[go: up one dir, main page]

NL2036715B1 - Adaptive cube indexing method and system - Google Patents

Adaptive cube indexing method and system Download PDF

Info

Publication number
NL2036715B1
NL2036715B1 NL2036715A NL2036715A NL2036715B1 NL 2036715 B1 NL2036715 B1 NL 2036715B1 NL 2036715 A NL2036715 A NL 2036715A NL 2036715 A NL2036715 A NL 2036715A NL 2036715 B1 NL2036715 B1 NL 2036715B1
Authority
NL
Netherlands
Prior art keywords
adaptive
geometry
cube
tile
index
Prior art date
Application number
NL2036715A
Other languages
Dutch (nl)
Inventor
Yu Jinsongdi
Original Assignee
Univ Fuzhou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Fuzhou filed Critical Univ Fuzhou
Application granted granted Critical
Publication of NL2036715B1 publication Critical patent/NL2036715B1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/22Indexing; Data structures therefor; Storage structures
    • G06F16/2228Indexing structures
    • G06F16/2246Trees, e.g. B+trees
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/22Indexing; Data structures therefor; Storage structures
    • G06F16/2228Indexing structures
    • G06F16/2264Multidimensional index structures
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/50Information retrieval; Database structures therefor; File system structures therefor of still image data
    • G06F16/51Indexing; Data structures therefor; Storage structures
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/50Information retrieval; Database structures therefor; File system structures therefor of still image data
    • G06F16/58Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • G06F16/583Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
    • G06F16/5854Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content using shape and object relationship
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/50Information retrieval; Database structures therefor; File system structures therefor of still image data
    • G06F16/58Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • G06F16/587Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using geographical or spatial information, e.g. location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Library & Information Science (AREA)
  • Software Systems (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Processing Or Creating Images (AREA)

Abstract

An adaptive cube indexing method and system is provided. It includes: for a topological relationship between adaptive cube tiles and geometries, setting topology type encoding rules to segment and calibrate a geometry index generated herein; segmenting geometry identif1ers of different geometric types of multi-point, line, surface, body, or grid geometries expressing earth phenomena based on a multi-level tree structure of a tiled adaptive cube and the topology type encoding rules, to generate and store multi-level topology indexes, defining a request tile region based on an access request to obtain access topology type encoding rules, obtaining geometry indexes within the tile region based on the topology type encoding rules, filtering away redundant geometry indexes within the tile region, accessing corresponding target geometry data based on the filtered geometry indexes. Efficiency of accessing a target geometry of the adaptive cube and performance of an adaptive cube-based earth phenomenon analysis-ready application is improved. 1/1 Analysis-ready application client Access request Request agent module R t . . . gefmugtnry Geometry Adaptlvecube application data index servrce platform Geomet ry access module Indexes Indexes Indexes of Index of level 1 of level 2 level n databa _ &“sz Multi-leveltopology indexes se ii aml>:is- Indexing module ‘ application J handle Database cluster Adaptive cube storage system FIG. l

