AU2001293847A1 - Metabotropic glutamate receptor antagonists - Google Patents
Metabotropic glutamate receptor antagonistsInfo
- Publication number
- AU2001293847A1 AU2001293847A1 AU2001293847A AU2001293847A AU2001293847A1 AU 2001293847 A1 AU2001293847 A1 AU 2001293847A1 AU 2001293847 A AU2001293847 A AU 2001293847A AU 2001293847 A AU2001293847 A AU 2001293847A AU 2001293847 A1 AU2001293847 A1 AU 2001293847A1
- Authority
- AU
- Australia
- Prior art keywords
- alkyl
- formula
- amino
- compound
- mono
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108010010914 Metabotropic glutamate receptors Proteins 0.000 title description 17
- 102000016193 Metabotropic glutamate receptors Human genes 0.000 title description 17
- 239000003825 glutamate receptor antagonist Substances 0.000 title description 2
- 150000001875 compounds Chemical class 0.000 claims description 254
- 239000000203 mixture Substances 0.000 claims description 160
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 62
- -1 amino - Chemical class 0.000 claims description 54
- 125000003118 aryl group Chemical group 0.000 claims description 41
- 229910052739 hydrogen Inorganic materials 0.000 claims description 40
- 239000001257 hydrogen Substances 0.000 claims description 40
- 150000003839 salts Chemical class 0.000 claims description 27
- 239000002253 acid Substances 0.000 claims description 24
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical group N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 claims description 22
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 22
- 125000001544 thienyl group Chemical group 0.000 claims description 22
- 150000002431 hydrogen Chemical class 0.000 claims description 19
- 125000004356 hydroxy functional group Chemical group O* 0.000 claims description 19
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 15
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 15
- 125000004076 pyridyl group Chemical group 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 239000003814 drug Substances 0.000 claims description 13
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims description 12
- 125000002541 furyl group Chemical group 0.000 claims description 12
- 229930195712 glutamate Natural products 0.000 claims description 12
- 125000004432 carbon atom Chemical group C* 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical group C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 claims description 11
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 claims description 11
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 claims description 10
- 201000010099 disease Diseases 0.000 claims description 10
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 10
- 125000004193 piperazinyl group Chemical group 0.000 claims description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 9
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 125000002757 morpholinyl group Chemical group 0.000 claims description 8
- 125000003386 piperidinyl group Chemical group 0.000 claims description 8
- 210000003169 central nervous system Anatomy 0.000 claims description 7
- 125000000623 heterocyclic group Chemical group 0.000 claims description 7
- 125000001424 substituent group Chemical group 0.000 claims description 7
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 claims description 6
- 239000003937 drug carrier Substances 0.000 claims description 6
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 6
- 125000003373 pyrazinyl group Chemical group 0.000 claims description 6
- 125000000168 pyrrolyl group Chemical group 0.000 claims description 6
- RAHZWNYVWXNFOC-UHFFFAOYSA-N sulfur dioxide Inorganic materials O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 claims description 6
- 125000000335 thiazolyl group Chemical group 0.000 claims description 6
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 claims description 5
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 5
- 125000006619 (C1-C6) dialkylamino group Chemical group 0.000 claims description 4
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 claims description 4
- 208000030507 AIDS Diseases 0.000 claims description 4
- 206010001513 AIDS related complex Diseases 0.000 claims description 4
- 206010012289 Dementia Diseases 0.000 claims description 4
- 208000004454 Hyperalgesia Diseases 0.000 claims description 4
- 125000004104 aryloxy group Chemical group 0.000 claims description 4
- 125000004618 benzofuryl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 claims description 4
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 claims description 4
- 125000004986 diarylamino group Chemical group 0.000 claims description 4
- 125000002883 imidazolyl group Chemical group 0.000 claims description 4
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 claims description 4
- 125000001041 indolyl group Chemical group 0.000 claims description 4
- 125000000842 isoxazolyl group Chemical group 0.000 claims description 4
- 125000001624 naphthyl group Chemical group 0.000 claims description 4
- 125000002971 oxazolyl group Chemical group 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 239000008194 pharmaceutical composition Substances 0.000 claims description 4
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 claims description 4
- 125000005958 tetrahydrothienyl group Chemical group 0.000 claims description 4
- 125000004568 thiomorpholinyl group Chemical group 0.000 claims description 4
- 239000004480 active ingredient Substances 0.000 claims description 3
- 239000003513 alkali Substances 0.000 claims description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 3
- 231100000252 nontoxic Toxicity 0.000 claims description 3
- 230000003000 nontoxic effect Effects 0.000 claims description 3
- 239000007800 oxidant agent Substances 0.000 claims description 3
- 208000024827 Alzheimer disease Diseases 0.000 claims description 2
- 208000000044 Amnesia Diseases 0.000 claims description 2
- 208000031091 Amnestic disease Diseases 0.000 claims description 2
- 208000019901 Anxiety disease Diseases 0.000 claims description 2
- 208000020925 Bipolar disease Diseases 0.000 claims description 2
- 208000027691 Conduct disease Diseases 0.000 claims description 2
- 206010012218 Delirium Diseases 0.000 claims description 2
- 201000010374 Down Syndrome Diseases 0.000 claims description 2
- 206010019196 Head injury Diseases 0.000 claims description 2
- 208000010496 Heart Arrest Diseases 0.000 claims description 2
- 208000023105 Huntington disease Diseases 0.000 claims description 2
- 208000035154 Hyperesthesia Diseases 0.000 claims description 2
- 208000013016 Hypoglycemia Diseases 0.000 claims description 2
- 206010021143 Hypoxia Diseases 0.000 claims description 2
- 206010065390 Inflammatory pain Diseases 0.000 claims description 2
- 208000032382 Ischaemic stroke Diseases 0.000 claims description 2
- 208000009829 Lewy Body Disease Diseases 0.000 claims description 2
- 201000002832 Lewy body dementia Diseases 0.000 claims description 2
- 206010028570 Myelopathy Diseases 0.000 claims description 2
- 208000002193 Pain Diseases 0.000 claims description 2
- 208000018737 Parkinson disease Diseases 0.000 claims description 2
- 208000030886 Traumatic Brain injury Diseases 0.000 claims description 2
- 201000004810 Vascular dementia Diseases 0.000 claims description 2
- 230000032683 aging Effects 0.000 claims description 2
- 230000006986 amnesia Effects 0.000 claims description 2
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 claims description 2
- 230000036506 anxiety Effects 0.000 claims description 2
- 230000019771 cognition Effects 0.000 claims description 2
- 125000000532 dioxanyl group Chemical group 0.000 claims description 2
- 125000005883 dithianyl group Chemical group 0.000 claims description 2
- 206010013663 drug dependence Diseases 0.000 claims description 2
- 206010015037 epilepsy Diseases 0.000 claims description 2
- 239000012458 free base Substances 0.000 claims description 2
- 230000002218 hypoglycaemic effect Effects 0.000 claims description 2
- 230000001146 hypoxic effect Effects 0.000 claims description 2
- 230000001771 impaired effect Effects 0.000 claims description 2
- 208000037906 ischaemic injury Diseases 0.000 claims description 2
- 125000001786 isothiazolyl group Chemical group 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 201000006417 multiple sclerosis Diseases 0.000 claims description 2
- 208000004296 neuralgia Diseases 0.000 claims description 2
- 230000003961 neuronal insult Effects 0.000 claims description 2
- 208000021722 neuropathic pain Diseases 0.000 claims description 2
- 125000003226 pyrazolyl group Chemical group 0.000 claims description 2
- 125000002098 pyridazinyl group Chemical group 0.000 claims description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 claims description 2
- 125000000719 pyrrolidinyl group Chemical group 0.000 claims description 2
- 201000000980 schizophrenia Diseases 0.000 claims description 2
- 208000020431 spinal cord injury Diseases 0.000 claims description 2
- 208000011117 substance-related disease Diseases 0.000 claims description 2
- 208000011580 syndromic disease Diseases 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims description 2
- 238000000844 transformation Methods 0.000 claims description 2
- 230000002792 vascular Effects 0.000 claims description 2
- 125000001475 halogen functional group Chemical group 0.000 claims 15
- 125000000815 N-oxide group Chemical group 0.000 claims 2
- 125000003277 amino group Chemical group 0.000 claims 2
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims 1
- 208000015114 central nervous system disease Diseases 0.000 claims 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 177
- 239000002904 solvent Substances 0.000 description 122
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 116
- 239000000543 intermediate Substances 0.000 description 100
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 86
- 239000002244 precipitate Substances 0.000 description 73
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 70
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 69
- 238000002360 preparation method Methods 0.000 description 68
- 239000012044 organic layer Substances 0.000 description 66
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 61
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 58
- 235000019439 ethyl acetate Nutrition 0.000 description 58
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 56
- 239000003480 eluent Substances 0.000 description 50
- 238000004440 column chromatography Methods 0.000 description 47
- 239000000741 silica gel Substances 0.000 description 47
- 229910002027 silica gel Inorganic materials 0.000 description 47
- 229960004132 diethyl ether Drugs 0.000 description 44
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 43
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 42
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 37
- 239000000243 solution Substances 0.000 description 37
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 36
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 35
- 239000012442 inert solvent Substances 0.000 description 34
- 238000006243 chemical reaction Methods 0.000 description 32
- 150000003254 radicals Chemical class 0.000 description 30
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 29
- 125000005843 halogen group Chemical group 0.000 description 29
- 235000019441 ethanol Nutrition 0.000 description 25
- 229910000027 potassium carbonate Inorganic materials 0.000 description 23
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 22
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 22
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 21
- 239000003208 petroleum Substances 0.000 description 20
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 19
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 18
- 239000002585 base Chemical class 0.000 description 18
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 15
- 150000001412 amines Chemical group 0.000 description 14
- 150000001204 N-oxides Chemical group 0.000 description 13
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 11
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 11
- 239000003054 catalyst Substances 0.000 description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 10
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 10
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 9
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 241001465754 Metazoa Species 0.000 description 9
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 9
- 239000000706 filtrate Substances 0.000 description 9
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 8
- 229940079593 drug Drugs 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 230000003042 antagnostic effect Effects 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 125000001309 chloro group Chemical group Cl* 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 150000007513 acids Chemical class 0.000 description 6
- WACQKHWOTAEEFS-UHFFFAOYSA-N cyclohexane;ethyl acetate Chemical compound CCOC(C)=O.C1CCCCC1 WACQKHWOTAEEFS-UHFFFAOYSA-N 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 6
- 235000015320 potassium carbonate Nutrition 0.000 description 6
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 6
- 229910019213 POCl3 Inorganic materials 0.000 description 5
- 241000700159 Rattus Species 0.000 description 5
- 125000001246 bromo group Chemical group Br* 0.000 description 5
- 239000002552 dosage form Substances 0.000 description 5
- 239000005457 ice water Substances 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 238000007912 intraperitoneal administration Methods 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 239000002858 neurotransmitter agent Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 4
- 239000011698 potassium fluoride Substances 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- QBWKPGNFQQJGFY-QLFBSQMISA-N 3-[(1r)-1-[(2r,6s)-2,6-dimethylmorpholin-4-yl]ethyl]-n-[6-methyl-3-(1h-pyrazol-4-yl)imidazo[1,2-a]pyrazin-8-yl]-1,2-thiazol-5-amine Chemical compound N1([C@H](C)C2=NSC(NC=3C4=NC=C(N4C=C(C)N=3)C3=CNN=C3)=C2)C[C@H](C)O[C@H](C)C1 QBWKPGNFQQJGFY-QLFBSQMISA-N 0.000 description 3
- REMTVJDIMSEOCW-UHFFFAOYSA-N 3-chloro-2-ethylbut-2-enal Chemical compound CCC(C=O)=C(C)Cl REMTVJDIMSEOCW-UHFFFAOYSA-N 0.000 description 3
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 3
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 3
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910001424 calcium ion Inorganic materials 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 3
- 229940125846 compound 25 Drugs 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 238000003255 drug test Methods 0.000 description 3
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 125000002346 iodo group Chemical group I* 0.000 description 3
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 235000019341 magnesium sulphate Nutrition 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000002674 ointment Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 150000002978 peroxides Chemical class 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910000104 sodium hydride Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- SZUVGFMDDVSKSI-WIFOCOSTSA-N (1s,2s,3s,5r)-1-(carboxymethyl)-3,5-bis[(4-phenoxyphenyl)methyl-propylcarbamoyl]cyclopentane-1,2-dicarboxylic acid Chemical compound O=C([C@@H]1[C@@H]([C@](CC(O)=O)([C@H](C(=O)N(CCC)CC=2C=CC(OC=3C=CC=CC=3)=CC=2)C1)C(O)=O)C(O)=O)N(CCC)CC(C=C1)=CC=C1OC1=CC=CC=C1 SZUVGFMDDVSKSI-WIFOCOSTSA-N 0.000 description 2
- WWTBZEKOSBFBEM-SPWPXUSOSA-N (2s)-2-[[2-benzyl-3-[hydroxy-[(1r)-2-phenyl-1-(phenylmethoxycarbonylamino)ethyl]phosphoryl]propanoyl]amino]-3-(1h-indol-3-yl)propanoic acid Chemical compound N([C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)O)C(=O)C(CP(O)(=O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1C=CC=CC=1)CC1=CC=CC=C1 WWTBZEKOSBFBEM-SPWPXUSOSA-N 0.000 description 2
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 2
- XGLVDUUYFKXKPL-UHFFFAOYSA-N 2-(2-methoxyethoxy)-n,n-bis[2-(2-methoxyethoxy)ethyl]ethanamine Chemical compound COCCOCCN(CCOCCOC)CCOCCOC XGLVDUUYFKXKPL-UHFFFAOYSA-N 0.000 description 2
- YSUIQYOGTINQIN-UZFYAQMZSA-N 2-amino-9-[(1S,6R,8R,9S,10R,15R,17R,18R)-8-(6-aminopurin-9-yl)-9,18-difluoro-3,12-dihydroxy-3,12-bis(sulfanylidene)-2,4,7,11,13,16-hexaoxa-3lambda5,12lambda5-diphosphatricyclo[13.2.1.06,10]octadecan-17-yl]-1H-purin-6-one Chemical compound NC1=NC2=C(N=CN2[C@@H]2O[C@@H]3COP(S)(=O)O[C@@H]4[C@@H](COP(S)(=O)O[C@@H]2[C@@H]3F)O[C@H]([C@H]4F)N2C=NC3=C2N=CN=C3N)C(=O)N1 YSUIQYOGTINQIN-UZFYAQMZSA-N 0.000 description 2
- BBIKOZCVGSTHIZ-UHFFFAOYSA-N 2-ethyl-3-methylquinoline-6-carboxylic acid Chemical compound C1=C(C(O)=O)C=C2C=C(C)C(CC)=NC2=C1 BBIKOZCVGSTHIZ-UHFFFAOYSA-N 0.000 description 2
- ASUDFOJKTJLAIK-UHFFFAOYSA-N 2-methoxyethanamine Chemical compound COCCN ASUDFOJKTJLAIK-UHFFFAOYSA-N 0.000 description 2
- WDFQBORIUYODSI-UHFFFAOYSA-N 4-bromoaniline Chemical compound NC1=CC=C(Br)C=C1 WDFQBORIUYODSI-UHFFFAOYSA-N 0.000 description 2
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 230000005526 G1 to G0 transition Effects 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- 208000012902 Nervous system disease Diseases 0.000 description 2
- 208000025966 Neurological disease Diseases 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 2
- 239000012346 acetyl chloride Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 239000002168 alkylating agent Substances 0.000 description 2
- 229940100198 alkylating agent Drugs 0.000 description 2
- 206010053552 allodynia Diseases 0.000 description 2
- 150000001413 amino acids Chemical group 0.000 description 2
- 229960004050 aminobenzoic acid Drugs 0.000 description 2
- 230000008485 antagonism Effects 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 229940126543 compound 14 Drugs 0.000 description 2
- 229940126208 compound 22 Drugs 0.000 description 2
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- 108010037444 diisopropylglutathione ester Proteins 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 210000002683 foot Anatomy 0.000 description 2
- XZBIXDPGRMLSTC-UHFFFAOYSA-N formohydrazide Chemical compound NNC=O XZBIXDPGRMLSTC-UHFFFAOYSA-N 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 210000000548 hind-foot Anatomy 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 239000012280 lithium aluminium hydride Substances 0.000 description 2
- 229940124807 mGLUR antagonist Drugs 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 2
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 2
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 2
- XCRBXWCUXJNEFX-UHFFFAOYSA-N peroxybenzoic acid Chemical group OOC(=O)C1=CC=CC=C1 XCRBXWCUXJNEFX-UHFFFAOYSA-N 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 235000003270 potassium fluoride Nutrition 0.000 description 2
- 239000012286 potassium permanganate Substances 0.000 description 2
- XXQBEVHPUKOQEO-UHFFFAOYSA-N potassium superoxide Chemical compound [K+].[K+].[O-][O-] XXQBEVHPUKOQEO-UHFFFAOYSA-N 0.000 description 2
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 210000003497 sciatic nerve Anatomy 0.000 description 2
- 238000010956 selective crystallization Methods 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 235000009518 sodium iodide Nutrition 0.000 description 2
- LJRGBERXYNQPJI-UHFFFAOYSA-M sodium;3-nitrobenzenesulfonate Chemical compound [Na+].[O-][N+](=O)C1=CC=CC(S([O-])(=O)=O)=C1 LJRGBERXYNQPJI-UHFFFAOYSA-M 0.000 description 2
- 230000000707 stereoselective effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- AQRLNPVMDITEJU-UHFFFAOYSA-N triethylsilane Chemical compound CC[SiH](CC)CC AQRLNPVMDITEJU-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- LEIMLDGFXIOXMT-UHFFFAOYSA-N trimethylsilyl cyanide Chemical compound C[Si](C)(C)C#N LEIMLDGFXIOXMT-UHFFFAOYSA-N 0.000 description 2
- 238000007514 turning Methods 0.000 description 2
- 239000011592 zinc chloride Substances 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- ASGMFNBUXDJWJJ-JLCFBVMHSA-N (1R,3R)-3-[[3-bromo-1-[4-(5-methyl-1,3,4-thiadiazol-2-yl)phenyl]pyrazolo[3,4-d]pyrimidin-6-yl]amino]-N,1-dimethylcyclopentane-1-carboxamide Chemical compound BrC1=NN(C2=NC(=NC=C21)N[C@H]1C[C@@](CC1)(C(=O)NC)C)C1=CC=C(C=C1)C=1SC(=NN=1)C ASGMFNBUXDJWJJ-JLCFBVMHSA-N 0.000 description 1
- UAOUIVVJBYDFKD-XKCDOFEDSA-N (1R,9R,10S,11R,12R,15S,18S,21R)-10,11,21-trihydroxy-8,8-dimethyl-14-methylidene-4-(prop-2-enylamino)-20-oxa-5-thia-3-azahexacyclo[9.7.2.112,15.01,9.02,6.012,18]henicosa-2(6),3-dien-13-one Chemical compound C([C@@H]1[C@@H](O)[C@@]23C(C1=C)=O)C[C@H]2[C@]12C(N=C(NCC=C)S4)=C4CC(C)(C)[C@H]1[C@H](O)[C@]3(O)OC2 UAOUIVVJBYDFKD-XKCDOFEDSA-N 0.000 description 1
- AOSZTAHDEDLTLQ-AZKQZHLXSA-N (1S,2S,4R,8S,9S,11S,12R,13S,19S)-6-[(3-chlorophenyl)methyl]-12,19-difluoro-11-hydroxy-8-(2-hydroxyacetyl)-9,13-dimethyl-6-azapentacyclo[10.8.0.02,9.04,8.013,18]icosa-14,17-dien-16-one Chemical compound C([C@@H]1C[C@H]2[C@H]3[C@]([C@]4(C=CC(=O)C=C4[C@@H](F)C3)C)(F)[C@@H](O)C[C@@]2([C@@]1(C1)C(=O)CO)C)N1CC1=CC=CC(Cl)=C1 AOSZTAHDEDLTLQ-AZKQZHLXSA-N 0.000 description 1
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 1
- IUSARDYWEPUTPN-OZBXUNDUSA-N (2r)-n-[(2s,3r)-4-[[(4s)-6-(2,2-dimethylpropyl)spiro[3,4-dihydropyrano[2,3-b]pyridine-2,1'-cyclobutane]-4-yl]amino]-3-hydroxy-1-[3-(1,3-thiazol-2-yl)phenyl]butan-2-yl]-2-methoxypropanamide Chemical compound C([C@H](NC(=O)[C@@H](C)OC)[C@H](O)CN[C@@H]1C2=CC(CC(C)(C)C)=CN=C2OC2(CCC2)C1)C(C=1)=CC=CC=1C1=NC=CS1 IUSARDYWEPUTPN-OZBXUNDUSA-N 0.000 description 1
- VIJSPAIQWVPKQZ-BLECARSGSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-acetamido-5-(diaminomethylideneamino)pentanoyl]amino]-4-methylpentanoyl]amino]-4,4-dimethylpentanoyl]amino]-4-methylpentanoyl]amino]propanoyl]amino]-5-(diaminomethylideneamino)pentanoic acid Chemical compound NC(=N)NCCC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(C)=O VIJSPAIQWVPKQZ-BLECARSGSA-N 0.000 description 1
- STBLNCCBQMHSRC-BATDWUPUSA-N (2s)-n-[(3s,4s)-5-acetyl-7-cyano-4-methyl-1-[(2-methylnaphthalen-1-yl)methyl]-2-oxo-3,4-dihydro-1,5-benzodiazepin-3-yl]-2-(methylamino)propanamide Chemical compound O=C1[C@@H](NC(=O)[C@H](C)NC)[C@H](C)N(C(C)=O)C2=CC(C#N)=CC=C2N1CC1=C(C)C=CC2=CC=CC=C12 STBLNCCBQMHSRC-BATDWUPUSA-N 0.000 description 1
