NZ796027A - In vivo synthesis of sialylated compounds - Google Patents
In vivo synthesis of sialylated compoundsInfo
- Publication number
- NZ796027A NZ796027A NZ796027A NZ79602717A NZ796027A NZ 796027 A NZ796027 A NZ 796027A NZ 796027 A NZ796027 A NZ 796027A NZ 79602717 A NZ79602717 A NZ 79602717A NZ 796027 A NZ796027 A NZ 796027A
- Authority
- NZ
- New Zealand
- Prior art keywords
- microorganism
- sialylated
- acetyl
- seq
- acetylglucosamine
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 79
- 230000015572 biosynthetic process Effects 0.000 title abstract description 26
- 238000003786 synthesis reaction Methods 0.000 title abstract description 13
- 238000001727 in vivo Methods 0.000 title abstract description 6
- 238000000034 method Methods 0.000 claims abstract description 158
- 244000005700 microbiome Species 0.000 claims abstract description 149
- SQVRNKJHWKZAKO-LUWBGTNYSA-N N-acetylneuraminic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)CC(O)(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-LUWBGTNYSA-N 0.000 claims abstract description 78
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 claims abstract description 77
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 claims abstract description 77
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 claims abstract description 62
- 229950006780 n-acetylglucosamine Drugs 0.000 claims abstract description 62
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 claims abstract description 38
- 239000008101 lactose Substances 0.000 claims abstract description 38
- 238000000855 fermentation Methods 0.000 claims abstract description 11
- 230000004151 fermentation Effects 0.000 claims abstract description 11
- OVRNDRQMDRJTHS-OZRXBMAMSA-N N-acetyl-beta-D-mannosamine Chemical compound CC(=O)N[C@@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-OZRXBMAMSA-N 0.000 claims abstract 17
- 108090000623 proteins and genes Proteins 0.000 claims description 145
- 238000004519 manufacturing process Methods 0.000 claims description 90
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 claims description 79
- 230000014509 gene expression Effects 0.000 claims description 70
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 60
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 claims description 59
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 claims description 58
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 57
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 claims description 56
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 55
- 150000007523 nucleic acids Chemical class 0.000 claims description 51
- 241000588724 Escherichia coli Species 0.000 claims description 48
- 229920001184 polypeptide Polymers 0.000 claims description 48
- 229910052799 carbon Inorganic materials 0.000 claims description 45
- 150000002482 oligosaccharides Chemical class 0.000 claims description 44
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 43
- 229920001542 oligosaccharide Polymers 0.000 claims description 43
- 102000039446 nucleic acids Human genes 0.000 claims description 42
- 108020004707 nucleic acids Proteins 0.000 claims description 42
- 102000004169 proteins and genes Human genes 0.000 claims description 39
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 32
- 108010035265 N-acetylneuraminate synthase Proteins 0.000 claims description 30
- AFPIKWGSISSARS-QOHRVMPQSA-N N-Acetylglucosamine phosphate Chemical compound CC(=O)N[C@@]12OP3(=O)O[C@]1(O)O[C@H](CO)[C@@H](O)[C@@]2(O)O3 AFPIKWGSISSARS-QOHRVMPQSA-N 0.000 claims description 28
- 102100029954 Sialic acid synthase Human genes 0.000 claims description 28
- 230000012010 growth Effects 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 25
- 102000004190 Enzymes Human genes 0.000 claims description 24
- 108090000790 Enzymes Proteins 0.000 claims description 24
- 230000000694 effects Effects 0.000 claims description 24
- 150000001413 amino acids Chemical class 0.000 claims description 22
- 102000003838 Sialyltransferases Human genes 0.000 claims description 21
- 108090000141 Sialyltransferases Proteins 0.000 claims description 21
- 229930006000 Sucrose Natural products 0.000 claims description 19
- 239000005720 sucrose Substances 0.000 claims description 19
- OIZGSVFYNBZVIK-FHHHURIISA-N 3'-sialyllactose Chemical compound O1[C@@H]([C@H](O)[C@H](O)CO)[C@H](NC(=O)C)[C@@H](O)C[C@@]1(C(O)=O)O[C@@H]1[C@@H](O)[C@H](O[C@H]([C@H](O)CO)[C@H](O)[C@@H](O)C=O)O[C@H](CO)[C@@H]1O OIZGSVFYNBZVIK-FHHHURIISA-N 0.000 claims description 18
- 238000009472 formulation Methods 0.000 claims description 15
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 claims description 13
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 claims description 13
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 claims description 13
- 230000002068 genetic effect Effects 0.000 claims description 13
- 230000001965 increasing effect Effects 0.000 claims description 13
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 claims description 12
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 claims description 12
- RBMYDHMFFAVMMM-PLQWBNBWSA-N neolactotetraose Chemical compound O([C@H]1[C@H](O)[C@H]([C@@H](O[C@@H]1CO)O[C@@H]1[C@H]([C@H](O[C@H]([C@H](O)CO)[C@H](O)[C@@H](O)C=O)O[C@H](CO)[C@@H]1O)O)NC(=O)C)[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O RBMYDHMFFAVMMM-PLQWBNBWSA-N 0.000 claims description 12
- 241000894006 Bacteria Species 0.000 claims description 11
- 241000588653 Neisseria Species 0.000 claims description 11
- 238000001914 filtration Methods 0.000 claims description 11
- 241000283690 Bos taurus Species 0.000 claims description 10
- TXCIAUNLDRJGJZ-BILDWYJOSA-N CMP-N-acetyl-beta-neuraminic acid Chemical compound O1[C@@H]([C@H](O)[C@H](O)CO)[C@H](NC(=O)C)[C@@H](O)C[C@]1(C(O)=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C(N=C(N)C=C2)=O)O1 TXCIAUNLDRJGJZ-BILDWYJOSA-N 0.000 claims description 10
- 108010068561 Fructose-Bisphosphate Aldolase Proteins 0.000 claims description 10
- 241000282414 Homo sapiens Species 0.000 claims description 10
- 201000009906 Meningitis Diseases 0.000 claims description 10
- 235000000346 sugar Nutrition 0.000 claims description 10
- 102000001390 Fructose-Bisphosphate Aldolase Human genes 0.000 claims description 9
- 238000005119 centrifugation Methods 0.000 claims description 9
- IEQCXFNWPAHHQR-UHFFFAOYSA-N lacto-N-neotetraose Natural products OCC1OC(OC2C(C(OC3C(OC(O)C(O)C3O)CO)OC(CO)C2O)O)C(NC(=O)C)C(O)C1OC1OC(CO)C(O)C(O)C1O IEQCXFNWPAHHQR-UHFFFAOYSA-N 0.000 claims description 9
- 229940062780 lacto-n-neotetraose Drugs 0.000 claims description 9
- 230000002829 reductive effect Effects 0.000 claims description 9
- 239000002028 Biomass Substances 0.000 claims description 8
- 102100023315 N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase Human genes 0.000 claims description 8
- 108010056664 N-acetyllactosaminide beta-1,6-N-acetylglucosaminyltransferase Proteins 0.000 claims description 8
- TXCIAUNLDRJGJZ-UHFFFAOYSA-N CMP-N-acetyl neuraminic acid Natural products O1C(C(O)C(O)CO)C(NC(=O)C)C(O)CC1(C(O)=O)OP(O)(=O)OCC1C(O)C(O)C(N2C(N=C(N)C=C2)=O)O1 TXCIAUNLDRJGJZ-UHFFFAOYSA-N 0.000 claims description 7
- 241001646716 Escherichia coli K-12 Species 0.000 claims description 7
- 108060003306 Galactosyltransferase Proteins 0.000 claims description 7
- 102000030902 Galactosyltransferase Human genes 0.000 claims description 7
- 229910019142 PO4 Inorganic materials 0.000 claims description 7
- RJTOFDPWCJDYFZ-UHFFFAOYSA-N lacto-N-triose Natural products CC(=O)NC1C(O)C(O)C(CO)OC1OC1C(O)C(OC(C(O)CO)C(O)C(O)C=O)OC(CO)C1O RJTOFDPWCJDYFZ-UHFFFAOYSA-N 0.000 claims description 7
- 238000001728 nano-filtration Methods 0.000 claims description 7
- 239000010452 phosphate Substances 0.000 claims description 7
- AXQLFFDZXPOFPO-UHFFFAOYSA-N UNPD216 Natural products O1C(CO)C(O)C(OC2C(C(O)C(O)C(CO)O2)O)C(NC(=O)C)C1OC(C1O)C(O)C(CO)OC1OC1C(O)C(O)C(O)OC1CO AXQLFFDZXPOFPO-UHFFFAOYSA-N 0.000 claims description 6
- AXQLFFDZXPOFPO-UNTPKZLMSA-N beta-D-Galp-(1->3)-beta-D-GlcpNAc-(1->3)-beta-D-Galp-(1->4)-beta-D-Glcp Chemical compound O([C@@H]1O[C@H](CO)[C@H](O)[C@@H]([C@H]1O)O[C@H]1[C@@H]([C@H]([C@H](O)[C@@H](CO)O1)O[C@H]1[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O1)O)NC(=O)C)[C@H]1[C@H](O)[C@@H](O)[C@H](O)O[C@@H]1CO AXQLFFDZXPOFPO-UNTPKZLMSA-N 0.000 claims description 6
- 238000004108 freeze drying Methods 0.000 claims description 6
- 238000005342 ion exchange Methods 0.000 claims description 6
- USIPEGYTBGEPJN-UHFFFAOYSA-N lacto-N-tetraose Natural products O1C(CO)C(O)C(OC2C(C(O)C(O)C(CO)O2)O)C(NC(=O)C)C1OC1C(O)C(CO)OC(OC(C(O)CO)C(O)C(O)C=O)C1O USIPEGYTBGEPJN-UHFFFAOYSA-N 0.000 claims description 6
- 238000001694 spray drying Methods 0.000 claims description 6
- 241000699666 Mus <mouse, genus> Species 0.000 claims description 5
- 102100035286 N-acetyl-D-glucosamine kinase Human genes 0.000 claims description 5
- 108010032040 N-acetylglucosamine kinase Proteins 0.000 claims description 5
- 238000002425 crystallisation Methods 0.000 claims description 5
- 230000008025 crystallization Effects 0.000 claims description 5
- 238000012262 fermentative production Methods 0.000 claims description 5
- 241000252212 Danio rerio Species 0.000 claims description 4
- 241000590002 Helicobacter pylori Species 0.000 claims description 4
- 239000003905 agrochemical Substances 0.000 claims description 4
- 230000006696 biosynthetic metabolic pathway Effects 0.000 claims description 4
- 239000002537 cosmetic Substances 0.000 claims description 4
- FCIROHDMPFOSFG-LAVSNGQLSA-N disialyllacto-N-tetraose Chemical compound O1[C@@H]([C@H](O)[C@H](O)CO)[C@H](NC(=O)C)[C@@H](O)C[C@@]1(C(O)=O)OC[C@@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@]3(O[C@H]([C@H](NC(C)=O)[C@@H](O)C3)[C@H](O)[C@H](O)CO)C(O)=O)[C@@H](O)[C@@H](CO)O2)O)[C@@H](NC(C)=O)[C@H](O[C@@H]2[C@H]([C@H](O[C@H]3[C@@H]([C@@H](O)C(O)O[C@@H]3CO)O)O[C@H](CO)[C@@H]2O)O)O1 FCIROHDMPFOSFG-LAVSNGQLSA-N 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 4
- 230000008020 evaporation Effects 0.000 claims description 4
- 235000013305 food Nutrition 0.000 claims description 4
- 229940037467 helicobacter pylori Drugs 0.000 claims description 4
- 229930029653 phosphoenolpyruvate Natural products 0.000 claims description 4
- DTBNBXWJWCWCIK-UHFFFAOYSA-N phosphoenolpyruvic acid Chemical compound OC(=O)C(=C)OP(O)(O)=O DTBNBXWJWCWCIK-UHFFFAOYSA-N 0.000 claims description 4
- 108700004024 5'-Nucleotidase Proteins 0.000 claims description 3
- 241000287828 Gallus gallus Species 0.000 claims description 3
- 108010043841 Glucosamine 6-Phosphate N-Acetyltransferase Proteins 0.000 claims description 3
- 241000606790 Haemophilus Species 0.000 claims description 3
- 230000002209 hydrophobic effect Effects 0.000 claims description 3
- 239000008194 pharmaceutical composition Substances 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 102000002740 Glucosamine 6-Phosphate N-Acetyltransferase Human genes 0.000 claims description 2
- 102000003960 Ligases Human genes 0.000 claims description 2
- 108090000364 Ligases Proteins 0.000 claims description 2
- 108091000080 Phosphotransferase Proteins 0.000 claims description 2
- 102000006321 UTP-hexose-1-phosphate uridylyltransferase Human genes 0.000 claims description 2
- 108010058532 UTP-hexose-1-phosphate uridylyltransferase Proteins 0.000 claims description 2
- 102000020233 phosphotransferase Human genes 0.000 claims description 2
- 241000589875 Campylobacter jejuni Species 0.000 claims 2
- 241000607568 Photobacterium Species 0.000 claims 1
- 241000231663 Puffinus auricularis Species 0.000 claims 1
- 230000008676 import Effects 0.000 claims 1
- 101150036529 manZ gene Proteins 0.000 claims 1
- 101150027065 nagE gene Proteins 0.000 claims 1
- 125000000185 sucrose group Chemical group 0.000 claims 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 abstract description 36
- 239000002243 precursor Substances 0.000 abstract description 28
- 239000001963 growth medium Substances 0.000 abstract description 19
- 230000003834 intracellular effect Effects 0.000 abstract description 17
- 238000012258 culturing Methods 0.000 abstract description 11
- 238000012269 metabolic engineering Methods 0.000 abstract description 10
- KFEUJDWYNGMDBV-UHFFFAOYSA-N (N-Acetyl)-glucosamin-4-beta-galaktosid Natural products OC1C(NC(=O)C)C(O)OC(CO)C1OC1C(O)C(O)C(O)C(CO)O1 KFEUJDWYNGMDBV-UHFFFAOYSA-N 0.000 abstract description 7
- KFEUJDWYNGMDBV-LODBTCKLSA-N N-acetyllactosamine Chemical compound O[C@@H]1[C@@H](NC(=O)C)[C@H](O)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KFEUJDWYNGMDBV-LODBTCKLSA-N 0.000 abstract description 7
- HESSGHHCXGBPAJ-UHFFFAOYSA-N N-acetyllactosamine Natural products CC(=O)NC(C=O)C(O)C(C(O)CO)OC1OC(CO)C(O)C(O)C1O HESSGHHCXGBPAJ-UHFFFAOYSA-N 0.000 abstract description 7
- HMQPEDMEOBLSQB-RCBHQUQDSA-N beta-D-Galp-(1->3)-alpha-D-GlcpNAc Chemical compound CC(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HMQPEDMEOBLSQB-RCBHQUQDSA-N 0.000 abstract description 7
- 229930191176 lacto-N-biose Natural products 0.000 abstract description 7
- DKVBOUDTNWVDEP-NJCHZNEYSA-N teicoplanin aglycone Chemical compound N([C@H](C(N[C@@H](C1=CC(O)=CC(O)=C1C=1C(O)=CC=C2C=1)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)OC=1C=C3C=C(C=1O)OC1=CC=C(C=C1Cl)C[C@H](C(=O)N1)NC([C@H](N)C=4C=C(O5)C(O)=CC=4)=O)C(=O)[C@@H]2NC(=O)[C@@H]3NC(=O)[C@@H]1C1=CC5=CC(O)=C1 DKVBOUDTNWVDEP-NJCHZNEYSA-N 0.000 abstract description 6
- 210000004027 cell Anatomy 0.000 description 54
- OVRNDRQMDRJTHS-UOLFYFMNSA-N N-acetyl-alpha-D-mannosamine Chemical compound CC(=O)N[C@@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-UOLFYFMNSA-N 0.000 description 53
- 239000002609 medium Substances 0.000 description 50
- 239000013612 plasmid Substances 0.000 description 50
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 31
- 229940088598 enzyme Drugs 0.000 description 24
- 230000037361 pathway Effects 0.000 description 22
- 239000006137 Luria-Bertani broth Substances 0.000 description 21
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 19
- 239000002253 acid Substances 0.000 description 19
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 19
- 239000008103 glucose Substances 0.000 description 19
- 229960001031 glucose Drugs 0.000 description 19
- 102000004879 Racemases and epimerases Human genes 0.000 description 18
- 108090001066 Racemases and epimerases Proteins 0.000 description 18
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 18
- 238000002474 experimental method Methods 0.000 description 17
- 150000002500 ions Chemical class 0.000 description 17
- OVRNDRQMDRJTHS-RTRLPJTCSA-N N-acetyl-D-glucosamine Chemical compound CC(=O)N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-RTRLPJTCSA-N 0.000 description 16
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 14
- 238000006467 substitution reaction Methods 0.000 description 14
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 13
- 241000235070 Saccharomyces Species 0.000 description 13
- 241001135228 Bacteroides ovatus Species 0.000 description 12
- 108091023045 Untranslated Region Proteins 0.000 description 12
- 125000003275 alpha amino acid group Chemical group 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- 229930091371 Fructose Natural products 0.000 description 11
- 239000005715 Fructose Substances 0.000 description 11
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 11
- 229930182830 galactose Natural products 0.000 description 11
- LFTYTUAZOPRMMI-CFRASDGPSA-N UDP-N-acetyl-alpha-D-glucosamine Chemical compound O1[C@H](CO)[C@@H](O)[C@H](O)[C@@H](NC(=O)C)[C@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C(NC(=O)C=C2)=O)O1 LFTYTUAZOPRMMI-CFRASDGPSA-N 0.000 description 10
- LFTYTUAZOPRMMI-UHFFFAOYSA-N UNPD164450 Natural products O1C(CO)C(O)C(O)C(NC(=O)C)C1OP(O)(=O)OP(O)(=O)OCC1C(O)C(O)C(N2C(NC(=O)C=C2)=O)O1 LFTYTUAZOPRMMI-UHFFFAOYSA-N 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- SQVRNKJHWKZAKO-PFQGKNLYSA-N N-acetyl-beta-neuraminic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-PFQGKNLYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 241000607760 Shigella sonnei Species 0.000 description 8
- 150000002016 disaccharides Chemical class 0.000 description 8
- 238000003780 insertion Methods 0.000 description 8
- 230000037431 insertion Effects 0.000 description 8
- 230000010354 integration Effects 0.000 description 8
- -1 lactyl groups Chemical group 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000001105 regulatory effect Effects 0.000 description 8
- 229940115939 shigella sonnei Drugs 0.000 description 8
- 230000009261 transgenic effect Effects 0.000 description 8
- 244000063299 Bacillus subtilis Species 0.000 description 7
- 235000014469 Bacillus subtilis Nutrition 0.000 description 7
- 108091028043 Nucleic acid sequence Proteins 0.000 description 7
- 239000002054 inoculum Substances 0.000 description 7
- 108010060845 lactose permease Proteins 0.000 description 7
- 150000002772 monosaccharides Chemical class 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 239000011573 trace mineral Substances 0.000 description 7
- 235000013619 trace mineral Nutrition 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 241000192542 Anabaena Species 0.000 description 6
- 108700010070 Codon Usage Proteins 0.000 description 6
- 108020004414 DNA Proteins 0.000 description 6
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 6
- OVRNDRQMDRJTHS-ZTVVOAFPSA-N N-acetyl-D-mannosamine Chemical compound CC(=O)N[C@@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-ZTVVOAFPSA-N 0.000 description 6
- 230000009471 action Effects 0.000 description 6
- 125000000539 amino acid group Chemical group 0.000 description 6
- 229960000723 ampicillin Drugs 0.000 description 6
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 6
- 230000003115 biocidal effect Effects 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 229960002442 glucosamine Drugs 0.000 description 6
- 239000003550 marker Substances 0.000 description 6
- 229920005862 polyol Polymers 0.000 description 6
- 150000003077 polyols Chemical class 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- DBTMGCOVALSLOR-UHFFFAOYSA-N 32-alpha-galactosyl-3-alpha-galactosyl-galactose Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(OC2C(C(CO)OC(O)C2O)O)OC(CO)C1O DBTMGCOVALSLOR-UHFFFAOYSA-N 0.000 description 5
- 229920001817 Agar Polymers 0.000 description 5
- RXVWSYJTUUKTEA-UHFFFAOYSA-N D-maltotriose Natural products OC1C(O)C(OC(C(O)CO)C(O)C(O)C=O)OC(CO)C1OC1C(O)C(O)C(O)C(CO)O1 RXVWSYJTUUKTEA-UHFFFAOYSA-N 0.000 description 5
- 241001240954 Escherichia albertii Species 0.000 description 5
- 241000699660 Mus musculus Species 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 239000008272 agar Substances 0.000 description 5
- FYGDTMLNYKFZSV-SKWQFERISA-N alpha-D-Galp-(1->4)-beta-D-Galp-(1->4)-beta-D-Glcp Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@H]1[C@@H](CO)O[C@@H](O[C@@H]2[C@H](O[C@@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-SKWQFERISA-N 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- 229940041514 candida albicans extract Drugs 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- FYGDTMLNYKFZSV-UHFFFAOYSA-N mannotriose Natural products OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(OC2C(OC(O)C(O)C2O)CO)C(O)C1O FYGDTMLNYKFZSV-UHFFFAOYSA-N 0.000 description 5
- 230000002503 metabolic effect Effects 0.000 description 5
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 230000002018 overexpression Effects 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 230000002103 transcriptional effect Effects 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 239000012137 tryptone Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000012138 yeast extract Substances 0.000 description 5
- FYGDTMLNYKFZSV-BYLHFPJWSA-N β-1,4-galactotrioside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@H](CO)O[C@@H](O[C@@H]2[C@@H](O[C@@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-BYLHFPJWSA-N 0.000 description 5
- 241000606125 Bacteroides Species 0.000 description 4
- 241000192700 Cyanobacteria Species 0.000 description 4
- SRBFZHDQGSBBOR-SOOFDHNKSA-N D-ribopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@@H]1O SRBFZHDQGSBBOR-SOOFDHNKSA-N 0.000 description 4
- 241000588720 Escherichia fergusonii Species 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- GUBGYTABKSRVRQ-IBLCYFAMSA-N GAL-(1-4)GAL Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@H]1[C@@H](CO)O[C@@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-IBLCYFAMSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 108010081778 N-acylneuraminate cytidylyltransferase Proteins 0.000 description 4
- 239000001888 Peptone Substances 0.000 description 4
- 108010080698 Peptones Proteins 0.000 description 4
- 241000607762 Shigella flexneri Species 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 102000004357 Transferases Human genes 0.000 description 4
- 108090000992 Transferases Proteins 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 4
- 229960005091 chloramphenicol Drugs 0.000 description 4
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 4
- 239000002158 endotoxin Substances 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- 230000029142 excretion Effects 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 150000004676 glycans Chemical class 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 229930027917 kanamycin Natural products 0.000 description 4
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 4
- 229960000318 kanamycin Drugs 0.000 description 4
- 229930182823 kanamycin A Natural products 0.000 description 4
- 238000001471 micro-filtration Methods 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 235000019319 peptone Nutrition 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000000108 ultra-filtration Methods 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 241000007909 Acaryochloris Species 0.000 description 3
- 241000193830 Bacillus <bacterium> Species 0.000 description 3
- 101100096227 Bacteroides fragilis (strain 638R) argF' gene Proteins 0.000 description 3
- 241000186018 Bifidobacterium adolescentis Species 0.000 description 3
- 241000282461 Canis lupus Species 0.000 description 3
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 3
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 3
- 101100422772 Escherichia coli (strain K12) ybiV gene Proteins 0.000 description 3
- 241000192125 Firmicutes Species 0.000 description 3
- 241000948245 Idiomarina loihiensis Species 0.000 description 3
- 241001138401 Kluyveromyces lactis Species 0.000 description 3
- 241001486996 Methanocaldococcus Species 0.000 description 3
- 241001600139 Moritella viscosa Species 0.000 description 3
- 101100354186 Mycoplasma capricolum subsp. capricolum (strain California kid / ATCC 27343 / NCTC 10154) ptcA gene Proteins 0.000 description 3
- BRGMHAYQAZFZDJ-PVFLNQBWSA-N N-Acetylglucosamine 6-phosphate Chemical compound CC(=O)N[C@H]1[C@@H](O)O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O BRGMHAYQAZFZDJ-PVFLNQBWSA-N 0.000 description 3
- OVRNDRQMDRJTHS-KEWYIRBNSA-N N-acetyl-D-galactosamine Chemical compound CC(=O)N[C@H]1C(O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-KEWYIRBNSA-N 0.000 description 3
- MBLBDJOUHNCFQT-UHFFFAOYSA-N N-acetyl-D-galactosamine Natural products CC(=O)NC(C=O)C(O)C(O)C(O)CO MBLBDJOUHNCFQT-UHFFFAOYSA-N 0.000 description 3
- 102000002307 N-acylglucosamine 2-epimerase Human genes 0.000 description 3
- 108060005182 N-acylglucosamine 2-epimerase Proteins 0.000 description 3
- 241000192656 Nostoc Species 0.000 description 3
- 241000424623 Nostoc punctiforme Species 0.000 description 3
- 108010038807 Oligopeptides Proteins 0.000 description 3
- 102000015636 Oligopeptides Human genes 0.000 description 3
- 241000193465 Paeniclostridium sordellii Species 0.000 description 3
- 101100084022 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) lapA gene Proteins 0.000 description 3
- 241000700157 Rattus norvegicus Species 0.000 description 3
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 3
- 241001138501 Salmonella enterica Species 0.000 description 3
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 3
- 101150094640 Siae gene Proteins 0.000 description 3
- 241000194017 Streptococcus Species 0.000 description 3
- 241000282898 Sus scrofa Species 0.000 description 3
- 241000192584 Synechocystis Species 0.000 description 3
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 3
- 240000008042 Zea mays Species 0.000 description 3
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 3
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 3
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 3
