AU2001276371A1 - Method and nucleic acids for analysing the methylation of genes implicated pharmacogenomics - Google Patents
Method and nucleic acids for analysing the methylation of genes implicated pharmacogenomicsInfo
- Publication number
- AU2001276371A1 AU2001276371A1 AU2001276371A AU7637101A AU2001276371A1 AU 2001276371 A1 AU2001276371 A1 AU 2001276371A1 AU 2001276371 A AU2001276371 A AU 2001276371A AU 7637101 A AU7637101 A AU 7637101A AU 2001276371 A1 AU2001276371 A1 AU 2001276371A1
- Authority
- AU
- Australia
- Prior art keywords
- dna
- recited
- sequences
- seq
- oligomer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108090000623 proteins and genes Proteins 0.000 title claims description 65
- 230000002974 pharmacogenomic effect Effects 0.000 title claims description 53
- 238000000034 method Methods 0.000 title claims description 52
- 230000011987 methylation Effects 0.000 title claims description 33
- 238000007069 methylation reaction Methods 0.000 title claims description 33
- 108020004707 nucleic acids Proteins 0.000 title claims description 24
- 102000039446 nucleic acids Human genes 0.000 title claims description 24
- 150000007523 nucleic acids Chemical class 0.000 title claims description 23
- 108020004414 DNA Proteins 0.000 claims description 61
- 108091034117 Oligonucleotide Proteins 0.000 claims description 47
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 claims description 45
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 claims description 30
- 230000000295 complement effect Effects 0.000 claims description 27
- 239000000523 sample Substances 0.000 claims description 27
- 230000002068 genetic effect Effects 0.000 claims description 23
- 229940104302 cytosine Drugs 0.000 claims description 20
- 239000012634 fragment Substances 0.000 claims description 20
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 18
- 230000001973 epigenetic effect Effects 0.000 claims description 18
- 238000009396 hybridization Methods 0.000 claims description 18
- 239000007790 solid phase Substances 0.000 claims description 18
- 239000002773 nucleotide Substances 0.000 claims description 14
- 125000003729 nucleotide group Chemical group 0.000 claims description 14
- 210000004027 cell Anatomy 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 108091029430 CpG site Proteins 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 11
- 201000010099 disease Diseases 0.000 claims description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 11
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 claims description 10
- 239000011159 matrix material Substances 0.000 claims description 10
- 230000030933 DNA methylation on cytosine Effects 0.000 claims description 9
- 230000003321 amplification Effects 0.000 claims description 9
- 238000003745 diagnosis Methods 0.000 claims description 9
- 238000004949 mass spectrometry Methods 0.000 claims description 9
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 9
- 238000011282 treatment Methods 0.000 claims description 9
- 102000054765 polymorphisms of proteins Human genes 0.000 claims description 8
- 238000002560 therapeutic procedure Methods 0.000 claims description 8
- 210000001519 tissue Anatomy 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 108091093037 Peptide nucleic acid Proteins 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000003752 polymerase chain reaction Methods 0.000 claims description 6
- 239000003153 chemical reaction reagent Substances 0.000 claims description 5
- 229940035893 uracil Drugs 0.000 claims description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 4
- 238000003795 desorption Methods 0.000 claims description 4
- WBZKQQHYRPRKNJ-UHFFFAOYSA-L disulfite Chemical compound [O-]S(=O)S([O-])(=O)=O WBZKQQHYRPRKNJ-UHFFFAOYSA-L 0.000 claims description 4
- 229940079826 hydrogen sulfite Drugs 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 239000004793 Polystyrene Substances 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 239000004411 aluminium Substances 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 210000002216 heart Anatomy 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000007921 spray Substances 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 claims description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 claims description 2
- 206010036790 Productive cough Diseases 0.000 claims description 2
- 238000001574 biopsy Methods 0.000 claims description 2
- 239000008280 blood Substances 0.000 claims description 2
- 210000004369 blood Anatomy 0.000 claims description 2
- 210000004556 brain Anatomy 0.000 claims description 2
- 210000000481 breast Anatomy 0.000 claims description 2
- 239000012876 carrier material Substances 0.000 claims description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 claims description 2
- 210000001508 eye Anatomy 0.000 claims description 2
- 230000002962 histologic effect Effects 0.000 claims description 2
- 210000000936 intestine Anatomy 0.000 claims description 2
- 210000003734 kidney Anatomy 0.000 claims description 2
- 210000004185 liver Anatomy 0.000 claims description 2
- 210000004072 lung Anatomy 0.000 claims description 2
- 239000012188 paraffin wax Substances 0.000 claims description 2
- 210000002307 prostate Anatomy 0.000 claims description 2
- 210000003802 sputum Anatomy 0.000 claims description 2
- 208000024794 sputum Diseases 0.000 claims description 2
- 210000002700 urine Anatomy 0.000 claims description 2
- 102100034689 2-hydroxyacylsphingosine 1-beta-galactosyltransferase Human genes 0.000 claims 1
- 102100027516 Cholesterol side-chain cleavage enzyme, mitochondrial Human genes 0.000 claims 1
- 102100024332 Cytochrome P450 11B1, mitochondrial Human genes 0.000 claims 1
- 102100039205 Cytochrome P450 3A4 Human genes 0.000 claims 1
- 101000946034 Homo sapiens 2-hydroxyacylsphingosine 1-beta-galactosyltransferase Proteins 0.000 claims 1
- 101000959046 Homo sapiens Aldehyde dehydrogenase family 1 member A3 Proteins 0.000 claims 1
- 101000861327 Homo sapiens Cholesterol side-chain cleavage enzyme, mitochondrial Proteins 0.000 claims 1
- 101000745711 Homo sapiens Cytochrome P450 3A4 Proteins 0.000 claims 1
- 101001077840 Homo sapiens Lipid-phosphate phosphatase Proteins 0.000 claims 1
- 101001086785 Homo sapiens Occludin Proteins 0.000 claims 1
- 101000844686 Homo sapiens Thioredoxin reductase 1, cytoplasmic Proteins 0.000 claims 1
- 102100025357 Lipid-phosphate phosphatase Human genes 0.000 claims 1
- 102100032604 Occludin Human genes 0.000 claims 1
- 108010049356 Steroid 11-beta-Hydroxylase Proteins 0.000 claims 1
- 102100031208 Thioredoxin reductase 1, cytoplasmic Human genes 0.000 claims 1
- 230000001413 cellular effect Effects 0.000 claims 1
- 239000012530 fluid Substances 0.000 claims 1
- 230000001926 lymphatic effect Effects 0.000 claims 1
- 239000003814 drug Substances 0.000 description 31
- 229940079593 drug Drugs 0.000 description 24
- 238000004458 analytical method Methods 0.000 description 17
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- 238000011161 development Methods 0.000 description 7
- 230000018109 developmental process Effects 0.000 description 7
- 238000012163 sequencing technique Methods 0.000 description 7
- 108090000765 processed proteins & peptides Proteins 0.000 description 6
- 108010021188 Superoxide Dismutase-1 Proteins 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 230000007067 DNA methylation Effects 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229940124597 therapeutic agent Drugs 0.000 description 4
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 4
- 238000005904 alkaline hydrolysis reaction Methods 0.000 description 3
- 239000012491 analyte Substances 0.000 description 3
- 238000003491 array Methods 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 230000009274 differential gene expression Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007614 genetic variation Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 3
- 208000009575 Angelman syndrome Diseases 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 108010001237 Cytochrome P-450 CYP2D6 Proteins 0.000 description 2
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 description 2
- 102100021704 Cytochrome P450 2D6 Human genes 0.000 description 2
- 238000000018 DNA microarray Methods 0.000 description 2
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 201000010769 Prader-Willi syndrome Diseases 0.000 description 2
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 229940039227 diagnostic agent Drugs 0.000 description 2
- 239000000032 diagnostic agent Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- 238000007876 drug discovery Methods 0.000 description 2
- 230000036267 drug metabolism Effects 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000029142 excretion Effects 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 229940022353 herceptin Drugs 0.000 description 2
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 2
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 2
- 229960001428 mercaptopurine Drugs 0.000 description 2
- PZRHRDRVRGEVNW-UHFFFAOYSA-N milrinone Chemical compound N1C(=O)C(C#N)=CC(C=2C=CN=CC=2)=C1C PZRHRDRVRGEVNW-UHFFFAOYSA-N 0.000 description 2
- 229960003574 milrinone Drugs 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000004393 prognosis Methods 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 229940113082 thymine Drugs 0.000 description 2
- PJVWKTKQMONHTI-HNNXBMFYSA-N (S)-warfarin Chemical compound C1([C@H](CC(=O)C)C=2C(OC3=CC=CC=C3C=2O)=O)=CC=CC=C1 PJVWKTKQMONHTI-HNNXBMFYSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- HWPZZUQOWRWFDB-UHFFFAOYSA-N 1-methylcytosine Chemical compound CN1C=CC(N)=NC1=O HWPZZUQOWRWFDB-UHFFFAOYSA-N 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 206010065553 Bone marrow failure Diseases 0.000 description 1
- 206010055113 Breast cancer metastatic Diseases 0.000 description 1
- 101150053096 CYP2C9 gene Proteins 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 230000007118 DNA alkylation Effects 0.000 description 1
- 230000006429 DNA hypomethylation Effects 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 208000030453 Drug-Related Side Effects and Adverse reaction Diseases 0.000 description 1
- 102000006947 Histones Human genes 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- 101710198130 NADPH-cytochrome P450 reductase Proteins 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- CXOFVDLJLONNDW-UHFFFAOYSA-N Phenytoin Chemical compound N1C(=O)NC(=O)C1(C=1C=CC=CC=1)C1=CC=CC=C1 CXOFVDLJLONNDW-UHFFFAOYSA-N 0.000 description 1
- -1 Phosphorothioate nucleic acids Chemical class 0.000 description 1
- TUZYXOIXSAXUGO-UHFFFAOYSA-N Pravastatin Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(O)C=C21 TUZYXOIXSAXUGO-UHFFFAOYSA-N 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000270295 Serpentes Species 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 102000008221 Superoxide Dismutase-1 Human genes 0.000 description 1
- CYQFCXCEBYINGO-UHFFFAOYSA-N THC Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3C21 CYQFCXCEBYINGO-UHFFFAOYSA-N 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical group OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 102000004377 Thiopurine S-methyltransferases Human genes 0.000 description 1
- 108090000958 Thiopurine S-methyltransferases Proteins 0.000 description 1
- JLRGJRBPOGGCBT-UHFFFAOYSA-N Tolbutamide Chemical compound CCCCNC(=O)NS(=O)(=O)C1=CC=C(C)C=C1 JLRGJRBPOGGCBT-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 1
- 229960002170 azathioprine Drugs 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- QZUDBNBUXVUHMW-UHFFFAOYSA-N clozapine Chemical compound C1CN(C)CCN1C1=NC2=CC(Cl)=CC=C2NC2=CC=CC=C12 QZUDBNBUXVUHMW-UHFFFAOYSA-N 0.000 description 1
- 229960004170 clozapine Drugs 0.000 description 1
- 201000010897 colon adenocarcinoma Diseases 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- JWPGJSVJDAJRLW-UHFFFAOYSA-N debrisoquin Chemical compound C1=CC=C2CN(C(=N)N)CCC2=C1 JWPGJSVJDAJRLW-UHFFFAOYSA-N 0.000 description 1
- 229960004096 debrisoquine Drugs 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 1
- 230000003297 denaturating effect Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 229960004242 dronabinol Drugs 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000011365 genetic imprinting Effects 0.000 description 1
- 238000003205 genotyping method Methods 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000000752 ionisation method Methods 0.000 description 1
- 238000001698 laser desorption ionisation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000005868 ontogenesis Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229960002036 phenytoin Drugs 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229960002702 piroxicam Drugs 0.000 description 1
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- TUZYXOIXSAXUGO-PZAWKZKUSA-N pravastatin Chemical compound C1=C[C@H](C)[C@H](CC[C@@H](O)C[C@@H](O)CC(O)=O)[C@H]2[C@@H](OC(=O)[C@@H](C)CC)C[C@H](O)C=C21 TUZYXOIXSAXUGO-PZAWKZKUSA-N 0.000 description 1
- 229960002965 pravastatin Drugs 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- REQCZEXYDRLIBE-UHFFFAOYSA-N procainamide Chemical compound CCN(CC)CCNC(=O)C1=CC=C(N)C=C1 REQCZEXYDRLIBE-UHFFFAOYSA-N 0.000 description 1
- 229960000244 procainamide Drugs 0.000 description 1
- 231100000586 procarcinogen Toxicity 0.000 description 1
- 239000003891 promutagen Substances 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000004153 renaturation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 201000000980 schizophrenia Diseases 0.000 description 1
- 102000015380 snRNP Core Proteins Human genes 0.000 description 1
- 108010039827 snRNP Core Proteins Proteins 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 229960005371 tolbutamide Drugs 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/82—Translation products from oncogenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4702—Regulators; Modulating activity
- C07K14/4703—Inhibitors; Suppressors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2523/00—Reactions characterised by treatment of reaction samples
- C12Q2523/10—Characterised by chemical treatment
- C12Q2523/125—Bisulfite(s)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/154—Methylation markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Oncology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Physics & Mathematics (AREA)
- Toxicology (AREA)
- Hospice & Palliative Care (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Saccharide Compounds (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Description
Method and nucleic acids for pharmacogenomic methylation analysis
Field of the Invention
The levels of observation that have been well studied by the methodological developments of recent years in molecular biology, are the genes themselves, the translation of these genes into RNA, and the resulting proteins. The question of which gene is switched on at which point in the course of the development of an individual, and how the activation and inhibition of specific genes in specific cells and tissues are controlled is correlatable to the degree and character of the methylation of the genes or of the genome. In this respect, pathogenic conditions may manifest themselves in a changed methylation pattern of individual genes or of the genome.
