AU2001253347A1 - Coating compositions having improved "direct to metal" adhesion - Google Patents
Coating compositions having improved "direct to metal" adhesionInfo
- Publication number
- AU2001253347A1 AU2001253347A1 AU2001253347A AU2001253347A AU2001253347A1 AU 2001253347 A1 AU2001253347 A1 AU 2001253347A1 AU 2001253347 A AU2001253347 A AU 2001253347A AU 2001253347 A AU2001253347 A AU 2001253347A AU 2001253347 A1 AU2001253347 A1 AU 2001253347A1
- Authority
- AU
- Australia
- Prior art keywords
- acid
- compound
- composition
- koh
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000008199 coating composition Substances 0.000 title claims description 30
- 229910052751 metal Inorganic materials 0.000 title claims description 29
- 239000002184 metal Substances 0.000 title claims description 29
- 150000001875 compounds Chemical class 0.000 claims description 93
- 239000000203 mixture Substances 0.000 claims description 58
- 150000003077 polyols Chemical class 0.000 claims description 25
- 229920005862 polyol Polymers 0.000 claims description 22
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 20
- 239000002253 acid Substances 0.000 claims description 20
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 18
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 18
- 125000003118 aryl group Chemical group 0.000 claims description 14
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 13
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 12
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 9
- 239000007795 chemical reaction product Substances 0.000 claims description 8
- 239000003431 cross linking reagent Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 8
- 239000012948 isocyanate Substances 0.000 claims description 8
- 150000002513 isocyanates Chemical class 0.000 claims description 8
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 claims description 8
- 125000001931 aliphatic group Chemical group 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 claims description 7
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 6
- 239000001361 adipic acid Substances 0.000 claims description 6
- 235000011037 adipic acid Nutrition 0.000 claims description 6
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 claims description 6
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 6
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 claims description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 6
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000004848 polyfunctional curative Substances 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 6
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 claims description 5
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 5
- ARXKVVRQIIOZGF-UHFFFAOYSA-N 1,2,4-butanetriol Chemical compound OCCC(O)CO ARXKVVRQIIOZGF-UHFFFAOYSA-N 0.000 claims description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 claims description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 4
- LQQCGEGRINLHDP-UHFFFAOYSA-N carboxyphosphoric acid Chemical class OC(=O)OP(O)(O)=O LQQCGEGRINLHDP-UHFFFAOYSA-N 0.000 claims description 4
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 4
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 claims description 4
- 229930195729 fatty acid Natural products 0.000 claims description 4
- 239000000194 fatty acid Substances 0.000 claims description 4
- 150000004665 fatty acids Chemical class 0.000 claims description 4
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 claims description 4
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 claims description 4
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 claims description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 claims description 4
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 claims description 4
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 claims description 3
- 239000005711 Benzoic acid Substances 0.000 claims description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 3
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 claims description 3
- 235000010233 benzoic acid Nutrition 0.000 claims description 3
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 claims description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 3
- 239000011976 maleic acid Substances 0.000 claims description 3
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 claims description 3
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 claims description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 claims description 2
- LVHOAHHFUNMKQA-UHFFFAOYSA-N 3,3-dihydroxy-2,2,5,5-tetramethyl-4-oxohexanoic acid Chemical compound CC(C)(C)C(=O)C(O)(O)C(C)(C)C(O)=O LVHOAHHFUNMKQA-UHFFFAOYSA-N 0.000 claims description 2
- XZOYHFBNQHPJRQ-UHFFFAOYSA-N 7-methyloctanoic acid Chemical compound CC(C)CCCCCC(O)=O XZOYHFBNQHPJRQ-UHFFFAOYSA-N 0.000 claims description 2
- 229920000178 Acrylic resin Polymers 0.000 claims description 2
- 239000004925 Acrylic resin Substances 0.000 claims description 2
- 239000005639 Lauric acid Substances 0.000 claims description 2
- 235000021314 Palmitic acid Nutrition 0.000 claims description 2
- 239000005643 Pelargonic acid Substances 0.000 claims description 2
- 235000021355 Stearic acid Nutrition 0.000 claims description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 2
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 claims description 2
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 claims description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical class C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims description 2
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 claims description 2
- 239000000539 dimer Substances 0.000 claims description 2
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 claims description 2
- 239000001530 fumaric acid Substances 0.000 claims description 2
- 235000011187 glycerol Nutrition 0.000 claims description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 claims description 2
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 claims description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 claims description 2
- 229960004889 salicylic acid Drugs 0.000 claims description 2
- 239000008117 stearic acid Substances 0.000 claims description 2
- 239000011230 binding agent Substances 0.000 claims 1
- IFDVQVHZEKPUSC-UHFFFAOYSA-N cyclohex-3-ene-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCC=CC1C(O)=O IFDVQVHZEKPUSC-UHFFFAOYSA-N 0.000 claims 1
- UFDHBDMSHIXOKF-UHFFFAOYSA-N tetrahydrophthalic acid Natural products OC(=O)C1=C(C(O)=O)CCCC1 UFDHBDMSHIXOKF-UHFFFAOYSA-N 0.000 claims 1
- 238000000576 coating method Methods 0.000 description 24
- 239000000758 substrate Substances 0.000 description 20
- 229920000642 polymer Polymers 0.000 description 16
- 239000011248 coating agent Substances 0.000 description 14
- 239000002987 primer (paints) Substances 0.000 description 12
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 10
- 125000000524 functional group Chemical group 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 150000001735 carboxylic acids Chemical class 0.000 description 7
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 6
- -1 carboxy phosphate ester Chemical class 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 238000002203 pretreatment Methods 0.000 description 6
- 230000008439 repair process Effects 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 239000011247 coating layer Substances 0.000 description 5
- 239000010960 cold rolled steel Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical class CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229910001335 Galvanized steel Inorganic materials 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 239000008397 galvanized steel Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229920000058 polyacrylate Polymers 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 239000005056 polyisocyanate Substances 0.000 description 4