Description

ADAPTIVE CUBE INDEXING METHOD AND SYSTEM
FIELD OF TECHNOLOGY
[0001] The present invention belongs to the technical field of big data, and particularly relates to an adaptive cube indexing method and system.
BACKGROUND
[0002] Now we have entered the era of big data, especially with the continuous development of geographic information applications, corresponding earth online analysis- ready applications put forward new requirements for indexing and access of multi-dimensional geometric cubes, and the data volume of the multi-dimensional geometric cubes is geometrically growing. A data source of a single geometric type is gradually unable to meet the increasing real-time or quasi-real-time demand of online real-time analysis of the geographic information applications. Data of different geometric types is mostly distributed in databases of well-known data collection and management institutions at home and abroad, each data center has a set of relatively independent data indexing and access methods, and data provision methods are not the same. Standardized GIS cloud computing technology and
WebGIS data services may connect multiple distributed resources through standard protocols to support collaborative operations, for example, ISO TC211, the open geospatial consortium (OGC) and other mainstream standardization organizations provide a series of data directories or data interface service specifications for collaborative discovery of geographic information data through standardization activities. For example, the OGC CSW specification is a Web- based directory service specification that lacks geometry data indexing details; although OGC
WCS and WFS may provide geometry details, they lack an efficient tiled indexing mechanism.
Itis difficult for standardized Web protocols to directly penetrate into the internal data index level. In particular, with regard to tiled indexes for big data, geometry data indexing and access methods for very large earth scenario data need to be further explored to support real-time analysis and computation among database clusters.
[0003] In addition, in the scenario that the analysis-ready application needs only part of the data, a traditional full data access method wastes bandwidth and may not satisfy the i performance requirements of the analysis-ready application. With the continuous development and maturity of NoSQL databases, the application requirements for mass storage and real-time analysis may be well satisfied. The NoSQL databases may support storage of data of different geometry types. For geometry data, there may be various indexing methods to improve the speed and efficiency of data query, for example, on the basis of various properties of geometries, such as shape, size, and dimension. However, when earth scenario data is very large, it is also necessary to segment indexes effectively.
[0004] BeiDou grid code is a discrete, multi-scale regional location identification system developed on the basis of the geospatial subdivision theory of geographical coordinates subdividing grid with one dimension integral coding on 2n-Tree (GeoSOT), and may easily establish an intrinsic interconnection with any entity object and various different data in the same region range, which may satisty different levels of data index management demands from macro to fine, so the code may be considered to be used for indexing of geometry identifiers of different geometry types in the earth phenomenon scenarios.
[0005] Since the earth phenomena tend to have a certain continuity, geometries may often cross subdivided regions, and the index redundancy often differs under different topology conditions, so repeated access to geometry data may be avoided by filtering away redundant indexes. Compared to a single index, an index organization of a multi-level tree structure may have a plurality of indexing solutions, and large tile retrieval regions tend to have higher redundant indexes. By selecting a suitable index hierarchy solution, redundant indexes may be minimized, and on this basis, related geometries of desired cube tiles are accessed, which may reduce the consumption of the bandwidth and the index retrieval hash rate in the real-time analysis process, and may significantly improve the performance for large-scale geometry data online analysis applications.
SUMMARY
[0006] In order to solve the above problems, the present invention provides an adaptive cube indexing method and system. By means of the method, the efficiency of accessing a target geometry of an adaptive cube is improved, and the performance of an adaptive cube-based earth phenomenon analysis-ready application is enhanced. 2
[0007] In order to achieve the above purpose, the technical solutions of the present invention are as follows. An adaptive cube indexing method includes: for a topological relationship between adaptive cube tiles and geometries, setting topology type encoding rules to segment and calibrate a geometry index generated herein; segmenting geometry identifiers of different geometric types of multi-point, line, surface, body, or grid geometries expressing earth phenomena on the basis of a multi-level tree structure of a tiled adaptive cube and the topology type encoding rules, to generate multi-level topology indexes and store same; and defining a request tile region on the basis of an access request to obtain access topology type encoding rules, obtaining geometry indexes in a tile region range on the basis of the topology type encoding rules, filtering away redundant geometry indexes in the tile region range, and accessing corresponding target geometry data on the basis of the filtered geometry indexes, so as to improve access performance of the adaptive cube.