The present invention relates to nucleic acids, oligonucleotides, PNA-oligomers and to a method for the analysis of genetic and/or epigenetic parameters of genes associated with pharmacogenomics and, in particular, with the methylation status thereof.
Prior art
5-methylcytosine is the most frequent covalent base modification in the DNA of eukaryotic cells. It plays a role, for example, in the regulation of the transcription, in genetic imprinting, and in tumorigenesis.
Therefore, the identification of 5-methylcytosine as a component of genetic information is of considerable interest. However, 5-methylcytosine positions cannot be identified by sequencing since 5-methylcytosine has the same base pairing behavior as cytosine. Moreover, the epigenetic information carried by 5-methylcytosine is completely lost during PCR amplification.
A relatively new and currently the most frequently used method for analyzing DNA for 5- methylcytosine is based upon the specific reaction of bisulfite with cytosine which, upon subsequent alkaline hydrolysis, is converted to uracil which corresponds to thymidine in its base
pairing behavior. However, 5-methylcytosine remains unmodified under these conditions. Consequently, the original DNA is converted in such a manner that methylcytosine, which originally could not be distinguished from cytosine by its hybridization behavior, can now be detected as the only remaining cytosine using "normal" molecular biological techniques, for example, by amplification and hybridization or sequencing. All of these techniques are based on base pairing which can now be fully exploited. In terms of sensitivity, the prior art is defined by a method which encloses the DNA to be analyzed in an agarose matrix, thus preventing the diffusion and renaturation of the DNA (bisulfite only reacts with single-stranded DNA), and which replaces all precipitation and purification steps with fast dialysis (Olek A, Oswald J, Walter J. A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res. 1996 Dec 15;24(24):5064-6). Using this method, it is possible to analyze individual cells, which illustrates the potential of the method. However, currently only individual regions of a length of up to approximately 3000 base pairs are analyzed, a global analysis of cells for thousands of possible methylation events is not possible. However, this method cannot reliably analyze very small fragments from small sample quantities either. These are lost through the matrix in spite of the diffusion protection.
An overview of the further known methods of detecting 5-methylcytosine may be gathered from the following review article: Rein, T., DePamphilis, M. L., Zorbas, H, Nucleic Acids Res. 1998, 26, 2255.
To date, barring few exceptions (e.g., Zeschnigk M, Lich C, Buiting K, Doerfler W, Horsthemke B. A single-tube PCR test for the diagnosis of Angelman and Prader-Willi syndrome based on allelic methylation differences at the SNRPN locus. Eur J Hum Genet. 1997 Mar-Apr;5(2):94-8) the bisulfite technique is only used in research. Always, however, short, specific fragments of a known gene are amplified subsequent to a bisulfite treatment and either completely sequenced (Olek A, Walter J. The pre-implantation ontogeny of the HI 9 methylation imprint. Nat Genet. 1997 Nov;17(3):275-6) or individual cytosine positions are detected by a primer extension reaction (Gonzalgo ML, Jones PA. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res. 1997 Jun 15;25(12):2529-31, WO 95/00669) or by enzymatic digestion (Xiong Z, Laird PW. COBRA: a sensitive and quantitative DNA
methylation assay. Nucleic Acids Res. 1997 Jun 15;25(12):2532-4). In addition, detection by hybridization has also been described (Olek et al., WO 99/28498).
Further publications dealing with the use of the bisulfite technique for methylation detection in individual genes are: Grigg G, Clark S. Sequencing 5-methylcytosine residues in genomic DNA. Bioessays. 1994 Jun;16(6):431-6, 431; Zeschnigk M, Schmitz B, Dittrich B, Buiting K, Horsthemke B, Doerfler W. Imprinted segments in the human genome: different DNA methylation patterns in the Prader-Willi/Angelman syndrome region as determined by the genomic sequencing method. Hum Mol Genet. 1997 Mar;6(3):387-95; Feil R, Charlton J, Bird AP, Walter J, Reik W. Methylation analysis on individual chromosomes: improved protocol for bisulphite genomic sequencing. Nucleic Acids Res. 1994 Feb 25;22(4):695-6; Martin V, Ribieras S, Song- Wang X, Rio MC, Dante R. Genomic sequencing indicates a correlation between DNA hypomethylation in the 5' region of the pS2 gene and its expression in human breast cancer cell lines. Gene. 1995 May 19;157(l-2):261-4; WO 97/46705, WO 95/15373 and WO 97/45560.
An overview of the Prior art in oligomer array manufacturing can be gathered from a special edition of Nature Genetics (Nature Genetics Supplement, Volume 21, January 1999), published in January 1999, and from the literature cited therein.
Fluorescently labeled probes are often used for the scanning of immobilized DNA arrays. The simple attachment of Cy3 and Cy5 dyes to the 5'-OH of the specific probe are particularly suitable for fluorescence labels. The detection of the fluorescence of the hybridized probes may be carried out, for example via a confocal microscope. Cy3 and Cy5 dyes, besides many others, are commercially available.
Matrix Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-TOF) is a very efficient development for the analysis of biomolecules (Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988 Oct 15;60(20):2299-301). An analyte is embedded in a light-absorbing matrix. The matrix is evaporated by a short laser pulse thus transporting the analyte molecule into the vapor phase in an unfragmented manner. The analyte is ionized by collisions with matrix molecules. An applied voltage accelerates the ions into a field-free flight tube. Due to their different
masses, the ions are accelerated at different rates. Smaller ions reach the detector sooner than bigger ones.
MALDI-TOF spectrometry is excellently suited to the analysis of peptides and proteins. The analysis of nucleic acids is somewhat more difficult (Gut I G, Beck S. DNA and Matrix Assisted Laser Desorption Ionization Mass Spectrometry. Current Innovations and Future Trends. 1995, 1; 147-57). The sensitivity to nucleic acids is approximately 100 times worse than to peptides and decreases disproportionally with increasing fragment size. For nucleic acids having a multiply negatively charged backbone, the ionization process via the matrix is considerably less efficient. In MALDI-TOF spectrometry, the selection of the matrix plays an eminently important role. For the desorption of peptides, several very efficient matrixes have been found which produce a very fine crystallization. There are now several responsive matrixes for DNA, however, the difference in sensitivity has not been reduced. The difference in sensitivity can be reduced by chemically modifying the DNA in such a manner that it becomes more similar to a peptide. Phosphorothioate nucleic acids in which the usual phosphates of the backbone are substituted with thiophosphates can be converted into a charge- neutral DNA using simple alkylation chemistry (Gut IG, Beck S. A procedure for selective DNA alkylation and detection by mass spectrometry. Nucleic Acids Res. 1995 Apr 25;23(8):1367-73). The coupling of a charge tag to this modified DNA results in an increase in sensitivity to the same level as that found for peptides. A further advantage of charge tagging is the increased stability of the analysis against impurities which make the detection of unmodified substrates considerably more difficult.
Pharmacogenomics is the science of utilising human genetic variation to optimise patient treatment and drug design and discovery. An individual's genetic make up affects each stage of drug response: absorption, metabolism, transport to the target molecule, structure of the intended and/or unintended target molecules, degradation and excretion.
Pharmacogenomics provides the basis for a new generation of personalized pharmaceuticals, the targeting of drug therapies to genetic subpopulations. Currently drugs are developed to benefit the widest possible populations. However the variations in drug reactions attributed to genetic variation are increasingly been taken into account when developing new drugs. There are multiple benefits to such an approach to drug design. The development of genetic tests
may reduce the need for the standard trial and error method of drug prescription. Targeted prescriptions would further reduce the incidence of adverse drug reactions, which are estimated to be the fifth ranking cause of death in the United States. Furthermore, dosage decisions can be made on a more informed basis than currently used parameters such as age, sex and weight. Drug discovery and approval processes will likely be speeded up by the specific genetic targeting of candidate drugs. Moreover, this may allow the revival of previously failed candidate drugs. Overall it is expected that the development of personalized pharmaceuticals will reduce the costs of healthcare.
