NL2033383B1 - Integrated internal heat sink for passively cooling photovoltaic modules - Google Patents
Integrated internal heat sink for passively cooling photovoltaic modules Download PDFInfo
- Publication number
- NL2033383B1 NL2033383B1 NL2033383A NL2033383A NL2033383B1 NL 2033383 B1 NL2033383 B1 NL 2033383B1 NL 2033383 A NL2033383 A NL 2033383A NL 2033383 A NL2033383 A NL 2033383A NL 2033383 B1 NL2033383 B1 NL 2033383B1
- Authority
- NL
- Netherlands
- Prior art keywords
- solar cell
- thermal
- thermal circuit
- circuit
- contact
- Prior art date
Links
- 238000001816 cooling Methods 0.000 title claims description 11
- 239000000758 substrate Substances 0.000 claims abstract description 44
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 26
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000010703 silicon Substances 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 18
- 229910021419 crystalline silicon Inorganic materials 0.000 claims description 11
- 238000000151 deposition Methods 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 150000002739 metals Chemical class 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910000676 Si alloy Inorganic materials 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910021389 graphene Inorganic materials 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 2
- 239000002019 doping agent Substances 0.000 abstract description 12
- 230000008569 process Effects 0.000 abstract description 7
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 238000013461 design Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 229920002620 polyvinyl fluoride Polymers 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000004411 aluminium Substances 0.000 description 3
- 239000006117 anti-reflective coating Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 238000007373 indentation Methods 0.000 description 3
- 230000004224 protection Effects 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 241001663154 Electron Species 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- -1 Indium Fluor Oxide Chemical compound 0.000 description 1
- 229910004012 SiCx Inorganic materials 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229940000425 combination drug Drugs 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical group [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/60—Arrangements for cooling, heating, ventilating or compensating for temperature fluctuations
- H10F77/63—Arrangements for cooling directly associated or integrated with photovoltaic cells, e.g. heat sinks directly associated with the photovoltaic cells or integrated Peltier elements for active cooling
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
- H10F10/164—Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells
- H10F10/165—Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells the heterojunctions being Group IV-IV heterojunctions, e.g. Si/Ge, SiGe/Si or Si/SiC photovoltaic cells
- H10F10/166—Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells the heterojunctions being Group IV-IV heterojunctions, e.g. Si/Ge, SiGe/Si or Si/SiC photovoltaic cells the Group IV-IV heterojunctions being heterojunctions of crystalline and amorphous materials, e.g. silicon heterojunction [SHJ] photovoltaic cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
The present invention is in the field of a solar cell, or photovoltaic (PV) cell, for the con- version of light into electrical energy, a process for making such a solar cell, and a PV-module comprising said solar cells. In particular the invention relates to a silicon-based solar cell com- prising at least one p-n junction, a substrate, wherein the substrate comprises Si and dopants, and at least one electrical contact layer, in particular a heterojunction solar cell.
Description
P100818NL00
Integrated internal heat sink for passively cooling photovoltaic modules
The present invention is in the field of a solar cell, or photovoltaic (PV) cell, for the con- version of light into electrical energy, a process for making such a solar cell, and a PV-module comprising said solar cells. In particular the invention relates to a silicon-based solar cell com- prising at least one p-n junction, a substrate, wherein the substrate comprises Si and dopants, and at least one electrical contact layer, in particular a heterojunction solar cell.
A solar cell, or photovoltaic (PV) cell, is an electrical device that converts energy of light, typically sun light (hence “solar”), directly into electricity by the so-called photovoltaic effect.
The solar cell may be considered a photoelectric cell, having electrical characteristics, such as current, voltage, resistance, and fill factor, which vary when exposed to light and which vary from type of cell to type.
Solar cells are described as being photovoltaic irrespective of whether the source is sun- light or an artificial light. They may also be used as photo detector.
When a solar cell absorbs light it may generate either electron-hole pairs or excitons. In or- der to obtain an electrical current charge carriers of opposite types are separated. The separated charge carriers are “extracted” to an external circuit, typically providing a DC-current. For prac- tical use a DC-current may be transformed into an AC-current, e.g. by using an inverter. Typi- cally solar cells are grouped into an array of elements. Various elements may form a panel, also referred to as module, and various panels may form a system.