- XQULWEVJPJDPLQ-UHFFFAOYSA-N (3-methylquinolin-6-yl)methanol Chemical compound C1=CC(CO)=CC2=CC(C)=CN=C21 XQULWEVJPJDPLQ-UHFFFAOYSA-N 0.000 description 1
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical compound CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 description 1
- IWZSHWBGHQBIML-ZGGLMWTQSA-N (3S,8S,10R,13S,14S,17S)-17-isoquinolin-7-yl-N,N,10,13-tetramethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-amine Chemical compound CN(C)[C@H]1CC[C@]2(C)C3CC[C@@]4(C)[C@@H](CC[C@@H]4c4ccc5ccncc5c4)[C@@H]3CC=C2C1 IWZSHWBGHQBIML-ZGGLMWTQSA-N 0.000 description 1
- UDQTXCHQKHIQMH-KYGLGHNPSA-N (3ar,5s,6s,7r,7ar)-5-(difluoromethyl)-2-(ethylamino)-5,6,7,7a-tetrahydro-3ah-pyrano[3,2-d][1,3]thiazole-6,7-diol Chemical compound S1C(NCC)=N[C@H]2[C@@H]1O[C@H](C(F)F)[C@@H](O)[C@@H]2O UDQTXCHQKHIQMH-KYGLGHNPSA-N 0.000 description 1
- HUWSZNZAROKDRZ-RRLWZMAJSA-N (3r,4r)-3-azaniumyl-5-[[(2s,3r)-1-[(2s)-2,3-dicarboxypyrrolidin-1-yl]-3-methyl-1-oxopentan-2-yl]amino]-5-oxo-4-sulfanylpentane-1-sulfonate Chemical compound OS(=O)(=O)CC[C@@H](N)[C@@H](S)C(=O)N[C@@H]([C@H](C)CC)C(=O)N1CCC(C(O)=O)[C@H]1C(O)=O HUWSZNZAROKDRZ-RRLWZMAJSA-N 0.000 description 1
- MPDDTAJMJCESGV-CTUHWIOQSA-M (3r,5r)-7-[2-(4-fluorophenyl)-5-[methyl-[(1r)-1-phenylethyl]carbamoyl]-4-propan-2-ylpyrazol-3-yl]-3,5-dihydroxyheptanoate Chemical compound C1([C@@H](C)N(C)C(=O)C2=NN(C(CC[C@@H](O)C[C@@H](O)CC([O-])=O)=C2C(C)C)C=2C=CC(F)=CC=2)=CC=CC=C1 MPDDTAJMJCESGV-CTUHWIOQSA-M 0.000 description 1
- YQOLEILXOBUDMU-KRWDZBQOSA-N (4R)-5-[(6-bromo-3-methyl-2-pyrrolidin-1-ylquinoline-4-carbonyl)amino]-4-(2-chlorophenyl)pentanoic acid Chemical compound CC1=C(C2=C(C=CC(=C2)Br)N=C1N3CCCC3)C(=O)NC[C@H](CCC(=O)O)C4=CC=CC=C4Cl YQOLEILXOBUDMU-KRWDZBQOSA-N 0.000 description 1
- HAIDNNYCHKHYHX-UHFFFAOYSA-N (6-fluoro-3,4-dihydro-2h-chromen-2-yl)methanol Chemical compound FC1=CC=C2OC(CO)CCC2=C1 HAIDNNYCHKHYHX-UHFFFAOYSA-N 0.000 description 1
- ZYZCALPXKGUGJI-DDVDASKDSA-M (e,3r,5s)-7-[3-(4-fluorophenyl)-2-phenyl-5-propan-2-ylimidazol-4-yl]-3,5-dihydroxyhept-6-enoate Chemical compound C=1C=C(F)C=CC=1N1C(\C=C\[C@@H](O)C[C@@H](O)CC([O-])=O)=C(C(C)C)N=C1C1=CC=CC=C1 ZYZCALPXKGUGJI-DDVDASKDSA-M 0.000 description 1
- KQZLRWGGWXJPOS-NLFPWZOASA-N 1-[(1R)-1-(2,4-dichlorophenyl)ethyl]-6-[(4S,5R)-4-[(2S)-2-(hydroxymethyl)pyrrolidin-1-yl]-5-methylcyclohexen-1-yl]pyrazolo[3,4-b]pyrazine-3-carbonitrile Chemical compound ClC1=C(C=CC(=C1)Cl)[C@@H](C)N1N=C(C=2C1=NC(=CN=2)C1=CC[C@@H]([C@@H](C1)C)N1[C@@H](CCC1)CO)C#N KQZLRWGGWXJPOS-NLFPWZOASA-N 0.000 description 1
- WZZBNLYBHUDSHF-DHLKQENFSA-N 1-[(3s,4s)-4-[8-(2-chloro-4-pyrimidin-2-yloxyphenyl)-7-fluoro-2-methylimidazo[4,5-c]quinolin-1-yl]-3-fluoropiperidin-1-yl]-2-hydroxyethanone Chemical compound CC1=NC2=CN=C3C=C(F)C(C=4C(=CC(OC=5N=CC=CN=5)=CC=4)Cl)=CC3=C2N1[C@H]1CCN(C(=O)CO)C[C@@H]1F WZZBNLYBHUDSHF-DHLKQENFSA-N 0.000 description 1
- ONBQEOIKXPHGMB-VBSBHUPXSA-N 1-[2-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-4,6-dihydroxyphenyl]-3-(4-hydroxyphenyl)propan-1-one Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=CC(O)=C1C(=O)CCC1=CC=C(O)C=C1 ONBQEOIKXPHGMB-VBSBHUPXSA-N 0.000 description 1
- UNILWMWFPHPYOR-KXEYIPSPSA-M 1-[6-[2-[3-[3-[3-[2-[2-[3-[[2-[2-[[(2r)-1-[[2-[[(2r)-1-[3-[2-[2-[3-[[2-(2-amino-2-oxoethoxy)acetyl]amino]propoxy]ethoxy]ethoxy]propylamino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-[(2r)-2,3-di(hexadecanoyloxy)propyl]sulfanyl-1-oxopropan-2-yl Chemical compound O=C1C(SCCC(=O)NCCCOCCOCCOCCCNC(=O)COCC(=O)N[C@@H](CSC[C@@H](COC(=O)CCCCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCC)C(=O)NCC(=O)N[C@H](CO)C(=O)NCCCOCCOCCOCCCNC(=O)COCC(N)=O)CC(=O)N1CCNC(=O)CCCCCN\1C2=CC=C(S([O-])(=O)=O)C=C2CC/1=C/C=C/C=C/C1=[N+](CC)C2=CC=C(S([O-])(=O)=O)C=C2C1 UNILWMWFPHPYOR-KXEYIPSPSA-M 0.000 description 1
- PKRRNTJIHGOMRC-UHFFFAOYSA-N 1-benzofuran-2-ylboronic acid Chemical compound C1=CC=C2OC(B(O)O)=CC2=C1 PKRRNTJIHGOMRC-UHFFFAOYSA-N 0.000 description 1
- MEKOFIRRDATTAG-UHFFFAOYSA-N 2,2,5,8-tetramethyl-3,4-dihydrochromen-6-ol Chemical compound C1CC(C)(C)OC2=C1C(C)=C(O)C=C2C MEKOFIRRDATTAG-UHFFFAOYSA-N 0.000 description 1
- DNZFSDYPKGZHAA-UHFFFAOYSA-N 2,3-dihydro-1h-indene-2-carbonitrile Chemical compound C1=CC=C2CC(C#N)CC2=C1 DNZFSDYPKGZHAA-UHFFFAOYSA-N 0.000 description 1
- FQMZXMVHHKXGTM-UHFFFAOYSA-N 2-(1-adamantyl)-n-[2-[2-(2-hydroxyethylamino)ethylamino]quinolin-5-yl]acetamide Chemical compound C1C(C2)CC(C3)CC2CC13CC(=O)NC1=CC=CC2=NC(NCCNCCO)=CC=C21 FQMZXMVHHKXGTM-UHFFFAOYSA-N 0.000 description 1
- KIHOOGDHEALLCJ-UHFFFAOYSA-N 2-(4-nitrophenyl)-1-phenylethanone Chemical compound C1=CC([N+](=O)[O-])=CC=C1CC(=O)C1=CC=CC=C1 KIHOOGDHEALLCJ-UHFFFAOYSA-N 0.000 description 1
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 1
- PYRKKGOKRMZEIT-UHFFFAOYSA-N 2-[6-(2-cyclopropylethoxy)-9-(2-hydroxy-2-methylpropyl)-1h-phenanthro[9,10-d]imidazol-2-yl]-5-fluorobenzene-1,3-dicarbonitrile Chemical compound C1=C2C3=CC(CC(C)(O)C)=CC=C3C=3NC(C=4C(=CC(F)=CC=4C#N)C#N)=NC=3C2=CC=C1OCCC1CC1 PYRKKGOKRMZEIT-UHFFFAOYSA-N 0.000 description 1
- TVTJUIAKQFIXCE-HUKYDQBMSA-N 2-amino-9-[(2R,3S,4S,5R)-4-fluoro-3-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-7-prop-2-ynyl-1H-purine-6,8-dione Chemical compound NC=1NC(C=2N(C(N(C=2N=1)[C@@H]1O[C@@H]([C@H]([C@H]1O)F)CO)=O)CC#C)=O TVTJUIAKQFIXCE-HUKYDQBMSA-N 0.000 description 1
- MBUPVGIGAMCMBT-UHFFFAOYSA-N 2-bromo-1-(4-nitrophenyl)ethanone Chemical compound [O-][N+](=O)C1=CC=C(C(=O)CBr)C=C1 MBUPVGIGAMCMBT-UHFFFAOYSA-N 0.000 description 1
- CYWGSFFHHMQKET-UHFFFAOYSA-N 2-methylsulfanylethanamine Chemical compound CSCCN CYWGSFFHHMQKET-UHFFFAOYSA-N 0.000 description 1
- WJZBRIUZOUNDKW-UHFFFAOYSA-N 3-methylquinoline-6-carbaldehyde Chemical compound C1=CC(C=O)=CC2=CC(C)=CN=C21 WJZBRIUZOUNDKW-UHFFFAOYSA-N 0.000 description 1
- JNFGLYJROFAOQP-UHFFFAOYSA-N 4-amino-3-methoxybenzoic acid Chemical compound COC1=CC(C(O)=O)=CC=C1N JNFGLYJROFAOQP-UHFFFAOYSA-N 0.000 description 1
- WKILSRYNRQGRMA-UHFFFAOYSA-N 4-methoxycyclohexane-1-carboxylic acid Chemical compound COC1CCC(C(O)=O)CC1 WKILSRYNRQGRMA-UHFFFAOYSA-N 0.000 description 1
- ZVERWTXKKWSSHH-UHFFFAOYSA-N 4-propan-2-yloxybenzoic acid Chemical compound CC(C)OC1=CC=C(C(O)=O)C=C1 ZVERWTXKKWSSHH-UHFFFAOYSA-N 0.000 description 1
- MBVCESWADCIXJN-UHFFFAOYSA-N 5-Bromoisatin Chemical compound BrC1=CC=C2NC(=O)C(=O)C2=C1 MBVCESWADCIXJN-UHFFFAOYSA-N 0.000 description 1
- YLAFBGATSQRSTB-UHFFFAOYSA-N 6-bromo-1h-quinolin-2-one Chemical compound N1C(=O)C=CC2=CC(Br)=CC=C21 YLAFBGATSQRSTB-UHFFFAOYSA-N 0.000 description 1
- OQJLGKBTBSSWAV-UHFFFAOYSA-N 6-fluoro-3,4-dihydro-2h-chromene-2-carbaldehyde Chemical compound O1C(C=O)CCC2=CC(F)=CC=C21 OQJLGKBTBSSWAV-UHFFFAOYSA-N 0.000 description 1
- ZNJANLXCXMVFFI-UHFFFAOYSA-N 6-fluoro-3,4-dihydro-2h-chromene-2-carboxylic acid Chemical compound FC1=CC=C2OC(C(=O)O)CCC2=C1 ZNJANLXCXMVFFI-UHFFFAOYSA-N 0.000 description 1
- JZJYDFADRMBXAW-UHFFFAOYSA-N 6-fluoro-4-oxochromene-2-carboxylic acid Chemical compound FC1=CC=C2OC(C(=O)O)=CC(=O)C2=C1 JZJYDFADRMBXAW-UHFFFAOYSA-N 0.000 description 1
- HCCNBKFJYUWLEX-UHFFFAOYSA-N 7-(6-methoxypyridin-3-yl)-1-(2-propoxyethyl)-3-(pyrazin-2-ylmethylamino)pyrido[3,4-b]pyrazin-2-one Chemical compound O=C1N(CCOCCC)C2=CC(C=3C=NC(OC)=CC=3)=NC=C2N=C1NCC1=CN=CC=N1 HCCNBKFJYUWLEX-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- OJRUSAPKCPIVBY-KQYNXXCUSA-N C1=NC2=C(N=C(N=C2N1[C@H]3[C@@H]([C@@H]([C@H](O3)COP(=O)(CP(=O)(O)O)O)O)O)I)N Chemical compound C1=NC2=C(N=C(N=C2N1[C@H]3[C@@H]([C@@H]([C@H](O3)COP(=O)(CP(=O)(O)O)O)O)O)I)N OJRUSAPKCPIVBY-KQYNXXCUSA-N 0.000 description 1
- KCBAMQOKOLXLOX-BSZYMOERSA-N CC1=C(SC=N1)C2=CC=C(C=C2)[C@H](C)NC(=O)[C@@H]3C[C@H](CN3C(=O)[C@H](C(C)(C)C)NC(=O)CCCCCCCCCCNCCCONC(=O)C4=C(C(=C(C=C4)F)F)NC5=C(C=C(C=C5)I)F)O Chemical compound CC1=C(SC=N1)C2=CC=C(C=C2)[C@H](C)NC(=O)[C@@H]3C[C@H](CN3C(=O)[C@H](C(C)(C)C)NC(=O)CCCCCCCCCCNCCCONC(=O)C4=C(C(=C(C=C4)F)F)NC5=C(C=C(C=C5)I)F)O KCBAMQOKOLXLOX-BSZYMOERSA-N 0.000 description 1
- 229940126657 Compound 17 Drugs 0.000 description 1
- 229940126639 Compound 33 Drugs 0.000 description 1
- 229940127007 Compound 39 Drugs 0.000 description 1
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 1
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 102100036837 Metabotropic glutamate receptor 2 Human genes 0.000 description 1
- 102100038354 Metabotropic glutamate receptor 4 Human genes 0.000 description 1
- 102100037636 Metabotropic glutamate receptor 8 Human genes 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- OPFJDXRVMFKJJO-ZHHKINOHSA-N N-{[3-(2-benzamido-4-methyl-1,3-thiazol-5-yl)-pyrazol-5-yl]carbonyl}-G-dR-G-dD-dD-dD-NH2 Chemical compound S1C(C=2NN=C(C=2)C(=O)NCC(=O)N[C@H](CCCN=C(N)N)C(=O)NCC(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(N)=O)=C(C)N=C1NC(=O)C1=CC=CC=C1 OPFJDXRVMFKJJO-ZHHKINOHSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- PNUZDKCDAWUEGK-CYZMBNFOSA-N Sitafloxacin Chemical compound C([C@H]1N)N(C=2C(=C3C(C(C(C(O)=O)=CN3[C@H]3[C@H](C3)F)=O)=CC=2F)Cl)CC11CC1 PNUZDKCDAWUEGK-CYZMBNFOSA-N 0.000 description 1
- 229910009201 Sn(CH3)4 Inorganic materials 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 1
- OKJPEAGHQZHRQV-UHFFFAOYSA-N Triiodomethane Natural products IC(I)I OKJPEAGHQZHRQV-UHFFFAOYSA-N 0.000 description 1
- 102000014384 Type C Phospholipases Human genes 0.000 description 1
- 108010079194 Type C Phospholipases Proteins 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000005874 Vilsmeier-Haack formylation reaction Methods 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- LJOOWESTVASNOG-UFJKPHDISA-N [(1s,3r,4ar,7s,8s,8as)-3-hydroxy-8-[2-[(4r)-4-hydroxy-6-oxooxan-2-yl]ethyl]-7-methyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-yl] (2s)-2-methylbutanoate Chemical compound C([C@H]1[C@@H](C)C=C[C@H]2C[C@@H](O)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)CC1C[C@@H](O)CC(=O)O1 LJOOWESTVASNOG-UFJKPHDISA-N 0.000 description 1
- SPXSEZMVRJLHQG-XMMPIXPASA-N [(2R)-1-[[4-[(3-phenylmethoxyphenoxy)methyl]phenyl]methyl]pyrrolidin-2-yl]methanol Chemical compound C(C1=CC=CC=C1)OC=1C=C(OCC2=CC=C(CN3[C@H](CCC3)CO)C=C2)C=CC=1 SPXSEZMVRJLHQG-XMMPIXPASA-N 0.000 description 1
- LNUFLCYMSVYYNW-ZPJMAFJPSA-N [(2r,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[[(3s,5s,8r,9s,10s,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-disulfo Chemical compound O([C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1C[C@@H]2CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)[C@H]1O[C@H](COS(O)(=O)=O)[C@@H](OS(O)(=O)=O)[C@H](OS(O)(=O)=O)[C@H]1OS(O)(=O)=O LNUFLCYMSVYYNW-ZPJMAFJPSA-N 0.000 description 1
- PSLUFJFHTBIXMW-WYEYVKMPSA-N [(3r,4ar,5s,6s,6as,10s,10ar,10bs)-3-ethenyl-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-6-(2-pyridin-2-ylethylcarbamoyloxy)-5,6,6a,8,9,10-hexahydro-2h-benzo[f]chromen-5-yl] acetate Chemical compound O([C@@H]1[C@@H]([C@]2(O[C@](C)(CC(=O)[C@]2(O)[C@@]2(C)[C@@H](O)CCC(C)(C)[C@@H]21)C=C)C)OC(=O)C)C(=O)NCCC1=CC=CC=N1 PSLUFJFHTBIXMW-WYEYVKMPSA-N 0.000 description 1
- JEDZLBFUGJTJGQ-UHFFFAOYSA-N [Na].COCCO[AlH]OCCOC Chemical compound [Na].COCCO[AlH]OCCOC JEDZLBFUGJTJGQ-UHFFFAOYSA-N 0.000 description 1
- SMNRFWMNPDABKZ-WVALLCKVSA-N [[(2R,3S,4R,5S)-5-(2,6-dioxo-3H-pyridin-3-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [[[(2R,3S,4S,5R,6R)-4-fluoro-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl] hydrogen phosphate Chemical compound OC[C@H]1O[C@H](OP(O)(=O)OP(O)(=O)OP(O)(=O)OP(O)(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)C2C=CC(=O)NC2=O)[C@H](O)[C@@H](F)[C@@H]1O SMNRFWMNPDABKZ-WVALLCKVSA-N 0.000 description 1
- ZVQOOHYFBIDMTQ-UHFFFAOYSA-N [methyl(oxido){1-[6-(trifluoromethyl)pyridin-3-yl]ethyl}-lambda(6)-sulfanylidene]cyanamide Chemical compound N#CN=S(C)(=O)C(C)C1=CC=C(C(F)(F)F)N=C1 ZVQOOHYFBIDMTQ-UHFFFAOYSA-N 0.000 description 1
- AMJRSUWJSRKGNO-UHFFFAOYSA-N acetyloxymethyl 2-[n-[2-(acetyloxymethoxy)-2-oxoethyl]-2-[2-[2-[bis[2-(acetyloxymethoxy)-2-oxoethyl]amino]-5-(2,7-dichloro-3-hydroxy-6-oxoxanthen-9-yl)phenoxy]ethoxy]-4-methylanilino]acetate Chemical compound CC(=O)OCOC(=O)CN(CC(=O)OCOC(C)=O)C1=CC=C(C)C=C1OCCOC1=CC(C2=C3C=C(Cl)C(=O)C=C3OC3=CC(O)=C(Cl)C=C32)=CC=C1N(CC(=O)OCOC(C)=O)CC(=O)OCOC(C)=O AMJRSUWJSRKGNO-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 102000030621 adenylate cyclase Human genes 0.000 description 1
- 108060000200 adenylate cyclase Proteins 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- WOLHOYHSEKDWQH-UHFFFAOYSA-N amantadine hydrochloride Chemical compound [Cl-].C1C(C2)CC3CC2CC1([NH3+])C3 WOLHOYHSEKDWQH-UHFFFAOYSA-N 0.000 description 1
- 229960001280 amantadine hydrochloride Drugs 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 150000001502 aryl halides Chemical class 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- XRWSZZJLZRKHHD-WVWIJVSJSA-N asunaprevir Chemical compound O=C([C@@H]1C[C@H](CN1C(=O)[C@@H](NC(=O)OC(C)(C)C)C(C)(C)C)OC1=NC=C(C2=CC=C(Cl)C=C21)OC)N[C@]1(C(=O)NS(=O)(=O)C2CC2)C[C@H]1C=C XRWSZZJLZRKHHD-WVWIJVSJSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- GHQPBDDZGPAVJP-UHFFFAOYSA-N azanium;methanol;hydroxide Chemical compound N.O.OC GHQPBDDZGPAVJP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- JUHORIMYRDESRB-UHFFFAOYSA-N benzathine Chemical compound C=1C=CC=CC=1CNCCNCC1=CC=CC=C1 JUHORIMYRDESRB-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 1
- QRDHEUGWMQEUHW-UHFFFAOYSA-N benzyl(triphenyl)stannane Chemical compound C=1C=CC=CC=1[Sn](C=1C=CC=CC=1)(C=1C=CC=CC=1)CC1=CC=CC=C1 QRDHEUGWMQEUHW-UHFFFAOYSA-N 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- HGXJOXHYPGNVNK-UHFFFAOYSA-N butane;ethenoxyethane;tin Chemical compound CCCC[Sn](CCCC)(CCCC)C(=C)OCC HGXJOXHYPGNVNK-UHFFFAOYSA-N 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003940 butylamines Chemical class 0.000 description 1
- 125000000480 butynyl group Chemical group [*]C#CC([H])([H])C([H])([H])[H] 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229940003871 calcium ion Drugs 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229940125773 compound 10 Drugs 0.000 description 1
- 229940125797 compound 12 Drugs 0.000 description 1
- 229940125758 compound 15 Drugs 0.000 description 1
- 229940126142 compound 16 Drugs 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 229940125810 compound 20 Drugs 0.000 description 1
- 229940126086 compound 21 Drugs 0.000 description 1
- 229940125833 compound 23 Drugs 0.000 description 1
- 229940125961 compound 24 Drugs 0.000 description 1
- 229940125851 compound 27 Drugs 0.000 description 1
- 229940127204 compound 29 Drugs 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 229940125877 compound 31 Drugs 0.000 description 1
- 229940125878 compound 36 Drugs 0.000 description 1
- 229940125807 compound 37 Drugs 0.000 description 1
- 229940127573 compound 38 Drugs 0.000 description 1
- 229940125936 compound 42 Drugs 0.000 description 1
- 229940125844 compound 46 Drugs 0.000 description 1
- 229940127271 compound 49 Drugs 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 229940126545 compound 53 Drugs 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- HJSLFCCWAKVHIW-UHFFFAOYSA-N cyclohexane-1,3-dione Chemical compound O=C1CCCC(=O)C1 HJSLFCCWAKVHIW-UHFFFAOYSA-N 0.000 description 1
- IDAZIPJHRQQCMR-UHFFFAOYSA-N cyclohexyl-(3-methylquinolin-6-yl)methanol Chemical compound C=1C2=CC(C)=CN=C2C=CC=1C(O)C1CCCCC1 IDAZIPJHRQQCMR-UHFFFAOYSA-N 0.000 description 1
- HCAJEUSONLESMK-UHFFFAOYSA-N cyclohexylsulfamic acid Chemical compound OS(=O)(=O)NC1CCCCC1 HCAJEUSONLESMK-UHFFFAOYSA-N 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- RMEDXOLNCUSCGS-UHFFFAOYSA-N droperidol Chemical compound C1=CC(F)=CC=C1C(=O)CCCN1CC=C(N2C(NC3=CC=CC=C32)=O)CC1 RMEDXOLNCUSCGS-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- DQYBDCGIPTYXML-UHFFFAOYSA-N ethoxyethane;hydrate Chemical compound O.CCOCC DQYBDCGIPTYXML-UHFFFAOYSA-N 0.000 description 1
- WQXBDOYUQWQXAZ-UHFFFAOYSA-N ethyl 3-methylquinoline-6-carboxylate Chemical compound N1=CC(C)=CC2=CC(C(=O)OCC)=CC=C21 WQXBDOYUQWQXAZ-UHFFFAOYSA-N 0.000 description 1
- XLTYRVHHKJREDL-UHFFFAOYSA-N ethyl 6-fluoro-3,4-dihydro-2h-chromene-2-carboxylate Chemical compound FC1=CC=C2OC(C(=O)OCC)CCC2=C1 XLTYRVHHKJREDL-UHFFFAOYSA-N 0.000 description 1
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 1
- PQJJJMRNHATNKG-UHFFFAOYSA-N ethyl bromoacetate Chemical compound CCOC(=O)CBr PQJJJMRNHATNKG-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002964 excitative effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- JAXFJECJQZDFJS-XHEPKHHKSA-N gtpl8555 Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)N[C@H](B1O[C@@]2(C)[C@H]3C[C@H](C3(C)C)C[C@H]2O1)CCC1=CC=C(F)C=C1 JAXFJECJQZDFJS-XHEPKHHKSA-N 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 230000002140 halogenating effect Effects 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005980 hexynyl group Chemical group 0.000 description 1
- XGIHQYAWBCFNPY-AZOCGYLKSA-N hydrabamine Chemical class C([C@@H]12)CC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC[C@@]1(C)CNCCNC[C@@]1(C)[C@@H]2CCC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC1 XGIHQYAWBCFNPY-AZOCGYLKSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- COQRGFWWJBEXRC-UHFFFAOYSA-N hydron;methyl 2-aminoacetate;chloride Chemical compound Cl.COC(=O)CN COQRGFWWJBEXRC-UHFFFAOYSA-N 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Substances C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- XJTQJERLRPWUGL-UHFFFAOYSA-N iodomethylbenzene Chemical compound ICC1=CC=CC=C1 XJTQJERLRPWUGL-UHFFFAOYSA-N 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- NQXWGWZJXJUMQB-UHFFFAOYSA-K iron trichloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].Cl[Fe+]Cl NQXWGWZJXJUMQB-UHFFFAOYSA-K 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 108010038421 metabotropic glutamate receptor 2 Proteins 0.000 description 1
- 108010038422 metabotropic glutamate receptor 4 Proteins 0.000 description 1
- 108010038448 metabotropic glutamate receptor 8 Proteins 0.000 description 1
- 150000004972 metal peroxides Chemical class 0.000 description 1
- YWOITFUKFOYODT-UHFFFAOYSA-N methanol;sodium Chemical compound [Na].OC YWOITFUKFOYODT-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-BJUDXGSMSA-N methanone Chemical compound O=[11CH2] WSFSSNUMVMOOMR-BJUDXGSMSA-N 0.000 description 1
- 125000004674 methylcarbonyl group Chemical group CC(=O)* 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- KRKPYFLIYNGWTE-UHFFFAOYSA-N n,o-dimethylhydroxylamine Chemical compound CNOC KRKPYFLIYNGWTE-UHFFFAOYSA-N 0.000 description 1
- GULFEFQSLUZFQM-UHFFFAOYSA-N n-(4-bromophenyl)butanamide Chemical compound CCCC(=O)NC1=CC=C(Br)C=C1 GULFEFQSLUZFQM-UHFFFAOYSA-N 0.000 description 1
- UZHSEJADLWPNLE-GRGSLBFTSA-N naloxone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(O)C2=C5[C@@]13CCN4CC=C UZHSEJADLWPNLE-GRGSLBFTSA-N 0.000 description 1
- 229960004127 naloxone Drugs 0.000 description 1
- IOMMMLWIABWRKL-WUTDNEBXSA-N nazartinib Chemical compound C1N(C(=O)/C=C/CN(C)C)CCCC[C@H]1N1C2=C(Cl)C=CC=C2N=C1NC(=O)C1=CC=NC(C)=C1 IOMMMLWIABWRKL-WUTDNEBXSA-N 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 239000004090 neuroprotective agent Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000005593 norbornanyl group Chemical group 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- PIDFDZJZLOTZTM-KHVQSSSXSA-N ombitasvir Chemical compound COC(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@H]1C(=O)NC1=CC=C([C@H]2N([C@@H](CC2)C=2C=CC(NC(=O)[C@H]3N(CCC3)C(=O)[C@@H](NC(=O)OC)C(C)C)=CC=2)C=2C=CC(=CC=2)C(C)(C)C)C=C1 PIDFDZJZLOTZTM-KHVQSSSXSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- LXNAVEXFUKBNMK-UHFFFAOYSA-N palladium(II) acetate Substances [Pd].CC(O)=O.CC(O)=O LXNAVEXFUKBNMK-UHFFFAOYSA-N 0.000 description 1
- UQPUONNXJVWHRM-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 UQPUONNXJVWHRM-UHFFFAOYSA-N 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000035778 pathophysiological process Effects 0.000 description 1
- 239000003961 penetration enhancing agent Substances 0.000 description 1
- 235000019371 penicillin G benzathine Nutrition 0.000 description 1
- XGISHOFUAFNYQF-UHFFFAOYSA-N pentanoyl chloride Chemical compound CCCCC(Cl)=O XGISHOFUAFNYQF-UHFFFAOYSA-N 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 1
- 229960001412 pentobarbital Drugs 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000005981 pentynyl group Chemical group 0.000 description 1
- 150000004965 peroxy acids Chemical group 0.000 description 1
- 239000003444 phase transfer catalyst Substances 0.000 description 1
- 230000001242 postsynaptic effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- TVDSBUOJIPERQY-UHFFFAOYSA-N prop-2-yn-1-ol Chemical compound OCC#C TVDSBUOJIPERQY-UHFFFAOYSA-N 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- SBYHFKPVCBCYGV-UHFFFAOYSA-N quinuclidine Chemical compound C1CC2CCN1CC2 SBYHFKPVCBCYGV-UHFFFAOYSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000012419 sodium bis(2-methoxyethoxy)aluminum hydride Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- PFUVRDFDKPNGAV-UHFFFAOYSA-N sodium peroxide Chemical compound [Na+].[Na+].[O-][O-] PFUVRDFDKPNGAV-UHFFFAOYSA-N 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 239000004544 spot-on Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 150000003510 tertiary aliphatic amines Chemical class 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- VXKWYPOMXBVZSJ-UHFFFAOYSA-N tetramethyltin Chemical compound C[Sn](C)(C)C VXKWYPOMXBVZSJ-UHFFFAOYSA-N 0.000 description 1
- BRNULMACUQOKMR-UHFFFAOYSA-N thiomorpholine Chemical compound C1CSCCN1 BRNULMACUQOKMR-UHFFFAOYSA-N 0.000 description 1
- QNMBSXGYAQZCTN-UHFFFAOYSA-N thiophen-3-ylboronic acid Chemical compound OB(O)C=1C=CSC=1 QNMBSXGYAQZCTN-UHFFFAOYSA-N 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- QIWRFOJWQSSRJZ-UHFFFAOYSA-N tributyl(ethenyl)stannane Chemical compound CCCC[Sn](CCCC)(CCCC)C=C QIWRFOJWQSSRJZ-UHFFFAOYSA-N 0.000 description 1
- UKTDFYOZPFNQOQ-UHFFFAOYSA-N tributyl(thiophen-2-yl)stannane Chemical compound CCCC[Sn](CCCC)(CCCC)C1=CC=CS1 UKTDFYOZPFNQOQ-UHFFFAOYSA-N 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- CWMFRHBXRUITQE-UHFFFAOYSA-N trimethylsilylacetylene Chemical compound C[Si](C)(C)C#C CWMFRHBXRUITQE-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Description
METABOTROPIC GLUTAMATE RECEPTOR ANTAGONISTS
The present invention is concerned with quinoline and quinolinone derivatives showing metabotropic glutamate receptor antagonistic activity and their preparation; it further relates to compositions comprising them, as well as their use as a medicine.