Several candidate genes have been identified that influence drug reactions, most notably the cytochrome P450 family. The cytochrome P450 monooxygenase system is responsible for a large proportion of drug metabolism in the body, furthermore it is also responsible for the activation of procarcinogens and promutagens. In particular, the CYP2D6, 3A4/3A5, 1 A2, 2E1, 2C9, and 2C19 genes have been identified as key regulators of drug response. For example, homozygozity for the CYP2D6 null allele has a frequency of 1% to 2% in Asians, 5% in African Americans, and 6% to 10% in Caucasian populations. This genotype exhibits reduced degradation and excretion of many drugs including debrisoquine, metaprolol, nortrptyline and propafone. Another important member of the family is the CYP2C9 gene. It metabolizes a variety of important drugs, including ibuprofen, naproxen, piroxicam, tetrahydrocannabinol, phenytoin, tolbutamide, and S-warfarin. Substitutions in codons 144 and 359 result in a 5-fold decline in metabolic activity. Although the frequency of such mutations is unknown it has been estimated at 25% heterozygosity in the Caucasian population.
A particular target in pharmacogenomics is the characterisation of single nucleotide polymorphisms and their effects on drug response. For example, response to the drugs pravastatin (treatment of high cholesterol), Clozapine (schizophrenia treatment) and procainamide (heart arrythymia) have all been shown to be affected by SNPs.
The benefits of pharmacogenetically developed drugs are of particular interest in diseases such as cancer, where efficacy and side effects show wide variation. Furthermore, the genetic basis of diseases such as cancer makes them appropriate targets. The first commercially available drug targeted at a specific genotype was Herceptin, a humanized monoclonal antibody for the treatment of metastatic breast cancer. Herceptin is useful in the 25%-30% of breast
cancer patients who over express the HER2 (human epidermal growth factor receptor 2) protein. Alternatively, pharmacogenomics is also used to screen patients who may have adverse reactions to drugs. For example, azathioprine and mercaptopurine are commonly used treatments for acute lymphoblastic leukaemia in children. However, patients deficient in thiopu- rine methyl transferase are unable to adequately metabolize mercaptopurine and are at risk of developing life threatening myelosuppression.
Genomic DNA is obtained from DNA of cell, tissue or other test samples using standard methods. This standard methodology is found in references such as Fritsch and Maniatis eds., Molecular Cloning: A Laboratory Manual, 1989.
Description
The object of the present invention is to provide the chemically modified DNA of genes associated with pharmacogenomics, as well as oligonucleotides and/or PNA-oligomers for detecting cytosine methylations, as well as a method which is particularly suitable for the analysis of genetic and epigenetic parameters of genes associated with pharmacogenomics. The present invention is based on the discovery that genetic and epigenetic parameters and, in particular, the cytosine methylation pattern of genes associated with pharmacogenomics are particularly suitable for the development and analysis of novel drugs and therapies.
This objective is achieved according to the present invention using a nucleic acid containing a sequence of at least 18 bases in length of the chemically pretreated DNA of genes associated with pharmacogenomics according to one of Seq. ID No.l through Seq. ID No.174 and sequences complementary thereto and/or of a segment of the chemically pretreated DNA of genes associated with pharmacogenomics according to one of the sequences according to table 1. In the table, after the listed gene designations, the respective data bank numbers (accession numbers) are specified which define the appertaining gene sequences as unique. Gen- Bank was used as the underlying data bank, which is located at internet address http://www.ncbi.nlm.nih.gov
The chemically modified nucleic acid could heretofore not be connected with the ascertainment of genetic and epigenetic parameters.
The object of the present invention is further achieved by an oligonucleotide or oligomer for detecting the cytosine methylation state in chemically pretreated DNA, containing at least one base sequence having a length of at least 13 nucleotides which hybridizes to a chemically pretreated DNA of genes associated with pharmacogenomics according to Seq. ID No.l through Seq. ID No.174 and sequences complementary thereto and/or of a segment of the chemically pretreated DNA of genes associated with pharmacogenomics according to one of the sequences according to table 1. The oligomer probes according to the present invention constitute important and effective tools which, for the first time, make it possible to ascertain the genetic and epigenetic parameters of genes associated with pharmacogenomics. The base sequence of the oligomers preferably contains at least one CpG dinucleotide. The probes may also exist in the form of a PNA (peptide nucleic acid) which has particularly preferred pairing properties. Particularly preferred are oligonucleotides according to the present invention in which the cytosine of the CpG dinucleotide is the 5m - 9m nucleotide from the 5 '-end of the 13-mer; in the case of PNA-oligomers, it is preferred for the cytosine of the CpG dinucleotide to be the 4m - 6m nucleotide from the 5 '-end of the 9-mer.
The oligomers according to the present invention are normally used in so called "sets" which contain at least one oligomer for each of the CpG dinucleotides of the sequences of Seq. ID No.l through Seq. ID No.174 and sequences complementary thereto and/or of a segment of the chemically pretreated DNA of genes associated with pharmacogenomics according to one of the sequences according to table 1. Preferred is a set which contains at least one oligomer for each of the CpG dinucleotides from one of Seq. ID No.l through Seq. ID No.174 and sequences complementary thereto and/or of a segment of the chemically pretreated DNA of genes associated with pharmacogenomics according to one of the sequences according to table 1.
Moreover, the present invention makes available a set of at least two oligonucleotides which can be used as so-called "primer oligonucleotides" for amplifying DNA sequences of one of Seq. ID No.l through Seq. ID No.174 and sequences complementary thereto and/or of a segment of the chemically pretreated DNA of genes associated with pharmacogenomics according to one of the sequences according to table 1, or segments thereof.
In the case of the sets of oligonucleotides according to the present invention, it is preferred that at least one oligonucleotide is bound to a solid phase. Furthermore, it is preferred that all the oligonucleotides of a set are bound to a solid phase.
The present invention moreover relates to a set of at least 10 n (oligonucleotides and/or PNA- oligomers) used for detecting the cytosine methylation state in chemically pretreated genomic DNA (Seq. ID No.l through Seq. ID No.174 and sequences complementary thereto and/or of a segment of the chemically pretreated DNA of genes associated with pharmacogenomics according to one of the sequences according to table 1). These probes enable the determination of genetic and epigenetic parameters of genes associated with pharmacogenomics. The set of oligomers may also be used for detecting single nucleotide polymorphisms (SNPs) in the chemically pretreated DNA of genes associated with pharmacogenomics according to one of Seq. ID No.l through Seq. ID No.174 and sequences complementary thereto and/or of a segment of the chemically pretreated DNA of genes associated with pharmacogenomics according to one of the sequences according to table 1.
According to the present invention, it is preferred that an arrangement of different oligonucleotides and/or PNA-oligomers (a so-called "array") made available by the present invention is present in a manner that it is likewise bound to a solid phase. This array of different oligonucleotide- and/or PNA-oligomer sequences can be characterized in that it is arranged on the solid phase in the form of a rectangular or hexagonal lattice. The solid phase surface is preferably composed of silicon, glass, polystyrene, aluminium, steel, iron, copper, nickel, silver, or gold. However, nitrocellulose as well as plastics such as nylon which can exist in the form of pellets or also as resin matrices are possible as well.
Therefore, a further subject matter of the present invention is a method for manufacturing an array fixed to a carrier material for analysis in connection with diseases associated with pharmacogenomics in which method at least one oligomer according to the present invention is coupled to a solid phase. Methods for manufacturing such arrays are known, for example, from US Patent 5,744,305 by means of solid-phase chemistry and photolabile protecting groups.
A further subject matter of the present invention relates to a DNA chip for the analysis of genetic and epigenetic parameters of genes associated with pharmacogenomics which contains at least one nucleic acid according to the present invention. DNA chips are known, for example, for US Patent 5,837,832.
Moreover, a subject matter of the present invention is a kit which may be composed, for example, of a bisulfite-containing reagent, a set of primer oligonucleotides containing at least two oligonucleotides whose sequences in each case correspond or are complementary to an 18 base long segment of the base sequences specified in the appendix (Seq. ID No.l through Seq. ID No.174 and sequences complementary thereto and/or of a segment of the chemically pretreated DNA of genes associated with pharmacogenomics according to one of the sequences according to table 1), oligonucleotides and/or PNA-oligomers as well as instructions for carrying out and evaluating the described method. However, a kit along the lines of the present invention can also contain only part of the aforementioned components.
The present invention also makes available a method for ascertaining genetic and/or epigenetic parameters of genes associated with pharmacogenomics by analyzing cytosine methyla- tions and single nucleotide polymorphisms, including the following steps:
In the first step of the method, a genomic DNA sample is chemically treated in such a manner that cytosine bases which are unmethylated at the 5 '-position are converted to uracil, thymine, or another base which is dissimilar to cytosine in terms of hybridization behavior. This will be understood as 'chemical pretreatment' hereinafter.
The genomic DNA to be analyzed is preferably obtained form usual sources of DNA such as cells or cell components, for example, cell lines, biopsies, blood, sputum, stool, urine, cerebral-spinal fluid, tissue embedded in paraffin such as tissue from eyes, intestine, kidney, brain, heart, prostate, lung, breast or liver, histologic object slides, or combinations thereof.
The above described treatment of genomic DNA is preferably carried out with bisulfite (hydrogen sulfite, disulfite) and subsequent alkaline hydrolysis which results in a conversion of non-methylated cytosine nucleobases to uracil or to another base which is dissimilar to cytosine in terms of base pairing behavior.
Fragments of the chemically pretreated DNA are amplified, using sets of primer oligonucleotides according to the present invention, and a, preferably heat-stable polymerase. Because of statistical and practical considerations, preferably more than ten different fragments having a length of 100 - 2000 base pairs are amplified. The amplification of several DNA segments can be carried out simultaneously in one and the same reaction vessel. Usually, the amplification is carried out by means of a polymerase chain reaction (PCR).
In a preferred embodiment of the method, the set of primer oligonucleotides includes at least two olignonucleotides whose sequences are each reverse complementary or identical to an at least 18 base-pair long segment of the base sequences specified in the appendix (Seq. ID No.l through Seq. ID No.174 and sequences complementary thereto and/or of a segment of the chemically pretreated DNA of genes associated with pharmacogenomics according to one of the sequences according to table 1). The primer oligonucleotides are preferably characterized in that they do not contain any CpG dinucleotides.
