated load sensor |
Family Cites Families (123)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US36221A (en) * | 1862-08-19 | Improvement in locks | ||
| GB780652A (en) | 1954-04-30 | 1957-08-07 | Zimmer Orthopaedic Ltd | Improvements in or relating to apparatus for use in spinal fixation |
| US4361141A (en) | 1979-07-27 | 1982-11-30 | Zimmer Usa, Inc. | Scoliosis transverse traction assembly |
| DE3121271A1 (en) | 1981-05-29 | 1982-12-23 | Max Bernhard 7900 Ulm Ulrich | DISTRACTION DEVICE FOR CORRECTION, IN PARTICULAR KYPHOTIC SPINE AREAS |
| FR2545350B1 (en) | 1983-05-04 | 1985-08-23 | Cotrel Yves | DEVICE FOR SHRINKAGE OF THE RACHIS |
| US4569338A (en) | 1984-02-09 | 1986-02-11 | Edwards Charles C | Sacral fixation device |
| US4743260A (en) * | 1985-06-10 | 1988-05-10 | Burton Charles V | Method for a flexible stabilization system for a vertebral column |
| US4771767A (en) | 1986-02-03 | 1988-09-20 | Acromed Corporation | Apparatus and method for maintaining vertebrae in a desired relationship |
| DE3614101C1 (en) | 1986-04-25 | 1987-10-22 | Juergen Prof Dr Med Harms | Pedicle screw |
| US4805602A (en) | 1986-11-03 | 1989-02-21 | Danninger Medical Technology | Transpedicular screw and rod system |
| FR2612071A1 (en) | 1987-03-13 | 1988-09-16 | Cotrel Yves | VERTEBRAL SCREW FOR OSTEOSYNTHESIS DEVICE, ESPECIALLY LUMBAR AND DORSAL |
| DE3722590C1 (en) | 1987-07-08 | 1988-12-08 | Harms Juergen | Positioning device for stabilizing spinal segments |
| DE3800052A1 (en) | 1987-07-08 | 1989-07-13 | Harms Juergen | POSITIONING SCREW |
| GB8718708D0 (en) | 1987-08-07 | 1987-09-16 | Mehdian S M H | Apparatus for treatment of spinal disorders |
| FR2624720B1 (en) | 1987-12-21 | 1994-04-15 | Fabrication Materiel Orthopediqu | IMPLANT FOR OSTEOSYNTHESIS DEVICE, ESPECIALLY OF THE RACHIS |
| US5468241A (en) * | 1988-02-18 | 1995-11-21 | Howmedica Gmbh | Support device for the human vertebral column |
| FR2633177B1 (en) | 1988-06-24 | 1991-03-08 | Fabrication Materiel Orthopedi | IMPLANT FOR A SPINAL OSTEOSYNTHESIS DEVICE, ESPECIALLY IN TRAUMATOLOGY |
| DE3823737A1 (en) | 1988-07-13 | 1990-01-18 | Lutz Biedermann | CORRECTION AND HOLDING DEVICE, ESPECIALLY FOR THE SPINE |
| DE3841008A1 (en) | 1988-12-06 | 1990-06-07 | Heinrich Ulrich | Implant for correction of the spine |
| FR2642645B1 (en) | 1989-02-03 | 1992-08-14 | Breard Francis | FLEXIBLE INTERVERTEBRAL STABILIZER AND METHOD AND APPARATUS FOR CONTROLLING ITS VOLTAGE BEFORE PLACEMENT ON THE RACHIS |
| US5084049A (en) | 1989-02-08 | 1992-01-28 | Acromed Corporation | Transverse connector for spinal column corrective devices |
| FR2642643B1 (en) | 1989-02-09 | 1991-05-10 | Vignaud Jean Louis | SPINAL INSTRUMENTATION FOR UNIVERSAL PEDICULAR FIXATION WITH MICROMETRIC ADJUSTMENT DIAPASON SCREW |
| US4987892A (en) * | 1989-04-04 | 1991-01-29 | Krag Martin H | Spinal fixation device |
| DE3923996A1 (en) | 1989-07-20 | 1991-01-31 | Lutz Biedermann | RECORDING PART FOR JOINTLY CONNECTING TO A SCREW FOR MAKING A PEDICLE SCREW |
| DE3936702C2 (en) | 1989-11-03 | 1994-07-28 | Lutz Biedermann | Pedicle screw and correction and holding device with such a pedicle screw |
| CA2035348C (en) | 1990-02-08 | 2000-05-16 | Jean-Louis Vignaud | Adjustable fastening device with spinal osteosynthesis rods |