The neurotransmitter glutamate is considered to be the major excitatory neurotransmitter in the mammalian central nervous system. The binding of this neurotransmitter to metabotropic glutamate receptors (mGluRs), which are a subfamily of the G-protein-coupled receptors and which comprise 8 distinct subtypes of mGluRs, namely mGluRl through mGluR8, activates a variety of intracellular second messenger systems. The mGluRs can be divided into 3 groups based on amino acid sequence homology, the second messenger system utilized by the receptors and the pharmacological characteristics. Group I mGluRs, which comprises mGluR subtype 1 and 5, couple to phospholipase C and their activation leads to intracellular calcium-ion mobilization. Group II mGluRs (mGluR2 and 3) and group IE mGluRs (mGluR4, 6, 7 and 8) couple to adenyl cyclase and their activation causes a reduction in second messenger cAMP and as such a dampening of the neuronal activity. Treatment with Group I mGluR antagonists has been shown to translate in the presynapse into a reduced release of neurotransmitter glutamate and to decrease the glutamate-mediated neuronal excitation via postsynaptic mechanisms. Since a variety of pathophysiological processes and disease states affecting the central nervous system are thought to be due to excessive glutamate induced excitation of the central nervous system neurons, Group I mGluR antagonists could be therapeutically beneficial in the treatment of central nervous sytem diseases.
WO 99/26927 discloses antagonists of Group I mGlu receptors for treating neurological diseases and disorders, based - among others - on a quinoline structure.
WO 99/03822 discloses bicyclic metabotropic glutamate receptor ligands, none of them based on a quinoline or quinolinone structure.
The present invention concerns compounds of formula
an N-oxide form, a pharmaceutically acceptable addition salt, a quaternary amine and a stereochemically isomeric form thereof, wherein X represents O; C(R6)2 with R6 being hydrogen, aryl or -ealkyl optionally substituted with amino or mono- or
S or Ν-R7 with R7 being amino or hydroxy; R1 represents -βalkyl; aryl; thienyl; quinolinyl; cycloC3.12alkyl or
(cycloCs-πalk -ealkyl, wherein the cycloC3-12alkyl moiety optionally may contain a double bond and wherein one carbon atom in the cycloC3.12alkyl moiety may be replaced by an oxygen atom or an ΝR -moiety with R being hydrogen, benzyl or -βalkyloxycarbonyl ; wherein one or more hydrogen atoms in a d-όalkyl-moiety or in a cycloC3-12alkyl-moiety optionally may be replaced by
Ci-βalkyl, hydroxyCt-ealkyl, halo -ealkyl, aminoCι-6alkyl, hydroxy, Cι-6alkyloxy, arylCt-όalkyloxy, halo, -ealkyloxycarbonyl, aryl, amino, mono- or d -ealky amino, -όalkyloxycarbonylamino, halo, piperazinyl, pyridinyl, morpholinyl, thienyl or a bivalent radical of formula -O-, -O-CH -O or -
O-CH2-CH2-O-; or a radical of formula (a-1)
a-1
wherein Zi is a single covalent bond, O, ΝH or CH2; Z2 is a single covalent bond, O, ΝH or CH2; n is an integer of 0, 1, 2 or 3; and wherein each hydrogen atom in the phenyl ring independently may optionally be replaced by halo, hydroxy, Ci-βalkyl, Cι-6alkyloxy or hydroxyCi-βalkyl; or X and R1 may be taken together with the carbon atom to which X and R1 are attached to form a radical of formula (b-1), (b-2) or (b-3);
b-1 b-2 b-3
R represents hydrogen; halo; cyano; Chalky!; C!-6alkyloxy; d-6alkylthio; d-6alkylcarbonyl; d-6alkyloxycarbonyl; d-βalkylcarbonyloxyd-δalkyl;
C2-6alkenyl; hydroxyC2-6alkenyl; C2-6alkynyl; hydroxyC2-6alkynyl; tri(d-6alkyl)silaneC2.6alkynyl; amino; mono- or di(C1-6alkyl)amino; mono- or di -όalkyloxy -ealky amino; mono- or di(C1.6alkylthioC1-6alkyl)amino; aryl; arylCi-galkyl; arylC2-6alkynyl; Cι-6alkyloxyd-6alkylaminoCι-6alkyl; aminocarbonyl optionally substituted with d-ealkyl, d-6alkyloxyCι-6alkyl, d-6alkyloxycarbonylC-_6alkyl or pyridinyld-6alkyl; a heterocycle selected from thienyl, furanyl, pyrrolyl, thiazolyl, oxazolyl, imidazolyl, isothiazolyl, isoxazolyl, pyrazolyl, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, piperidinyl and piperazinyl, optionally N-substituted with d-ealkyloxyd^alkyl, morpholinyl, thiomorpholinyl, dioxanyl or dithianyl ; a radical -NH-C(=O)R9 wherein R9 represents d-6alkyl optionally substituted with cycloC -ι2alkyl, d-βalkyloxy, C!-6alkyloxycarbonyl, aryl, aryloxy, thienyl, pyridinyl, mono- or di(d-6alkyl)amino, d-6alkylthio, benzylthio, pyridinylthio or pyrimidinylthio; cycloC3.12alkyl; cyclohexenyl; amino; arylcycloC3-12alkylamino; mono-or-di(d-6alkyl)amino; mono- or di(d-6alkyloxycarbonylCι-6alkyl)amino; mono- or di(d-6alkyloxycarbonyl)amino; mono-or di(C2-6alkenyl)amino; mono- or di(aryld-6alkyl)amino; mono- or diarylamino; arylC2.6alkenyl; furanylC2-6alkenyl; piperididinyl; piperazinyl; indolyl; furyl; benzofuryl; tetrahydrofuryl; indenyl; adamantyl; pyridinyl; pyrazinyl; aryl; aryld-6alkylthio or a radical of formula (a-1) ; a sulfonamid -NH-SO2-R10 wherein R10 represents d-6alkyl, mono- or poly halod-6alkyl, arylCi-6alkyl, arylC2-6alkenyl, aryl, quinolinyl, isoxazolyl or di(C1-6alkyl)amino; R3 and R4 each independently represent hydrogen; halo; hydroxy; cyano; d-6alkyl; C1.6alkyloxy; d-ealkyloxyd-ealkyl; d-6alkylcarbonyl; d-ealkyloxycarbonyl;
C2-6alkenyl; hydroxyC2.6alkenyl; C2-6alkynyl; hydroxyC2-6alkynyl; tri(C1.6alkyl)silaneC2.6alkynyl; amino; mono- or di(C1.6alkyl)amino; mono- or d d-ealkyloxyd-ealky amino; mono- or di(C1-6alkylthioC1-6alkyl)amino; aryl; morpholinylCι-6alkyl or piperidinyld-6alkyl ; or R2 and R3 may be taken together to form -R2-R3-, which represents a bivalent radical of formula -(CH2)3-, -(CH2)4-, -(CH2)5-, -(CH2)6-, -CH=CH-CH=CH-, -Z4-CH=CH-, -CH=CH-Z4-, -Z4-CH2-CH2-CH2-, -CH2-Z4-CH2-CH2-, -CH2-CH2-Z -CH2-, -CH2-CH2-CH2-Z4-, -Z4-CH2-CH2-, -CH2-Z4-CH2- or -CH2-CH2-Z4-, with Z4 being O, S, SO2 or NR11 wherein R11 is hydrogen, d-βalkyl, benzyl or
Cι-6alkyloxycarbonyl; and wherein each bivalent radical is optionally substituted with d-6alkyl. or R3 and R4 may be taken together to form a bivalent radical of formula -CH=CH-CH=CH- or-CH2-CH2-CH2-CH2- ; R5 represents hydrogen; cyclod-^alkyl; piperidinyl; oxo-thienyl; tetrahydrothienyl, aryld-ealkyl; C1-6alkyloxyC1-6alkyl; d-6alkyloxycarbonyld-6alkyl or Ci-6alkyl optionally substituted with a radical C(=O)NRxRy, in which Rx and Ry, each independently are hydrogen, cycloC3- 2alkyl, C2-6alkynyl or Cι-6alkyl optionally substituted with cyano, d- alkyloxy, d-6alkyloxycarbonyl, furanyl, pyrrolidinyl, benzylthio, pyridinyl, pyrrolyl or thienyl;
Y represents O or S; or Y and R5 may be taken together to form =Y-R5- which represents a radical of formula -CH=N-N= (c-1); -N=N-N= (c-2); or
-N-CH=CH- (c-3); aryl represents phenyl or naphthyl optionally substituted with one or more substituents selected from halo, hydroxy, d-6alkyl, d-βalkyloxy, phenyloxy, nitro, amino, thio, d-6alkylthio, halod-6alkyl, polyhaloCι-6alkyl, polyhalod-6alkyloxy, hydroxyd-6alkyl, d-όalkyloxyd-βalkyl, aminod-ealkyl, mono-or di(C1.6alkyl)amino; mono-or di(C1-6alkyl)aminoCι-6alkyl, cyano, -CO-R12, -CO-OR13, -NR13SO2R12, -SO2-NR13R14, -NR13C(O)R12, -C(O)NR13R14, -SOR12, -SO2R12; wherein each R12, R13 and R14 independently represent d.6alkyl; cycloC3-6alkyl; phenyl; phenyl substituted with halo, hydroxy, d-6alkyl, d-6alkyloxy, halod-6alkyl, polyhaloCι-6alkyl, furanyl, thienyl, pyrrolyl, imidazolyl, thiazolyl or oxazolyl;
and when the R!-C(=X) moiety is linked to another position than the 7 or 8 position, then said 7 and 8 position may be substituted with R15 and R16 wherein either one or both of R15 and R16 represents Cι-6alkyl, d-6alkyloxy orR15 and R16 taken together may form a bivalent radical of formula -CH=CH-CH=CH-.
As used in the foregoing definitions and hereinafter Cι_6alkyl as a group or part of a group encompasses the straight and branched chain saturated hydrocarbon radicals having from 1 to 6 carbon atoms such as, for example, methyl, ethyl, propyl, butyl, pentyl or hexyl; C .6alkenyl as a group or part of a group encompasses the straight and branched chain hydrocarbon radicals having from 2 to 6 carbon atoms and having a double bond such as ethenyl, propenyl, butenyl, pentenyl, hexenyl, 3-methylbutenyl and the like; C2-6alkynyl as a group or part of a group defines straight or branched chain hydrocarbon radicals having from 2 to 6 carbon atoms and having a triple bond such as ethynyl, propynyl, butynyl, pentynyl, hexynyl, 3-methylbutynyl and the like; cycloC3_6alkyl encompasses monocyclic alkyl ring structures such as cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl; cycloC3_I2alkyl encompasses mono-, bi- or tricyclic alkyl ring structures and is generic to for example cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, norbornanyl, adamantyl.
The term halo is generic to fluoro, chloro, bromo and iodo. As used in the foregoing and hereinafter, polyhalod-6alkyl as a group or part of a group is defined as mono- or polyhalosubsti uted d-6alkyl, in particular methyl with one or more fluoro atoms, for example, difluoromethyl or trifluoromethyl. In case more than one halogen atoms are attached to an alkyl group within the definition of polyhalod-6alkyl, they may be the same or different.
When any variable, e.g. aryl, occurs more than one time in any constituent, each definition is independent.
When any bond is drawn into a ring structure, it means that the corresponding substituent may be linked to any atom of said ring structure. This means for instance that the R1-C(=X) moiety may be linked to the quinoline or quinolinone moiety in position 5, 6, 7, 8 but also position 3 or position 4.
For therapeutic use, salts of the compounds of formula (I- A) and (I-B) are those wherein the counterion is pharmaceutically acceptable. However, salts of acids and bases which are non-pharmaceutically acceptable may also find use, for example, in the
preparation or purification of a pharmaceutically acceptable compound. All salts, whether pharmaceutically acceptable or not are included within the ambit of the present invention.
The pharmaceutically acceptable addition salts as mentioned hereinabove are meant to comprise the therapeutically active non-toxic acid addition salt forms which the compounds of formula (I- A) and (I-B) are able to form. The latter can conveniently be obtained by treating the base form with such appropriate acids as inorganic acids, for example, hydrohalic acids, e.g. hydrochloric, hydrobromic and the like; sulfuric acid; nitric acid; phosphoric acid and the like; or organic acids, for example, acetic, propanoic, hydroxyacetic, 2-hydroxypropanoic, 2-oxopropanoic, oxalic, malonic, succinic, maleic, fumaric, malic, tartaric, 2-hydroxy-l,2,3-propanetricarboxylic, methanesulfonic, ethanesulfonic, benzenesulfonic, 4-methylbenzenesulfonic, cyclohexanesulfamic, 2-hydroxybenzoic, 4-amino-2-hydroxybenzoic and the like acids. Conversely the salt form can be converted by treatment with alkali into the free base form.
The compounds of formula (I- A) and (I-B) containing acidic protons may be converted into their therapeutically active non-toxic metal or amine addition salt forms by treatment with appropriate organic and inorganic bases. Appropriate base salt forms comprise, for example, the ammonium salts, the alkali and earth alkaline metal salts, e.g. the lithium, sodium, potassium, magnesium, calcium salts and the like, salts with organic bases, e.g. primary, secondary and tertiary aliphatic and aromatic amines such as methylamine, ethylamine, propylamine, isopropylamine, the four butylamine isomers, dimethylamine, diethylamine, diethanolamine, dipropylamine, diisopropylamine, di-n-butylamine, pyrrolidine, piperidine, morpholine, trimethylamine, triethylamine, tripropylamine, quinuclidine, pyridine, quinoline and isoquinoline, the benzathine, N-methyl-D-glucamine, 2-amino-2-(hydroxymethyl)-l,3- propanediol, hydrabamine salts, and salts with amino acids such as, for example, arginine, lysine and the like. Conversely the salt form can be converted by treatment with acid into the free acid form.
The term addition salt also comprises the hydrates and solvent addition forms which the compounds of formula (I-A) and (I-B) are able to form. Examples of such forms are e.g. hydrates, alcoholates and the like.
The term "quaternary amine" as used hereinbefore defines the quaternary ammonium salts which the compounds of formula (I- A) and (I-B) are able to form by reaction between a basic nitrogen of a compound of formula (I- A) or (I-B) and an appropriate quaternizing agent, such as, for example, an optionally substituted alkylhalide, arylhalide or arylalkylhalide, e.g. methyliodide or benzyliodide. Other reactants with good leaving groups may also be used, such as alkyl trifluoromethanesulfonates, alkyl methanesulfonates, and alkyl p-toluenesulfonates. A quaternary amine has a positively charged nitrogen. Pharmaceutically acceptable counterions include chloro, bromo, iodo, trifluoroacetate and acetate. The counterion of choice can be introduced using ion exchange resins.
It will be appreciated that some of the compounds of formula (I- A) and (I-B) and their N-oxides, salts, quaternary amines and stereochemically isomeric forms may contain one or more centers of chirality and exist as stereochemically isomeric forms.
The term "stereochemically isomeric forms" as used hereinbefore defines all the possible stereoisomeric forms which the compounds of formula (I-A) and (I-B), and their N-oxides, salts, quaternary amines or physiologically functional derivatives may possess. Unless otherwise mentioned or indicated, the chemical designation of compounds denotes the mixture of all possible stereoisomeric forms, said mixtures containing all diastereomers and enantiomers of the basic molecular structure as well as each of the individual isomeric forms of formula (I-A) and (I-B) and their N-oxides, salts, solvates or quaternary amines substantially free, i.e. associated with less than 10 %, preferably less than 5 %, in particular less than 2% and most preferably less than 1 % of the other isomers. Stereochemically isomeric forms of the compounds of formula (I-A) and (I-B) are obviously intended to be embraced within the scope of the present invention. The same applies to the intermediates as described herein, used to prepare end products of formula (I-A) and (I-B).
The terms cis and trans are used herein in accordance with Chemical Abstracts nomenclature.
In some compounds of formula (I-A) and (I-B) and in the intermediates used in their preparation, the absolute stereochemical configuration has not been determined. In these cases, the stereoisomeric form which was first isolated is designated as "A" and the second as "B", without further reference to the actual stereochemical configuration. However, said "A" and "B" stereoisomeric forms can be unambiguously characterized
by physicochemical characteristics such as their optical rotation in case "A" and "B" have an enantiomeric relationship. A person skilled in the art is able to determine the absolute configuration of such compounds using art-known methods such as, for example, X-ray diffraction. In case "A" and "B" are stereoisomeric mixtures, they can be further separated whereby the respective first fractions isolated are designated "Al" and "BT'and the second as "A2" and "B2", without further reference to the actual stereochemical configuration.
The N-oxide forms of the present compounds are meant to comprise the compounds of formula (I-A) and (I-B) wherein one or several nitrogen atoms are oxidized to the so- called N-oxide.
Some of the compounds of formula (I-A) and (I-B) may also exist in their tautomeric form. Such forms although not explicitly indicated in the above formula are intended to be included within the scope of the present invention.
Whenever used hereinafter, the term "compounds of formula (I-A) and (I-B)" is meant to also include their N-oxide forms, their salts, their quaternary amines and their stereochemically isomeric forms. Of special interest are those compounds of formula (I-A) and (I-B) which are stereochemically pure.
An interesting group of compounds are those compounds of formula (I-A) and (I-B) wherein
X represents O; C(R6)2 with R6 being hydrogen or aryl ; or Ν-R7 with R7 being amino or hydroxy;
R1 represents d-βalkyl, aryl; thienyl; quinolinyl; cycloC3-12alkyl or
(cyclod-^alky d-όalkyl, wherein the cycIoC3-12alkyl moiety optionally may contain a double bond and wherein one carbon atom in the cycloC -12alkyl moiety may be replaced by an oxygen atom or an ΝR8-moiety with R8 being benzyl or d-6alkyloxycarbonyl ; wherein one or more hydrogen atoms in a d-ealkyl-moiety or in a cycloC3-12alkyl-moiety optionally may be replaced by Cι.6alkyl, halod-6alkyl, hydroxy, d-βalkyloxy, aryld-6alkyloxy, halo, aryl, mono- or di(d-6alkyl)amino, C1-6alkyloxycarbonylamino, halo, piperazinyl, pyridinyl, morpholinyl, thienyl or a bivalent radical of formula -O- or -O-CH2-CH2-O-; or a radical of formula (a- 1)
a-1
wherein Zi is a single covalent bond, O or CH2;
Z2 is a single covalent bond, O or CH2; n is an integer of 0, 1, or 2 ; and wherein each hydrogen atom in the phenyl ring independently may optionally be replaced by halo or hydroxy; or X and R1 may be taken together with the carbon atom to which X and R1 are attached to form a radical of formula (b-1), (b-2) or (b-3);
b-1 b-2 b-3
represents hydrogen; halo; cyano; d-6alkyl; d-6alkyloxy; Cι-6alkylthio; d-6alkylcarbonyl; d-6alkyloxycarbonyl; C2-6aIkenyl; hydroxyC2-6alkenyl; C2-6alkynyl; hydroxyC2-6alkynyl; tri(d-6alkyl)silaneC2-6alkynyl; amino; mono- or di(Cι-6alkyl)amino; mono- or di(d-6alkyloxyd-6alkyl)amino; mono- or ditd-όalkylthiod-όalky^amino; aryl; aryld-βalkyl; arylC2-6alkynyl; d-όalkyloxyCi-δalkylaminod-ealkyl; aminocarbonyl optionally substituted with d.6alkyloxycarbonylCι-6alkyl ; a heterocycle selected from thienyl, furanyl, thiazolyl and piperidinyl, optionally
N-substituted with morpholinyl or thiomorpholinyl; a radical -NH-C(=O)R9 wherein R9 represents d-6alkyl optionally substituted with cycloC3-12alkyl, d-6alkyloxy, d-δalkyloxycarbonyl, aryl, aryloxy, thienyl, pyridinyl, mono- or di(d-6alkyl)amino, d-6alkylthio, benzylthio, pyridinylthio or pyrimidinylthio; cycloC3-12alkyl; cyclohexenyl; amino; arylcycloC3-12alkylamino; mono-or-di(d-6alkyl)amino; mono- or di(C1-6alkyloxycarbonylC1.6alkyl)amino; mono- or di(C1-6alkyloxycarbonyl)amino; mono-or di(C2-6alkenyl)amino; mono- or di(arylC1.6alkyl)amino; mono- or diarylamino; arylC2-6alkenyl; furanylC2.6aIkenyl; piperididinyl; piperazinyl; indolyl; furyl; benzofuryl; tetrahydrofuryl; indenyl; adamantyl; pyridinyl; pyrazinyl; aryl or a radical of formula (a-1) ;
a sulfonamid -NH-SO2-R10 wherein R10 represents d-6alkyl, mono- or poly halod-βalkyl, arylCι-6alkyl or aryl; R3 and R4 each independently represent hydrogen; d-6alkyl; d-ealkyloxyd-βalkyl; d-6alkyloxycarbonyl; or R2 and R3 may be taken together to form -R2-R3-, which represents a bivalent radical of formula -(CH2) -, -(CH2)5-, -Z4-CH=CH-, -Z4-CH2-CH2-CH2- or -Z4-CH2-CH2-, with Z4 being O, S, SO2 or NR11 wherein R11 is hydrogen, d-ealkyl, benzyl or
Cι-6alkyloxycarbonyl; and wherein each bivalent radical is optionally substituted with d-ealkyl; or R3 and R4 may be taken together to form a bivalent radical of formula
-CH=CH-CH=CH- or -CH2-CH2-CH2-CH2- ; R5 represents hydrogen; piperidinyl; oxo-thienyl; tetrahydrothienyl, aryld-6alkyl; d-6alkyloxycarbonyld.6alkyl or Cι-6alkyl optionally substituted with a radical
C(=O)NRxRy, in which Rx and Ry, each independently are hydrogen, cycloC3-12alkyl, C2-6alkynyl or d-6alkyl optionally substituted with cyano, d.6alkyloxy or d-βalkyloxycarbonyl; Y represents O or S; or Y and R5 may be taken together to form =Y-R5- which represents a radical of formula -CH=N-N= (c-1); or
-N=N-N= (c-2); aryl represents phenyl or naphthyl optionally substituted with one or more substituents selected from halo, d^alkyloxy, phenyloxy, mono-or cU(d-6alkyl)amino and cyano; and when the R!-C(=X) moiety is linked to another position than the 7 or 8 position, then said 7 and 8 position may be substituted with R15 and R16 wherein either one or both of R15 and R16 represents d.6alkyl or R15 and R16 taken together may form a bivalent radical of formula -CH=CH-CH=CH-.
