AU2001265273A1 - Animal food and method - Google Patents
Animal food and methodInfo
- Publication number
- AU2001265273A1 AU2001265273A1 AU2001265273A AU2001265273A AU2001265273A1 AU 2001265273 A1 AU2001265273 A1 AU 2001265273A1 AU 2001265273 A AU2001265273 A AU 2001265273A AU 2001265273 A AU2001265273 A AU 2001265273A AU 2001265273 A1 AU2001265273 A1 AU 2001265273A1
- Authority
- AU
- Australia
- Prior art keywords
- swine
- feed composition
- fatty acids
- omega
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 241001465754 Metazoa Species 0.000 title claims description 119
- 238000000034 method Methods 0.000 title claims description 84
- 235000013305 food Nutrition 0.000 title description 3
- 239000000203 mixture Substances 0.000 claims description 246
- 241000282898 Sus scrofa Species 0.000 claims description 198
- 235000020660 omega-3 fatty acid Nutrition 0.000 claims description 91
- 229940012843 omega-3 fatty acid Drugs 0.000 claims description 86
- 239000006014 omega-3 oil Substances 0.000 claims description 74
- 150000002148 esters Chemical class 0.000 claims description 66
- 239000003921 oil Substances 0.000 claims description 64
- 235000019198 oils Nutrition 0.000 claims description 64
- 229940119224 salmon oil Drugs 0.000 claims description 50
- 230000001965 increasing effect Effects 0.000 claims description 45
- 235000021323 fish oil Nutrition 0.000 claims description 42
- 235000020665 omega-6 fatty acid Nutrition 0.000 claims description 41
- 229940033080 omega-6 fatty acid Drugs 0.000 claims description 40
- 230000001850 reproductive effect Effects 0.000 claims description 37
- 235000019733 Fish meal Nutrition 0.000 claims description 34
- 239000004467 fishmeal Substances 0.000 claims description 34
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 32
- 229930195729 fatty acid Natural products 0.000 claims description 31
- 239000000194 fatty acid Substances 0.000 claims description 31
- 150000004665 fatty acids Chemical class 0.000 claims description 28
- YUFFSWGQGVEMMI-JLNKQSITSA-N (7Z,10Z,13Z,16Z,19Z)-docosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCCCC(O)=O YUFFSWGQGVEMMI-JLNKQSITSA-N 0.000 claims description 26
- 235000021294 Docosapentaenoic acid Nutrition 0.000 claims description 26
- JAZBEHYOTPTENJ-JLNKQSITSA-N all-cis-5,8,11,14,17-icosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O JAZBEHYOTPTENJ-JLNKQSITSA-N 0.000 claims description 26
- 235000020673 eicosapentaenoic acid Nutrition 0.000 claims description 26
- JAZBEHYOTPTENJ-UHFFFAOYSA-N eicosapentaenoic acid Natural products CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O JAZBEHYOTPTENJ-UHFFFAOYSA-N 0.000 claims description 26
- 229960005135 eicosapentaenoic acid Drugs 0.000 claims description 26
- 239000002253 acid Substances 0.000 claims description 25
- 230000035558 fertility Effects 0.000 claims description 20
- 238000009395 breeding Methods 0.000 claims description 19
- 230000001488 breeding effect Effects 0.000 claims description 19
- 239000002207 metabolite Substances 0.000 claims description 19
- 230000012173 estrus Effects 0.000 claims description 15
- 230000007423 decrease Effects 0.000 claims description 14
- 230000003247 decreasing effect Effects 0.000 claims description 12
- 241000251468 Actinopterygii Species 0.000 claims description 10
- 235000019688 fish Nutrition 0.000 claims description 10
- 230000006651 lactation Effects 0.000 claims description 10
- 239000000944 linseed oil Substances 0.000 claims description 10
- 235000021388 linseed oil Nutrition 0.000 claims description 10
- 208000035752 Live birth Diseases 0.000 claims description 9
- 230000013011 mating Effects 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000003963 antioxidant agent Substances 0.000 claims description 7
- 230000034994 death Effects 0.000 claims description 7
- 235000012054 meals Nutrition 0.000 claims description 6
- 239000010773 plant oil Substances 0.000 claims description 6
- 231100000527 sperm abnormality Toxicity 0.000 claims description 3
- 230000032696 parturition Effects 0.000 claims description 2
- 230000003078 antioxidant effect Effects 0.000 claims 2
- 239000000047 product Substances 0.000 description 35
- 241000282887 Suidae Species 0.000 description 16
- 235000005911 diet Nutrition 0.000 description 15
- 230000037213 diet Effects 0.000 description 15
- 230000000694 effects Effects 0.000 description 14
- 229940013317 fish oils Drugs 0.000 description 13
- -1 fish oils Substances 0.000 description 12
- 239000007788 liquid Substances 0.000 description 12
- 150000002632 lipids Chemical class 0.000 description 9
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 8
- 239000004615 ingredient Substances 0.000 description 8
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical class CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 7
- 235000020667 long-chain omega-3 fatty acid Nutrition 0.000 description 7
- 210000000287 oocyte Anatomy 0.000 description 7
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 6
- 235000019764 Soybean Meal Nutrition 0.000 description 6
- 239000012141 concentrate Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 239000004455 soybean meal Substances 0.000 description 6
- 240000008042 Zea mays Species 0.000 description 5
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 5
- 235000006708 antioxidants Nutrition 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- VZCCETWTMQHEPK-UHFFFAOYSA-N gamma-Linolensaeure Natural products CCCCCC=CCC=CCC=CCCCCC(O)=O VZCCETWTMQHEPK-UHFFFAOYSA-N 0.000 description 5
- VZCCETWTMQHEPK-QNEBEIHSSA-N gamma-linolenic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/CCCCC(O)=O VZCCETWTMQHEPK-QNEBEIHSSA-N 0.000 description 5
- 150000004668 long chain fatty acids Chemical class 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 241000972773 Aulopiformes Species 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 4
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 4
- 235000021342 arachidonic acid Nutrition 0.000 description 4
- 229940114079 arachidonic acid Drugs 0.000 description 4
- 235000005822 corn Nutrition 0.000 description 4
- 235000012343 cottonseed oil Nutrition 0.000 description 4
- 238000005538 encapsulation Methods 0.000 description 4
- 239000003925 fat Substances 0.000 description 4
- 235000019197 fats Nutrition 0.000 description 4
- 235000020664 gamma-linolenic acid Nutrition 0.000 description 4
- 229960002733 gamolenic acid Drugs 0.000 description 4
- 235000020778 linoleic acid Nutrition 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 235000019515 salmon Nutrition 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 3
- 229940072056 alginate Drugs 0.000 description 3
- 229920000615 alginic acid Polymers 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000002285 corn oil Substances 0.000 description 3
- 235000005687 corn oil Nutrition 0.000 description 3
- 230000004720 fertilization Effects 0.000 description 3
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 3
- 229960004488 linolenic acid Drugs 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000008722 morphological abnormality Effects 0.000 description 3
- 230000035935 pregnancy Effects 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 210000000582 semen Anatomy 0.000 description 3
- 235000012424 soybean oil Nutrition 0.000 description 3
- 239000003549 soybean oil Substances 0.000 description 3
- 230000035899 viability Effects 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 241000273930 Brevoortia tyrannus Species 0.000 description 2
- 241000252203 Clupea harengus Species 0.000 description 2
- 235000019750 Crude protein Nutrition 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 2
- 235000004347 Perilla Nutrition 0.000 description 2
- 244000124853 Perilla frutescens Species 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 2
- 235000019485 Safflower oil Nutrition 0.000 description 2
- 241000269821 Scombridae Species 0.000 description 2
- 235000019486 Sunflower oil Nutrition 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- MBMBGCFOFBJSGT-KUBAVDMBSA-N all-cis-docosa-4,7,10,13,16,19-hexaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(O)=O MBMBGCFOFBJSGT-KUBAVDMBSA-N 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 229940094199 black currant oil Drugs 0.000 description 2
- 235000021324 borage oil Nutrition 0.000 description 2
- 239000000828 canola oil Substances 0.000 description 2
- 235000019519 canola oil Nutrition 0.000 description 2
- 230000003915 cell function Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000002385 cottonseed oil Substances 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 150000002066 eicosanoids Chemical class 0.000 description 2
- 235000008524 evening primrose extract Nutrition 0.000 description 2
- 239000010475 evening primrose oil Substances 0.000 description 2
- 229940089020 evening primrose oil Drugs 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 235000019514 herring Nutrition 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 235000020640 mackerel Nutrition 0.000 description 2
- 235000013372 meat Nutrition 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 235000021281 monounsaturated fatty acids Nutrition 0.000 description 2
- 230000004899 motility Effects 0.000 description 2
- 210000004877 mucosa Anatomy 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 2
- LXNHXLLTXMVWPM-UHFFFAOYSA-N pyridoxine Chemical compound CC1=NC=C(CO)C(CO)=C1O LXNHXLLTXMVWPM-UHFFFAOYSA-N 0.000 description 2
- 210000004994 reproductive system Anatomy 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 235000005713 safflower oil Nutrition 0.000 description 2
- 239000003813 safflower oil Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 235000003441 saturated fatty acids Nutrition 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000002600 sunflower oil Substances 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 235000019165 vitamin E Nutrition 0.000 description 2
- 239000011709 vitamin E Substances 0.000 description 2
- YKHVVNDSWHSBPA-BLHCBFLLSA-N (2E,4E)-deca-2,4-dienoic acid Chemical compound CCCCC\C=C\C=C\C(O)=O YKHVVNDSWHSBPA-BLHCBFLLSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- YKHVVNDSWHSBPA-UHFFFAOYSA-N 2,4-Decadienoic acid Natural products CCCCCC=CC=CC(O)=O YKHVVNDSWHSBPA-UHFFFAOYSA-N 0.000 description 1
- 239000001763 2-hydroxyethyl(trimethyl)azanium Substances 0.000 description 1
- JBYXPOFIGCOSSB-GOJKSUSPSA-N 9-cis,11-trans-octadecadienoic acid Chemical compound CCCCCC\C=C\C=C/CCCCCCCC(O)=O JBYXPOFIGCOSSB-GOJKSUSPSA-N 0.000 description 1
- 235000019737 Animal fat Nutrition 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 1
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 244000020518 Carthamus tinctorius Species 0.000 description 1
- 235000019743 Choline chloride Nutrition 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- 208000035240 Disease Resistance Diseases 0.000 description 1
- 239000004258 Ethoxyquin Substances 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 102000003939 Membrane transport proteins Human genes 0.000 description 1
- 108090000301 Membrane transport proteins Proteins 0.000 description 1
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 235000019779 Rapeseed Meal Nutrition 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- BGNXCDMCOKJUMV-UHFFFAOYSA-N Tert-Butylhydroquinone Chemical compound CC(C)(C)C1=CC(O)=CC=C1O BGNXCDMCOKJUMV-UHFFFAOYSA-N 0.000 description 1