| US5360431A (en) | 1990-04-26 | 1994-11-01 | Cross Medical Products | Transpedicular screw system and method of use |
| DE9004960U1 (en) * | 1990-05-02 | 1991-08-29 | Pfeil, Joachim, Dr.Med. | Halo fixator for the treatment of cervical spine diseases and injuries |
| US5540689A (en) | 1990-05-22 | 1996-07-30 | Sanders; Albert E. | Apparatus for securing a rod adjacent to a bone |
| US5034011A (en) * | 1990-08-09 | 1991-07-23 | Advanced Spine Fixation Systems Incorporated | Segmental instrumentation of the posterior spine |
| FR2672202B1 (en) | 1991-02-05 | 1993-07-30 | Safir | BONE SURGICAL IMPLANT, ESPECIALLY FOR INTERVERTEBRAL STABILIZER. |
| FR2676354B1 (en) | 1991-05-17 | 1997-11-07 | Vignaud Jean Louis | LOCKABLE CONNECTION DEVICE OF SPINAL OSTEOSYNTHESIS ANCHORING ELEMENTS. |
| US5129338A (en) * | 1991-05-23 | 1992-07-14 | Wang Shui Nu | Adjusting device for a lower knife of a sewing machine |
| FR2676911B1 (en) | 1991-05-30 | 1998-03-06 | Psi Ste Civile Particuliere | INTERVERTEBRAL STABILIZATION DEVICE WITH SHOCK ABSORBERS. |
| DE4202748A1 (en) | 1992-01-31 | 1993-08-05 | Kluger Patrick | SPINAL IMPLANT AND REPOSITION INSTRUMENTS |
| FR2689750B1 (en) | 1992-04-10 | 1997-01-31 | Eurosurgical | BONE ANCHORING ELEMENT AND SPINAL OSTEOSYNTHESIS DEVICE INCORPORATING SUCH ELEMENTS. |
| FR2692952B1 (en) | 1992-06-25 | 1996-04-05 | Psi | IMPROVED SHOCK ABSORBER WITH MOVEMENT LIMIT. |
| US5312405A (en) | 1992-07-06 | 1994-05-17 | Zimmer, Inc. | Spinal rod coupler |
| DE59305375D1 (en) | 1992-08-12 | 1997-03-20 | Synthes Ag | Spine fixation element |
| US5545165A (en) | 1992-10-09 | 1996-08-13 | Biedermann Motech Gmbh | Anchoring member |
| US5275600A (en) | 1992-10-05 | 1994-01-04 | Zimmer, Inc. | Telescoping rod to rod coupler for a spinal system |
| DE4243951C2 (en) | 1992-12-23 | 1997-07-03 | Plus Endoprothetik Ag | Device for stiffening a spinal column section consisting of at least two vertebrae |
| FR2701650B1 (en) | 1993-02-17 | 1995-05-24 | Psi | Double shock absorber for intervertebral stabilization. |
| US5330473A (en) | 1993-03-04 | 1994-07-19 | Advanced Spine Fixation Systems, Inc. | Branch connector for spinal fixation systems |
| US6077262A (en) * | 1993-06-04 | 2000-06-20 | Synthes (U.S.A.) | Posterior spinal implant |
| US5584831A (en) * | 1993-07-09 | 1996-12-17 | September 28, Inc. | Spinal fixation device and method |
| US5437669A (en) * | 1993-08-12 | 1995-08-01 | Amei Technologies Inc. | Spinal fixation systems with bifurcated connectors |
| FR2709412B1 (en) * | 1993-09-01 | 1995-11-24 | Tornier Sa | Screw for lumbo-sacral fixator. |
| WO1995010238A1 (en) | 1993-10-08 | 1995-04-20 | Chaim Rogozinski | Spinal treatment apparatus and method including multi-directional attachment member |
| US5466237A (en) | 1993-11-19 | 1995-11-14 | Cross Medical Products, Inc. | Variable locking stabilizer anchor seat and screw |
| JP2605313Y2 (en) * | 1993-12-28 | 2000-07-10 | 旭光学工業株式会社 | Fixation device for posterior spine correction member |
| US5569253A (en) | 1994-03-29 | 1996-10-29 | Danek Medical, Inc. | Variable-angle surgical cable crimp assembly and method |
| US5545166A (en) | 1994-07-14 | 1996-08-13 | Advanced Spine Fixation Systems, Incorporated | Spinal segmental reduction derotational fixation system |