Wafer based c-Si solar cells contribute to more than 90% of the total PV market. Accord- ing to recent predictions, this trend will remain for the upcoming years towards 2025 and many years beyond. Due to their simplified process, conventional c-Si solar cells dominate a large part of the market. As alternative to the industry to improve the power to cost ratio, the silicon hetero- junction approach has become increasingly attractive for PV industry, even though the relatively complicated process to deploy the proper front layers, such as a transparent conductive oxide (TCO) and an inherent low thermal budget of the cells limiting usage of existing production lines and thus result in a negligible market share so far. A heterojunction is the interface that occurs between two layers or regions of dissimilar crystalline semiconductors. These semiconducting materials have unequal band gaps as opposed to a homojunction. A homojunction relates to a semiconductor interface formed by typically two layers of similar semiconductor material, wherein these semiconductor materials have equal band gaps and typically have a different dop- ing (either in concentration, in type, or both). A common example is a homojunction at the inter- face between an n-type layer and a p-type layer, which is referred to as a p-n junction. In hetero- junctions advanced techniques are used to precisely control a deposition thickness of layers in- volved and to create a lattice-matched abrupt interface. Three types of heterojunctions can be distinguished, a straddling gap, a staggered gap, and a broken gap.
The conversion efficiencies of wafer-based c-Si solar cells typically lie in the range of 20%. Theoretically a single p—n junction crystalline silicon device has a maximum power effi- ciency of 33.7%. An infinite number of layers may reach a maximum power efficiency of 86%.
The highest ratio achieved for a solar cell per se at present is about 44%. For commercial silicon solar cells the record is about 25.6%. In view of efficiency the front contacts may be moved to a rear or back side, eliminating shaded areas. In addition thin silicon films were applied to the wa- fer. Solar cells also suffer from various imperfections, such as recombination losses, reflectance losses, heating during use, thermodynamic losses, shadow, internal resistance, such as shunt and series resistance, leakage, etc. A qualification of performance of a solar cell is the fill factor (FF).
The fill factor may be defined as a ratio of an actual maximum obtainable power to the product of the open circuit voltage and short circuit current. It is considered to be a key parameter in evaluating performance. A typical advanced commercial solar cell has a fill factor > 0.75, whereas less advanced cells have a fill factor between 0.4 and 0.7. Cells with a high fill factor typically have a low equivalent series resistance and a high equivalent shunt resistance; in other words less internal losses occur. Efficiency is nevertheless improving gradually, so every rela- tively small improvement is welcomed and of significant importance.
In current c-Si solar cell designs the main focus is to achieve a high efficiency. However, efficiency is often hampered by the temperature of the solar cell, which may increase signifi- cantly, such as to 60-70 °C. With an increasing temperature the efficiency of a solar cell can drop significantly. Studies have shown that high PV module operating temperatures can significantly increase their degradation rate. Currently, there is a need to control the temperature of PV mod- ules, particularly in remote locations where large-scale projects are expected. Currently, most of the research for passively cooling PV modules has been focused on creating add-on surfaces to the back side of the module. These surfaces usually require a lot of metallic material, which makes them costly.
The present invention relates to an improved silicon-based solar cell and various aspects thereof and a simple process for manufacturing said solar cell which overcomes one or more of the above disadvantages, without jeopardizing functionality and advantages.
The present invention relates in a first aspect to a solar cell, in particular a hetero- junction solar cell, in a second aspect to a process for making such a solar cell, and in a third aspect to a PV-module comprising said solar cells. Design of prior art solar cells typically pre- vents heat to be transferred away from the solar cell. The present design relates to an internal heat sink to cool down photovoltaic modules passively. Thereto an internal heat circuit is formed in the solar cell that allows the conduction of heat produced by the cells through the circuit di- rectly towards the outside environment. In this way, inventors prevent some heat from flowing through materials that do not conduct heat efficiently, but are considered necessary for manufac- turing the solar cell and/or module in which the cell is incorporated, such as the encapsulant and the polymer used as a back sheet. The present heat sink uses low quantities of metal, and a thermal pad to ensure that there is no electricity running through the thermal circuit. Therewith the additional use of metal is kept to a minimum compared to other alternatives, and the heat dissipation requires no additional component other than the module's frame. The present solar cell provides a good heat sink, heat dissipation, thermal management of the solar cell, tempera- ture control of the solar cell, integration of the present thermal circuit into existing solar cell pro- duction technologies and designs, and direct improved thermal connection of the solar cell to the environment. The hermeticity, thermal stability, and degradation rate of the metallic connectors is found to be good. The present operating temperature reduction increases energy yield, life- time, and bankability of PV projects. The present solution requires little additional material and has been proven to reduce the operating temperature under current environmental conditions. In an exemplary embodiment the present solution creates a direct thermal connection from the cell to the frame of a module.