- JZRWCGZRTZMZEH-UHFFFAOYSA-N Thiamine Natural products CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- DQGMPXYVZZCNDQ-OBWVEWQSSA-N beta-calendic acid Chemical compound CCCCC\C=C\C=C\C=C\CCCCCCC(O)=O DQGMPXYVZZCNDQ-OBWVEWQSSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 235000013734 beta-carotene Nutrition 0.000 description 1
- 239000011648 beta-carotene Substances 0.000 description 1
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 1
- 229960002747 betacarotene Drugs 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 1
- 229940043253 butylated hydroxyanisole Drugs 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- FAPWYRCQGJNNSJ-UBKPKTQASA-L calcium D-pantothenic acid Chemical compound [Ca+2].OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O.OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O FAPWYRCQGJNNSJ-UBKPKTQASA-L 0.000 description 1
- 229960002079 calcium pantothenate Drugs 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- SGMZJAMFUVOLNK-UHFFFAOYSA-M choline chloride Chemical compound [Cl-].C[N+](C)(C)CCO SGMZJAMFUVOLNK-UHFFFAOYSA-M 0.000 description 1
- 229960003178 choline chloride Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 229940108924 conjugated linoleic acid Drugs 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 235000020940 control diet Nutrition 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 235000021051 daily weight gain Nutrition 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 235000019621 digestibility Nutrition 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- PXEDJBXQKAGXNJ-QTNFYWBSSA-L disodium L-glutamate Chemical compound [Na+].[Na+].[O-]C(=O)[C@@H](N)CCC([O-])=O PXEDJBXQKAGXNJ-QTNFYWBSSA-L 0.000 description 1
- 235000020669 docosahexaenoic acid Nutrition 0.000 description 1
- 229940090949 docosahexaenoic acid Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 235000019285 ethoxyquin Nutrition 0.000 description 1
- DECIPOUIJURFOJ-UHFFFAOYSA-N ethoxyquin Chemical compound N1C(C)(C)C=C(C)C2=CC(OCC)=CC=C21 DECIPOUIJURFOJ-UHFFFAOYSA-N 0.000 description 1
- 229940093500 ethoxyquin Drugs 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229960000304 folic acid Drugs 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 230000008217 follicular development Effects 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229940098330 gamma linoleic acid Drugs 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 235000020256 human milk Nutrition 0.000 description 1
- 210000004251 human milk Anatomy 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000008173 hydrogenated soybean oil Substances 0.000 description 1
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 230000000009 lactational effect Effects 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 230000013016 learning Effects 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 230000009061 membrane transport Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229940029985 mineral supplement Drugs 0.000 description 1
- 235000020786 mineral supplement Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 235000013923 monosodium glutamate Nutrition 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000007658 neurological function Effects 0.000 description 1
- 229960003966 nicotinamide Drugs 0.000 description 1
- 235000005152 nicotinamide Nutrition 0.000 description 1
- 239000011570 nicotinamide Substances 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 230000008182 oocyte development Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 235000008160 pyridoxine Nutrition 0.000 description 1
- 239000011677 pyridoxine Substances 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 239000004456 rapeseed meal Substances 0.000 description 1
- 229960002477 riboflavin Drugs 0.000 description 1
- 235000019192 riboflavin Nutrition 0.000 description 1
- 239000002151 riboflavin Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 229940073490 sodium glutamate Drugs 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 235000020238 sunflower seed Nutrition 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- 239000004250 tert-Butylhydroquinone Substances 0.000 description 1
- 235000019281 tert-butylhydroquinone Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 235000019157 thiamine Nutrition 0.000 description 1
- KYMBYSLLVAOCFI-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SCN1CC1=CN=C(C)N=C1N KYMBYSLLVAOCFI-UHFFFAOYSA-N 0.000 description 1
- 229960003495 thiamine Drugs 0.000 description 1
- 239000011721 thiamine Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 235000021081 unsaturated fats Nutrition 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 235000019156 vitamin B Nutrition 0.000 description 1
- 239000011720 vitamin B Substances 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 235000019168 vitamin K Nutrition 0.000 description 1
- 239000011712 vitamin K Substances 0.000 description 1
- 229940011671 vitamin b6 Drugs 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 235000019195 vitamin supplement Nutrition 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 1
Description
ANIMAL FOOD AND METHOD
Background of the Invention
The present invention relates to compositions and methods for improving performance of breeding populations of swine, in particular by increasing reproductive performance. These improvements enhance commercial value of swine populations. More particularly, this invention is directed to administration to both sows and boars of a feed composition containing marine animal products from which are derived long chain omega-3 fatty acids, such as eicosapentaenoic acid, docosahexaneoic acid, and docosapentaenoic acid, to increase the reproductive performance of breeding populations of swine.
Omega-3 and omega-6 fatty acids and their metabolites regulate numerous activities in vivo, including inflammation, disease resistance, platelet function and vessel wall contractions. Moreover, supplementation of omega-3 fatty acids and/or gamma-linolenic acid present in the diet of animals and humans are reported to have favorable effects on growth, heart disease, inflammatory and autoimmune disorders, diabetes, renal disease, cancer, and immunity as well as learning, visual acuity and neurological function.
On a cellular level long chain omega-3 fatty acids are readily incorporated into the phospholipid fraction of cell membranes where they influence membrane permeability/fluidity and transport. This represents a storage form of these fatty acids, where they remain until acted upon by phospholipase enzymes which release them for further conversion to eicosanoids.
Linoleic and alpha-linolenic acids are C18-containing fatty acids that are parent compounds of the omega-6 and omega-3 families of fatty acids, respectively. Omega-3 and omega-6 fatty acids undergo unsaturation (i.e., adding double bonds) and sequential elongation from the carboxyl end (i.e., adding 2-carbon units) with the D6-desaturase enzyme being the rate limiting enzyme in metabolism of these long chain fatty acids. The same enzymes are used for these families, making the families antagonistic to one another. Such antagonism, resulting from requirements for the same enzymes, extends into the further metabolism of the C20- containing members of these families into metabolites called eicosanoids.
The polyunsaturated fatty acids, including omega-3 and omega-6 fatty acids, differ from the other fatty acids in that they cannot be synthesized in the body from saturated or monounsaturated fatty acids, but must be obtained in the diet. The omega-6 fatty acid, linoleic acid, is found in high quantities in vegetable oils such as corn, cottonseed, soybean, safflower and sunflower oil. The omega-3 fatty acid, alpha-linolenic acid, is found in high quantities in flaxseed oil, linseed oil, perilla oil and canola oil. Other important compounds include arachidonic acid, found in animal fat; gamma-linolenic acid, found in evening primrose oil, borage oil, and blackcurrant oil; and eicosapentaenoic acid, docosahexaenoic acid, and docosapentaenoic acid derived from fish oils and marine algae. These long-chain fatty acids can be formed in the body by elongation and desaturation of the parent linoleic and alpha-linolenic acids if the parent compounds are supplied in the diet.
Various oils have been used as sources of omega-3 and omega-6 fatty acids in animal feed. The lactational responses of dairy cows fed unsaturated fat from extruded soybeans or sunflower seeds have been studied (Schingoethe, et al, 1996); flaxseed oil has been used in animal feed to increase the number of live births in sows, to increase the number of live weaned pigs, and to allow for earlier breeding (U.S. Pat. No. 5,110,592); conjugated linoleic acid has been used in animal feed to increase fat firmness, shelf life, and meat quality (U.S. Pat. No. 6,060,087); linseed oil and corn oil have been used in animal feed as a source of omega-6 fatty acids to increase the number of live births and to increase the number of weaned pigs (Quackenbush, et α .,1941); salmon oil has been used in pet food to reduce damage to skin and mucosa in animals, such as dogs and cats, where the animal is afflicted with cancer and is subjected to radiation therapy (U.S. Pat. No. 6,015,798); the effects of linseed oil, and omega-3 fatty acids in particular, on increased sperm fertility and female fertility, applicable to cattle, sheep, and rats, has been studied (Abayasekara, et al, 1999); modified tall oil supplemented swine animal feed has been used to improve the carcass characteristics of swine and to increase daily weight gain (U.S. Pat. No. 6,020,377); the use of salmon oil to increase sperm fertility in roosters using a 1.5:1 ratio of omega-6 fatty acids to omega-3 fatty acids has been studied (Blesbois, et al, 1997), and the effect of dietary fatty acids on lactic acid bacteria associated with the epithelial mucosa has been studied (Ringo, et /.,1998).
Summary of the Invention
Although a number of favorable effects of omega-3 and omega-6 fatty acids have been reported in animals, there has been no previous suggestion that the administration of a composition of omega-3 fatty acids or esters thereof preferably derived from marine animal products can be used to increase the reproductive performance of swine, as is described and claimed in accordance with the present invention.
The present invention is based in part on the inventors' discovery that marine animal products, including fish oils such as salmon oil, containing long chain omega-3 fatty acids, administered to a female swine in a feed composition may cause several surprising and unexpected results. A feed composition including marine animal products may result in several benefits including an increase in the number of live births to the female swine in the first parity, an increase in the number of total births to a female swine, a decrease in the interval from weaning to estrus for female swine, increases in the uniformity of birth weight of offspring of female swine, decreases in pre- weaning death loss of the offspring of female swine, and an increase in the farrowing rate for female swine. The feed compositions of the present invention containing marine animal products also decrease the percentage of morphologic sperm abnormalities in male swine, which should increase the fertility of male swine.