A further most interesting group of compounds comprises those compounds of formula (I-A) and (I-B) wherein X represents O;
R1 represents d-6alkyl; cycloC3-12alkyl or (cycloC3-12alkyl)d-6alkyl, wherein one or more hydrogen atoms in a d-6alkyl-moiety or in a cycloC -12alkyl-moiety optionally may be replaced by d-6alkyloxy, aryl, halo or thienyl; R2 represents hydrogen; halo; d-ealkyl or amino;
R3 and R4 each independently represent hydrogen or d-6alkyl; or
R2 and R3 may be taken together to form -R2-R3-, which represents a bivalent radical of formula -Z4-CH2-CH2-CH2- or -Z4-CH2-CH2- with Z4 being O or NR11 wherein R11 is Ci-βalkyl; and wherein each bivalent radical is optionally substituted with d-6alkyl; or R3 and R4 may be taken together to form a bivalent radical of formula -CH2-CH2-CH2-CH2- ;
R5 represents hydrogen;
Y represents O; and aryl represents phenyl optionally substituted with halo.
A further interesting group of compounds comprises those compounds of formula (I-A) and (I-B) wherein the R!-C(=X) moiety is linked to the quinoline or quinolinone moiety in position 6.
In order to simplify the structural representation of some of the present compounds and intermediates in the following preparation procedures, the quinoline or the quinolinone moiety will hereinafter be represented by the symbol Q.
The compounds of formula (I-A) or (I-B), wherein X represents O, said compounds being represented by formula (iA/B-a), can be prepared by oxidizing an intermediate of formula (II) in the presence of a suitable oxidizing agent, such as potassium permanganate, and a suitable phase-transfer catalyst, such as tris(dioxa-3,6- heptyl)amine, in a suitable reaction-inert solvent, such as for example dichloromethane.
OH n ι I oxidation γ,
R -CH-Q ^ R1— ϋ-Q
Compounds of formula (lA/B-a) may also be prepared by reacting an intermediate of formula (III) with an intermediate of formula (IN), wherein Wι represents a halo atom, e.g. bromo, in the presence of butyl lithium and a suitable reaction-inert solvent, such as for example tetrahydrofuran.
o
R1 — c= ΞN + f— Q R1 C_Q
(III) (IV) (l/VB-a)
Alternatively, compounds of formula O /B-a) may also be prepared by reacting an intermediate of formula (N) with an intermediate of formula (IN) in the presence of butyl lithium and a suitable reaction-inert solvent, such as for example tetrahydrofuran.
Compounds of formula U/B-a). wherein the R1 substituent is linked to the carbonyl moiety via an oxygen atom, said R1 substituent being represented by O-Rla and said compounds by formula U/B-a-1), can be prepared by reacting an intermediate of formula (NI) with an intermediate of formula (Nil) in the presence of a suitable acid, such as sulfuric acid. o O
R1a— OH + HO— C— Q R -1"93-—. O— C— Q
Compounds of formula (I-A), wherein R2 represents methylcarbonyl, said compounds being represented by formula (I-A-l), can be prepared by reacting an intermediate of formula (Nm) in the presence of a suitable acid, such as hydrochloric acid, and a suitable reaction-inert solvent, such as for example tetrahydrofuran.
(l-A-1)
(VIII)
The compounds of formula (I) may also be converted into each other following art-known transformations.
Compounds of formula (I-A) wherein R2 is a halo atom, such as chloro, can be converted into a compound of formula (I-A), wherein R2 is another halo atom, such as fluoro or iodo, by reaction with a suitable halogenating agent, such as for example
potassium fluoride or sodium iodide, in the presence of a suitable reaction-inert solvent, e.g. dimethyl sulfoxide or acetonitrile and optionally in the presence of acetyl chloride.
Compounds of formula (I-A), wherein R2 is a suitable leaving group, such as a halo atom, e.g. chloro, iodo, said leaving group being represented by W2 and said compounds by (I-A-2), can be converted into a compound of formula (I-A) wherein R2 is cyano, said compound being represented by formula (I-A-3), by reaction with a suitable cyano-introducing agent, such as for example trimethylsilanecarbonitrile, in the presence of a suitable base such as N,N-diethylethanamine and a suitable catalyst, such as for example tetrakis(triphenylphosphine)palladium.
Compounds of formula (I-A-2) can also be converted into a compound of formula (I-A-4) by reaction with C2-6alkynyltri(d-6alkyl)silane in the presence of Cul, an appropriate base, such as for example N,N-diethylethanamine, and an appropriate catalyst, such as for example tetrakis(triphenylphosphine)palladium. Compounds of formula (I-A-4) can on their turn be converted into a compound of formula (I-A-5) by reaction with potassium fluoride in the presence of a suitable acid such as acetic acid, or by reaction with a suitable base, such as potassium hydroxide, in the presence of a suitable reaction-inert solvent, such as an alcohol, e.g. methanol and the like.
Compounds of formula (I-A-2) can also be converted into a compound of formula (I-A-6) by reaction with an intermediate of formula (IX) in the presence of Cul, a suitable base, such as for example N,N-diethylethanamine, and a suitable catalyst such as tetrakis(triphenylphosphine)palladium.
Compounds of formula (I-A-2) can also be converted into a compound wherein R2 is d-βalkyl, said compound being represented by formula (I-A-8) in the presence of a suitable alkylating agent, such as for example Sn(Cι-6alkyl)4, or into a compound wherein R2 is C2-6alkenyl, said compound being represented by formula (I-A-9) in the presence of a suitable alkenylating agent, such as for example Sn(C2-6alkenyl)(d- 6alkyl)3, both reactions in the presence of a suitable catalyst, such as for example tetrakis(triphenylphosphine)palladium and a reaction-inert solvent, such as for example toluene or dioxane.
Compounds of formula (I-A-2) can also be converted into a compound of formula (I-A-7) wherein Z represents O or S, by reaction with an intermediate of formula (X)
optionally in the presence of a suitable base such as dipotassium carbonate and a reaction-inert solvent, such as N,N-dimethyl formamide.
Compounds of formula (I-A-2) can also be converted into a compound of formula (I-A), wherein R2 is Cι-6alkyloxycarbonyl, said compound being represented by formula (I-A-10) and a compound of formula (I-A), wherein R2 is hydrogen, said compound being represented by formula (I-A- 11), by reaction with a suitable alcohol of formula d-6alkylOH and CO in the presence of a suitable catalyst, such as for example palladium(II)acetate, triphenylphosphine, a suitable base such as dipotassium carbonate and a reaction-inert solvent, such as N,N-dimethylformamide.
Compounds of formula (I-A-l 1) can also be prepared by reacting a compound of formula (I-A-2) with Zn in the presence of a suitable acid such as acetic acid.
Compounds of formula (I-A-2) can also be converted into a compound of formula (I-A), wherein R2 is aminocarbonyl substituted with d-ealkyloxycarbonylCi-ealkyl, said compound being represented by formula (I-A-12), by reaction with an intermediate of formula H2Ν-C1-6alkyl-C(=O)-O-C1.6alkyl in the presence of CO, a suitable catalyst such as tetrakis(triphenylphosphine)palladium, a suitable base, such as for example N,N-diethylethanamine, and a suitable reaction-inert solvent, such as for example toluene.
Compounds of formula (I-A-2) can also be converted into a compound of formula (I-A) wherein R2 is aryl or a heterocycle selected from the group described in the definition of R2 hereinabove, said R2 being represented by R2 and said compound by formula (I-A-13) by reaction with an intermediate of formula (XI), (XII) or (XIII) in the presence of a suitable catalyst such as for example tetrakis(triphenylphosphine)palladium and a suitable reaction-inert solvent, such as for example dioxane.
(I-A-2) (XIII) (l-A-13)
Compounds of formula (I-A-2) can also be converted into a compound of formula (I-B), wherein Y and R5 are taken together to form a radical of formula (b-1) or (b-2), said compound being represented by formula (I-B-l) or (I-B-2), by reaction with hydrazincarboxaldehyde or sodium azide in a suitable reaction-inert solvent, such as an alcohol, e.g. butanol, or N,N-dimethylformamide.
Compounds of formula (l-A-11) can be converted into the corresponding Ν-oxide, represented by formula (I-A-14), by reaction with a suitable peroxide, such as
3-chloro-benzenecarboperoxoic acid, in a suitable reaction-inert solvent, such as for
example methylene chloride. Said compound of formula (I-A-14) can further be converted into a compound of formula (I-B), wherein R5 is hydrogen, said compound being represented by formula (I-B-3), by reaction with 4-methyl-benzene sulfonyl chloride in the presence of a suitable base, such as for example dipotassium carbonate and a suitable reaction-inert solvent, such as for example methylene chloride.
Compounds of formula (I-B-3) can also be prepared from a compound of formula (I- A), wherein R2 is d-6alkyloxy, said compound being represented by formula (I-A-15), by reaction with a suitable acid, such as hydrochloric acid, in the presence of a suitable reaction-inert solvent, such as for example tetrahydrofuran.
(l-A-15) (I-B-3)
Compounds of formula (I-B-3) can be converted into a compound of formula (I-B), wherein R5 represents d-6alkyl, said compound being represented by formula (I-B-4), by reaction with an appropriate alkylating agent, such as for example an intermediate of formula (XIV), wherein W3 represents a suitable leaving group such as a halo atom e.g. iodo, in the presence of potassium tert. butoxide and in the presence of a suitable reaction-inert solvent, such as for example tetrahydrofuran.
(I-A-15) Compounds of formula (I-B-3) can also be converted into a compound of formula (I- B), wherein R5 is d-6alkyloxycarbonylCι-6alkyl or arylCi-βalkyl, said R5 being represented by R5a and said compound being represented by formula (I-B-5), by reaction with an intermediate of formula (XV), wherein W4 represents a suitable leaving group, such as a halo atom, e.g. bromo, chloro and the like, in the presence of a suitable base, such as for example sodium hydride and a suitable reaction-inert solvent, such as for example N,N-dimethylformamide.
(l-A-15) Compounds of formula (I-A-2) can also be converted into a compound of formula (I-B), wherein R5 is hydrogen and Y is S, said compound being represented by formula (I-B-6), by reaction with H2Ν-C(=S)-ΝΗ2 in the presence of a suitable base, such as potassium hydroxide, and a suitable reaction-inert solvent, such as an alcohol, for example ethanol, or water. Compounds of formula (I-B-6) can further be converted
into a compound of formula (I-A), wherein R2 is d.6alkylthio, said compound being represented by formula (I-A-16), by reaction with a suitable d-6alkylhalide, such as for example d-6alkyliodide, in the presence of a suitable base, such as dipotassium carbonate, and a suitable solvent, such as for example acetone.
Compounds of formula (lA/B-a) can be converted into a compounds of formula (I-A) or (I-B), wherein X is N-R7, said compound being represented by formula U/B-b), by reaction with an intermediate of formula (XNI), optionally in the presence of a suitable base, such as for example N,N-diethylethanamine, and in the presence of a suitable reaction-inert solvent, such as an alcohol, e.g. ethanol.
As already indicated in the preparation procedure of compounds of formula (I-A- 13) described above, the compounds of formula (I) may also be converted to the corresponding N-oxide forms following art-known procedures for converting a trivalent nitrogen into its N-oxide form. Said N-oxidation reaction may generally be carried out by reacting the starting material of formula (I) with an appropriate organic or inorganic peroxide. Appropriate inorganic peroxides comprise, for example, hydrogen peroxide, alkali metal or earth alkaline metal peroxides, e.g. sodium peroxide, potassium peroxide; appropriate organic peroxides may comprise peroxy acids such as, for example, benzenecarboperoxoic acid or halo substituted benzenecarboperoxoic acid, e.g. 3-chlorobenzenecarboperoxoic acid, peroxoalkanoic acids, e.g. peroxoacetic acid, alkylhydroperoxides, e.g. tert-butyl hydroperoxide. Suitable solvents are, for example, water, lower alkanols, e.g. ethanol and the like, hydrocarbons, e.g. toluene, ketones, e.g. 2-butanone, halogenated hydrocarbons, e.g. dichloromethane, and mixtures of such solvents.
Some of the intermediates and starting materials used in the above reaction procedures are commercially available, or may be synthesized according to procedures already described in the literature.
Intermediates of formula (II) may be prepared by reacting an intermediate of formula (XVII) with an intermediate of formula (XNIII), wherein W5 represents a suitable leaving group such as a halo atom, e.g. chloro, bromo and the like, in the presence of magnesium, diethylether and a suitable reaction-inert solvent, such as diethylether.
Q- AC-H + + R R—l- WW5 — -► R 1I-C ?'HH-Q
(XVII) (χ ι»> (II)
Intermediates of formula (XVII) may be prepared by oxidizing an intermediate of formula (XIX) in the presence of a suitable oxidizing agent, such as MnO2, and a suitable reaction-inert solvent, such as methylene chloride. oxidation ||
Q— CH2 — OH ► Q— C— H
Intermediates of formula (XIX) can be prepared by reducing an intermediate of formula (XX) in the presence of a suitable reducing agent such as lithium aluminium hydride, and a suitable reaction-inert solvent, such as tetrahydrofuran.
II reduction
Q— C— O— Crealkyl ► Q— CH2— OH
(XX) (χιx)
Intermediates of formula (XX), wherein Q represents a quinoline moiety optionally substituted in position 3 with Cι-6alkyl and wherein the carbonyl moiety is placed in position 6, said intermediates being represented by formula (XX-a), can be prepared by reacting an intermediate of formula (XXI) with an intermediate of formula (XXII) in the presence of sodium 3-nitro-benzene sulfonate, a suitable acid, such as sulfuric acid, and a suitable alcohol, e.g. methanol, ethanol, propanol, butanol and the like.
Alternatively, intermediates of formula (II) can also be prepared by reacting an intermediate of formula (XXIII) with an intermediate of formula (XXIV), wherein W6 is a suitable leaving group, such as a halo atom, e.g. bromo, chloro and the like, in the presence of a suitable agent, such as butyl lithium and a suitable reaction-inert solvent, such as tetrahydrofuran.
OH R C — H + Q— 6 R1— CH-Q
(xxiii) (xxiv) (II)
Intermediates of formula (XXIII) can be prepared by oxidizing an intermediate of formula (XXN) using the Moffatt Pfitzner or Swem oxidation (dimethylsulfoxide adducts with dehydrating agents e.g. DCC, Ac2O, SO3, P O10, COCl2 or C1-CO-COC1) in an inert solvent such as methylene chloride. o
R— CH2-OH _-- R — C— H
(xxv) (x iii)
Intermediates of formula (XXV) can be prepared by reducing an intermediate of formula (XXVI) in the presence of a suitable reducing agent, such as for example lithium aluminium hydride and a suitable reaction-inert solvent, such as benzene. o
R1 1— C H— O— Ci-βalk I ► R- 1__CH2_0H
(XXVI) <xxv)
Intermediates of formula (XXVI) can be prepared from an intermediate of formula
(XXVII) by esterification in the presence of a suitable alcohol, such as methanol, ethanol, propanol, butanol and he like, and a suitable acid, such as sulfuric acid. fj Cr6alkyl— OH jj
R: — C— OH ► R2 — C— O— Cj-galkyl
(XXVII) (XXVI) Intermediates of formula (XXVII), wherein R1 represents a radical of formula (a-1) with Zi being O, Z2 being CH2 and n being 1, said intermediates being represented by formula (XXVII-a), can be prepared by reducing an intermediate of formula (XXNHI) in the presence of a suitable reducing agent such as hydrogen, and a suitable catalyst, such as palladium on charcoal, and a suitable acid such as acetic acid. When R1 of intermediate (XXNII) represents an optionally substituted phenyl moiety, it can also be converted into an optionally substituted cyclohexyl moiety by reduction in the presence of a suitable reducing agent such as rhodium on Al2O3, and a suitable reaction-inert solvent, such as tetrahydrofuran.
Intermediates of formula (IV), wherein Q represents a quinoline moiety substituted in position 2 with halo,e.g. chloro, said intermediates being represented by formula (IV-a), can be prepared by reacting an intermediate of formula (IV), wherein Q represents a quinolinone moiety with R5 being hydrogen, said intermediate being represented by formula (IV-b), in the presence of POCl3.
(IV-a)
(IV-b)
Intermediates of formula (IV-a), wherein R is hydrogen, said intermediates being represented by formula (IV-a-1), can also be prepared by reacting an intermediate of formula (XXIX) with POCl3 in the presence of N,N-dimethylformamide (Vilsmeier- Haack formylation followed by cyclization).
(IV-a-1) (XXIX)
Intermediates of formula (XXIX) may be prepared by reacting an intermediate of formula (XXX) with an intermediate of formula (XXXI), wherein W7 represents a suitable leaving group, such as a halo atom, e.g. chloro, in the presence of a suitable base, such as for example N,N-diethylethanamine, and a suitable reaction-inert solvent, such as methylene chloride.
(XXX) (XXXI) (XXIX)
Intermediates of formula (IV-a) can be converted into an intermediate of formula (IV-c) by reaction with an intermediate of formula (XXXII) in the presence of a suitable reaction-inert solvent, such as an alcohol, e.g. methanol and the like.
+C 6alkyl— O"
(XXXII)
(IV-a) (IV-c)
Intermediates of formula (IV-a) can also be converted into an intermediate of formula (rV-d-1) by reaction with a suitable amine of formula (XXXϋl-a), wherein Z3 and Z4 each independently represent hydrogen, d-βalkyl, d-βalkyloxyd-όalkyl, d-ealkylthiod-όalkyl or into an intermediate of formula (IV-d-2) by reaction with a suitable amine of formula (XXXIII-b), wherein Z3 and Z4 are taken together to form a heterocycle as defined hereinabove in the definition of R2 provided that the heterocycle comprises at least one nitrogen atom, in the presence of a suitable base, such as for example dipotassium carbonate, and a reaction-inert solvent, such as N,N- dimethylformamide.
(IV-a) (XXXIII-a)
(IV-a) (XXXIII-b)
Intermediates of formula (IV-a), wherein R3 represents CH2-CH2-CH2-C1, said intermediates being represented by formula (IV-a-2), can also be converted into an intermediate of formula (IV), wherein R and R are taken together to form a bivalent radical of formula -O-CH2-CH2-CH2-, said intermediate being represented by formula (rV-e-1), by reaction with a suitable acid, such as hydrochloric acid and the like. Intermediates of formula (IN-a-2) can also be converted into an intermediate of formula (IV), wherein R2 and R3 are taken together to form a bivalent radical of formula
-S-CH2-CH2-CH2-, said intermediate being represented by formula (IV-e-2), by reaction with H2N-C(=S)-NH2 in the presence of a suitable reaction-inert solvent, such as an alcohol, e.g. ethanol.
(IV-e-2) Intermediates of formula (V) may be prepared by reacting an intermediate of formula (XXVII) with an intermediate of formula CH3-NH-O-CH3 in the presence of l, -carbonyldiimidazole and a suitable reaction-inert solvent, such as methylene chloride.
Intermediates of formula (VII), wherein Q represents a quinoline moiety, in particular a quinoline moiety wherein R2 is ethyl, R3 is methyl and R4 is hydrogen, and the carboxyl moiety is placed in position 6, said intermediates being represented by formula (Vll-a), can be prepared by reaction an intermediate of formula (XXXTV) in the presence of a suitable aldehyde, such as CH3-CH2-CH(=O), (CH2O)n, ZnCl2, FeCl3 and a suitable reaction-inert solvent, such as an alcohol, for example ethanol.
Intermediates of formula (VIII) can be prepared by reacting an intermediate of formula (XXXV) with an intermediate of formula (XXXVI) in the presence of a suitable
catalyst, such as for example tetrakis(triphenylphosphine)palladium and a suitable reaction-inert solvent, such as for example dioxane.
(XXXVI)
(XXXV)
(VIII)
Still some other preparations can be devised, some of them are disclosed further in this application with the Examples.
Pure stereoisomeric forms of the compounds and the intermediates of this invention may be obtained by the application of art-known procedures. Diastereomers may be separated by physical separation methods such as selective crystallization and chromatographic techniques, e.g. liquid chromatography using chiral stationary phases. Enantiomers may be separated from each other by the selective crystallization of their diastereomeric salts with optically active acids. Alternatively, enantiomers may be separated by chromato-graphic techniques using chiral stationary phases. Said pure stereoisomeric forms may also be derived from the corresponding pure stereoisomeric forms of the appropriate starting materials, provided that the reaction occurs stereo- selectively or stereospecifically. Preferably, if a specific stereoisomer is desired, said compound will be synthesized by stereoselective or stereospecific methods of preparation. These methods will advantageously employ chirally pure starting materials. Stereoisomeric forms of the compounds of formula (I) are obviously intended to be included within the scope of the invention.
A stereoisomer of a compound of formula (I-A) or (I-B) such as a cis form, may be converted into another stereoisomer such as the corresponding trans form by reacting the compound with a suitable acid, such as hydrochloric acid, in the presence of a suitable reaction-inert solvent, such as for example tetrahydrofuran.
The compounds of formula (I-A) and (I-B), the N-oxides, the pharmaceutically acceptable addition salts, the quaternary amines and the stereochemically isomeric forms thereof show mGluR antagonistic activity, more in particular Group I mGluR
antagonistic activity. The Group I mGluR specifically antagonized by the present compounds is the mGluRl.
The mGluRl antagonistic activity of the present compounds can be demonstrated in the Signal transduction on cloned rat mGluRl in CHO cells test and the Cold allodynia test in rats with a Bennett ligation, as described hereinafter.
Due to their mGluR antagonistic activity, more in particular their Group I mGluR antagonistic activity and even more in particular, their mGluRl antagonistic activity, the compounds of formula (I-A) or (I-B), their N-oxides, pharmaceutically acceptable addition salts, quaternary amines and stereochemically isomeric forms are useful in the treatment or prevention of glutamate-induced diseases of the central nervous sytem. Diseases in which a role for glutamate has been demonstrated include drug addiction or abstinence (dependence, opioid tolerance, opioid withdrawal), hypoxic, anoxic and ischemic injuries (ischemic stroke, cardiac arrest), pain (neuropathic pain, inflammatory pain, hyperalgesia), hypoglycemia, diseases related to neuronal damage, brain trauma, head trauma, spinal cord injury, myelopathy, dementia, anxiety, schizophrenia, depression, impaired cognition, amnesia, bipolar disorders, conduct disorders, Alzheimer's disease, vascular dementia, mixed (Alzheimer's and vascular) dementia, Lewy Body disease, delirium or confusion, Parkinson's disease, Huntington's disease, Down syndrome, epilepsy, aging, Amyotrophic Lateral Sclerosis, multiple sclerosis, AIDS (Acquired Immune Deficiency Syndrome) and AIDS related complex (ARC).
In view of the utility of the compounds of formula (I-A) and (I-B), there is provided a method of treating warm-blooded animals, including humans, suffering from glutamate-induced diseases of the central nervous system. Said method comprises the administration, preferably oral administration, of an effective amount of a compound of formula (I-A) or (I-B), a N-oxide form, a pharmaceutically acceptable addition salt, a quaternary amine or a possible stereoisomeric form thereof, to warm-blooded animals, including humans.
In view of the above described pharmacological properties, the compounds of formula (I-A) and (I-B) or any subgroup thereof, their N-oxides, pharmaceutically acceptable addition salts, quaternary amines and stereochemically isomeric forms, may be used as a medicine. In particular, the use of a compound of formula (I-A) and (I-B) in the manufacture of a medicament for treating or preventing glutamate-induced diseases of
the central nervous system is provided. More in particular, the present compounds may be used as neuroprotectants, analgesics or anticonvulstants.
The present invention also provides compositions for treating or preventing glutamate- induced diseases of the central nervous system comprising a therapeutically effective amount of a compound of formula (I-A) or (I-B) and a pharmaceutically acceptable carrier or diluent.
Therefore, the compounds of the present invention or any subgroup thereof may be formulated into various pharmaceutical forms for administration purposes. As appropriate compositions there may be cited all compositions usually employed for systemically administering drugs. To prepare the pharmaceutical compositions of this invention, a therapeutically effective amount of a particular compound, in base or addition salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which carrier may take a wide variety of forms depending on the form of preparation desired for administration. These pharmaceutical compositions are desirably in unitary dosage form suitable, preferably, for administration orally, rectally, topically, percutaneously or by parenteral injection. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, emulsions, elixirs and solutions: or solid carriers such as starches, sugars, kaolin, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules and tablets. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. For parenteral compositions, the carrier will usually comprise sterile water, at least in large part, though other ingredients, for example, to aid solubility, may be included. Injectable solutions, for example, may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed. Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations. As appropriate compositions for topical application there may be cited all compositions usually employed for topically administering drugs e.g. creams, gel, dressings, shampoos, tinctures, pastes, ointments, salves, powders and the like. In the compositions suitable for percutaneous administration, the carrier optionally comprises a penetration enhancing agent and/or a
suitable wetting agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not cause a significant deleterious effect to the skin. Said additives may facilitate the administration to the skin and/or may be helpful for preparing the desired compositions. These compositions may be administered in various ways, e.g., as a transdermal patch, as a spot-on, as an ointment.
It is especially advantageous to formulate the aforementioned pharmaceutical compositions in unit dosage form for ease of administration and uniformity of dosage. Unit dosage form as used in the specification and claims herein refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Examples of such unit dosage forms are tablets (including scored or coated tablets), capsules, pills, suppositories, powder packets, wafers, injectable solutions or suspensions, teaspoonfuls, tablespoonfuls and the like, and segregated multiples thereof.