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 3
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 3
- 101150056313 argF gene Proteins 0.000 description 3
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 3
- QLTSDROPCWIKKY-PMCTYKHCSA-N beta-D-glucosaminyl-(1->4)-beta-D-glucosamine Chemical compound O[C@@H]1[C@@H](N)[C@H](O)O[C@H](CO)[C@H]1O[C@H]1[C@H](N)[C@@H](O)[C@H](O)[C@@H](CO)O1 QLTSDROPCWIKKY-PMCTYKHCSA-N 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 229940106189 ceramide Drugs 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 235000005822 corn Nutrition 0.000 description 3
- 101150106284 deoR gene Proteins 0.000 description 3
- 238000000909 electrodialysis Methods 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 239000013613 expression plasmid Substances 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000002744 homologous recombination Methods 0.000 description 3
- 230000006801 homologous recombination Effects 0.000 description 3
- 101150086268 hxpB gene Proteins 0.000 description 3
- 239000000411 inducer Substances 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- DLRVVLDZNNYCBX-RTPHMHGBSA-N isomaltose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)C(O)O1 DLRVVLDZNNYCBX-RTPHMHGBSA-N 0.000 description 3
- 101150066555 lacZ gene Proteins 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 150000003272 mannan oligosaccharides Chemical class 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 230000037353 metabolic pathway Effects 0.000 description 3
- 235000013379 molasses Nutrition 0.000 description 3
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 3
- 101150009573 phoA gene Proteins 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000010188 recombinant method Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- 239000011669 selenium Substances 0.000 description 3
- 238000002741 site-directed mutagenesis Methods 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 101150002814 yidA gene Proteins 0.000 description 3
- 101150042919 yigL gene Proteins 0.000 description 3
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 2
- BUADUHVXMFJVLH-UHFFFAOYSA-N 7-chloro-3-imidazol-1-yl-2H-1,2,4-benzotriazin-1-ium 1-oxide Chemical compound N1[N+](=O)C2=CC(Cl)=CC=C2N=C1N1C=CN=C1 BUADUHVXMFJVLH-UHFFFAOYSA-N 0.000 description 2
- 241000007910 Acaryochloris marina Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 102100026189 Beta-galactosidase Human genes 0.000 description 2
- 241000168061 Butyrivibrio proteoclasticus Species 0.000 description 2
- YDNKGFDKKRUKPY-JHOUSYSJSA-N C16 ceramide Natural products CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@H](O)C=CCCCCCCCCCCCCC YDNKGFDKKRUKPY-JHOUSYSJSA-N 0.000 description 2
- 241001135194 Capnocytophaga canimorsus Species 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 241001494522 Citrobacter amalonaticus Species 0.000 description 2
- 241001199812 Cladiella Species 0.000 description 2
- 108091035707 Consensus sequence Proteins 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000588722 Escherichia Species 0.000 description 2
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 2
- 108090000156 Fructokinases Proteins 0.000 description 2
- 102000003793 Fructokinases Human genes 0.000 description 2
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 2
- 108090000769 Isomerases Proteins 0.000 description 2
- 241000588747 Klebsiella pneumoniae Species 0.000 description 2
- 241000881812 Kluyvera intermedia Species 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- 241000589248 Legionella Species 0.000 description 2
- 208000007764 Legionnaires' Disease Diseases 0.000 description 2
- 241000881808 Lelliottia amnigena Species 0.000 description 2
- 239000006142 Luria-Bertani Agar Substances 0.000 description 2
- 241000203732 Mobiluncus mulieris Species 0.000 description 2
- 241000108056 Monas Species 0.000 description 2
- BRGMHAYQAZFZDJ-RTRLPJTCSA-N N-acetyl-D-glucosamine 6-phosphate Chemical compound CC(=O)N[C@H]1C(O)O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O BRGMHAYQAZFZDJ-RTRLPJTCSA-N 0.000 description 2
- 102100033341 N-acetylmannosamine kinase Human genes 0.000 description 2
- 108700023220 N-acetylneuraminate lyases Proteins 0.000 description 2
- 102000048245 N-acetylneuraminate lyases Human genes 0.000 description 2
- CRJGESKKUOMBCT-VQTJNVASSA-N N-acetylsphinganine Chemical compound CCCCCCCCCCCCCCC[C@@H](O)[C@H](CO)NC(C)=O CRJGESKKUOMBCT-VQTJNVASSA-N 0.000 description 2
- 108010029147 N-acylmannosamine kinase Proteins 0.000 description 2
- 102100031349 N-acylneuraminate cytidylyltransferase Human genes 0.000 description 2
- 241001517016 Photobacterium damselae Species 0.000 description 2
- 241000235648 Pichia Species 0.000 description 2
- 241000192142 Proteobacteria Species 0.000 description 2
- 102000018120 Recombinases Human genes 0.000 description 2
- 108010091086 Recombinases Proteins 0.000 description 2
- 241000314065 Shigella flexneri K-315 Species 0.000 description 2
- 108020000005 Sucrose phosphorylase Proteins 0.000 description 2
- 102000003929 Transaminases Human genes 0.000 description 2
- 108090000340 Transaminases Proteins 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- 241000078013 Trichormus variabilis Species 0.000 description 2
- 101150107399 UTR1 gene Proteins 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 230000027455 binding Effects 0.000 description 2
- 230000001851 biosynthetic effect Effects 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000006143 cell culture medium Substances 0.000 description 2
- ZVEQCJWYRWKARO-UHFFFAOYSA-N ceramide Natural products CCCCCCCCCCCCCCC(O)C(=O)NC(CO)C(O)C=CCCC=C(C)CCCCCCCCC ZVEQCJWYRWKARO-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010908 decantation Methods 0.000 description 2
- 230000030609 dephosphorylation Effects 0.000 description 2
- 238000006209 dephosphorylation reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940096118 ella Drugs 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 238000005189 flocculation Methods 0.000 description 2
- 230000016615 flocculation Effects 0.000 description 2
- 235000021255 galacto-oligosaccharides Nutrition 0.000 description 2
- 150000003271 galactooligosaccharides Chemical class 0.000 description 2
- 150000002270 gangliosides Chemical class 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 235000020256 human milk Nutrition 0.000 description 2
- 210000004251 human milk Anatomy 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000011031 large-scale manufacturing process Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- VVGIYYKRAMHVLU-UHFFFAOYSA-N newbouldiamide Natural products CCCCCCCCCCCCCCCCCCCC(O)C(O)C(O)C(CO)NC(=O)CCCCCCCCCCCCCCCCC VVGIYYKRAMHVLU-UHFFFAOYSA-N 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 210000001322 periplasm Anatomy 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000009450 sialylation Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- OOLLAFOLCSJHRE-ZHAKMVSLSA-N ulipristal acetate Chemical compound C1=CC(N(C)C)=CC=C1[C@@H]1C2=C3CCC(=O)C=C3CC[C@H]2[C@H](CC[C@]2(OC(C)=O)C(C)=O)[C@]2(C)C1 OOLLAFOLCSJHRE-ZHAKMVSLSA-N 0.000 description 2
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 2
- SPFMQWBKVUQXJV-QGROCUHESA-N (2s,3r,4s,5s)-2,3,4,5,6-pentahydroxyhexanal;hydrate Chemical compound O.OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)C=O SPFMQWBKVUQXJV-QGROCUHESA-N 0.000 description 1
- OSNSWKAZFASRNG-WNFIKIDCSA-N (2s,3r,4s,5s,6r)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol;hydrate Chemical compound O.OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@@H]1O OSNSWKAZFASRNG-WNFIKIDCSA-N 0.000 description 1
- VUDQSRFCCHQIIU-UHFFFAOYSA-N 1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one Chemical compound CCCCCC(=O)C1=C(O)C(Cl)=C(OC)C(Cl)=C1O VUDQSRFCCHQIIU-UHFFFAOYSA-N 0.000 description 1
- MKNNYTWMAUAKMA-FRLIKFETSA-N 3'-Sialyllactosamine Chemical compound O1C([C@H](O)[C@H](O)CO)[C@H](NC(=O)C)[C@@H](O)C[C@@]1(C(O)=O)O[C@@H]1[C@@H](O)[C@H](O[C@H]([C@H](O)CO)[C@H](O)[C@@H](N)C=O)O[C@H](CO)[C@@H]1O MKNNYTWMAUAKMA-FRLIKFETSA-N 0.000 description 1
- RCEFMOGVOYEGJN-UHFFFAOYSA-N 3-(2-hydroxyphenyl)-6-(3-nitrophenyl)-1,4-dihydropyrimidin-2-one Chemical compound OC1=CC=CC=C1N1C(=O)NC(C=2C=C(C=CC=2)[N+]([O-])=O)=CC1 RCEFMOGVOYEGJN-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241000711295 Aeria Species 0.000 description 1
- 241000122170 Aliivibrio salmonicida Species 0.000 description 1
- 102100029233 Alpha-N-acetylneuraminide alpha-2,8-sialyltransferase Human genes 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 241000235349 Ascomycota Species 0.000 description 1
- 241000193833 Bacillales Species 0.000 description 1
- 241000304886 Bacilli Species 0.000 description 1
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 1
- 241000276408 Bacillus subtilis subsp. subtilis str. 168 Species 0.000 description 1
- 241000606123 Bacteroides thetaiotaomicron Species 0.000 description 1
- 241000221198 Basidiomycota Species 0.000 description 1
- 102100029945 Beta-galactoside alpha-2,6-sialyltransferase 1 Human genes 0.000 description 1
- 241000235432 Blastocladiella Species 0.000 description 1
- 102100036008 CD48 antigen Human genes 0.000 description 1
- 102000000584 Calmodulin Human genes 0.000 description 1
- 108010041952 Calmodulin Proteins 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 241000861718 Chloris <Aves> Species 0.000 description 1
- 241001441233 Citrobacter amalonaticus Y19 Species 0.000 description 1
- 241000580513 Citrobacter braakii Species 0.000 description 1
- 241000588919 Citrobacter freundii Species 0.000 description 1
- 241000588917 Citrobacter koseri Species 0.000 description 1
- 241001602283 Citrobacter werkmanii NBRC 105721 Species 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 241000186031 Corynebacteriaceae Species 0.000 description 1
- 241000186226 Corynebacterium glutamicum Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 101150097493 D gene Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 241000192095 Deinococcus-Thermus Species 0.000 description 1
- 241000224495 Dictyostelium Species 0.000 description 1
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 1
- 241000043309 Enterobacter hormaechei Species 0.000 description 1
- 241001245440 Enterobacter kobei Species 0.000 description 1
- 241001493237 Enterobacter mori Species 0.000 description 1
- 241000147019 Enterobacter sp. Species 0.000 description 1
- 241000588921 Enterobacteriaceae Species 0.000 description 1
- 241001522878 Escherichia coli B Species 0.000 description 1
- 241000644323 Escherichia coli C Species 0.000 description 1
- 241001014021 Escherichia coli O55:H7 Species 0.000 description 1
- 241000901842 Escherichia coli W Species 0.000 description 1
- 101100186924 Escherichia coli neuC gene Proteins 0.000 description 1
- 241000660147 Escherichia coli str. K-12 substr. MG1655 Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108010046276 FLP recombinase Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- RTVRUWIBAVHRQX-PMEZUWKYSA-N Fucosyllactose Chemical compound C([C@H]1O[C@@H]([C@H]([C@@H](O[C@@H]2[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@@H]1O)O)OC)O[C@H]1OC[C@@H](O)[C@H](O)[C@@H]1O RTVRUWIBAVHRQX-PMEZUWKYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 102100036291 Galactose-1-phosphate uridylyltransferase Human genes 0.000 description 1
- 101710090046 Galactose-1-phosphate uridylyltransferase Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 108700023372 Glycosyltransferases Proteins 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 1
- 101150105462 HIS6 gene Proteins 0.000 description 1
- 101000634075 Homo sapiens Alpha-N-acetylneuraminide alpha-2,8-sialyltransferase Proteins 0.000 description 1
- 101000716130 Homo sapiens CD48 antigen Proteins 0.000 description 1
- 101000588377 Homo sapiens N-acylneuraminate cytidylyltransferase Proteins 0.000 description 1
- 102000004195 Isomerases Human genes 0.000 description 1
- 208000007976 Ketosis Diseases 0.000 description 1
- 241000588752 Kluyvera Species 0.000 description 1
- 241000235649 Kluyveromyces Species 0.000 description 1
- 241000467919 Kosakonia arachidis Species 0.000 description 1
- 241000796977 Kosakonia radicincitans Species 0.000 description 1
- 241001477369 Kosakonia sacchari Species 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- PNIWLNAGKUGXDO-UHFFFAOYSA-N Lactosamine Natural products OC1C(N)C(O)OC(CO)C1OC1C(O)C(O)C(O)C(CO)O1 PNIWLNAGKUGXDO-UHFFFAOYSA-N 0.000 description 1
- 241001647841 Leclercia adecarboxylata Species 0.000 description 1
- 101100186921 Legionella pneumophila subsp. pneumophila (strain Philadelphia 1 / ATCC 33152 / DSM 7513) neuB gene Proteins 0.000 description 1
- 241000192130 Leuconostoc mesenteroides Species 0.000 description 1
- 239000007993 MOPS buffer Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 1
- 241001536503 Micromonas Species 0.000 description 1
- 241001178805 Micromonas commoda Species 0.000 description 1
- 241000203736 Mobiluncus Species 0.000 description 1
- 102000005431 Molecular Chaperones Human genes 0.000 description 1
- 108010006519 Molecular Chaperones Proteins 0.000 description 1
- 241000235395 Mucor Species 0.000 description 1
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 101710179749 N-acetylmannosamine kinase Proteins 0.000 description 1
- 229910004619 Na2MoO4 Inorganic materials 0.000 description 1
- 241000588650 Neisseria meningitidis Species 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 101100395023 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) his-7 gene Proteins 0.000 description 1
- 101710141454 Nucleoprotein Proteins 0.000 description 1
- 241000902235 Oides Species 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 108010013639 Peptidoglycan Proteins 0.000 description 1
- 108010069341 Phosphofructokinases Proteins 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 101710083689 Probable capsid protein Proteins 0.000 description 1
- 101800004937 Protein C Proteins 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 241000007104 Pseudomonas cannabina Species 0.000 description 1
- 241001253546 Pseudomonas entomophila Species 0.000 description 1
- 241001291501 Pseudomonas monteilii Species 0.000 description 1
- 241000589774 Pseudomonas sp. Species 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- 230000004570 RNA-binding Effects 0.000 description 1
- 241000588756 Raoultella terrigena Species 0.000 description 1
- 241000235527 Rhizopus Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000533331 Salmonella bongori Species 0.000 description 1
- 241000607361 Salmonella enterica subsp. enterica Species 0.000 description 1
- 101800001700 Saposin-D Proteins 0.000 description 1
- 102400000827 Saposin-D Human genes 0.000 description 1
- 241000607766 Shigella boydii Species 0.000 description 1
- 241000607764 Shigella dysenteriae Species 0.000 description 1
- 241000314075 Shigella flexneri 1235-66 Species 0.000 description 1
- 101001010097 Shigella phage SfV Bactoprenol-linked glucose translocase Proteins 0.000 description 1
- 101710150619 Sialic acid TRAP transporter permease protein SiaT Proteins 0.000 description 1
- QUOQJNYANJQSDA-MHQSSNGYSA-N Sialyllacto-N-tetraose a Chemical compound O1C([C@H](O)[C@H](O)CO)[C@H](NC(=O)C)[C@@H](O)C[C@@]1(C(O)=O)O[C@@H]1[C@@H](O)[C@H](OC2[C@H]([C@H](OC3[C@H]([C@H](O[C@H]([C@H](O)CO)[C@H](O)[C@@H](O)C=O)O[C@H](CO)[C@@H]3O)O)O[C@H](CO)[C@H]2O)NC(C)=O)O[C@H](CO)[C@@H]1O QUOQJNYANJQSDA-MHQSSNGYSA-N 0.000 description 1
- SFMRPVLZMVJKGZ-JRZQLMJNSA-N Sialyllacto-N-tetraose b Chemical compound O1[C@@H]([C@H](O)[C@H](O)CO)[C@H](NC(=O)C)[C@@H](O)C[C@@]1(C(O)=O)OC[C@@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)[C@@H](NC(C)=O)[C@H](O[C@@H]2[C@H]([C@H](O[C@H]([C@H](O)CO)[C@H](O)[C@@H](O)C=O)O[C@H](CO)[C@@H]2O)O)O1 SFMRPVLZMVJKGZ-JRZQLMJNSA-N 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 241000269319 Squalius cephalus Species 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 241001278052 Starmerella Species 0.000 description 1
- 241000187392 Streptomyces griseus Species 0.000 description 1
- 241000204060 Streptomycetaceae Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 108700026226 TATA Box Proteins 0.000 description 1
- JZRWCGZRTZMZEH-UHFFFAOYSA-N Thiamine Natural products CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 241000043398 Trabulsiella Species 0.000 description 1
- 241000043396 Trabulsiella guamensis Species 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 101710091363 UDP-N-acetylglucosamine 2-epimerase Proteins 0.000 description 1
- 241000607598 Vibrio Species 0.000 description 1
- 101000649206 Xanthomonas campestris pv. campestris (strain 8004) Uridine 5'-monophosphate transferase Proteins 0.000 description 1
- 241000235013 Yarrowia Species 0.000 description 1
- 241000043489 Yokenella regensburgei Species 0.000 description 1
- 108010084455 Zeocin Proteins 0.000 description 1
- 241000588902 Zymomonas mobilis Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- RPSBVJXBTXEJJG-LURNZOHQSA-N alpha-N-acetylneuraminyl-(2->6)-beta-D-galactosyl-(1->4)-N-acetyl-beta-D-glucosamine Chemical compound O[C@@H]1[C@@H](NC(=O)C)[C@H](O)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO[C@]2(O[C@H]([C@H](NC(C)=O)[C@@H](O)C2)[C@H](O)[C@H](O)CO)C(O)=O)O1 RPSBVJXBTXEJJG-LURNZOHQSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000000181 anti-adherent effect Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 108010064886 beta-D-galactoside alpha 2-6-sialyltransferase Proteins 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000004641 brain development Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000017455 cell-cell adhesion Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 150000001783 ceramides Chemical class 0.000 description 1
- 238000012824 chemical production Methods 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003596 drug target Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000000105 evaporative light scattering detection Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000009567 fermentative growth Effects 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 125000002519 galactosyl group Chemical group C1([C@H](O)[C@@H](O)[C@@H](O)[C@H](O1)CO)* 0.000 description 1
- 150000008195 galaktosides Chemical class 0.000 description 1
- 101150117187 glmS gene Proteins 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- MNQZXJOMYWMBOU-UHFFFAOYSA-N glyceraldehyde Chemical compound OCC(O)C=O MNQZXJOMYWMBOU-UHFFFAOYSA-N 0.000 description 1
- 150000002337 glycosamines Chemical class 0.000 description 1
- 102000045442 glycosyltransferase activity proteins Human genes 0.000 description 1
- 108700014210 glycosyltransferase activity proteins Proteins 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000012405 in silico analysis Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- BQINXKOTJQCISL-GRCPKETISA-N keto-neuraminic acid Chemical compound OC(=O)C(=O)C[C@H](O)[C@@H](N)[C@@H](O)[C@H](O)[C@H](O)CO BQINXKOTJQCISL-GRCPKETISA-N 0.000 description 1
- 150000002584 ketoses Chemical class 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- DOVBXGDYENZJBJ-ONMPCKGSSA-N lactosamine Chemical compound O=C[C@H](N)[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O DOVBXGDYENZJBJ-ONMPCKGSSA-N 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000013048 microbiological method Methods 0.000 description 1
- 239000006151 minimal media Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000002887 multiple sequence alignment Methods 0.000 description 1
- 231100000219 mutagenic Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 101150070589 nagB gene Proteins 0.000 description 1
- CERZMXAJYMMUDR-UHFFFAOYSA-N neuraminic acid Natural products NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO CERZMXAJYMMUDR-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 230000008823 permeabilization Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- CWCMIVBLVUHDHK-ZSNHEYEWSA-N phleomycin D1 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC[C@@H](N=1)C=1SC=C(N=1)C(=O)NCCCCNC(N)=N)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C CWCMIVBLVUHDHK-ZSNHEYEWSA-N 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229960000856 protein c Drugs 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000013077 scoring method Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 229940007046 shigella dysenteriae Drugs 0.000 description 1
- 125000005629 sialic acid group Chemical group 0.000 description 1
- 125000005630 sialyl group Chemical group 0.000 description 1
- 230000003584 silencer Effects 0.000 description 1
- IFGCUJZIWBUILZ-UHFFFAOYSA-N sodium 2-[[2-[[hydroxy-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyphosphoryl]amino]-4-methylpentanoyl]amino]-3-(1H-indol-3-yl)propanoic acid Chemical compound [Na+].C=1NC2=CC=CC=C2C=1CC(C(O)=O)NC(=O)C(CC(C)C)NP(O)(=O)OC1OC(C)C(O)C(O)C1O IFGCUJZIWBUILZ-UHFFFAOYSA-N 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000011684 sodium molybdate Substances 0.000 description 1
- 235000015393 sodium molybdate Nutrition 0.000 description 1
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 229960000268 spectinomycin Drugs 0.000 description 1
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000003407 synthetizing effect Effects 0.000 description 1
- 150000004044 tetrasaccharides Chemical class 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- KYMBYSLLVAOCFI-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SCN1CC1=CN=C(C)N=C1N KYMBYSLLVAOCFI-UHFFFAOYSA-N 0.000 description 1
- 235000019157 thiamine Nutrition 0.000 description 1
- 229960003495 thiamine Drugs 0.000 description 1
- 239000011721 thiamine Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 108091006106 transcriptional activators Proteins 0.000 description 1
- 238000012250 transgenic expression Methods 0.000 description 1
- 150000004043 trisaccharides Chemical class 0.000 description 1
- 101150047507 ushA gene Proteins 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000001086 yeast two-hybrid system Methods 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
Abstract
The present invention is in the technical field of synthetic biology and metabolic engineering. More particularly, the present invention is in the technical field of fermentation of metabolically engineered microorganisms. The present invention describes engineered micro-organisms able to synthesize sialylated compounds via an intracellular biosynthesis route. These micro-organisms can dephosphorylate N- acetylglucosamine-6-phopshate to N-acetyl glucosamine and convert the N-acetylglucosamine to N- acetylmannosamine. These micro-organisms also have the ability to convert N-acetylmannosamine to N-acetyl- neuraminate. Furthermore, the present invention provides a method for the large scale in vivo synthesis of sialylated compounds, by culturing a microorganism in a culture medium, optionally comprising an exogenous precursor such as, but not limited to lactose, lactoNbiose , N-acetyllactosamine and/or an aglycon, wherein said microorganism intracellularly dephosphorylates N-acetylglucosamine-6-phopshate to N-acetylglucosamine, converts N-acetylglucosamine to N-acetylmannosamine and convert the latter further to N-acetyl-neuraminate.
Description
The present invention is in the technical field of tic biology and metabolic engineering.
More particularly, the present invention is in the technical field of fermentation of metabolically
ered microorganisms. The present invention describes engineered micro-organisms
able to synthesize sialylated compounds via an intracellular biosynthesis route. These microorganisms
can phorylate N-acetylglucosaminephopshate to yl glucosamine and
convert the N-acetylglucosamine to N-acetylmannosamine. These micro-organisms also have
the ability to convert N-acetylmannosamine to N-acetyl-neuraminate. Furthermore, the present
invention provides a method for the large scale in vivo synthesis of sialylated compounds, by
culturing a microorganism in a e medium, optionally comprising an exogenous precursor
such as, but not limited to lactose, lactoNbiose , N-acetyllactosamine and/or an aglycon, wherein
said rganism intracellularly dephosphorylates N-acetylglucosaminephopshate to N-
acetylglucosamine, converts N-acetylglucosamine to N-acetylmannosamine and convert the latter
further to N-acetyl-neuraminate.
NZ 796027
[Link]
http://www.brenda-enzymes.org/enzyme.php?ecno=3.2.1.183
[Link]
http://www.brenda-enzymes.org/enzyme.php?ecno=2.7.1.60
In vivo synthesis of sialylated compounds
The t ation is a divisional application of New Zealand ation No. 755558, which is
incorporated in its entirety herein by reference.