In an embodiment of the present invention a method is provided for increasing the reproductive performance of a female swine. The method comprises the step of administering to the female swine a biologically effective amount of a feed composition comprising marine animal products containing omega-3 fatty acids or esters thereof that serve as a source of metabolites in the female swine to improve reproductive performance of the female swine. Methods and compositions of the present invention may serve to increase the reproductive performance of a female swine by causing any of the aforementioned benefits. A "biologically effective amount" is that amount that produces the desired effect. Examples of biologically effective amounts are provided herein, but those of skill in the art can readily adjust dosages depending on the type of swine, e.g. genotype or lines, the desired effect, the time period of administration, and the like, by using the methods disclosed herein.
The marine animal product may include a fish oil, in particular a fish oil from a North Atlantic cold water fish, such as salmon oil, or may be fish meal or an oil derived from fish meal, or a mixture thereof. The marine animal product serves as a source of omega-3 and omega-6 fatty acids. In a preferred embodiment of the invention the omega-6 fatty acids/esters to omega-3 fatty acids/esters ratio in the feed composition is from about 3:1 to about 20:1.
In another embodiment of the present invention, a method is provided for decreasing the percentage of morphological abnormalities in sperm, which should increase the fertility of a male swine. The method comprises the step of administering to the male swine a biologically effective amount of a feed composition that includes oils containing omega-3 fatty acids or esters thereof that serve as a source of metabolites in the male swine to increase fertility of the male swine. The oil specified in this method may be a marine animal product, for example, a fish oil such as salmon oil, or any other oil that provides a source of omega-3 and omega-6 fatty acids. The oil may also be added to the feed composition in the form of fish meal, an oil derived from fish meal, a plant oil, or an oil derived from ground seed, or a mixture thereof. In a preferred embodiment of the invention the omega-6 fatty acids/esters to omega-3 fatty acids/esters ratio in the feed composition is from about 3:1 to about 20:1.
In yet another embodiment of this invention, a method is provided for increasing the reproductive performance of a breeding population of swine by administering the feed composition of the present invention to both sows (females) and boars (males). The method includes the steps of administering to a female swine a biologically effective amount of a feed composition that includes marine animal products containing omega-3 fatty acids or esters thereof that serve as a source of metabolites in the female swine to improve reproductive performance of the female swine and administering to a male swine a biologically effective amount of a feed composition including oils containing omega-3 fatty acids or esters thereof that serve as a source of metabolites in the male swine to decrease the percentage of morphological abnormalities in sperm, and decrease the number of rejected ejaculates which results in increased fertility of the male swine.
In another embodiment of the invention, a swine feed composition is provided. The composition includes an animal feed blend and marine animal
products wherein the marine animal products include a fish oil, such as salmon oil, a fish oil derived from fish meal, or fish meal products, or a mixture thereof, as a source of omega-6 and omega-3 fatty acids and their esters. Alternatively, the swine feed composition may include a plant oil, other than flaxseed oil, or a plant oil derived from ground seed. An example of a biologically effective feed composition is a composition containing about 0.025% to about 2% by weight of salmon oil, and the ratio of omega-6 fatty acids/esters to omega-3 fatty acids/esters in the feed composition is from about 3:1 to about 20:1. Another example of a biologically effective feed composition is a composition containing about 0.025% to about 1% by weight of salmon oil, and the ratio of omega-6 fatty acids/esters to omega-3 fatty acids/esters in the feed composition is from about 3:1 to about 20:1.
In an alternate embodiment of the present invention, a swine feed composition comprising an animal feed blend and marine animal products from which are derived omega-3 fatty acids selected from the group consisting of eicosapentaenoic acid, docosahexaneoic acid, and docosapentaenoic acid or a mixture thereof is provided. h another embodiment of the present invention, a method is provided for increasing the reproductive performance of a female swine. The method comprises the step of administering to the female swine a biologically effective amount of a feed composition comprising marine animal products from which are derived omega-3 fatty acids selected from the group consisting of eicosapentaenoic acid, docosahexaneoic acid, and docosapentaenoic acid or a mixture thereof wherein the composition is administered for a time sufficient to increase the reproductive performance of the female swine. The method may serve to increase the reproductive performance of female swine by any of the benefits to the female swine described above. Examples of a "time sufficient" are disclosed herein and also may be readily determined by those of skill in the art using the methods disclosed herein.
In another embodiment of the present invention, a method is provided for decreasing the percentage of morphologically abnormal sperm, and decreasing the percentage of rejected ejaculates which results in increased fertility of male swine. The method comprises the step of administering to the male swine a biologically effective amount of a feed composition including an oil from which are derived
omega-3 fatty acids. Suitable omega-3 fatty acids include eicosapentaenoic acid, docosahexaneoic acid, and docosapentaenoic acid or a mixture thereof wherein the composition is administered for a time sufficient to increase the fertility of the male swine. In yet another embodiment of the present invention, a method is provided for increasing the reproductive performance of a breeding population of swine. The method comprises the steps of administering to a female swine a biologically effective amount of a feed composition comprising marine animal products from which are derived omega-3 fatty acids selected from the group consisting of eicosapentaenoic acid, docosahexaneoic acid, and docosapentaenoic acid or a combination thereof wherein the composition is administered for a time sufficient to increase the reproductive performance of the female swine and administering to a male swine a biologically effective amount of a feed composition including a biologically effective amount of an oil from which are derived omega-3 fatty acids. Suitable fatty acids include eicosapentaenoic acid, docosahexaneoic acid, and docosapentaenoic acid or a mixture thereof wherein the composition is administered for a time sufficient to increase the fertility of the male swine.
To determine effects of the compositions of the present invention on swine reproductive performance, swine with similar genetic backgrounds are preferred. Optimal formulations may need some adjustments based on the genetic background of swine to be treated. Adjustments are preformed without undue experimentation by those of skill in the art.
Brief Description of the Drawings Fig. 1 is a frequency distribution of litter size for control and salmon oil- treated female swine (Data Set 1).
Fig. 2 is a frequency distribution of litter size for control and salmon oil- treated female swine (Data Set 2).
Detailed Description of the Invention
Methods and compositions are provided for improving the performance of a swine breeding population by increasing the reproductive
performance of female and male swine. The compositions of the present invention are lipid-containing compositions, and contain, in particular, marine animal products such as fish oil, fish meal, or an oil derived from fish meal, or combinations thereof. The oils from marine animals, wherein "animals" include fish, serve as a source of omega-3 fatty acids/esters and omega-6 fatty acids/esters and their metabolites, such as eicosapentaenoic acid, docosahexaneoic acid, and docosapentaenoic acid or mixtures thereof. The compositions include omega-6 and omega-3 fatty acids or esters thereof present in the composition in a ratio of from about 3 : 1 to about 20: 1. Oils are understood to be lipids or fats including the glyceride esters of fatty acids along with associated phosphatides, sterols, alcohols, hydrocarbons, ketones, alkyl esters, salts, and related compounds.
Fatty acids with no double bonds are termed saturated fatty acids, those with one double bond are termed monounsaturated fatty acids, and those with multiple double bonds are termed polyunsaturated fatty acids. Overall digestibility appears to increase with the degree of unsaturation.
A convenient shorthand system is used in this specification to denote the structure of fatty acids. This system uses a number denoting the number of carbons in the hydrocarbon chain, followed by a colon and a number indicating the number of double bonds in the molecule, and then by a "w6" or a "w3" to denote "omega-6" or "omega-3," respectively (e.g., 22:5w6). The "w6" or a "w3" denotes the location of the first double bond from the methyl end of the fatty acid molecule. Trivial names in the w6 series of fatty acids include linoleic acid (18:2w6), gamma- linoleic acid (18:3w6), and arachidonic acid (20:4w6). The only fatty acid in the w3 series with a trivial name is alpha-linolenic acid (18:3w3). For the purposes of this application a fatty acid with the nomenclature 20:5w3 is eicosapentaenoic acid, with the nomenclature 22:6w3 is docosahexaneoic acid, and with the nomenclature 22:5w3 is docosapentaenoic acid.
The methods of the present invention utilize a lipid-containing composition as a source of long chain omega-3 fatty acids, such as eicosapentaenoic acid, docosahexaneoic acid, docosapentaenoic acid, and esters thereof, to increase the reproductive performance of female and male swine. The reproductive performance of female animals may be increased by 1) increasing the number of live births to the
female animal, 2) increasing the total births (i.e., live and dead offspring) to the female animal, 3) decreasing the interval from weaning to estrus (i.e., estrus is the period during which the female animal is capable of conceiving) for a female swine, 4) increasing the uniformity of birth weight of offspring of a female swine, 5) decreasing pre-weaning death loss of the offspring of a female swine, and
6) increasing the farrowing rate (i.e., the percentage of animals that give birth) for female swine.
The number of live births to a female animal may be increased by such mechanisms as enhancing follicular development, increasing the number of oocytes available for fertilization by sperm, increasing the viability of oocytes, increasing the susceptibility of oocytes to fertilization, increasing the viability of fertilized eggs, and reducing the mortality of embryos. These effects may result from changes in oocyte membrane integrity or lipid composition such that oocyte development, fertilization, or cell function (e.g., oocyte cell membrane transport, transmembrane signaling, or the regulation ofintracellular signaling pathways in the oocyte) is altered to increase reproductive performance. An increase in long chain omega-3 fatty acids present in the tissues of the offspring at birth or obtained in the diet from the mother's milk may lead to an increase in the uniformity of birth weight of offspring of a female swine and/or a decrease in pre-weaning death loss of the offspring. A decrease in the interval from weaning to estrus for a female swine might result from changes in cellular metabolism due to the presence of long chain omega-3 fatty acids in the female animal's diet.
The reproductive performance of male animals may be increased by increasing the fertility of the spermatozoa of male animals. For example, the fertility of sperm may be increased by increasing the viability or motility of the sperm, by decreasing the percentage of abnormalities in the sperm (e.g., morphological abnormalities, abnormalities in staining intensity, and motility defects), or by increasing the numbers or the potency of sperm in male animals to which the lipid- containing composition is fed or otherwise administered. These effects may result from changes in sperm membrane integrity or lipid composition or in sperm cell function or development such that the performance of sperm to bind to and to fertilize an oocyte is increased.