The therapeutically effective dose or frequency of administration depends on the particular compound of formula (I-A) or (I-B) used, the particular condition being treated, the severity of the condition being treated, the age, weight, sex, fed or fasted state, and the general physical condition of the particular patient as well as other medication the individual may be taking, as is well known to those skilled in the art. Furthermore, it is evident that said therapeutically effective dose or the effective daily dose may be lowered or increased depending on the response of the treated subject and/or depending on the evaluation of the physician prescribing the compounds of the instant invention. It may be appropriate to administer the required dose as two, three, four or more sub-doses at appropriate intervals throughout the day. Said sub-doses may be formulated as unit dosage forms.
The following examples are intended to illustrate the present invention.
Experimental part
Hereinafter, "DMF" is defined as NJV*-dimethylformamide, "DIPE" is defined as diisopropylether, "DMSO" is defined as dimethylsulfoxide, "BHT" is defined as 2,6- bis(l,l-dimethylethyl)-4-methylphenol, and "THF" is defined as tetrahydrofuran.
Preparation of the intermediates Example Al
Preparation of (interm. 1)
A mixture of 4-(l-methylethoxy)benzoic acid (0.083 mol) and Rh/Al2O3 5% (lOg) in THF (220ml) was hydrogenated at 50°C (under 3 bar pressure of H2) for 1 night. The mixture was filtered over celite, washed with THF and evaporated. Yield: 16g of intermediate 1 (100%).
Example A2
Preparation of 2-ethyl-3-methyl-6-quinolinecarboxylic acid (interm. 2)
A mixture of 4-aminobenzoic acid (0.299 mol) in ethanol (250ml) was stirred at room temperature. ZnCl2 (0.0367 mol) and (CH2O)n (lOg) were added. FeCl3.6H2O (0.5 mol) was added portionwise and the temperature rised till 60-65°C. Propanal (30ml) was added dropwise over a 2 hours period. The mixture was refluxed for 2 hours and kept at room temperature for 12 hours. The mixture was poured into water and filtered through celite. The filtrate was acidified till pH=7 with HCl 6N and the mixture was evaporated till dryness. The residue was used without further purification. Yield : 56. lg of 2-ethyl-3-methyl-6-quinolinecarboxylic acid (interm. 2).
Example A3
Preparation of (interm. 3)
Pentanoyl chloride (0.2784 mol) was added at 5°C to a mixture of 4- bromobenzenamine (0.232 mol) and N,N-diethylethanamine (0.2784 mol) in CH2C12 (400ml). The mixture was stirred at room temperature overnight, poured out into water and extracted with CH2CI2. The organic layer was separated, washed with a concentrated ΝH-tOH solution and water, dried (MgSO4), filtered and the solvent was evaporated. The residue (60g) was crystallized from diethylether. The precipitate was filtered off and dried. The residue (35g, 63%) was taken up in CH2C12. The organic layer was separated, washed with a 10% K2CO3 solution, washed with water, dried (MgSO4), filtered and the solvent was evaporated. Yield: 30g of intermediate (3) (54%).
Example A4
Preparation of (interm. 4)
A mixture of 6-bromo-2(lH)-quinolinone (0.089 mol) in POCl3 (55ml) was stirred at
60°C overnight, then at 100°C for 3 hours and the solvent was evaporated. The residue was taken up in CΗ2CI2, poured out into ice water, basified with NH4OH cone, filtered over celite and extracted with CH2C12. The organic layer was separated, dried
(MgSO4), filtered and the solvent was evaporated. Yield: 14.5g of intermediate (4)
(67%).
Example A5
a) Preparation of (interm. 5)
DMF (37ml) was added dropwise at 10°C under N2 flow to POCl3 (108ml). After complete addition, the mixture was allowed to warm to room temperature. N-(4-bromophenyl)butanamide (0.33 mol) was added portionwise. The mixture was stirred at 85°C overnight, then allowed to cool to room temperature and poured out on ice (exothermic reaction). The precipitate was filtered off, washed with a small amount of water and dried (vacuum). The residue was washed with EtOAc/diethyl ether and dried. Yield: 44.2g of intermediate (5) (50%).
b) Preparation of (interm. 6)
A mixture of intermediate (5) (0.162 mol) in methanol (600ml), and a solution of methanol sodium salt in methanol at 35% (154ml) was stirred and refluxed overnight. The mixture was poured out on ice. The precipitate was filtered off, washed with a small amount of water and taken up in CH2CI2. K.2CO3 10% was added and the mixture was extracted with CH2CI2. The organic layer was separated, washed with water, dried (MgSO ), filtered and the solvent was evaporated. Yield: 31.9g of intermediate (6) (74%).
Example A6
Preparation of (interm. 7)
l,l'-Carbonylbis-lH-imidazole (0.074 mol) was added portionwise to a mixture of 4-methoxycyclohexanecarboxylic acid (0.063 mol) in CΗ2CI2 (200ml). The mixture was stirred at room temperature for 1 hour. Then N-methoxymethanamine (0.074 mol)
was added. The mixture was stirred at room temperature overnight, poured out into H2O and extracted with CH2CI2. The organic layer was separated, washed several times with H2O, dried (MgSO ), filtered and the solvent was evaporated. Yield: 12.6g of interm. 7. Example A7 a) A mixture of 6-fluoro-4-oxo-4H-l-benzopyran-2-carboxylic acid (0.30mol) in acetic acid (400ml) was hydrogenated with Pd/C (3g) as a catalyst. After uptake of Η2 (3 equiv), the catalyst was filtered off. The filtrate was evaporated. The residue was stirred in petroleum ether. The precipitate was filtered off and dried (vacuum; 70°C). After recrystallization from CHCl3/CH3OH, the precipitate was filtered off and dried (vacuum; 80°C and high vacuum; 85°C). Yield: 8.8 g of 6-fluoro-3,4-dihydro-2H-l- benzopyran-2-carboxylic acid (interm. 8) (15.0%). b) A mixture of intermediate (8) (0.255 mol) in ethanol (400ml) and Η2SO (5ml) was stirred and refluxed for 8 hours. The solvent was evaporated till dryness. The residue was dissolved in CH2C12. The organic layer was separated, washed with K2CO3 10%, dried (MgSO4), filtered and the solvent was evaporated. Yield: 45g of ethyl 6-fluoro-3,4-dihydro-2H-l-benzopyran-2-carboxylate (interm. 9) (79%). c) Reaction under N2. A mixture of sodium bis(2-methoxyethoxy)aluminumhydride, 70 wt % solution in methylbenzene 3.4M (0.44 mol) in benzene (150 ml) (reflux) was added dropwise during 1 hour to a refluxed mixture of interm. 9 (0.22 mol) and benzene (600 ml). After stirring for 2.5 hours at reflux temperature, the mixture was cooled to ±15°C. The mixture was decomposed by adding dropwise ethanol (30 ml) and water (10 ml). This mixture was poured out onto ice/water and this mixture was acidified with concentrated hydrochloric acid. This mixture was extracted with diethyl ether (500 ml). The separated organic layer was washed with water, dried, filtered and the solvent was evaporated. The residue was purified by column chromotoghaphy over silica gel (eluent : CΗC13). The desired fraction was collected and the eluent was evaporated. Yield: 34 g of 6-fluoro-3,4-dihydro-2H-l-benzopyran-2-methanol (interm. 10) (85%). d) Reaction under N2. To a stirred and cooled (-60°C; 2-propanone/CO2 bath) mixture of ethanedioyl dichloride (0.1 mol) in CΗ2CI2 (350 ml) was added sulfinylbis [methane] (30 ml) during 10 minutes. After stirring 10 minutes, a mixture of interm. 10 in CH2CI2 (90 ml) was added during 5 minutes. After stirring for 15 minutes, N,N-diethylethanamine (125 ml) was added. When the mixture was warmed up to room temperature, it was poured out in water. The product was extracted with CH2CI2. The organic layer was wased with water, HCl (1M), water, ΝaHCO3 (10%) and water,
dried and evaporated. The residue was dissolved in diethyl ether, washed with water, dried, filtered and evaporated. The residue was purified by column chromotoghaphy over silica gel (eluent : CHC13). The desired fraction was collected and the eluent was evaporated. Yield: 21.6 g of 6-fluoro-3,4-dihydro-2H-l-benzopyran-2-carboxaldehyde (interm. 11)
e) Preparation of (interm. 12)
nButyllithium 1.6M (0.056 mol) was added slowly at -70°C to a solution of intermediate (5) (0.046 mol) in TΗF (100ml). The mixture was stirred at -70°C for 30 minutes. A suspension of interm. 11 (0.056 mol) in TΗF (100ml) was added slowly. The mixture was stirred at -70°C for 1 hour, then brought to room temperature, poured out into Η2O and extracted with EtOAc. The organic layer was separated, dried
(MgSO4), filtered and the solvent was evaporated. The residue (21g) was purified by column chromatography over silica gel (eluent: cyclohexane/EtOAc 80/10; 15~35μm). The pure fractions were collected and the solvent was evaporated. Yield: 9.5g of interm. 12 (55%). Example A8
a) Preparation of
(interm. 14)
A mixture of intermediate (5) (0.1127 mol), 2-methoxyethanamine (0.2254 mol) and K2CO3 (0.2254 mol) in DMF (500ml) was stirred at 120°C for 15 hours and then cooled. The solvent was evaporated. The residue was taken up in CH2C12 and H2O. The organic layer was separated, dried (MgSO ), filtered and the solvent was evaporated till dryness. The residue (33.53g) was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH 99.5/0.5; 15-40 μm). Two fractions were collected and their solvents were evaporated. Yield: 5.7g of interm. 14 (38%) and interm. 13 (34%).
b) Preparation of (interm. 15)
A mixture of intermediate (5) (0.0751 mol), thiomorpholine (0.0891 mol) and K-2CO3 (0.15 mol) in DMF (200ml) was stirred at 120°C for 12 hours. The solvent was evaporated till dryness. The residue was taken up in CH2C12 and H2O. The organic
layer was separated, dried (MgSO ), filtered and the solvent was evaporated. The residue (26g) was purified by column chromatography over silica gel (eluent: cyclohexane/EtOAc 80/20; 20-45 μm). Two fractions were collected and their solvents were evaporated. The two fractions were combined. Yield: 9.4g of interm. 15 (37%); mp. 82°C.
Example A9 a) 4-Aminobenzoic acid (0.219 mol) was added to a solution of sodium 3- nitrobenzenesulfonate (0.118 mol) in H2SO470% (230ml) and the mixture was stirred and refluxed. 2-propene-l,l-diol, 2-methyl-, diacetate (0.216 mol) was added dropwise and the mixture was refluxed for 4 hours. Ethanol (200ml) was added and the mixture was stirred at 80°C for 48 hours. The mixture was evaporated, the residue was poured into ice water/NEUOH and extracted with CH2CI2. The organic layer was dried (MgSO4) and evaporated. The residue was purified by column chromatography over silica gel (eluent : CH2Cl2/2-propanol 99/1). The pure fractions were collected and evaporated. Yield : 21g of ethyl 3-methyl-6-quinolinecarboxylate (interm. 16) (45%). b) Interm. 16 (0.098 mol) in THF (270ml) was added at 0°C to a solution of LiAlEU (0.098 mol) in THF under N2. When the addition was complete, water (10ml) was added. The precipitate was filtered off and washed with CH2C12. The organic layer was dried (MgSO4), filtered off and evaporated. The product was used without further purification. Yield : 16.71g of 3-methyl-6-quinolinemethanol (interm. 17). c) MnO (0.237 mol) was added to a solution of interm. 17 (0.096 mol) in CH2C12 (200ml) and the mixture was stirred at room temperature for 12 hours. The mixture was filtered through celite and the filtrate was stirred again with MnO2 (20g) for 12 hours. MnO2 (lOg) was added again. The mixture was stirred for 12 hours. The mixture was filtered through celite and evaporated. The product was used without further purification. Yield : 11.71g of 3-methyl-6-quinolinecarboxaldehyde (71%) (interm. 18). d) A solution of bromocyclohexyl (0.14 mol) in 1,1' -oxybisethane (50ml) and Mg turnings (50ml) was added at 10°C to a mixture of THF (0.14 mol) in 1,1'- oxybisethane (10ml). A solution of interm. 18 (0.07 mol) in Mg turnings (100ml) was added carefully at 5°C, the mixture was poured into ice water and extracted with EtOAc. Yield : 11.34g of (±)-α-cyclohexyl-3-methyl-6-quinolinemethanol (63%) (interm. 19).
Example AIO
Preparation of (interm. 20)
A mixture of compound (5) (0.001507 mol), tributyl(l-ethoxyethenyl)stannane (0.00226 mol) and Pd(PPh3)4 (0.000151 mol) in 1,4-dioxane (5ml) was stirred at 80°C for 3 hours. Water was added. The mixture was extracted with EtOAc. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. This product was used without further purification. Yield: 1.4g of interm. 20.
Example All
Preparation of (interm. 21)
A mixture of compound (45) (prepared according to B6) (0.00125 mol) in NaOH 3N (5 ml) and iPrOH (1.7 ml) was stirred at room temperature overnight, then poured out into H2O, acidified with HCl 3N and extracted with EtOAc. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. The residue was taken up in diethyl ether. The precipitate was filtered off and dried. Yielding: 0.26 g of intermediate 23 (56%). (mp.: 232°C)
Example A12
a. Preparation of
(interm. 22) (interm. 23)
A mixture of 5-bromo-lH-indole-2,3-dione (0.221 mol) in NaOH 3N (500 mlO was stirred at 80°C for 30 minutes, brought to room temperature and 2-pentanone (0.221 mol) was added. The mixture was stirred and refluxed for 1 hour and 30 minutes and acidified with AcOH until pH=5. The precipitate was filtered, washed with water and dried. Yielding 52.3 g of intermediate 24 and intermediate 25. (Total yielding: 80%).
b. Preparation of
(interm. 24) (interm. 25) nBuLi 1.6 M (0.0816 mol) was added dropwise at -78°C to a suspension of intermediate 25 (0.034 mol) and intermediate 26 (0.034 mol) in THF (300 ml) under N2 flow. The mixture was stirred at -78°C for 30 minutes. nBuLi 1.6M (0.0816 mol) was added dropwise. The mixture was stirred for 1 hour. A mixture of intermediate 9 (0.102 mol) in THF (250 ml) was added slowly. The mixture was stirred for -78°C to -20°C, poured out into H2O/HCl 3N and extracted with EtOAc. The organic layer was separated, dired (MgSO ), filtered, and the solvent was evaporated till dryness. Yielding: 20.89 g of compound intermediate 26 and intermediate 27 (86%).
Example A13
a. Preparation of (interm. 26)
4-amino-3-methoxybenzoic acid (0.054 mol) was added portionwise at room temperature to a solution of 3-chloro-2-ethyl-2-butenal (0.065 mol) in AcOH (100ml).
The mixture was stirred and refluxed for 8 hours and evaporated to dryness. The residue was taken up in CH2CI2, water was added and the solution was basified by
Et3N. The organic layer was separated, dried (MgSO4), filtered, and the solvent was evaporated. The residue was crystallized from 2-propanone. The precipitate was filtered off and dried. Yielding: 2.5g of interm. 26 (18%).
(interm. 27)
CDI (0.012 mol) was added at room temperature to a solution of interm. 26 (0.011 mol) in CH2C12 (30ml). The mixture was stirred at room temperature for 1 hour, methoxyaminomethyl (0.012 mol) was added and the mixture was stirred at room temperature for 8 hours. H2O was added. A precipitate was filtered off. The filtrate was extracted with CH2CI2. The organic layer was separated, dried (MgSO4), filtered, and
the solvent was evaporated. The residue was crystallized from diethyl ether. The precipitate was filtered off and dried. Yielding: 0.95g of interm. 27 (31 ) (mp.:148°C).
Example A14
Preparation of
(interm. 28)
4-Bromobenzenamine (0.034 mol) was added at room temperature to a solution of 3- chloride-2-ethyl-2-butanal (0.041 mol) in AcOH (60 ml). The mixture was stirred and refluxed for 8 hours, brought to room temperature and evaporated to dryness. The product was crystallized from EtOAc. The precipitate was filtered, washed with K2CO3 10% and taken up in CH2C12. The organic layer was separated, dried (MgSO4), filtered, and the solvent was evaporated. Yielding: 4,6 g of interm. 28 (54%).
Example Al 5
a. Preparation of (interm. 29)
A solution of KOH (0.326 mol) in H2O (150ml) was added slowly at 5°C to a solution of 1,3-cyclohexanedione (0.268 mol) in H2O (150ml). The temperature must not reach
12 °C. KI (2g) then 2-bromo-l-(4-nitrophenyl)ethanone (0.294 mol) were added portionwise. The mixture was stirred at room temperature for 48 hours. The precipitate was fitered, washed with H2O then with diethyl ether and dried. Yielding: 63g (85%).
A part of this fraction (lg) was crystallized from EtOH. The precipitate was filtered off and dried. Yielding: .: 100°C).
b. Preparation of (interm. 30)
A mixture of interm. 29 (0.145 mol) in H2SO4 (40ml) was stirred at room temperature for 1 hour, poured out into ice, basified with NH4OH and extracted with CH2C12- The organic layer was separated, dried (MgSO4), filtered, and the solvent was evaporated. The residue was crystallized from EtOH. The precipitate was filtered off and dried. Yielding: 31g (58%). A part of this fraction (lg) was crystallized from EtOH. The precipitate was filtered off and dried. Yielding: 0.7g of interm. 30 (58%) (mρ.:200°C).
c. Preparation of (interm. 31)
A mixture of interm. 30 (0.039 mol), Raney Ni (lOg) in EtOH (100ml) was hydrogenated at room temperature under a 3 bar pressure for 1 hour. The mixture was filtered over celite and washed with CH2CI2. The organic layer was separated, dried
(MgSO4), filtered, and the solvent was evaporated. The residue (9.5g) was crystallized from diethyl ether. The precipitate was filtered off and dried. Yielding: 4.6g (52%). The filtrate was evaporated. The residue (2.7g) was purified by column chromatography over silica gel (eluent: CH2θ2/CH3OH; 99/1; 15-40μm). Two fractions were collected and the solvent was evaporated. Yielding: 1.6g FI and 1.2g F2. F2 was crystallized from EtOH. The precipitate was filtered off and dried. Yielding: 0.24g of interm. 31
(interm. 32)
Interm. 30 (0.02 mol) was added at room temperature to a solution of 3-chloro-2-ethyl- 2-butenal (0.04 mol) in AcOH (50ml). The mixture was stirred and refluxed for 4 hours. The solvent was evaporated till dryness. The residue was crystallized from EtOAc. The precipitate was filtered off and dried. The residue was taken up in CH2CI2. The mixture was basified with K2CO3 10% and extracted with CH2CI2. The organic layer was separated, dried (MgSO4), filtered, and the solvent was evaporated. The residue was crystallized from EtOH. The precipitate was filtered off and dried. Yielding: 2.5g of interm. 32 (40%).
Example A16
Preparation of (interm. 33)
A mixture of 2-(4-nitrophenyl)-l-phenylethanone (0.083 mol) and Raney Ni (20g) in EtOH (200ml) was hydrogenated at room temperature for 1 hour under a 3 bar pressure, then filtered over celite, washed with CH2Cl2/CH3OH and dried. Yielding: 17.5g of interm. 33 (97%).
B. Preparation of the final compounds Example Bl
Preparation of (compound 306)
POCl3 (0.024 mol) was added slowly at 5°C to DMF (0.024 mol). The mixture was stirred at room temperature for 30 minutes, then cooled to 5°C. 3-Oxo-butanoic acid ethyl ester (0.024 mol) was added slowly. The mixture was stirred at 5°C for 30 minutes. l-(4-aminophenyl)-2-phenylethanone (0.024 mol) was added portionwise. The mixture was stirred at 90°C for 3 hours and dissolved in CH2C12. Ice water was added. The mixture was basified with NHjOH and extracted with CH2C12. The organic layer was separated, dried (MgSO4), filtered, and the solvent was evaporated. The residue was crystallized from 2-propanone/diethyl ether. The precipitate was filtered off and dried. Yielding: 0.9 g of compound 306 (11%) (mp.:136°C).
Example B2
Preparation of (compound 2)
KMnO4 (lOg) was added portionwise at room temperature to a solution of
(prepared according to example A7.e) (0.022 mol)
in tris(dioxa-3,6-heptyl)amine (1ml) and CH2C12 (100ml). The mixture was stirred at room temperature for 8 hours, filtered over celite, washed with CH2C12 and dried. The residue (6g, 100%) was crystallized from diethyl ether/petroleum ether. The precipitate was filtered off and dried. Yield: 2g of compound (2) (33%); mp. 82°C.
Example B3
a) Preparation of (compound 3)
nBuLi 1.6M (0.07 mol) was added slowly at -70°C to a solution of intermediate (5) (0.058 mol) in THF (150ml). The mixture was stirred at -70°C for 30 minutes. A solution of 2,3-dihydro-lH-Indene-2-carbonitrile (0.07 mol) in TΗF (100ml) was added slowly. The mixture was stirred at -70°C for 1 hour, brought slowly to room
temperature, hydrolized with H2O and extracted with EtOAc. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. The residue (22g) was purified by column chromatography over silica gel (eluent: CH2Cl2/ cyclohexane
80/20 to 100; 15-35μm). The pure fractions were collected and the solvent was evaporated. The second fraction was crystallized from 2-propanone/diethyl ether. The precipitate was filtered off and dried. Yield: 0.1 lg of compound (3). The filtrate was concentrated. Yiel
b) Preparation of
cis (compound 4) trans (compound 5) nBuLi 1.6M (0.022 mol) was added slowly at -70°C to a solution of intermediate (5)
(0.018 mol) in THF (50ml). The mixture was stirred at -70°C for 1 hour, brought to -40°C, then cooled to -70°C. A solution of interm. 7 (0.018 mol) in THF (40ml) was added slowly. The mixture was stirred at -70°C for 1 hour, then brought to -20°C, hydrolyzed with H2O and extracted with EtOAc. The organic layer was separated, dried (MgSO ), filtered and the solvent was evaporated. The residue (6.5g) was purified by column chromatography over silica gel (eluent: toluene/EtOAc 90/10; 15- 40jtιM). Two fractions (FI and F2) were collected and the solvent was evaporated.
FI (2.4g) was crystallized from diethyl ether. The precipitate was filtered off and dried.
Yield: 1.8g of compound (4) (29%); mp. 123 °C. F2 (0.9g) was crystallized from diethyl ether. The precipitate was filtered off and dried. Yield: 0.2g of compound (5)
and
CIS TRANS (compound 7) (compound 8) nBuLi 1.6M in exane (0.107 mol) was added dropwise at -78°C under N2 flow to a mixture of intermediate (6) (0.089 mol) in THF. The mixture ws stirred at -78°C for 1 hour. A mixture of interm. 7 (150 ml) was added at -78°C under N2 flow. The mixture was stirred at -78°C for 2 hours, brought to 0°C, poured out into H2O and extracted with EtOAc. The organic layer was separated, dried (MgSO ), filtered and the solvent was evaporated. The residue (31g) was purified by column chromatography over silica gel (eluent: cyclohexane EtOAc 85/15; 20-45 μ ). Two pure fractions were collected and their solvents were evaporated. Yielding: 11 g of compound (7) (38%) and 8.2 g of compound (8) (28%).
d) Preparation of (compound 503)
A solution of chloromethylbenzeen (0.0069 mol) in diethyl ether (8ml) was added slowly to a suspension of Mg (0.0069 mol) in a small amount of diethyl ether. The mixture was stirred at room temperature for 30 minutes (disparition of Mg), then cooled to 5°C. A solution of interm. 27 (0.0027 mol) in THF (8ml) was added slowly. The mixture was stirred at 5°C for 15 minutes, then at room temperature for 2 hours, poured out into H2O and filtered over celite. The precipitate was washed with EtOAc. The filtrate was extracted with EtOAc. The organic layer was separated, dried (MgSO ), filtered, and the solvent was evaporated. The residue (lg) was purified by column chromatography over kromasil (eluent: CH2C12 100 to CH2Cl2/CH3OH 99/1; 15-40μm). The pure fractions were collected and the solvent was evaporated. The residue (0.5g, 56%) was crystallized from diethyl ether. The precipitate was filtered off and dried. Yielding: 0.14g of compound 503 (15%).