- 229920001228 polyisocyanate Polymers 0.000 description 4
- 239000000376 reactant Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000005058 Isophorone diisocyanate Substances 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000010382 chemical cross-linking Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 150000002118 epoxides Chemical class 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 150000003738 xylenes Chemical class 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- ZTNJGMFHJYGMDR-UHFFFAOYSA-N 1,2-diisocyanatoethane Chemical compound O=C=NCCN=C=O ZTNJGMFHJYGMDR-UHFFFAOYSA-N 0.000 description 1
- ZGDSDWSIFQBAJS-UHFFFAOYSA-N 1,2-diisocyanatopropane Chemical compound O=C=NC(C)CN=C=O ZGDSDWSIFQBAJS-UHFFFAOYSA-N 0.000 description 1
- IKYNWXNXXHWHLL-UHFFFAOYSA-N 1,3-diisocyanatopropane Chemical compound O=C=NCCCN=C=O IKYNWXNXXHWHLL-UHFFFAOYSA-N 0.000 description 1
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 description 1
- KODLUXHSIZOKTG-UHFFFAOYSA-N 1-aminobutan-2-ol Chemical compound CCC(O)CN KODLUXHSIZOKTG-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- BEWCNXNIQCLWHP-UHFFFAOYSA-N 2-(tert-butylamino)ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCNC(C)(C)C BEWCNXNIQCLWHP-UHFFFAOYSA-N 0.000 description 1
- MMTMWNAMWZHVQN-UHFFFAOYSA-N 2-[(tert-butylamino)methylidene]butanoic acid Chemical compound CCC(=CNC(C)(C)C)C(=O)O MMTMWNAMWZHVQN-UHFFFAOYSA-N 0.000 description 1
- DSKYSDCYIODJPC-UHFFFAOYSA-N 2-butyl-2-ethylpropane-1,3-diol Chemical compound CCCCC(CC)(CO)CO DSKYSDCYIODJPC-UHFFFAOYSA-N 0.000 description 1
- IEVADDDOVGMCSI-UHFFFAOYSA-N 2-hydroxybutyl 2-methylprop-2-enoate Chemical compound CCC(O)COC(=O)C(C)=C IEVADDDOVGMCSI-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- 125000000041 C6-C10 aryl group Chemical group 0.000 description 1
- 102100022511 Cadherin-like protein 26 Human genes 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241001561902 Chaetodon citrinellus Species 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 101000899450 Homo sapiens Cadherin-like protein 26 Proteins 0.000 description 1
- 102100021102 Hyaluronidase PH-20 Human genes 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 244000137852 Petrea volubilis Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 101150055528 SPAM1 gene Proteins 0.000 description 1
- 101100111270 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) BCH2 gene Proteins 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N benzene Substances C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 125000000271 carboxylic acid salt group Chemical group 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007739 conversion coating Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- OIWOHHBRDFKZNC-UHFFFAOYSA-N cyclohexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCCC1 OIWOHHBRDFKZNC-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002443 hydroxylamines Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000013035 low temperature curing Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- AYLRODJJLADBOB-QMMMGPOBSA-N methyl (2s)-2,6-diisocyanatohexanoate Chemical compound COC(=O)[C@@H](N=C=O)CCCCN=C=O AYLRODJJLADBOB-QMMMGPOBSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- CMPQUABWPXYYSH-UHFFFAOYSA-N phenyl phosphate Chemical compound OP(O)(=O)OC1=CC=CC=C1 CMPQUABWPXYYSH-UHFFFAOYSA-N 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006295 polythiol Polymers 0.000 description 1
- 239000013615 primer Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000011369 resultant mixture Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical class CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical group O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Description
COATING COMPOSITIONS HAVING IMPROVED "DIRECT TO METAL" ADHESION
FIELD OF THE INNENTION The invention relates to coating compositions useful in automotive refinish operations and having improved adhesion to metal substrates. More particularly, the coating compositions of the invention are intended for direct use over large areas of untreated metal substrates such as galvanized steel, aluminum and cold-rolled steel.
BACKGROUND OF THE INNENTION As used herein, "automotive refinish" refers to compositions and processes used in the repair of a damaged automotive finish, usually an OEM provided finish. Refinish operations may involve the repair of one or more outer coating layers, the repair or replacement of entire automotive body components, or a combination of both. The terms "refinish coating" or "repair coating" may be used interchangeably.
Automotive refrnishers must be prepared to paint a wide variety of materials. Examples of commonly encountered materials are one or more previously applied coatings, plastic substrates such as RIM, SMC and the like, and metal substrates such as aluminum, galvanized steel, and cold rolled steel. Bare metal and plastic substrates are often exposed as a result of the removal of the previously applied coating layers containing and/or surrounding the defect area. However, it is often difficult to obtain adequate adhesion of refinish coatings applied directly to exposed bare substrates. Among the many factors influencing the degree of refinish coating/substrate adhesion are the type of exposed substrate, the presence or absence of adhesion promoting pretreatments and/or primers, the size of the exposed area to be repaired, and whether previously applied "anchoring" coating layers surround the exposed repair area.
For example, refinish adhesion is particularly challenging when the exposed substrate is a bare metal such as galvanized iron or steel, aluminum or cold rolled steel. It is especially hard to obtain adequate refinish adhesion to galvanized iron. "Galvanized iron or steel" as used herein refers to iron or steel coated with zinc. "Steel" as used herein refers to alloys of iron with carbon or metals such as manganese, nickel, copper, chromium, molybdenum, vanadium, tungsten and cobalt.
Refinish operations have traditionally used adhesion pretreatments to overcome the adhesion problems associated with the coating of bare metal substrates. Pretreatment as used herein may refer to either mechanical or chemical alterations of the bare metal substrate. Mechanical alterations used to obtain improved adhesion include sanding, scuffing, and the like. Chemical alterations include treatment of the substrate with compositions such as chromic acid conversion coatings, acid etch primers and the like.
Although such pretreatments have obtained improved refinish adhesion, they are undesirable for a number of reasons. Most importantly, pretreatments are inefficient and expensive to apply in terms of material, time, and/or labor costs. Some chemical pretreatments also present industrial hygiene and disposal issues. Finally, the use of some pretreatments such as acid etch primers may contribute to water sensitivity and/or coating failure under test conditions of extreme humidity.
Accordingly, it is highly desirable to eliminate the need for substrate pretreatment as regards the refinish coating of bare metal substrates.
In addition, adhesion to bare metal substrates is improved when the defect area to be repaired is relatively small and is surrounded by previously applied coating layers. Such previously applied coating layers act as an 'adhesion anchor' to the refinish coating. However, many refinish repairs are of a size such that they lack any surrounding adhesion anchors. Moreover, such anchoring adhesion may be completely absent when replacement body parts are painted with a refinish coating.
Accordingly, it would be desirable to obtain refinish adhesion to bare exposed metal lacking any such 'adhesion anchors'.