A biologically effective amount of the lipid-containing composition must be administered to increase the reproductive performance of the animals. By "biologically effective amount" is meant an amount of the lipid-containing composition capable of increasing the reproductive performance of female or male animals by any mechanism, including those described herein.
The compositions of the present invention that contain marine animal products are preferably administered to swine orally in a feed composition, but any other effective method of administration known to those skilled in the art may be utilized. The feed composition may contain a marine animal product, such as a fish oil (e.g., salmon oil or another fish oil from a North Atlantic cold water fish), fish meal, or an oil derived from fish meal, or a mixture thereof, to provide a source of omega-3 fatty acids/esters and omega-6 fatty acids/esters in a mixture with an art- recognized animal feed blend.
The swine feed composition may be administered to the animals for any time period that is effective to increase the reproductive performance of swine. For example, the swine feed composition may be fed to the animals daily for the lifetime of a female or male animal. Alternatively, the swine feed composition may be administered to the female or male animal for a shorter time period. In a preferred embodiment of the invention, the swine feed is administered to a pregnant female animal for a period beginning about 1 to about 4 days prior to parturition (i.e., birth) and continuing through lactation (i.e., secretion of milk by the female animal) and through the next breeding until the female animal is impregnated a second time. In another preferred embodiment of the invention, the feed composition is administered to the female swine beginning about 30 days before a first mating of the female swine during an estrus and continuing through a second mating of the female swine during the same estrus. In another preferred embodiment the feed composition is administered to the female swine beginning about 30 days before mating. In an alternate but equally preferred embodiment of the invention, the swine feed composition is administered to the female animal during lactation. The time periods for administration of the feed composition described above are nonlimiting examples and it should be appreciated that any time period determined to be effective to increase the reproductive performance of swine may be used.
Any animal feed blend known in the art may be used in accordance with the present invention such as rapeseed meal, cottonseed meal, soybean meal, and cornmeal, but soybean meal and cornmeal are particularly preferred. The animal feed blend is supplemented with a marine animal product as a source of omega-3 fatty acids/esters and omega-6 fatty acids/esters, but other ingredients may optionally be added to the animal feed blend. Optional ingredients of the animal feed blend include sugars and complex carbohydrates such as both water-soluble and water-insoluble monosaccharides, disaccharides and polysaccharides. Optional amino acid ingredients that may be added to the feed blend are arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, valine, tyrosine ethyl HC1, alanine, aspartic acid, sodium glutamate, glycine, proline, serine, cysteine ethyl HC1, and analogs, and salts thereof. Vitamins that may be optionally added are thiamine HC1, riboflavin, pyridoxine HC1, niacin, niacinamide, inositol, choline chloride, calcium pantothenate, biotin, folic acid, ascorbic acid, and vitamins A, B, K, D, E, and the like. Protein ingredients may also be added and include protein obtained from meat meal or fish meal, liquid or powdered egg, fish solubles, and the like. Any medicament ingredients known in the art may also be added to the animal feed blend such as antibiotics.
Antioxidants may be added to the feed composition to prevent oxidation of the fatty acids present in the marine animal products (e.g., fish oils) used to supplement the feed composition, such as the omega-3 long chain fatty acids, eicosapentaenoic acid, docosahexaneoic acid, and docosapentaenoic acid. Oxidation of fatty acids occurs over time and may be affected by such conditions as moisture and the presence of mineral catalysts and by such characteristics of fatty acids as the number of double bonds and positioning and configuration of bonds. Oxidation of these omega-3 fatty acids can be prevented by the introduction of naturally-occurring antioxidants, such as beta-carotene, vitamin E, vitamin C, and tocopherol or of synthetic antioxidants such as butylated hydroxytoluene, butylated hydroxyanisole, tertiary-butylhydroquinone, propyl gallate or ethoxyquin to the feed composition. Compounds which act synergistically with antioxidants can also be added such as ascorbic acid, citric acid, and phosphoric acid. The amount of antioxidants incorporated in this manner depends on requirements such as product formulation,
shipping conditions (e.g., shipping under a nitrogen blanket), packaging methods, and desired shelf life.
The animal feed blend is supplemented with marine animal products such as fish oils, fish meal, fish oils derived from fish meal, other fish meal products, and the like, or a combination thereof. The fish oils may be obtained from any source, but a particularly preferred source is North Atlantic cold water fish. Fish oils obtained from North Atlantic cold water fish for use in accordance with the present invention include salmon oil, menhaden oil, mackerel oil, herring oil, and the like, but fish oils from sources other than North Atlantic cold water fish may also be used in accordance with the present invention. Fish oils provide a source of both omega-3 and omega-6 fatty acids, but are a particularly good source of omega-3 polyunsaturated fatty acids. The omega-3 polyunsaturated long chain fatty acids eicosapentaenoic acid (20:5w3), docosahexaneoic acid (22:6w3), and docosapentaenoic acid (22:5w3) are typical of fish oil and together comprise about 25-38% by weight of the fish oil. Omega-6 polyunsaturated fatty acids present in fish oil include linoleic acid and arachidonic acid and are present at lesser concentrations of about 10% by weight. The oils or fatty acid ester components may be added in an unprocessed form or in pure form, may be natural products or may be synthetic, and may be conjugated or unconjugated. The fatty acid esters added to the feed composition are preferably in the form of triglycerides, diglycerides, monoglycerides, phospholipids, lysopholipids, or are from natural sources and are chemically beneficiated for enhanced content of desired fatty acid esters.
The omega-6 fatty acids usable in the present invention are preferably unsaturated fatty acids having at least two carbon-carbon double bonds such as 2,4- decadienoic acid, linolenic acid, gamma-linolenic acid, 8, 10, 12-octadecatrienoic acid and arachidonic acid. Gamma-linolenic acid is particularly preferred. The omega-6 fatty acids/esters to omega-3 fatty acids/esters ratio in the feed composition is from about 3:1 to about 20:1. It is to be understood that the ratio of omega-6 fatty acids/esters to omega-3 fatty acids/esters in the feed composition refers to the ratio in the final feed composition (i.e., the feed composition as a final mixture) containing the animal feed blend, the marine animal product (e.g., a fish oil), and any other oils or optionally added ingredients.
Omega-6 fatty acids/esters are present in fish oils at lower concentrations than omega-3 fatty acids/esters, and, thus, to achieve the ratios of omega-6 fatty acids/esters to omega-3 fatty acids esters of from about 3:1 to about 20:1 for use in the present invention, an additional source of omega-6 fatty acids/esters is generally used in the feed composition. Additional sources of omega-6 fatty acids/esters for use in the feed composition of the present invention include omega-6 fatty acids/esters derived from an art-recognized meal such as corn meal or soybean meal or from oils such as corn oil, cottonseed oil, soybean oil, safflower oil, sunflower oil, linseed oil, borage oil, blackcurrant oil, evening primrose oil, and the like.
The omega-3 fatty acids/esters and omega-6 fatty acids/esters may be administered to the female and male swine in the form of a marine animal product, such as fish meal, or preferably an oil, such as the fish oils and oils derived from fish meal described herein or mixtures thereof, wherein the oil is used as a supplement to an art-recognized animal feed blend. The oil predominantly contains esters of omega- 3 and omega-6 fatty acids which are understood to be the glyceride ester precursors of the long chain omega-3 and omega-6 fatty acid metabolites, such as eicosapentaenoic acid, docosahexaneoic acid, and docosapentaenoic acid, which are believed to be the active form of the lipid molecule in accordance with the present invention. However, the oil may also contain small amounts of free omega-3 and omega-6 fatty acids such as C10- to C18-containing free fatty acids. The glyceride ester precursors are broken down intracellularly in the animal after adsorption through the gastrointestinal tract to form the free omega-3 and omega-6 fatty acids. The glyceride ester precursors present in the oils used in accordance with the present invention may also be glyceride ester precursors of C10- to C18-containing fatty acids that undergo unsaturation and sequential elongation to form C20- to C22-containing long chain fatty acids, such as eicosapentaenoic acid (20:5w3), docosahexaneoic acid (22:6w3), and docosapentaenoic acid (22:5w3).
The feed composition of the present invention is supplemented with concentrations of a marine animal product, such as fish oil, fish meal, or an oil derived from fish meal, or combinations thereof, sufficient to provide amounts of omega-3 fatty acids/esters that are effective in increasing the reproductive
performance of breeding populations of swine. For example, in a preferred embodiment of the invention the feed composition is supplemented with a fish oil containing omega-3 fatty acids/esters, such as salmon oil, in an amount of about 0.025% to about 1% by weight of the feed composition. In another preferred embodiment the feed composition is supplemented with a fish oil containing omega-3 fatty acids/esters, such as salmon oil, in an amount of about 0.025% to about 2%. In yet another preferred embodiment the feed composition is supplemented with a fish oil, such as salmon oil, in an amount of about 0.1% to about 0.5% by weight of the feed composition, hi another preferred embodiment the feed composition is supplemented with a fish oil in an amount of about 0.2% to about 0.4% by weight of the feed composition. In each of these embodiments of the invention it is to be understood that the percentage of the fish oil by weight of the feed composition refers to the final feed composition (i.e., the feed composition as a final mixture) containing the animal feed blend, the marine animal product (i.e., the fish oil), and any other oils, and optionally added ingredients. In such embodiments of the invention, the fish oil may be derived from any type offish or from fish meal.
In another embodiment of the invention, the feed composition is supplemented with a marine animal product such as fish meal. In one preferred embodiment the feed composition is supplemented with fish meal in an amount of about 1%» to about 10% by weight of the feed composition. In another preferred embodiment, the feed composition is supplemented with fish meal in an amount of about 3% to about 4% by weight of the feed composition. It is to be understood that the percentage offish meal by weight refers to the final feed composition containing the animal feed blend, the marine animal product, and any other oils, and optionally added ingredients.