| AU692343B2 (en) | 1994-11-16 | 1998-06-04 | Asfs Acquisition Corp. | Segmental lamina grapple hooks |
| FR2729556B1 (en) * | 1995-01-23 | 1998-10-16 | Sofamor | SPINAL OSTEOSYNTHESIS DEVICE WITH MEDIAN HOOK AND VERTEBRAL ANCHOR SUPPORT |
| US5665122A (en) | 1995-01-31 | 1997-09-09 | Kambin; Parviz | Expandable intervertebral cage and surgical method |
| FR2731344B1 (en) | 1995-03-06 | 1997-08-22 | Dimso Sa | SPINAL INSTRUMENTATION ESPECIALLY FOR A ROD |
| DE19509332C1 (en) | 1995-03-15 | 1996-08-14 | Harms Juergen | Anchoring element |
| US5716355A (en) | 1995-04-10 | 1998-02-10 | Sofamor Danek Group, Inc. | Transverse connection for spinal rods |
| US5669911A (en) | 1995-04-13 | 1997-09-23 | Fastenetix, L.L.C. | Polyaxial pedicle screw |
| US5630816A (en) | 1995-05-01 | 1997-05-20 | Kambin; Parviz | Double barrel spinal fixation system and method |
| WO1996039090A1 (en) | 1995-06-06 | 1996-12-12 | Sdgi Holdings, Inc. | Device for linking adjacent rods in spinal instrumentation |
| US5947966A (en) | 1995-06-06 | 1999-09-07 | Sdgi Holdings, Inc. | Device for linking adjacent rods in spinal instrumentation |
| US5683391A (en) | 1995-06-07 | 1997-11-04 | Danek Medical, Inc. | Anterior spinal instrumentation and method for implantation and revision |
| US5676665A (en) | 1995-06-23 | 1997-10-14 | Bryan; Donald W. | Spinal fixation apparatus and method |
| US5645544A (en) | 1995-09-13 | 1997-07-08 | Danek Medical, Inc. | Variable angle extension rod |
| US5643264A (en) | 1995-09-13 | 1997-07-01 | Danek Medical, Inc. | Iliac screw |
| US6273914B1 (en) | 1995-09-28 | 2001-08-14 | Sparta, Inc. | Spinal implant |
| US5752955A (en) | 1995-10-30 | 1998-05-19 | Fastenetix, L.L.C. | Sliding shaft variable length cross-link device for use with dual rod apparatus |
| ES2213174T3 (en) | 1996-03-27 | 2004-08-16 | Lubos Rehak | DEVICE FOR CORRECTION OF MALFORMATIONS OF THE VERTEBRAL COLUMN. |
| DE19617362C2 (en) | 1996-04-30 | 1999-06-10 | Harms Juergen | Anchoring element |
| US5667508A (en) | 1996-05-01 | 1997-09-16 | Fastenetix, Llc | Unitary locking cap for use with a pedicle screw |
| FR2748386B1 (en) * | 1996-05-09 | 1998-11-20 | Breard Francis Henri | ANTI-TRIP SYSTEM FOR SPINE ARTHRODESIS BAR |
| US6019759A (en) | 1996-07-29 | 2000-02-01 | Rogozinski; Chaim | Multi-Directional fasteners or attachment devices for spinal implant elements |
| FR2751864B1 (en) | 1996-08-01 | 1999-04-30 | Graf Henry | DEVICE FOR MECHANICALLY CONNECTING AND ASSISTING VERTEBRES BETWEEN THEM |
| US5800435A (en) | 1996-10-09 | 1998-09-01 | Techsys, Llc | Modular spinal plate for use with modular polyaxial locking pedicle screws |
| US5863293A (en) | 1996-10-18 | 1999-01-26 | Spinal Innovations | Spinal implant fixation assembly |
| US5728098A (en) | 1996-11-07 | 1998-03-17 | Sdgi Holdings, Inc. | Multi-angle bone screw assembly using shape-memory technology |
| FR2755844B1 (en) * | 1996-11-15 | 1999-01-29 | Stryker France Sa | OSTEOSYNTHESIS SYSTEM WITH ELASTIC DEFORMATION FOR SPINE |
| EP0951245B1 (en) * | 1996-12-12 | 2003-03-12 | SYNTHES AG Chur | Device for connecting a longitudinal support to a pedicle screw |
| US5776135A (en) | 1996-12-23 | 1998-07-07 | Third Millennium Engineering, Llc | Side mounted polyaxial pedicle screw |