Finally, improvements in refinish adhesion to bare exposed metal substrates must not be obtained at the expense of traditional refinish coating properties. Such properties include sandability, durability, ambient or low temperature cure, application parameters such as pot life, sprayability, and clean up, and appearance. Illustrative refinish coatings having such properties include urethane coatings, especially two component urethane coating. Accordingly, it would be desirable to obtain urethane based refinish coatings having improved adhesion to bare metal substrates lacking any pretreatment or adhesion anchors.
SUMMARY OF THE 1NVENITON
These and other objects of the invention are achieved with the use of the compositions of the invention. It has unexpectedly been found that the combination of two particular materials provides improvements in adhesion which are better than the adhesion improvement obtained with either material alone. In particular, the invention broadly provides a composition comprising £) an effective amount of a first compound having an acid number of from 70 to 120 mg KOH/g, a hydroxyl number of from 200 to 400 mg KOH/g, a number average molecular weight of from 300 to 700 and which is the reaction product of (a) at least one difunctional carboxylic acid, (b) at least one trifunctional polyol, (c) at least one chain stopper, and (d) phosphoric acid, and (H) an effective amount of a second compound comprising one or more carboxy phosphate esters of the formula:
O
(R-O)x-P(OM)3.x wherein R is an C5-C4o aliphatic group in which one or more aliphatic carbon atoms are substituted with lateral or terminal -COOR1 groups, wherein R1 is H, metal, ammonium, Ci-Cβ alkyl, or Cβ-Cin aryl, M is hydrogen, metal or ammonium, and x is a number from 0 to 3. DETAILED DESCRIPTION OF THE PREFFERRED EMBODIMENT
The composition of the invention requires the use of a mixture of a first compound (I) and a second compound (H), wherein compound (I) and compound (H) cannot be the same. It has unexpectedly been found that the combination of compounds (I) and (II) provides an improvement in refinish adhesion, i.e., the adhesion of a refinish coating to a bare exposed metal substrate, which is better than that obtained with the use of either compound (I) or compound (II) alone.
Compound (I) is an low molecular weight polyester compound having both acid and hydroxyl functionality. It will generally have a number average molecular weight in the range of from 150 to 3000, preferably from 300 to 1000, and most preferably from 400 to 600. Compound (I) will generally have a polydispersity of from 1.00 to 2.00, with a polydispersity of 1.50 being most preferred.
Suitable compounds (I) will also have an acid number in the range of from 70 to 120 mg KOH/g, preferably from 70 to 100 mg KOH/g, and most preferably from 70 to 80 mg KOH/g.
In addition, suitable compounds (T) will have a hydroxyl number in the range of from 200 to 400 mg KOH/g, more preferably from 300 to 400 mg KOH/g and most preferably from 330 to 360 mg KOH/g.
Compound (I) generally comprises the reaction product of the reaction of (a) at least one difunctional carboxylic acid, (b) at least one trifunctional polyol, (c) at least one chain stopper, and (d) phosphoric acid.
Examples of suitable difunctional carboxylic acids (a) include adipic acid, azeleic acid, fumaric acid, phthalic acid, sebacic acid, maleic acid, succinic acid, isophthalic acid, tetiahydrophthalic acid, hexahydrophthalic acid, dimer fatty acids, itaconic acid, glutaric acid, cyclohexanedicarboxylic acid, and mixtures thereof.
Preferred difunctional carboxylic acids (a) are adipic acid and azeleic acid. Adipic acid is most preferred for use as difunctional carboxylic acid (a).
The at least one trifunctional polyol (b) may be branched or unbranched, but branched trifunctional polyols are preferred. Examples of suitable trifunctional polyols (b) are trimethylolpropane, trimethylol ethane, glycerin, 1,2,4-butanetriol, and mixtures thereof. Preferred trifunctional polyols (b) are trimethylolpropane and trimethylol ethane, with trimethylolpropane being a most preferred trifunctional polyol (b). The at least one chain stopper will generally be a carboxylic acid that is different from the at least one difunctional carboxylic acid (a). Monocarboxylic acids are preferred. Suitable carboxylic acids (c) will preferrably contain one or more aromatic structures and will preferably contain some branched alkyl groups. Examples of suitable carboxylic acids (c) include para-t-butyl benzoic acid, benzoic acid, salicylic acid, 2-ethylhexanoic acid, pelargonic acid, isononanoic acid, C 18 fatty acids, stearic acid, lauric acid, palmitic acid, and mixtures thereof. Preferred carboxylic acids (c) include para-t-butyl benzoic acid, benzoic acid, and 2- ethylhexanoic acid, with para-t-butyl benzoic acid being most preferred.
Phosphoric acid (d) should be added to the reaction mixture in an amount of from 0.03 to 0.20, preferably from 0.05 to 0.15, and most preferably from 0.07 to 0.10. It will be appreciated that while phosphoric acid is most preferred, phosphate esters such as butyl or phenyl acid phosphate and the like are suitable for use as component (d) in the preparation of compound (I).
Polymerization of the reactants may occur at typical esterification conditions, ie., 200-230 °C reaction temperature while continuously removing water as a reaction
by-product. Solvents that facilitate the removal of water from the reaction system (those that form an azeotrope) such as xylenes, maybe used.
Reactants (a), (b), (c) and (d) will generally be used in a molar ratio of 4.2: 4.9: 0.01:0.0005 to 5.1: 5.6:0.7:0.005, preferably from 4.4: 5.0:0.02:0.0008 to 5.0:5.5:0.6:0.003, and most preferably from 4.8:5.2:0.02:0.0009 to 4.9:5.4:0.06:0.002.
A commercially available and most preferred example of compound (T) is Borchigen HMP, commercially available from the Wolff Walsrode division of the Bayer Corporation of Burr Ridge, IL, U.S. A.
Compound (11) comprises a carboxy phosphate ester having the formula: O
(R-O)x-P(OM)3.x wherein M is hydrogen, metal or ammonium, x is a number from 0 to 3, and R is a saturated or unsaturated C5-G 0 ahphatic group in which one or more of the aliphatic carbon atoms can be substituted or replaced with a halogen atom (such as fluorine or chlorine), a -C6 alkyl group, a Ci-Cβ alkoxy group, a C6-Cio aromatic hydrocarbon group, preferably phenyl or naphthyl, or a a Cβ-Cto aromatic hydrocarbon group that is substituted with one or more (preferably 1 to 3) -C6 alkyl groups or -COOR1 groups wherein R1 is H, metal, ammonium, -Cό alkyl, or C6-Cιo aryl, or mixtures thereof, hi preferred compounds (H), R will contain one or more Cβ-Ci 0 aromatic hydrocarbon groups, and most preferably, one or more C6-Cιo aromatic hydrocarbon groups which contain one or more, preferably at least two, -COOR1 groups wherein R1 is H, metal, ammonium, Cι.-C6 alkyl, or Cβ-Cio aryl. a most preferred compound (H), R will contain at least one C6-Cio aromatic hydrocarbon group and at least two -COOR1 groups wherein R1 is H, metal, ammonium, -C6 alkyl, or C6-Cio aryl. R1 will most preferably be a CI-CΘ alkyl or a C6-C10 aryl group.