The feed composition of the present invention can be administered to male swine or to female swine or to both male and female swine in a breeding population of swine to increase the reproductive performance of the animals. The feed composition administered to female swine is supplemented with marine animal products, such as a fish oil, fish meal, or a fish oil derived from fish meal, or a mixture thereof, in an amount sufficient to increase the reproductive performance of the female animals. The feed composition administered to male swine is preferably
supplemented with a marine animal product, most preferably an oil, such as a fish oil, but fish meal, or an oil derived from fish meal, or combinations thereof, may also be used. For example, fish oils obtained from North Atlantic cold water fish including salmon oil, menhaden oil, mackerel oil, herring oil, and the like, may be used but the feed composition administered to the male swine may, alternatively, be supplemented with any other oil or source of omega-3 fatty acids/esters that is effective in increasing fertility of the male swine, including oils from any type offish or plant oils. Exemplary of other oils for use in supplementing the feed composition administered to the male swine as a source of omega-3 fatty acids/esters are linseed oil, perilla oil, canola oil, soybean oil, and the like. In another embodiment of the invention, the feed composition administered to the male swine is supplemented with an oil in the form of ground raw seed.
The marine animal products, such as fish oil (e.g., salmon oil), may be administered in an unencapsulated or an encapsulated form in a mixture with an animal feed blend. Encapsulation protects the omega-3 fatty acids/esters and omega-6 fatty acids/esters from breakdown and/or oxidation prior to digestion and absorption of the fatty acids/esters by the animal (i.e., encapsulation increases the stability of fatty acids) and provides a dry product for easier mixing with an animal feed blend. The omega-3 fatty acids/esters and omega-6 fatty acids/esters can be protected in this manner, for example, by coating the oil with a protein or any other substances known in the art to be effective encapsulating agents such as polymers, waxes, fats, and hydrogenated vegetable oils. For example, an oil may be encapsulated using an art- recognized technique such as a Na2+-alginate encapsulation technique wherein the oil is coated with Na2+-alginate followed by conversion to Ca2+-alginate in the presence of Ca2+ ions for encapsulation. Alternatively, the oil may be encapsulated by an art- recognized technique such as prilling (i.e., atomizing a molten liquid and cooling the droplets to form a bead). For example, the oil may be prilled in hydrogenated cottonseed flakes or hydrogenated soy bean oil to produce a dry oil. The oil may be used in an entirely unencapsulated form, an entirely encapsulated form, or mixtures of unencapsulated and encapsulated oil may be added to the feed composition. Oils other than fish oils may be similarly treated.
EXAMPLE 1: Salmon Oil Typical Analvsis
Total Omega 3 Fatty Acids 31.76 Total Omega 6 Fatty Acids 5.66
Omega 3: Omega 6 ratio 5.61
EXAMPLE 2: Effect of Feed Composition Containing Fish Oil on Reproductive Performance of Female Swine
DATA SET 1:
LACTATION DIET Control and treated sows were fed the diets shown below during lactation. During breeding sows were fed from the time of weaning to estrus.
2000 lbs. 2000 lbs.
During estrus, sows were fed the following diet either to the first or second mating, if a second mating was necessary.
BREEDLNG DIET
2000 lbs.
*44% crude protein
RESULTS
DATA SET 2:
LACTATIO DLET
2000 lbs. 2000 lbs
*44%> crude protein Sows were fed during lactation.
RESULTS
EXAMPLE 3: Effect of Feed Composition Containing Fish Oil on Boars' Reproductive System
In preliminary studies, boar ration #1 was used. As a preliminary result, there was a 25-30% increase in the number of doses of semen produced by a treated boar. Most of this response was due to less of the boar's ejaculates being rejected from further processing, thus increasing the number of doses of semen produced. This had a significant increase in financial gains from this stud.
Another large test on the effects of the feed composition of the present invention on the reproductive system of boars was performed with approximately 220 boars. The boars were first fed the control ration (ration #3) and ejaculates were examined for each boar. The boars were then fed boar ration #2 containing salmon oil and ejaculates were examined for each boar. The boars were fed the same diet during the "treatment" period as during the control period except for the addition of salmon oil at 5 lbs./ton of final diet. The effect of feeding boar ration #2 was that the number of rejected ejaculates was 50% less when the boars were fed boar ration #2 than when the boars were fed the control diet (ration #3). There were 86 rejected ejaculates when the boars were fed the control ration and 41 rejected ejaculates when the boars were fed ration #2. This is a significant savings and improved efficiency of producing doses of semen.
TREATMENT RATIONS
BOAR RATION #1
Corn 1371.5
Soybean Meal 300.0
Fish Meal 60.0
Boar Base 268.5
2000.0 lbs.
BOAR RATION #2
Corn 1326.5
Soybean Meal 400.0
Salmon Oil 5.0
Boar Base 268.5
2000.0 lbs.
CONTROL RATIONS
Corn 1331.5
Soybean Meal 400
Salmon Oil 0
Boar Base 268.5
2000 lbs.
Boars were fed individually once daily, and were kept separate from the females.
EXAMPLE 4: Effect of Feed Composition Containing Fish Oil on the Reproductive Performance of Female Swine
DATA SET 1:
Female swine were randomly assigned within parity to a control or a salmon oil containing diet upon entry to the farrowing room at approximately 110 days of gestation. Control sows received the lactation ration described below and treated sows received the same ration with 5 pounds of sahnon oil replacing 5 pounds of fat.
LACTATION RATION
Female swine in the treatment group continued on the salmon oil- containing diet following weaning during the rebreeding period, with 5 pounds of salmon oil included in the breeding ration (described below).
BREEDING RATION
The salmon oil was stored in a 55 -gallon metal drum. Each time feed was prepared, salmon oil was removed from the drum with a manual pump, weighed and placed in the mixer. Feed was immediately delivered to a designated storage tank adjacent to the farrowing rooms. Two feed tanks with associated auger system delivered feed to each farrowing room. Fresh feed was prepared at approximately one week intervals, and feeding of the animals with a portion of the freshly prepared feed was initiated immediately. A similar procedure was followed for the breeding diet. Female swine were fed according to standard procedures, which consisted of female swine receiving 4 to 5 pounds of feed per day prior to farrowing and then increasing the amount of feed by approximately 2 pound per day post farrowing until the female swine reached ad libitum intake. Female swine received approximately 6 pounds of feed per day during breeding.
Within 48 hours following farrowing, piglets were cross-fostered to equalize the number of piglets nursing on each sow. Piglets were fostered within and across treatments and were weaned at approximately 14 days after birth and the female swine were then moved to breeding stalls for estrus detection and mating. All female swine were housed in gestation stalls and fed a common gestation ration until subsequent entry into the farrowing room.
A total of 42 control and 45 treated sows were allotted to the trial. The total number of piglets born at the second farrowing was greater (p< 0.05) for salmon oil treated (13.2) than control sows (11.7) as shown in the table below.
ab Means within a row without common superscripts differ significantly (P<0.05).
The frequency distribution for litter size is shown Fig. 1. This frequency distribution shows a sliift, with fewer litters of less than twelve piglets for treated female swine compared to controls and greater numbers of larger litters for treated female swine.
DATA SET 2:
The same procedures as described above were used except that a total of 109 control and 107 sows were allotted to the trial and the lactation and breeding rations described below were used.
The total number of piglets born at the second farrowing was greater (p< 0.05) for salmon oil treated (11.76) than control sows (10.67) as shown below. The frequency distribution for litter size is shown in Fig. 2. This frequency distribution shows a shift, with fewer litters of less than eleven pigs for treated female swine compared to controls and a greater number of larger litters for treated female swine.
ab Means within a row without common superscripts differ significantly (P<0.05)
EXAMPLE 5: Effect of Prilling on Stability of Omega Fatty Acids in the Feed
Composition
Salmon Oil was prilled (i.e., converted from a molten liquid and atomized into droplets to form a prill, or a bead) to produce a 35% w/w salmon oil prilled concentrate. The prilled concentrate was mixed at 10.75% w/w with animal feed. Samples (about 0.5 kg) of prilled concentrate (no feed), control feed (lactation diet composition as described in Example 4) without salmon oil, control feed plus
prilled concentrate, control feed plus liquid salmon oil (not prilled), and a premix (a vitamin and mineral supplement) with liquid salmon oil were collected and were analyzed for omega fatty acid content over an 8-week period. Prilled concentrate, control feed, and control feed plus prilled concentrate samples were collected on the day of manufacture and were analyzed within 7 days of manufacture (designated as "Wk 0"). Products were sampled at 4-week intervals for fatty acid analysis (designated "Wk 4" and "Wk 8"). Samples of control feed plus liquid salmon oil and premix plus liquid salmon oil were collected and analyzed approximately four weeks after manufacture (designated "Wk 4"). Samples of the control feed plus liquid salmon oil and premix plus liquid salmon oil were collected and analyzed again four weeks later (designated "Wk 8). The samples were analyzed for omega fatty acid content by using art-recognized techniques for lipid extraction ("Mojonnier Method," A.O.A.C. 954.02, 15th Edition, 1990) and fatty acid analysis (determined by gas chromatography-A.O.C.S. Cele-91 and Qeld-9l for omega fatty acids). The results are shown in the table below. The data for the salmon oil- containing feed and salmon oil-containing premix samples are expressed as % by weight (i.e., g/lOOg). The results demonstrate that the omega fatty acids in prilled salmon oil from a mixture with animal feed are stable over time. In contrast, the omega fatty acids in liquid salmon oil in a mixture with animal feed or with premix are not detected at 4 weeks after mixture with the feed composition, likely due to oxidation of the fatty acids.
Prilled SO inclusino rate 10.75%. Liquid SO inclusion rate 3.75%. Liquid SO inclusion rate 2.8%.
Claims (70)
1. A method of increasing the reproductive performance of a female swine, comprising the step of administering to the female swine a biologically effective amount of a feed composition comprising marine animal products containing omega-3 fatty acids or esters thereof that serve as a source of metabolites in the female swine to improve reproductive performance of the female swine.
2. The method of claim 1 wherein the marine animal product is selected from the group consisting of a fish oil, a fish oil derived from a fish meal product, and a fish meal product or a mixture thereof.