[0008] In an embodiment of the present invention, the topology type encoding rules are: each topology type code consists of a 3-digit binary number, and each digit represents whether an intersection between a geometry and an interior, boundary and exterior of an adaptive cube tile is null, and is O when the intersection is null and is 1 when the intersection is not null; the topology type codes are used as basic units t to form a topology type code set, denoted as {t;}; in a case where the topology type code set is used for subdivision, geometries in earth phenomenon subject data are subdivided according to the topology type code set, and geometries that satisfy any {t;} element are indexed by corresponding tiles to calibrate geometries indexes generated according to rules herein; and in a case where the topology type code set is used for access, geometry indexes that satisfy any {t;} element in retrieved data are selected.
[0009] In an embodiment of the present invention, the multi-level tree structure of the tiled adaptive cube is that an adaptive cube including a spatial dimension X, a spatial dimension ¥, and an adaptive dimension } is tiled and divided into tiles hierarchically, each parent node tile being a union set of all child node tiles, each tile being an adaptive cube tile, each tile including a plurality of data pieces, and each data piece including one type of geometries; a root node tile is R and has # child node tiles, respectively being Ti, Ta, ..., Ts, and each child 3 node tile including own child node tiles, denoted as parent node tile = U (child node tile), where U denotes a union set; a hierarchical tree structure is constituted, the hierarchical tree structure is represented recursively, and the next hierarchy of T; (0<i<#u+1) has m child nodes, respectively being Ta, Ta, ..., Tm; a tile is made to be T;, including & data pieces, respectively being Py, Pa, ..., Pr; and each data piece includes a collection of geometry sets of different geometric types, respectively being Gi, Go, ..., Gx, and geometries in each geometry set have the same geometric type, denoted as {g1}, {g2}, … {ge}, where i, j, k, m, and # are all positive integers.
[0010] In an embodiment of the present invention, the adaptive cube including the spatial dimension X, the spatial dimension Y, and the adaptive dimension }”is a cube in which variable information of data, including elevation, time and variables, is arranged in order in the adaptive dimension.
[0011] In an embodiment of the present invention, the geometry identifiers of different geometric types of the multi-point, line, surface, body, or grid geometries expressing the earth phenomena are segmented on the basis of the multi-level tree structure of the tiled adaptive cube and the given topology type encoding rules, and topology type codes satisfied are calibrated in the geometric indexes, to generate earth phenomenon subject data indexes of the multi-level tree structure.
[0012] In an embodiment of the present invention, the access request includes the access topology type encoding rules given according to a request range given by a coordinate system spatially compatible with the adaptive cube; the request range is subdivided according to the multi-level tree structure of the tiled adaptive cube, a tile hierarchy corresponding to a smallest tile region covering the request range is selected, and the corresponding tile region is the defined request tile region.
[0013] In an embodiment of the present invention, the geometry indexes in the defined tile region range are obtained on the basis of the topology type encoding rules in the access request, and according to a rule that geometry index of tile region = U (geometry indexes of tiles within the tile region), where U denotes a union set, the redundant geometry indexes in the tile region range are filtered away, and the corresponding target geometry data is accessed on the basis of the filtered geometry indexes. 4
[0014] The present invention further provides an adaptive cube indexing system. The system includes: an indexing module, mounted on an adaptive cube storage system, and configured to generate multi-level topology indexes according to a multi-level tree structure of a given tiled adaptive cube; a request agent module, mounted on an adaptive cube application service platform, and configured to access the multi-level topology indexes in an index database, and define a request tile region according to a cube request range in an analysis-ready application of a client; and a geometry access module, mounted on an online adaptive cube application service platform, and configured to obtain geometry indexes within the tile region according to an index range, obtain corresponding geometries from the adaptive cube storage system, and return the geometries to the client, so as to complete the access.
[0015] In an embodiment of the present invention, the steps of the method as described above are performed.
[0016] Compared to the prior art, the present invention has the following beneficial effects: the present invention is an earth phenomenon-oriented adaptive cube indexing and access technique, which provides an efficient solution for geometry data indexing and access of a NoSQL database. Storage and indexing strategies may be flexibly adjusted according to the actual demand, the transmission of redundant geometry data and the consumption of a fusion hash rate of a corresponding tile region are reduced, and the performance of an earth phenomenon-oriented geographic information analysis-ready application is improved.
BRIEF DESCRIPTION OF THE DRAWINGS
[0017] FIG. 1 is a schematic structural diagram of modules according to the present invention.
DESCRIPTION OF THE EMBODIMENTS
[0018] The technical solutions of the present invention are specifically described below in conjunction with the accompanying drawings.