| IES970411A2 (en) | 1997-06-03 | 1997-12-03 | Tecos Holdings Inc | Pluridirectional and modulable vertebral osteosynthesis device of small overall size |
| DE29710484U1 (en) | 1997-06-16 | 1998-10-15 | Howmedica GmbH, 24232 Schönkirchen | Receiving part for a holding component of a spinal implant |
| US5954722A (en) * | 1997-07-29 | 1999-09-21 | Depuy Acromed, Inc. | Polyaxial locking plate |
| US6030389A (en) * | 1997-08-04 | 2000-02-29 | Spinal Concepts, Inc. | System and method for stabilizing the human spine with a bone plate |
| FR2771280B1 (en) | 1997-11-26 | 2001-01-26 | Albert P Alby | RESILIENT VERTEBRAL CONNECTION DEVICE |
| US5980523A (en) | 1998-01-08 | 1999-11-09 | Jackson; Roger | Transverse connectors for spinal rods |
| US5944720A (en) | 1998-03-25 | 1999-08-31 | Lipton; Glenn E | Posterior spinal fixation system |
| US6264658B1 (en) | 1998-07-06 | 2001-07-24 | Solco Surgical Instruments Co., Ltd. | Spine fixing apparatus |
| US6296644B1 (en) | 1998-08-26 | 2001-10-02 | Jean Saurat | Spinal instrumentation system with articulated modules |
| US6352537B1 (en) * | 1998-09-17 | 2002-03-05 | Electro-Biology, Inc. | Method and apparatus for spinal fixation |
| US5910142A (en) * | 1998-10-19 | 1999-06-08 | Bones Consulting, Llc | Polyaxial pedicle screw having a rod clamping split ferrule coupling element |
| US5944719A (en) | 1998-11-10 | 1999-08-31 | Millennium Devices, L.L.C. | External fixator |
| US6283967B1 (en) | 1999-12-17 | 2001-09-04 | Synthes (U.S.A.) | Transconnector for coupling spinal rods |
| US6234705B1 (en) | 1999-04-06 | 2001-05-22 | Synthes (Usa) | Transconnector for coupling spinal rods |
| FR2796828B1 (en) | 1999-07-27 | 2001-10-19 | Dev Sed Soc Et | IMPLANTABLE INTERVERTEBRAL CONNECTION DEVICE |
| US6217578B1 (en) | 1999-10-19 | 2001-04-17 | Stryker Spine S.A. | Spinal cross connector |
| US6610062B2 (en) | 2000-02-16 | 2003-08-26 | Ebi, L.P. | Method and system for spinal fixation |
| US6224598B1 (en) | 2000-02-16 | 2001-05-01 | Roger P. Jackson | Bone screw threaded plug closure with central set screw |
| US20020133155A1 (en) * | 2000-02-25 | 2002-09-19 | Ferree Bret A. | Cross-coupled vertebral stabilizers incorporating spinal motion restriction |
| KR200200582Y1 (en) * | 2000-03-15 | 2000-10-16 | 최길운 | Prosthesis for connecting bone |
| EP1294295A4 (en) * | 2000-06-30 | 2009-12-23 | Stephen Ritland | Polyaxial connection device and method |
| EP1294297B1 (en) * | 2000-06-30 | 2010-08-11 | Warsaw Orthopedic, Inc. | Intervertebral linking device |
| DE10064571C2 (en) * | 2000-12-22 | 2003-07-10 | Juergen Harms | fixing |
| EP1219255B1 (en) * | 2000-12-27 | 2003-10-15 | BIEDERMANN MOTECH GmbH | Screw for connection to a rod |
| US6802844B2 (en) * | 2001-03-26 | 2004-10-12 | Nuvasive, Inc | Spinal alignment apparatus and methods |
| US6945974B2 (en) * | 2003-07-07 | 2005-09-20 | Aesculap Inc. | Spinal stabilization implant and method of application |
| US7686833B1 (en) * | 2004-04-02 | 2010-03-30 | Muhanna Nabil L | Ball jointed pedicle screw and rod system |
| US7811311B2 (en) * | 2004-12-30 | 2010-10-12 | Warsaw Orthopedic, Inc. | Screw with deployable interlaced dual rods |
| US7766941B2 (en) * | 2004-05-14 | 2010-08-03 | Paul Kamaljit S | Spinal support, stabilization |
| BRPI0419057A (en) * | 2004-09-22 | 2007-12-11 | Kyung-Woo Park | spinal fixation |