The -COOR1 groups maybe lateral or terminal. It will be appreciated that when R1 is H, compound (IT) will comprise one or more free carboxylic acid groups.
Similarly, when R1 is a metal or ammonium ion, compound (H) will have one or more carboxylic acid salt groups. Finally, when R1 is a d -Cβ alkyl or a C6-Cio aryl, compound (H) will comprise one or more ester groups.
It will be appreciated that suitable compounds (H) can and most preferably will comprise mixtures of compounds having the formula:
O (R-O)x-P(OM)3.x
wherein R, M, x, and R1 are as described above. However, in a most preferred embodiment, such a mixture will contain one or more molecules having the above structure wherein x is 1 or 2, preferably 1, R has at least one C6-Cio aromatic hydrocarbon group substituted with at least one, preferably two, -COOR1 groups wherein R1 is H or a d-C6 alkyl or Cδ- o aryl, most preferably a CrC6 alkyl, and M is H.
Compound (H) will generally have a number average molecular weight in the range of from 600 to 1200, preferably from 700 to 900, and most preferably from 750 to 850. Compound (IT) will generally have apolydispersity of from 1.00 to 2.00, with a polydispersity of 1.00 to 1.50 being preferred and a polydispersity of 1.15 to 1.35 being most preferred.
Suitable compounds (H) will also have an acid number in the range of from 50 to 200 mg KOH/g, preferably from 100 to 180 mg KOH/g, and most preferably from 120 to 160 mg KOH/g. h addition, suitable compounds (H) will have a hydroxyl number in the range of from 100 to 250 mg KOH/g, preferably from 120 to 230 mg
KOH/g, and most preferably from 150 to 200 mg KOH/g.
Suitable compounds (H) generally comprise the reaction product of (a) at least one difunctional polyol, (b) phosphoric acid, and (c) at least one trifunctional carboxylic acid.
Examples of suitable difunctional polyols (a) include neopentanediol, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, hydrogenated bisphenol A, 1,6-hexanediol, hydroxypivalylhydroxypivalate, cyclohexanedimethanol,
1,4-butanediol, 2-ethyl-l,3-hexandiol, 2,2,4-trimethyl-l,3-pentandiol, 2-ethyl-2-butyl- 1,3-propanediol, 2-methyl-l,3-propanediol, and mixtures thereof. Preferred difunctional polyols (a) are neopentane diol and 2-ethyl-2-butyl-l,3-propanediol, with neopentane diol being most preferred.
The at least one trifunctional carboxylic acid (c) may be aromatic or ahphatic in nature, but aromatic containing structures are most preferred. Examples of suitable
trifunctional carboxylic acids are trimellitic acid, 1,3,5-benzenetricarboxylic acid, citric acid, and mixtures thereof. Preferred trifunctional carboxylic acids are 1,3,5- benzenetricarboxylic acid and trimellitic acid, with trimellitic acid being most preferred. Phosphoric acid (c) is as described above with respect to (1(d)).
Polymerization of the reactants (a), (b), and (c) may occur at typical esterification conditions, ie., 200-230 °C reaction temperature while continuously removing water as a reaction by-product. Solvents that facilitate the removal of water from the reaction system (those that form an azeotrope) such as xylenes, maybe used. The reaction can also be subsquently admixed with suitable solvents.
Reactants (a), (b), and (c) will generally be used in a ratio of 6.3:3.0:0.05 to 7.9:4.0: 0.15, preferably from 6.7:3.2:0.07 to 7.6:3.8:0.12, and most preferably from 6.9:3.3:0.09 to 7.3:3.5:0.11.
A commercially available and most preferred example of compound (H) is LUBRIZOL™ 2063, available from the Lubrizol Corp of Wickliffe, Ohio.
Compound (I) will typically comprise from 50 to 80% by weight of the mixture of compound (I) and compound (H), preferably from 60 to 75% by weight, and most preferably from 65 to 70% by weight, based on the total weight of the mixture of compound (I) and compound (H). Compound (U) will comprise from 20 to 50% by weight of the mixture of compound (I) and compound (H), preferably from 25 to 40% by weight, and most preferably from 30 to 35% by weight, based on the total weight of the mixture of compound (I) and compound (H).
The composition comprising the mixture of compound (I) and compound (H) will typically be present in a coating composition in an amount of from 0.10 to 1.00 % by weight, preferably from 0.10 to 0.30%, and most preferably from 0.15 to 0.25% by weight, based on the total nonvolatile weight of the coating composition.
The mixture of compound (I) and compound (ΩL) may incorporated into finished coating compositions by conventional mixing techniques using mixing equipment such as a mechanical mixer, a cowles blade, and the like. Although the additives may be added during the manufacturing process or subsquently to a finished coating, those skilled in the art will appreciate that in a most preferred embodiment, the additives will be added post grind during the manufacturing process. Although the mixture of compound (T) and compound (Tl) may be used in single or two component
systems, use in two-component systems is preferred, particularly where the mixture of compounds (I) and (H) is placed in the resin component of a two component system.
Finally, although a variety of packaging options are suitable for containing the coating compositions of the invention, it is most preferred that coating compositions containing the mixture of compounds (I) and (H) be packaged in epoxy or phenolic lined cans. Packaging in such containers has been found to ensure the retention of optimum adhesion characteristics.
The mixture of compound (I) and compound (H) when used in coating compositions provides improved adhesion of the coating composition to bare untreated metal substrates, including aluminum and galvanized steel substrates.
Coating compositions of the invention comprising the mixture of compound (I) and compound (It) may comprise any of the fihn-forming components used in the refinish coatings industry. Such coating compositions may rely on air dry lacquer film formation, film formation via chemical crosslinking, or a combination thereof. Thermosetting films produced by chemical crosslinking are most preferred.
Thermosetting coatings of the invention will comprise at least one fihn-forming polymer and at least one crosslinking agent. The film-forming polymer will comprise one or more functional groups reactive with one or more functional groups on the crosshnking agent. Examples of functional group combinations useful for the production of crosshnked coatings include, but are not limited to, active-hydrogen and isocyanate, epoxide and carboxylic acid, hydroxyl/carboxylic acid and/or urea- formaldehyde/melamine-formaldehyde, epoxide and amine, and the like.