[0019] As shown in FIG. 1, an embodiment of the present invention provides an earth phenomenon-oriented adaptive cube indexing method. The method mainly includes the following processing steps: for a topological relationship between adaptive cube tiles and 5 geometries, set topology type encoding rules to segment and calibrate a geometry index generated herein; segment geometry identifiers of different geometric types of multi-point, line, surface, body, or grid geometries expressing earth phenomena on the basis of a multi-level tree structure of a tiled adaptive cube and the topology type encoding rules, to generate multi-level topology indexes and store same; and define a request tile region on the basis of an access request to obtain access topology type encoding rules, obtain geometry indexes in a tile region range on the basis of the topology type encoding rules, filter away redundant geometry indexes in the tile region range, and access corresponding target geometry data on the basis of the filtered geometry indexes, so as to improve the access efficiency of the adaptive cube.
[0020] This embodiment also gives examples of the topology type encoding rules, such as {001, 010, 011, 110, 111}, which represent a geometry being inside an adaptive cube tile, a geometry being at the boundary of an adaptive cube tile, a geometry being inside and at the boundary of an adaptive cube tile, a geometry being at the boundary of and outside an adaptive cube tile, and a geometry being inside, at the boundary of and outside an adaptive cube tile, respectively.
[0021] This embodiment also gives an example of performing segmentation on the basis of the multi-level tree structure of the tiled adaptive cube and the topology type encoding rules to generate the multi-level topology indexes. A multi-level tree model of the tiled adaptive cube is built in the spatial plane according to the "BeiDou Grid Location Code" (GB/T 39409- 2020) and in the variable axes according to different themes (e.g., time, elevation, and time- elevation combinations), different geometric types of geometries such as multi-point, line, surface, body or grid geometries of earth phenomena are stored with MongoDB, and geometry identifiers thereof are segmented according to the constructed multi-level tree structure of the tiled adaptive cube and the set topology type encoding rules, so that the multi-level topology indexes are generated and stored in a MySQL index database.
[0022] This embodiment also gives an example of an earth phenomenon-oriented adaptive cube request. The request includes a request range (a lower limit of longitude, an upper limit of longitude; a lower limit of dimension, an upper limit of dimension; a lower limit of time, and an upper limit of time) in a space-time coordinate system of WGS84, as well as access topology type encoding rules {001, 010, 011, 110, 111}. 6
[0023] A request agent module mounted on an adaptive cube application service platform receives a cube request initiated by a client, reads a corresponding scenario index, calculates, according to the multi-level tree structure of the tiled adaptive cube, to determine a tile hierarchy and a tile region range corresponding to the smallest tile region covering the request range, obtains a geometry index of the defined tile region range on the basis of the topology type encoding rules in the cube request, then filters away indexes of redundant geometry identifiers in the tile region range through MySQL DISTINCT according to a rule of geometry index of tile region = U (geometry indexes of tiles in the tile region), and transmits filtered geometry indexes and an analysis-ready application handle to a geometry access module of an adaptive cube storage system.
[0024] The geometry access module of the adaptive cube storage system reads corresponding target geometry data from MongoDB according to the received geometry indexes, and transmits the data to the analysis-ready application client according to the analysis-ready application handle.
[0025] An embodiment of the present invention further provides an earth phenomenon- oriented adaptive cube indexing system. The system includes: an indexing module, mounted on a MongoDB-based adaptive cube storage system, and configured to generate multi-level topology indexes according to a multi-level tree structure of a given tiled adaptive cube; a request agent module, mounted on an adaptive cube application service platform, and configured to access the multi-level topology indexes in an index database, and define a request tile region according to a cube request range in an analysis-ready application of a client; and a geometry access module, mounted on an online adaptive cube application service platform, and configured to obtain geometry indexes within the tile region according to an index range, obtain corresponding geometries from the MongoDB-based adaptive cube storage system, and return the geometries to the client, so as to complete the access.
[0026] In summary, the earth phenomenon-oriented adaptive cube indexing method and system according to the present invention segment the earth phenomenon-oriented geographic information geometry indexes through the multi-level tree structure of the tiled adaptive cube according to the topology type encoding rules and store same, determine the suitable index hierarchy and the smallest tile region covering the request range, filter away the redundant geometry indexes in the tile region range, and on this basis, access related geometries of desired cube tiles, which may reduce the consumption of the bandwidth and the index retrieval hash rate in the real-time analysis process, and may significantly improve the performance for large- scale geometry data online analysis applications.
[0027] The above are preferred embodiments of the present invention, and all changes made in accordance with the technical solutions of the present invention, insofar as the resulting function does not exceed the scope of the technical solutions of the present invention, fall within the scope of protection of the present invention. 8