According to the present invention, it is preferred that at least one primer oligonucleotide is bonded to a solid phase during amplification. The different oligonucleotide and/or PNA- oligomer sequences can be arranged on a plane solid phase in the form of a rectangular or hexagonal lattice, the solid phase surface preferably being composed of silicon, glass, polystyrene, aluminium, steel, iron, copper, nickel, silver, or gold, it being possible for other materials such as nitrocellulose or plastics to be used as well.
The fragments obtained by means of the amplification can carry a directly or indirectly detectable label. Preferred are labels in the form of fluorescence labels, radionuclides, or detachable molecule fragments having a typical mass which can be detected in a mass spectrometer, it being preferred that the fragments that are produced have a single positive or negative net charge for better detectability in the mass spectrometer. The detection may be carried out and visualized by means of matrix assisted laser desorption/ionization mass spectrometry (MALDI) or using electron spray mass spectrometry (ESI).
The amplifϊcates obtained in the second step of the method are subsequently hybridized to an array or a set of oligonucleotides and/or PNA probes. In this context, the hybridization takes
place in the manner described in the following. The set of probes used during the hybridization is preferably composed of at least 10 oligonucleotides or PNA-oligomers. In the process, the amplificates serve as probes which hybridize to oligonucleotides previously bonded to a solid phase. The non-hybridized fragments are subsequently removed. Said oligonucleotides contain at least one base sequence having a length of 13 nucleotides which is reverse complementary or identical to a segment of the base sequences specified in the appendix, the segment containing at least one CpG dinucleotide. The cytosine of the CpG dinucleotide is the 5"1 to 9tn nucleotide from the 5 '-end of the 13-mer. One oligonucleotide exists for each CpG dinucleotide. Said PNA-oligomers contain at least one base sequence having a length of 9 nucleotides which is reverse complementary or identical to a segment of the base sequences specified in the appendix, the segment containing at least one CpG dinucleotide. The cytosine of the CpG dinucleotide is the 4m to 6m nucleotide seen from the 5 '-end of the 9-mer. One oligonucleotide exists for each CpG dinucleotide.
In the fourth step of the method, the non-hybridized amplificates are removed.
In the final step of the method, the hybridized amplificates are detected. In this context, it is preferred that labels attached to the amplificates are identifiable at each position of the solid phase at which an oligonucleotide sequence is located.
According to the present invention, it is preferred that the labels of the amplificates are fluorescence labels, radionuclides, or detachable molecule fragments having a typical mass which can be detected in a mass spectrometer. The mass spectrometer is preferred for the detection of the amplificates, fragments of the amplificates or of probes which are complementary to the amplificates, it being possible for the detection to be carried out and visualized by means of matrix assisted laser desorption/ionization mass spectrometry (MALDI) or using electron spray mass spectrometry (ESI).
The produced fragments may have a single positive or negative net charge for better detecta- bility in the mass spectrometer. The aforementioned method is preferably used for ascertaining genetic and/or epigenetic parameters of genes associated with pharmacogenomics.
The oligomers according to the present invention or arrays thereof as well as a kit according to the present invention are intended to be used for the determination of genetic and/or epigenetic parameters of genes associated with pharmacogenomics by analyzing methylation patterns thereof. According to the present invention, the method is preferably used for the determination of genetic and/or epigenetic parameters of genes associated with pharmacogenomics.
The method according to the present invention is used, for example, for the diagnosis and/or therapy of solid tumours and cancer.
The nucleic acids according to the present invention of Seq. ID No.l through Seq. ID No.174 and sequences complementary thereto and/or of a segment of the chemically pretreated DNA of genes associated with pharmacogenomics according to one of the sequences according to table 1 can be used for the determination of genetic and/or epigenetic parameters of genes associated with pharmacogenomics .
The present invention moreover relates to a method for manufacturing a diagnostic reagent and/or therapeutic agent for the diagnosis and/or therapy of diseases or of conditions associated with drug response by analyzing methylation patterns of genes associated with pharmacogenomics, the diagnostic agent and/or therapeutic agent being characterized in that at least one nucleic acid according to the present invention is used for manufacturing it, possibly together with suitable additives and auxiliary agents.
A further subject matter of the present invention relates to a diagnostic reagent and/or therapeutic agent for the diagnosis and/or therapy of diseases or of conditions associated with drug response by analyzing methylation patterns of genes associated with pharmacogenomics, the diagnostic agent and/or therapeutic agent containing at least one nucleic acid according to the present invention, possibly together with suitable additives and auxiliary agents.
The present invention moreover relates to the diagnosis and/or prognosis of events which are disadvantageous to patients or individuals in which important genetic and/or epigenetic parameters within genes associated with pharmacogenomics said parameters obtained by means of the present invention may be compared to another set of genetic and/or epigenetic parame-
ters, the differences serving as the basis for a diagnosis and/or prognosis of events which are disadvantageous to patients or individuals.
In the context of the present invention, the term "pharmacogenomics" encompasses the study of genetic variation underlying differential response to drugs, particularly genes involved in drug metabolism. The term further refers to the application of tools including, but not limited to, the functional genomics toolbox of differential gene expression (DGE), proteomics, yeast 2- hybrid (Y2H) analyses, tissue immuno- and histopathology, genotyping of SNPs and other polymorphisms, automated DNA sequencing, customised differential gene expression analysis, genostratification, and pharmacogenetic testing for variability in genes. Therefore, the application of modern genomic technologies, including SNPs, transcript profiling, and proteomics. SNPs may allow population "subgrouping" including the exclusion of patients who may have adverse responses to a drug or preselection of those who are most likely to benefit from a particular drug. They may also help in selection of clinical trial participants by providing better ways to determine whether a study group is truly heterogeneous or by allowing preselection of particular groups. Finally, pharmacogenomics involves the creation of individualized medicines based upon scientific and clinical data generated from a patient's genetic information. There are two applications of pharmacogenomics that may use similar techniques but are quite distinct: a) susceptibility gene identification and b) "right medicine for right patient" [Allen D. Roses "Pharmacogenetics and pharmacogenomics in the discovery and development of medicines " Pharmacogenetique et Pharmacogenetique, Institut Pasteur, Paris [France], 12-13 Octobre 2000, Institut Pasteur]. In the present invention, pharmacogenomics is based on the differences in the methylation pattern between different copies of genes or genomes of individuals, e.g. patients.
In the context of the present invention the term "hybridization" is to be understood as a bond of an oligonucleotide to a completely complementary sequence along the lines of the Watson- Crick base pairings in the sample DNA, forming a duplex structure. To be understood by "stringent hybridization conditions" are those conditions in which a hybridization is carried out at 60°C in 2.5 x SSC buffer, followed by several washing steps at 37°C in a low buffer concentration, and remains stable.
The term "functional variants" denotes all DNA sequences which are complementary to a DNA sequence, and which hybridize to the reference sequence under stringent conditions and have an activity similar to the corresponding polypeptide according to the present invention.
In the context of the present invention, "genetic parameters" are mutations and polymorphisms of genes associated with pharmacogenomics and sequences further required for their regulation. To be designated as mutations are, in particular, insertions, deletions, point mutations, inversions and polymorphisms and, particularly preferred, SNPs (single nucleotide polymorphisms).
In the context of the present invention, "epigenetic parameters" are, in particular, cytosine methylations and further chemical modifications of DNA bases of genes associated with pharmacogenomics and sequences further required for their regulation. Further epigenetic parameters include, for example, the acetylation of histones which, however, cannot be directly analyzed using the described method but which, in turn, correlates with the DNA methylation.
In the following, the present invention will be explained in greater detail on the basis of the sequences and examples with reference to the accompanying drawing without being limited thereto.
Figure 1
Figure 1 shows the hybridisation of fluorescent labelled amplificates to a surface bound olignonucleotide. Sample I being from a HT29 cell line cultured under standard conditions and sample II being from a HT29 cell line cultured under standard conditions with the addition of milrinone (lμg/ml). Flourescence at a spot shows hybridisation of the amplificate to the olignonucleotide. Hybridisation to a CG olignonucleotide denotes methylation at the cytosine position being analysed, hybridisation to a TG olignonucleotide denotes no methylation at the cytosine position being analysed. It can be seen that Sample II had a higher degree of methylation than Sample I.
Seq. ID No. 1 trough Seq. ID No. 174
Sequences having odd sequence numbers (e.g., Seq. ID No. 1, 3, 5, ...) exhibit in each case sequences of the chemically pretreated genomic DNAs of different genes associated with pharmacogenomics. Sequences having even sequence numbers (e.g., Seq. ID No. 2, 4, 6, ...) exhibit in each case the sequences of the chemically pretreated genomic DNAs of genes associated with pharmacogenomics which are complementary to the preceding sequences (e.g., the complementary sequence to Seq. ID No.l is Seq. ID No.2, the complementary sequence to Seq. ID No.3 is Seq. ID No.4, etc.).
Seq. ID No. 175 trough Seq. ID No. 178
Seq. ID No. 1 trough Seq. ID No. 178 show sequences of oligonucleotides used in Example 1.
The following example relates to a fragment of a gene associated with pharmacogenomics, in this case, superoxide dismutase 1 in which a specific CG-position is analyzed for its methylation status.
Example 1: Methylation analysis of the gene superoxide dismutase 1 associated with pharmacogenomics.
The following example relates to a fragment of the gene superoxide dismutase 1 in which a specific CG-position is to be analyzed for methylation.
Two samples of the cell line HT29 (human colon adenocarcinoma cell) were grown in culture. Sample 1 was cultured in a standard growth medium and Sample 2 was cultured an identical growth medium, with the addition of milrinone (lμg/ml). The methylation status of the gene superoxide dismutase 1 was analysed in both samples.
In the first step, a genomic sequence is treated using bisulfite (hydrogen sulfite, disulfite) in such a manner that all cytosines which are not methylated at the 5-position of the base are modified in such a manner that a different base is substituted with regard to the base pairing behavior while the cytosines methylated at the 5-position remain unchanged.
If bisulfite solution is used for the reaction, then an addition takes place at the non-methylated cytosine bases. Moreover, a denaturating reagent or solvent as well as a radical interceptor must be present. A subsequent alkaline hydrolysis then gives rise to the conversion of non-
methylated cytosine nucleobases to uracil. The chemically converted DNA is then used for the detection of methylated cytosines. In the second method step, the treated DNA sample is diluted with water or an aqueous solution. Preferably, the DNA is subsequently desulfonated at an alkaline pH value. In the third step of the method, the DNA sample is amplified in a polymerase chain reaction, preferably using a heat-resistant DNA polymerase. In the present case, cytosines of the gene superoxide dismutase 1 are analyzed. To this end, a defined fragment having a length of 451 bp is amplified with the specific primer oligonucleotides AGGGGAAGAAAAGGTAAGTT (Sequence ID 175) and CCCACTCTAACCCCAAACCA (Sequence ID No. 176). This amplificate serves as a sample which hybridizes to an oligonucleotide previously bonded to a solid phase, forming a duplex structure, for example TTTTGGGGCGTTTTAATT (Sequence ID No. 177), the cytosine to be detected being located at position 111 of the amplificate. The detection of the hybridization product is based on Cy3 and Cy5 fluorescently labelled primer oligonucleotides which have been used for the amplification. A hybridization reaction of the amplified DNA with the oligonucleotide takes place only if a methylated cytosine was present at this location in the bisulfite-treated DNA. Thus, the methylation status of the specific cytosine to be analyzed is inferred from the hybridization product.