The term “cooling”, in particular “passive cooling” refers to natural processes and tech- niques of heat dissipation and modulation without the use of energy. It does typically not include minor and simple mechanical systems, which applications would typically be referred to as ‘hy- brid cooling systems’. The techniques for passive cooling can be grouped in two main catego- ries, preventive techniques and modulation techniques. Preventive techniques typically aim to provide protection and/or prevention of external and internal heat gains, which is more close to the present thermal circuit’s effect. Modulation and heat dissipation techniques typically allow storage and dissipation of heat gain, such as through the transfer of heat from heat sinks, such as may be provided in the present module.
The present solar cell 100, in particular a heterojunction solar cell, comprises a substrate 10, in particular wherein the substrate comprises silicon, more in particular crystalline Si, an electrical circuit comprising at least one P-N junction, in particular a hetero junction, and at least one contact 15 selected from a front contact and a back contact, the at least one contact config- ured for transporting holes or electrons respectively from the at least one P-N junction to a front side or back side of the solar cell, characterized in an into the solar cell integrated thermal circuit 20, wherein the thermal circuit is in thermal contact with solar cell and configured to transfer heat away from the solar cell, and wherein the thermal circuit is electrically insulated from the electrical circuit, in particular wherein the thermal circuit is a patterned thermal circuit. The pre- sent typically silicon based solar cell comprises at least one p-n junction, a positive PV-generator terminal in electrical contact with the p-n junction, a negative PV-generator terminal in electrical contact with the p-n junction, wherein the terminals may be in direct or indirect electrical contact with the respective side of the p-n junction, wherein the terminal provides a contact opportunity to connect external components, such as other solar cells, a converter, electronics, and the like, a substrate 10, wherein the substrate typically comprises Si and dopants, at least one electrical con- tact or contact layer 15, wherein the electrical contact layer, or part thereof can function as a ter- minal, wherein the at least one electrical contact layer covers < 99% of a surface of the solar cell at a respective front-side and/or respective back-side, in particular < 70%, more in particular
<50%, wherein the coverage for the front-side contact typically is smaller (e.g. smaller than 50%) than for the back-side (e.g. 75%). It is noted that the electrical contact can be used as elec- tron or hole transport layer, such as an n-type doped Si or p-type doped Si layer. These may have a high dopant concentration, such as 5*1014-0.5*102 n- or p-type dopants/cm’. In general a ter- minal may be considered as a point at which an external circuit can be connected, or a point where a first part of the present solar cell electro-magnetically overlaps with another part of the present solar cell. The external terminal typically provides the DC-current of the solar cell. The term “terminal” relates to a part that forms an end, e.g, of the passive component, or of the p-n- junction, that is a physical termination of said part. The terminals provide a point of contact, which may be used as such, or may not be used. The present solar cell is characterized in the in- tegrated thermal circuit. The thermal circuit, connected directly to the solar cell, needs to have an electrical insulation from the electrical circuit of the solar cell, to avoid safety concerns and po- tential damage. The thermal circuit, or components thereof, in particular thermal pad 21, typi- cally have a thermal conductivity of > 5 W/m*K [ASTM E-1461, @293 K], in particular > 7
W/m*K, such as 8-10 W/m*K, which is relatively high for non-metallic thermal pads. The ther- mal circuit typically comprises a thermally conductive strip or the like with a thermal conductiv- ity of > 200 W/m*K [ASTM E-1461, @293 K], in particular > 230 W/m*K, more in particular > 300 W/m*K, such 350-430 W/m*K. To this end, commercially available thermal pads can be used. The thermal circuit does not relate to a layer fully covering the present solar cell per se.
Therewith heat can flow directly from the solar cell towards an outside environment. Further in- tegration with e.g. a module frame is considered.