Claims (9)

CONCLUSIESCONCLUSIONS 1. Adaptieve kubusindexeringswerkwijze, gekenmerkt door dat, het bevat: - met het oog op een topologische relatie tussen een adaptieve kubustegel en de geometrie, worden coderingsregels voor het topologietype ingesteld om een geometrie-index die door een voorbeeldbestand wordt gegenereerd, te segmenteren en te kalibreren; - de geometrie van verschillende geometrische typen die meerpunts-, lijn-, oppervlakte-, volume- of rastergeometrie vertegenwoordigen die aardverschijnselen uitdrukken, wordt geïdentificeerd en gesegmenteerd volgens de coderingsregels voor boomstructuur met meerdere niveaus en topologietypen op basis van op tegels gebaseerde adaptieve kubussen, en topologie-indexen met meerdere niveaus worden gegenereerd en opgeslagen; - op basis van een toegangsaanvraag wordt een aanvraagtegelgebied gedefinieerd, worden coderingsregels voor het toegangstopologietype verkregen, wordt de geometrie-index van het tegelgebiedbereik verkregen op basis van de coderingsregels voor het topologietype, wordt de redundante geometrie-index van het tegelgebied gefilterd en worden de bijbehorende doelgeometriegegevens geopend op basis van de gefilterde geometrie-index, om de prestaties van de adaptieve kubustoegang te verbeteren.1. Adaptive cube indexing method, characterized in that, it includes: - in view of a topological relationship between an adaptive cube tile and the geometry, coding rules for the topology type are set to segment and calibrate a geometry index generated by a sample file; - the geometry of various geometric types representing multi-point, line, surface, volume or grid geometry expressing earth phenomena is identified and segmented according to the coding rules for multi-level tree structure and topology types based on tile-based adaptive cubes, and multi-level topology indexes are generated and stored; - based on an access request, a request tile area is defined, encoding rules for the access topology type are obtained, the geometry index of the tile area range is obtained based on the encoding rules for the topology type, the redundant geometry index of the tile area is filtered, and the corresponding target geometry data is accessed based on the filtered geometry index, so as to improve the performance of adaptive cube access. 2. Adaptieve kubusindexeringswerkwijze volgens conclusie 1, gekenmerkt door dat: de coderingsregels voor topologietypen als volgt zijn: Elke topologietypecode bestaat uit 3 binaire cijfers, waarbij elk cijfer aangeeft of het snijpunt van de geometrie en de binnenkant van de adaptieve kubustegel, de grens en de buitenkant leeg is, leeg O en niet-leeg 1; de topologietypecodeset is samengesteld met de topologietypecode als de basiseenheid t, die wordt weergegeven als {ti}; wanneer de codeset van het topologietype is ingesteld voor partitionering, wordt de geometrie in de onderwerpgegevens van aardverschijnselen verdeeld volgens de codeset van het topologietype, en wordt de geometrie die voldoet aan een {ti}- element geïndexeerd door de bijbehorende tegel, die wordt gebruikt om de geometrie-index te kalibreren die is gegenereerd volgens de regels van dit bestand; bij het instellen van de coderingsset van het topologietype voor toegang, wordt deze gebruikt om de geometrie-index te selecteren die voldoet aan een {ti}-element in de opgehaalde gegevens. 92. The adaptive cube indexing method according to claim 1, characterized in that: the topology type coding rules are as follows: Each topology type code consists of 3 binary digits, each digit indicating whether the intersection of the geometry and the interior of the adaptive cube tile, the boundary and the exterior is empty, empty O and non-empty 1; the topology type code set is composed with the topology type code as the basic unit t, which is represented as {ti}; when the topology type code set is set for partitioning, the geometry in the earth phenomenon subject data is partitioned according to the topology type code set, and the geometry satisfying a {ti} element is indexed by the corresponding tile, which is used to calibrate the geometry index generated according to the rules of this file; when setting the topology type coding set for access, it is used to select the geometry index satisfying a {ti} element in the retrieved data. 9 3. Adaptieve kubusindexeringswerkwijze