The present invention is in the cal field of tic biology and metabolic engineering. More
particularly, the present ion is in the technical field of fermentation of metabolically ered
microorganisms. The present invention describes engineered micro-organisms able to synthesize
sialylated nds via an intracellular biosynthesis route. These micro-organisms can
dephosphorylate N-acetylglucosaminephosphate to N-acetyl glucosamine and convert the N-
acetylglucosamine to N-acetylmannosamine. These micro-organisms also havethe ability to t
N-acetylmannosamine to N-acetyl-neuraminate. Furthermore, the t invention provides a
method for the large scale in vivo synthesis of sialylated compounds, by culturing a microorganism in
a culture medium, optionally comprising an exogenous precursor such as, but not limited to lactose,
lacto-N-biose, N-acetyllactosamine and/or an aglycon, wherein said microorganism intracellularly
dephosphorylates N-acetylglucosaminephosphate to N-acetylglucosamine, converts N-
acetylglucosamine to ylmannosamine and convert the latter further to N-acetyl-neuraminate.
Background
ated compounds such as sialic acid and sialylated oligosaccharides have gained attention the last
years, because of their broad application range. For e, sialic acid is considered as an anti-viral
precursor. Sialylated oligosaccharides form an essential part of human milk and are ed antiadhesive
and immunomodulatory properties; others described them to be involved in brain
development. Sialylation, in general, of ns, lipids or aglycons are used in anti-cancer medicine
and in the treatment of neurological diseases.
Sialic acid is a general term used to describe a large family of acidic sugars that are predominantly
found on the cell surface of eukaryotic cells. The most common sialic acid is N-acetylneuraminic acid
or Neu5Ac, an acidic nine-carbon sugar that undergoes several modifications to generate the
members of the sialic acid family. As seen in e.g. Fig. 1 of WO2008097366, the diversity of the sialic
acid family is represented with over 50 known members. Sialic acid represents a large family of cellsurface
ydrates that are derived from an acidic, nine-carbon parent compound called N-
acetylneuraminic acid or . Neu5Ac is often decorated with acetyl, phosphate, methyl, sulfate
and lactyl groups, which are described to be required for desirable cell signalling and cell adhesion
events mediated by sialic acid.
Sialic acids and sialylated compounds are common in higher eukaryotic organisms which produce
them in a conserved biosynthetic route. This route starts from endogenic UDP-N-acetylglucosamine
which is converted to sialic acid through the action of a UDP-N-acetylglucosamine 2-epimerase
(hydrolysing) (EC 3.2.1.183), a N-acylmannosamine kinase (EC 2.7.1.60), a N-acylneuraminate
phosphate synthase (EC 2.5.1.57) and a P phosphatase (EC 3.1.3.29). This sialic acid can
40 subsequently be activated and transferred to the desired acceptor via a CMP-sialic acid synthase (EC
2.7.7.43) and e.g. a sialyltransferase.
Efforts have been made to express this biosynthetic route in other eukaryotic organisms,
s yotic systems were not ed. The y was functionally expressed in
yeast a pastoris) and plant (Arabidopsis thaliana) to e sia|y|ated N-glycans.
However, large scale production of sia|y|ated oligosaccharides was never reported. The
functional overexpression of eukaryotic genes in prokaryotic systems remains a daunting task
without certain e due to the lack of specific chaperones, faulty enzyme folding and
missing cell lles. On top ofthat remains the huge energy requirement ofthe pathway and
the depletion of intercellulair UDP-GlcNAc (UDP-N-acetylglucosamine), necessary for cell
growth.
Processes based on enzymatic, chemical as well as fermentative production of sia|y|ated
compounds exist. However, all of them have significant disadvantages. For instance, chemical
synthesis requires many sequential chemical steps and enzymatic synthesis es ive
precursors, whereas the fermentative process is still under heavy development. Nonetheless,
the latter has the highest industrial production potential.
One type of described fermentative production process uses a thesis route that originates
from prokaryotes like obacter jejuni that naturally produces sialic acid or sia|y|ated
nds. This biosynthesis route starts from endogenous UDP-N-acetylglucosamine which
cells use for their cell wall. This is converted to N-acetylmannosamine and N-acetylneuraminate
by the action of an UDP-N-acetylglucosamine epimerase (generally named neuC) and a sialic
acid synthase (generally named neuB).
Using only part of this prokaryotic biosynthesis route, Priem et al. biology 12, 2002, 235-
240) describe the use of living bacterial cells to produce sialyloligosaccharides. In this ,
sialyllactose was directly produced by growing cells of metabolically engineered Escherichia coli
strains which overexpressed the Neisseria meningitidis genes for alpha-2,3-sialyltransferase and
for CMP-Neu5Ac synthase, these strains were further devoid of beta-galactosidase and N-
acetylneuraminic acid c) aldolase activities. These microorganisms were grown at high
cell density with glycerol as the carbon and energy source, while exogenous lactose and Neu5Ac
were supplied as precursors for sialyllactose synthesis. During the growth, lactose and Neu5Ac
were internalized by the induction of the expression of an E. coli galactoside and an exogenous
Neu5Ac permease. Lactose and Neu5Ac accumulate in the cytoplasm where Neu5Ac was then
converted into u5Ac to be further transferred on lactose to form sialyllactose. Large
scale production of sialyloligosaccharides by this microbiological method requires ant
amounts of Neu5Ac as a precursor.
Another microbial system was developed for production of sialyloligosaccharides without the
need of an exogenous supply of sialic acid. W02007101862 describes such method for
producing sia|y|ated oligosaccharides with rganisms comprising heterologous genes
encoding a CMP-Neu5Ac synthetase, a sialic acid synthase, an UDP-GlcNAc-6—phosphate 2-
epimerase and a sialyltransferase, and wherein the endogenous genes coding for sialic acid
aldolase (NanA) and for ManNAc kinase (NanK) have been deleted or inactivated. The use of
4o this prokaryotic biosynthesis route is very energy intensive for the cell. Furthermore, the
described route for producing the sia|y|ated oligosaccharides competes for the UDP-GlcNAc
which is essential for the cells own peptidoglycan synthesis. Building on this concept, Kang et al.
have created a production host that does not use a sialic acid synthase, but the endogenous
sialic acid aldolase, which has a less favourable chemical equilibrium (Metabolic engineering 14,
2012, 9).
EP1484406 describes the production of Neu5Ac using E. coli overexpressing N-
acetylglucosamine 2-epimerase and Neu5Ac synthase, but needs N-acetylglucosamine (GlcNAc)
as al precursor. In the described method, GlcNAc needs to be used as such. Therefore,
the cells in EP1484406 need to be disrupted such that the GlcNAc can be used directly by the
GlcNAcepimerase. As described by Lundgren et al. (Org. Biomol. Chem., 2007, 5, 1903 - 1909)
intact cells will convert the incoming GlcNAc to N-acetylglucosaminephosphate (GlcNAcP)
which will be used by the cell for cell growth. This GlcNAcP is not available intercellular and
can therefore not be used for the epimerase which needs a non-phosphorylated
GlcNAc for isation to ManNAc. This explains why permeabilization of the cells of
EP1484406 is necessary. As explained by Lundgren et al., the GlcNAcP can be used for making
Neu5Ac but this requires another synthesis pathway comprising UDP-GlcNAc as an
intermediate, which is described above in W02007101862. The resulting pathway further
increases energy demand compared to the one described in the latter patent because
uridylation of GlcNAc requires an extra ATP.
Deng et al. (Metabolic Engineering 7 (2005), 201-214) describes the production of GlcNAc via
intracellular production of P which is then efficiently dephosphorylated and ed
into the medium as GlcNAc. According to Deng et al., this dephosphorylation s upon
export, more specifically in the periplasm of Escherichia coli. The extracellular produced GlcNAc
described in this method, is not available for ellular conversion. This method to produce
GlcNAc requires a two-phase fed batch process, i.e. a cell growth phase followed by a GlcNAc
production phase which is only induced after the culture had reached a high cell y, to
minimize inhibitory effects of phosphorylated amino sugars.
Others have attempted the same by logously expressing phosphatases and encountered
the problem of reduced growth and strong metabolic burden (Lee and Oh, Metabolic
engineering, 2015, 143-150). The main reason for said reduction in growth/biomass ion
is the non-specificity of the phosphatase that is introduced, which dephosphorylates other
essential phosphorylated compounds. Such modifications hence lead to reduced fitness and
lower specific productivity. It furthermore leads to ive pressure to mutate the production
pathway during production, which reduces the l process ity.
The production pathways of sialic acid and sialylated oligosacharides require the formation of
high level of phosphorylated (e.g. GlcNAcP) and nucleotide pathway ediates. It is
commonly understood that such formation leads to aspecific degradation of these
intermediates by activation of aspecific phosphatases, which in turn leads to reduced s. In
order to circumvent the effect of the expression of metabolic pathways on the growth of the
production hosts, it is standard to use inducible sion systems. In this method first biomass
is formed and later in the production process the production pathway is activated by for
instance IPTG. This was applied by others for the production of sialic acid and sialylated
4o oligosaccharides (W02007101862; Priem et al. iology 12, 2002, 235-240; Kang et al.,
Metabolic engineering 14, 2012, 623-629; Yang et al., Metabolic engineering 43, 2017, 21-28).
Apart from losing tivity and titer, another downside in the use of ble systems is the
excretion of intermediate pathway metabolites such as GlcNAc and ManNAc. This leads to the
requirement of extra ream processing steps for the purification, hence a higher
production cost in the production of sia|ic acid, sia|y||actose or other sia|y|ated compounds.
The methods for producing sia|y|ated compounds, discussed hereabove, are still insufficient in
meeting the large demand of the biotechnological, pharmaceutical and medical ries. A
metabolic engineering approach that successfully overcomes the problems referred to above,
would represent a significant and long d advance in the field.
Summary
Surprisingly, we have been able to create a production pathway that does not e induction,
and does not e a UDP-GlcNAc epimerase, but allows constitutive expression which also
allows better tuning of the metabolic y improving production and reducing byproduct
formation during the production s.
According to one embodiment of the present invention, there is provided a method for
sia|y|ated compound production with rganisms which does not require induction.
According to a r embodiment of the present ion, there is provided a production
pathway that does not require a UDP-GlcNAc epimerase, and comprising modulating sion
of phosphatase which does not pose a metabolic burden to the cell as was shown previously in
the art. Said further embodiment of the present invention provides also an increased sia|y|ated
compound production by modulating the expression of phosphatase.
In another further embodiment, the above method, when combined with the constitutive
expression of the genes of the metabolic pathway, also allows better tuning of the metabolic
pathway reducing byproduct formation during the tion process.
Description
The present invention bes an economical, more efficient and alternative biosynthesis
route for the production of sia|y|ated compounds using micro-organisms.
The present invention provides a method of producing sia|y|ated compounds by fermentative
growth of microorganisms.
In ular, the invention relates to a method for the production of sia|y|ated compounds,
wherein the method comprises culturing a microorganism in a culture medium. The
microorganism intracellularly converts following reactions: N-acetylglucosaminephosphate
to N-acetylglucosamine, N-acetylglucosamine to N-acetylmannosamine, and N-
acetylmannosamine to N-acetyl-neuraminate. Furthermore, this microorganism is unable to: i)
convert N-acetylglucosamine-6—P to glucosamineP, ii) convert N-acetylglucosamine to N-
acetylglucosamineP, and iii) convert N-acetyl-neuraminate to N-acetyl-mannosamine.
Preferably, the conversion of N-acetylglucosaminephosphate to N-acetylglucosamine is
obtained by the action of an ellularly sed phosphatase. In r preferred
embodiment the N-acetylglucosamine is converted to N-acetylmannosamine by an
intracellularly expressed N-acetylmannosamine epimerase. In an alternative preferred
embodiment the ylmannosamine is converted by an intracellular expressed sia|ic acid
synthase to N-acetyl-neuraminate. Even more preferably, the rganism comprises all
three enzymes such that the microorganism converts i) N-acetylglucosaminephosphate to N-
acetylglucosamine by action of an intracellularly expressed phosphatase, ii) the N-
acetylglucosamine to N-acetylmannosamine by an intracellularly expressed N-
acetylmannosamine epimerase; and iii) the N-acetylmannosamine to N-acetyl-neuraminate by
an intracellular expressed sialic acid synthase.
Preferably, the microorganism used in the method of the invention is unable to produce
following enzymes i) a N-acetylglycosaminephosphate deacetylase, ii) a N-acetylglucosamine
kinase, and iii) a N-acetylneuraminate aldolase.
The present invention also provides a microorganism which expresses i) a phosphatase to
dephosphorylate N-acetylglucosaminephosphate to ylglucosamine (EC 3.1.3.), ii) a
GlcNAc 2-epimerase to convert N-acetylglucosamine (GlcNAc) to N-acetylmannosamine
(manNac) (EC 5.1.3.8), and iii) a sialic acid synthetase to sise N-acetyl-neuraminate
(Neu5Ac) from N-acetylmannosamine (ManNAc) (EC 2.5.1.56). Furthermore, this
microorganism is unable to: i) convert ylglucosamine-6—P to glucosamineP, ii) convert
yl-glucosamine to N-acetyl-glucosamineP, and iii) convert N-acetyl-neuraminate to N-
acetyl-mannosamine.
In one , the invention provides a micro-organism that is enabled to catalyse the following
reactions: the intracellular conversion of ylglucosaminephosphate to N-
glucosamine, the intracellular conversion of N-acetylglucosamine to N-
acetylmannosamine and, the intracellular conversion of ylmannosamine to sialic acid.
It is generally accepted that ylglucosaminephosphate is naturally efficiently excreted
out of the cell and meanwhile dephosphorylated by phosphatases in the periplasm (see p. 212,
second column, Deng et 0]., Metabolic Engineering 7 (2005), 201-214). Therefore, without the
present invention, this excreted product would be unavailable for conversion to sialic acid.
Furthermore, re-internalization occurs through transport proteins which orylate the N-
acetylglucosamine.
The use of an intracellular N-acetylglucosamineepimerase ensures lower energy (ATP)
consumption than the classical prokaryotic route (via UDP-N-acetylglucosamine). This enables
a more efficient production of sialic acid, sialylated oligosaccharides and/or sialylated products
with a healthier and more efficient strain. By optimizing expression levels, the unfavourable
chemical brium is overcome and no need of large amounts of free N-acetylglucosamine
are necessary, as is in literature. Indeed, in the art, this enzyme is solely used in tic
ons which use high concentrations of N-acetylglucosamine to produce N-
acetylmannosamine. It would be hence logical that the use of an epimerase would require large
amounts of ellular formed GlcNAc which is shown to be released in the medium (see Deng
as described supra), r, the present ion has proven this can be avoided. Another
advantage of the present invention over enzymatic s, is that nsive substrates can
be used in the present invention, as for example a monosaccharide such as for example glucose,
4o galactose or fructose, a disaccharide such as for example sucrose or maltose or a polyol, such
as, but not limited to, glycerol. This enables an economic production method by fermentation.
Different phosphatases (EC 3.1.3.) that convert N-acetylglucosaminephosphate into N-
acetylglucosamine are described in the art and can be used in the present invention.
Phosphatases from the HAD superfamily and the ke family are described in the art.
Examples from these families can be found in the enzymes expressed from genes yan, inhX,
yniC, ybiV, yidA, ybjl, yigL or cof from Escherichia coli. One phosphatase that catalyzes this
reaction is identified in cladiella emersonii. Phosphatases are generally fic and the
activity is generally not related to the family or structure. Other examples can thus be found in
all phosphatase families. ic phosphatases are easily identified and screened by well-
known methods as described by Fahs et 0/. (ACS Chem. Biol., 2016, 11 (11), 2944-2961).
Preferably, the phosphatase of the present invention is a HAD-alike atase. A HAD-alike
phosphatase as defined herein refers to any phosphatase polypeptide which comprises:
- any one or more of the following motifs as defined below:
Motif 1: thDx[TV] (SEQ ID NO: 73), or
Motif 2: [GSTDE][DSEN]x(1—2)[hP] x(1-2) [DGTS] (SEQ ID N05: 74, 75, 76, 77)
wherein h means a hydrophobic amino acid (A, I, L, M, F, V, P, G) and x can be
any distinct amino acid.
In another preferred embodiment, HAD-alike polypeptides typically have in increasing order of
preference at least 80 %, 81 %, 82 %, 83 %, 84 %, 85 %, 86 %, 87 %, 88 %, 89 %, 90 %, 91 %, 92
%, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, or 99 % overall sequence identity to any one of the
polypeptides represented by SEQ ID N05: 43 ,44, 45, 47, 48, 50, 51, 52, 54, 55 or 57. Preferably,
those polypeptides also comprise at least one of the above identified Motifs. More preferably,
they comprise both motifs.
The l sequence identity is determined using a global ent algorithm, such as the
Needleman Wunsch algorithm in the program GAP (GCG Wisconsin Package, Accelrys),
preferably with default parameters and ably with sequences of mature proteins (i.e.
t taking into account secretion signals or transit peptides). Compared to l sequence
identity, the sequence identity will generally be higher when only ved domains or motifs
are considered.
In a preferred embodiment, the HAD-alike ptide comprises any one of SEQ ID N05: 43
,44, 45, 47, 48, 50, 51, 52, 54, 55 or 57.
In another preferred embodiment, the phosphatase is chosen from the HAD superfamily or the
HAD-like phosphatase family. More preferably, the phosphatase is chosen from the group
comprising: i) enzymes expressed by the genes yan, inhX, yniC, ybiV, yidA, ybjl, yigL or coffrom
Escherichia coli, ii) the phosphatase of cladiella emersonii and iii) other phosphatase
families.
es of N-acetyl-D-g|ucosmineepimerase (EC 5.1.3.8) can be found in prokaryotes and
eukaryotes. Examples for yotes are found in cyanobacteria like for example Acaryochloris
marina, Anabaena variabilis, Anabaena marina, Nostoc punctiforme, Acaryochloris species,
Anabaena species, Nostoc species and Synechocystis species. They are also found in Bacteroides
4o species like for example Bacteroides ovatus and oides thetaiotaomicron and in
Capnocytophaga canimorsus and Mobiluncus mulieris. In eukaryotics, N-acetyl-D-glucosmine
epimerase is found in Glycin max, Mus musculus, Homo sapiens, Rattus norvegicus, Bos Taurus,
Sus scrofa, Canis lupus. Preferably, in the method and microorganism of the present invention,
N-acetylmannosamineepimerase is chosen from the group comprising i) N-
mannosamineepimerase from cyanobacteria, more in particular from chloris
marina, Anabaena ilis, Anabaena , Nostoc punctiforme, Acaryochloris species,
Anabaena species, Nostoc species and Synechocystis species; ii) N-acetylmannosamine
epimerase from Bacteroides species, more in particular from Bacteroides ovatus, Bacteroides
thetaiotaomicron, ytophaga canimorsus and Mobiluncus mulieris; iii) N-acetyl-D-
glucosmineepimerase from Glycin max, Mus musculus, Homo sapiens, Rattus norvegicus, Bos
Taurus, Sus scrofa or Canis lupus.
N-acetyl neuraminate synthase (also called sialic acid synthase in the art) (EC 2.5.1.56) activity
is found in several prokaryotic organisms like for example Streptococcus agalatiae, Bacillus
subtilis, Legionella pneumophilla, Campy/obacterjejuni, Idiomarina loihiensis, Moritella viscosa,
brio salmonicida, Escherichia coli, Methanocaldococcus jannaschi, Clostridium sordellii,
vibrio proteoclasticus, Micromonas a or Neisseria meningitis. Preferably, in the
method and microorganism of the invention, the sialic acid (or N-acetyl neuraminate) synthase
is chosen from the group comprising: sialic acid se from Streptococcus agalatiae, Bacillus
subtilis, Legionella philla, Campy/obacterjejuni, Idiomarina loihiensis, Moritella viscosa,
Aliivibrio salmonicida, Escherichia coli, Methanocaldococcus jannaschi, Clostridium sordellii,
Butyrivibrio proteoclasticus, Micromonas commoda or Neisseria meningitis.
In one preferred aspect, any one or more of the phosphatase, N-acetylmannosamine ase
and sialic acid synthase is overexpressed in the microorganism. In an alternative preferred
aspect, any one or more of the phosphatase, N-acetylmannosamine epimerase and sialic acid
synthase is introduced and expressed in the microorganism.
In another , the rganism lacks the genes encoding for following enzymes i) a N-
acetylglycosaminephosphate deacetylase, ii) a N-acetylglucosamine , and iii) a N-
acetylneuraminate aldolase. In another preferred aspect, the genes encoding for following
enzymes i) a N-acetylglycosaminephosphate ylase, ii) a N-acetylglucosamine ,
and iii) a N-acetylneuraminate aldolase are reduced in activity, preferably said genes are deleted
or knocked-out, in the microorganism.
In another preferred aspect, the microorganism further encodes a n that facilitates uptake
of lactose and lacks enzymes that metabolize lactose. Methods to produce microorganisms
which resist lactose killing and the resulting microorganisms are described in W02016/075243
which is herein incorporated by reference.
In a preferred aspect the microorganisms of, and used in the method of, the invention also
express a CMP-sialic acid synthase (EC 43) and a sialyltransferase (EC 2.4.99.1) in order to
activate the sialic acid and transfer it to a desired compound.
In a preferred aspect, the N-acetylglucosaminephosphate is obtained by introducing a
glucosamine-phosphate N-acetyltransferase (EC 2.3.1.4) which uses intracellular glucosamine-
40 6-phosphate as a substrate. In most micro-organisms, glucosaminephosphate is naturally
present in the cell, but the intracellular tion can be elevated by expressing a L-
glutamine:D-fructosephosphate aminotransferase without inhibition, obtained either
through protein engineering or by screening natural enzymes, such as present in gram positive
bacteria (Deng et 0]., lic ering 7 (2005), 201-214).
In the present invention, the expression of the genes to convert N-acetylglucosamine-6—
phosphate to N-acetyl-neuraminate or sia|ic acid are optimized in a way that enables
intracellular dephosphorylation of N-acetylglucosaminephosphate, prevents toxic
accumulation of N-acetylglucosaminephosphate and prevents excretion of N-
acetylglucosamine and/or N-acetylmannosamine. Said optimization is the result of the use of
constitutive sion of the genes of the production pathway. In a preferred embodiment,
the present ion prevents the excretion of at least 10%, 20%, 30%, 35%, 40%, 45%, 50%,
or 60% of the formed N-acetylglucosamine and/or ylmannosamine. In a further preferred
embodiment, the microorganism produces less extracellular N-acetylglucosamine and/or N-
acetylmannosamine than sialylated compound. More preferably, the microorganism produces
less than 50%, 40%, 30%, 20%, 10%, 5%, 2% extracellular ylglucosamine and/or N-
acetylmannosamine than sialylated compound. In another preferred embodiment of the
present invention the rganism produces equal or more than 50%, 60%, 70%, 80%, 90%,
95%, 98% extracellular sialylated compound on total extracellular carbohydrate.
In a particular aspect, the invention s to a method for synthesis of sialylated compounds,
without any ous sia|ic acid addition to the culture medium.
The sialylated compound can be N-acetylneuramic acid, a sialylated oligosaccharide, a ated
lipid, sialylated glycolipids (such as, but not limited to gangliosides, ceramides), a sialylated
protein or a sialylated n.
A sialylated oligosaccharide is a charged sia|ic acid containing oligosaccharide, i.e. an
oligosaccharide having a sia|ic acid residue. It has an acidic nature. Some examples are 3-SL (3-
sialyllactose), 3-sialyllactosamine, 6—SL (6-sialyllactose or n- acetylneuraminate alfa 2,6
galactosyl beta 1,4 Glucose), 6-sialyllactosamine, oligosaccharides comprising 6-sialyllactose,
SGG ccharide (Neu5Ac ,3Gal beta -1,3GalNac beta -1,3Gala-1,4Gal beta -1,4Ga|),
sialylated tetrasaccharide (Neu5Ac-alfa-2,3Gal beta -1,4GlcNAc beta -14GlcNAc),
pentasaccharide LSTD (Neu5Ac alfa-2,3Gal beta cNAc beta -1,3Gal beta -1,4Glc), sialylated
lacto-N-triose, ated lacto-N-tetraose, sialyllacto-N-neotetraose, monosialyllacto-N-
hexaose, disialyllacto-N-hexaose |, monosialyllacto-N-neohexaose |, monosialyllacto-N-
aose ||, disialyllacto-N-neohexaose, disialyllacto-N-tetraose, disialyllacto-N-hexaose ||,
sialyllacto-N-tetraose a, disialyllacto-N-hexaose |, sialyllacto-N-tetraose b, 3-sialyl
fucosyllactose, disialomonofucosyllacto-N-neohexaose, monofucosylmonosialyllacto-N-
octaose (sialyl Lea), sialyllacto-N-fucohexaose ||, disialyllacto-N-fucopentaose ||,
monofucosyldisialyllacto-N-tetraose and oligosaccharides bearing one or several sia|ic acid
residu(s), including but not limited to: oligosaccharide moieties of the osides selected
from GM3 (3sialyllactose, Neu5Aca-2,3Gal beta-4Glc) and accharides comprising the GM3
motif, GD3 Neu5Aca-2,8Neu5Aca-2,3Gal beta -1,4Glc GT3 (Neu5Aca-2,8Neu5Aca-2,8Neu5Aca-
2,3Gal beta -1,4Glc); GM2 GalNAc beta -1,4(Neu5Aca-2,3)Gal beta -1,4Glc, GMl Gal beta -
4o 1,3GalNAc beta -1,4(Neu5Aca-2,3)Gal beta c, GD1a a-2,3Gal beta -1,3GalNAc beta
-1,4(Neu5Aca-2,3)Gal beta -1,4Glc GT1a Neu5Aca-2,8Neu5Aca-2,3Gal beta -1,3GalNAc beta -
1,4(Neu5Aca-2,3)Gal beta -1,4Glc GD2 GalNAc beta -1,4(Neu5Aca-2,8Neu5Aca2,3)Gal beta -
1,4Glc GT2 GspalNAc beta -1,4(Neu5Aca-2,8Neu5Aca-2,8Neu5Aca2,3)Gal beta -1,4Glc GD1b,
Gal beta -1,3GalNAc beta -1,4(Neu5Aca-2,8Neu5Aca2,3)Gal beta -1,4Glc GT1b Neu5Aca-2,3Gal
beta -1,3GalNAc beta -1,4(Neu5Aca-2,8Neu5Aca2,3)Gal beta-1,4Glc Gle Neu5Aca-
2,8Neu5Aca-2,3Gal beta -1,3GalNAc beta -1,4(Neu5Aca-2,8Neu5Aca2,3)Gal beta -1,4Glc GT1c
Gal beta -1,3GalNAc beta -1,4(Neu5Aca-2,8Neu5Aca-2,8Neu5Aca2,3)Gal beta -1,4Glc GQlc,
Neu5Aca-2,3Gal beta -1,3GalNAc beta eu5Aca-2,8Neu5Aca-2,8Neu5Aca2,3)Gal beta -
1,4Glc GP1c Neu5Aca-2,8Neu5Aca-2,36al beta -1,3GalNAc beta -1,4(Neu5Aca-2,8Neu5Aca-
2,8Neu5Aca2,3)Gal beta c GD1a Neu5Aca-2,3Gal beta -1,3(Neu5Aca-2,6)GalNAc beta -
1,4Gal beta -1,4Glc Fucosyl-GM1 Fuca-1,ZGal beta -1,3GalNAc beta -1,4(Neu5Aca-2,3)Gal beta
-1,4Glc; all of which may be ed to the tion of the ponding gangliosides by
ng the above oligosaccharide moieties with ceramide or synthetizing the above
oligosaccharides on a ceramide.