Example B4: examples of endgroup modifications
(compound 156)
trans
A mixture of ( compound 8)
trans (prepared according to example B3.c) (0.018 mol) in HCl 3N (60ml) and THF (60ml) was stirred at 60°C overnight. The mixture was basified with a K.2CO3 10% solution and extracted with CH2C12. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. Yield: 4.6g of compound (156) (82%).
b) Preparation of (compound 9)
cis
A mixture of ( compound 7)
CIS
(prepared according to example B3.c) (0.0122 mol) in HCl 3N (40ml) and THF (40ml) was stirred and refluxed overnight, poured out into water, basified with K-2CO3 10% and extracted with CH2CI2. The organic layer was separated, dried (MgSO ), filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: cyclohexane/EtOAc 40/60; 15-40μm). The pure fractions were collected and the solvent was evaporated. Yield: 2g of compound (9) (52%); mp. 226°C.
c) Preparation of
cis (compound 10) and (trans) (compound 11)
A mixture of compound (4) (0.0015 mol), 2-methoxyethanamine (0.003 mol) and K2CO3 (0.003 mol) in DMF (5ml) was stirred at 140°C for 48 hours. H2O was added. The mixture was extracted with EtOAc. The organic layer was separated, dried
(MgSO4), filtered and the solvent was evaporated. The residue (lg) was purified by column chromatography over silica gel (eluent: cyclohexane/EtOAc 60/40; 15-40/zm). Two fractions were collected and the solvent was evaporated. Both fractions were crystallized separately from pentane. The precipitate was filtered off and dried. Yield: 0.05g of compound (10) (9%; mp. 115°C) and 0.057g of compound (11) (10%; mp.
cis (compound 12) and (trans) (compound 13)
A mixture of compound (4) (0.0015 mol) in 2-(methylthio)ethanamine (2ml) was stirred at 120°C for 8 hours. K2CO3 10% was added. The mixture was extracted with CH2CI2. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. The residue (2.2g) was purified by column chromatography over silica gel (eluent: cyclohexane/EtOAc 70/30; 15-40μm). Two fractions were collected and the solvent was evaporated. The first fraction was crystallized from diethyl ether/petroleum ether. The precipitate was filtered off and dried. Yield: 0.08g of compound (12) (14%); mp. 120°C. The second fraction was crystallized from diethyl
ether. The precipitate was filtered off and dried. Yield: 0.18g of compound (13)
cis (compound 14)
A mixture of compound (4) (0.001507 mol), ethynyltrimethylsilane (0.003013 mol), Cul (0.000151 mol) and Pd(PPh3)4 (0.000151 mol) in N-N-diethylethanamine (5ml) was stirred at 100°C for 24 hours. Water was added. The mixture was filtered over celite, washed with EtOAc and the filtrate was extracted with EtOAc. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. The residue (1.3g) was purified by column chromatography over silica gel (eluent: cyclohexane/EtOAc 85/15; 15-40 μm). The pure fractions were collected and the solvent was evaporated. The residue (0.3g) was crystallized from pentane. The precipitate was filtered off and dried. Yield: 0.1 lg of compound (14) (18%); mp. 114°C.
f) Preparation of (compound 15)
CIS
A mixture of compound (14) (0.013 mol) and KF (0.038 mol) in acetic acid (50ml) was stirred at room temperature for 2 hours. H2O was added and the mixture was extracted with diethyl ether. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. The residue (4.4g) was purified by column chromatography over silica gel (eluent: cyclohexane/EtOAc 70/30; 15-40μm). One fraction was collected and the solvent was evaporated. This fraction (3g, 73%) was crystallized from diethyl ether. The precipitate was filtered off and dried. Yield: 2.45g of compound (15
g) Preparation
trans (compound 17)
A mixture of
cis (compound 14) and trans (compound 16)
prepared according to example B.7.a) (0.0056 mol) in KOH [1M, H2O] (10ml) and methanol (30ml) was stirred at room temperature for 1 hour, poured out into water and extracted with EtOAc. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. The residue (2.2g) was purified by column chromatography over silica gel (eluent: cyclohexane/EtOAc 85/15 to 70/30; 15-40μm).
Two fractions were collected and the solvent was evaporated.
The first fraction was crystallized from diethyl ether. The precipitate was filtered off and dried. Yield: 0.2g of compound (15) (11%); mp. 133°C.
The second fraction was crystallized from diethyl ether. The precipitate was filtered off and dried. Yield: 0.3g °C.
h) Preparation of (compound 18)
cis
A mixture of compound (4) (0.001205 mol), 2-propyn-l-ol (0.002411 mol), Pd(PPh3)4
(0.000121 mol) and Cul (0.000121 mol) in N-N-diethylethanamine (5ml) was stirred at
100°C for 2 hours. Water was added. The mixture was filtered over celite, washed with EtOAc and extracted aith EtOAc. The organic layer was separated, dried (MgSO ), filtered and the solvent was evaporated. The residue (0.7g) was purified by column chromatography over silica gel (eluent: CH2Q2/CΗ3OH 98/2; 15-40 μm). The pure fractions were collected and the solvent was evaporated. The residue was crystallized from petroleum ether and diethyl ether. The precipitate was filtered off and dried. Yield: O.lg
i) Preparation of
cis (compound 19) and (trans) (compound 20) A mixture of compound (4) (0.006027 mol) and KF (0.024108 mol) in DMSO (20ml) was stirred at 140°C. The solvent was evaporated till dryness. The residue was solidified in water and diethyl ether. The mixture was extracted with diethyl ether. The organic layer was separated, washed with diethyl ether, washed with a saturated solution of ΝaCl, dried (MgSO ), filtered and the solvent was evaporated. The residue (1.7g) was purified by column chromatography over silica gel (eluent: cyclohexane/EtOAc 85/15; 15-40 μm). Three fractions were collected and their solvents were evaporated.
The first fraction was crystallized from petroleum ether. The precipitate was filtered off and dried. Yield: 0.21g of compound (19) (11%); mp. 92°C.
The second fraction was crystallized from petroleum ether. The precipitate was filtered off and dried. Yield: 114°C.
j) Preparation of (compound 21)
CIS
A mixture of compound (4) (0.003013 mol), acetyl chloride (0.003315 mol) and sodium iodide (0.006027 mol) in CH3CN (10ml) was stirred and refluxed for 1 hour.
K2CO3 10% was added. The mixture was extracted with CH2CI2. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. The residue
(lg) was purified by column chromatography over silica gel (eluent: cyclohexane EtOAc 80/20; 15-40 μm). Two fractions were collected and their solvents were evaporated. The first fraction was crystallized from petroleum ether. The precipitate was filtered off and dried. Yield: 0.12g of compound (21); mp. 110°C.
k) Preparation (compound 22)
CIS
A mixture of compound (21) (0.000898 mol), trimethylsilanecarbonitrile (0.001347 mol) and Pd(PPh3)4 (0.00009 mol) in N^V-diethylethanamine (5ml) was stirred at 100°C for 2 hours. Water was added. The mixture was extracted with EtOAc. The organic layer was separated, dried (MgSO ). filtered and the solvent was evaporated. The residue (0.4g) was purified by column chromatography over silica gel (eluent: cyclohexane/EtOAc 80/20; 15-40 μm). The pure fractions were collected and the solvent was evaporated. The residue (0.18g, 62%) was crystallized from petroleum ether. The precipitate was filtered off and dried. Yield : 0.13g of compound (22)
cis (compound 23) (trans) (compound 24)
cis (compound 25) (trans) (compound 26)
A mixture of compound (4) (0.00603 mol), Pd(OAc)2 (0.000603 mol), PPh3 (0.00904 mol) and K2CO3 (0.012054 mol) in CO (gas) and methanol (40ml) was stirred at 90°C for 8 hours under a 5 bar pressure of CO. H2O was added. The mixture was extracted with EtOAc. The organic layer was separated, dried (MgSO ), filtered and the solvent was evaporated. The residue (6g) was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH 100/0 to 98/2; 15-35μm). Four fractions (F1-F4) were collected and the solvent was evaporated. Yield: 0.13g (cis) FI; 0.02g F2 (cis, compound 25); 0.055g F3 (trans, 3%) and O.llg F4 (trans; compound 26). FI was crystallized from petroleum ether. The precipitate was filtered off and dried. Yield: 0.03g of compound (23) (1%); mp. 91°C.
F3 was crystallized from petroleum ether. The precipitate was filtered off and dried.
Yield: 0.035g of comp
m) Preparation of (compound 25)
CIS
A mixture of compound (4) (0.009 mol) and Zn (0.027 mol) in acetic acid (30ml) was stirred at 60°C for 4 hours, filtered over celite, washed with CH2C12, evaporated till dryness, solubilized in CH2C12 and washed with K2CO3 10%. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. The residue (4g) was purified by column chromatography over silica gel (eluent: cyclohexane/EtOAc
75/25; 15-40μm). One fraction was collected and the solvent was evaporated. This fraction (lg 37%) was crystallized from petroleum ether. The precipitate was filtered off and dried. Yield: c
n) Preparation of (compound 27)
cis A mixture of compound (4) (0.001502 mol), Sn(CH3)4 (0.003004 mol) andPd(PPh3) (0.00015 mol) in methylbenzene (5ml) was stirred and refluxed for 3 hours. K2CO3 10% was added. The mixture was extracted with EtOAc. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. The residue (0.7g)
was purified by column chromatography over silica gel (eluent: cyclohexane/EtOAc
85/15; 15-40 μm). Two fractions (FI and F2) were collected and their solvents were evaporated. Yield: 0.27g (F 1, starting material) and 0.14g (F2). F2 was crystallized from pentane and petroleum ether. The precipitate was filtered off and dried. Yield: 0.08g of compound (27) (17%); mp. 110°C.
o) Preparation of (compound 28)
CIS
A mixture of compound (4) (0.001507 mol), tributylethenylstannane (0.002260 mol) and Pd(PPh3)4 (0.000151 mol) in dioxane (5ml) was stirred at 80°C for 8 hours. Water was added. The mixture was filtered over celite, washed with EtOAc and extracted with EtOAc. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. The residue (0.65g) was purified by column chromatography over silica gel (eluent: cyclohexane/EtOAc 90/10; 15-40 μm). The pure fractions were collected and the solvent was evaporated. The residue was crystallized from petroleum ether. The precipitate was filtered off and dried. Yield: 0.07g of compound (28)
(compound 29)
trans A mixture of compound (5) (0.001507 mol), triphenyl(phenylmethyl)stannane
(0.002260 mol) and Pd(PPh3)4 (0.000151 mol) in dioxane (5ml) was stirred at 80°C for 8 hours. Water was added. The mixture was extracted with EtOAc. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. The residue (1.4g) was purified by column chromatography over silica gel (eluent: GHbCh/EtOAc 96/4; 15-40 μm). The pure fractions were collected and the solvent was evaporated. The residue (0.38g) was crystallized from petroleum ether. The precipitate was filtered off and dried. Yield: 0. . 112°C.
q) Preparation of (compound 30)
CIS
A mixture of compound (4) (0.001507 mol), tributyl-2-thienylstannane (0.00226 mol) and Pd(PPh3) (0.0001507 mol) in dioxane (5ml) was stirred at 80°C for 8 hours. K2CO3 10% was added. The mixture was extracted with EtOAc. The organic layer was separated, dried (MgSO ), filtered and the solvent was evaporated. The residue (1.7g) was purified by column chromatography over silica gel (eluent: cyclohexane/EtOAc 85/15; 15-40 μm). The pure fractions were collected and the solvent was evaporated. The residue (0.65g) was crystallized from diethyl ether. The precipitate was filtered off and dried. Yield: 0.35g of compound (30) (61%); mp. 142°C.
r) Preparation of (compound 31)
CIS
A mixture of compound (4) (0.0015 mol), 3-thienyl boronic acid (0.00226 mol),
Pd(PPh3)4 (0.00015 mol) and dioxane was stirred and refluxed for 24 hours. K2CO3
10% was added. The mixture was extracted with EtOAc. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. The residue (0.8g) was purified by column chromatography over silica gel (eluent: cyclohexane EtOAc
80/20; 15-40μm). The pure fractions were collected and the solvent was evaporated.
The residue (0.4g, 70%) was crystallized from petroleum ether. The precipitate was filtered off and dried. Yield: 0.39g of compound (31) (68%); p. 113°C.
cis
A mixture of compound (4) (0.003 mol), glycine methyl ester monohydrochloride
(0.0066 mol) and Pd(PPh)4 (0.0003 mol) in Et3N (2ml) and toluene (10ml) was stirred at 100°C under 5 bar pressure of CO for 8 hours, filtered over celite, washed with
CH2CI2 and evaporated. The residue (2g) was purified by column chromatography over silica gel (eluent: cyclohexane/EtOAc 80/20; 75-35μm). One fraction was collected and the solvent was evaporated. This fraction (lg 80%) was crystallized from diethyl ether.
The precipitate was filtered off and dried. Yielding:
t) Preparation of
cis (compound 33) (trans) (compound 34)
A mixture of compound (4) (0.003 mol) and hydrazinecarboxaldehyde (0.0045 mol) in
1-butanol (15ml) was stirred and refluxed overnight, poured out into water and extracted with CH2CI2. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: C^CyCT^OH/NHtOH 95/5/0.1; 15-40 μm). Two fractions (FI and
F2) were collected and their solvents were evaporated. Yield: 0.3g FI and 0.3g F2.
FI was crystallized from CH3CN and diethyl ether. The precipitate was filtered off and dried. Yield: 0.102g of compound (33); mp. 224°C.
F2 was crystallized from CH3CN and diethyl ether. The precipitate was filtered off and dried. Yield: 0.2g of c
u) Preparation of (compound 35)
CIS
A mixture of compound 4 (0.015 mol) and NaN3 (0.045 mol) in DMF (50ml) was stirred at 140°C for 2 hours. K2CO3 10% was added and the mixture was extracted with EtOAc. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. The residue (6g) was purified by column chromatography over silica gel (eluent: cyclohexane/EtOAc 60/40; 15-40μm). The first fraction was collected and the solvent was evaporated. The residue was crystallized from diethyl ether. The precipitate was filtered off and dried. Yield: 1.26g of compound (35) (24%); mp. 160°C.
v) Preparation of
CIS TRANS
(compound 36) (compound 37)
A mixture of compound (4) (0.009 mol) and thiourea (0.0099 mol) in ethyl alcohol (30ml) was stirred and refluxed for 12 hours and a solution of KOH (0.0149 mol) in H2O (5ml) was added slowly. The mixture was stirred and refluxed for 1 hour, poured out into water and extracted with CH2CI2. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (cyclohexane/EtOAc 70/30; 15-40μm). The pure fractions were collected and the solvent was evaporated. Yielding: l.lg of FI (37%) and 0.4g of F2 (13%). FI was crystallized from 2-propanone. The precipitate was
filtered off and dried. Yielding: compound (36). F2 was crystallized from 2-propanone.
The precipitate was filtered off and dried. Yielding: compound (37).
w) Preparation of
CIS TRANS
(compound 38) (compound 39)
CH3I (0.0034 mol) was added slowly at room temperature to a solution of compound (36) (0.0015 mol), compound (37) (0.0015 mol) and K2CO3 (0.0034 mol) in acetone (15ml). The mixture was stirred at room temperature for 8 hours. Water was added and the mixture was extracted with CH2CI2. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. The residue (1.2g) was purified by column chromatography over silica gel (eluent: cyclohexane EtOAc 85/15; 15-40μm). The pure fractions were collected and the solvent was evaporated. Yielding: 0.6g FI (57%), and 0.18g F2 (17%). FI was crystallized from diethyl ether. The precipitate was filtered off and dried. Yielding: 0.28g compound (38) (27%). F2 was crystallized from diethyl ether. The precipitate was filtered off and dried. Yielding: 0.065g of compound
(compound 40)
cis
A mixture of compound (41) prepared
according to example B3b (0.0014 mol) in HCl 3N (5ml) and THF (5ml) was stirred and refluxed for a weekend, then poured out into H2O, basified with K2CO3 and extracted with CH2C12. The organic layer was separated, dried (MgSO ), filtered and the solvent was evaporated. Yielding: 0.5g of F. This fraction F was crystallized from 2-propanone. The precipitate was filtered off and dried. Yielding: 0.35g of compound
(compound 188)
A mixture of compound (5) (0.045 mol), acetamide (0.90013 mol) and K2CO3 (0.225 mol) was stirred and refluxed at 200°C for 2 hours, cooled at room temperature, poured out into H2O/CH2CI2 ;and extracted with CH2CI2. The organic layer was separated, dried (MgSO ), filtered and the solvent was evaporated till dryness. The residue (14.4 g) was crystallized from CH3OH. The precipitate was filtered off and dried. The filtrate was evaporated. The residue (11.27g) was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH NH4OH 96/4/0.1; 15-35μm). The pure fractions were collected and the solvent was evaporated. Yielding: 4.2 g of compound
(compound 248)
A mixture of compound (188) (0.00032 mol), benzoic acid (1.5 equiv., 0.00048 mol), l-ethyl-3-(3'-dimethylaminoproρyl)carbodiimide .HCl (1:1) (1.5 equiv., 0.00048 mol),
N-hydroxybenzotriazole (1.5 equiv., 0.00048 mol) and Et3N (1 equiv., 0.00032 mol) in
CH2CL2 (2ml) was stirred at room temperature for 15 hours. The solvent was evaporated. The residue was purified by HPLC and the product fractions were collected and the solvent was evaporated. Yield: 0.066 g of compound (205) (49.50%).
(compound 6)
trans A mixture of interm. 20 (0.001507 mol) in HCl 3N (10ml) and THF (10ml) was stirred at room temperature for 8 hours, basified with K2CO3 10% and extracted with CH2C12. The organic layer was separated, dried (MgSO ), filtered and the solvent was evaporated. The residue (1.2g) was purified by column chromatography over silica gel (eluent: cyclohexane/EtOAc 85/15; 15-40 μm). The pure fractions were collected and the solvent was evaporated. The residue (0.4g) was crystallized from petroleum ether. The precipitate was filtered off and dried. Yield: 0.3g of compound (6) (58%); mp. 108°C.
ab) Preparation of (compound 419)
A mixture of compound 213 (prepared according to B4) (0.00305 mol) and CH3ONa (30% in CH3OH) (0.00916 mol) in CH3OH (25ml) was stirred and refluxed for 15 hours then cooled to room temperature, poured out into H2O and extracted with EtOAc. The organic layer was separated, dried (MgSO4), filtered, and the solvent was evaporated till dryness. The residue (l.lg) was purified by column chromatography over silica gel (eluent: cyclohexane EtOAc; 40/60; 15-40μm). Two fractions were collected and the solvent was evaporated. Yielding: 0.3g FI and 0.5g F2 (50%) F2 was crystallized from diethyl ether/petroleum ether. The precipitate was filtered off and dried. Yielding: 0.26g FI was crystallized from pentane. The precipitate was filtered off and dried. Yielding: 0.19g. This fraction was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH; 98/2; 15-40μm). The pure fractions were collected and the solvent was evaporated. Yielding: 0.1 lg. This fraction was purified by column chromatography over kromasil (eluent:CH3OH/H2O; 70/30). The pure fractions were collected and the solvent was evaporated. Yielding: 0.09g. (9%) This fraction was crystallized from diethyl ether. The precipitate was filtered off and dried. Yielding: 0.08g of compound 419 (8%).
Example B5
Preparation of
cis (compound 42) (trans) (compound 43)
Iodomethane (0.00456 mol) was added at 5°C to a mixture of compound (9) (0.0019 mol), compound (8) (0.0019 mol) and tBuOK (0.00456 mol) in THF (30ml) under N2 flow. The mixture was stirred at room temperature overnight, poured out into H2O and extracted with CH2CI2. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: cyclohexane/EtOAc 65/35; 15-40μm). Two fractions were collected and the solvent was evaporated. Yield: 0.35g of compound (42) (30%; mp. 125°C) and 0.35g of compound (43) (30%; mp. 116°C).
Example B6
a) Preparation of
cis (compound 44) (trans) (compound 45)
NaH 60% (0.01068 mol) was added at 0°C under N2 flow to a mixture of compound (8) and compound (9) (0.0089 mol). The mixture was stirred for 30 minutes. Ethyl bromoacetate (0.01068 mol) was added at 0°C. The mixture was stirred at room temperature for 1 hour, hydrolized with water and extracted with EtOAc. The organic layer was separated, dried (MgSO ), filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: cyclohexane/EtOAc 60/40; 15-40 μm). The desired fractions (F1-F4) were collected and the solvent was evaporated. Yield: 0.1 lg FI; 0.13g F2; 0.75g F3 and 0.8g F4. F3 was crystallized from diethyl ether. The precipitate was filtered off and dried. Yield: compound (44); mp. 152°C.
F4 was crystallized from diethyl ether. The precipitate was filtered off and dried. Yield: compound (45); mp. 147°C.
b) Preparation of
cis (compound 46) (trans) (compound 47)
Bromomethylbenzene (0.007 mol) was added dropwise at 0°C under N2 flow to a solution of compound (8) and compound (9) (0.0064 mol) and NaH 60% (0.007 mol) in DMF (40ml). The mixture was stirred at room temperature for 1 hour, hydrolized with water and extracted with EtOAc. The organic layer was separated, washed with water, dried (MgSO4), filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: cyclohexane/EtOAc 70/30; 15-40 μm). The desired fractions (F1-F4) were collected and the solvent was evaporated. Yield: 0.15g FI, O.lg F2, 0.6g F3 (23%) and 0.8g F4.
F3 was crystallized from diethyl ether. The precipitate was filtered off and dried. Yield: 0.13g of compound (46); mp. 137°C. F4 was crystallized from DIPE and petroleum ether. The precipitate was filtered off and dried. Yield: compound (47); mp. 130°C.
Example B7 a) 3-Chlorobenzenecarboperoxoic acid (0.088 mol) was added at 0°C to a solution of compound (48) (prepared according to example B2) (0.044 mol) in CH2CI2 (200ml) and the mixture was stirred at room temperature for 12 hours. The mixture was washed with K2CO3 10%. The organic layer was dried (MgSO4), filtered off and evaporated. The residue was recrystallized from (C2H5)2O. Yield : 8.2g of cyclohexyl (3-methyl-6-quinolinyl)methanone,l -oxide (compound 49) (69%). b) 4-Methyl benzenesulfonyl chloride (0.043 mol) was added to a solution of compound (49) (0.028 mol) in K2CO3 (400ml) and CH2C12 (400ml) and the mixture was stirred at room temperature for 1 hour. The mixture was extracted with CH2CI2. The organic layer was dried (MgSO ), filtered off and evaporated. The residue was recrystallized from (dHs^O. Yield : 6.64g of 6-(cyclohexylcarbonyl)-3-methyl~ 2(lH)-quinolinone (compound 50) (85%); mp. 256.1°C. Example B8
a) Preparation of
[l (A),4α] (compound 51) [lα (B),4 ] (compound 52)
A mixture of compound (7) (0.0229 mol), hydroxylamine (0.0252 mol) and N,N-diethylethanamine (0.0252 mol) in ethanol (100ml) was stirred and refluxed for 6 hours, poured out into water and extracted with CH2CI2. The organic layer was separated, dried (MgSO ), filtered and the solvent was evaporated. The residue was crystallized from CH3CΝ. The precipitate was filtered off and dried. The residue was purified by column chromatography over silica gel (eluent: CT^C^/EtOAc 80/20; 15- 40μm). Two fractions were collected and the solvent was evaporated. Yielding: 2.8g of compound (44) (36%; mp. 133°C) and 3g of compound (45) (38%; mp. 142°C).
b) Preparation of (compound 53)
[lα(Z),4α] Hydrazine (0.41 mol) was added at room temperature to a solution of compound (7) (0.015 mol) in ethanol (75ml). The mixture was stirred and refluxed for 1 night, poured out into water and extracted with CH2CI2. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent:
98/2/0.1).
The pure fractions were collected and the solvent was evaporated. The residue was crystallized from diethyl ether. The precipitate was filtered off and dried. Yielding: 0.8g of compound (53) (15%); mp. 110°C.
Example B9
Preparation of (compound 520)
Procedure for compounds 400, 401, 402, 403, 404 and 405. A mixture of interm. 21 (prepared according to All) (0.000269 mol), amantadine hydrochloride (0.000404 mol; 1.5 eq.), ^-(ethylcarbonimidoy -^N-dimethyl-l^-propanediamine hydrochloride (0.000404 mol; 1.5 equiv.), 1 -hydroxy- lH-benzotriazole (0.000404 mol; 1.5 equiv.) and Et3Ν (0.000269 mol) in CΗ2C13 (2 ml) was stirred at room temperature for 12 hours. The solvent was evaporated. The residue was purified by HPLC. The product fractions were collected and the solvent was evaporated. Yield: 0.063 g of compound 520 (46.37%).
Example B 10
Preparation of (compound 233)
A mixture of intermediate 27 (0.0026 mol) and intermediate 26 (0.0026 mol) in EtOH (380 ml) and H2SO4 cone. (19 ml) was stirred and refluxed for 15 hours, the cooled to room temperature, poured out into ice water, basified with K2CO3 and extracted with EtOAc. The organic layer was separated, dried (MgSO4), filtered, and the solvent was evaporated. The residue (17.9 g) was purified by column chromatography over silica gel (eluent: cyclohexane EtOAc; 80/20; 15-35μm). The pure fractions were collected and the solvent was evaporated. Yielding: 0.85 g of FI, 1.1 g F2 and 11.5 g of F3. FI and F2 were crystallized separately from petroleum ether. The precipitate was filtered off and dried. Yielding: 0.34 g of compound 233.
Example B 11
Preparation of (compound 511)
A mixture of compound 22 (prepared according to B4) (0.004 mol) in HCl (3N) (20ml) and THF (20ml) was stirred and refluxed for 8 hours, poured out on ice, basified with NH OH and extracted with CH2C12. The organic layer was separated, dried (MgSO4), filtered, and the solvent was evaporated. The residue (1.2g) was purified by column chromatography over silica gel (eluent:
93/7/0.5; 15-40μm). Two fractions were collected and the solvent was evaporated. Yielding: 0.5g FI (41%) and 0.4g of F2. FI was crystallized from petroleum ether. The precipitate was filtered off and dried. Yielding: 0.17g of compound 511 (14%). Example B 12
Preparation of (compound 514)
A mixture of compound 524 (prepared according to B9a) (0.0018 mol) and KOH 85% (0.0094 mol) in EtOH (15ml) was stirred and refluxed for 24 hours, poured out into H2O and extracted with CH2C12. The organic layer was separated, dried (MgSO4), filtered, and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH-OyCyclohexane 80/20; 15-40μm). Two fractions were collected and the solvent was evaporated. Yielding: 0.35g FI (64%) and 0.17g (SM) FI was crystallized from diethyl ether. The precipitate was filtered off and dried. Yielding: 0.33g of compound 514 (60%) (mp.:185°C).