In order to verify the methylation status of the position, a sample of the amplificate is further hybridized to another oligonucleotide previously bonded to a solid phase. Said olignonucleotide is identical to the oligonucleotide previously used to analyze the methylation status of the sample, with the exception of the position in question. At the position to be analysed said oligonucleotide comprises a thymine base as opposed to a cytosine base i.e TTTTGGGGTGTTTTAATT (Sequence ID No. 178). Therefore, the hybridisation reaction only takes place if an unmethylated cytosine was present at the position to be analysed.
Example 2: Diagnosis of diseases associated with pharmacogenomics
In order to relate the methylation patterns to one of the conditions associated with drug response, it is initially required to analyze the DNA methylation patterns of a group of affected and of a group of control patients. These analyses are carried out, for example, analogously to Example 1. The results obtained in this manner are stored in a database and the CpG dinucleotides which are methylated differently between the two groups are identified. This can be carried out by determining individual CpG methylation rates as can be done, for example, in a
relatively imprecise manner, by sequencing or else, in a very precise manner, by a methyla- tion-sensitive "primer extension reaction". It is also possible for the entire methylation status to be analyzed simultaneously, and for the patterns to be compared, for example, by clustering analyses which can be carried out, for example, by a computer.
Subsequently, it is possible to allocate the examined patients to a specific therapy group and to treat these patients selectively with an individualized therapy.
Table 1
List of preferred genes associated with pharmacogenomics according to the invention
Claims (31)
1. A nucleic acid comprising a sequence at least 18 bases in length of a segment of the chemically pretreated DNA of genes associated with pharmacogenomics according to one of the sequences taken from the group of Seq. ID No.l to Seq. ID No.174 and sequences complementary thereto.
2. A nucleic acid comprising a sequence at least 18 base pairs in length of a segment of the chemically pretreated DNA of genes associated with pharmacogenomics according to one of the sequences of the genes ALDH6 (NM_000693), CYP11A (NM_000781), CYP11B1 (NM_000497), CYP3A3 (NM_000776 & NM_017460), DP YD (NM_000110), EPHX2 (NM_001979), OCLN (NM_002538), TXNRD1 (NM_003330), UGT8 (NM_003360), MRP (NM_004996, NM_019900, NM 019901, NM_019902, NM_019862, NM_019898, NM_019899) and sequences complementary thereto.
3. An oligomer, in particular an oligonucleotide or peptide nucleic acid (PNA)-oligomer, said oligomer comprising in each case at least one base sequence having a length of at least 9 nucleotides which hybridizes to or is identical to a chemically pretreated DNA of genes associated with pharmacogenomics according to one of the Seq ID Nos 1 to 174 according to claim 1 or to a chemically pretreated DNA of genes according to claim 2 and sequences complementary thereto.
4. The oligomer as recited in Claim 3; wherein the base sequence includes at least one CpG dinucleotide.
5. The oligomer as recited in Claim 3; characterized in that the cytosine of the CpG dinucleotide is located approximately in the middle third of the oligomer.
6. A set of oligomers, comprising at least two oligomers according to any of claims 3 to 5.
7. A set of oligomers as recited in Claim 6, comprising oligomers for detecting the methylation state of all CpG dinucleotides within one of the sequences according to Seq. ID Nos. 1 through 174 according to claim 1 or a chemically pretreated DNA of genes according to claim 2, and sequences complementary thereto.
8. A set of at least two oligonucleotides as recited in Claim 3, which can be used as primer oligonucleotides for the amplification of DNA sequences of one of Seq. ID 1 through Seq. ID 174 and sequences complementary thereto and/or sequences of a chemically pretreated DNA of genes according to claim 2, and sequences complementary thereto and segments thereof.
9. A set of oligonucleotides as recited in Claim 8, characterized in that at least one oligonucleotide is bound to a solid phase.
10. Use of a set of oligomer probes comprising at least ten of the oligomers according to any of claims 6 through 9 for detecting the cytosine methylation state and/or single nucleotide polymorphisms (SNPs) in a chemically pretreated genomic DNA according to claim 1 or a chemically pretreated DNA of genes according to claim 2.
11. A method for manufacturing an arrangement of different oligomers (array) fixed to a carrier material for analyzing diseases associated with the methylation state of the CpG dinucleotides of one of the Seq. ID 1 through Seq. ID 174 and sequences complementary thereto and/or chemically pretreated DNA of genes according to claim 2, wherein at least one oligomer according to any of the claims 3 through 5 is coupled to a solid phase.
12. An arrangement of different oligomers (array) obtainable according to claim 11.
13. An array of different oligonucleotide- and/or PNA-oligomer sequences as recited in Claim 12, characterized in that these are arranged on a plane solid phase in the form of a rectangular or hexagonal lattice.
14. The array as recited in any of the Claims 12 or 13, characterized in that the solid phase surface is composed of silicon, glass, polystyrene, aluminium, steel, iron, copper, nickel, silver, or gold.
15. A DNA- and or PNA-array for analyzing the methylation state of genes, comprising at least one nucleic acid according to one of the preceding claims.
16. A method for ascertaining genetic and/or epigenetic parameters for the diagnosis and/or therapy of existing diseases or the predisposition to specific diseases by analyzing cytosine methylations, characterized in that the following steps are carried out:
- in a genomic DNA sample, cytosine bases which are unmethylated at the 5-position are converted, by chemical treatment, to uracil or another base which is dissimilar to cytosine in terms of hybridization behavior;
- fragments of the chemically pretreated genomic DNA are amplified using sets of primer oligonucleotides according to Claim 8 or 9 and a polymerase, the amplificates carrying a detectable label;
- amplificates are hybridized to a set of oligonucleotides and/or PNA probes according to the Claims 6 and 7, or else to an array according to one of the Claims 12 through 15;
- the hybridized amplificates are subsequently detected.
17. The method as recited in Claim 16, characterized in that the chemical treatment is carried out by means of a solution of a bisulfite, hydrogen sulfite or disulfite.
18. The method as recited in one of the Claims 16 or 17, characterized in that more than ten different fragments having a length of 100 - 2000 base pairs are amplified.
19. The method as recited in one of the Claims 16 through 18, characterized in that the amplification of several DNA segments is carried out in one reaction vessel.
20. The method as recited in one of the Claims 16 through 19, characterized in that the polymerase is a heat-resistant DNA polymerase.
21. The method as recited in Claim 20, characterized in that the amplification is carried out by means of the polymerase chain reaction (PCR).
22. The method as recited in one of the Claims 16 through 21, characterized in that the labels of the amplificates are fluorescence labels.
23. The method as recited in one of the Claims 16 through 21, characterized in that the labels of the amplificates are radionuclides.
24. The method as recited in one of the Claims 16 through 21, characterized in that the labels of the amplificates are detachable molecule fragments having a typical mass which are detected in a mass spectrometer.
25. The method as recited in one of the Claims 16 through 21, characterized in that the amplificates or fragments of the amplificates are detected in the mass spectrometer.
26. The method as recited in one of the Claims 24 and/or 25, characterized in that the produced fragments have a single positive or negative net charge for better detectability in the mass spectrometer.
27. The method as recited in one of the Claims 24 through 26, characterized in that detection is carried out and visualized by means of matrix assisted laser desorption/ionization mass spectrometry (MALDI) or using electron spray mass spectrometry (ESI).
28. The method as recited in one of the Claims 16 through 27, characterized in that the genomic DNA is obtained from cells or cellular components which contain DNA, sources of DNA comprising, for example, cell lines, biopsies, blood, lymphatic fluid, sputum, stool, urine, cerebral-spinal fluid, tissue embedded in paraffin such as tissue from eyes, intestine, kidney, brain, heart, prostate, lung, breast or liver, histologic object slides, and all possible combinations thereof.
29. A kit comprising a bisulfite (= disulfite, hydrogen sulfite) reagent as well as oligonucleotides and/or PNA-oligomers according to one of the Claims 3 through 5.
30. The use of a nucleic acid according to Claims 1 or 2, of an oligonucleotide or PNA- oligomer according to one of the Claims 3 through 5, of a kit according to Claim 29, of an array according to one of the Claims 12 through 15, of a set of oligonucleotides according to one of claims 6 through 9 for the diagnosis of diseases.
31. The use of a nucleic acid according to Claims 1 or 2, of an oligonucleotide or PNA- oligomer according to one of Claims 3 through 5, of a kit according to Claim 29, of an array according to one of the Claims 12 through 15, of a set of oligonucleotides according to one of claims 6 through 9 for the therapy of diseases.