The term micro-organism or organism or cell as indicated above refers to a microorganism
chosen from the list comprising a bacterium, a yeast, or a , or, refers to a plant or animal
cell. The latter ium preferably belongs to the phylum of the Proteobacteria or the phylum
of the Firmicutes or the phylum of the Cyanobacteria or the phylum Deinococcus-Thermus. The
latter bacterium belonging to the phylum Proteobacteria belongs ably to the family
Enterobacteriaceae, preferably to the species Escherichia coli. The latter bacterium preferably
relates to any strain belonging to the species Escherichia coli such as but not limited to
Escherichia coli B, Escherichia coli C, Escherichia coli W, Escherichia coli K12, Escherichia coli
Nissle. More specifically, the latter term s to cultivated Escherichia coli strains - designated
as E. coli K12 s - which are well-adapted to the laboratory environment, and, unlike wild
type strains, have lost their ability to thrive in the intestine. Well-known examples of the E. coli
K12 strains are K12 Wild type, W3110, M61655, M182, , MC1060, MC1061, MC4100,
JM101, NZN111 and AA200. Hence, the present invention specifically relates to a mutated
and/or transformed Escherichia coli strain as indicated above wherein said E. coli strain is a K12
strain. More specifically, the t invention relates to a mutated and/or transformed
Escherichia coli strain as indicated above wherein said K12 strain is E. coli M61655. The latter
bacterium belonging to the phylum Firmicutes belongs preferably to the Bacilli, preferably
Lactobacilliales, with members such as acillus Iactis, Leuconostoc mesenteroides, or
Bacillales with members such as from the species Bacillus, Bacillus is or, B.
amyloliquefaciens. The latter Bacterium belonging to the phylum bacteria, preferably
belonging to the family of the Corynebacteriaceae, with members Corynebacterium glutamicum
or C. ntans, or belonging to the family of the of the Streptomycetaceae with members
Streptomyces griseus or 5. fradiae. The latter yeast preferably belongs to the phylum of the
Ascomycota or the phylum of the Basidiomycota or the phylum of the Deuteromycota or the
phylum of the Zygomycetes. The latter yeast belongs preferably to the genus Saccharomyces,
Pichia, Hansenula, Kluyveromyces, Yarrowia or Starmerella. The latter fungus belongs preferably
to the genus Rhizopus, Dictyostelium, Penicillium, Mucor or illus.
40 The culture medium for the production host can optionally comprise an exogenous precursor
or this precursor can be produced by the strain itself, such as a glycan like for example lactose,
lactosamine, lacto-N-triose, lacto-N-tetraose, lacto-N-neotetraose; an oligosaccharide; a
e; a lipid or an aglycon. In one particular aspect, the process of the invention is based on
the active uptake of an exogenous precursor, such as for example a mono, di or tri-saccharide,
more particularly an exogenous precursor selected from lactose, N-acetyllactosamine, lacto-N-
biose, galactose, beta-galactoside, and alpha-galactoside such as but not limited to globotriose
(Gal-alpha-1,4Gal-beta-1,4Glc), while the microorganisms are growing on an inexpensive carbon
substrate, such as a disaccharide such as sucrose or maltose. Moreover, these microorganisms
are also able to grow on glucose, fructose or glycerol. The expression exogenous precursor is
intended to denote a compound involved in the biosynthetic pathway of the product according
to the invention that is alized by the rganism.
In one , the invention provides for method for production of sialylated forms of lacto-N-
triose, lacto-N-tetraose or lacto-N-neotetraose. Any one of these three molecules are
synthetized by the organism via the activity of a galactosyltransferase (EC 2.4.1.38),
preferably originating from the group comprising Homo sapiens, Bos taurus, Mus mulatta,
Gallus , Danio rerio, Helicobacter pylori and hilus ducrey and/or a N-
acetylglucosaminyltransferase (EC 2.4.1.90) preferably originating from the group comprising
305 Taurus, Homo Sapiens and Mus Musculus. To enhance the formation of these
oligosaccharides the genes coding for UDP sugar ase and galactosephosphate
uridylyltransferase are lacking, reducing in activity or knocked out in the rganism.
In another aspect a method for producing a ated oligosaccharide is provided in which the
method ses culturing a microorganism as described above and wherein the
microorganism produces internally, activated N-acetylneuraminate as donor substrate for a
sialyltransferase; and wherein the method further comprises ing the microorganism in a
culture medium which comprises an exogenous precursor selected from the group consisting of
lactose, N-acetyllactosamine, lacto-N-biose, ose, alactoside, and alpha-galactoside
such as but not limited to globotriose (Gal-alpha-1,4Gal-beta-1,4Glc)galactose. The exogenous
precursor is actively taken up into the microorganism and the exogenous precursor is the
acceptor substrate for the sialytransferase for producing the sialylated accharide.
In a further aspect, the method according to the invention provides for the tion of
35ialyllactose or 6sialyllactose. In this method the microorganism is ated at high cell
density on a carbon substrate, such as glucose or glycerol, and fed with lactose. The lactose is
internalized by the lactose permease and sialylated by the recombinant sialyltransferase using
the CMP- N-acetyl-neuraminate endogenously generated from N-acetylglucosamine.
The microorganism or cell of the invention is capable to grow on a ccharide,
disaccharide, oligosaccharide, polysaccharide, , a x medium or a mixture thereof
as the main carbon source. With the term main is meant the most important carbon source for
biomass formation, carbon dioxide and/or by-products formation (such as acids and/or
alcohols, such as acetate, lactate, and/or ethanol), i.e. 20, 30, 40, 50, 60, 70, 75, 80, 85, 90, 95,
98, 99 % of all the required carbon is derived from the above-indicated carbon source. In one
embodiment of the invention, said carbon source is the sole carbon source for said organism,
i.e. 100 % of all the required carbon is derived from the indicated carbon source.
40 In a further preferred embodiment, the microorganism or cell of the invention is using a split
metabolism having a production pathway and a biomass pathway as described in
W02012/007481, which is herein incorporated by reference. Said organism can, for example,
be genetically modified to accumulate fructosephosphate by altering the genes selected from
the phosphoglucoisomerase gene, phosphofructokinase gene, fructosephosphate aldolase
gene, fructose isomerase gene, and/or fructose:PEP phosphotransferase gene.
With the term ccharide is meant a sugar that is not decomposable into simpler sugars
by hydrolysis, is classed as either an aldose or ketose, and contains one or more hydroxyl groups
per molecule. Examples are glucose, fructose, galactose, mannose, ribose and/or ose.
With the term disaccharide is meant a sugar that is composed of two monosaccharides that are
chemically bound. Examples are maltose, sucrose, lactose, trehalose, cellobiose and/or
chitobiose.
With the term oligosaccharide is meant a sugar that is composed of three to ten
monosaccharides that are chemically bound. Examples are maltotriose, -oligosaccharides,
o-oligosaccharides, mannan oligosaccharides, isomaltooligosaccharide, human milk
oligosaccharides and/or glucooligosaccharides.
With the term polyol is meant an alcohol containing multiple hydroxyl groups. For example
glycerol, sorbitol, or ol.
With the term complex medium is meant a medium for which the exact constitution is not
determined. Examples are molasses, corn steep liquor, peptone, tryptone or yeast extract.
Production of sialylated compounds can be sed by adding precursors to the medium, such
as N-acetylglusosamine, N-acetylmannosamine, glutamine, glutamate, phosphoenolpyruvate
and/or pyruvate.
The sialylated compounds produced in the method of the invention as described above may be
recovered using various methods, or a combination thereof, known in the art. Depending on
the produced sialylated nd, the compound is available in the extracellular fraction or
retained in the cells. When the produced sialylated compound is retained in the cells, the
sialylated compound will first be ed from the cells by cell tion. Again depending on
the produced sialylated compound, the cells may be separated from the extracellular fraction.
In the other case, cells are disrupted without first separation from the extracellular fraction,
wherein cells are disrupted by techniques such as, but not d to, heating, freeze thawing
and/or shear stress through tion, mixing and/or French press. The extracellular and/or
intracellular fraction may be separated from the cells and/or cell debris by centrifugation,
filtration, microfiltration, and nanofiltration. Flocculating agents may be used to aid in product
separation. The sialylated compounds in the extracellular or intracellular fraction may be
extracted by ion ge, ultra-or nanofiltration or electrodialysis, chromatography such as
size exclusion, ion chromatography and simulated moving bed. Another example of filtering the
sialylated compounds from liquid phase is by tion using a deep bed filter with cotton and
ted carbon or carbon , where after the permeate is passed through a carbon polisher
ed by e.g. a 0.2 micron microfiltration membrane system to remove color, micro-
organisms and suspended carbon particles. Thereafter the sialylated compound may be
concentrated in a vacuum evaporator to obtain a trate. The concentrate can be
40 precipitated and/or dried through heat drying, spray drying and/or lyophilization to obtain high
purity sialylated compound. An amorphous form powder can then be obtained. This ous
powder may further be crystallised to obtain crystalline sialylated compound.
In exemplary embodiment, sialylated compounds may be isolated from the culture medium
using methods known in the art for fermentations. For e, cells may be removed from the
culture medium by centrifugation, filtration, flocculation, decantation, or the like. Then, the
sialylated compounds may be ed from the extracellular fraction using methods such as ion-
ge. A further purification of said sialylated compounds may be accomplished, for
example, by ltration or ultrafiltration or ion ge to remove any remaining DNA,
protein, LPS (endotoxins), or other impurity.
In another exemplary ment, sialyllactose may be isolated from the culture medium using
methods known in the art for fermentations. For example, cells may be removed from the
culture medium by centrifugation, filtration, flocculation, decantation, or the like. Then, the
sialyllactose may be isolated from the extracellular fraction using methods such as ion-
ge. A further purification of said sialyllactose may be accomplished, for example, by
nanofiltration or ultrafiltration or ion exchange to remove any remaining DNA, protein, LPS
(endotoxins), or other ty. Another purification and ation step is accomplished by
crystallization or precipitation of the product. Another formulation step is to spray dry or
lyophilize sialyllactose.
The sialylated compound may contain a counter ion, such as, a monovalent ion, such as a
proton, sodium ion, potassium, a divalent ion, such as m magnesium, iron, or, a trivalent
ion such as iron, or a combination of ions.
Throughout the disclosure of the present disclosure the term sialic acid, N-acetyl neuraminate
and yl neuraminic acid are used interchangeably.
As used herein, the term intracellular or intracellularly in e.g. intracellularly converting,
ellularly tion, intracellularly expressed, ellular formed must be understood to
mean within the cell of the microorganism. The term extracellular must be understood to mean
e of the cell.
Further definitions used throughout the present specification
Homologue(s)
"Homologues“ of a protein encompass peptides, oligopeptides, ptides, proteins and
enzymes having amino acid substitutions, deletions and/or insertions relative to the
fied protein in question and having similar biological and functional activity as the
unmodified protein from which they are derived.
A deletion refers to removal of one or more amino acids from a protein.
An insertion refers to one or more amino acid residues being introduced into a predetermined
site in a protein. Insertions may comprise N-terminal and/or C-terminal fusions as well as
intra-sequence ions of single or le amino acids. Generally, insertions within the
amino acid sequence will be smaller than N- or C-terminal fusions, of the order of about 1 to
residues. Examples of N- or C-terminal fusion proteins or peptides include the binding
domain or activation domain of a transcriptional activator as used in the yeast two-hybrid
system, phage coat proteins, (histidine)tag, glutathione S- transferase-tag, protein A,
4o maltose-binding protein, dihydrofolate reductase, Tag»100 epitope, c-myc epitope, FLAG(R)-
epitope, lacZ, CMP (calmodulin-binding peptide), HA epitope, protein C epitope and VSV
epitope.
A substitution refers to replacement of amino acids of the protein with other amino acids
having similar properties (such as r hydrophobicity, hydrophilicity, antigenicity,
propensity to form or break cal structures or beta -sheet structures). Amino acid
substitutions are typically of single es, but may be clustered depending upon functional
constraints placed upon the polypeptide and may range from 1 to 10 amino acids; insertions
will usually be of the order of about 1 to 10 amino acid residues. The amino acid substitutions
are preferably conservative amino acid substitutions. Conservative tution tables are well
known in the art (see for example Creighton (1984) Proteins. W.H. Freeman and Company
(Eds) and Table 1 below).
Table 1: Examples of ved amino acid substitutions
Substitutions Substitutions
Amino acid substitutions, deletions and/or insertions may readily be made using peptide
synthetic techniques well known in the art, such as solid phase peptide synthesis and the like,
or by inant DNA manipulation. Methods for the manipulation of DNA sequences to
produce substitution, insertion or deletion variants of a protein are well known in the art. For
example, ques for making substitution mutations at predetermined sites in DNA are well
known to those skilled in the art and include M13 mutagenesis, 17- Gen in vitro mutagenesis
(USB, Cleveland, OH), hange Site Directed mutagenesis (Stratagene, San Diego, CA), PCR-
mediated site-directed mutagenesis or other site- directed mutagenesis ols.
Derivatives
"Derivatives" include peptides, oligopeptides, polypeptides which may, compared to the amino
acid sequence of the naturally-occurring form of the protein, such as the protein of interest,
comprise substitutions of amino acids with non-naturally occurring amino acid residues, or
additions of non-naturally ing amino acid residues. "Derivatives" of a protein also
encompass peptides, oligopeptides, ptides which comprise naturally ing altered
(glycosylated, acylated, prenylated, phosphorylated, myristoylated, sulphated etc.) or non-
naturally d amino acid residues compared to the amino acid sequence of a naturally-
occurring form of the polypeptide. A derivative may also comprise one or more non-amino acid
substituents or additions compared to the amino acid ce from which it is derived, for
e a reporter le or other ligand, covalently or non-covalently bound to the amino
acid ce, such as a reporter molecule which is bound to facilitate its detection, and non-
naturally occurring amino acid residues ve to the amino acid sequence of a naturally-
ing protein. Furthermore, "derivatives" also e fusions of the naturally-occurring
form of the protein with tagging peptides such as FLAG, HIS6 or doxin (for a review of
tagging peptides, see Terpe, Appl. Microbiol. Biotechnol. 60, 523-533, 2003).
Orthologue(s)/Para|ogue(s)
Orthologues and paralogues encompass evolutionary concepts used to describe the ral
relationships of genes. Paralogues are genes within the same species that have originated
through duplication of an ancestral gene; orthologues are genes from ent organisms that
have originated through speciation, and are also derived from a common ancestral gene.
Domain, Motif/Consensus sequence/Signature
The term "domain" refers to a set of amino acids conserved at ic positions along an
alignment of sequences of evolutionarily related proteins. While amino acids at other positions
can vary between homologues, amino acids that are highly conserved at specific positions
indicate amino acids that are likely essential in the ure, stability or function of a protein.
Identified by their high degree of vation in aligned sequences of a family of protein
homologues, they can be used as identifiers to determine if any polypeptide in question belongs
to a previously identified polypeptide family.
The term "motif or "consensus sequence" or "signature" refers to a short conserved region in
the sequence of evolutionarily related proteins. Motifs are frequently highly conserved parts of
domains, but may also include only part of the domain, or be located outside of conserved
domain (if all of the amino acids of the motif fall outside of a defined domain).
list databases exist for the identification of s, for example, SMART (Schultz et al.
(1998) Proc. Natl. Acad. Sci. USA 95, 5857-5864; Letunic et al. (2002) Nucleic Acids Res 30, 242-
244), InterPro (Mulder et al., (2003) Nucl. Acids. Res. 31, 315-318), Prosite (Bucher and Bairoch
(1994), A generalized e syntax for biomolecular sequences motifs and its function in
automatic sequence interpretation. (In) ISMB-94; Proceedings 2nd International Conference on
Intelligent Systems for Molecular Biology. Altman R., g D., Karp P., Lathrop R., Searls D.,
Eds., pp53-61, AAAI Press, Menlo Park; Hulo et al., Nucl. Acids. Res. 32:D134-D137, (2004)), or
Pfam (Bateman et al., Nucleic Acids Research 30(1): 276-280 ). A set of tools for in silico
analysis of protein sequences is available on the ExPASy proteomics server (Swiss Institute of
Bioinformatics (Gasteiger et al., ExPASy: the proteomics server for in-depth protein knowledge
and analysis, Nucleic Acids
Res. 31:3784-3788(2003)). Domains or motifs may also be identified using routine techniques,
such as by sequence alignment.
Methods for the ent of sequences for comparison are well known in the art, such
methods include GAP, BESTFIT, BLAST, FASTA and . GAP uses the algorithm of
40 Needleman and Wunsch ((1970) J Mol Biol 48: 443-453) to find the global (i.e. spanning the
complete sequences) alignment of two sequences that maximizes the number of matches and
minimizes the number of gaps. The BLAST algorithm (Altschul et al. (1990)] Mol Biol 215: 403-
) calculates percent sequence identity and performs a statistical analysis of the similarity
between the two sequences. The software for performing BLAST analysis is publicly available
through the al Centre for Biotechnology Information (NCBI). Homologues may readily be
fied using, for example, the ClustalW multiple sequence ent algorithm (version
1.83), with the default pairwise alignment parameters, and a scoring method in percentage.
Global percentages of similarity and ty may also be determined using one of the methods
available in the MatGAT software e (Campanella et al., BMC Bioinformatics. 2003 Jul
,4:29. : an application that generates similarity/identity matrices using protein or
DNA sequences.). Minor manual editing may be med to optimise alignment between
conserved motifs, as would be nt to a person skilled in the art. Furthermore, instead of
using full-length sequences for the identification of homologues, ic domains may also be
used. The sequence identity values may be determined over the entire nucleic acid or amino
acid sequence or over selected domains or conserved motif(s), using the programs mentioned
above using the default parameters. For local alignments, the Smith-Waterman algorithm is
ularly useful (Smith TF, Waterman MS (1981) J. Mol. Biol 147(1);195—7).
Reciprocal BLAST
Typically, this involves a first BLAST ing BLASTing a query sequence (for example using
any of the sequences listed in Table A of the Examples section) against any ce database,
such as the publicly available NCBI database. BLASTN or TBLASTX (using standard default values)
are generally used when starting from a nucleotide sequence, and BLASTP or TBLASTN (using
standard default values) when starting from a protein sequence. The BLAST s may
optionally be filtered. The full-length sequences of either the filtered results or non-filtered
results are then BLASTed back (second BLAST) t sequences from the organism from which
the query sequence is derived. The results of the first and second BLASTs are then compared. A
paralogue is identified if a high-ranking hit from the first blast is from the same species as from
which the query sequence is d, a BLAST back then y results in the query sequence
amongst the highest hits; an orthologue is identified if a anking hit in the first BLAST is not
from the same species as from which the query sequence is derived, and preferably results upon
BLAST back in the query sequence being among the highest hits.
High-ranking hits are those having a low E-value. The lower the e, the more significant
the score (or in other words the lower the chance that the hit was found by chance).
Computation of the E-value is well known in the art. In addition to E-values, comparisons are
also scored by percentage identity. Percentage identity refers to the number of cal
nucleotides (or amino acids) between the two compared nucleic acid (or polypeptide)
sequences over a particular length. In the case of large families, ClustalW may be used, ed
by a neighbour joining tree, to help visualize clustering of related genes and to identify
orthologues and paralogues.
Construct
4o Additional regulatory elements may include transcriptional as well as ational enhancers.
Those skilled in the art will be aware of terminator and enhancer sequences that may be suitable
for use in performing the invention. An intron sequence may also be added to the 5 untranslated
region (UTR) or in the coding sequence to increase the amount of the mature message that
accumulates in the cytosol, as described in the definitions section. Other l sequences
(besides er, enhancer, silencer, intron sequences, 3UTR and/or 5UTR regions) may be
protein and/or RNA stabilizing elements. Such sequences would be known or may readily be
obtained by a person skilled in the art.
The genetic constructs of the invention may further include an origin of replication sequence
that is required for maintenance and/or replication in a ic cell type. One example is when
a genetic construct is required to be maintained in a bacterial cell as an episomal genetic
element (e.g. plasmid or cosmid molecule).
For the detection ofthe successful transfer ofthe nucleic acid ces as used in the methods
of the invention and/or selection of transgenic microorganisms comprising these nucleic acids,
it is advantageous to use marker genes (or er genes). Therefore, the genetic construct
may ally comprise a selectable marker gene. The marker genes may be removed or
excised from the transgenic cell once they are no longer needed. Techniques for marker removal
are known in the art, useful ques are described above in the definitions section.
tory element/Control ce/Promoter
The terms atory element", "control sequence" and "promoter" are all used
interchangeably herein and are to be taken in a broad context to refer to regulatory nucleic acid
sequences capable of effecting expression of the sequences to which they are ligated. The term
"promoter" lly refers to a nucleic acid control sequence located upstream from the
transcriptional start of a gene and which is involved in recognising and binding of RNA
polymerase and other ns, thereby directing transcription of an operably linked nucleic
acid. Encompassed by the aforementioned terms are transcriptional regulatory sequences
derived from a classical eukaryotic genomic gene (including the TATA box which is ed for
accurate transcription initiation, with or without a CCAAT box sequence) and additional
regulatory elements (i.e. upstream ting sequences, ers and ers) which alter
gene expression in response to developmental and/or external stimuli, or in a tissue-specific
manner. Also included within the term is a transcriptional regulatory sequence of a classical
prokaryotic gene, in which case it may include a -35 box sequence and/or -10 box transcriptional
regulatory sequences. The term "regulatory element" also asses a synthetic fusion
molecule or derivative that confers, activates or enhances expression of a nucleic acid molecule
in a cell, tissue or organ.
Constitutive promoter
A "constitutive promoter" refers to a promoter that is transcriptionally active during most, but
not necessarily all, phases of growth and development and under most environmental
conditions, in at least one cell, tissue or organ.
Transgenic/Transgene/Recombinant
For the purposes of the invention, "transgenic", "transgene" or "recombinant" means with
regard to, for example, a nucleic acid sequence, an expression cassette, gene construct or a
vector comprising the nucleic acid ce or an organism transformed with the nucleic acid
40 sequences, expression cassettes or vectors according to the invention, all those constructions
brought about by recombinant methods in which either
(a) the nucleic acid sequences ng proteins useful in the methods of the invention, or
(b) genetic control sequence(s) which is operably linked with the nucleic acid sequence
according to the invention, for example a promoter, or
(c) a) and b) are not located in their natural genetic environment or have been modified by
recombinant methods, it being possible for the modification to take the form of, for example, a
substitution, addition, deletion, inversion or insertion of one or more nucleotide residues. The
natural genetic environment is understood as meaning the natural genomic or somal
locus in the original rganism or the presence in a c library. In the case of a genomic
library, the natural genetic environment of the nucleic acid ce is preferably retained, at
least in part. The environment flanks the nucleic acid sequence at least on one side and has a
sequence length of at least 50 bp, preferably at least 500 bp, especially preferably at least 1000
bp, most preferably at least 5000 bp. A naturally occurring expression cassette - for example the
lly occurring combination of the natural promoter of the nucleic acid sequences with the
corresponding nucleic acid ce encoding a polypeptide useful in the methods of the
present invention, as defined above - becomes a transgenic expression cassette when this
expression cassette is ed by non-natural, synthetic ficial") methods such as, for
example, mutagenic ent. Suitable methods are described, for example, in US 5,565,350
or WO 00/15815.