Although the film-forming polymer may contain any functional group reactive with the functional group present on the crosslinking agent, preferably the functional group present on the fim -for ing polymer is at least one functional group selected from the group consisting of hydroxyl, amine, carboxylic acid, epoxy and mixtures thereof. Especially preferred functional groups for use on the film-forming polymer are hydroxyl groups and amine groups, with hydroxyl groups being most preferred.
Examples of suitable film-forming polymers are acrylic polymers, polyurethane polymers, polyesters, alkyds, polyamides, epoxy group containing polymers, and the like.
Particularly preferred film forming polymers will be difunctional, generally having an average functionality of about two to eight, preferably about two to four.
These compounds generally have a number average molecular weight of from about 400 to about 10,000, preferably from 400 to about 8,000. However, it is also possible to use low molecular weight compounds having molecular weights below 400. The only requirement is that the compounds used as film-forming polymers not be volatile under the heating conditions, if any, used to cure the compositions.
More preferred compounds containing reactive hydrogen groups are the known polyester polyols, polyether polyols, polyhydroxyl polyacrylates, polycarbonates containing hydroxyl groups, and mixtures thereof, hi addition to these preferred polyhydroxyl compounds, it is also possible to use polyhydroxy polyacetals, polyhydroxy polyester amides, polythioether containing terminal hydroxyl groups or sulphydryl groups or at least difunctional compounds containing amino groups, thiol groups or carboxy groups. Mixtures of the compounds containing reactive hydrogen groups may also be used.
In a most preferred embodiment of the invention, the film forming polymer reactable with the crosslinking agent is an acrylic resin, which may be a polymer or oligomer. The acrylic polymer or oligomer preferably has a number average molecular weight of 500 to 1 ,000,000, and more preferably of 1000 to 20,000. Acrylic polymers and oligomers are well-known in the art, and can be prepared from monomers such as methyl acrylate, acrylic acid, methacrylic acid, methyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, and the like. The active hydrogen functional group, e.g., hydroxyl, can be incorporated into the ester portion of the acrylic monomer. For example, hydroxy-functional acrylic monomers that can be used to form such resins include hydroxyethyl acrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, hydroxypropyl acrylate, and the like. Ammo-functional acrylic monomers would include t-butylaminoethyl methacrylate and t-butylamino- ethylacrylate. Other acrylic monomers having active hydrogen functional groups in the ester portion of the monomer are also within the skill of the art.
Modified acrylics can also be used. Such acrylics maybe polyester-modified acrylics or polyurethane-modified acrylics, as is well-known in the art. Polyester- modified acrylics modified with e-caprolactone are described in U.S. Pat. No.
4,546,046 of Etzell et al, the disclosure of which is incorporated herein by reference. Polyurethane-modified acrylics are also well-known in the art. They are described, for
example, in U.S. Pat. No. 4,584,354, the disclosure of which is incorporated herein by reference.
Polyesters having active hydrogen groups such as hydroxyl groups can also be used as the film forming polymer in the composition according to the invention. Such polyesters are well-known in the art, and may be prepared by the polyesterification of organic polycarboxylic acids (e.g., phthalic acid, hexahydrophthalic acid, adipic acid, maleic acid) or their anhydrides with organic polyols containing primary or secondary hydroxyl groups (e.g., ethylene glycol, butylene glycol, neopentyl glycol).
Polyurethanes having active hydrogen functional groups are also well-known in the art. They are prepared by a chain extension reaction of a polyisocyanate (e.g., hexamethylene diisocyanate, isophorone diisocyanate, MDI, etc.) and a polyol (e.g., 1,6-hexanediol, 1,4-butanediol, neopentyl glycol, trimethylol propane). They can be provided with active hydrogen functional groups by capping the polyurethane chain with an excess of diol, polyamine, amino alcohol, or the like. Although polymeric or oligomeric active hydrogen components are often preferred, lower molecular weight non-polymeric active hydrogen components may also be used in some applications, for example aliphatic polyols (e.g., 1,6-hexane diol), hydroxylamines (e.g., monobutanolamine), and the like.
Examples of suitable crosslinking agents include those compounds having one or more functional groups reactive with the functional groups of the film-forming polymer. Examples of suitable crosshnking agents include isocyanate functional compounds and aminoplast resins, epoxy functional compounds, acid functional compounds and the like. Most preferred crosslinkers for use in the coating compositions of the invention are isocyanate functional compounds. Suitable isocyanate functional compounds include polyisocyanates which are aliphatic, including cycloaliphatic polyisocyanates, or aromatic. Useful aliphatic polyisocyanates include aliphatic dusocyanates such as ethylene diisocyanate, 1,2- diisocyanatopropane, 1,3-diisocyanatopropane, 1,6-diisocyanatohexane, 1,4-butylene diisocyanate, lysine diisocyanate, hexamethylene diisocyanate (HDI), 1,4-methylene bis-(cyclohexylisocyanate) and isophorone diisocyanate. Useful aromatic dusocyanates include the various isomers of toluene diisocyanate, meta-xylenediioscyanate andpara- xylenediisocyanate, also 4-chloro-l,3-phenylene diisocyanate, 1,5-tetrahydro- naphthalene diisocyanate, 4,4'-dibenzyl diisocyanate and 1,2,4-benzene triisocyanate
can be used. In addition, the various isomers of .alpha.,.alpha.,.alpha.',.alpha.'- tetramethyl xylene diisocyanate can be used..
In a most preferred embodiment, the crosslinking agent will comprise one or more components selected from the group consisting of hexamethylene diisocyanate (HDI), the isocyanurates of HDL the biurets of HDL and mixtures thereof, with the isocyanurates and biurets of HDI being particularly preferred.
Suitable isocyanate functional compounds may be unblocked, in which case the coating composition should be utilized as a two component system, i.e., the reactive components combined shortly before application, or they may be blocked. Any known blocking agents, such as alcohols or oximes, may be used.
In a most preferred emodiment of the coating compositions of the invention, the coating composition will be a two-component system with the reactive film forming polymer and the crosslinking agent combined shortly before application, h such an embodiment, the composition of the invention comprising the mixture of compounds (I) and (H) will be preferably incorporated with the film forming polymer containing component.
Component (H) may also comprise one or more solvents. Ln a preferred embodiment, component (H) will include one or more solvents. Suitable solvents and/or diluents include aromatics, napthas, acetates, ethers, esters, ketones, ether esters and mixtures thereof.