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE10032529A DE10032529A1 (en) | 2000-06-30 | 2000-06-30 | Diagnosis of major genetic parameters within the Major Histocompatibility Complex (MHC) |
| DE10032529 | 2000-06-30 | ||
| DE10043826 | 2000-09-01 | ||
| DE10043826 | 2000-09-01 | ||
| PCT/EP2001/007470 WO2002002806A2 (en) | 2000-06-30 | 2001-06-29 | Method and nucleic acids for analysing the methylation of genes implicated in pharmacogenomics |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| AU2001276371A1 true AU2001276371A1 (en) | 2002-01-14 |
Family
ID=26006285
Family Applications (8)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2001277521A Abandoned AU2001277521A1 (en) | 2000-06-30 | 2001-06-29 | Diagnosis of diseases associated with cell signalling |
| AU2001289617A Abandoned AU2001289617A1 (en) | 2000-06-30 | 2001-06-29 | Diagnosis of diseases associated with signal transduction |
| AU2001276371A Abandoned AU2001276371A1 (en) | 2000-06-30 | 2001-06-29 | Method and nucleic acids for analysing the methylation of genes implicated pharmacogenomics |
| AU2001287576A Abandoned AU2001287576A1 (en) | 2000-06-30 | 2001-07-02 | Method and nucleic acids for the differentiation of astrocytoma, oligoastrocytoma and oligodendroglioma tumor cells |
| AU2001283915A Abandoned AU2001283915A1 (en) | 2000-06-30 | 2001-07-02 | Diagnosis of diseases associated with development by means of assessing their methylation status |
| AU2001279707A Abandoned AU2001279707A1 (en) | 2000-06-30 | 2001-07-02 | Diagnosis of behavioural disorders, neurological disorders and cancer |
| AU2001287575A Abandoned AU2001287575A1 (en) | 2000-06-30 | 2001-07-02 | Diagnosis of diseases associated with the immune system by determining cytosine methylation |
| AU2001283916A Abandoned AU2001283916A1 (en) | 2000-06-30 | 2001-07-02 | Method and nucleic acids for the analysis of astrocytomas |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2001277521A Abandoned AU2001277521A1 (en) | 2000-06-30 | 2001-06-29 | Diagnosis of diseases associated with cell signalling |
| AU2001289617A Abandoned AU2001289617A1 (en) | 2000-06-30 | 2001-06-29 | Diagnosis of diseases associated with signal transduction |
Family Applications After (5)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2001287576A Abandoned AU2001287576A1 (en) | 2000-06-30 | 2001-07-02 | Method and nucleic acids for the differentiation of astrocytoma, oligoastrocytoma and oligodendroglioma tumor cells |
| AU2001283915A Abandoned AU2001283915A1 (en) | 2000-06-30 | 2001-07-02 | Diagnosis of diseases associated with development by means of assessing their methylation status |
| AU2001279707A Abandoned AU2001279707A1 (en) | 2000-06-30 | 2001-07-02 | Diagnosis of behavioural disorders, neurological disorders and cancer |
| AU2001287575A Abandoned AU2001287575A1 (en) | 2000-06-30 | 2001-07-02 | Diagnosis of diseases associated with the immune system by determining cytosine methylation |
| AU2001283916A Abandoned AU2001283916A1 (en) | 2000-06-30 | 2001-07-02 | Method and nucleic acids for the analysis of astrocytomas |
Country Status (5)
| Country | Link |
|---|---|
| US (5) | US20040023230A1 (en) |
| EP (9) | EP1297182A2 (en) |
| JP (1) | JP2004501666A (en) |
| AU (8) | AU2001277521A1 (en) |
| WO (8) | WO2002000926A2 (en) |
Families Citing this family (136)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6921467B2 (en) | 1996-07-15 | 2005-07-26 | Semitool, Inc. | Processing tools, components of processing tools, and method of making and using same for electrochemical processing of microelectronic workpieces |
| CA2277925A1 (en) | 1997-01-14 | 1998-07-16 | Human Genome Sciences, Inc. | Tumor necrosis factor receptors 6.alpha. and 6.beta. |
| US7285267B2 (en) | 1997-01-14 | 2007-10-23 | Human Genome Sciences, Inc. | Tumor necrosis factor receptors 6α & 6β |
| US6586661B1 (en) | 1997-06-12 | 2003-07-01 | North Carolina State University | Regulation of quinolate phosphoribosyl transferase expression by transformation with a tobacco quinolate phosphoribosyl transferase nucleic acid |
| US6818404B2 (en) | 1997-10-23 | 2004-11-16 | Exact Sciences Corporation | Methods for detecting hypermethylated nucleic acid in heterogeneous biological samples |
| US6565729B2 (en) | 1998-03-20 | 2003-05-20 | Semitool, Inc. | Method for electrochemically depositing metal on a semiconductor workpiece |
| US6497801B1 (en) | 1998-07-10 | 2002-12-24 | Semitool Inc | Electroplating apparatus with segmented anode array |
| US6916412B2 (en) | 1999-04-13 | 2005-07-12 | Semitool, Inc. | Adaptable electrochemical processing chamber |
| US7438788B2 (en) | 1999-04-13 | 2008-10-21 | Semitool, Inc. | Apparatus and methods for electrochemical processing of microelectronic workpieces |
| US7020537B2 (en) | 1999-04-13 | 2006-03-28 | Semitool, Inc. | Tuning electrodes used in a reactor for electrochemically processing a microelectronic workpiece |
| WO2000061837A1 (en) | 1999-04-13 | 2000-10-19 | Semitool, Inc. | Workpiece processor having processing chamber with improved processing fluid flow |
| US7351314B2 (en) | 2003-12-05 | 2008-04-01 | Semitool, Inc. | Chambers, systems, and methods for electrochemically processing microfeature workpieces |
| US7585398B2 (en) | 1999-04-13 | 2009-09-08 | Semitool, Inc. | Chambers, systems, and methods for electrochemically processing microfeature workpieces |
| US7189318B2 (en) | 1999-04-13 | 2007-03-13 | Semitool, Inc. | Tuning electrodes used in a reactor for electrochemically processing a microelectronic workpiece |
| US7264698B2 (en) | 1999-04-13 | 2007-09-04 | Semitool, Inc. | Apparatus and methods for electrochemical processing of microelectronic workpieces |
| DK1228208T3 (en) | 1999-10-28 | 2010-11-22 | Agensys Inc | 36P6D5: secreted tumor antigen |
| US7955794B2 (en) | 2000-09-21 | 2011-06-07 | Illumina, Inc. | Multiplex nucleic acid reactions |
| US7611869B2 (en) * | 2000-02-07 | 2009-11-03 | Illumina, Inc. | Multiplexed methylation detection methods |
| US8076063B2 (en) * | 2000-02-07 | 2011-12-13 | Illumina, Inc. | Multiplexed methylation detection methods |
| US7582420B2 (en) * | 2001-07-12 | 2009-09-01 | Illumina, Inc. | Multiplex nucleic acid reactions |
| AU2001276331A1 (en) | 2000-04-06 | 2001-10-23 | Epigenomics Ag | Diagnosis of diseases associated with metastasis |
| WO2002004686A2 (en) * | 2000-07-10 | 2002-01-17 | Epigenx Pharmaceutical, Inc. | Detecting methylated cytosine in polynucleotides |
| JP2002034575A (en) * | 2000-07-28 | 2002-02-05 | Shiseido Co Ltd | Human type ii 5 alpha-reductase promoter gene and its use |
| KR20030029885A (en) | 2000-08-30 | 2003-04-16 | 노쓰 캐롤라이나 스테이트 유니버시티 | Transgenic plants containing molecular decoys that alter protein content therein |
| DE10054974A1 (en) * | 2000-11-06 | 2002-06-06 | Epigenomics Ag | Diagnosis of diseases associated with Cdk4 |
| DE60128149D1 (en) | 2000-11-07 | 2007-06-06 | Univ North Carolina State | Putrescin-n-methyltransferasepromotor |
| DE10061338A1 (en) * | 2000-12-06 | 2002-06-20 | Epigenomics Ag | Diagnosis of diseases associated with angiogenesis |
| US6756200B2 (en) * | 2001-01-26 | 2004-06-29 | The Johns Hopkins University School Of Medicine | Aberrantly methylated genes as markers of breast malignancy |
| EP1410304A2 (en) * | 2001-03-26 | 2004-04-21 | Epigenomics AG | Method for epigenetic feature selection |
| US7736654B2 (en) | 2001-04-10 | 2010-06-15 | Agensys, Inc. | Nucleic acids and corresponding proteins useful in the detection and treatment of various cancers |
| US7235358B2 (en) | 2001-06-08 | 2007-06-26 | Expression Diagnostics, Inc. | Methods and compositions for diagnosing and monitoring transplant rejection |
| US6905827B2 (en) | 2001-06-08 | 2005-06-14 | Expression Diagnostics, Inc. | Methods and compositions for diagnosing or monitoring auto immune and chronic inflammatory diseases |
| WO2002100199A2 (en) | 2001-06-08 | 2002-12-19 | Vector Tobacco Ltd. | Modifying nicotine and nitrosamine levels in tobacco |
| US7026121B1 (en) | 2001-06-08 | 2006-04-11 | Expression Diagnostics, Inc. | Methods and compositions for diagnosing and monitoring transplant rejection |
| DE10128508A1 (en) | 2001-06-14 | 2003-02-06 | Epigenomics Ag | Methods and nucleic acids for the differentiation of prostate tumors |
| AU2002343330A1 (en) | 2001-08-31 | 2003-03-10 | Semitool, Inc. | Apparatus and methods for electrochemical processing of microelectronic workpieces |
| WO2003031932A2 (en) | 2001-10-05 | 2003-04-17 | Case Western Reserve University | Methods and compositions for detecting colon cancers |
| US20110151438A9 (en) | 2001-11-19 | 2011-06-23 | Affymetrix, Inc. | Methods of Analysis of Methylation |
| JP2005514956A (en) * | 2002-01-18 | 2005-05-26 | ジェンザイム・コーポレーション | Methods for detection of fetal DNA and quantification of alleles |
| US20030215842A1 (en) * | 2002-01-30 | 2003-11-20 | Epigenomics Ag | Method for the analysis of cytosine methylation patterns |
| EP1340818A1 (en) * | 2002-02-27 | 2003-09-03 | Epigenomics AG | Method and nucleic acids for the analysis of a colon cell proliferative disorder |
| EP1497462A4 (en) | 2002-03-07 | 2007-11-07 | Univ Johns Hopkins Med | GENOMIC SCREENING FOR CANCER RELATED GENES DELIVERED EPIGENETICALLY SILENT |
| US7569553B2 (en) | 2002-07-03 | 2009-08-04 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
| WO2004005476A2 (en) * | 2002-07-03 | 2004-01-15 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
| US20040053880A1 (en) | 2002-07-03 | 2004-03-18 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
| US7807803B2 (en) | 2002-07-03 | 2010-10-05 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