3. The method of claim 1 wherein the marine animal product comprises a fish oil from a North Atlantic cold water fish.
4. The method of claim 3 wherein the fish oil comprises salmon oil.
5. The method of claim 1 wherein the feed composition further comprises omega-6 fatty acids or esters thereof.
6. The method of claim 5 wherein the omega-6 fatty acids/esters to omega-3 fatty acids/esters ratio in the feed composition as a final mixture is from about 3:1 to about 20:1.
7. The method of claim 1 wherein the omega-3 fatty acids comprise C20 and C22 omega-3 fatty acids.
8. The method of claim 4 wherein the feed composition as a final mixture comprises about 0.025%> to about 1% by weight of salmon oil.
9. The method of claim 2 wherein the feed composition as a final mixture comprises about 0.025%> to about 1% by weight of the fish oil.
10. The method of claim 4 wherein the feed composition as a final mixture comprises about 0.025% to about 2% by weight of salmon oil.
11. The method of claim 2 wherein the feed composition as a final mixture comprises about 0.025% to about 2% by weight of the fish oil.
12. The method of claim 2 wherein the feed composition as a final mixture comprises about 1% to about 10% by weight of the fish meal product.
13. The method of claim 1 wherein the feed composition is administered daily to the female animal.
14. The method of claim 1 wherein the feed composition is administered to the female swine beginning about 30 days before a first mating of the female swine during an estrus and continuing through a second mating of the female swine during the same estrus.
15. The method of claim 1 wherein the feed composition is administered to the female swine beginning about 1 to about 4 days prior to parturition and continuing through the next breeding.
16. The method of claim 1 wherein the feed composition is administered during lactation.
17. The method of claim 1 wherein the feed composition as a final mixture further comprises an antioxidant.
18. The method of claim 2 wherein the omega fatty acids in the fish oil are stabilized by prilling.
19. A method of increasing the number of live births to a female swine, comprising the step of administering to the female swine a biologically effective amount of a feed composition comprising marine animal products containing omega-3 fatty acids or esters thereof that serve as a source of metabolites in the female swine to increase the number of live births to the female swine.
20. A method of increasing the total number of births to a female swine, comprising the step of administering to the female swine a biologically effective amount of a feed composition comprising marine animal products containing omega-3 fatty acids or esters thereof that serve as a source of metabolites in the female swine to increase the total number of births to the female swine.
21. A method of decreasing the interval from weaning to estrus for a female swine, comprising the step of administering to the female swine a biologically effective amount of a feed composition comprising marine animal products containing omega-3 fatty acids or esters thereof that serve as a source of metabolites in the female swine to decrease the interval from weaning to estrus for a female swine.
22. A method of decreasing the interval from weaning to remating for a female swine, comprising the step of administering to the female swine a biologically effective amount of a feed composition comprising marine animal products containing omega-3 fatty acids or esters thereof that serve as a source of metabolites in the female swine to decrease the interval from weaning to remating for a female swine.
23. A method of increasing the uniformity of birth weight of offspring of a female swine, comprising the step of administering to the female animal a biologically effective amount of a feed composition comprising marine animal products containing omega-3 fatty acids or esters thereof that serve as a source of metabolites in the female swine to increase the uniformity of birth weight of offspring of a female swine.
24. A method of decreasing pre-weaning death loss of the offspring of a female swine, comprising the step of administering to the female swine a biologically effective amount of a feed composition comprising marine animal products containing omega-3 fatty acids or esters thereof that serve as a source of metabolites in the female swine to decrease pre-weaning death loss of the offspring of the female swine.
25. A method of increasing the farrowing rate of a female swine, comprising the step of administering to the female swine a biologically effective amount of a feed composition comprising marine animal products containing omega-3 fatty acids or esters thereof that serve as a source of metabolites in the female swine to increase the farrowing rate of the female swine.
26. A method of increasing the fertility of a male swine, comprising the step of administering to the male swine a biologically effective amount of a feed composition comprising an oil containing omega-3 fatty acids or esters thereof that serve as a source of metabolites in the male swine to increase fertility of the male swine.
27. The method of claim 26 wherein the oil is a marine animal product.
28. The method of claim 26 wherein the oil is salmon oil.
29. The method of claim 26 wherein the oil is added to the feed composition in the form offish meal.
30. The method of claim 26 wherein the oil is selected from the group consisting of a fish oil, an oil derived from a fish meal product, an oil derived from a plant, and an oil derived from ground seed, or a combination mixture thereof.
31. The method of claim 26 wherein the increase in fertility of the male swine results from a decrease in the percentage of abnormal sperm.
32. The method of claim 26 wherein the oil comprises C20 and C22 omega-3 fatty acids and esters thereof.
33. The method of claim 28 wherein the feed composition as a final mixture comprises about 0.025% to about 1% by weight of salmon oil.
34. The method of claim 30 wherein the feed composition as a final mixture comprises about 0.025%> to about 1% by weight of the fish oil.
35. The method of claim 28 wherein the feed composition as a final mixture comprises about 0.025%o to about 2%> by weight of salmon oil.
36. The method of claim 30 wherein the feed composition as a final mixture comprises about 0.025% to about 2% by weight of the fish oil.
37. The method of claim 29 wherein the feed composition as a final mixture comprises about 1% to about 10% of the fish meal.
38. The method of claim 26 wherein the feed composition is administered daily to the male animal.
39. The method of claim 26 wherein the feed composition as a final mixture further comprises an antioxidant.
40. The method of claim 26 wherein the omega-3 fatty acids in the oil are stabilized by prilling.
41. A method of increasing the reproductive performance of a breeding population of swine comprising the steps of: administering to a female swine a biologically effective amount of a feed composition comprising marine animal products containing omega-3 fatty acids or esters thereof that serve as a source of metabolites in the female swine to improve reproductive performance of the female swine; and admimstering to a male swine a biologically effective amount of a feed composition comprising an oil containing omega-3 fatty acids or esters thereof that serve as a source of metabolites in the male swine to increase fertility of the male swine.
42. A swine feed composition comprising an animal feed blend and marine animal products.
43. The swine feed composition of claim 42 wherein the marine animal products comprise salmon oil.
44. The swine feed composition of claim 43 wherein the feed composition as a final mixture comprises about 0.025% to about 1% by weight of salmon oil.
45. The swine feed composition of claim 43 wherein the feed composition as a final mixture comprises about 0.025% to about 2% by weight of salmon oil.
46. The swine feed composition of claim 43 wherein the salmon oil comprises omega-6 and omega-3 fatty acids and esters thereof.
47. The swine feed composition of claim 46 wherein the ratio of omega-6 fatty acids/esters to omega-3 fatty acids/esters in the feed composition as a final mixture is from about 3: 1 to about 20: 1.
48. The swine feed composition of claim 43 wherein the salmon oil comprises C20 and C22 omega-3 fatty acids and esters thereof.
49. The method of claim 46 wherein the omega-3 fatty acids in the salmon oil are stabilized by prilling.
50. A swine feed composition comprising an animal feed blend and marine animal products from which are derived omega-3 fatty acids selected from the group consisting of eicosapentaenoic acid, docosahexaneoic acid, and docosapentaenoic acid or a mixture thereof.
51. A swine feed composition comprising marine animal products that serve as a source of omega-3 fatty acids in the animal.
52. A swine feed composition comprising fish oil, a fish oil derived from fish meal, or fish meal products, or a mixture thereof that serve as a source of omega-3 fatty acids in the animal.
53. The swine feed composition of claim 52 wherein the omega-3 fatty acids are stabilized by prilling.
54. The swine feed composition of claim 52 wherein the feed composition as a final mixture comprises about 0.025%) to about 1% by weight of the fish oil.
55. The swine feed composition of claim 52 wherein the feed composition as a final mixture comprises about 0.025%) to about 2%> by weight of the fish oil.
56. The swine feed composition of claim 52 wherein the feed composition as a final mixture comprises about 1% to about 10%> by weight of the fish meal products.
57. A swine feed composition comprising a plant oil excluding flaxseed oil.
58. A swine feed composition comprising a plant oil derived from ground seed excluding flaxseed oil derived from ground seed.
59. A swine feed composition comprising a fish oil from a North Atlantic cold water fish that serves as a source of omega-3 fatty acids in the animal.
60. A method of increasing the reproductive performance of a female swine, comprising the step of administering to the female swine a biologically effective amount of a feed composition comprising marine animal products from which are derived omega-3 fatty acids selected from the group consisting of eicosapentaenoic acid, docosahexaneoic acid, and docosapentaenoic acid or a mixture thereof wherein the composition is administered for a time sufficient to increase the reproductive performance of the female swine.
61. A method of increasing the number of live births to a female swine, comprising the step of administering to the female swine a biologically effective amount of a feed composition comprising marine animal products from which are derived omega-3 fatty acids selected from the group consisting of eicosapentaenoic acid, docosahexaneoic acid, and docosapentaenoic acid or a mixture thereof wherein the composition is administered for a time sufficient to increase the number of live births to the female swine.
62. A method of increasing the number of total births to a female swine, comprising the step of administering to the female swine a biologically effective amount of a feed composition comprising marine animal products from which are derived omega-3 fatty acids selected from the group consisting of eicosapentaenoic acid, docosahexaneoic acid, and docosapentaenoic acid or a mixture thereof wherein the composition is administered for a time sufficient to increase the number of total births to the female swine.
63. A method of decreasing the interval from weaning to estrus for a female swine, comprising the step of administering to the female swine a biologically effective amount of a feed composition comprising marine animal products from which are derived omega-3 fatty acids selected from the group consisting of eicosapentaenoic acid, docosahexaneoic acid, and docosapentaenoic acid or a mixture thereof wherein the composition is administered for a time sufficient to decrease the interval from weaning to estrus for the female swine.
64. A method of decreasing the interval from weaning to remating for a female swine, comprising the step of administering to the female swine a biologically effective amount of a feed composition comprising marine animal products from which are derived omega-3 fatty acids selected from the group consisting of eicosapentaenoic acid, docosahexaneoic acid, and docosapentaenoic acid or a mixture thereof wherein the composition is admimstered for a time sufficient to decrease the interval from weaning to remating for the female swine.