A transgenic microorganism for the purposes of the invention is thus understood as meaning,
as above, that the c acids used in the method of the invention are not present in, or
originating from, the genome of said rganism, or are present in the genome of said
rganism but not at their natural locus in the genome of said rganism, it being
possible for the nucleic acids to be expressed homologously or heterologously. However, as
mentioned, transgenic also means that, while the nucleic acids according to the invention or
used in the inventive method are at their natural on in the genome of a microorganism,
the sequence has been modified with regard to the natural sequence, and/or that the regulatory
sequences of the natural sequences have been ed. Transgenic is preferably understood
as meaning the expression of the nucleic acids according to the invention at an unnatural locus
in the genome, i.e. homologous or, preferably, heterologous expression of the nucleic acids
takes place. Preferred transgenic microorganism are mentioned herein.
It shall further be noted that in the context of the present invention, the term "isolated c
acid" or "isolated polypeptide" may in some instances be considered as a synonym for a
"recombinant nucleic acid" or a "recombinant polypeptide", respectively and refers to a nucleic
acid or polypeptide that is not located in its natural genetic environment and/or that has been
modified by recombinant methods.
Modulation
The term "modulation" means in relation to expression or gene expression, a process in which
the expression level is d by said gene expression in comparison to the control
microorganism, the expression level may be sed or decreased. The original, unmodulated
expression may be of any kind of sion of a structural RNA (rRNA, tRNA) or mRNA with
subsequent translation. For the purposes ofthis invention, the al lated expression
may also be absence of any expression. The term ating the activity" shall mean any
change of the expression of the inventive nucleic acid sequences or encoded proteins, which
leads to increased production yield and/or increased growth of the microorganisms. The
expression can increase from zero (absence of, or immeasurable expression) to a certain
amount, or can decrease from a certain amount to immeasurable small amounts or zero.
Expression
The term "expression" or "gene expression" means the transcription of a specific gene or
specific genes or specific c construct. The term "expression" or "gene expression" in
particular means the transcription of a gene or genes or genetic construct into structural RNA
(rRNA, tRNA) or mRNA with or without subsequent translation of the latter into a protein. The
process includes transcription of DNA and processing of the resulting mRNA product.
Increased expression/overexpression
The term "increased expression" or "overexpression" as used herein means any form of
expression that is onal to the original wild-type expression level. For the purposes of this
invention, the original wild-type expression level might also be zero, i.e. absence of expression
or urable expression.
Methods for increasing sion of genes or gene products are well documented in the art
and include, for example, overexpression driven by appropriate promoters, the use of
transcription enhancers or translation enhancers. Isolated nucleic acids which serve as
er or enhancer elements may be introduced in an appropriate position (typically
upstream) of a non-heterologous form of a cleotide so as to upregulate sion of a
nucleic acid encoding the polypeptide of interest. For example, endogenous promoters may be
altered in vivo by on, deletion, and/or substitution (see, Kmiec, US 5,565,350; Zarling et
al., W09322443), or ed promoters may be introduced into a microorganism cell in the
proper orientation and distance from a gene of the present invention so as to control the
expression of the gene.
|f polypeptide expression is desired, it is generally desirable to include a polyadenylation region
at the 3-end of a polynucleotide coding . The polyadenylation region can be derived from
the natural gene, from a variety of other microorganism genes, or from T-DNA.
Moreover, the present invention relates to the following specific embodiments:
1. Method for the production of sialylated compounds, the method comprising:
- culturing a rganism in a culture medium, said culture medium optionally comprising an
40 ous precursor,
- wherein said rganism intracellularly converts N-acetylglucosaminephosphate to N-
acetylglucosamine, said N-acetylglucosamine to N-acetylmannosamine and said N-
acetylmannosamine to N-acetyl-neuraminate; and
- wherein said microorganism is unable to i) convert N-acetylglucosamineP to glucosamine-
6-P, ii) convert yl-glucosamine to N-acetyl-glucosamineP, and iii) convert N-acetyl-
neuraminate to N-acetyl-mannosamine.
2. The method according to embodiment 1 wherein:
i) said conversion of N-acetylglucosaminephosphate to ylglucosamine is obtained by
the action of an intracellularly expressed phosphatase,
ii) said N-acetylglucosamine to N-acetylmannosamine conversion is performed by an
intracellularly expressed N-acetylmannosamine epimerase; and
iii) intracellular expressed sialic acid synthase converts said N-acetylmannosamine to yl-
neuraminate.
3. The method according to any one of embodiment 1 or 2 wherein said organism is unable
to produce following enzymes i) a N-acetylglycosaminephosphate deacetylase, ii) a N-
acetylglucosamine kinase, and iii) a N-acetylneuraminate aldolase.
4. The method according to any one of embodiment 1 to 3, wherein all said conversions are
catalysed by enzymes encoded by constitutively expressed genes.
. The method according to embodiment 2 wherein the phosphatase is chosen from the
HAD superfamily or the HAD-like phosphatase family, preferably said phosphatase is chosen
from the group comprising: i) s expressed by the genes yan, inhX, yniC, ybiV, yidA, ybjl,
yigL or cof from Escherichia coli, ii) the phosphatase of Blastocladiella nii and iii) other
phosphatase families, more preferably said phosphatase is a ike phosphatase
polypeptide as defined in the claims.
6. The method according to any one of the embodiments 2, 3, 4 or 5, wherein the N-
acetylmannosamineepimerase is chosen from the group comprising i) N-
acetylmannosamineepimerase from cyanobacteria, more in particular from Acaryochloris
marina, Anabaena variabilis, na marina, Nostoc punctiforme, Acaryochloris species,
Anabaena species, Nostoc species and Synechocystis species; ii) N-acetylmannosamine
epimerase from Bacteroides species, more in particular from Bacteroides ovatus, Bacteroides
otaomicron, Capnocytophaga canimorsus and Mobiluncus is; iii) N-acetyl-D-
glucosmineepimerase from Glycin max, Mus us, Homo sapiens, Rattus norvegicus, Bos
Taurus, Sus scrofa or Canis lupus.
7. The method according to any one of the embodiments 2, 3, 4, 5 or 6, wherein the sialic
acid synthase is chosen from the group comprising: sialic acid synthase from Streptococcus
agalatiae, Bacillus subtilis, ella pneumophilla, Campy/obacterjejuni, Idiomarina loihiensis,
Moritella viscosa, brio salmonicida, ichia coli, Methanocaldococcus jannaschi,
Clostridium sordellii, Butyrivibrio proteoclasticus, onas commoda or Neisseria
meningitis.
8. The method according to any one of the preceding embodiments, n said
sialylated compound is selected from the group consisting of N-acetylneuramic acid, ated
o|igosaccharide, sialylated lipids, sialylated protein, sialylated aglycon.
9. The method ing to the previous embodiment, wherein said sialylated compound
is a sialylated o|igosaccharide.
. The method according to embodiment 9, n said sialylated o|igosaccharide is
sia|y||actose, preferably any one of 3-SL or 6—SL.
11. The method according to embodiment 9, wherein said sialylated o|igosaccharide is
disialyl lacto-N-tetraose.
12. The method according to embodiment 8, wherein said sialylated compound is N-
acetylneuraminic acid.
13. The method according to any one of ment 1 to 10 wherein said ated
nd is a sialylated lacto-N-triose, lacto-N-tetraose or a lacto-N-neotetraose, and wherein
said microorganism further comprises the activity of a galactosyltransferase (EC 2.4.1.38),
ably said galactosyltransferase originates from the group comprising Homo sapiens, Bos
taurus, Mus mulatta, Gallus gallus, Danio rerio, Helicobacter pylori and Haemophilus ducrey;
and/or said microorganism comprises the activity of a N-acetylglucosaminyltransferase (EC
90), preferably said N-acetylglucosaminyltransferase originates from the group sing
Bos taurus, Homo sapiens and Mus musculus.
14. The method ing to embodiment 13 wherein said microorganism is unable to
express the genes coding for UDP sugar hydrolase and galactose-1—phosphate
uridylyltransferase.
. The method according to any one of ments 1 to 14, wherein said microorganism
produces less than 50%, 40%, 30%, 20%, 10%, 5%, 2% extracellular N-acetylglucosamine and/or
N-acetylmannosamine than sialylated compound and/or said micro-organism produces equal
or more than 50%, 60%, 70%, 80%, 90%, 95%, 98% sialylated compound on total carbohydrate
16. A method for producing a sialylated o|igosaccharide, comprising:
a) culturing a microorganism according to the method of any one of ments 1 to 7, 14
and 15, and wherein said microorganism produces internally, activated N-acetylneuraminate as
donor substrate for a sialyltransferase; and
b) culturing said microorganism in a culture medium comprising an ous precursor
selected from the group consisting of lactose, N-acetyllactosamine, lacto-N-biose, galactose,
beta-galactoside, and alpha-galactoside such as but not limited to globotriose lpha-
1,4Gal-beta-1,4Glc)galactose, wherein active uptake into the microorganism of said exogenous
precursor occurs and wherein said exogenous precursor is the acceptor substrate for said
sialytransferase for producing the sialylated o|igosaccharide.
17. The method according to embodiment 2, wherein any one or more of said phosphatase,
N-acetylmannosamine epimerase and sialic acid synthase is overexpressed in the
microorganism.
18. The method according to embodiment 2, wherein any one or more of said phosphatase,
N-acetylmannosamine epimerase and sialic acid synthase is introduced and expressed in the
microorganism.
19. The method according to embodiment 3, wherein said microorganism lacks the genes
encoding for following enzymes i) a ylglycosaminephosphate deacetylase, ii) a N-
acetylglucosamine kinase, and iii) a N-acetylneuraminate a|do|ase.
. The method according to embodiment 3, n in said microorganism the genes
encoding for ing enzymes i) a N-acetylglycosaminephosphate deacetylase, ii) a N-
acetylglucosamine kinase, and iii) a N-acetylneuraminate aldolase are reduced in activity,
preferably said genes are deleted or knocked-out.
21. The method according to any one of the embodiments 1 to 20, wherein said
rganism further encodes a protein that facilitates uptake of lactose and lacks enzymes
that metabolize lactose.
22. The method according to any one of embodiments 1 to 21, wherein said microorganism
is a bacteria, preferably an Escherichia coli strain, more preferably an Escherichia coli strain
which is a K12 strain, even more ably the Escherichia coli K12 strain is Escherichia coli
M61655.
23. The method according to any one of embodiments 1 to 21, wherein said microorganism
is a yeast.
24. The method according to any one of embodiments 1 to 23, wherein the exogenous
precursor is chosen from the group comprising lactose, galactose, beta-galactoside, and alpha-
galactoside, such as riose lpha-1,4Gal-beta-1,4Glc).
. A microorganism for the production of sialylated compounds, said microorganism
- intracellularly converts ylglucosaminephosphate to N-acetylglucosamine, said N-
glucosamine to N-acetylmannosamine and said N-acetylmannosamine to N-acetyl-
neuraminate; and
- is unable to i) convert N-acetylglucosamineP to glucosamineP, ii) t N-acetyl-
glucosamine to N-acetyl-glucosamineP, and iii) convert yl-neuraminate to N-acetyl-
mannosamine.
26. A microorganism for the production of a sialylated compound, said microorganism
being defined in any one of embodiments 2 to 24.
27. A cell culture medium comprising lactose as sor and the microorganism of any
one of embodiments 25 or 26.
28. The method ing to one of embodiments 1 to 24, for the production of
35ialyllactose or 6sialyllactose, wherein the microorganism is ated at high cell density on a
carbon substrate, such as glucose or glycerol, and fed with lactose which is internalized by the
lactose permease and sialylated by said recombinant sialyltransferase using the CMP- N-acetyl-
neuraminate endogenously generated from N-acetylglucosamine.
29. The method according to any one of embodiments 1 to 24, wherein said sialylated
compound is isolated from said culture medium by means of a unit ion selected from the
group centrifugation, filtration, microfiltration, iltration, ltration, ion exchange,
electrodialysis, chromatography, simulated moving bed, evaporation, precipitation,
llization, lyophilization and/or spray drying
. A sialylated compound produced according to the method described in any one of
embodiments 1 to 24, wherein said sialylated compound is purified by centrifugation and/or
filtration, ion-exchange, concentration through ation or nanofiltration, formulation
through crystallization or spraydrying or lyophilization.
31. A sialylated compound produced according to the method described in any one of
embodiments 1 to 24, wherein said sialylated compound is added to food formulation, feed
formulation, pharmaceutical formulation, cosmetic formulation, or agrochemical formulation.
32. The method according to any one of embodiments 1 to 24, wherein said culture medium
comprises any one or more of the following: a monosaccharide, disaccharide, oligosaccharide,
polysaccharide, polyol, a complex medium as the main carbon .
33. The method according to embodiment 32, wherein said main carbon source provides at
least 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or 100% of all
required carbon for the growth of said rganism.
34. The method according to embodiment 32, wherein said monosaccharide is chosen from
the group comprising glucose, fructose, galactose, mannose, ribose or arabinose.
. The method ing to embodiment 32, n said disaccharide is chosen from the
group comprising maltose, e, lactose, trehalose, cellobiose or chitobiose.
36. The method according to embodiment 32, wherein said oligosaccharide is chosen from
the group comprising maltotriose, fructo-oligosaccharides, galacto-oligosaccharides, mannan
oligosaccharides, isomaltooligosaccharide or glucooligosaccharides.
37. The method according to embodiment 32, wherein said polyol is chosen from the group
comprising glycerol.
38. The method according to embodiment 32, wherein said complex medium is chosen
from the group comprising molasses, corn steep liquor, peptone, tryptone or yeast extract.
In a preferred aspect, the present invention s to the following preferred specific
embodiments:
1. A method for the production of a ated nd in a microorganism, the method
comprising:
- ing a microorganism in a culture medium, said e medium optionally comprising an
exogenous precursor,
wherein said microorganism comprises at least one c acid encoding a phosphatase, at
least one nucleic acid encoding an N-acetylmannosamine ase; and at least one nucleic
acid encoding a sialic acid synthase, and
wherein said microorganism is unable to i) convert N-acetylglucosamineP to glucosamine
P, ii) convert N-acetyl-glucosamine to yl-glucosamineP, and iii) convert N-acetyl-
inate to N-acetyl-mannosamine; and
- ting expression in said microorganism of a nucleic acid encoding a HAD-alike
phosphatase polypeptide, wherein said HAD-alike phosphatase polypeptide comprises:
- at least one of the following motifs:
Motif 1: thDx[TV] (SEQ ID NO: 73), or
Motif 2: [GSTDE][DSEN]x(1-2)[hP] x(1-2) [DGTS] (SEQ ID N05: 74, 75, 76, 77)
wherein h means a hydrophobic amino acid (A, I, L, M, F, V, P, G) and x can be
any distinct amino acid;
- or a homologue or derivative of any one of SEQ ID N05: 43 ,44, 45, 47, 48, 50, 51, 52, 54,
55 or 57 having at least 80 %, 81 %, 82 %, 83 %, 84 %, 85 %, 86 %, 87 %, 88 %, 89 %, 90 %,
91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, or 99 % overall sequence identity to said
polypeptide.
2. The method according to preferred embodiment 1, wherein said HAD-alike polypeptide
comprises any one of SEQ ID N05: 43 ,44, 45, 47, 48, 50, 51, 52, 54, 55, 57.
3. Method according to preferred embodiment 1, wherein said modulated expression is
effected by introducing and expressing in a microorganism a nucleic acid encoding a HAD-alike
ptide.
4. Method ing to preferred embodiment 1, wherein said modulated expression is
effected by the action of a constitutive promoter.
5. The method according to any one of the preceding preferred embodiments, wherein
said sialylated compound is selected from the group consisting of N-acetylneuramic acid,
ated oligosaccharide, sialylated lipids, sialylated protein, sialylated aglycon.
6. The method according to the previous preferred embodiment, n said sialylated
nd is a sialylated oligosaccharide.
7. The method according to preferred embodiment 8, wherein said sialylated
oligosaccharide is sialyllactose.
8. The method according to preferred embodiment 8, wherein said sialylated
oligosaccharide is disialyl lacto-N-tetraose.
9. The method according to red embodiment 7, wherein said sialylated compound
is N-acetylneuraminic acid.
. The method according to any one of preferred embodiment 1 to 9 wherein said
sialylated compound is a sialylated lacto-N-triose, lacto-N-tetraose or a N-neotetraose,
and wherein said microorganism further comprises the activity of a galactosyltransferase (EC
2.4.1.38), preferably said ga|actosy|transferase originates from the group comprising Homo
sapiens, Bos taurus, Mus mulatta, Gallus gallus, Danio rerio, Helicobacter pylori and
Haemophilus ducrey; and/or said microorganism comprises the activity of a N-
acetylglucosaminyltransferase (EC 2.4.1.90), preferably said N-acetylglucosaminyltransferase
originates from the group sing Bos taurus, Homo sapiens and Mus musculus.
11. The method according to preferred embodiment 12 wherein said microorganism is
unable to express the genes coding for UDP sugar hydrolase and ga|actosephosphate
uridylyltransferase.
12. The method according to any one of preferred embodiments 1 to 13, wherein said
microorganism produces less than 50%, 40%, 30%, 20%, 10%, 5%, 2% extracellular N-
acetylglucosamine and/or ylmannosamine than sialylated compound and/or said micro-
organism produces equal or more than 50%, 60%, 70%, 80%, 90%, 95%, 98% sialylated
compound on total ydrate
13. A method for producing a sialylated oligosaccharide, comprising:
a) culturing a microorganism according to the method of any one of preferred embodiments 1
to 12, and wherein said microorganism produces internally, activated N-acetylneuraminate as
donor substrate for a sialyltransferase; and
b) culturing said microorganism in a culture medium comprising an exogenous precursor
ed from the group consisting of lactose, N-acetyllactosamine, lacto-N-biose, ga|actose,
a|actoside, and alpha-ga|actoside such as but not limited to globotriose (Gal-alpha-
1,4Gal-beta-1,4Glc)galactose, wherein active uptake into the microorganism of said exogenous
precursor occurs and wherein said exogenous sor is the acceptor substrate for said
ransferase for producing the sialylated oligosaccharide.
14. The method according to preferred embodiment 1, wherein any one or more of said N-
acetylmannosamine epimerase and sialic acid synthase is overexpressed in the microorganism.
. The method according to preferred embodiment 1, n any one or more of said N-
acetylmannosamine epimerase and sialic acid synthase is introduced and sed in the
microorganism.
16. The method according to preferred embodiment 1, wherein said microorganism lacks the
genes encoding for following enzymes i) a N-acetylglycosaminephosphate deacetylase, ii) a
ylglucosamine kinase, and iii) a ylneuraminate aldolase.
17. The method ing to preferred embodiment 1, n in said microorganism the
genes encoding for following enzymes i) a N-acetylglycosaminephosphate deacetylase, ii) a
N-acetylglucosamine , and iii) a N-acetylneuraminate aldolase are reduced in activity,
preferably said genes are deleted or knocked-out.
18. The method according to any one of the preferred embodiments 1 to 17, wherein said
microorganism further s a protein that facilitates uptake of e and lacks enzymes
that metabolize lactose.
19. The method ing to any one of preferred embodiments 1 to 18, wherein said
microorganism is a bacterium, preferably an Escherichia coli strain, more preferably an
Escherichia coli strain which is a K12 strain, even more preferably the Escherichia coli K12 strain
is Escherichia coli M61655.
. The method according to any one of preferred embodiments 1 to 18, wherein said
microorganism is a yeast.
21. The method ing to any one of preferred embodiments 1 to 20, wherein the
exogenous sor is chosen from the group comprising lactose, galactose, beta-galactoside,
and alpha-galactoside, such as globotriose (Gal-alpha-1,4Gal-beta-1,4Glc).
22. Microorganism, obtainable by a method according to any one of claims 1 to 21, wherein said
microorganism comprises a recombinant nucleic acid encoding a HAD-alike polypeptide.
23. A microorganism for the production of sialylated compounds wherein said microorganism
comprises at least one nucleic acid ng a phosphatase, at least one nucleic acid encoding
an N-acetylmannosamine epimerase; and at least one c acid encoding a sialic acid
synthase, and wherein said microorganism is unable to i) convert N-acetylglucosamine-6—P to
glucosamineP, ii) convert N-acetyl-glucosamine to N-acetyl-glucosamineP, and iii) convert
N-acetyl-neuraminate to N-acetyl-mannosamine; characterised in that said microorganism
comprises a modulated expression of a nucleic acid encoding a HAD-alike phosphatase
polypeptide as defined in preferred embodiment 1.
24. Construct comprising:
(i) c acid encoding a HAD-alike polypeptide as defined in preferred embodiment
1 or 2;
(ii) one or more control sequences capable of driving expression of the nucleic acid
sequence of (i); and optionally
(iii) a transcription termination sequence.
. Construct according to preferred embodiment 24, wherein one of said control ces is
a constitutive promoter.
26. Use of a construct according to preferred embodiment 24 or 25 in a method for producing
sialylated compounds.
27. A sialylated compound produced according to the method described in any one of preferred
embodiments 1 to 21, wherein said sialylated compound is added to food ation, feed
formulation, pharmaceutical formulation, cosmetic ation, or agrochemical ation.
28. A microorganism for the production of a sialylated compound, said microorganism being
defined in any one of embodiments 2 to 21.
29. A cell culture medium sing lactose as sor and the microorganism of any
one of embodiments 22, 23 or 28.
. The method according to one of embodiments 1 to 21, for the tion of
llactose or 6sialyllactose, wherein the microorganism is ated at high cell density on a
carbon substrate, such as glucose or glycerol or sucrose, and fed with lactose which is
internalized by the lactose permease and sialylated by said inant sialyltransferase using
the CMP- N-acetyl-neuraminate endogenously generated from N-acetylglucosamine.
31. The method according to any one of embodiments 1 to 21, wherein said sialylated
compound is isolated from said culture medium by means of a unit ion selected from the
group centrifugation, filtration, microfiltration, ultrafiltration, nanofiltration, ion exchange,
electrodialysis, chromatography, simulated moving bed, evaporation, precipitation,
crystallization, lyophilization and/or spray drying
32. A ated nd produced according to the method described in any one of
embodiments 1 to 21, wherein said sialylated compound is purified by centrifugation and/or
filtration, ion-exchange, concentration through evaporation or nanofiltration, formulation
through crystallization or spraydrying or lyophilization.
33. A sialylated compound produced according to the method described in any one of
embodiments 1 to 21, wherein said sialylated compound is added to food formulation, feed
ation, pharmaceutical ation, cosmetic formulation, or agrochemical formulation.
34. The method according to any one of embodiments 1 to 21, wherein said culture medium
comprises any one or more of the following: a monosaccharide, disaccharide, oligosaccharide,
polysaccharide, polyol, a complex medium as the main carbon source.
. The method ing to embodiment 34, n said main carbon source provides at
least 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or 100% of all
ed carbon for the growth of said microorganism.
36. The method ing to embodiment 34, wherein said monosaccharide is chosen from
the group comprising glucose, fructose, galactose, mannose, ribose or arabinose.
37. The method according to embodiment 34, wherein said disaccharide is chosen from the
group comprising maltose, sucrose, lactose, trehalose, cellobiose or chitobiose.
38. The method according to embodiment 34, wherein said oligosaccharide is chosen from
the group sing maltotriose, fructo-oligosaccharides, galacto-oligosaccharides, mannan
oligosaccharides, isomaltooligosaccharide or glucooligosaccharides.
39. The method according to embodiment 34, wherein said polyol is chosen from the group
comprising glycerol.
40. The method according to embodiment 34, wherein said complex medium is chosen
from the group comprising molasses, corn steep liquor, e, tryptone or yeast extract.
The following drawings and examples will serve as r ration and clarification of the
present invention and are not intended to be limiting.
Brief description of the drawings
Fig. 1 shows an exemplary pathway as used in example 2 for the production of sialic acid
according to the t invention. Fig. 1A shows the pathway without all K0 and
pression signs. Fig. 1B shows the pathway as used in e 2 with the knock-out
indicated with a cross and overexpression with an upgoing arrow next to the indicated enzyme.
Fig. 2 shows the production results of the Escherichia coli strain capable of producing sialic acid
as described in example 2.
Fig. 3 shows examples of different sialylated compounds which can be produced in the method
of the present invention.
Fig. 4 shows the l density and sialic acid production of strains supplemented with the
indicated phosphatases.
Fig. 5 shows the growth rates of strains supplemented with the ted phosphatases.
Fig. 6 shows the parts of an ent of the phosphatases tested in the examples.
Example 1: Materials and methods
Method and materials Escherichia coli
Media
Three different media were used, namely a rich Luria Broth (LB), a minimal medium for shake
flask (MMsf) and a minimal medium for fermentation (MMf). Both minimal media use a trace
element mix.
Trace element mix consisted of 3.6 g/L FeC|2.4H20, 5 g/L CaC|2.2H20, 1.3 g/L MnC|2.2H20, 0.38
g/L CuCI2.2H20, 0.5 g/L CoC|2.6H20, 0.94 g/L ZnCI2, 0.0311 g/L H3B04, 0.4 g/L Na2EDTA.2H20
and 1.01 g/L thiamine.HC|. The molybdate solution ned 0.967 g/L Na2MoO4.2H20. The
selenium solution contained 42 g/L Se02.
The Luria Broth (LB) medium consisted of 1% tryptone peptone (Difco, Erembodegem, Belgium),
0.5 % yeast extract (Difco) and 0.5% sodium chloride (VWR, Leuven, Belgium).