| US7605138B2 (en) * | 2002-07-03 | 2009-10-20 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
| US7576066B2 (en) | 2002-07-03 | 2009-08-18 | Coley Pharmaceutical Group, Inc. | Nucleic acid compositions for stimulating immune responses |
| US20040029128A1 (en) * | 2002-08-08 | 2004-02-12 | Epigenomics, Inc. | Methods and nucleic acids for the analysis of CpG dinucleotide methylation status associated with the calcitonin gene |
| JP4649331B2 (en) * | 2002-10-01 | 2011-03-09 | エピゲノミクス アーゲー | Improved treatment method and nucleic acid for breast cell proliferation disorder |
| AU2003290223A1 (en) * | 2002-12-02 | 2004-06-23 | Solexa Limited | Determination of methylation of nucleic acid sequences |
| AU2003303963A1 (en) * | 2002-12-20 | 2004-10-25 | Bioseek, Inc. | Drug target |
| ITRM20030149A1 (en) | 2003-04-02 | 2004-10-03 | Giuliani Spa | ANTISENSE OLIGONUCLEOTIDES (ODN) FOR SMAD7 AND THEIR USE IN THE MEDICAL FIELD |
| US20050009059A1 (en) * | 2003-05-07 | 2005-01-13 | Affymetrix, Inc. | Analysis of methylation status using oligonucleotide arrays |
| US7430335B2 (en) | 2003-08-13 | 2008-09-30 | Apple Inc | Pre-processing method and system for data reduction of video sequences and bit rate reduction of compressed video sequences using spatial filtering |
| US7403568B2 (en) | 2003-08-13 | 2008-07-22 | Apple Inc. | Pre-processing method and system for data reduction of video sequences and bit rate reduction of compressed video sequences using temporal filtering |
| WO2005042713A2 (en) * | 2003-10-28 | 2005-05-12 | The Johns Hopkins University | Quantitative multiplex methylation-specific pcr |
| ES2801379T3 (en) * | 2003-12-01 | 2021-01-11 | Epigenomics Ag | Methods and nucleic acids for the analysis of gene expression associated with the development of proliferative disorders of prostate cells |
| EP1561821B1 (en) | 2003-12-11 | 2011-02-16 | Epigenomics AG | Prognostic markers for prediction of treatment response and/or survival of breast cell proliferative disorder patients |
| EP2290071B1 (en) | 2004-05-28 | 2014-12-31 | Asuragen, Inc. | Methods and compositions involving microRNA |
| EP2281902A1 (en) * | 2004-07-18 | 2011-02-09 | Epigenomics AG | Epigenetic methods and nucleic acids for the detection of breast cell proliferative disorders |
| US20080171318A1 (en) * | 2004-09-30 | 2008-07-17 | Epigenomics Ag | Epigenetic Methods and Nucleic Acids for the Detection of Lung Cell Proliferative Disorders |
| EP2314688B1 (en) | 2004-11-12 | 2014-07-16 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
| US20060134650A1 (en) * | 2004-12-21 | 2006-06-22 | Illumina, Inc. | Methylation-sensitive restriction enzyme endonuclease method of whole genome methylation analysis |
| EP1693468A1 (en) | 2005-02-16 | 2006-08-23 | Epigenomics AG | Method for determining the methylation pattern of a polynucleic acid |
| EP1863924A2 (en) | 2005-03-11 | 2007-12-12 | Epiontis GmbH | Specific dnas for epigenetic characterisation of cells and tissues |
| EP1748080A3 (en) * | 2005-03-11 | 2007-04-11 | Epiontis GmbH | Specific DNAs for epigenetic characterisation of cells and tissues |
| PT1871912E (en) | 2005-04-15 | 2012-05-25 | Epigenomics Ag | Method for determining dna methylation in blood or urine samples |
| WO2006111586A2 (en) * | 2005-04-20 | 2006-10-26 | Proyecto De Biomedicina Cima, S.L. | Method for the in vitro determination of the degree of methylation of the line-1 promoter |
| US20060292585A1 (en) * | 2005-06-24 | 2006-12-28 | Affymetrix, Inc. | Analysis of methylation using nucleic acid arrays |
| WO2007003397A2 (en) * | 2005-07-01 | 2007-01-11 | Epigenomics Ag | Method and nucleic acids for the improved treatment of cancers |
| WO2007032748A1 (en) * | 2005-09-15 | 2007-03-22 | Agency For Science, Technology & Research | Method for detecting dna methylation |
| EP1951911A2 (en) | 2005-11-08 | 2008-08-06 | Euclid Diagnostics LLC | Materials and methods for assaying for methylation of cpg islands associated with genes in the evaluation of cancer |
| US20070161006A1 (en) * | 2006-01-10 | 2007-07-12 | Vita Genomics, Inc. | Single nucleotide polymorphisms in protein-tyrosine phosphatase receptor-type delta for the diagnosis of susceptibility to infection and asthma |
| WO2007095032A2 (en) * | 2006-02-09 | 2007-08-23 | Novartis Ag | Mutations and polymorphisms of ptk2b |
| US20070238115A1 (en) * | 2006-02-27 | 2007-10-11 | Dwinell Michael B | Method of Diagnosing and Treating Colon Cancer |
| US7901882B2 (en) | 2006-03-31 | 2011-03-08 | Affymetrix, Inc. | Analysis of methylation using nucleic acid arrays |
| US8084734B2 (en) * | 2006-05-26 | 2011-12-27 | The George Washington University | Laser desorption ionization and peptide sequencing on laser induced silicon microcolumn arrays |
| EP2024515B1 (en) * | 2006-05-31 | 2012-08-22 | Orion Genomics, LLC | Gene methylation in cancer diagnosis |
| EP2634264B1 (en) * | 2006-07-21 | 2016-09-14 | Epigenomics AG | Methods and nucleic acids related to the gene GLI3 for analyses of cellular proliferative disorders |
| AU2007299828C1 (en) * | 2006-09-19 | 2014-07-17 | Interpace Diagnostics, Llc | MicroRNAs differentially expressed in pancreatic diseases and uses thereof |
| CN101622350A (en) * | 2006-12-08 | 2010-01-06 | 奥斯瑞根公司 | miR-126 regulated genes and pathways as targets for therapeutic intervention |
| GB0625321D0 (en) * | 2006-12-19 | 2007-01-24 | Univ Surrey | Cancer biomarker |
| PT2103415T (en) | 2007-01-18 | 2019-06-27 | Molecor Tecnologia Sl | System for producing integral openings for biaxially oriented plastic pipes |
| US20090170086A1 (en) | 2007-02-02 | 2009-07-02 | Orion Genomics Llc | Gene Methylation In Esophageal Cancer Diagnosis |
| WO2008096146A1 (en) | 2007-02-07 | 2008-08-14 | Solexa Limited | Preparation of templates for methylation analysis |
| US20090131354A1 (en) * | 2007-05-22 | 2009-05-21 | Bader Andreas G | miR-126 REGULATED GENES AND PATHWAYS AS TARGETS FOR THERAPEUTIC INTERVENTION |
| WO2009036332A1 (en) | 2007-09-14 | 2009-03-19 | Asuragen, Inc. | Micrornas differentially expressed in cervical cancer and uses thereof |
| WO2009052386A1 (en) * | 2007-10-18 | 2009-04-23 | Asuragen, Inc. | Micrornas differentially expressed in lung diseases and uses thereof |
| WO2009070805A2 (en) | 2007-12-01 | 2009-06-04 | Asuragen, Inc. | Mir-124 regulated genes and pathways as targets for therapeutic intervention |
| WO2009108917A2 (en) * | 2008-02-29 | 2009-09-03 | Oncomethylome Sciences, S.A. | Markers for improved detection of breast cancer |
| WO2009111643A2 (en) * | 2008-03-06 | 2009-09-11 | Asuragen, Inc. | Microrna markers for recurrence of colorectal cancer |
| EP2285960B1 (en) | 2008-05-08 | 2015-07-08 | Asuragen, INC. | Compositions and methods related to mir-184 modulation of neovascularization or angiogenesis |
| EP2340314B8 (en) | 2008-10-22 | 2015-02-18 | Illumina, Inc. | Preservation of information related to genomic dna methylation |
| US8110796B2 (en) | 2009-01-17 | 2012-02-07 | The George Washington University | Nanophotonic production, modulation and switching of ions by silicon microcolumn arrays |
| CA2751688A1 (en) * | 2009-02-06 | 2010-08-12 | Biao He | Emx2 in cancer diagnosis and prognosis |
| US9490113B2 (en) * | 2009-04-07 | 2016-11-08 | The George Washington University | Tailored nanopost arrays (NAPA) for laser desorption ionization in mass spectrometry |
| WO2010144634A1 (en) * | 2009-06-09 | 2010-12-16 | Banner Sun Health Research Institute | Method and system to detect, diagnose, and monitor the progression of alzheimer's disease |
| EP2494067A1 (en) * | 2009-10-28 | 2012-09-05 | Signature Diagnostics AG | Method for the prognosis of ovarian carcinoma |
| US9394570B2 (en) * | 2010-04-21 | 2016-07-19 | The Chinese University Of Hong Kong | Marker for colon cancer and method for detecting colon cancer |
| HRP20160549T1 (en) | 2010-09-06 | 2016-07-29 | Molecor Tecnologia, S.L. | APPARATUS AND PROCEDURE FOR MANUFACTURING OPENINGS OF BIAXIALALLY ORIENTED PLASTIC PIPES WITH AN INTEGRATED CLOSING SEAL |
| WO2012054723A2 (en) * | 2010-10-22 | 2012-04-26 | Opko Curna Llc | Treatment of alpha-l-iduronidase (idua) related diseases by inhibition of natural antisense transcript to idua |
| US10435743B2 (en) | 2011-05-20 | 2019-10-08 | The Regents Of The University Of California | Method to estimate age of individual based on epigenetic markers in biological sample |
| US10526642B2 (en) | 2011-08-25 | 2020-01-07 | Commonwealth Scientific And Industrial Research Organisation | DNA methylation in colorectal and breast cancer diagnostic methods |
| WO2013040251A2 (en) | 2011-09-13 | 2013-03-21 | Asurgen, Inc. | Methods and compositions involving mir-135b for distinguishing pancreatic cancer from benign pancreatic disease |
| EP2820157B1 (en) * | 2012-03-02 | 2019-05-01 | Winthrop-University Hospital | Method for using probe based pcr detection to measure the levels of circulating demethylated beta cell derived dna as a measure of beta cell loss in diabetes |
| EP2914752B1 (en) | 2012-11-02 | 2022-03-09 | The Johns Hopkins University | Dna methylation biomarkers of post-partum depression risk |
| CA2902916C (en) | 2013-03-14 | 2018-08-28 | Mayo Foundation For Medical Education And Research | Detecting neoplasm |
| ES2527724B1 (en) * | 2013-05-29 | 2015-11-10 | Fundación Para La Investigación Biomédica Del Hospital Universitario La Paz | METHOD FOR PREACHING THE RESPONSE TO THE TREATMENT WITH RADIOTHERAPY COMBINED WITH CISPLATINO-BASED CHEMOTHERAPY |
| ES2812753T3 (en) | 2014-03-31 | 2021-03-18 | Mayo Found Medical Education & Res | Detection of colorectal neoplasm |
| US9840742B2 (en) * | 2014-06-16 | 2017-12-12 | JBS Science Inc. | Detection of hepatitis B virus (HBV) DNA and methylated HBV DNA in urine of patients with HBV-associated hepatocellular carcinoma |