Example B 13
Preparation of (compound 515)
A mixture of interm. 28 (0.019 mol), 2-benzofuranylboronic acid (0.028 mol),
Pd(PPh3)4 (0.001 mol) and BHT (a few quantity) in dioxane (25ml) and Na2CO3 [2] (25ml) was stirred and refluxed for 8 hours and extracted with EtOAc. The aqueous layer was basified with NH4OH and extracted with CH2CI2. The organic layer was separated, dried (MgSO4), filtered, and the solvent was evaporated. The residue (3.6g) was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH 99/1 ;
15-40μm). The pure fractions were collected and the solvent was evaporated. Yielding: 1.8g (33%). This fraction was crystallized from 2-propanone/diethyl ether. The precipitate was filtered off and dried. Yielding: 0.39g of compound 515 (7%) (mp.:134°C). Example B 14
Preparation of (compound 526)
Triethylsilane (0.0012 mol) was added slowly at room temperature to a solution of interm. 32 (0.004 mol) in CF3COOH (5ml) and AcOH (10ml). NaBHt (0.0012 mol) was added portionwise under N2 flow. The mixture was stirred at room temperature for 8 hours, poured out on ice, basified with K2CO3 and extracted with CH2CI2. The organic layer was separated, dried (MgSO ), filtered, and the solvent was evaporated. The residue (1.2g) was purified by column chromatography over silica gel (eluent: CH2CI2/CH3OH 99/1; 15-40μm). Two fractions were collected and the solvent was evaporated. Yielding: 0.5g FI (43%) and 0.4g F2. FI was dissolved in iPrOH. HCl/iPrOH (1 eq) were added. The precipitate was filtered off and dried; Yielding: 0.32g of compound 526 (mp.: 248°C).
Example B 15
Preparation of (compound 471)
A mixture of interm. 33 (0.082 mol) and 3-chloro-2-ethyl-2-butenal (0.098 mol) in- AcOH (200ml) was stirred and refluxed for 8 hours. The solvent was evaporated till dryness. The residue was dissolved in CH2CI2 and washed with K2CO3 10%. The organic layer was separated, dried (MgSO4), filtered, and the solvent was evaporated. The residue (27 g) was purified by column chromatography over silica gel (eluent: CH Cl /EtOAc 95/5 to 92/8; 15-35μm). Two fractions were collected and the solvent was evaporated. Yielding: 0.7g of FI and 5.3g F2. FI was crystallized from 2-propanone/diethyl ether. The precipitate was filtered off and dried. Yielding: 0.25g of compound 471 (2%) (mp.: 140°C).
Tables 1 to 8 list the compounds of formula (I-A) and (I-B) which were prepared according to one of the above examples.
Table 2
Table 4
02/28837
-82-
Table 7
Table 8:
C. Pharmacological example
Signal transduction at the cloned rat mGluRl receptor in CHO cells
CHO cells expressing the mGluRl receptor were plated in precoated black 96-well plates. The next day, the effect of the present compounds on glutamate-activated intracellular Ca2+ increase was evaluated in a fluorescent based assay. The cells were loaded with Fluo-3 AM, plates were incubated for 1 hour at room temperature in the dark, cells were washed and the present compounds were added onto the cells for 20 minutes. After this incubation time, the glutamate-induced Ca2+ rise was recorded for each well in function of time using the Fluorescent Image Plate Reader (FLIPR,
Molecular Devices Inc.). Relative fluorescence units were recorded and average data graphs of quadruple wells were obtained. Concentration-response curves were constructed based on peak fluorescence (maximum signal between 1 and 90 secondes) for each concentration of tested compound. pICso values are the -log values of the concentration of the tested compounds resulting in 50% inhibition of the glutamate- induced intracellular Ca rise.
The compounds according to the present invention exhibited a pICso value of at least 5.
The compounds that are included in the Tables 1-8 exhibited a pIC5o value of at least 6.
A particular group of compounds exhibited a pICso value between 7 and 8. It concerns the compounds listed in Table 9.
Table 9:
A particular group of compounds exhibited a pICso value of at least 8. It concern the compounds listed in Table 10.
Table 10 :
Cold allodynia test in rats with a Bennett ligation.
Surgery:
Male SD rats, weighing 240 - 280 g at the time of surgery were used.
For surgery, the animals were anaesthetised with Thalamonal (1 ml; subcutane) and sodium pentobarbital (40 mg/kg; intraperitoneal (IP)). The common sciatic nerve of the left hindpaw was exposed at the level of the middle of the thigh by blunt dissection through the biceps femoris. Proximal to the sciatic's trifurcation, about 7 mm of nerve was freed and four loose ligatures with 4.0 chromic gut were placed around the sciatic nerve. Great care was taken to tie the ligatures such that the diameter of the nerve was barely constricted. After surgery, the animals received 1.25 mg/kg naloxone IP.
Cold plate testing:
Cold plate testing was performed on a metal plate of 30 X 30 cm with transparent acrylic walls around it. The cold plate was cooled to 0.0 (+ 0.5) °C using a Julabo F25 cooler. For testing, the animal was placed on the cold plate and the duration of lifting of both the left and the right hindpaw was measured during 5 minutes. The difference in lifting time between the ligated and non-ligated paw was calculated.
Testing procedure: At least one week after the operation, animals were placed on the cold plate test and a pre-drug measurement was taken. Animals having a difference in lifting time > 25 secondes between the ligated and the non-ligated paw were selected for drug testing. These selected animals were injected IP with a compound of the present invention and were retested after 60 minutes (post drug test). The results obtained during the post drug test were expressed as a percentage of those of the predrug test.
The data were analysed in terms of all or none criterion (based on the results of control animals) with the limits being:
Inhibition: (post-drug pre-drug)*100 < 40 % Antagonism: (post-drug/pre-drug)*100 < 25 %
Compound (27) showed antagonism at a dose of 2.5 mg/kg bodyweight.
Claims (10)
1. A compound of formula
an N-oxide form, a pharmaceutically acceptable addition salt, a quaternary amine and a stereochemically isomeric form thereof, wherein
X represents O; C(R6)2 with R6 being hydrogen, aryl or C^alkyl optionally substituted with amino or mono- or d^ -όalky amino; S or Ν-R7 with R7 being amino or hydroxy;
R1 represents -όalkyl; aryl; thienyl; quinolinyl; cycloCs-^alkyl or
(cyclo -^alky -ealkyl, wherein the cycloCs-^alkyl moiety optionally may contain a double bond and wherein one carbon atom in the cycloCs-πalkyl moiety may be replaced by an oxygen atom or an ΝR8-moiety with R8 being hydrogen, benzyl or Cι-6alkyloxycarbonyl ; wherein one or more hydrogen atoms in a -galkyl-moiety or in a cycloCs-πalkyl-moiety optionally may be replaced by
Ci-ealkyl, hydroxy -δalkyl, haloCi-βalkyl, amino -όalkyl, hydroxy, -όalkyloxy, aryl -όalkyloxy, halo, C.-6alkyloxycarbonyl, aryl, amino, mono- or di(Cι-6alkyl)amino, Cι-6alkyloxycarbonylamino, halo, piperazinyl, pyridinyl, morpholinyl, thienyl or a bivalent radical of formula -O-, -O-CH2-O or
-O-CH2-CH2-O-; or a radical of formula (a-1)
a-1
wherein Zi is a single covalent bond, O, NH or CH2; Z2 is a single covalent bond, O, NH or CH2; n is an integer of 0, 1, 2 or 3; and wherein each hydrogen atom in the phenyl ring independently may optionally be replaced by halo, hydroxy, -βalkyl, -βalkyloxy or hydroxyCi-βalkyl; or X and R1 may be taken together with the carbon atom to which X and R1 are attached to form a radical of formula (b-1), (b-2) or (b-3);
b-1 b-2 b-3
R2 represents hydrogen; halo; cyano; Cι-6alkyl; -βalkyloxy; -ealkylthio; d-ealkylcarbonyl; Cι-6alkyloxycarbonyl; Ci-βalkylcarbonyloxy -βalkyl;
C2-6alkenyl; hydroxyC2.6alkenyl; C2-6alkynyl; hydroxyC2-6alkynyl; tri(Cι_ 6alkyl)silaneC2-6alkynyl; amino; mono- or d^ -eal y amino; mono- or mono- or d -oalkylthioCi-ealky amino; aryl; arylCι-6alkyl; arylC2-6alkynyl; Ci-6alkyloxyCi-6alkylaminoCi-6alkyl; aminocarbonyl optionally substituted with Ci-βalkyl, -ealkyloxyCϊ-θal yl, or pyridinyl -ealkyl; a heterocycle selected from thienyl, furanyl, pyrrolyl, thiazolyl, oxazolyl, imidazolyl, isothiazolyl, isoxazolyl, pyrazolyl, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, piperidinyl and piperazinyl, optionally N-substituted with Ci-βalkyloxy -ealkyl, morpholinyl, thiomorpholinyl, dioxanyl or dithianyl ; a radical -NH-C(=O)R9 wherein R9 represents
Ci-ealkyl optionally substituted with cycloC3-12alkyl. -όalkyloxy, -galkyloxycarbonyl, aryl, aryloxy, thienyl, pyridinyl, mono- or d C^al y^amino, Ct-δalkylthio, benzylthio, pyridinylthio or pyrimidinylthio; cycloC3-ι2alkyl; cyclohexenyl; amino; arylcycloC3-nalkylamino; di(C1-6alkyloxycarbonylC1-6alkyl)amino; mono- or (-^(Ci-ealkyloxycarbony^amino; mono-or di(C2.6alkenyl)amino; mono- or di(arylC1-6alkyl)amino; mono- or diarylamino; arylC2-6alkenyl; furanylC2-6alkenyl; piperididinyl; piperazinyl; indolyl; furyl; benzofuryl; tetrahydrofuryl; indenyl; adamantyl; pyridinyl; pyrazinyl; aryl; arylCi-ealkylthio or a radical of formula (a-1) ; a sulfonamid -NH-SO2-R10 wherein R represents Cι-6alkyl, mono- or poly haloCι-6alkyl, arylCi-βalkyl, arylC2-6alkenyl, aryl, quinolinyl, isoxazolyl or di(C1.6alkyl)amino; R3 and R4 each independently represent hydrogen; halo; hydroxy; cyano; C1-6alkyl; Q-βalkyloxy; -ealkyloxy -ealkyl; C..6alkylcarbonyl; d-ealkyloxycarbonyl; C2.6alkenyl; hydroxyC2-6alkenyl; C2-6alkynyl; hydroxyC2.6alkynyl; tri(C1-6alkyl)silaneC2-6alkynyl; amino; mono- or <ft(Cι-6alkyl)amino; mono- or mono- or di(C1-6alkylthioC1-6alkyl)amino; aryl; morpholinylQ-ealkyl or piperidinylQ-όalkyl ; or
R2 and R3 may be taken together to form -R2-R3-, which represents a bivalent radical of formula -(CH2)3-, -(CH2)4-, -(CH2)5-, -(CH2)6-, -CH=CH-CH=CH-, -Z4-CH=CH-, -CH=CH-Z4-, -Z4-CH2-CH2-CH2-, -CH2-Z4-CH2-CH2-, -CH2-CH2-Z -CH2-, -CH2-CH2-CH2-Z4-, -Z4-CH2-CH2-, -CH2-Z4-CH2- or -CH2-CH2-Z4-, with Z4 being
O, S, SO2 or NR11 wherein R11 is hydrogen, Chalky!, benzyl or Q-ealkyloxycarbonyl; and wherein each bivalent radical is optionally substituted with Chalky!, or R3 and R4 may be taken together to form a bivalent radical of formula -CH=CH-CH=CH- or -CH2-CH2-CH2-CH2- ;
R5 represents hydrogen; cycloC3-i2alkyl; piperidinyl; oxo-thienyl; tetrahydrothienyl, arylQ-ealkyl; d-όalkyloxyQ-ealkyl; Q-βalkyloxycarbonylCi-ealkyl or C^alkyl optionally substituted with a radical C(=O)NRxRy, in which Rx and Ry, each independently are hydrogen, cycloCs-^alk l, C2-6alkynyl or Q-ealkyl optionally substituted with cyano, Q-ealkyloxy, C.-6alkyloxycarbonyl, furanyl, pyrrolidinyl, benzylthio, pyridinyl, pyrrolyl or thienyl; Y represents O or S; or Y and R5 may be taken together to form =Y-R5- which represents a radical of formula -CH=N-N= (c-1);
-N=N-N= (c-2); or
-N-CH=CH- (c-3); aryl represents phenyl or naphthyl optionally substituted with one or more substituents selected from halo, hydroxy, Q-ealkyl, C^alkyloxy, phenyloxy, nitro, amino, thio, Cι-6alkylthio, haloCι-6alkyl, polyhaloCi-βalkyl, poIyhaloQ-ealkyloxy, hydroxyCi-βalkyl, Q-όalkyloxyQ-galkyl, aminoCi-ealkyl, mono-or d Q- 6alkyl)amino; mono-or di(Cι-6alkyl)aminoC1.6alkyl, cyano, -CO-R12, -CO-OR13, -NR13SO2R12, -SO2-NR13R14, -NR13C(O)R12, -C(O)NR13R14, -SOR12, -SO2R 12. wherein each R12, R13 and R14 independently represent C!-6alkyl; cycloC3-6alkyl; phenyl; phenyl substituted with halo, hydroxy, d-6alkyl, Ci-6alkyloxy, haloCι-6alkyl, polyhalod-όalkyl, furanyl, thienyl, pyrrolyl, imidazolyl, thiazolyl or oxazolyl;
and when the RJ-C(=X) moiety is linked to another position than the 7 or 8 position, then said 7 and 8 position may be substituted with R15 and R16 wherein either one or both of R15 and R16 represents d-6alkyloxy or R15 and R16 taken together may form a bivalent radical of formula -CH=CH-CH=CH-.
2. A compound according to claim 1, characterized in that,
X represents O; C(R6)2 with R6 being hydrogen or aryl ; or N-R7 with R7 being amino or hydroxy; R1 represents d-6alkyl, aryl; thienyl; quinolinyl; cyclod-^alkyl or
(cyclod-πalky d-ealkyl, wherein the cycloC3-12alkyl moiety optionally may contain a double bond and wherein one carbon atom in the cycloC3-12alkyl moiety may be replaced by an oxygen atom or an NR -moiety with R being benzyl or d-6alkyloxycarbonyl ; wherein one or more hydrogen atoms in a d.6alkyl-moiety or in a cycloC3-i2alkyl-moiety optionally may be replaced by d-6alkyl, halod-6alkyl, hydroxy, d-ealkyloxy, aryld-6alkyloxy, halo, aryl, mono- or di(d.6alkyl)amino, d-ealkyloxycarbonylamino, halo, piperazinyl, pyridinyl, morpholinyl, thienyl or a bivalent radical of formula -O- or -O-CH2-CH2-O-; or a radical of formula (a-1)
a-1
wherein . is a single covalent bond, O or CH2; Z2 is a single covalent bond, O or CH2; n is an integer of 0, 1 , or 2 ; and wherein each hydrogen atom in the phenyl ring independently may optionally be replaced by halo or hydroxy; or X and R1 may be taken together with the carbon atom to which X and R1 are attached to form a radical of formula (b-1), (b-2) or (b-3); b-1 b-2 b-3
R2 represents hydrogen; halo; cyano; d-6alkyl; d-βalkyloxy; d-βalkylthio; d-6alkylcarbonyl; d-6alkyloxycarbonyl; C2-6alkenyl; hydroxyd-βalkenyl; C2-6alkynyl; hydroxyC2.6alkynyl; tri(C1_6alkyl)silaneC2-6alkynyl; amino; mono- or di(d-6alkyl)amino; mono- or di(C1.6alkyloxyC1-6alkyl)amino; mono- or di(C1-6alkylthioCι-6alkyl)amino; aryl; aryld-6alkyl; arylC2-6alkynyl;
C i-β lkyloxyC ι -6alkylaminoC ι -6alkyl ; aminocarbonyl optionally substituted with d^alkyloxycarbonyld-όalkyl ; a heterocycle selected from thienyl, furanyl, thiazolyl and piperidinyl, optionally
N-substituted with morpholinyl or thiomorpholinyl; a radical -NH-C(=O)R9 wherein R9 represents C!-6alkyl optionally substituted with cyclod-πalkyl, d-βalkyloxy, d-ealkyloxycarbonyl, aryl, aryloxy, thienyl, pyridinyl, mono- or di(C1-6alkyl)amino, C ^alkylthio, benzylthio, pyridinylthio or pyrimidinylthio; cycloC3-i2alkyl; cyclohexenyl; amino; arylcycloC3.12alkylamino; mono-or-di(C1-6alkyl)amino; mono- or di(C1-6alkyloxycarbonylC1-6alkyl)amino; mono- or di(d-ealkyloxycarbonyl)amino; mono-or di(C2-6alkenyl)amino; mono- or di(arylCi-6alkyl)amino; mono- or diarylamino; arylC2-6alkenyl; furanylC2-6alkenyl; piperididinyl; piperazinyl; indolyl; furyl; benzofuryl; tetrahydrofuryl; indenyl; adamantyl; pyridinyl; pyrazinyl; aryl or a radical of formula (a-1) ; a sulfonamid -NH-SO2-R10 wherein R10 represents d-βalkyl, mono- or poly halod-βalkyl, aryld.6alkyl or aryl; R3 and R4 each independently represent hydrogen; d-6alkyl; d-ealkyloxyd-ealkyl; d-6alkyloxycarbonyl; or R2 and R3 may be taken together to form -R2-R3-, which represents a bivalent radical of formula -(CH2)4-, -(CH2)5-, -Z4-CH=CH-, -Z4-CH2-CH2-CH2- or -Z4-CH2-CH2-, with Z4 being O, S, SO2 or NR11 wherein R11 is hydrogen, d-6alkyl, benzyl or d-ealkyloxycarbonyl; and wherein each bivalent radical is optionally substituted with d-6alkyl; or R3 and R4 may be taken together to form a bivalent radical of formula
-CH=CH-CH=CH- or-CH2-CH2-CH2-CH2- ; R5 represents hydrogen; piperidinyl; oxo-thienyl; tetrahydrothienyl, aryld-βalkyl;
Cϊ-ealkyloxycarbonylCi-ealkyl or d-6alkyl optionally substituted with a radical C(=O)NRxRy, in which Rx and Ry, each independently are hydrogen, cyclod-πalkyl, d-βalkynyl or d-6alkyl optionally substituted with cyano, d-6alkyloxy or d-6alkyloxycarbonyl;
Y represents O or S; or Y and R5 may be taken together to form =Y-R5- which represents a radical of formula
-CH=N-N= (c-1); or
-N=N-N= (c-2); aryl represents phenyl or naphthyl optionally substituted with one or more substituents selected from halo, d-βalkyloxy, phenyloxy, mono-or di(C1-6alkyl)amino and cyano; and when the R1-C(=X) moiety is linked to another position than the 7 or 8 position, then said 7 and 8 position may be substituted with R15 and R16 wherein either one or both of R and R represents d-ealkyl or R and R taken together may form a bivalent radical of formula -CH=CH-CH=CH-.
3. A compound according to claim 1, characterized in that, X represents O;
R1 represents Cι-6alkyl; cycloC3-12alkyl or (cyclod-^alky^d-ealkyl, wherein one or more hydrogen atoms in a d-ealkyl-moiety or in a cyclod-^alkyl-moiety optionally may be replaced by d-6alkyloxy, aryl, halo or thienyl; R2 represents hydrogen; halo; d-6alkyl or amino; R3 and R4 each independently represent hydrogen or Cι-6alkyl; or R2 and R3 may be taken together to form -R2-R3-, which represents a bivalent radical of formula -Z4-CH2-CH2-CH2- or -Z4-CH2-CH2- with Z4 being O or NR11 wherein
R11 is d-βalkyl; and wherein each bivalent radical is optionally substituted with d-6alkyl; or R3 and R4 may be taken together to form a bivalent radical of formula R5 represents hydrogen;
Y represents O; and aryl represents phenyl optionally substituted with halo.
4. A compound as claimed in claim 1, characterized in that, the R*-C(=X) moiety is linked to the quinoline or quinolinone moiety in position 6.
5. A compound as claimed in claim 1 for use as a medicine.
6. Use of a compound as defined in claims 1 to 4 in the manufacture of a medicament for treating or preventing glutamate-induced diseases of the central nervous system.
7. Use according to claim 6, characterized in that, the glutamate-induced disease of the central nervous system is drug addiction or abstinence (dependence, opioid tolerance, opioid withdrawal), hypoxic, anoxic and ischemic injuries (ischemic stroke, cardiac arrest), pain (neuropathic pain, inflammatory pain, hyperalgesia), hypoglycemia, diseases related to neuronal damage, brain trauma, head trauma, spinal cord injury, myelopathy, dementia, anxiety, schizophrenia, depression, impaired cognition, amnesia, bipolar disorders, conduct disorders, Alzheimer's disease, vascular dementia, mixed (Alzheimer's and vascular) dementia, Lewy Body disease, delirium or confusion, Parkinson's disease, Huntington's disease, Down syndrome, epilepsy, aging, Amyotrophic Lateral Sclerosis, multiple sclerosis, AIDS (Acquired Immune Deficiency Syndrome) and AIDS related complex (ARC).
8. A pharmaceutical composition comprising a pharmaceutically acceptable carrier, and as active ingredient a therapeutically effective amount of a compound as defined in claims 1 to 4.
9. A process of preparing a composition as claimed in claim 8, characterized in that, a pharmaceutically acceptable carrier is intimately mixed with a therapeutically effective amount of a compound as described in claims 1 to 4.