Luria Broth agar (LBA) plates consisted of the LB media, with 12 g/L agar , Erembodegem,
Belgium) added.
Minimal medium for shake flask experiments (MMsf) contained 2.00 g/L NH4CI, 5.00 g/L
(NH4)2S04, 2.993 g/L KH2P04, 7.315 g/L , 8.372 g/L MOPS, 0.5 g/L NaCI, 0.5 g/L
MgS04.7H20. A carbon source chosen from, but not limited to glucose, fructose, e,
glycerol and maltotriose, was used. The concentration was default 15 g/L, but this was subject
to change depending on the experiment. 1 mL/L trace element mix, 100 uL/L molybdate
solution, and 1 mL/L selenium solution. The medium was set to a pH of 7 with 1M KOH.
ing on the experiment lactose could be added as a precursor.
The minimal medium for fermentations contained 6.75 g/L NH4CI, 1.25 g/L (NH4)2S04, 1.15 g/L
KH2P04 (low phosphate medium) or 2.93 g/L KH2P04 and 7.31 g/L KH2P04 (high phosphate
medium), 0.5 g/L NaCI, 0.5 g/L 7H20, a carbon source including but not limited to
glucose, sucrose, fructose, maltose, glycerol and riose, 1 mL/L trace element mix, 100
uL/L molybdate solution, and 1 mL/L selenium solution with the same composition as described
above.
x medium, e.g. LB, was sterilized by autoclaving (121 °C, 21) and minimal medium (MMsf
and MMf) by filtration (0.22 um Sartorius). If necessary the medium was made selective by
adding an antibiotic (e.g. ampicillin (100mg/L), chloramphenicol (20 mg/L), icillin
/L), spectinomycin (40mg/L) and/or kanamycin (50mg/L)).
Strains
Escherichia coli MG1655 [lambda', F', rph-1] was obtained from Coli Genetic Stock Center (US),
CGSC Strain#: 7740 in March 2007. Mutant strains were constructed using the homologous
recombination, as described by Datsenko and Wanner (PNAS 97 (2000), 6640-6645).
Plasmids
pKD46 (Red helper plasmid, Ampicillin resistance), pKD3 (contains an FRT-flanked
chloramphenicol resistance (cat) gene), pKD4 (contains an FRT-flanked kanamycin ance
(kan) gene), and pCP20 (expresses FLP recombinase activity) plasmids were obtained from Prof.
R. Cunin (Vrije siteit Brussel, Belgium in 2007).
Plasmid pCX-CjneuB was constructed using Gibson ly. The gene CjneuBl was expressed
using the expression vector as described by Aerts et. al (Eng. Life Sci. 2011, 11, No. 1, 10-19).
d pCX-CjneuB-NmneuA-dest was constructed using Gibson assembly. The genes
CjneuBl, NmneuA and dest were expressed using the expression vector as described by Aerts
et. al (Eng. Life Sci. 2011, 11, No. 1, 10-19).
Plasmids for phosphatase expression were constructed using Golden Gate assembly. The
phosphatases (EcAphA, EcCof, EcHisB, EcOtsB, EcSurE, EcYaed, EcchU, EcYedP, EchbT, EchdA,
EchgB, EchhX, EcYniC, EchaB, EchbL and PsMupP) were sed using promoters apFAB87
and apFAB346 and UTRs gene10_SD2-junction_HisHA and UTR1
AA'I'I'CGCCGGAGGGATA'I'I'AAAAtgaatggaaaattgAAACATC'I'I'AATCATGCTAAGGAGG'I'ITI'CTAATG
(SEQ ID NO: 41). All promoters and UTRs except UTR1 are described by Mutalik et. al (Nat.
Methods 2013, No. 10, 354-360). Also phosphatases EcAppA, Epoh, EcSerB, EcNagD, EcthA,
EcYbiV, EcijL, EchbR, EcheH, EchgL, Ec ijG, EchfG, , ScDOG1 and BsAraL are
expressed using the same ers and UTRs.
Plasmid pBR322-NmneuB was constructed using a pBR322 vector via Golden Gate assembly.
The promoter and UTR used for the sion of NmNeuB are promoter apFAB299 and UTR
galE_SD2-junction_BCD12. d pSC101-NmneuA-dest was constructed using a pSC101
vector via Golden Gate assembly. The promoters and UTRs used for the expression of NmneuA
are promoter apFAB37 and UTR galE_SD2-junction_BCD18. The promoters and UTRs used for
the expression of dest are promoter apFAB339 and UTR galE_SD2-junction_BCD12. All
promoters and UTRs are described by k et. al (Nat. Methods 2013, No. 10, 354-360).
Plasmids were maintained in the host E. coli DH5alpha (F', phi80dlache/taM15, delta(lacZYA-
argF) U169, deoR, recAl, endAl, hst17(rk', mk+), phoA, supE44, lambda', thi-1, gyrA96, reIA1).
40 Bought from |nvitrogen.
Gene disruptions
Gene tions as well as gene introductions were performed using the technique published
by Datsenko and Wanner (PNAS 97 (2000), 6640-6645). This technique is based on antibiotic
selection after homologous recombination performed by lambda Red recombinase. Subsequent
catalysis of a flippase recombinase ensures removal of the antibiotic ion cassette in the
final production strain.
In Table A the necessary primers for the construction of the gene disruption cassette are listed.
Table A: Lists of s to construct disruption cassette for the target gene.
lacZYA C'I'I'GTAGGCCTGATAAGCGCA GCGCAACGCAATTAATGTGAGTI'AGCT
GCGTATCAGGCAA'IT'I—I—I'ATAATCTI'CAT CACTCATTAGGCACCCCAGGCTI'CGCCT
TI'AAATGGCGCGC (SEQ ID NO: 1) ACCTGTGACGGAAG (SEQ ID NO: 2)
nagABCDE CGCTI'AAAGATGCCTAATCCGCCAACGG GGCGTI'I'GTCATCAGAGCCAACCACGT
CTfACAI I I IACTTA'I'I'GAGGTGAATAGT CCGCAGACGTGGTTGCTATCATATGAAT
GTAGGCTGGAGCTGCTI'C (SEQ ID NO: ATCCTCCTI'AG (SEQ ID NO: 4)
nanA TEK TAATGCGCCGCCAGTAAATCAACATGAA CCAACAACAAGCACTGGATAAAGCGAG
ATGCCGCTGGCTCCGTGTAGGCTGGAG TCTGCGTCGCCTGGTI'CAGTI'CACATAT
CTGC'I'I'C (SEQ ID NO: 5) GAATATCCTCCTI'AG (SEQ ID NO: 6)
AAAATACATCTGGCACGTFGAGGTGTTA CCTCCAGATAAAAAAACGGGGCCAAAA
ACGATAATAAAGGAGGTAGCAAGTGTA GGCCCCGGTAGTGTACAACAGTCCATA
AGCTGCTI'C (SEQ ID NO: 7) TGAATATCCTCCTTAG (SEQ ID NO: 8)
For the genomic integration of the necessary genes into the production hosts genome based on
the same technique used for the gene disruption, sed , with specific alterations to
the disruption te. n a homology site and the FRT site of the tion cassette,
the to be integrated constructed is located. This allows for elegant integration of the
constructed in the region dictated by the homology sites.
Using this workflow, a direct gene disruption and genomic integration is possible. Primers that
were used for target integration are at specific sites are listed in Table B.
Table B: Primers used for genomic integration
Integration
location
nagABCDE GT'ITGGCGTI—I'GTCATCAGAGCCAA TTGTCATTG'I'I'GGATGCGACGCTCAA
CCACGTCCGCAGACGTGGTI'GCTAT GCGTCGCATCAGGCATAAAGCAGAC
GCTGGAGCTGC'I'I'C (SEQ TTAAGCGAC'I'I'CATTCACC (SEQ ID
ID NO: 9) NO: 10)
CATGGCGGTAATGCGCCGCCAGTA CCAACAACAAGCACTGGATAAAGCG
AATCAACATGAAATGCCGCTGGCTC AGTCTGCGTCGCCTGG'I'I'CAGTTCAC
CGTGTAGGCTGGAGCTGCTTC (SEQ TTAAGCGAC'I'I'CATTCACC (SEQ ID
ID NO: 11) NO: 12)
AAAATACATCTGGCACG'I'I'GAGGTG CCTCCAGATAAAAAAACGGGGCCAA
TI'AACGATAATAAAGGAGGTAGCA AAGGCCCCGGTAGTGTACAACAGTC
AGTGTAGGCTGGAGCTGC'ITC (SEQ C'I'I'AAGCGAC'I'I'CA'I'I'CACC (SEQ ID
ID NO: 13) NO: 14)
lacZYA GCGCAACGCAATTAATGTGAGTI'AG GCTGAAC'I'I'GTAGGCCTGATAAGCG
CTCACTCA‘I‘I'AGGCACCCCAGGCTI' CAGCGTATCAGGCAAT'ITI'TATAATC
GCTGGAGCTGC'I'I'C (SEQ TTAAGCGAC'I'I'CATTCACC (SEQ ID
ID NO: 15) NO: 16)
ath-gidB CAAAAAGCGGTCAAATTATACGGTG ATAACGTGGCT'ITT'ITI'GGTAAGCAG
CGCCCCCGTGA'ITI'CAAACAATAAG AAAATAAGTCATTAGTGAAAATATCT
GTGTAGGCTGGAGCTGC'I'I'C (SEQ TAAGCGACTTCA'I'I'CACC (SEQ ID
ID NO: 17) NO: 18)
Clones carrying the temperature sensitive pKD46 helper plasmid were grown in 10 mL LB media
with ampicillin (100 mg/L) and L-arabinose (10 mM) at 30 °C to an ODeoOnm of 0.6. The cells were
made electro competent by sequential washing, once with 50 mL, and once with 1 mL ice-cold
deionized water. Next, the cells were resuspended in 50 uL of ice-cold water. Finally, 10-100 ng
of disruption/integration cassette was added to 50 uL of the washed cell solution for
electroporation. Electroporation was med using a Gene Pulser (trademark of BioRad) (600
Ohm 25 uFD, and 250 V).
After oporation, cells were resuscitated in 1 mL LB media for 1 h at 37 °C, and finally plated
out onto LB-agar containing 25 mg/L of chloramphenicol or 50 mg/L of kanamycin to select
antibiotic resistant transformants. The selected mutants were verified by PCR with primers
upstream and ream of the modified region and were subsequently grown on LB-agar at
42 °C for the loss of the pKD46 helper plasmid. The mutants were finally tested for ampicillin
sensitivity.
The selected mutants (chloramphenicol or kanamycin resistant) were transformed with pCP20
plasmid, which is an llin and mphenicol resistant plasmid that shows temperature-
sensitive replication and thermal induction of FLP synthesis. The ampicillin-resistant
transformants were selected at 30 °C, after which a few were colony purified in LB at 42 °C and
then tested for loss of all antibiotic ances and thus also of the FLP helper plasmid. The gene
tions and/or gene ation are checked with control primers and sequenced. These
primers are listed in Table C.
Table C: Primers to validate either gene tion and/or genomic integration for specific gene
ta rgets.
Gene targets
lacZYA CAGGT'I'I'CCCGACTGGAAAG (SEQ TGTGCGTCG'I'I'GGGCTGATG (SEQ
ID NO: 19) ID NO: 20)
nagABCDE CGCTTGTCATTG'I'I'GGATGC (SEQ GCTGACAAAGTGCGA'ITI'GTTC (SEQ
ID NO: 21) ID NO: 22)
nanA TEK GTCGCCCTGTAA'I'I'CGTAAC (SEQ C'I'I'TCGGTCAGACCACCAAC (SEQ ID
ID NO: 23) NO: 24)
manXYZ ACGCCTCTGA'I'I'TGGCAAAG (SEQ AGCCAGTGCGCTTAATAACC (SEQ ID
ID NO: 25) NO: 26)
atpl-gidB GCTGAACAGCAATCCACTI'G (SEQ TGAACGATATGGTGAGCTGG (SEQ
ID NO: 27) ID NO: 28)
Heterologous and homologous expression
Genes that needed to be expressed, be it from a plasmid or from the genome were synthetically
synthetized with one of the ing companies: DNA2.0, Gen9 or IDT.
Escherichia coli native genes, as e.g., atases, were picked from the E. coli K-12 MG1655
genome. The origin of other genes are indicated in the relevant table.
Expression could be further facilitated by optimizing the codon usage to the codon usage of the
expression host. Gene were optimized using the tools of the er.
ation conditions
A preculture of 96well microtiter plate experiments was started from single colony on a LB plate,
in 175 (AL and was incubated for 8h at 37 °C on an orbital shaker at 800 rpm. This culture was
used as inoculum for a 96well microtiter plate, with 175 (AL MMsf medium by diluting 300x.
These cultures in turn, were used as a preculture for the final experiment in a 96well plate, again
by diluting 300x. The 96well plate can either be microtiter plate, with a culture volume of 175
(AL or a 24well deepwell plate with a culture volume of 3mL.
A preculture for shake flask experiments was started from a single colony on a LB-plate, in 5 mL
LB medium and was incubated for 8 h at 37 °C on an orbital shaker at 200 rpm. From this e,
1 mL was transferred to 100 mL minimal medium (MMsf) in a 500 mL shake flask and incubated
at 37 °C on an orbital shaker at 200 rpm. This setup is used for shake flask experiments.
A shake flask experiment grown for 16h could also be used as an inoculum for a bioreactor. 4%
of this cell solution was to inoculate a 2L Biostat Dcu-B with a 4 L working volume, controlled by
MFCS control re rius Stedim h, Melsungen, Germany). Culturing condition
were set to 37 °C, 800 rpm stirring, and a gas flow rate of 1.5 L/min. The pH was controlled at 7
using 0.5 M H2S04 and 25% NH4OH. The exhaust gas was cooled. 10% solution of silicone
antifoaming agent was added when foaming raised during the tation (approximately 10
BL). The use of an inducer is not required as all genes are tutively expressed.
Material and methods Saccharomyces cerevisae
Media
Strains are grown on Synthetic Defined yeast medium with Complete ment e (SD
CSM) or CSM drop-out (SD CSM-Ura) containing 6.7 g/L Yeast Nitrogen Base without amino acids
(YNB w/o AA, Difco), 20 g/L agar (Difco) (solid cultures), 22 g/L glucose monohydrate or 20 g/L
lactose and 0.79 g/L CSM or 0.77 g/L CSM-Ura (MP Biomedicals).
Saccharomyces cerevisiae BY4742 d by Bachmann et 0]. (Yeast (1998) 14:115-32) was
used available in the Euroscarf culture collection. All mutant strains were created by
homologous recombination or plasmid transformation using the method of Gietz (Yeast 11:355-
360, 1995). Kluyveromyces marxianus lactis is ble at the LMG culture collection (Ghent,
Belgium).
Plasmids
Yeast expression plasmid p2a_2u_sia_GFA1 (Chan 2013 (Plasmid 70 (2013) 2-17)) was used for
expression of foreign genes in Saccharomyces cerevisae. This plasmid contains an ampicillin
resistance gene and a bacterial origin of replication to allow for selection and maintenance in E.
coli. The plasmid further contains the 2p yeast ori and the Ura3 selection marker for ion
and maintenance in yeast. Finally, the plasmid can contain a beta-galactosidase expression
cassette. Next, this plasmid also contains a N-acetylglucosamineepimerase (for example from
Bacteroides ovatus (BoAGE)) and a sialic acid synthase (for example from Campy/obacterjejuni
(CjneuB)). Finally, it also contains the fructoseP-aminotransferase from romyces
cerevisiae, ScGFAl.
Yeast sion plasmid p2a_2u_sia_glmS is based on p2a_2u_sia but modified in a way that
also glmS*54 oseP-aminotransferase from Escherichia coli) is expressed.
Yeast expression plasmids p2a_2u_sia_glmS_phospha is based on p2a_2u_sia_glmS but
modified in a way that also EcAphA (SEQ ID NO: 42), EcCof (SEQ ID NO: 43), EcHisB (SEQ ID NO:
44), EcOtsB (SEQ ID NO: 45), EcSurE (SEQ ID NO: 46), EcYaed (SEQ ID NO: 47), EcchU (SEQ ID
NO: 48), EcYedP (SEQ ID NO: 49), EchbT (SEQ ID NO: 50), EchdA (SEQ ID NO: 51), EchgB (SEQ
ID NO: 52), EchhX (SEQ ID NO: 53), EcYniC (SEQ ID NO: 54), EchaB (SEQ ID NO: 55), EchbL (SEQ
ID NO: 56), PsMupP (SEQ ID NO: 57), EcAppA (SEQ ID NO: 58), Epoh (SEQ ID NO: 59), EcSerB
(SEQ ID NO: 60), EcNagD (SEQ ID NO: 61), EcthA (SEQID NO: 62), EcYbiV (SEQ ID NO: 63), EcijL
(SEQ ID NO: 64), EchbR (SEQ ID NO: 65), EcheH (SEQ ID NO: 66), EchgL (SEQ ID NO: 67), Ec ijG
(SEQ ID NO: 68), EchfG (SEQ ID NO: 69), EcYbiU (SEQ ID NO: 70), ScDOGl (SEQ ID NO: 71) and
BsAraL (SEQ ID NO: 72) are expressed.
Yeast expression plasmid p2a_2u_SL-glmS is based on p2a_2u_sia but modified in a way that
also 2 (lactose permease from Kluyveromyces lactis), NmneuA (CM P-sialic acid synthase
from Neisseria meningitides) and dest (sialyltransferase acterium damselae) are
expressed.
Plasmids were maintained in the host E. coli DH5alpha (F', phi80dlacheltaM15, delta(lacZYA-
argF)U169, deoR, recAl, endAl, hst17(rk', mk+), phoA, supE44, lambda', thi-1, gyrA96, reIA1).
Bought from Invitrogen.
Gene SlOH promoters
Genes are expressed using tic constitutive promoters, as bed in by k
(Biotechnology and Bioengineering, Vol. 109, No. 11, 2012).
Heterologous and homologous expression
Genes that needed to be expressed, be it from a d or from the genome were synthetically
synthetized with one of the following companies: DNA2.0, Gen9 or IDT
Expression could be further facilitated by optimizing the codon usage to the codon usage of the
expression host. Gene were optimized using the tools of the supplier.
Cultivations conditions
In general, yeast strains were initially grown on SD CSM plates to obtain single colonies. These
plates were grown for 2-3 days at 30 °C.
Starting from a single colony, a preculture was grown over night in 5 mL at 30 °C, shaking at
200rpm. Subsequent 500 mL shake flask experiments were inoculated with 2% of this
preculture, in 100 mL media. These shake flasks were incubated at 30 °C with an l g
of 200 rpm. The use of an inducer is not required as all genes are constitutively sed.
Material and methods Bacillus subtilis
Media
Two different media are used, namely a rich Luria Broth (LB), a minimal medium for shake flask
(MMsf). The minimal medium uses a trace element mix.
Trace element mix consisted of 0.735 g/L CaCI2.2H20, 0.1 g/L MnC|2.2H20, 0.033 g/L
CuC|2.2H20, 0.06 g/L COC|2.6H20, 0.17 g/L ZnCl2, XX g/L H3BO4, XX g/L NaZEDTA.2H20 and 0.06
g/L Na2MoO4. The Fe-citrate solution contained 0. 135 g/L FeCI3.6H20, 1 g/L Na-Citrate (Hoch
1973 2887).
The Luria Broth (LB) medium consisted of 1% tryptone peptone (Difco, Erembodegem, Belgium),
0.5% yeast extract (Difco) and 0.5% sodium chloride (VWR, Leuven, Belgium).
Luria Broth agar (LBA) plates consisted of the LB media, with 12 g/L agar (Difco, Erembodegem,
Belgium) added.
Minimal medium for shake flask experiments (MMsf) contains 2 g/L (NH4)2S04, 7.5 g/L KH2P04,
17.5 g/L K2HP04, 1.25 g/L Na-Citrate, 0.25 g/L MgS04.7H20, 0.05g/L tryptophan, from 10 up to
g/L glucose or another carbon source including but not limited to glucose, fructose, maltose,
glycerol and maltotriose, 10 mL/L trace element mix, and 10 mL/L Fe-citrate solution. The
medium was set to a pH of 7 with 1M KOH.
Complex medium, e.g. LB, was sterilized by autoclaving (121 °C, 21) and minimal medium
(MMsf) by filtration (0.22 um Sartorius). If ary, the medium was made selective by adding
an antibiotic (e.g. zeocin (20mg/L)).
Strains
Bacillus subtilis 168, available at Bacillus Genetic Stock Center (Ohio, USA).
Plasmids and gene pression
Plasmids for gene on via Cre/lox are constructed as described by Yan et al. (Appl &
environm microbial, sept 2008, p5556-5562).
Expression vectors can be found at Mobitec (Germany), or at ATCC (ATCC® number 87056). The
genes BsglmS, SCGNAl and CjneuB are cloned in these expression vectors. A suitable promoter
for expression can be derived from the part repository (iGem): sequence id: BBa_K143012,
23000, BBa_K823002 or BBa_K823003. Cloning can be performed using Gibson
Assembly, Golden Gate assembly, Cliva assembly, LCR or restriction ligation.
Plasmids are maintained in the host E. coli DH5a|pha (F', phi 80dlacheltaM15, delta(lacZYA-
argF)U169, deoR, recAl, endAl, hst17(rk', mk+), phoA, supE44, lambda', thi-1, gyrA96, relA1).
Bought from |nvitrogen.
Gene disruptions
ting of genes is done via homologous ination with linear DNA and ormation
via the electroporation as described by Xue et al. (J. . Meth. 34 (1999) 183-191). The
method of gene knock-outs is described by Liu et al. (Metab. . 24 (2014) 61-69). This
method uses 1000bp homologies up- and downstream of the target gene. The homologies to
be used in this invention, are listed in table D. After the modification, the mutants are verified
using primers upstream and downstream of the modified region. These primers are given in
table E. Next, the modification is confirmed by sequencing (performed at LGC Genomics (LGC
group, y)).