| US10184154B2 (en) | 2014-09-26 | 2019-01-22 | Mayo Foundation For Medical Education And Research | Detecting cholangiocarcinoma |
| US10030272B2 (en) | 2015-02-27 | 2018-07-24 | Mayo Foundation For Medical Education And Research | Detecting gastrointestinal neoplasms |
| CN107532124B (en) | 2015-03-27 | 2022-08-09 | 精密科学公司 | Detection of esophageal disorders |
| US20180230539A1 (en) * | 2015-07-21 | 2018-08-16 | Indiana University Research And Technology Corporation | Cell-free methylated and unmethylated dna in diseases resulting from abnormalities in blood glucose levels |
| AU2016315924B2 (en) | 2015-08-31 | 2022-08-25 | Exact Sciences Corporation | Detecting gastric neoplasm |
| US10370726B2 (en) | 2016-04-14 | 2019-08-06 | Mayo Foundation For Medical Education And Research | Detecting colorectal neoplasia |
| AU2017250663B2 (en) | 2016-04-14 | 2023-06-15 | Mayo Foundation For Medical Education And Research | Detecting pancreatic high-grade dysplasia |
| CN105734152B (en) * | 2016-04-20 | 2019-02-26 | 苏州吉诺瑞生物科技有限公司 | Detect the primer pair and its application of the expression of people SRPK2 gene |
| WO2018045322A1 (en) * | 2016-09-02 | 2018-03-08 | Mayo Foundation For Medical Education And Research | Detecting hepatocellular carcinoma |
| WO2018081382A1 (en) * | 2016-10-26 | 2018-05-03 | Brown University | A method to measure myeloid suppressor cells for diagnosis and prognosis of cancer |
| CA3054836A1 (en) | 2017-02-28 | 2018-09-07 | Mayo Foundation For Medical Education And Research | Detecting prostate cancer |
| CN111655869B (en) | 2017-11-30 | 2024-06-28 | 梅约医学教育与研究基金会 | Detecting breast cancer |
| WO2019105090A1 (en) * | 2017-12-01 | 2019-06-06 | 博尔诚(北京)科技有限公司 | Composition for detecting esophageal cancer and use thereof |
| DK3700564T3 (en) | 2017-12-15 | 2025-11-10 | Elanco Animal Health Gmbh | IMMUNOSTIMULATING COMPOUNDS |
| EP3740589A4 (en) | 2018-01-17 | 2021-11-03 | The Regents of the University of California | PHENOTYPICAL AGE AND DNA METHYLATION BASED BIOMARKERS FOR LIFE EXPECTANCY AND MORBIDITY |
| CN108977457B (en) * | 2018-08-31 | 2021-04-02 | 长江大学 | A kind of preparation method of eel antibacterial peptide |
| WO2020076983A1 (en) | 2018-10-10 | 2020-04-16 | The Regents Of The University Of California | Dna methylation based biomarkers for life expectancy and morbidity |
| JP7320067B2 (en) | 2019-01-18 | 2023-08-02 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | DNA methylation measurements for mammals based on conserved loci |
| PE20212081A1 (en) * | 2019-04-11 | 2021-10-28 | Suntory Holdings Ltd | STEVIA PLANT WITH LOW POLLEN FORMATION |
| DE102020111423B4 (en) | 2020-04-27 | 2022-03-03 | Precision For Medicine Gmbh | MYH11/NDE1 region as an epigenetic marker for the identification of endothelial progenitor cells (EPCs) |
| BR112022026509A2 (en) * | 2020-06-23 | 2023-03-07 | Univ Colorado Regents | METHODS TO DIAGNOSE RESPIRATORY PATHOGENS AND PREDICT OUTCOMES RELATED TO COVID-19 |
| EP3945135A1 (en) * | 2020-07-27 | 2022-02-02 | Les Laboratoires Servier | Biomarkers for diagnosing and monitoring lung cancer |
| CA3190604A1 (en) | 2020-08-15 | 2022-02-24 | Regeneron Pharmaceuticals, Inc. | Treatment of obesity in subjects having variant nucleic acid molecules encoding calcitonin receptor (calcr) |
| EP4493723A1 (en) | 2022-03-15 | 2025-01-22 | Genknowme S.A. | Method determining the difference between the biological age and the chronological age of a subject |
| WO2024256726A1 (en) | 2023-06-15 | 2024-12-19 | Genknowme S.A. | Computer implemented method determining a value of allostatic load of a human being |
Family Cites Families (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4683195A (en) * | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
| US4683202A (en) * | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
| US4965188A (en) * | 1986-08-22 | 1990-10-23 | Cetus Corporation | Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme |
| US5744101A (en) * | 1989-06-07 | 1998-04-28 | Affymax Technologies N.V. | Photolabile nucleoside protecting groups |
| US5843654A (en) * | 1992-12-07 | 1998-12-01 | Third Wave Technologies, Inc. | Rapid detection of mutations in the p53 gene |
| US5837832A (en) * | 1993-06-25 | 1998-11-17 | Affymetrix, Inc. | Arrays of nucleic acid probes on biological chips |
| AU8126694A (en) * | 1993-10-26 | 1995-05-22 | Affymax Technologies N.V. | Arrays of nucleic acid probes on biological chips |
| US5804407A (en) * | 1993-11-04 | 1998-09-08 | University Technologies International, Inc. | Method of expressing genes in mammalian cells |
| US5756668A (en) * | 1994-11-15 | 1998-05-26 | The Johns Hopkins University School Of Medicine | Hypermethylated in cancer polypeptide, HIC-1 |
| US6017704A (en) * | 1996-06-03 | 2000-01-25 | The Johns Hopkins University School Of Medicine | Method of detection of methylated nucleic acid using agents which modify unmethylated cytosine and distinguishing modified methylated and non-methylated nucleic acids |
| AU7829398A (en) * | 1997-06-09 | 1998-12-30 | University Of Southern California | A cancer diagnostic method based upon dna methylation differences |
| US6342350B1 (en) * | 1997-09-05 | 2002-01-29 | The General Hospital Corporation | Alpha-2-macroglobulin diagnostic test |
| DE19754482A1 (en) * | 1997-11-27 | 1999-07-01 | Epigenomics Gmbh | Process for making complex DNA methylation fingerprints |
| ATE217028T1 (en) * | 1997-12-05 | 2002-05-15 | Max Planck Gesellschaft | METHOD FOR IDENTIFYING NUCLEIC ACIDS BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY |
| DE19905082C1 (en) * | 1999-01-29 | 2000-05-18 | Epigenomics Gmbh | Identification of methylation patterns of cytosine in genome DNA comprises chemical treatment to produce different base pairing behavior between cytosine and 5-methylcytosine |
| US20040029123A1 (en) * | 2000-03-15 | 2004-02-12 | Alexander Olek | Diagnosis of diseases associated with the cell cycle |
| AU2001276331A1 (en) * | 2000-04-06 | 2001-10-23 | Epigenomics Ag | Diagnosis of diseases associated with metastasis |
| DE10128508A1 (en) * | 2001-06-14 | 2003-02-06 | Epigenomics Ag | Methods and nucleic acids for the differentiation of prostate tumors |
| JP2005516269A (en) * | 2001-07-02 | 2005-06-02 | エピゲノミクス アーゲー | A distributed system for predicting complex phenotypes based on epigenetics |
-
2001
- 2001-06-29 AU AU2001277521A patent/AU2001277521A1/en not_active Abandoned
- 2001-06-29 EP EP01955325A patent/EP1297182A2/en not_active Withdrawn
- 2001-06-29 JP JP2002507050A patent/JP2004501666A/en not_active Withdrawn
- 2001-06-29 WO PCT/EP2001/007472 patent/WO2002000926A2/en not_active Ceased
- 2001-06-29 WO PCT/EP2001/007471 patent/WO2002002807A2/en not_active Ceased
- 2001-06-29 AU AU2001289617A patent/AU2001289617A1/en not_active Abandoned
- 2001-06-29 US US10/257,166 patent/US20040023230A1/en not_active Abandoned
- 2001-06-29 WO PCT/EP2001/007470 patent/WO2002002806A2/en not_active Ceased
- 2001-06-29 EP EP01969326A patent/EP1297185A2/en not_active Withdrawn
- 2001-06-29 AU AU2001276371A patent/AU2001276371A1/en not_active Abandoned
- 2001-06-29 EP EP01953995A patent/EP1294947A2/en not_active Withdrawn
- 2001-07-02 WO PCT/EP2001/007540 patent/WO2002002809A2/en not_active Ceased
- 2001-07-02 EP EP01962814A patent/EP1356099A2/en not_active Withdrawn
- 2001-07-02 EP EP01957909A patent/EP1294948A2/en not_active Withdrawn
- 2001-07-02 US US10/311,507 patent/US20040115630A1/en not_active Abandoned
- 2001-07-02 AU AU2001287576A patent/AU2001287576A1/en not_active Abandoned
- 2001-07-02 EP EP01967115A patent/EP1294951A2/en not_active Withdrawn
- 2001-07-02 WO PCT/EP2001/007536 patent/WO2002000927A2/en not_active Ceased
- 2001-07-02 EP EP01967116A patent/EP1355932A2/en not_active Withdrawn
- 2001-07-02 US US10/311,506 patent/US20080145839A1/en not_active Abandoned
- 2001-07-02 AU AU2001283915A patent/AU2001283915A1/en not_active Abandoned
- 2001-07-02 EP EP01962813A patent/EP1294950A2/en not_active Ceased
- 2001-07-02 AU AU2001279707A patent/AU2001279707A1/en not_active Abandoned
- 2001-07-02 AU AU2001287575A patent/AU2001287575A1/en not_active Abandoned
- 2001-07-02 EP EP06002091A patent/EP1676927A3/en not_active Withdrawn
- 2001-07-02 WO PCT/EP2001/007539 patent/WO2002000705A2/en not_active Ceased
- 2001-07-02 US US10/311,455 patent/US20030143606A1/en not_active Abandoned
- 2001-07-02 WO PCT/EP2001/007537 patent/WO2002000928A2/en not_active Ceased
- 2001-07-02 AU AU2001283916A patent/AU2001283916A1/en not_active Abandoned
- 2001-07-02 WO PCT/EP2001/007538 patent/WO2002002808A2/en not_active Ceased
-
2007
- 2007-08-07 US US11/835,336 patent/US20080026396A1/en not_active Abandoned
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20040023230A1 (en) | Method and nucleic acids for pharmacogenomic methylation analysis | |
| AU2001276330B2 (en) | Diagnosis of diseases associated with apoptosis | |
| US20040029123A1 (en) | Diagnosis of diseases associated with the cell cycle | |
| AU2001276330A1 (en) | Diagnosis of diseases associated with apoptosis | |
| US7381808B2 (en) | Method and nucleic acids for the differentiation of prostate tumors | |
| WO2002103041A2 (en) | Method and nucleic acids for the differentiation of prostate and renal carcinomas | |
| AU2006213968A1 (en) | Diagnosis of diseases associated with DNA replication | |
| AU2002345626A1 (en) | Method and nucleic acids for the differentiation of prostate tumors |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MK5 | Application lapsed section 142(2)(e) - patent request and compl. specification not accepted |