Typical solar cells considered are wherein the substrate is covered with at least one intrin- sic layer such as one intrinsic layer at the rear side, and one intrinsic layer at the front side, in particular wherein the at least one intrinsic layer each individually is selected from intrinsic Si, such as 1a-Si:H and ic-Si:H, from intrinsic Si-dielectrics, such as 1a-SiOx:H, 1a-SiCx:H, and ia-
SiNx:H, or dielectric metal oxide passivation layer, and combinations thereof, and/or wherein the thickness of the intrinsic layer each individually is from 0.1 nm-50 nm, in particular 1-20 nm, such as 2-15 nm, and/or wherein the intrinsic layer each individually is textured, in particular with a same texturing as the substrate. The solar cell may comprise at least one doped silicon layer, such as a p-doped silicon layer, and an n-doped silicon layer, in particular comprising a 5%10'4-0.5*10%! dopants/cm?® n- or p-type doped crystalline Si layer, and/or wherein a doping concentration is preferably spatially constant, and/or wherein n-type dopants are selected from P,
As, Bi, Sb and Li, and wherein p-type dopants are selected from B, Ga, and In. The doped silicon layer is typically provided in between the at least one contact and substrate, and/or wherein the doped silicon layer substantially covers the same surface area and the same amount of surface area as the at least one contact. The at least one contact is typically provided on a TCO layer, in particular wherein the material of the transparent conductive layer is selected from Indium Tin
Oxide ITO, IOH, ZnO, or doped ZnO, such as Aluminium doped ZnO, doped Tin oxide, such as fluorine doped tin oxide, doped indium oxide, such as Indium Fluor Oxide IFO:H, and Indium
Tungsten Oxide TWO, and/or wherein a thickness of the transparent conductive layer is 10-200 nm, in particular 20-170 nm, more in particular 30-50 nm, and/or wherein the refractive index of the transparent conductive layer is <2.2, and/or wherein the work function of the TCO layer is from 2 eV to 8 eV, in particular 3.4 eV to 6.4 eV, and/or wherein the work function of the TCO 5 layer is 3.4 eV to 4.7 eV in case of the TCO-layer mainly transporting electrons, and/or wherein the work function of the TCO layer 12 is 4.7 eV to 6.4 eV in case of the TCO-layer mainly collecting holes, and/or wherein the TCO layer each individually is textured, in particular with a same texturing as the substrate.
The contact, in particular a metal contact, more in particu- lar a contact layer, the TCO layer, and optionally the doped silicon layer typically form a stack, in particular a stack of substantially the same shaped layers, more in particular wherein a width of the doped silicon layer > a width of the TCO layer, which width of the TCO layer > width of the contact layer.
The at least one contact is typically provided as a strip, more in particular as a strip with a width of 0.01-200 um, in particular a width of 0.05-50 pm.
The at least one light ab- sorbing layer may be surface treated, in particular wherein the treatment is selected from treat- ment with a gas, and treatment with a plasma, more particular wherein in the treatment hydrogen is used, or wherein in the treatment oxygen is used, even more in particular wherein substantially only hydrogen is used, or wherein substantially only oxygen is used.
The substrate 10 may be a single sided or double sided flat substrate 10 surface, and/or the substrate 10 may be a single sided or double sided textured substrate 10 surface ISO 4287:1997, in particular textured with a surface roughness R, of 1-20 um, such as 2-10 um, and/or wherein the textured surface has an aspect ratio height:depth of a textured structure of 2-10. The substrate typically has a thickness of 1-500 um, and/or comprising 101-102! dopants/cm® n- or p-type doped substrate 10, and/or wherein the substrate 10 comprises 1*10'2-0.5*10" n- or p-type dopants/cm?, in particular 2*10'-10'7 dopants/em?, more in particular 5* 101-101 dopants/cm?, such as 8*10'-3*10'° do- pants/cm?®, and/or wherein the substrate 10 has a resistivity of 0.1-1000 ohm*cm at 300K, more in particular 1-100 ohm*cm, such as 5-10 ohm*cm.
The at least one contact typically covers less than 5% of the front surface area or back surface area, in particular wherein the at least one con- tact covers less than 1% of the front surface area or back surface area, more in particular less than 0.5%, and/or wherein the contact comprises a metal, wherein the metal of the contacts inde- pendently comprises at least one of Cu, Al, W, Ti, Ni, Cr, Ag, and/or wherein a thickness of said metal contacts is 200 nm-50 um, in particular 1-25 um, and/or wherein the metal contact is se- lected from a metal layer, a metal grid, a metal line, or a combination thereof.
An at least one of the front surface and of the back surface may be provided with an anti-reflective coating, in par- ticular an anti-reflective coating on the surface area not covered by the contact.