Table D
Gene to be Upstream homology Downstream homology
disrupted
nagA-nagB Gactgcaagatttcggcctgggcggacggga at Aaggaacatgctgacttatgaatatcaataaaca
cgtcagttttgtaatttctgtatcaatgattttcat atcgcctattccgatttactatcagattatggagca
ggtctcttcctcaagtccgagccggtcgtattgct attaaaaacccaaattaagaacggagagctgcag
gctcccagagttcaagattcatgacaat ccggatatgcctcttccttctgagcgcgaatatgcc
cgtgattcgtttattgcttctgaccgcgccagcgc gaacaattcgggatcagccggatgacagttcgcc
caaatagcgtcatcacattgataatgccaaggcc aggcgctttctaatttagttaatgaaggcttgctct
cctgatctcaagaaggtgctcaattaattccgga atcgcctgaaagggcggggcacctttgtcagcaa
cccacaagagtatcctgatcctcctgccg aatggaacaagcacttcaagggctgaca
tatttcaacgcaatcatcggcaacaaggcgatgc agctttaccgaggatatgaaaagccgcgggatga
cctcttttcacaagctctagcgctgtttcgctttttc caccgggcagcaggctcattgattatcagcttatt
cgacgccgctttttcctgtgatcagcacgccgac gattcaactgaggagctcgcggctatattaggctg
accatatatatcgacaagaacgccatgaattgct cgggcacccctcctctatccataaaatcactcggg
gtggtaggcgccagcctgctctcaaggaagttgg tgcggctggcaaatgatattccgatggcgattgag
ttaaacggcttgacagtcttgtcgttttcagcggc tcctcacatattccgtttgagcttgcgggtgaattg
gatctgaggacaggcaccccatttttctcggagg aacgaatcgcattttcagtcgtcgatctatgatcat
cgtcaatcagctcctgcgggatgggcatatctct attgaaaggtacaacagcataccgatttcccgtgc
agaaagaataatagctggtgttacatcagtgcac ggagcttgagccaagcgctgccaccacg
agagaatccattcgctgctttttctcctcttcagga gaagaagcgaatattcttggtattcaaaagggag
agctgttcaaagaaagaaagctctgtttttccga cgcctgtcctattaattaaacgaacaacatatctgc
gaagctgcacgcgctccctcgggtaatatgtaaa agaacggaactgcttttgagcatgcaaaatccgta
ggcaatttcaatacctggtcttgataggt ggcgaccgttatacatttgtccactatatg
cactcattgtaatcgggcggttaattccttcttctc gatcgtctttcataaaaaaagcctccaacccttttt
cgctgattaattccaaattgaactgttccattacg aaggattggagacatggcgaaaatcaaactggtc
tcttttgtgcgaacctttgccacgatatgttcctcc tggtgccggacgatatgtttcttttttcgtcttgaac
tgttccgggctgccccgagcttgctcacaatactt ttccagatcggtgatttcgttttgccgttaaaactgt
tcattttatcactttcgggcttgaacctaaaacag cttccactataatgtaccaataataaacagactgc
attttataaaaggggggaaaacacctcagctggt ggttcaagatgatcccagcggaattcagctgtgtc
ctagatcactagtctgaaaaagagtaaaataaa cccgctcttcacttgctcccgttttccgagctcttca
ggtattcaaattccagaaaggcggatcatct tatacgtta (SEQ ID NO: 34)
(SEQ ID NO: 33)
ngcggacatggaataaatcacaaacgacaaa Gtgacaccccctcaaagagatagacaagcaccat
gatgacgccggcaagaatagagttaatcaaata atttgttatgaccaatttatgatacttgtcattacga
gagcacgggcgcaacgaacaagaaagaaaact atttagcaccgcccttatcaaactgtcaatattaat
caaccggttctgtaattccggtcagcatagatgt ttctgaaaatttgttataaaagaaggatacaaatc
gagcgccgcagaaatcatcacgccggagatcat tttcatattgggagggcaaatggtattatggtctca
cttttccggacgcgcggtatggataatggc atgaaaaagaacggattgcatacagaatgggga
aagagcaacggccggcagacagaaaatcatgt gaatgaaatgacagctttatattctgttatcaagtt
aagggaaatcccccatcataaagcgcccggctg taaaatcattgagttaattaaatcgggcaaatatc
tcgggtctcccgcgaaaaaccttgtcaggtcgcc aggcgaatgatcagctgccgacggagagtgagtt
ggtta cggtgttgcctgttgatgggtctgtgtattc ttgcgaacaatatgatgtcagcagaacaactgtga
tcccatcataaaatagaaaggcgtataaaaaat ctctgcagcagctagagcttgagggatat
atgatgcaggccaaaaggaatcagcaaacgat attaaaagaattcaaggaaaagggacatttgtat
agatcgttgcataaaagaacaggccgactgttg cggcggccaaaatacaaacgccgattccgcataa
aatcggcaattaaactgctggctgcgttaattcc gattacgagctttgcagaacaaatgagaggacttc
gttttggatcagcggccaaacgaatgagaaaat gttctgaatcaaaagtgcttgagcttgtggtgattc
gacgccgatcaccaatgaactgacggaagtaat ctgccgatcattccatcgccgagcttttgaaaatga
gatcgggacaaagcgttttccagagaaaaatcc aagagaatgaacctgtcaacaagcttgtcagagt
aaggaccggatgcagctcgattgatgaaaatcg cagatacgccgagggggaacctttgcagtatcat
cttatataaataggcggcgagaagcccgataat acctcatatattccctggaaggcggcaccggggct
gattcctccgaaaacccccatatcaatcaggtgc ggcgcaggaggaatgcaccggctcgctgtttgaat
tcggctccttcata cggaggctgaaggccgagta tgttaaggacaaaatacaatattgaaatcagcag
attttcccatattgtcgagggtgacggttaaaatt gggcacggaatcgatcgaaccgattttaacggat
aagtatccgatgacagcggcaagtccggctaca gaaacgatcagcggacacttattaaccaatgtcg
ccttctccgccggctaatccgatcgcgaccccca ctgcgtttttatcagaatcccttacctatg
cggcgaaaatcagcggaaggttatcgaatacaa ataaaaatgaagaagtggtggaatatgcgcaaat
cgccgcccgcatcctttataatagggatgttcagt tattacacggggagaccgaacgaaattcaccgta
ttgtctccgaaacggagcaaaagacct gaacagtcatatcattcataaagcaatgtgttttaa
gctgccggcaggacggcaaccggagtcatcaac gaagggaatggtggttctatgtttttatttacgaat
ccaagctgctgcagaatttgaaatgcct ggaaaagtgctgtggggagcagt (SEQ ID NO:
ttttaaacatgacagtctccttttattgtg (SEQ 36)
ID NO: 35)
Table E
nagA-nagB Tgtaatcgggcggttaattc (SEQ ID Gccctttcaggcgatagag (SEQ ID
gamA Acggcgaaaatcagcggaag (SEQ Tcactctccgtcggcagctg (SEQ ID
ID NO: 39)
Heterologous and homologous expression
Genes that needed to be expressed, be it from a plasmid or from the genome were synthetically
synthetized with one of the following companies: DNA2.0, Gen9 or IDT.
Expression could be further facilitated by optimizing the codon usage to the codon usage of the
expression host. Gene were zed using the tools of the supplier.
Cultivations conditions
A preculture, from a single colony on a LB-plate, in 5 mL LB medium was incubated for 8 h at 37
°C on an orbital shaker at 200 rpm. From this culture, 1 mL was transferred to 100 mL l
medium (MMsf) in a 500 mL shake flask and incubated at 37 °C on an l shaker at 200 rpm.
This setup is used for shake flask experiments. The use of an inducer is not required as all genes
are constitutively expressed.
Analytical methods
Optical density
Cell density of the culture was ntly monitored by measuring optical density at 600 nm
(Implen Nanophotometer NP80, rg, Belgium). Cell dry weight was obtained by
centrifugation (10 min, 5000 g, Legend X1R Thermo Scientific, Belgium) of 20 g reactor broth in
pre-dried and weighted falcons. The pellets were subsequently washed once with 20 mL
physiological solution (9 g/L NaCI) and dried at 70 °C to a constant weight. To be able to convert
OD6oonm measurements to biomass concentrations, a correlation curve of the OD6oonm to the
biomass concentration was made.
Measurement of cell dry weight
From a broth sample, 4 x 10 g was transferred to centrifuge tubes, the cells were spun down
(5000g, 4 °C, 5 min), and the cells were washed twice with 0.9% NaCI solution. The centrifuge
tubes containing the cell pellets were dried in an oven at 70 °C for 48 h until constant weight.
The cell dry weight was ed gravimetrically; the tubes were cooled in a desiccator prior to
weighing.
Liguid chromatography
The concentration of ydrates like, but not limited to, e, fructose and lactose were
determined with a Waters Acquity UPLC H-class system with an ELSD detector, using a y
UPLC BEH amide, 130 A, 1.7 um, 2.1 mm x 50 mm heated at 35 °C, using a 75/25
acetonitrile/water solution with 0.2% ylamine (0.130 mL/min) as mobile phase.
Sialyllactose was quantified on the same machine, with the same column. The eluent however
was modified to 75/25 acetonitrile/water solution with 1% formic acid. The flow rate was set to
0.130 mL/min and the column temperature to 35 °C.
Sialic acid was quantified on the same machine, using the REZEX ROA column (300 x 7.8 mm ID).
The eluent is 0.08% acetic acid in water. The flow rate was set to 0.5 mL/min and the column
temperature to 65 °C. GlcNAc and ManNAc were also measured using this method.
Growth rate measurement
The maximal growth rate (uMax) was calculated based on the ed optical densities at
600nm using the R package .
Example 2: production of sialic acid in Escherichia coli
A first example provides an Escherichia coli strain e of producing N-acetylneuraminate
(sialic acid) (see figure 1B).
A strain capable of accumulating aminephosphate using sucrose as a carbon source
was further ered to allow for N-acetylneuraminate production. The base strain
overexpresses a sucrose phosphorylase from Bifidobacterium adolescentis (BaSP), a
fructokinase from nas mobilis (merk), a mutant fructoseP-aminotransferase
(Ecglm$*54, as described by Deng et al. (Biochimie 88, 419-429 (2006))). To allow for gene sialic
acid production the operons nagABCDE, nanATEK and manXYZ were disrupted. BaSP and merk
were introduced at the location of nagABCDE and Ecglm$*54 was introduced at the location of
nanATEK. These modifications were done as described in example 1 and are based on the
principle of Datsenko & Wanner (PNAS USA 97, 6640-6645 (2000)).
In this strain, the biosynthetic pathway for producing sialic acid as bed in this invention,
was implemented by overexpressing a glucosamineP-aminotransferase from Saccharomyces
cerevisiae l), a N-acetylglucosamineepimerase from Bacteroides ovatus (BoAGE) and
a sialic acid synthase from obacterjejuni (CjneuB). SCGNAl and BoAGE were expressed
on locations nagABCDE and manXYZ, respectively. CjneuB was expressed using the high copy
plasmid pCX-CjneuB.
The strain was cultured as described in example 1 (materials and methods). Briefly, a 5mL LB
preculture was inoculated and grown overnight at 37 °C. This e was used as inoculum in a
shake flask experiment with 100mL medium which contains 10g/L sucrose and was made as
bed in example 1. Regular samples were taken and analyzed as described in example 1.
The evolutions of the concentrations of biomass, sucrose and sialic acid are easily followed and
an end concentration of 0.22g/L N-acetylneuraminate was produced extracellularly, as can be
seen in figure 2.
The same organism also produces N-acetylneuraminate based on glucose, maltose or glycerol
as carbon source.
Example 3: production of 6-sialyllactose in Escherichia coli
Another example ing to present invention is the use of the method and strains for the
production of 6-sialyllactose.
The strain of example 3 is a daughter strain of the strain used in example 2. The strain is further
modified by overexpressing a lactose se EclacY from Escherichia coli (as described and
demonstrated in example 1 of
a CMP-sialic acid synthethase from Neisseria meningitides A) and a sialyltransferase
from Photobacterium damselae (dest). On top of that lacZ is ted.
The genes NmneuA and dest, are expressed from a plasmid, together with CjneuB. This d
is pCX-CjneuB-NmneuA-dest, and is made as described in example 1.
Said strain is inoculated as a preculture ting of 5m| LB medium as described in e 1.
After growing overnight at 37°C in an incubator. 1% of this preculture is inoculated in a shake
flask containing 100ml medium (MMsf) containing 10g/l sucrose as carbon source and 10 g/l
e as precursor. The strain is grown for 300h at 37°C.
This strain produces quantities of 6-sialyllactose.
Example 4: production of sialic acid in Saccharomyces cerevisiae using heterologous
fructoseP-aminotransferase
Another example provides use of an eukaryotic organism, in the form of Saccharomyces
cerevisae, for the invention. This method utilizing the pathway of the invention shall be obtained
in Saccharomyces siae by introducing and expressing a N-acetylglucosamineepimerase
(for example from Bacteroides ovatus (BoAGE)) and a sialic acid synthase (for example from
Campy/obacterjejuni (CjneuB)).
As starting point, a strain with increased lic flux s N-acetylglucosamine
phosphate is needed. This is achieved by overexpressing the fructoseP-aminotransferase
mutant from Escherichia coli (Ecglm$*54).
To create a N-acetylneuraminate producing Saccharomyces cerevisiae ing to this
invention, the genes are introduced via a 2-micron plasmid (Chan 2013 (Plasmid 70 (2013) 2-
17)) and the genes are expressed using synthetic constitutive promoters (Blazeck 2012
(Biotechnology and Bioengineering, Vol. 109, No. 11)) as also described in example 1. The
specific plasmid used in this embodiment is p2a_2u_sia_glmS. This d is introduced into
Saccharomyces cerevisae using the transformation que described by Gietz and Woods
(2002, PMID 12073338) and a mutant strain is ed
Said strain is capable of converting fructosephosphate into aminephosphate,
followed by glucosaminephosphate conversion in N-acetylglucosaminephosphate. This N-
acetylglucosaminephosphate moiety is further converted to N-acetylglucosamine, said N-
acetylglucosamine into N-acetylmannosamine and finally this N-acetylmannosamine is
converted into N-acetylneuraminate.
A ture of said strain is made in 5mL of the synthetic defined medium SD-CSM containing
22 g/L glucose and grown at 30°C as described in example 1. This preculture is inoculated in
100mL medium in a shakeflask with 10g/L sucrose as sole carbon source and grown at 30°C.
Regular samples are taken and the production of N-acetylneuraminate is measured as described
in example 1. This strain and method produces quantities of N-acetylneuraminate.
The same organism also produces N-acetylneuraminate based on glucose, maltose or glycerol
as carbon source.
Example 5: production of 6-sialyllactose in Saccharomyces siae
Another e provides use of an otic organism, in the form of Saccharomyces
cerevisae, for the invention. This method utilizing the pathway of the invention shall be obtained
in Saccharomyces cerevisiae by introducing and expressing a N-acetylglucosamineepimerase
(for example from Bacteroides ovatus (BoAGE)) and a sialic acid synthase (for example from
Campy/obacterjejuni (CjneuB)).
On top of that, further modifications are made in order to produce 6sialyllactose. These
modifications comprise the addition of a lactose permease, a CMP-sialic acid synthase and a
sialyltransferase. The preferred lactose permease is the KILAC12 gene from Kluyveromyces lactis
tively NmneuA from Neisseria meningitides and dest from acterium ae, as
also described in example 3.
As starting point, a strain with increased metabolic flux towards N-acetylglucosamine
phosphate is needed. This is achieved by overexpressing the fructoseP-aminotransferase
mutant from Escherichia coli (Ecglm$*54).
To create a N-acetylneuraminate producing Saccharomyces cerevisiae according to this
invention, the genes are uced via a 2-micron plasmid (Chan 2013 (Plasmid 70 (2013) 2-
17)) and the genes are expressed using tic tutive promoters (Blazeck 2012
(Biotechnology and Bioengineering, Vol. 109, No. 11)) as also described in example 1. The
ic plasmid used in this embodiment is _sia_glmS. This plasmid is introduced into
Saccharomyces cerevisae using the transformation technique described by Gietz and Woods
(2002) and a mutant strain is obtained
Said strain is e of ting sephosphate into aminephosphate, said
aminephosphate into N-acetylglucosaminephosphate, said N-acetylglucosamine-6—
phosphate into N-acetylglucosamine, said N-acetylglucosamine into N-acetylmannosamine and
finally said N-acetylmannosamine into N-acetylneuraminate. Said N-acetylmannosamine is then
ted to CM P-sialic acid and erred to lactose to obtain 6sialyllactose.
A preculture of said strain is made in 5mL of the synthetic defined medium SD-CSM containing
22 g/L glucose and grown at 30°C as described in example 1. This preculture is inoculated in
100mL medium in a shakeflask with 10g/L sucrose as sole carbon source and grown at 30°C.
Regular samples are taken and the production of N-acetylneuraminate is measured as described
in example 1. This strain and method produces quantities of 6sialyllactose.
The same organism also produces N-acetylneuraminate based on e, maltose or glycerol
as carbon source.
Example 6: production of sialic acid in Saccharomyces cerevisiae using autologous
fructoseP-aminotransferase
Another example provides use of an eukaryotic organism, in the form of Saccharomyces
cerevisae, for the invention. This method utilizing the pathway of the invention shall be obtained
in romyces cerevisiae by introducing and expressing a N-acetylglucosamineepimerase
(for example from Bacteroides ovatus (BoAGE)) and a sialic acid synthase (for example from
Campy/obacterjejuni (CjneuB)).
As starting point, a strain with increased metabolic flux towards N-acetylglucosamine
phosphate is needed. This is achieved by overexpressing the native fructoseP-
aminotransferase ScGFAl.
To create a N-acetylneuraminate producing Saccharomyces cerevisiae according to this
invention, the genes are introduced via a 2-micron plasmid (Chan 2013 (Plasmid 70 (2013) 2-
17)) and the genes are expressed using tic constitutive promoters (Blazeck 2012
(Biotechnology and ineering, Vol. 109, No. 11)) as also described in example 1. The
specific plasmid used in this embodiment is p2a_2u_sia_GFA1. This plasmid is introduced into
Saccharomyces cerevisae using the transformation technique described by Gietz and Woods
(2002) and a mutant strain is obtained
Said strain is capable of converting fructosephosphate into glucosaminephosphate, said
glucosaminephosphate into N-acetylglucosaminephosphate, said N-acetylglucosamine-6—
phosphate into N-acetylglucosamine, said N-acetylglucosamine into N-acetylmannosamine and
y said N-acetylmannosamine into N-acetylneuraminate.
A preculture of said strain is made in 5mL of the synthetic defined medium SD-CSM containing
22 g/L glucose and grown at 30°C as bed in example 1. This preculture is inoculated in
100mL medium in a shakeflask with 10g/L sucrose as sole carbon source and grown at 30°C.
Regular samples are taken and the production of N-acetylneuraminate is measured as described
in e 1. This strain and method produces quantities of ylneuraminate.
The same organism also es N-acetylneuraminate based on glucose, maltose or glycerol
4o as carbon source.
Example 7: production of sialyllactoses and other sialylated compounds
In an alternative embodiment of example 3, the sialyltransferase is changed to another
sialyltransferase with different activity. This can be an alpha-2,3-sialyltransferase alpha-2,6-
sialyltransferase, an alpha-2,8-sialyltransferase or a combination thereof. These
sialyltransferases are widely available in nature and well annotated.
In this way, production of different sialyllactoses like for e 6—sialyllactose, 3-sialyllactose
or a mixture thereof can be obtained.
The s are cultivated as stated in example 1 and example 3.
The pathways created in examples 2 to 7 can also be ed with other pathways for the
synthesis of larger oligosaccharides, e.g. sialyl-lacto-N-triose, sialyllacto-N-tetraose,
disialyllactose-N-tetraose, sialyllacto-N-neotetraose, and disialyllactose-N-neotetraose. To this
end, the transferases to synthetize these glycosidic bonds are co-expressed with the pathway
genes to form CMP-sialic acid and the transferase (as described above) to sialylate said
oligosaccharide.
Examples of such transferases are ST6Ga|I, ST6Ga|II, ST3Ga|I until VI, ST6Ga|NAc I until VI
and ST8Sia I until VI, as bed by Datta (Current Drug Targets, 2009, 10, 483-498) and
Harduin-Lepers (Biochimie 83 (2001) 727-737). Further examples originating from marine
sms are described by to (Mar. Drugs 2010, 8, 2781-2794).
Example 8: production of sialylated N-neotetraose
The aim of this ment was to demonstrate the functionality of presented invention of the
production of other sialylated oligosaccharides, in this case sialyltated lacto-N-neotetraose.
A lacto-N-neotetraose producing strain was developed following the protocol described in
example 1. For production, the expression of a N-acetylglucosaminyltransferase and a
galactosyltransferase are needed, this is ed by introduction of the genes legtA and
legtB respectively, both from Neisseria meningitides. Next, the lactose importer Eclachrom
Escherichia coli is (as described and demonstrated in example 1 of
here also incorporated by reference). Finally, the genes ushA and galT are knocked out. In this
way, a lacto-N-neotetraose producing strain is obtained.
To be able to grow on lactose and produce N-acetylglucosaminephosphate, a sucrose
orylase from Bifidobacterium adolescentis (BaSP), a kinase from Zymomonas
mobilis (frk) and a mutant fructoseP-aminotransferase (Ecglm$*54, as bed by Deng et
al (Biochimie 88, 419-429 (2006))) were pressed as described in example 1.
In this , the method for producing sialic acid as described in this invention, was
implemented by overexpressing a glucosamineP-aminotransferase from Saccharomyces
cerevisiae (ScGNAl), a N-acetylglucosamineepimerase from Bacteroides ovatus (BoAGE) and
a sialic acid synthase from Campy/obacterjejuni (CjneuB). SCGNAl and BoAGE are expressed on
locations nagABCDE and manXYZ, respectively. CjneuB is expressed from plasmid pCX-CjneuBNmneuA-dest.
Sialylation of the lacto-N-neotetraose moiety is performed by the conversion of sialic acid to
CMP-salic acid by a CMP sialic acid synthethase, e.g. NmneuA from ria meningtides,
subsequently followed by a sialyl transferase, e.g. dest, from Photobacterium damselae. These
genes (NmneuA and dest) are expressed from the high copy plasmid pCX-CjneuB-NmneuA-
dest.
The strain is cultured as described in example 1 (materials and methods). Briefly, a 5mL LB
preculture is inoculated and grown overnight at 37°C. This culture was used as inoculum in a
shake flask experiment with 100mL medium which contains 10g/L sucrose as carbon and energy
source, 10g/L e as precursor and was made according to the description in example 1.
r s are taken and analyzed. This strain produces quantities of sialylated lacto-N-
neotetraose.
Alternative glycosyltransferases are possible. If EchbO (from Escherichia coli O55:H7) is
expressed instead of legtB for example, tion of sialylated N-tetraose is obtained.
Example 9: Production of sialic acid with us subtilis
In another embodiment, this invention can be used for production of N-acetylneuraminate in
Bacillus subtilis, yet another bacterial production host.
A N-acetylneuraminate producing strain is obtained through this invention by starting with a
strain, capable of overproducing glucosaminephosphate intracellularly. For this, the native
fructoseP-aminotransferase (BsglmS) is overexpressed. The ing enzymatic activities are
disrupted by knocking out the genes nagA, nagB and gamA: N-acetylglucosaminephosphate
deacetylase and aminephosphate isomerase.
In this strain, the method for producing sialic acid as described in this invention, is implemented
by overexpressing a glucosamineP-aminotransferase from Saccharomyces cerevisiae
(ScGNAl), a N-acetylglucosamineepimerase from Bacteroides ovatus ) and a sialic
acid synthase from Campy/obacterjejuni (CjneuB). These genes are introduced via a plasmid, as
described in example1.
The strain is cultured as described in example 1 (materials and methods). Briefly, a 5mL LB
preculture is ated and grown ght at 30 °C. This culture is used as inoculum in a shake
flask experiment with 100mL medium which contains 10g/L sucrose and is made according to
the description in example 1. This strain produces quantities of N-acetylneuraminic acid.
Example 10: Fermentations of 6-sialyllactose producing strain with no excretion of
, ManNAc or sialic acid
Another example according to the present invention provides use of the method and strains for
the production of 6—sialyllactose.
An Escherichia coli strain capable of accumulating aminephosphate using sucrose as a
carbon source was further engineered to allow for N-acetylneuraminate production. This base
strain presses a sucrose phosphorylase from Bifidobacterium adolescentis (BaSP), a
fructokinase from nas mobilis (merk), a mutant fructoseP-aminotransferase
(Ecglm$*54, as described by Deng et al. (Biochimie 88, 419-429 (2006)). To allow for 6-
40 sialyllactose tion the operons nagABCDE, nanATEK and manXYZ were disrupted. BaSP
and merk were introduced at the on of nagABCDE, EcglmS*54 was introduced at the
location of nanATEK. These modifications were done as described in e 1 and are based
on the principle of Datsenko & Wanner (PNAS USA 97, 6640-6645 (2000)).
In this strain, the biosynthetic pathway for producing 6—sialyllactose as described in this
invention, was implemented by overexpressing a glucosamineP-aminotransferase from
Saccharomyces cerevisiae (ScGNAl), a N-acetylglucosamineepimerase from Bacteroides
ovatus (BoAGE) and a sialic acid synthase from Neisseria meningitides B). ScGNAl and
BoAGE were expressed on ons nagABCDE and manXYZ, respectively. NmNeuB was
expressed using the high copy d pBR322-NmNeuB. The strain is further modified by
pressing a lactose permease EclacY from Escherichia coli (as described and demonstrated
in example 1 of
acid synthethase from Neisseria meningitides A) and a sialyltransferase from
acterium damselae (dest). On top of that, lacZ is disrupted. NmNeuA and dest were
expressed using the low copy plasmid pSC101-NmneuA-dest.
The strain was cultured in a bioreactor as described in example 1 (materials and methods).
Briefly, a 5mL LB preculture was inoculated and grown overnight at 37 °C. This culture was used
as inoculum in a shake flask ment with 500mL medium which contains 10g/L sucrose and
was made as described in example 1. This e was used as inoculum in a 2L bioreactor
experiment. Regular s were taken and analyzed as described in example 1. The final
concentration of 6-sialyllactose was 30.5 g/L. No ellular GlcNAc, ManNAc and sialic acid
was detected during the fermentation and in the final broth.
The same organism also produces 6—sialyllactose based on e, maltose or glycerol as
carbon source.
Example 11: Effect of phosphatase on growth and production of sialic acid
A further example provides growth results and sialic acid production of several Escherichia coli
strains capable of producing N-acetylneuraminate c acid) wherein the strains are
expressing an extra phosphatase as indicated der.
The base strain overexpresses a mutant fructoseP-aminotransferase (EcglmS*54, as
described by Deng et al. (Biochimie 88, 419-429 (2006)), a glucosamineP-aminotransferase
from Saccharomyces cerevisiae (ScG NA1), a N-acetylglucosamineepimerase from Bacteroides
ovatus (BoAGE) and a sialic acid se from Campy/obacterjejuni (CjneuB). To allow for gene
sialic acid production the operons nagABCDE and nanATEK. The lacYZA operon was replaced by
only a single gene operon, the native [0ch which is required for the production of sialyllactose
as described in example 10. These modifications were done as described in example 1 and are
based on the principle of Datsenko & Wanner (PNAS USA 97, 6640-6645 (2000)).
This base strain was then supplemented with different phosphatase bearing ds for
ing the effect of the phosphatase on growth and sialic acid production. The base strain
was used as blank in the comparison. These plasmids consisted of, besides the phosphatase and
4o a promoter driving expression of the phosphatase, a pSC101 ori and a spectomycin resistance
marker. The following phosphatases were expressed: EcAphA (SEQ ID NO: 42), EcCof (SEQ ID
NO: 43), EcHisB (SEQ ID NO: 44), EcOtsB (SEQ ID NO: 45), EcSurE (SEQ ID NO: 46), EcYaed (SEQ
ID NO: 47), EcchU (SEQ ID NO: 48), EcYedP (SEQ ID NO: 49), EchbT (SEQ ID NO: 50), EchdA (SEQ
ID NO: 51), EchgB (SEQ ID NO: 52), EchhX (SEQ ID NO: 53), EcYniC (SEQ ID NO: 54), EchaB (SEQ
ID NO: 55), EchbL (SEQ ID NO: 56) and PSMupP (SEQ ID NO: 57). Other phosphatases that are
expressed are EcAppA (SEQ ID NO: 58), Epoh (SEQ ID NO: 59), EcSerB (SEQ ID NO: 60), EcNagD
(SEQ ID NO: 61), EcthA (SEQ ID NO: 62), EcYbiV (SEQ ID NO: 63), EcijL (SEQ ID NO: 64), EchbR
(SEQ ID NO: 65), EcheH (SEQ ID NO: 66), EchgL (SEQ ID NO: 67), Ec ijG (SEQ ID NO: 68), EchfG
(SEQ ID NO: 69), EcYbiU (SEQ ID NO: 70), ScDOGl (SEQ ID NO: 71) and BsAraL (SEQ ID NO: 72).