65. A method of increasing the uniformity of birth weight of offspring of a female swine, comprising the step of administering to the female swine a biologically effective amount of a feed composition comprising marine animal products from which are derived omega-3 fatty acids selected from the group consisting of eicosapentaenoic acid, and docosahexaneoic acid, docosapentaenoic acid or a mixture thereof wherein the composition is administered for a time sufficient to increase the uniformity of birth weight of offspring of the female swine.
66. A method of decreasing pre-weaning death loss of the offspring of a female swine, comprising the step of administering to the female swine a biologically effective amount of a feed composition comprising marine animal products from which are derived omega-3 fatty acids selected from the group consisting of eicosapentaenoic acid, docosahexaneoic acid, and docosapentaenoic acid or a mixture thereof wherein the composition is administered for a time sufficient to decrease the pre-weaning death loss of the offspring of the female swine.
67. A method of increasing the farrowing rate of a female swine, comprising the step of administering to the female swine a biologically effective amount of a feed composition comprising marine animal products from which are derived omega-3 fatty acids selected from the group consisting of eicosapentaenoic acid, docosahexaneoic acid, and docosapentaenoic acid or a mixture thereof wherein the composition is administered for a time sufficient to increase the farrowing rate of the female swine.
68. A method of increasing the fertility of a male swine, comprising the step of administering to the male swine a biologically effective amount of a feed composition comprising an oil from which is derived omega-3 fatty acids selected from the group consisting of eicosapentaenoic acid, docosahexaneoic acid, and docosapentaenoic acid or a mixture thereof wherein the composition is administered for a time sufficient to increase the fertility of the male swine.
69. A method of increasing the reproductive performance of a breeding population of swine comprising the steps of: administering to a female swine a biologically effective amount of a feed composition comprising marine animal products from which are derived omega- 3 fatty acids selected from the group consisting of eicosapentaenoic acid, docosahexaneoic acid, and docosapentaenoic acid or a mixture thereof wherein the composition is administered for a time sufficient to increase the reproductive performance of the female swine; and administering to a male swine a biologically effective amount of a feed composition comprising a biologically effective amount of an oil from which is derived omega-3 fatty acids selected from the group consisting of eicosapentaenoic acid, docosahexaneoic acid, and docosapentaenoic acid or a mixture thereof wherein the composition is administered for a time sufficient to increase the fertility of the male swine.
70. A method of increasing the reproductive performance of a female swine, comprising the step of administering to the female swine a biologically effective amount of a feed composition comprising marine animal products containing omega-3 fatty acids or esters thereof.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US20861600P | 2000-06-01 | 2000-06-01 | |
| US60/208,616 | 2000-06-01 | ||
| PCT/US2001/017663 WO2001091575A1 (en) | 2000-06-01 | 2001-05-31 | Animal food and method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| AU2001265273A1 true AU2001265273A1 (en) | 2002-02-28 |
| AU2001265273B2 AU2001265273B2 (en) | 2006-11-23 |
Family
ID=22775278
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU6527301A Pending AU6527301A (en) | 2000-06-01 | 2001-05-31 | Animal food and method |
| AU2001265273A Ceased AU2001265273B2 (en) | 2000-06-01 | 2001-05-31 | Animal food and method |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU6527301A Pending AU6527301A (en) | 2000-06-01 | 2001-05-31 | Animal food and method |
Country Status (12)
| Country | Link |
|---|---|
| US (2) | US7084175B2 (en) |
| EP (1) | EP1294236B1 (en) |
| JP (1) | JP2003534019A (en) |
| KR (1) | KR100886795B1 (en) |
| CN (1) | CN100490666C (en) |
| AT (1) | ATE404074T1 (en) |
| AU (2) | AU6527301A (en) |
| BR (1) | BR0111313A (en) |
| CA (1) | CA2410960C (en) |
| DE (1) | DE60135333D1 (en) |
| MX (1) | MXPA02011807A (en) |
| WO (1) | WO2001091575A1 (en) |
Families Citing this family (48)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050032897A1 (en) * | 2000-11-22 | 2005-02-10 | The Iams Company | Process for enhancing canine and feline reproductive performance |
| US7799365B2 (en) * | 2001-04-06 | 2010-09-21 | Burnbrae Farms Limited | Liquid egg composition including fish oil with omega-3 fatty acid |
| ATE292392T1 (en) * | 2001-07-24 | 2005-04-15 | Nutreco Nederland Bv | FEED MODIFICATION TO INCREASE FERTILITY |
| US20050112233A1 (en) * | 2001-10-03 | 2005-05-26 | Noble Raymond C. | Method for conditioning animals |
| GB0123827D0 (en) * | 2001-10-03 | 2001-11-28 | Jsr Farms Ltd | Method for conditioning animals |
| US20030138547A1 (en) | 2002-01-22 | 2003-07-24 | Mars, Incorporated | Weight management system for animals |
| ATE492166T1 (en) * | 2002-04-05 | 2011-01-15 | Nestle Sa | COMPOSITIONS AND METHODS FOR IMPROVING LIPID ASSIMIILATION IN PETS |
| US20030194478A1 (en) * | 2002-04-12 | 2003-10-16 | Davenport Gary Mitchell | Dietary methods for canine performance enhancement |
| WO2004095940A1 (en) * | 2003-04-25 | 2004-11-11 | The University Of Newcastle | Biomass containing animal feed |
| AU2004293110C1 (en) * | 2003-11-25 | 2011-06-02 | Virginia Tech Intellectual Properties, Inc. | Composition for animal consumption and method for reducing map kinase activity |
| US20070243304A1 (en) * | 2004-05-24 | 2007-10-18 | Mahabaleshwar Hedge | Omega-3 Fatty Acid Compositions With Honey |
| CN1960639A (en) * | 2004-06-14 | 2007-05-09 | 卡拉皮利·佛罗伦萨公开股份有限公司 | Cereal and fruit oil |
| FR2874156B1 (en) * | 2004-08-13 | 2007-04-06 | Univ Rennes 1 Etablissement Pu | FEED SUPPLEMENT FOR ANIMALS AND METHOD OF CARRYING OUT SAID METHOD |
| DK1838169T3 (en) | 2004-12-30 | 2016-08-15 | Hills Pet Nutrition Inc | Methods for improving the quality of life of a growing animal |
| PT1876906E (en) * | 2005-04-29 | 2009-12-15 | Vinorica S L | Nutritional supplement or functional food comprising oil combination |
| WO2006119049A2 (en) * | 2005-04-29 | 2006-11-09 | Hill's Pet Nutrition, Inc. | Methods for prolonging feline life |
| WO2007022991A1 (en) * | 2005-08-26 | 2007-03-01 | Nestec S.A. | Compositions and methods for improving functional vascular integrity, cellular survival and reducing apoptosis in ischemia or after ischemic episode in the brain |
| US8221809B2 (en) * | 2006-06-22 | 2012-07-17 | Martek Biosciences Corporation | Encapsulated labile compound compositions and methods of making the same |
| US8691843B2 (en) * | 2006-07-12 | 2014-04-08 | Novus International, Inc. | Antioxidant combinations for use in ruminant feed rations |
| AU2008265715A1 (en) * | 2007-06-19 | 2008-12-24 | Martek Biosciences Corporation | Microencapsulating compositions, methods of making, methods of using and products thereof |
| EP2214481B1 (en) | 2007-10-15 | 2019-05-01 | United Animal Health, Inc. | Method for increasing performance of offspring |
| BRPI0819732B1 (en) * | 2007-11-29 | 2019-05-07 | Monsanto Technology Llc | MEAT PRODUCT UNDERSTANDING ENDOGEN OIL, ARAQUIDONIC ACID (AA), ALPHA-LINOLENIC ACID (ALA), AND STETHARIDONIC ACID (SDA) |
| EP2224911A4 (en) * | 2007-11-30 | 2013-05-08 | Jbs United Inc | Method and composition for treating pulmonary hemorrhage |
| WO2009088879A1 (en) * | 2008-01-04 | 2009-07-16 | Novus International Inc. | Combinations to improve animal health and performance |
| AR070320A1 (en) * | 2008-01-29 | 2010-03-31 | Monsanto Technology Llc | METHODS FOR FEEDING PIGS AND PRODUCTS THAT INCLUDE BENEFIT FAT ACIDS |
| US20090264520A1 (en) * | 2008-04-21 | 2009-10-22 | Asha Lipid Sciences, Inc. | Lipid-containing compositions and methods of use thereof |
| CN101301402B (en) * | 2008-07-03 | 2011-07-20 | 刘庆华 | Nutrition health care replenisher for reinforcing reproduction performance of boar |
| JP2010079993A (en) * | 2008-09-26 | 2010-04-08 | Toshiba Storage Device Corp | Storage device and method for adjusting storage device |
| CN101744118B (en) * | 2008-12-19 | 2012-03-07 | 中国科学院海洋研究所 | Health turtle additive rich in conjugated linoleic acid and preparation method thereof |
| EP2314172B1 (en) * | 2009-06-12 | 2014-11-26 | Ajinomoto Co., Inc. | Livestock feed additive and livestock feed composition |
| JP2009256364A (en) * | 2009-06-24 | 2009-11-05 | Daily Wellness Co | Method and composition for improving health state of fertilizing capacity of male and female animal and human |
| DK3100717T3 (en) * | 2012-01-23 | 2022-01-10 | Restorsea Llc | COSMETICS PRODUCT CONTAINING A FISHING EYE PROTEIN INSULATION |
| CN104664109A (en) * | 2013-11-28 | 2015-06-03 | 天津瑞贝特科技发展有限公司 | Vitamin composition specially used for boars, and preparation method of vitamin composition |
| CN106470547B (en) * | 2014-05-08 | 2020-10-09 | 帝斯曼知识产权资产管理有限公司 | Methods and compositions comprising 10-hydroxy-2-decenoic acid |