volgens conclusie 1, gekenmerkt door dat: de boomachtige structuur met meerdere niveaus van de betegelde adaptieve kubus als volgt is: de betegeling is een adaptieve kubus die bestaat uit ruimtelijke dimensie X, ruimtelijke dimensie Y, adaptieve dimensie V, en verdeelt de tegels hiërarchisch, elke bovenliggende knooppunttegel 1s de vereniging van alle onderliggende knooppunttegels, elke tegel is een adaptieve kubustegel, elke tegel bevat een veelvoud aan gegevenssegmenten en elke gegevenstegel bevat een klasse van geometrische lichamen; het knooppunt van de hoofdtegel is R en heeft n onderliggende knooppunttegels, die Ti, Tz, … , Ty, elke onderliggende tegel bevat zijn eigen onderliggende tegel, die wordt weergegeven als de bovenliggende tegel = U (onderliggende tegel), waarbij U staat voor vereniging, vorm een hiërarchische boomstructuur, die recursief wordt weergegeven, en het volgende niveau van Tioci<n+n heeft m onderliggende knooppunten, namelijk Ti, Ti, … Tin; Laat de tegel T; zijn, die is samengesteld uit k data slices, die Pi, Pa, …, Py; elke gegevensschijf bevat een verzameling geometriesets van verschillende geometrietypen, Gl, G2, … , Gk, de meetkunde in elke meetkundige verzameling heeft hetzelfde meetkundig type, aangeduid als {gi}, {2}, … » tg}; ij, k m, n zijn allemaal positieve gehele getallen.3. An adaptive cube indexing method according to claim 1, characterized in that: the multi-level tree-like structure of the tiled adaptive cube is as follows: the tiling is an adaptive cube consisting of spatial dimension X, spatial dimension Y, adaptive dimension V, and divides the tiles hierarchically, each parent node tile 1s the union of all the child node tiles, each tile is an adaptive cube tile, each tile contains a plurality of data segments, and each data tile contains a class of geometric bodies; the node of the parent tile is R and has n child node tiles, which are Ti, Tz, … , Ty, each child tile contains its own child tile, which is represented as the parent tile = U (child tile), where U stands for union, form a hierarchical tree structure, which is represented recursively, and the next level of Tioci<n+n has m child nodes, namely Ti, Ti, … Tin; Let the tile T; are composed of k data slices, denoted Pi, Pa, …, Py; each data slice contains a collection of geometry sets of different geometry types, Gl, G2, … , Gk, the geometry in each geometric set has the same geometric type, denoted {gi}, {2}, … » tg}; ij, k m, n are all positive integers. 4. Adaptieve kubusindexeringswerkwijze volgens conclusie 3, gekenmerkt door dat: de adaptieve kubus die bestaat uit ruimtelijke dimensie X, ruimtelijke dimensie Y en adaptieve dimensie V een kubus is die de variabele informatie van de gegevens op een ordelijke manier rangschikt op de adaptieve dimensie, inclusief hoogte, tijd en variabelen.4. The adaptive cube indexing method according to claim 3, characterized in that: the adaptive cube consisting of spatial dimension X, spatial dimension Y and adaptive dimension V is a cube that arranges the variable information of the data in an orderly manner on the adaptive dimension, including height, time and variables. 5. Adaptieve kubusindexeringswerkwijze volgens een van de conclusies 1-4, , gekenmerkt door dat: de geometrie identificeerders van verschillende geometrische typen meerpunts-, lijn-, oppervlakte-, volume- of rastergeometrie die aardverschijnselen uitdrukken, worden gesegmenteerd volgens de boomstructuur met meerdere niveaus op basis van op tegels gebaseerde adaptieve kubussen en de gegeven coderingsregels voor topologietypen, en de topologietypecodes die aan de vereisten voldoen, worden gekalibreerd in de geometrie-index en de boomstructuur met meerdere niveaus van de index van het aardverschijnsel wordt gegenereerd.5. Adaptive cube indexing method according to any one of claims 1 to 4, characterized in that: the geometry identifiers of different geometric types of multi-point, line, surface, volume or grid geometry expressing terrestrial phenomena are segmented according to the multi-level tree structure based on tile-based adaptive cubes and the given topology type coding rules, and the topology type codes satisfying the requirements are calibrated into the geometry index and the multi-level tree structure of the terrestrial phenomenon index is generated. 