In a first experiment a subset of the above described strains was used. In a second ment
a second subset of the above described strains were tested.
Each strain was cultured as described in example 1 (materials and methods). Briefly, the
workflow consists of 3 growth steps: first growth on LB, followed by growth on MMsf with 15
g/L glycerol, and finally a growth stage using 15g/L glycerol MMsf. The first step is performed in
a 96well plate, using 175 uL LB per well, and incubated overnight at 37 °C. The second step is
performed in a 96well plate using 175 uL medium, incubated for 24 h at 37 °C. The final growth
step was performed in: i) in a 96well plate using 175 uL , incubated at 37 °C to determine
the uMax for the first ment (see figure 5) and ii) in a 24well deepwell plates using 3 mL
do determine sialic acid production and optical ies for the second experiment (see figure
Reference table for Figure 4 and 5:
man——Promoter
blank NA
1 46
2 apFABS7
3 apFABS7
apFABs46
—_apFABs46
apFABs46
—_apFABs46
—_apFABS7
apFABs46
apFABS7
11 —_apFABS7
12 —_apFABS7
13 apFABS7
14 apFABs46
apFABS7
16 apFABs46
17 apFABs46
18 apFABS7
19 apFABs46
7
21 apFABS7
22 apFABs46
Based on s 4 and 5 phosphatases enabling strains to grow better than the blank strain (no
crippled ) and producing more sialic acid than the blank strain, can be chosen.
Based on the above, it was found that phosphatases comprising at least Motif 1 and Motif 2
provide a strain which is not crippled and produces more sialic acid than the blank strain.
Example 12: Identification of further seguences related to the atases used in the
methods of the invention
Sequences (polypeptides) related to SEQ ID N05: 43, 44, 45, 47, 48, 49, 50, 51, 52, 54, 55 and 57
were identified t those maintained in the Entrez Nucleotides database at the National
Center for Biotechnology Information (NCBI) using se sequence search tools, such as the
Basic Local Alignment Tool (BLAST) (Altschul et al. (1990) J. Mol. Biol. 215:403-410; and Altschul
et al. (1997) Nucleic Acids Res. 25:3389-3402). The program is used to find regions of local
similarity between sequences by comparing nucleic acid or polypeptide sequences to ce
databases and by calculating the statistical significance of matches. The output of the analysis
was viewed by se comparison, and ranked according to the ility score (E-value),
where the score reflect the probability that a particular alignment occurs by chance (the lower
the E-value, the more significant the hit). In addition to es, comparisons were also scored
by percentage identity. Percentage identity refers to the number of identical amino acids
between the two compared polypeptide ces over a particular length. In some instances,
the default parameters may be adjusted to modify the stringency of the search. For example
the E-value may be increased to show less stringent s. This way, short nearly exact
matches may be identified.
Table 1A to 1K provides a list of homologue polypeptide sequences related to SEQ ID NO: 43,
44, 45, 47, 48, 50, 51, 52, 54, 55 and 57, respectively.
Table 1A: Examples of polypeptides related to Ec Cof (SEQ ID NO: 43), showing sequence identity
to SEQ ID 43:
% identity t) short genbank fier SEQ ID NO
99,6 Shigella flexneri WP_095762248.1 78
99,3 Shigella boydii WP_095785299.1 79
98,2 Escherichia fergusonii WP_024256925.1 80
89,3 Staphylococcus aureus WP_094409981.1 81
89 Escherichia albertii WP_000113024.1 82
81,6 Citrobacter amalonaticus WP_046476411.1 83
81,6 Salmonella enterica WP_023234244.1 84
80,5 Escherichia coli WP_088543831.1 85
Table 18: Examples of polypeptides related to Ec HisB (SEQ ID NO: 44), showing sequence
identity to SEQ ID 44:
% identity (matgat) short genbank identifier SEQ ID NO
99,4 Shigella flexneri K-315 EIQ21345.1 86
99,2 Escherichia albertii WP_059217413.1 87
98,9 Shigella flexneri 085559.1 88
98,6 Shigella sonnei WP_077125326.1 89
98,6 Escherichia coli WP_088129012.1 90
98 Shigella dysenteriae 080078.1 91
98 Escherichia ae WP_038355110.1 92
94,6 Salmonella bongori WP_000080052.1 93
Table 1C: es of polypeptides related to Ec OtsB (SEQ ID NO: 45), showing sequence
identity to SEQ ID 45:
% identity (matgat) short genbank identifier SEQ ID NO
99,6 Shigella sonnei WP_077124555.1 94
99,6 ichia coli WP_032172688.1 95
99,2 Shigella flexneri 198868.1 96
85,7 Escherichia albertii WP_059227241.1 97
83,1 Escherichia fergusonii WP_000165652.1 98
Table 1D: Examples of polypeptides related to Ec Yaed (SEQ ID NO: 47), showing sequence
identity to SEQ ID 47:
SEQ ID
% identity (matgat) short genbank identifier NO
99,5 Escherichia fergusonii WP_001140180.1 99
99,5 Shigella sonnei WP_047565591.1 100
99 Escherichia coli WP_061103769.1 101
95,8 Escherichia albertii WP_001140171.1 102
93,2 Kluyvera intermedia 371746.1 103
93,2 Citrobacter koseri WP_047458784.1 104
89 Kosakonia arachidis WP_090122712.1 105
85,9 Kluyvera cryocrescensWP_061282459.1 106
85,9 Leclercia adecarboxylata WP_039030283.1 107
Table 1E: Examples of polypeptides related to Ec chUB (SEQ ID NO: 48), showing sequence
identity to SEQ ID NO: 48:
% ty (matgat) short genbank identifier SEQ ID NO
99,5 Shigella sonnei WP_094313132.1 108
97,7 Escherichia coli 775764.1 109
95,4 Escherichia coli WP_032302947.1 110
92,7 Shigella flexneri OUZ88260.1 111
Table 1F: Examples of ptides related to Ec beT (SEQ ID NO: 50), showing sequence
identity to SEQ ID NO: 50:
% identity (matgat) short genbank identifier SEQ ID NO
99,1 Shigella sonnei WP_094323443.1 112
87,5 Citrobacter werkmanii NBRC 105721 GAL43238.1 113
86,6 Citrobacter freundii KGZ33467.1 114
86,6 Citrobacter amalonaticus Y19 06.1 115
85,6 Salmonella enterica WP_080095242.1 116
85,6 Escherichia fergusonii WP_001203376.1 117
ella enterica subsp. enterica serovar 118
85,6 Hadar KKD79316.1
Table 16: Examples of polypeptides d to Ec YidA (SEQ ID NO: 51), showing sequence
identity to SEQ ID NO: 51:
SEQ ID
% identity (matgat) short genbank identifier NO
99,6 Escherichia coli WP_053263719.1 119
99,3 Escherichia onii WP_000985562.1 120
99,3 Shigella sonnei WP_094337696.1 121
94,4 Trabulsiella guamensis WP_038161262.1 122
94,1 Citrobacter amalonaticus WP_061075826.1 123
93,7 Klebsiella pneumoniae WP_048288968.1 124
93,3 siella odontotermitis 178096.1 125
90 Enterobacter kobei WP_088221256.1 126
Table 1H: Examples of polypeptides related to Ec YigB (SEQ ID NO: 52), showing sequence
identity to SEQ ID NO: 52:
% identity (matgat) short genbank identifier SEQ ID NO
99,6 Shigella sonnei WP_094322240.1 127
93,7 Shigella sonnei WP_052962467.1 128
87 Salmonella ca WP_079797638.1 129
85,7 Citrobacter braakii WP_080625916.1 130
81,9 Enterobacter hormaechei WP_047737367.1 131
81,1 Lelliottia amnigena WP_059180726.1 132
80,3 cia adecarboxylata WP_039031210.1 133
Table 1|: Examples of polypeptides related to Ec YniC (SEQ ID NO: 54), showing sequence identity
to SEQ ID NO: 54:
% ty (matgat) short genbank identifier SEQ ID NO
85,6 Shigella flexneri 1235-66 E|Q75633.1 134
85,1 Kosakonia sacchari WP_074780431.1 135
85,1 Enterobacter mori WP_089599104.1 136
84,7 Lelliottia amnigena WP_064325804.1 137
84,7 Enterobacter sp. 638 017112.1 138
84,2 Kosakonia radicincitans WP_071920671.1 139
Salmonella enterica subsp. enterica serovar 140
84,2 Newport str. CDC 2010K-2159 AKD18194.1
Table 1]: Examples of polypeptides related to Ec anB (SEQ ID NO: 55), showing sequence
identity to SEQ ID NO: 55:
% identity (matgat) short genbank identifier SEQ ID NO
97,9 Shigella flexneri K-315 E|Q18779.1 141
93,6 Escherichia albertii WP_059215906.1 142
88,3 Salmonella enterica WP_079949947.1 143
85,6 Kluyvera intermedia 006827.1 144
85,1 Trabulsiella termitis WP_054177678.1 145
84,6 Yokenella regensburgei 817298.1 146
84,6 Raoultella terrigena WP_045857711.1 147
83,5 Klebsiella pneumoniae 190334.1 148
Table 1K: Examples of polypeptides related to Ps MupP (SEQ ID NO: 57), showing sequence
identity to SEQ ID NO: 57:
% identity (matgat) short genbank identifier SEQ ID NO
94,6 monas putida group WP_062573193.1 149
94,6 Pseudomonas sp. GM84 WP_008090372.1 150
93,3 Pseudomonas entomophila 151
92,4 monas vranovensis WP_028943668.1 152
83,9 Pseudomonas cannabina WP_055000929.1 153
93,3 Pseudomonas monteilii WP_060480519.1 154
Sequences have been tentatively assembled and publicly disclosed by research institutions, such
as The Institute for Genomic Research (TIGR; beginning with TA). The Eukaryotic Gene Orthologs
(EGO) database may be used to identify such d ces, either by keyword search or by
using the BLAST algorithm with the c acid sequence or polypeptide sequence of interest.
Special nucleic acid sequence databases have been created for particular sms, such as by
the Joint Genome Institute.
Example 13: Identification of domains and motifs comprised in polypeptide sequences
useful in performing the methods ofthe invention
The Integrated Resource of Protein Families, s and Sites (InterPro) database is an
integrated interface for the commonly used signature databases for text- and sequence- based
searches. The ro database combines these databases, which use different methodologies
and varying degrees of biological information about well-characterized ns to derive
protein signatures. Collaborating databases include SWISS-PROT, PROSITE, TrEMBL, PRINTS,
ProDom and Pfam, Smart and TIGRFAMs. Pfam is a large collection of multiple sequence
alignments and hidden Markov models covering many common protein domains and families.
Pfam is hosted at the Sanger Institute server in the United Kingdom. ro is hosted at the
European Bioinformatics Institute in the United m.
The results of the |nterPro scan of the polypeptide sequences as represented by SEQ ID N05:
43, 44, 45, 47, 48, 49, 50, 51, 52, 54 and 55 are ted in Table 2.
Table 2: |nterPro scan results (major accession numbers) of the polypeptide sequence as
represented by SEQ ID N05: 43, 44, 45, 47, 48, 49, 50, 51, 52, 54 and 55.
Data base Accession number Accession name
|nterpro |PR023214 HAD superfamily
Alignment of the tested phosphatase polypeptides was done and figure 6 shows part of the
alignment. Motif 1 and motif 2 are indicated with boxes. Alignment was made using
clustalomega.
Example 14: Effect of phosphatase on growth and production of sialic acid in
Saccharomyces siae
A further example of sialic acid production of several Saccharomyces cerevisiae strains e
of producing N-acetylneuraminate (sialic acid) wherein the strains are expressing an extra
phosphatase as indicated hereunder.
The strain used here is derived from the strain described in example 4. To e growth and
production of sialic acid in Saccharomyces cerevisiae according to this invention, the
phosphatase genes are introduced via a 2-micron plasmid (Chan 2013 id 70 (2013) 2-17))
and the genes are expressed using synthetic constitutive promoters ck 2012
(Biotechnology and Bioengineering, Vol. 109, No. 11)) as also described in example 1. The
specific plasmids used in this embodiment is p2a_2u_sia_glmS-phospha. This plasmid based on
the d p2a_2u_sia_glmS plasmid is described in e 1. It is introduced into
Saccharomyces cerevisae using the transformation que described by Gietz and Woods
(2002, PMID 12073338) and a mutant strain is obtained. The effect of phosphatase expression
on growth and production of sialic acid of these mutants are evaluated as described in example
Example 15: Effect of phosphatase on growth and production of sialic acid in Bacillus
subtilis
In r embodiment, this invention can be used to enhance growth and production of sialic
acid in Bacillus subtilis, yet another bacterial production host.
The strain used here is derived from the strain described in example 9. Additionally to the
tions described in e 9, phosphatase genes EcAphA (SEQ ID NO: 42), EcCof (SEQ ID
NO: 43), EcHisB (SEQ ID NO: 44), EcOtsB (SEQ ID NO: 45), EcSurE (SEQ ID NO: 46), EcYaed (SEQ
ID NO: 47), EcchU (SEQ ID NO: 48), EcYedP (SEQ ID NO: 49), EchbT (SEQ ID NO: 50), EchdA (SEQ
ID NO: 51), EchgB (SEQ ID NO: 52), EchhX (SEQ ID NO: 53), EcYniC (SEQ ID NO: 54), EchaB (SEQ
ID NO: 55), EchbL (SEQ ID NO: 56), PsMupP (SEQ ID NO: 57), EcAppA (SEQ ID NO: 58), Epoh
(SEQ ID NO: 59), EcSerB (SEQ ID NO: 60), EcNagD (SEQ ID NO: 61), EcthA (SEQ ID NO: 62),
EcYbiV (SEQ ID NO: 63), EcijL (SEQ ID NO: 64), EchbR (SEQ ID NO: 65), EcheH (SEQ ID NO: 66),
EchgL (SEQ ID NO: 67), Ec ijG (SEQ ID NO: 68), EchfG (SEQ ID NO: 69), EcYbiU (SEQ ID NO: 70),
ScDOGl (SEQ ID NO: 71) and BsAraL (SEQ ID NO: 72) are overexpressed on a plasmid, as
described in example 1. Subsequently, this plasmid is introduced in us subtilis. The effect
of phosphatase expression on growth and production of sialic acid of the created mutants are
evaluated as described in example 11.
Claims (6)
- Claims 1. A lically engineered microorganism for the production of a sialylated compound wherein said sialylated compound is chosen from N-acetylneuraminate (sialic acid) or a sialylated oligosaccharide, said microorganism - intracellularly converting N-acetylglucosaminephosphate to N-acetylglucosamine, said N- acetylglucosamine to N-acetylmannosamine and said ylmannosamine to N-acetylneuraminate ; and - a) having a reduced or abolished sion of at least one nucleic acid ce ng a polypeptide that converts i) N-acetylglucosamineP to glucosamineP, ii) N-acetyl-glucosamine to N-acetyl-glucosamineP, or iii) N-acetyl-neuraminate to N-acetyl-mannosamine; or b) being unable to convert any one or more of i) N-acetylglucosamineP to glucosamineP, ii) N- acetyl-glucosamine to N-acetyl-glucosamineP, or iii) N-acetyl-neuraminate to N-acetylmannosamine - and wherein at least one phosphoenolpyruvate:sugar phosphotransferase system for the import of a ride that is not used as a carbon source during fermentative production of the sialylated compound has been disabled.
- 2. Microorganism according to claim 1, wherein said at least one phosphoenolpyruvate: sugar otransferase system is encoded by at least one of the genes chosen from the list of the genes encoding manX, manY, manZ, nagE.
- 3. Microorganism according to claim 1, wherein said rganism can e an exogenous carbon source present in the fermentation broth as sole carbon source without using a phosphoenolpyruvate:sugar phosphotranferase system for the acquisition of said exogenous carbon source, preferably said carbon source is sucrose, e, maltose, glycerol.
- 4. A metabolically engineered microorganism for the tative production of a sialylated oligosaccharide, said microorganism- intracellularly converts N-acetylglucosaminephosphate to N- acetylglucosamine, said N-acetylglucosamine to N-acetylmannosamine, said N-acetylmannosamine to N-acetyl-neuraminate and said N-acetyl-neuraminate to CMP-sialic acid; and -a) having a reduced or abolished expression of at least one nucleic acid encoding or driving expression of a polypeptide that converts i) N-acetylglucosamineP to glucosamineP, ii) N-acetyl- glucosamine to N-acetyl-glucosamineP, or iii) N-acetyl-neuraminate to N-acetyl-mannosamine, or b) being unable to convert any one or more ofi) N-acetylglucosamineP to glucosamineP, ii) N- acetyl-glucosamine to N-acetyl-glucosamineP, or iii) yl-neuraminate to N-acetyl- mannosamine.
- 5. A metabolically engineered microorganism for the fermentative production of a sialylated oligosaccharide, said microorganism - ellularly converts N-acetylglucosaminephosphate to N- acetylglucosamine, said ylglucosamine to N-acetylmannosamine, said N-acetylmannosamine to N-acetyl-neuraminate and said yl-neuraminate to CMP-sialic acid; and - having a reduced or abolished activity of at least one enzyme chosen from i) a N-acetylglycosamine- 6-phosphate deacetylase, ii) a N-acetylglucosamine kinase, and iii) a N-acetylneuraminate aldolase, preferably the gene coding for any one of said enzymes is deleted or knocked-out.
- 6. Microorganism according to any one of claim 4 or 5 for the production of a sialylated oligosaccharide wherein said rganism comprises at least one nucleic acid encoding a HAD-alike phosphatase, at least one nucleic acid encoding an N-acetylmannosamine epimerase, at least one nucleic acid encoding a sialyltransferase, at least one nucleic acid ng a CMP-sialic acid synthethase; and at least one nucleic acid encoding a sialic acid synthase. 7. rganism according to any one of claim 4 to 6 wherein said microorganism comprises a nucleic acid encoding a sialic acid synthase polypeptide originating from Campylobacter jejuni or Neisseria meningitides. 8. Microorganism according to any one of claim 1 to 7, wherein said microorganism r comprises an increased expression of a nucleic acid encoding a HAD-alike phosphatase, wherein said HAD-alike phosphatase comprises: - at least one of the following motifs: Motif 1: TV] (SEQ ID NO: 73), or Motif 2: [GSTDE][DSEN]x(1-2)[hP]x(1-2)[DGTS] (SEQ ID NOs: 74, 75, 76, 77) wherein h means a hydrophobic amino acid (A, I, L, M, F, V, P, G) and x can be any distinct amino acid; or - any one of SEQ ID NOs: 46, 52, 69, 70, 57, 42, 47, 43, 50, 59, 65, 54, 58, 60, 45, 67, 44, 48, 51, or 55. 9. Microorganism according to claim 8, wherein said HAD-alike atase comprises a homologue or derivative of any one of SEQ ID NOs: 46, 52, 69, 70, 57, 42, 47, 43, 50, 59, 65, 54, 58, 60, 45, 67, 44, 48, 51, or 55 having at least 80 %, 81 %, 82 %, 83 %, 84 %, 85 %, 86 %, 87 %, 88 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, or 99 % overall sequence identity to said polypeptide and wherein said homologue or derivative increases one or more of sialic acid, biomass production and maximal growth rate ed to a reference strain having the same genetic make-up but lacking the increased expression of said HAD-alike phosphatase. 10. Microorganism according to any one of claim 1 to 9, wherein said ated accharide is chosen from the list consisting of sialyllactose, disialyl lacto-N-tetraose, sialylated lacto-N-triose, sialylated lacto-N-tetraose and sialylated lacto-N-neotetraose. 11. Microorganism according to claim 10, wherein said sialylated oligosaccharide is sialyllactose. 12. Microorganism according to any one of claim 1 to 9, wherein said sialylated oligosaccharide is a sialylated lacto-N-triose, sialylated N-tetraose or sialylated lacto-N-neotetraose, said microorganism further comprises the activity of a galactosyltransferase (EC 2.4.1.38) ), preferably said galactosyltransferase originates from the group comprising Homo sapiens, Bos taurus, Mus mulatta, Gallus gallus, Danio rerio, Helicobacter pylori and Haemophilus ducrey; and/or said microorganism comprises the ty of a N-acetylglucosaminyltransferase (EC 2.4.1.90), preferably said N- acetylglucosaminyltransferase originates from the group comprising Bos taurus, Homo s and Mus us. 13. Microorganism according to claim 12, wherein said microorganism is unable to s the genes coding for UDP sugar hydrolase and galactosephosphate uridylyltransferase. 14. Microorganism according to any one of claim 1 to 13, wherein any one or more of said N- acetylmannosamine epimerase and sialic acid synthase is overexpressed in the microorganism or is introduced and expressed in the rganism. 15. Microorganism according to any one of claim 1 to 14, wherein said microorganism further s a protein that facilitates uptake of lactose and lacks s that metabolize lactose. 16. Microorganism according to any one of claim 1 to 15, wherein said microorganism is a bacterium, ably an Escherichia coli strain, more preferably an Escherichia coli strain which is a K12 strain, even more preferably the Escherichia coli K12 strain is Escherichia coli , or wherein said microorganism is a yeast. 17. A metabolically engineered microorganism for the fermentative production of a sialylated oligosaccharide, said microorganism comprising: i) a sialic acid biosynthesis pathway comprising a glucosaminephosphate N-acetyltransferase for converting aminephosphate to N- acetylglucosaminephosphate, an N-acetylglucosaminephosphate phosphatase for converting N- acetylglucosaminephosphate to N-acetylglucosamine, an N-acetylmannosamine epimerase (also known as N-acetylglucosamine 2-epimerase) for ting said N-acetylglucosamine to N- acetylmannosamine, ii) a cytidine 5’-monophospho--N-acetylneuraminic acid synthetase for converting N-acetyl neuraminate to CMP-and said N-acetylmannosamine to N-acetyl-neuraminate and iii) a sialyltransferase. 18. Microorganism according to claim 17 wherein said sialyltransferase is originating from Photobacterium ae and/or wherein said microorganism ses a nucleic acid encoding a sialic acid se polypeptide originating from Campylobacter jejuni or Neisseria itides. 19. A sialylated compound ed by a microorganism according to any one of claim 1 to 18, wherein said sialylated compound is purified by any one or more of centrifugation and/or filtration, ion-exchange, concentration through evaporation or nanofiltration, ation through crystallization or spraydrying or lyophilization. 20. A sialylated compound produced by a microorganism according to any one of claim 1 to 18, wherein said sialylated compound is added to food formulation, feed formulation, pharmaceutical formulation, cosmetic formulation, or agrochemical formulation. 22. A method for the production of a sialylated compound wherein said sialylated compound is chosen from N-acetylneuraminate (sialic acid) or a sialylated oligosaccharide, comprising the steps of: i) cultivating the metabolically engineered microorganism according to any one of claims 1 to 18, and ii) ting and purifying the sialylated oligosaccharide. 004-PCT seqlist
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP16206916.5(EPO | 2016-12-27 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| NZ796027A true NZ796027A (en) | 2023-01-27 |
Family
ID=
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12378589B2 (en) | In vivo synthesis of sialylated compounds | |
| US20230416796A1 (en) | Production of galactosylated di- and oligosaccharides | |
| JP2024105715A (en) | Production of human milk oligosaccharides in uptake/excretion engineered microbial hosts | |
| US20230212628A1 (en) | Production of Sialylated Oligosaccharide in Host Cells | |
| EP3649248A1 (en) | Fucosyltransferases and their use in producing fucosylated oligosaccharides | |
| US20220259631A1 (en) | Production of fucosyllactose in host cells | |
| EP3575404A1 (en) | Fermentative production of sialylated saccharides | |
| JP2020528280A (en) | Its use in the production of sialyltransferases and sialylated oligosaccharides | |
| KR20230170961A (en) | Cellular production of sialylated disaccharides and/or oligosaccharides | |
| KR20240035566A (en) | Lacto-N-Biose converting fucosyltransferase | |
| KR101123062B1 (en) | Method of producing uridine 5'-diphospho-N-acetylgalactosamine | |
| TW202221134A (en) | Production of galactosylated di- and oligosaccharides | |
| NZ796027A (en) | In vivo synthesis of sialylated compounds | |
| KR20240008322A (en) | fermentation production | |
| NZ755558A (en) | In vivo synthesis of sialylated compounds | |
| RU2818835C2 (en) | Fucosyltransferases and their use for obtaining fucosylated oligosaccharides | |
| WO2025224348A1 (en) | Production of a milk oligosaccharide mixture | |
| KR20240160211A (en) | Sialyltransferase for the production of sialylated oligosaccharides | |
| WO2024223815A1 (en) | Production of a negatively charged oligosaccharide by a cell | |
| AU2024264279A1 (en) | Production of a negatively charged oligosaccharide by a cell |