Additives, such as catalysts, pigments, dyes, leveling agents, and the like may be added as required to the coating compositions of the invention.
The coating compositions of the invention maybe stored as such for prolonged periods at room temperature without gel formation or undesirable changes. They may be diluted as required to a suitable concentration and applied by conventional methods, for example, spraying or spread coating, and cured by exposure to ambient temperatures of from 70 to 75 °F for a period of from 1 to 3 hours, preferably from 1.5 to 2 hours. However, sandable films of the coating compositions of the invention comprising mixtures of compounds (I) and (H) may also be obtained upon exposure of the applied coating to temperatures in the range of from at least 120°F, more preferably up to 140°F, for periods of from 30 to 50 minutes, preferably from 30 to 40 minutes.
The invention is further illustrated but is not limited by the following examples in which all parts and percentages are by weight unless otherwise specified.
EXAMPLE 1
A coating composition (A) according to the invention was prepared as follows by the adding the identified amounts of compounds (I) and (II) to a urethane primer. Two additional coating compositions showing the respective effects of compounds (I) and (H) alone, i.e., (B) and (C) were also prepared. The resultant mixtures of the urethane primer, and compound (I) and/or compound (H) were shaken for 30 minutes on a Red Devil® paint shaker. The hardener and reducer components were stirred by hand as were the ready to spray mixtures of the combined primers, hardeners, and reducers.
EXAMPLE 2 The coatings of Example 1 was applied to cold rolled steel panels (Q-Panel, R-
412 (Steel, dull matte finish)), aluminum panels (Q-Panel, A-412 (aluminum, mill finish 3105 H24)), and galvanized steel (ACT labs, APR 18661(C) (ACT E60 E2G 60G 2 side)). The sanded steel and cold rolled steel panels were sanded with 240-grit sandpaper. Approximately 4 mil of the coatings of Example 1 were applied to each panel using conventional spray equipment and cured for two hours at ambient temperature, followed by sanding with 400 grit sand paper. Approximately 1.0 mils
1 A urethane primer based on a hydroxy functional acylic resin and an isocyanate containing crosslinker, comercially available as DP200 from BASF Corporation of Whitehouse, OH.
2 Borchigen HMP, commercially available from Wolff Walstrode, Bayer Corporation of Burr Ridge, IL.
3 LUBRJZOL® 2063, commercially available from Lubrizol Corporation of Wickliffe, OH.
4 An isocyanate based crosslinking component commercially available as PH20 Hardener from BASF Corp.
5 A solvent containing reducer blend commercially available as VR20 Reducer from BASF Corp.
of commerically available R-M® Diamont® Red basecoat were then applied using conventional spray equipment. The basecoat was allowed to flash for 20 minutes, followed with the application of 3.0 mils of a urethane based clearcoat7 by high volume/low pressure (HVLP) spray apphcation equipment. Panels were allowed to air dry for 6 days at ambient tempreature (65-70 degrees F). Initial adhesion values are recorded in Table 1 below. After the six day drying period, the prepared panels were placed in a 100% Relative Humidity test @ 100°F for 96 hous. Final adhesion results are recorded in Table 2. Initial and final adhesion was measured with the cross hatch* adhesion test, i.e., a block of 25 squares cut throught the paint layers using a precut grid, each square = 4 % loss.
Table 1 Initial Adhesion Results % LOSS
R-M and Diamont are registered trademarks of BASF. The red basecoat is commercially available from BASF Corpoartion of Whitehouse, OH as Diamont® Basecoat. The basecoat was mixed with BASF's commercially available BCH2 hardener and UR-50 Reducer @ 4: 1 : 1 by volume.
7 BASF Corporation's commerically available 923-200 clearcoat mixed with BASF's commerically available 929-23 based hardener mixed at 2: 1 by volume.
8 The untreated urethane primer used in Example 1 for the preparation of the coating composition of the invention.
Table 2 Adhesion Results after 4 Days Humidity Exposure % LOSS
EXAMPLE 3
An experiment to determine the desireable ranges for compounds (I) and (U) was performed. Compounds (I) and (H) were added to the commercially available urethane primer composition used in Example 1 in the amounts set forth below in Table 3. Panels were prepared as indicated in Example 2 except that in this case, the primer coatings were allowed to dry for 2 hours at ambient temperature followed by immediate apphcation of the basecoat. The primer was not sanded prior to application of the basecoat. The basecoat was flashed for 20 minutes at ambient followed by application of the clearcoat. Panels were air dryed for 11 days at ambient temperature before being placed in humidity testing for 72 hours. Final adhesion results are set forth below.
The untreated urethane primer used in Example 1 for the preparation of the coating composition of the invention.
Table 3
Claims (15)
- CLAIMS What is claimed is: 1. A composition comprising(I) a first compound having an acid number of from 70 to 120mg KOH/g, a hydroxyl number of from 200 to 400mg KOH/g, a number average molecular weight of from 150 to 3000, and which is the reaction product of (a) at least one difunctional carboxylic acid, (b) at least one trifunctional polyol, (c) at least one chain stopper, and (d) phosphoric acid, and(H) a second compound comprising one or more carboxy phosphate esters having the formula:O(R-O)x-P(OM)3-x wherein M is hydrogen, metal, or ammonium, x is a number from 0 to 3, R is an C5- C o aliphatic group having one or more -COOR1 groups, wherein R1 is H, metal, ammonium, Cι-C6 alkyl, or Cό-do aryl.
- 2. The composition of claim 1 wherein second compound (II) has an acid number of from 50 to 200 mg KOH g, a hydroxyl number of from 100 to 250 mg KOH/g, a number average molecular weight of from 600 to 1200 and is the reaction product of (a) at least one difunctional polyol, (b) phosphoric acid, and (c) at least one trifunctional carboxylic acid
- 3. The composition of claim 1 wherein compound (I) comprises the reaction product of components (a), (b), (c), and (d) reacted in a molar ratio of from 4.2: 4.9:0.01:0.0005 to 5.1:5.6:0.7:0.005.
- 4. The composition of claim 1 wherein compound (I) comprises an acid number of from 70 to 100 mg KOH/g, ahydroxyl number of from 300 to 400 mg KOH/g, a number average molecular weight of from 400 to 600.
- 5. The composition of claim 1 comprising from 50 to 80 % by weight of compound (I) and from 20 to 50 % by weight of compound (H), based on the total weight of the mixture of compound (I) and compound (H).
- 6. The composition of claim 5 comprising from 60 to 75 % by weight of compound (I) and from 25 to 40 % by weight of compound (U), based on the total weight of the mixture of compound (I) and compound (H).