| US8162985B2 (en) * | 2004-10-20 | 2012-04-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
| US7828825B2 (en) * | 2005-06-20 | 2010-11-09 | Warsaw Orthopedic, Inc. | Multi-level multi-functional spinal stabilization systems and methods |
| US7766943B1 (en) * | 2005-08-11 | 2010-08-03 | Medicine Lodge Inc. | Modular percutaneous spinal fusion system and method |
| US7785325B1 (en) * | 2006-02-03 | 2010-08-31 | Milbank Miles C | Multi-articulated fracture fixation device with adjustable modulus of rigidity |
| WO2007123920A2 (en) * | 2006-04-18 | 2007-11-01 | Joseph Nicholas Logan | Spinal rod system |
| US7806913B2 (en) * | 2006-08-16 | 2010-10-05 | Depuy Spine, Inc. | Modular multi-level spine stabilization system and method |
| US7824430B2 (en) * | 2006-12-08 | 2010-11-02 | Warsaw Orthopedic, Inc. | Methods and devices for treating a multi-level spinal deformity |
| AU2008233124A1 (en) * | 2007-03-30 | 2008-10-09 | Exactech, Inc. | Multi-level minimally invasive spinal stabilization system |
| US8252025B2 (en) * | 2008-09-03 | 2012-08-28 | Zimmer Spine, Inc. | Vertebral fixation system |
| FR2940758B1 (en) * | 2009-01-07 | 2011-01-28 | Creaspine | DYNAMIC TYPE IMPLANT "VIS ROD" TO STABILIZE A RACHIS |
| US20100228295A1 (en) * | 2009-03-09 | 2010-09-09 | Whitefield Plastics | Variable Radius Vertebra Bend Restrictor |
| US8430913B2 (en) * | 2009-06-10 | 2013-04-30 | Spine Wave, Inc. | Devices and methods for adding an additional level of fixation to an existing construct |
-
2002
- 2002-03-25 US US10/105,971 patent/US6802844B2/en not_active Expired - Lifetime
- 2002-03-26 EP EP02721709A patent/EP1381323A1/en not_active Withdrawn
- 2002-03-26 JP JP2002574834A patent/JP4288074B2/en not_active Expired - Fee Related
- 2002-03-26 AU AU2002252625A patent/AU2002252625C1/en not_active Expired
- 2002-03-26 WO PCT/US2002/011301 patent/WO2002076315A1/en not_active Ceased
-
2004
- 2004-07-19 US US10/894,533 patent/US20040260287A1/en not_active Abandoned
-
2007
- 2007-10-31 US US11/981,890 patent/US20080071275A1/en not_active Abandoned
- 2007-10-31 US US11/982,184 patent/US20080071276A1/en not_active Abandoned
- 2007-10-31 US US11/981,888 patent/US20080065077A1/en not_active Abandoned
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6802844B2 (en) | Spinal alignment apparatus and methods | |
| AU2002252625A1 (en) | Spinal alignment apparatus and methods | |
| US12053211B2 (en) | Posterior cervical fixation system | |
| US7803174B2 (en) | Dorsal adjusting multi-rod connector | |
| US9204908B2 (en) | Segmental orthopedic device for spinal elongation and for treatment of scoliosis | |
| US10238429B2 (en) | Pedicle screw | |
| EP2077783B1 (en) | Central rod connector and t-rod | |
| US8915945B2 (en) | Adjustable multi-axial spinal coupling assemblies | |
| US5947965A (en) | Spinal fixation apparatus and method | |
| US20040158247A1 (en) | Polyaxial pedicle screw system | |
| US20070293862A1 (en) | Dynamic stabilization connecting member with elastic core and outer sleeve | |
| WO2011004222A1 (en) | Pedicular screw system | |
| US7850716B2 (en) | Adjustable interconnection device | |
| US8672983B2 (en) | Orthopedic plate system | |
| WO2008036578A2 (en) | Orthopedic plate system | |
| WO2005074824A1 (en) | Piece of equipment enabling osteosynthesis of cervical vertebrae |