6. Adaptieve kubusindexeringswerkwijze volgens een van de conclusies 1-4, , gekenmerkt door dat: het toegangsverzoek het aanvraagbereik bevat dat is opgegeven volgens het coordinatensysteem dat compatibel is met de adaptieve kubusruimte, en de coderingsregels 10 voor het toegangstopologietype worden gegeven; Het aanvraagbereik wordt verdeeld op basis van de boomstructuur met meerdere niveaus van de adaptieve kubus op basis van tegels, en het tegelniveau dat overeenkomt met het kleinste tegelgebied dat het aanvraagbereik bestrijkt, wordt geselecteerd en het bijbehorende tegelgebied is het gedefinieerde aanvraagtegelgebied.6. An adaptive cube indexing method according to any one of claims 1 to 4, characterized in that: the access request contains the request range specified according to the coordinate system compatible with the adaptive cube space, and the coding rules 10 for the access topology type are given; the request range is divided based on the multi-level tree structure of the tile-based adaptive cube, and the tile level corresponding to the smallest tile area covering the request range is selected and the corresponding tile area is the defined request tile area. 7. Adaptieve kubusindexeringswerkwijze volgens een van de conclusies 1-4, , gekenmerkt door dat: volgens de regel van de geometrie-index van het tegelgebied = U (geometrie-index van de tegel van het tegelgebied) in de toegangsaanvraag, de redundante geometrie-index van het tegelgebied wordt gefilterd op basis van de vereniging van de U representatieve set en worden de bijbehorende doelgeometriegegevens benaderd op basis van de gefilterde geometrie-index.7. Adaptive cube indexing method according to any one of claims 1 to 4, characterized in that: according to the rule of tile area geometry index = U (tile area geometry index) in the access request, the redundant tile area geometry index is filtered based on the union of the U representative set and the corresponding target geometry data is accessed based on the filtered geometry index. 8. Adaptief kubusindexeringssysteem, gekenmerkt door dat, het bevat: een indexmodule die op een adaptieve kubusopslagsysteem is gemonteerd, voor het genereren van een topologische index op meerdere niveaus volgens een boomstructuur met meerdere niveaus van een gegeven betegelde adaptieve kubus; een aanvraagproxymodule op een adaptief kubustoepassingsserviceplatform met toegang tot een topologie-index op meerdere niveaus in een indexdatabase voor het definieren van een aanvraagtegelgebied op basis van de onmiddellijke analyse door de client van een aanvraagbereik van de kubus in een direct analyseerbaar toepassing van een client; en een geometrie-toegangsmodule uitgerust op een online adaptieve kubusapplicatieserviceplatform, voor het verkrijgen van geometrie-indeces binnen het tegelgebied verkrijgt volgens een indexbereik, voor het verkrijgen van bijbehorende geometrien van het adaptieve kubusopslagsysteem en het terugsturen hiervan naar de client, om aldus toegang te voltooien.8. An adaptive cube indexing system, characterized in that it comprises: an index module mounted on an adaptive cube storage system, for generating a multi-level topological index according to a multi-level tree structure of a given tiled adaptive cube; a request proxy module on an adaptive cube application service platform accessing a multi-level topology index in an index database for defining a request tile region based on the client's immediate analysis of a request range of the cube in a directly analyzable application of a client; and a geometry access module equipped on an online adaptive cube application service platform, for obtaining geometry indices within the tile region obtained according to an index range, for obtaining corresponding geometries from the adaptive cube storage system and returning them to the client, thus completing access. 9. Adaptief kubusindexeringssysteem volgens conclusie 8, voor het uitvoeren van de werkwijzestappen beschreven in een van de conclusies 1-7. tl9. An adaptive cube indexing system according to claim 8, for performing the method steps described in any of claims 1 to 7. tl
NL2036715A 2023-12-06 2023-12-29 Adaptive cube indexing method and system NL2036715B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311665864.0A CN117421436A (en) 2023-12-06 2023-12-06 Self-adaptive cube indexing method and system