- 7. The composition of claim 1 wherein the at least one difunctional carboxylic acid (la) is selected from the group consisting of adipic acid, azeleic acid, fumaric acid, phthalic acid, sebacic acid, maleic acid, succinic acid, isophfhalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, dimer fatty acids, itaconic acid, glutaric acid, cyclohexanedicarboxylic acid, and mixtures thereof, the at least one trifunctional polyol (lb) is selected from the group consisting of trimethylolpropane, trimethylol ethane, glycerin, 1,2,4-butanetriol, and mixtures thereof, and the at least one chain stopper (Ic) is selected from the group consisting of para- t-butyl benzoic acid, benzoic acid, salicylic acid, 2-ethylhexanoic acid, pelargonic acid, isononanoic acid, C18 fatty acids, stearic acid, lauric acid, palmitic acid, and mixtures thereof.
- 8. The composition of claim 2 wherein the at least one difunctional polyol (Ha) is selected from the group consisting of neopentanediol, ethylene glycol, diethylene glycol, propylene glycol,_dipropylene glycol, hydrogenated bisphenol A, 1,6-hexanediol, hydroxypivalylhydroxypivalate, cyclohexanedimethanol, 1,4-butanediol, 2-ethyl-l,3-hexandiol, 2,2,4-trimethyl-l,3- pentandiol, 2-ethyl-2-butyl-l,3-propanediol, 2-methyl-l,3-propanediol, and mixtures thereof, and the at least one trifunctional carboxylic acid (He) is selected from the group consisting of trimellitic acid, 1,3,5-benzenetricarboxylic acid, citric acid, , and mixtures thereof.
- 9. The composition of claim 7 wherein the at least one difunctional carboxyhc acid (la) is adipic acid, the at least one trifunctional polyol (lb) is trimethyolopropane and the at least one chain stopper (Ic) is para-t-butyl benzoic acid.
- 10. The composition of claim 8 wherein the at least one difunctional polyol (Ha) is neopentanediol and the at least one trifunctional carboxylic acid (He) is trimelhtic acid.
- 11. A coating composition comprising a film forming compound, (I) a first compound having an acid number of from 70 to 120mg KOH g, a hydroxyl number of from 200 to 400mg KOH/g, a number average molecular weight of from 150 to 3000, and which is the reaction product of (a) at least one difunctional carboxylic acid, (b) at least one trifunctional polyol, (c) at least one chain stopper, and (d) phosphoric acid, and (U) a second compound comprising one or more carboxy phosphate esters having the formula:O(R-O)x-P(OM)3.x wherein M is hydrogen, metal, or ammonium, x is a number from 0 to 3, R is an C5- C4o aliphatic group having one or more -COOR1 groups, wherein R1 is H, metal, ammonium, Q-C6 alkyl, or Ce-Qo aryl.
- 12. The coating composition of claim 11 wherein the film forming binder is comprised of an acrylic resin and an isocyanate functional crosslinking agent.
- 13. The coating composition of claim 11 which is a primer composition.
- 14. The coating composition of claim 11 comprising from 0.10 to 1.00 % by weight of the mixture of compounds (I) and (II), based on the total nonvolatile weight of the coating composition.
- 15. A two component coating composition comprising a first component (I) comprising a resin comprising one or more active hydrogen groups,(I) a first compound having an acid number of from 70 to 120mgKOH/g, a hydroxyl number of from 200 to 400mg KOH/g, a number average molecular weight of from 150 to 3000, and which is the reaction product of (a) at least one difunctional carboxylic acid, (b) at least one trifunctional polyol, (c) at least one chain stopper, and (d) phosphoric acid, and(H) a second compound comprising one or more carboxy phosphate esters having the formula: O(R-O)x-P(OM)3.x wherein M is hydrogen, metal, or ammonium, x is a number from 0 to 3, R is an C5-C4o aliphatic group having one or more -COOR1 groups, wherein R1 is H, metal, ammonium, Q-Cβ alkyl, or Cβ-Cio aryl, and a second hardener component (H) comprising a crosslinking agent reactive with the resin comprising one or more active hydrogen groups.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/599,693 | 2000-06-22 | ||
| US09/599,693 US6458874B1 (en) | 2000-06-22 | 2000-06-22 | Coating compositions having improved direct to metal adhesion |
| PCT/US2001/011720 WO2001098413A1 (en) | 2000-06-22 | 2001-04-11 | Coating compositions having improved 'direct to metal' adhesion |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| AU2001253347A1 true AU2001253347A1 (en) | 2002-03-21 |
| AU2001253347B2 AU2001253347B2 (en) | 2005-09-22 |
Family
ID=24400681
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2001253347A Ceased AU2001253347B2 (en) | 2000-06-22 | 2001-04-11 | Coating compositions having improved "direct to metal" adhesion |
| AU5334701A Pending AU5334701A (en) | 2000-06-22 | 2001-04-11 | Coating compositions having improved "direct to metal" adhesion |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU5334701A Pending AU5334701A (en) | 2000-06-22 | 2001-04-11 | Coating compositions having improved "direct to metal" adhesion |
Country Status (10)
| Country | Link |
|---|---|
| US (1) | US6458874B1 (en) |
| EP (1) | EP1292640B1 (en) |
| AT (1) | ATE314426T1 (en) |
| AU (2) | AU2001253347B2 (en) |
| BR (1) | BR0109156A (en) |
| CA (1) | CA2401264C (en) |
| DE (1) | DE60116300T2 (en) |
| ES (1) | ES2256228T3 (en) |
| MX (1) | MXPA02007785A (en) |
| WO (1) | WO2001098413A1 (en) |
Families Citing this family (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002072664A1 (en) * | 2001-03-13 | 2002-09-19 | Dsm Ip Assets B.V. | Coating composition comprising a phosphatized polyester |
| US6679943B1 (en) | 2002-05-01 | 2004-01-20 | Basf Corporation | Coating containing adhesion promoting additive |
| US20040071887A1 (en) * | 2002-10-10 | 2004-04-15 | Basf Corporation | Coating compositions having improved "direct to metal" adhesion and method therefore |
| US6893680B2 (en) * | 2002-10-10 | 2005-05-17 | Basf Corporation | Coating composition with improved adhesion and method therefor |