10. A process of preparing a compound of formula (I-A) or (I-B) as claimed in claim 1, characterized by a) oxidizing an intermediate of formula (II) in the presence of a suitable oxidizing agent
with R1 as defined in claim 1 and Q representing the quinoline or the quinolinone moiety of a compound of formula (I-A) or (I-B); or b) reacting an intermediate of formula (HI) with an intermediate of formula (IN) o β1 « II
FT — C---=Ν + Wf— Q ► R1 — C— Q with R1 as defined in claim 1, Q representing the quinoline or the quinolinone moiety of a compound of formula (I-A) or (I-B) and Wt being a suitable leaving group; or c) reacting an intermediate of formula (N) with an intermediate of formula (IN)
with R1 as defined in claim 1, Q representing the quinoline or the quinolinone moiety of a compound of formula (I-A) or (I-B) and Wi being a suitable leaving group; or d) reacting an intermediate of formula (VI) with an intermediate of formula (NH) in the presence of a suitable acid
O O
R 1a
-OH + HO— C— Q R19 — O— C— Q with Rla being defined as R1 according to claim 1 provided that R1 is linked to the carbonyl moiety via a oxygen atom and Q representing the quinoline or the quinolinone moiety of a compound of formula (I-A) or (I-B); or e) reacting an intermediate of formula (N-QT) in the presence of a suitable acid
(l-A-1)
(VIM) with R1 , X, R3 and R4 defined as in claim 1 ;
and, if desired, converting compounds of formula (I-A) or (I-B) into each other following art-known transformations; and further, if desired, converting the compounds of formula (I-A) or (I-B), into a therapeutically active non-toxic acid addition salt by treatment with an acid, or conversely, converting the acid addition salt form into the free base by treatment with alkali; and, if desired, preparing stereochemically isomeric forms, quaternary amines or N-oxide forms thereof.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP00203419 | 2000-10-02 | ||
| EP00203419 | 2000-10-02 | ||
| PCT/EP2001/011135 WO2002028837A1 (en) | 2000-10-02 | 2001-09-25 | Metabotropic glutamate receptor antagonists |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| AU2001293847A1 true AU2001293847A1 (en) | 2002-06-27 |
| AU2001293847B2 AU2001293847B2 (en) | 2007-05-24 |
Family
ID=8172097
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2001293847A Ceased AU2001293847B2 (en) | 2000-10-02 | 2001-09-25 | Metabotropic glutamate receptor antagonists |
| AU9384701A Pending AU9384701A (en) | 2000-10-02 | 2001-09-25 | Metabotropic glutamate receptor antagonists |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU9384701A Pending AU9384701A (en) | 2000-10-02 | 2001-09-25 | Metabotropic glutamate receptor antagonists |
Country Status (28)
| Country | Link |
|---|---|
| US (2) | US7115630B2 (en) |
| EP (1) | EP1332133B1 (en) |
| JP (1) | JP2004510764A (en) |
| KR (1) | KR100818965B1 (en) |
| CN (1) | CN1703403A (en) |
| AR (1) | AR035065A1 (en) |
| AT (1) | ATE400558T1 (en) |
| AU (2) | AU2001293847B2 (en) |
| BG (1) | BG107672A (en) |
| BR (1) | BR0114253A (en) |
| CA (1) | CA2421782A1 (en) |
| CZ (1) | CZ20031145A3 (en) |
| DE (1) | DE60134762D1 (en) |
| EA (1) | EA007464B1 (en) |
| EE (1) | EE05195B1 (en) |
| ES (1) | ES2309095T3 (en) |
| HR (1) | HRP20030229A2 (en) |
| HU (1) | HUP0302167A3 (en) |
| IL (2) | IL155163A0 (en) |
| MX (1) | MXPA03002907A (en) |
| MY (1) | MY147730A (en) |
| NO (1) | NO325079B1 (en) |
| NZ (1) | NZ524945A (en) |
| PL (1) | PL360677A1 (en) |
| SK (1) | SK5212003A3 (en) |
| UA (1) | UA76726C2 (en) |
| WO (1) | WO2002028837A1 (en) |
| ZA (1) | ZA200302515B (en) |
Families Citing this family (86)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1703403A (en) | 2000-10-02 | 2005-11-30 | 詹森药业有限公司 | Metabotropic glutamate receptor antagonists |
| WO2003045313A2 (en) * | 2001-11-27 | 2003-06-05 | Merck & Co. Inc. | 2-aminoquinoline compounds |
| US7176314B2 (en) | 2001-12-05 | 2007-02-13 | Amgen, Inc. | Inflammation modulators |
| AR039127A1 (en) | 2002-03-27 | 2005-02-09 | Glaxo Group Ltd | QUINOLINE COMPOSITE, PROCEDURE FOR PREPARATION, PHARMACEUTICAL COMPOSITION THAT INCLUDES IT AND USE OF THE SAME FOR THE MANUFACTURE OF A MEDICINAL PRODUCT |
| MXPA04009435A (en) | 2002-03-29 | 2005-01-25 | Janssen Pharmaceutica Nv | Radiolabelled quinoline and quinolinone derivatives and their use as metabotropic glutamate receptor ligands. |
| SE0201943D0 (en) * | 2002-06-20 | 2002-06-20 | Astrazeneca Ab | New use |
| US7964609B2 (en) | 2002-06-20 | 2011-06-21 | Astrazeneca Ab | Use of mGluR5 antagonists for the treatment of gerd |
| MXPA05005116A (en) * | 2002-11-12 | 2005-07-01 | Abbott Lab | Bicyclic-substituted amines as histamine-3 receptor ligands. |
| US7153889B2 (en) | 2002-11-12 | 2006-12-26 | Abbott Laboratories | Bicyclic-substituted amines as histamine-3 receptor ligands |
| US7332508B2 (en) * | 2002-12-18 | 2008-02-19 | Novo Nordisk A/S | Substituted homopiperidine, piperidine or pyrrolidine derivatives |
| MXPA06000795A (en) | 2003-07-22 | 2006-08-23 | Arena Pharm Inc | Diaryl and arylheteroaryl urea derivatives as modulators of the 5-ht2a serotonin receptor useful for the prophylaxis and treatment of disorders related therto. |
| JP2007506788A (en) * | 2003-09-26 | 2007-03-22 | ライジェル ファーマシューティカルズ, インコーポレイテッド | HCV infection inhibitors and uses thereof |
| WO2005054209A1 (en) * | 2003-11-20 | 2005-06-16 | Janssen Pharmaceutica N.V. | 7-phenylalkyl substituted 2-quinolinones and 2 quinoxalinones as poly(adp-ribose) polymerase inhibitors |
| US7855207B2 (en) | 2003-11-20 | 2010-12-21 | Janssen Pharmaceutica, Nv | 6-alkenyl and 6-phenylalkyl substituted 2-quinolinones and 2-quinoxalinones as poly(adpribose) polymerase inhibitors |
| ES2670349T3 (en) * | 2003-11-20 | 2018-05-30 | Janssen Pharmaceutica Nv | 2-Quinolinones and 2-quinoxalinones substituted with 6-alkenyl and 6-phenylalkyl as poly (ADP-ribose) polymerase inhibitors |
| ES2551299T3 (en) * | 2003-12-05 | 2015-11-17 | Janssen Pharmaceutica Nv | 2-Quinolinones and 6-substituted 2-quinoxalinones as poly (ADP-ribose) polymerase inhibitors |
| EP1694653B1 (en) * | 2003-12-10 | 2016-01-20 | Janssen Pharmaceutica NV | 6-(hetero-)cyclohexylalkyl substituted 2-quinolinones/2-quinoxalinones as poly(adp-ribose) polymerase inhibitors |
| NZ547277A (en) * | 2004-01-23 | 2009-08-28 | Janssen Pharmaceutica Nv | Substituted quinolines and their use as mycobacterial inhibitors |
| US7550482B2 (en) | 2004-02-27 | 2009-06-23 | Merz Pharma Gmbh & Co. Kgaa | Tetrahydroquinolones and their use as modulators of metabotropic glutamate receptors |
| TWI301760B (en) * | 2004-02-27 | 2008-10-11 | Merz Pharma Gmbh & Co Kgaa | Tetrahydroquinolinones and their use as antagonists of metabotropic glutamate receptors |
| US20060004001A1 (en) * | 2004-02-27 | 2006-01-05 | Merz Pharma Gmbh & Co., Kgaa | Tetrahydroquinolones and their use as modulators of metabotropic glutamate receptors |
| WO2005121138A2 (en) * | 2004-06-03 | 2005-12-22 | Rigel Pharmaceuticals, Inc. | Heterotricyclic compounds for use as hcv inhibitors |
| US7803795B2 (en) * | 2004-06-30 | 2010-09-28 | Janssen Pharmaceutica N.V. | Phthalazine derivatives as parp inhibitors |
| WO2006003146A1 (en) | 2004-06-30 | 2006-01-12 | Janssen Pharmaceutica N.V. | Quinazolinone derivatives as parp inhibitors |
| MXPA06014541A (en) | 2004-06-30 | 2007-03-23 | Janssen Pharmaceutica Nv | Quinazolinedione derivatives as parp inhibitors. |
| GB0420722D0 (en) * | 2004-09-17 | 2004-10-20 | Addex Pharmaceuticals Sa | Novel allosteric modulators |
| GB0420970D0 (en) * | 2004-09-21 | 2004-10-20 | Smithkline Beecham Corp | Novel triazoloquinoline compounds |
| EA200700807A1 (en) * | 2004-10-05 | 2007-08-31 | Мерц Фарма Гмбх Унд Ко. Кгаа | NEW CYCLIC AND ACYCLIC PROPENONS FOR TREATING CNS DISEASES |
| US7608643B2 (en) | 2005-03-09 | 2009-10-27 | Schering Corporation | Compounds for inhibiting KSP kinesin activity |
| CA2599901A1 (en) * | 2005-03-09 | 2006-09-21 | Schering Corporation | Compounds for inhibiting ksp kinesin activity |
| WO2007023242A1 (en) * | 2005-08-24 | 2007-03-01 | Merz Pharma Gmbh & Co. Kgaa | Tetrahydroquinolinones and their use as modulators of metabotropic glutamate receptors |
| EP1943247A1 (en) * | 2005-08-25 | 2008-07-16 | Merz Pharma GmbH & Co.KGaA | Tetrahydroquinolinones and their use as modulators of metabotropic glutamate receptors |
| EP2258357A3 (en) | 2005-08-26 | 2011-04-06 | Braincells, Inc. | Neurogenesis with acetylcholinesterase inhibitor |
| CA2620333A1 (en) | 2005-08-26 | 2007-03-01 | Braincells, Inc. | Neurogenesis by muscarinic receptor modulation |
| KR101020319B1 (en) * | 2005-10-05 | 2011-03-08 | 에프. 호프만-라 로슈 아게 | Naphthyridine derivatives |
| WO2007047978A2 (en) | 2005-10-21 | 2007-04-26 | Braincells, Inc. | Modulation of neurogenesis by pde inhibition |
| EP1942879A1 (en) | 2005-10-31 | 2008-07-16 | Braincells, Inc. | Gaba receptor mediated modulation of neurogenesis |
| EA200801525A1 (en) * | 2005-12-20 | 2008-10-30 | Рихтер Гедеон Нирт. | QUINOLINE DERIVATIVES APPLICABLE FOR THE TREATMENT OF DISEASES MEDIED BY mGluR5 RECEPTORS |
| US20100216734A1 (en) | 2006-03-08 | 2010-08-26 | Braincells, Inc. | Modulation of neurogenesis by nootropic agents |
| AR059898A1 (en) | 2006-03-15 | 2008-05-07 | Janssen Pharmaceutica Nv | DERIVATIVES OF 3-CIANO-PIRIDONA 1,4-DISUSTITUTED AND ITS USE AS ALLOSTERIC MODULATORS OF MGLUR2 RECEIVERS |
| WO2007134077A2 (en) | 2006-05-09 | 2007-11-22 | Braincells, Inc. | 5 ht receptor mediated neurogenesis |
| JP2009536669A (en) | 2006-05-09 | 2009-10-15 | ブレインセルス,インコーポレイティド | Neurogenesis by angiotensin regulation |
| MX2009002298A (en) * | 2006-09-01 | 2009-06-04 | Cylene Pharmaceuticals Inc | Serine-threonine protein kinase and parp modulators. |
| KR20090064418A (en) | 2006-09-08 | 2009-06-18 | 브레인셀즈 인코퍼레이션 | Combination with 4-acylaminopyridine derivatives |
| US20100184806A1 (en) | 2006-09-19 | 2010-07-22 | Braincells, Inc. | Modulation of neurogenesis by ppar agents |
| CA2669607A1 (en) * | 2006-11-14 | 2008-05-22 | Santen Pharmaceutical Co., Ltd. | Novel 1,2-dihydroquinoline derivative having (substituted phenyl or substituted heterocyclic) carbonyloxy lower alkyl group and ester-introduced phenyl group as substituents |
| TW200900065A (en) | 2007-03-07 | 2009-01-01 | Janssen Pharmaceutica Nv | 3-cyano-4-(4-pyridinyloxy-phenyl)-pyridin-2-one derivatives |
| TW200845978A (en) | 2007-03-07 | 2008-12-01 | Janssen Pharmaceutica Nv | 3-cyano-4-(4-tetrahydropyran-phenyl)-pyridin-2-one derivatives |
| HRP20120346T1 (en) | 2007-03-08 | 2012-05-31 | Janssen Pharmaceutica N.V. | Quinolinone derivatives as parp and tank inhibitors |
| CA2690079C (en) * | 2007-06-18 | 2016-01-26 | Richter Gedeon Nyrt. | Sulfonyl-quinoline derivatives |
| HRP20110278T1 (en) | 2007-09-14 | 2011-05-31 | Ortho-Mcneil-Janssen Pharmaceuticals | 1',3'-disubstituted-4-phenyl-3,4,5,6-tetrahydro-2h, 1'h-[1, 4']bipyridinyl-2'-ones |
| NZ584152A (en) | 2007-09-14 | 2011-11-25 | Ortho Mcneil Janssen Pharm | 1,3-disubstituted 4-(aryl-x-phenyl)-1h-pyridin-2-ones |
| EP2215075B1 (en) * | 2007-10-26 | 2013-12-11 | Janssen Pharmaceutica, N.V. | Quinolinone derivatives as parp inhibitors |
| EP2508177A1 (en) | 2007-12-12 | 2012-10-10 | Glaxo Group Limited | Combinations comprising 3-phenylsulfonyl-8-piperazinyl-1yl-quinoline |
| JP5464609B2 (en) * | 2008-03-27 | 2014-04-09 | ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ | Quinazolinone derivatives as tubulin polymerization inhibitors |
| WO2009118382A1 (en) | 2008-03-27 | 2009-10-01 | Janssen Pharmaceutica Nv | Tetrahydrophenanthridinones and tetrahydrocyclopentaquinolinones as parp and tubulin polymerization inhibitors |
| US20110021538A1 (en) | 2008-04-02 | 2011-01-27 | Arena Pharmaceuticals, Inc. | Processes for the preparation of pyrazole derivatives useful as modulators of the 5-ht2a serotonin receptor |
| JP5547194B2 (en) | 2008-09-02 | 2014-07-09 | ジャンセン ファーマシューティカルズ, インコーポレイテッド. | 3-Azabicyclo [3.1.0] hexyl derivatives as modulators of metabotropic glutamate receptors |
| WO2010062321A1 (en) | 2008-10-28 | 2010-06-03 | Arena Pharmaceuticals, Inc. | Processes useful for the preparation of 1-[3-(4-bromo-2-methyl-2h-pyrazol-3-yl)-4-methoxy-phenyl]-3-(2,4-difluoro-phenyl)-urea and crystalline forms related thereto |
| CN102232074B (en) * | 2008-11-28 | 2014-12-03 | 奥梅-杨森制药有限公司 | Indole and benzoxazine derivatives as modulators of metabotropic glutamate receptors |
| WO2010099217A1 (en) | 2009-02-25 | 2010-09-02 | Braincells, Inc. | Modulation of neurogenesis using d-cycloserine combinations |
| CN102439008B (en) | 2009-05-12 | 2015-04-29 | 杨森制药有限公司 | 1,2,4-Triazolo[4,3-A]pyridine derivatives and their use for the treatment or prevention of neurological and psychiatric disorders |
| CA2760259C (en) | 2009-05-12 | 2018-05-01 | Janssen Pharmaceuticals, Inc. | 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mglur2 receptors |
| MY153913A (en) | 2009-05-12 | 2015-04-15 | Janssen Pharmaceuticals Inc | 7-aryl-1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mglur2 receptors |
| CA2814996C (en) | 2010-11-08 | 2019-10-01 | Janssen Pharmaceuticals, Inc. | 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mglur2 receptors |
| CA2815002C (en) | 2010-11-08 | 2019-10-22 | Janssen Pharmaceuticals, Inc. | 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mglur2 receptors |
| CN103261195B (en) | 2010-11-08 | 2015-09-02 | 杨森制药公司 | 1,2,4-Triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of the MGLUR2 receptor |
| WO2014018881A1 (en) * | 2012-07-27 | 2014-01-30 | Biogen Idec Ma Inc. | Atx modulating agents |
| MY189505A (en) | 2012-10-16 | 2022-02-16 | Janssen Pharmaceutica Nv | Methylene linked quinolinyl modulators of roryt |
| HK1213250A1 (en) | 2012-10-16 | 2016-06-30 | Janssen Pharmaceutica, N.V. | Heteroaryl linked quinolinyl modulators of roryt |
| EP2909193B1 (en) | 2012-10-16 | 2017-04-19 | Janssen Pharmaceutica NV | Phenyl linked quinolinyl modulators of ror-gamma-t |
| JO3368B1 (en) | 2013-06-04 | 2019-03-13 | Janssen Pharmaceutica Nv | 6, 7- dihydropyrazolu [5,1-a] pyrazine-4 (5 hands) -on compounds and their use as negative excretory regulators of Miglore 2 receptors. |
| JO3367B1 (en) | 2013-09-06 | 2019-03-13 | Janssen Pharmaceutica Nv | 1,2,4-TRIAZOLO[4,3-a]PYRIDINE COMPOUNDS AND THEIR USE AS POSITIVE ALLOSTERIC MODULATORS OF MGLUR2 RECEPTORS |
| EP3057421B1 (en) | 2013-10-15 | 2019-11-20 | Janssen Pharmaceutica NV | Alkyl linked quinolinyl modulators of ror(gamma)t |
| US9624225B2 (en) | 2013-10-15 | 2017-04-18 | Janssen Pharmaceutica Nv | Quinolinyl modulators of RORγt |
| US9221804B2 (en) | 2013-10-15 | 2015-12-29 | Janssen Pharmaceutica Nv | Secondary alcohol quinolinyl modulators of RORγt |
| US9284308B2 (en) | 2013-10-15 | 2016-03-15 | Janssen Pharmaceutica Nv | Methylene linked quinolinyl modulators of RORγt |
| US10555941B2 (en) | 2013-10-15 | 2020-02-11 | Janssen Pharmaceutica Nv | Alkyl linked quinolinyl modulators of RORγt |
| US9328095B2 (en) | 2013-10-15 | 2016-05-03 | Janssen Pharmaceutica Nv | Heteroaryl linked quinolinyl modulators of RORgammat |
| US9403816B2 (en) | 2013-10-15 | 2016-08-02 | Janssen Pharmaceutica Nv | Phenyl linked quinolinyl modulators of RORγt |
| KR20200036063A (en) | 2014-01-21 | 2020-04-06 | 얀센 파마슈티카 엔.브이. | Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use |
| EP3096790B1 (en) | 2014-01-21 | 2019-07-10 | Janssen Pharmaceutica, N.V. | Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use |
| MX388281B (en) | 2015-06-12 | 2025-03-11 | Axovant Sciences Gmbh | Diaryl and arylheteroaryl urea derivatives useful for the prophylaxis and treatment of rem sleep behavior disorder |
| HK1247555A1 (en) | 2015-07-15 | 2018-09-28 | Axovant Sciences Gmbh | Diaryl and arylheteroaryl urea derivatives as modulators of the 5-ht2a serotonin receptor useful for the prophylaxis and treatment of hallucinations associated with a neurodegenerative disease |
| EP3327004B1 (en) * | 2015-07-17 | 2020-11-04 | Fujifilm Corporation | Nitrogen-containing heterocyclic compound |
| BR112019013273A2 (en) | 2016-12-27 | 2019-12-17 | Fujifilm Corp | antitumor agent and bromodomain inhibitor |
Family Cites Families (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2526232A (en) * | 1946-10-21 | 1950-10-17 | Parke Davis & Co | Substituted hydantoins and methods for obtaining the same |
| GB1013224A (en) * | 1962-06-21 | 1965-12-15 | Ici Ltd | Heterocyclic aminoethanols |
| JPS5566560A (en) * | 1978-11-14 | 1980-05-20 | Yoshitomi Pharmaceut Ind Ltd | Quinolone derivative |
| US4348398A (en) * | 1980-12-23 | 1982-09-07 | Merck Sharp & Dohme (I.A.) Corp. | Quinolinyl ethanolamines |
| DE3276432D1 (en) | 1981-03-24 | 1987-07-02 | Ciba Geigy Ag | Acyl quinolinone derivatives, processes for their preparation, pharmaceutical compositions containing them and their use |
| US4473132A (en) * | 1981-11-25 | 1984-09-25 | Schwing Robert F | Fire escape mechanism |
| GB8307831D0 (en) * | 1983-03-22 | 1983-04-27 | Fujisawa Pharmaceutical Co | Triazine derivatives |
| JPS6019767A (en) * | 1983-07-11 | 1985-01-31 | Otsuka Pharmaceut Co Ltd | Carbostyryl derivative |
| US4845100A (en) * | 1985-04-12 | 1989-07-04 | Otsuka Pharmaceutical Co., Ltd. | Carbostyril derivatives and salts thereof, processes for preparing the same and cardiotonic composition containing the same |
| JPH0696555B2 (en) * | 1986-07-31 | 1994-11-30 | 大塚製薬株式会社 | Carbostyril derivative |
| JPH0776838B2 (en) * | 1988-10-05 | 1995-08-16 | 富士ゼロックス株式会社 | Electrophotographic photoreceptor and image forming method |
| ES2245660T3 (en) * | 1990-11-30 | 2006-01-16 | Otsuka Pharmaceutical Co., Ltd. | DERIVATIVES OF AZOL AND ITS USE AS INHIBITORS OF SUPEROXIDED RADICALS. |
| PH31245A (en) * | 1991-10-30 | 1998-06-18 | Janssen Pharmaceutica Nv | 1,3-Dihydro-2H-imidazoÄ4,5-BÜ-quinolin-2-one derivatives. |
| JPH06239858A (en) * | 1993-02-16 | 1994-08-30 | Otsuka Pharmaceut Co Ltd | Peripheral vasodilator |
| US5475007A (en) * | 1993-05-28 | 1995-12-12 | The Regents Of The University Of California | 1,2,3,4-tetrahydroquinoline-2,3,4-trione-3 or 4-oximes and the use thereof |
| JPH0733743A (en) * | 1993-07-22 | 1995-02-03 | Kyorin Pharmaceut Co Ltd | 2-aryl-4-quinolinol derivative |
| JPH08295690A (en) * | 1995-04-26 | 1996-11-12 | Tokuyama Corp | Chromene compound |
| US6150352A (en) | 1996-05-20 | 2000-11-21 | Merck & Co., Inc. | Antagonists of gonadotropin releasing hormone |
| WO1999003822A1 (en) * | 1997-07-18 | 1999-01-28 | Georgetown University | Bicyclic metabotropic glutamate receptor ligands |
| JP2001524468A (en) * | 1997-11-21 | 2001-12-04 | エヌピーエス ファーマシューティカルズ インコーポレーテッド | Metabotropic glutamate receptor antagonists for treating central nervous system disorders |
| ES2237125T3 (en) * | 1998-08-27 | 2005-07-16 | Pfizer Products Inc. | DERIVATIVES OF QUINOLIN-2-ONA USEFUL AS ANTICANCERIGEN AGENTS. |
| JP2000169450A (en) | 1998-09-30 | 2000-06-20 | Kyorin Pharmaceut Co Ltd | 6-arylquinoline carboxylic acid derivatives, their addition salts and their production |
| TW531533B (en) | 1998-12-23 | 2003-05-11 | Janssen Pharmaceutica Nv | 1,2-annelated quinoline derivatives having farnesyl transferase and geranylgeranyl transferase inhibiting activity |
| DE19859750A1 (en) | 1998-12-23 | 2000-06-29 | Henkel Kgaa | Preparations for coloring keratinous fibers |
| ES2243228T3 (en) * | 1999-02-11 | 2005-12-01 | Pfizer Products Inc. | QUINOLIN-2-ONA DERIVATIVES SUBSTITUTED WITH HETEROARILO USEFUL AS ANTICANCERIGEN AGENTS. |
| CA2402096A1 (en) * | 2000-03-07 | 2001-09-13 | Takeda Chemical Industries, Ltd. | Vasoactive agents |
| CN1703403A (en) * | 2000-10-02 | 2005-11-30 | 詹森药业有限公司 | Metabotropic glutamate receptor antagonists |
-
2001
- 2001-09-25 CN CNA018167179A patent/CN1703403A/en active Pending
- 2001-09-25 MX MXPA03002907A patent/MXPA03002907A/en unknown
- 2001-09-25 KR KR1020037002014A patent/KR100818965B1/en not_active Expired - Fee Related
- 2001-09-25 BR BR0114253-4A patent/BR0114253A/en not_active IP Right Cessation
- 2001-09-25 UA UA2003032796A patent/UA76726C2/en unknown
- 2001-09-25 EA EA200300428A patent/EA007464B1/en not_active IP Right Cessation
- 2001-09-25 HR HR20030229A patent/HRP20030229A2/en not_active Application Discontinuation
- 2001-09-25 EE EEP200300126A patent/EE05195B1/en not_active IP Right Cessation
- 2001-09-25 US US10/381,987 patent/US7115630B2/en not_active Expired - Fee Related
- 2001-09-25 AT AT01974298T patent/ATE400558T1/en not_active IP Right Cessation
- 2001-09-25 DE DE60134762T patent/DE60134762D1/en not_active Expired - Lifetime
- 2001-09-25 CZ CZ20031145A patent/CZ20031145A3/en unknown
- 2001-09-25 AU AU2001293847A patent/AU2001293847B2/en not_active Ceased
- 2001-09-25 IL IL15516301A patent/IL155163A0/en unknown
- 2001-09-25 PL PL36067701A patent/PL360677A1/en not_active IP Right Cessation
- 2001-09-25 JP JP2002532423A patent/JP2004510764A/en active Pending
- 2001-09-25 SK SK521-2003A patent/SK5212003A3/en unknown
- 2001-09-25 ES ES01974298T patent/ES2309095T3/en not_active Expired - Lifetime
- 2001-09-25 NZ NZ524945A patent/NZ524945A/en not_active IP Right Cessation
- 2001-09-25 EP EP01974298A patent/EP1332133B1/en not_active Expired - Lifetime
- 2001-09-25 HU HU0302167A patent/HUP0302167A3/en unknown
- 2001-09-25 WO PCT/EP2001/011135 patent/WO2002028837A1/en not_active Ceased
- 2001-09-25 CA CA002421782A patent/CA2421782A1/en not_active Abandoned
- 2001-09-25 AU AU9384701A patent/AU9384701A/en active Pending
- 2001-09-27 MY MYPI20014515A patent/MY147730A/en unknown
- 2001-10-01 AR ARP010104629A patent/AR035065A1/en unknown
-
2003
- 2003-03-26 BG BG107672A patent/BG107672A/en unknown
- 2003-03-31 IL IL155163A patent/IL155163A/en not_active IP Right Cessation
- 2003-03-31 ZA ZA200302515A patent/ZA200302515B/en unknown
- 2003-04-01 NO NO20031474A patent/NO325079B1/en not_active IP Right Cessation
-
2005
- 2005-05-20 US US11/133,678 patent/US7629468B2/en not_active Expired - Fee Related
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2001293847A1 (en) | Metabotropic glutamate receptor antagonists | |
| EP1332133A1 (en) | Metabotropic glutamate receptor antagonists | |
| CA2432181C (en) | Substituted pyrroloquinolines and pyridoquinolines as serotonin agonists and antagonists | |
| US7592454B2 (en) | Substituted hexahydro-pyridoindole derivatives as serotonin receptor agonists and antagonists | |
| CN102480964B (en) | Pyranyl aryl methyl benzoquinazolinone M1 receptor positive allosteric modulators | |
| JPH04338378A (en) | New benzylated bicyclic nitrogenous compound, preparation thereof, new intermediate obtained, use thereof as drug, and pharmaceutical composition containing same | |
| KR20160106164A (en) | Bicyclic heterocyclic derivatives as bromodomain inhibitors | |
| AU2002246726A1 (en) | Substituted pyrroloquinolines and pyridoquinolines as serotonin agonists and antagonists | |
| CA2743562A1 (en) | Aryl methyl benzoquinazolinone m1 receptor positive allosteric modulators | |
| HUP9903009A2 (en) | Substituted indazole derivatives and their use as phosphodiesterase (pde) type iv and tumor necrosis factor (tnf) inhibitors | |
| US5576336A (en) | Indole derivatives as dopamine D4 antagonists | |
| JPWO2007040166A1 (en) | Novel condensed pyrrole derivatives | |
| NZ580637A (en) | Isoquinolinone derivatives as nk3 antagonists | |
| TWI402264B (en) | Aryl methyl benzoquinazolinone m1 receptor positive allosteric modulators | |
| AU2009316578B2 (en) | Aryl methyl benzoquinazolinone M1 receptor positive allosteric modulators |