| RU2721269C2 (en) * | 2014-05-30 | 2020-05-18 | Карджилл, Инкорпорейтед | Method for animal feeding |
| CN104041455B (en) * | 2014-06-30 | 2016-03-02 | 天峨县平昌生态农业有限公司 | A kind of bamboo rat raising method |
| KR101788619B1 (en) | 2014-08-19 | 2017-10-23 | 대구대학교 산학협력단 | Feed composition for lactating sows nursing pig comprising conjugated linoleic acid fortifying pig lets immunity and feeding method thereof |
| CN104523823B (en) * | 2015-01-06 | 2018-12-18 | 重庆木犴生猪养殖有限公司 | Treat the pharmaceutical formulation that sow and sucking pig have loose bowels |
| CN106562036B (en) * | 2015-12-24 | 2020-08-14 | 陕西正能农牧科技有限责任公司 | A kind of boar feed and preparation method thereof |
| CN106173357B (en) * | 2016-07-25 | 2019-12-20 | 中国农业科学院北京畜牧兽医研究所 | Feed composition for improving milk quality and preparation method and application thereof |
| CN106689747B (en) * | 2016-12-28 | 2018-05-29 | 广州市优百特饲料科技有限公司 | A kind of replacement gilt promotees breeding three ester composition of aliphatic acid |
| CN106689748B (en) * | 2016-12-28 | 2018-03-16 | 广州市优百特饲料科技有限公司 | A kind of in-pig promotees the breeding ester composition of aliphatic acid three |
| CN106819403B (en) * | 2016-12-28 | 2018-04-27 | 广州市优百特饲料科技有限公司 | A kind promotees breeding three ester composition of aliphatic acid with animal |
| CN107027983B (en) * | 2016-12-28 | 2018-03-02 | 广州市优百特饲料科技有限公司 | A kind of milking sow promotees the breeding ester composition of aliphatic acid three |
| CN110150482A (en) * | 2018-01-17 | 2019-08-23 | 浙江大飞龙动物保健品股份有限公司 | A kind of sow aphrodisiac powder |
| CN110214870A (en) * | 2019-07-03 | 2019-09-10 | 四川农业大学 | A kind of feed addictive and preparation method improving sow timing semen deposition effect |
| WO2022020700A1 (en) * | 2020-07-23 | 2022-01-27 | Milk Specialties Company Dba Milk Specialties Global | Animal feed supplement and methods of making |
| CN117441833B (en) * | 2023-11-29 | 2025-10-28 | 北京市农林科学院 | Use of L-histidine in preparing products for increasing the number of animal embryo implantation sites |
Family Cites Families (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2800457A (en) * | 1953-06-30 | 1957-07-23 | Ncr Co | Oil-containing microscopic capsules and method of making them |
| US3966998A (en) * | 1974-06-19 | 1976-06-29 | Blue Wing Corporation | Feed supplements for ruminants |
| US4752618A (en) * | 1984-07-12 | 1988-06-21 | New England Deaconess Hospital | Method of minimizing efects of infection through diet |
| GB8517436D0 (en) | 1985-07-10 | 1985-08-14 | Efamol Ltd | Treatment of horses |
| JPS6398355A (en) | 1986-10-16 | 1988-04-28 | Kazumitsu Maruta | Feed for animal |
| US4792546A (en) | 1986-12-05 | 1988-12-20 | American Cyanamid Company | Method for increasing weight gains and reducing deposition of fat in animals |
| US5110592A (en) * | 1987-12-16 | 1992-05-05 | Stitt Paul A | Method of increasing live births to female animals and animal feed blend suitable for same |
| GB8729751D0 (en) * | 1987-12-21 | 1988-02-03 | Norsk Hydro As | Feed additive & feed containing such additive |
| US5023100A (en) * | 1988-05-02 | 1991-06-11 | Kabi Vitrum Ab | Fish oil |
| US5985348A (en) | 1995-06-07 | 1999-11-16 | Omegatech, Inc. | Milk products having high concentrations of omega-3 highly unsaturated fatty acids |
| US5132118A (en) * | 1990-05-11 | 1992-07-21 | Mills John A | Treatment of exercise-induced pulmonary hemorrhage in animals |
| US5520077A (en) * | 1994-01-26 | 1996-05-28 | Lindstrom; Conrad B. | Numerically controlled contouring head having translation of axial spindle movement into radial cutting edge movement |
| FR2721481B1 (en) | 1994-06-27 | 1996-09-06 | Inst Rech Biolog Sa | New dietary compositions based on phospholipids and their use as a nutritional supplement. |
| NL9401743A (en) * | 1994-10-20 | 1996-06-03 | Prospa Bv | Salts of amino alcohols and pharmaceutical formulations containing them. |
| AUPN250795A0 (en) * | 1995-04-20 | 1995-05-18 | Cultor Ltd. | Stress regulator |
| US6015798A (en) | 1995-10-10 | 2000-01-18 | Colgate Palmolive Company | Method for reducing the damaging effects of radiation therapy on animal skin and mucosa |
| US5698246A (en) * | 1996-01-29 | 1997-12-16 | Cargill, Incorporated | Foodstuff for and method of feeding crustaceans and fish |
| WO1998000125A1 (en) | 1996-06-29 | 1998-01-08 | The Scottish Agricultural College | Improvement of male fertility with antioxidants and/or polyunsaturated fatty acids |
| US6060087A (en) | 1997-04-25 | 2000-05-09 | Wisconsin Alumni Research Foundation | Method of increasing fat firmness and improving meat quality in animals |
| US6020377A (en) | 1998-03-13 | 2000-02-01 | Kansas State University Research Foundation | Modified tall oil supplemented diet for growing-finishing pigs |
| CN1354625A (en) | 1999-10-19 | 2002-06-19 | 日本农医株式会社 | Method of feeding reproductive female pigs and feeds for reproductive female pigs |
| WO2004080196A2 (en) * | 2003-03-07 | 2004-09-23 | Advanced Bionutrition Corporation | Feed formulation for terrestrial and aquatic animals |
| WO2004095940A1 (en) * | 2003-04-25 | 2004-11-11 | The University Of Newcastle | Biomass containing animal feed |
| EP2214481B1 (en) * | 2007-10-15 | 2019-05-01 | United Animal Health, Inc. | Method for increasing performance of offspring |
| EP2224911A4 (en) * | 2007-11-30 | 2013-05-08 | Jbs United Inc | Method and composition for treating pulmonary hemorrhage |
-
2001
- 2001-05-31 KR KR1020027016334A patent/KR100886795B1/en not_active Expired - Fee Related
- 2001-05-31 DE DE60135333T patent/DE60135333D1/en not_active Expired - Fee Related
- 2001-05-31 JP JP2001587597A patent/JP2003534019A/en active Pending
- 2001-05-31 EP EP01939793A patent/EP1294236B1/en not_active Expired - Lifetime
- 2001-05-31 WO PCT/US2001/017663 patent/WO2001091575A1/en not_active Ceased
- 2001-05-31 AT AT01939793T patent/ATE404074T1/en not_active IP Right Cessation
- 2001-05-31 BR BR0111313-5A patent/BR0111313A/en not_active IP Right Cessation
- 2001-05-31 AU AU6527301A patent/AU6527301A/en active Pending
- 2001-05-31 CA CA002410960A patent/CA2410960C/en not_active Expired - Fee Related
- 2001-05-31 CN CNB018134505A patent/CN100490666C/en not_active Expired - Fee Related
- 2001-05-31 US US09/870,899 patent/US7084175B2/en not_active Expired - Lifetime
- 2001-05-31 AU AU2001265273A patent/AU2001265273B2/en not_active Ceased
- 2001-05-31 MX MXPA02011807A patent/MXPA02011807A/en active IP Right Grant
-
2002
- 2002-05-10 US US10/142,685 patent/US20030072787A1/en not_active Abandoned
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7084175B2 (en) | Animal food and method | |
| AU2001265273A1 (en) | Animal food and method | |
| US10583159B2 (en) | Method for increasing performance of offspring | |
| Attia et al. | Semen quality, testosterone, seminal plasma biochemical and antioxidant profiles of rabbit bucks fed diets supplemented with different concentrations of soybean lecithin | |
| EP0600439B1 (en) | Method for breeding infant livestock and feed composition | |
| Rahbar et al. | Mechanisms through which fat supplementation could enhance reproduction in farm animal | |
| Delgado et al. | Effect of level of soluble fiber and n-6/n-3 fatty acid ratio on performance of rabbit does and their litters | |
| KR20100080781A (en) | Treatment of pigs for reducing the feed conversion ratio or increasing the growth rate | |
| Fortun-Lamothe | Effects of dietary fat on reproductive performance of rabbit does: a review. | |
| Khalifa et al. | Supplementing non-conventional energy sources to rations for improving production and reproduction performances of dairy Zaraibi nanny goats. | |
| Soydan et al. | Relationship between dietary fatty acids and reproductive functions in dairy cattle | |
| CA2556685F (en) | Preparation and use of high omega-3 and omega-6 feed | |
| PL190840B1 (en) | Method of increasing concentration of conjugated linolic acid in fat contained in milk and/or tissues of ruminants | |
| Attia et al. | Soy lecithin in diets for rabbit does improves productive and reproductive performance | |
| WO2011066526A2 (en) | Ruminant feed, products, and methods comprising beneficial fatty acids | |
| Shiyun et al. | Relationship between polyunsaturated fatty acids and animal production: A review | |
| Thatcher et al. | Using fats and fatty acids to enhance reproductive performance | |
| KR102150570B1 (en) | Feed additive comprising rumen non-degradable β-carotene | |
| Mazareei et al. | Effects of extruded flaxseed and conjugated linoleic acid (CLA) on productive and reproductive performance of lactating qezel ewes | |
| Fatahi et al. | A higher proportion of female lambs in Kurdish× Romanov ewes fed a diet rich in n-3 fatty acids and rumen undegradable protein around mating | |
| Akhlaghi et al. | Effects of adding pomegranate peel to diets containing different fatty acid sources on nutrients intake and chewing behavior of primiparous Holstein cows. | |
| Rodríguez | Consequences of dietary supplementation with n-3 polyunsaturated fatty acids on reproductive, endocrine and metabolic parameters of rabbit does and on carcass quality of growing rabbits | |
| Staples et al. | Fat and fat-soluble vitamin supplementation for improving reproduction of the dairy cow |