| CN101180378B (en) * | 2005-04-28 | 2011-09-21 | 东洋油墨制造株式会社 | Adhesive and packaging laminate using the same |
| DE102006045041A1 (en) | 2006-09-25 | 2008-03-27 | Evonik Degussa Gmbh | Radiation curable formulation that results in flexible coatings with enhanced corrosion protection on metal substrates |
| DE102006061380A1 (en) | 2006-12-23 | 2008-06-26 | Evonik Degussa Gmbh | Silica and dispersant-containing radiation-curable formulations with increased corrosion protection on metal substrates |
| DE102007040246A1 (en) | 2007-08-25 | 2009-02-26 | Evonik Degussa Gmbh | Radiation-curable formulations |
| US20100227942A1 (en) | 2007-12-18 | 2010-09-09 | Emmanouil Spyrou | Dual-cure formulations with components containing uretdione groups |
| DE102008000721A1 (en) | 2008-03-18 | 2009-09-24 | Evonik Degussa Gmbh | Radiation-curable formulations |
| US8182646B2 (en) * | 2009-09-30 | 2012-05-22 | Federal-Mogul Corporation | Substrate and rubber composition and method of making the composition |
| US20120301647A1 (en) * | 2011-05-23 | 2012-11-29 | Ppg Industries Ohio, Inc. | Phosphatized polyesters and coating compositions containing the same |
| JP2016525154A (en) * | 2013-06-24 | 2016-08-22 | ベーイプシロンカー ヘミー ゲゼルシャフト ミット ベシュレンクター ハフトゥング | Adhesion enhancing additive and coating composition containing the same |
| EP3034569B1 (en) | 2014-12-19 | 2016-11-30 | Evonik Degussa GmbH | Crosslinking systems which harden thermally by means of actinic radiation |
| AR119172A1 (en) | 2019-07-12 | 2021-12-01 | Dow Global Technologies Llc | COMPOSITIONS WITHOUT SOLVENTS |
| TWI858080B (en) | 2019-07-12 | 2024-10-11 | 美商陶氏全球科技有限責任公司 | Water-based compositions |
| TWI887244B (en) | 2019-07-12 | 2025-06-21 | 美商陶氏全球科技有限責任公司 | Solvent-based compositions |
| BR112022022724A2 (en) | 2020-06-05 | 2023-02-14 | Dow Global Technologies Llc | COMPOSITION, METHOD FOR PRODUCING THE COMPOSITION, ADHESIVE COMPOSITION, METHOD FOR PRODUCING A LAMINATE, AND, LAMINATE |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3630790A (en) * | 1969-05-13 | 1971-12-28 | Dow Chemical Co | Method of protection of metal surfaces from corrosion |
| DE2333353C2 (en) * | 1973-06-30 | 1983-05-19 | Bayer Ag, 5090 Leverkusen | Process for preventing corrosion in water-bearing systems and anti-corrosion agents for carrying out the process |
| DE3361701D1 (en) | 1982-07-29 | 1986-02-13 | Vianova Kunstharz Ag | Process for the preparation of polyester resins containing phosphoric-acid groups, and their use |
| JPS61143411A (en) * | 1984-12-17 | 1986-07-01 | Mitsubishi Rayon Co Ltd | Acrylic covering material |
| US5191029A (en) | 1988-12-29 | 1993-03-02 | Deldonno Theodore A | Phosphorus-containing polymer compositions containing water-soluble polyvalent metal compounds |
| CA2005640A1 (en) | 1988-12-29 | 1990-06-29 | Theodore A. Del Donno | Improved phosphorus-containing polymer compositions containing water - soluble polyvalent metal compounds |
| US5252363A (en) * | 1992-06-29 | 1993-10-12 | Morton International, Inc. | Method to produce universally paintable passivated galvanized steel |
| US5322870A (en) * | 1992-12-29 | 1994-06-21 | Board Of Regents, Northern Illinois University | Additive package for in situ phosphatizing paint, paint and method |
| US5859154A (en) | 1997-09-26 | 1999-01-12 | Ppg Industries, Inc. | Resinous composition of phosphatized polyester polymers and coating compositions for improved adhesion |
-
2000
- 2000-06-22 US US09/599,693 patent/US6458874B1/en not_active Expired - Lifetime
-
2001
- 2001-04-11 CA CA002401264A patent/CA2401264C/en not_active Expired - Fee Related
- 2001-04-11 DE DE60116300T patent/DE60116300T2/en not_active Expired - Lifetime
- 2001-04-11 AU AU2001253347A patent/AU2001253347B2/en not_active Ceased
- 2001-04-11 AT AT01926837T patent/ATE314426T1/en active
- 2001-04-11 BR BR0109156-5A patent/BR0109156A/en not_active Application Discontinuation
- 2001-04-11 MX MXPA02007785A patent/MXPA02007785A/en active IP Right Grant
- 2001-04-11 EP EP01926837A patent/EP1292640B1/en not_active Expired - Lifetime
- 2001-04-11 ES ES01926837T patent/ES2256228T3/en not_active Expired - Lifetime
- 2001-04-11 AU AU5334701A patent/AU5334701A/en active Pending
- 2001-04-11 WO PCT/US2001/011720 patent/WO2001098413A1/en not_active Ceased
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2401264C (en) | Coating compositions having improved "direct to metal" adhesion | |
| AU2001253347A1 (en) | Coating compositions having improved "direct to metal" adhesion | |
| US6599965B2 (en) | Coating composition for metallic substrates | |
| US20040092637A1 (en) | Electronic display of automotive colors | |
| US20040071887A1 (en) | Coating compositions having improved "direct to metal" adhesion and method therefore | |
| EP1789461B1 (en) | Direct to metal polyurethane coating compositions | |
| EP1292400B1 (en) | A method of coating bare, untreated metal substrates | |
| US5859154A (en) | Resinous composition of phosphatized polyester polymers and coating compositions for improved adhesion | |
| WO2009106646A1 (en) | Hydroxy functional binder for a primer coating composition | |
| US6893680B2 (en) | Coating composition with improved adhesion and method therefor | |
| US6084036A (en) | Carboxyl-functional adduct from oh- or epoxy-functional polymer and citric acid (anhydride) with anhydride | |
| CA2181767C (en) | Polyamines and their use in coating compositions | |
| EP3694900B1 (en) | Non-aqueous crosslinkable composition | |
| EP4010403A1 (en) | Polyol polymers, methods of preparing such polymers, and coating compositions containing the same | |
| AU2002228594A1 (en) | Coating composition for metallic substrates | |
| JPS60260615A (en) | Production of polyurethane resin | |
| CN112469753A (en) | Thermosetting coating composition for improved corrosion protection of metal substrates | |
| CN119286333A (en) | Coating composition for coating a substrate comprising a binder component |