The layer under- neath the anti-reflective coating may be surface treated, such as surface treated with Hz, with Oa, or a combination thereof.
Therewith the present solar cell typically has the following characteris- tics: the VOC is >700 mV, in particular > 725 mV, such as > 730 mV, and/or a J« is > 30 mA/cm?, in particular > 38 mA/cm? such as > 39 mA/cm?, and/or a fill factor FF of >75%, in particular > 80%, such as > 82.5%, and/or an efficiency of > 23%, in particular >23.8%, such as
> 23.9%. The solar cell may be a back-contacted solar cell, such as an interdigitated back-con- tacted solar cell, or the solar cell may be a back and front contacted solar cell.
In a second aspect the present invention relates to a module comprising at least two solar cells according to the invention, in particular n*m solar cells, wherein ne [2-20] and me [2-10], wherein each solar cell individually comprises a separated thermal circuit, and/or wherein ther- mal circuits of more than two adjacent solar cells are thermally interconnected, in particular wherein 10-90% of thermal circuits of adjacent solar cell are thermally interconnected or wherein all adjacent solar cell are thermally interconnected. Various designs are possible (see figures). A first design connects frame rods to the thermal circuit from the middle cell, acting like fins. This design requires more material for the frame. The frame add-ons may have the same size, in length, as the PV module, and may be built as thin as possible to improve convec- tion on the backside of the module. A second design connects only the thermal circuit to opposite ends of the frame, which makes for a simpler design. The frame add-ons are typically only applied to the extremes of the module, but the principle of design, to be as thin as possible, typically still applies.
In a third aspect the present invention relates to a method of producing a solar cell accord- ing to the invention, comprising providing a heterojunction solar cell, comprising a substrate 10, in particular wherein the substrate comprises silicon, more in particular crystalline Si, an electri- cal circuit comprising (1) at least one P-N junction, in particular a hetero junction, and (ij) at least one contact 15 selected from a front contact and a back contact, the at least one contact con- figured for transporting holes or electrons respectively from the at least one P-N junction to a front side or back side of the solar cell, depositing a thermal circuit on the solar cell, and provid- ing a support layer. The thermal pad and a copper strip are typically added before the lamination step to secure the direct contact with the solar cell. The optimal indentation of these materials for maximum heat extraction was found to be 0.5-5 cm, in particular 1-2.5 cm, such as 1.7 cm. In an example small cuts are made to the EVA and the Tedlar to create the direct pathway towards the modules frame. The thermal circuit for the solar cells located on the middle columns of a module can be done in various ways (see figures). For instance, they can be interconnected to create a heat flow towards the ends of the module, or they can have their own thermal circuit.
The method may further comprise typical steps as providing a substrate, such as a crystal- line Si-substrate, optionally texturing the substrate, such as double-side texturing the substrate, thereafter immersing the substrate into a strong oxidizing solution, thereafter etching the oxi- dized substrate by dipping the oxidized substrate into an acidic solution, directly thereafter load- ing the etched substrate into a layer deposition tool, and depositing an intrinsic Si layer on at least one side of the etched substrate, thereafter providing at least one doped silicon layer on the at least one intrinsic Si-layer, in particular a layer that covers less than 20% of the front surface area or back surface area, respectively, thereafter depositing a transparent conductive ox- ide(TCO) layer on the at least one doped Si-layer, in particular after a first alignment of the solar cell, and then depositing metal contacts on the TCO-layer, in particular after a second alignment of the solar cell, more in particular wherein the first and second alignment each individually is with an accuracy of better than 20 um lateral, such as better than 1 um lateral, wherein deposi- tion of the TCO-layer and/or the metal contacts and optionally provision of the doped silicon layer a hard mask is used, and/or wherein contacts and/or contact layers are provided by metal deposition and lift off of non-contact areas, screen printing, and electrical plating.
Thereby the present invention provides a solution to one or more of the above-mentioned problems.
Advantages of the present description are detailed throughout the description. References to the figures are not limiting, and are only intended to guide the person skilled in the art through details of the present invention.
The present invention relates in a first aspect to a solar cell, and in a second aspect to a PV-module comprising said solar cell, in a third aspect to a method of producing said solar cell.
In an exemplary embodiment of the present solar cell the thermal circuit is provided substantially at a back side of the solar cell.
In an exemplary embodiment of the present solar cell at least one thermal circuit is configured to be thermally connected to a frame 30 for supporting the solar cell.