Publications (1)

Publication Number Publication Date
NL2036715B1 true NL2036715B1 (en) 2025-05-20

Family

ID=89525066

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2036715A NL2036715B1 (en) 2023-12-06 2023-12-29 Adaptive cube indexing method and system

Country Status (3)

Country Link
CN (1) CN117421436A (en)
NL (1) NL2036715B1 (en)
WO (1) WO2025118336A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030212650A1 (en) * 2002-05-10 2003-11-13 Adler David William Reducing index size for multi-level grid indexes
US20120054195A1 (en) * 2010-08-26 2012-03-01 Oracle International Corporation Spatial query processing with query window index

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103279487A (en) * 2013-04-25 2013-09-04 中国科学院遥感与数字地球研究所 Organization and management method of map tile caching
CN113287154B (en) * 2018-10-14 2024-07-19 本特利系统有限公司 Conversion of infrastructure model geometry to tile format
CN112632338B (en) * 2020-12-31 2024-10-15 广州极飞科技股份有限公司 Point cloud data retrieval method, device, equipment and storage medium
CN112817545B (en) * 2021-03-11 2021-09-28 福州大学 Method and system for storing and managing data of on-line analysis-while-analyzing image and grid cube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030212650A1 (en) * 2002-05-10 2003-11-13 Adler David William Reducing index size for multi-level grid indexes
US20120054195A1 (en) * 2010-08-26 2012-03-01 Oracle International Corporation Spatial query processing with query window index

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"DIGITAL TERRAIN MODELING Principles and Methodology", 1 January 2005, ISBN: 978-0-415-32462-5, article LI ZHILIN ET AL: "DIGITAL TERRAIN MODELING Principles and Methodology", XP093261464 *

Also Published As

Publication number Publication date
CN117421436A (en) 2024-01-19
WO2025118336A1 (en) 2025-06-12

Similar Documents

Publication Publication Date Title
CN110059067B (en) A method for storage and management of water conservancy space vector big data
CN109284338B (en) Satellite remote sensing big data optimization query method based on mixed index
CN113010620B (en) Natural resource data index statistical method and system based on geographic multilevel grid
CN113515525A (en) Spatial data organization method based on global multi-scale grid
CN113946700A (en) A spatiotemporal index construction method, device, computer equipment and storage medium
CN109635068A (en) Mass remote sensing data high-efficiency tissue and method for quickly retrieving under cloud computing environment
CN104167021B (en) A Spatial Object Indexing Method Based on Earth Spatial Stereosection
CN113570275A (en) Water resource real-time monitoring system based on BIM and digital elevation model
CN115408382B (en) Vector space information grid storage and management method for large-scale satellite data
CN106547853A (en) Forestry big data building method based on a figure
CN114048204B (en) Beidou grid spatial indexing method and device based on database inverted index
CN103425772A (en) Method for searching massive data with multi-dimensional information
CN108009265B (en) A spatial data indexing method in cloud computing environment
CN113742505B (en) Mass synthetic aperture radar interferometry (InSAR) data online visualization method
CN116775661A (en) Big space data storage and management method based on Beidou grid technology
CN114048203B (en) Beidou grid spatial indexing and retrieval method and device based on database B-tree index
CN120086303B (en) 3DTiles data storage method and map data query method
CN114357097A (en) Map annotation construction method and device, computer equipment and storage medium
Li et al. Method for managing and querying geo-spatial data using a grid-code-array spatial index
CN119848361A (en) Method for storing and retrieving large data of space vector of black soil ploughing quality
CN104219088A (en) A Hive-based OLAP method for network alarm information
CN111427978B (en) 3D Model Indexing Method Based on Urban Morphology and R-Tree
CN117290455A (en) Integrated management system and method for multisource geospatial data
NL2036715B1 (en) Adaptive cube indexing method and system
CN119760160B (en) A method for processing spatiotemporal graph data based on grid graph database