In an exemplary embodiment of the present solar cell a thermal conductivity of the thermal circuit is > 5 W/(m*K), in particular > 6 W/(m*K), more in particular > 7
W/(m*K).
In an exemplary embodiment of the present solar cell a melting point of a material of the thermal circuit is > 250 °C, in particular > 400 °C.
In an exemplary embodiment of the present solar cell the material of the thermal cir- cuit is stable between -100 °C and 250 °C, in particular wherein the thermal characteris- tics are substantially unaltered between -100 °C and 250 °C.
In an exemplary embodiment the present solar cell comprises a support layer 40, such as a polymeric support layer, wherein the thermal circuit is at least partly provided between the substrate of the solar cell and the support layer.
In an exemplary embodiment of the present solar cell the solar cell has a width and a length, wherein the thermal circuit is at least partly provided at an edge of the solar cell, in particular within 20% of the respective length or width of the solar cell, more in partic- ular within 10% of the respective length or width of the solar cell.
In an exemplary embodiment of the present solar cell the thermal circuit comprises a section 26 provided substantially at a central part of the solar cell, wherein the central sec- tion is in thermal connection with a remainder of the thermal circuit, in particular a central section covering 5-25% of a surface area of the solar cell, such as a cross-shaped central section, a circular shaped section, a multigonal shaped section, and combinations thereof.
In an exemplary embodiment of the present solar cell the thermal circuit is in thermal contact with 5-60% of a surface area of the solar cell, in particular with 10-30% of the surface area, more in particular with 15-25% of the surface area.
In an exemplary embodiment of the present solar cell the thermal circuit comprises a thermal pad 21, in particular a non-metallic thermal pad, more in particular a polymeric thermal pad, and a thermal connector 22, wherein the thermal connector is adapted to transfer heat away from the solar cell.
In an exemplary embodiment of the present solar cell the thermal pad has a thickness of 10-500 um, in particular 50-200 um.
In an exemplary embodiment of the present solar cell each thermal pad individually has a width of 1-50 mm, in particular 5-10 mm, and/or wherein the thermal connector has a thickness of 10-500 um, in particular 50-200 um.
In an exemplary embodiment of the present solar cell each thermal connector indi- vidually covers the solar cell with a width of 1-50 mm, in particular 5-10 mm.
In an exemplary embodiment of the present solar cell the thermal circuit is internally integrated, and/or wherein the thermal circuit is configured to cool the solar cell passively, in particular wherein the solar cell is thermally connected to at least one passive cooling element 50, such as a fin.
In an exemplary embodiment of the present solar cell the thermal circuit has a thick- ness of 10-300 um, in particular 20-100 pm.
In an exemplary embodiment of the present solar cell the material of the thermal cir- cuit comprises a material selected from metals, in particular wherein metals are selected from copper, aluminium, gold, silver, silicon, and tungsten, from graphene, from silicon alloys, and combinations thereof.
In an exemplary embodiment of the present solar cell the thermal circuit comprises at least one area with a textured surface, wherein the textured surface is configured to in- crease the surface area thereof with 10-150% relatively, in particular 30-90% relatively.
In an exemplary embodiment of the present solar cell the thermal circuit comprises open areas, in particular 10-50% open areas.
In an exemplary embodiment the present module comprises a frame for supporting solar cells, wherein at least one thermal circuit is thermally connected to the frame.
In an exemplary embodiment of the present module the frame comprises receivers 60 for receiving at least one thermal connector or a thermal connection of the thermal circuit, in par- ticular a receiver with a surface area > 2 cm?, and/or a receiver with a slit.
The invention is further detailed by the accompanying figures and examples, which are exemplary and explanatory of nature and are not limiting the scope of the invention.
To the person skilled in the art, it may be clear that many variants, being obvious or not, may be conceivable falling within the scope of protection, defined by the present claims.
Figures 1, 2a-b, 3, 4a-b, 5a-b and 6a-b show present layouts.
100 solar cell 10 substrate 15 front/back contact 17 dielectric layer or stack of layers 20 thermal circuit 21 thermal pad 22 thermal contact 26 thermal circuit section 30 module frame 40 PV-support layer, e.g. EVA 41 Foil, e.g. Tedlar 50 passive cooling element, e.g. fin 60 frame add-on, e.g. receiver 70 cover, e.g. at least one of glass, transparent foil, typically flexible foil, and cover
The figures are further detailed in the description of the experiments below.
Figure 1 shows a top/bottom view of the present solar cell 100. Left: top view, show- ing the actual PV-cell. Middle: showing a layout of the present thermal circuit, divided over four boundary sections, and electrical contact 15 separated from thermal circuit 20. Right: another layout of thermal circuit, showing boundary and central sections provided with the thermal circuit.
Figure 2a shows a cross-section of the present solar cell, showing the PV -cell, ther- mal pad 21 and copper connector 22 forming the thermal circuit, and typical support/pro- tection layers, such as an EVA layer 40 and a Tedlar layer 41. Also the size of the indenta- tion of the thermal circuit is shown. Figure 2b shows a similar layout, including thermal dissipation.
Fig. 3 shows a cross-section of a typical stack, including a PV cell with substrate 10 and contacts 15, a pad 21, a connector 22, an EVA layer 40, and a Tedlar layer 41, as well as the indentation of the thermal circuit.
Fig. 4a shows an interconnection of connectors 22 between adjacent solar cells 100 in a bottom view, and fig. 4b in a side view. A heat flow towards a side of the module is generated, if applicable.
Fig. 5a shows thermal circuit sections 26 on adjacent solar cells 100 in a bottom view, and fig. 5b in a side view. A heat flow towards a side of the module is generated, if applicable.
Fig. 6a shows a side view of adjacent solar cells in a module, connected to a frame having fins 50, wherein thermal connectors are in thermal contact with said fins. The module may further comprise frame add-ons. Such is in particular shown in fig. 6b.
Experiments
The following experiments are carried out.
A prototype, as shown in Fig. 5a. was manufactured for long-term testing during the months of June towards August of 2022. P-type thermocouples were attached on the back- side of three selected solar cells (top left, center, bottom right). A similar model, without the heat sink, was manufactured for comparison. Electrical test and Electroluminescence tests showed no differences between the two prototypes, confirming characteristics accord- ing to standards.
Field tests showed that, under clear sky conditions, the integrated heat sink could reduce the operational temperature of the solar cell up to (-)6 °C relative. On average, during the testing period, an average temperature reduction of 4 °C was observed on the prototype.
A thermal imaging camera was used to find potential inhomogeneities on the solar cells. No significant differences were observed. The thermal behavior of the solar cells with the integrated heat sink was similar in its heat distribution as the standard module, the only difference being a lower value of temperature as indicated before.
Initial hermeticity tests showed no intrusion of humidity on the inside layers of the modules. Further testing in this regard was carried out in a climate chamber during a longer period of time of a few months, and no detrimental effects were found.
The invention although described in detailed explanatory context may be best under- stood in conjunction with the accompanying figures.
It should be appreciated that for commercial application it may be preferable to use one or more variations of the present system, which would similar be to the ones disclosed in the pre- sent application and are within the spirit of the invention.
For the purpose of searching the following section is added, of which the last section repre- sents a translation into Dutch. 1. A solar cell (100), in particular a heterojunction solar cell, comprising a substrate (10), in particular wherein the substrate comprises silicon, more in particular crystalline St, an electrical circuit comprising (1) at least one P-N junction, in particular a hetero junction, and (ii) at least one contact (15) selected from a front contact and a back contact, the at least one contact configured for transporting holes or electrons respectively from the at least one
P-N junction to a front side or back side of the solar cell, characterized in an into the solar cell integrated thermal circuit (20), wherein the thermal circuit is in ther- mal contact with solar cell and configured to transfer heat away from the solar cell, and wherein the thermal circuit is electrically insulated from the electrical circuit, in particular wherein the thermal circuit is a patterned thermal circuit.
2. The solar cell according to embodiment 1, wherein the thermal circuit is provided substan- tially at a back side of the solar cell. 3. The solar cell according to any of embodiments 1-2, wherein at least one thermal circuit is configured to be thermally connected to a frame (30) for supporting the solar cell.
4. The solar cell according to any of embodiments 1-3, wherein a thermal conductivity of the thermal circuit is > 5 W/(m*K), in particular > 6 W/(m*K), more in particular > 7 W/(m*K), and/or wherein a melting point of a material of the thermal circuit is > 250 °C, in particular > 400 °C, and/or wherein the material of the thermal circuit is stable between -100 °C and 250 °C, in particular wherein the thermal characteristics are substantially unaltered between -100 °C and 250 °C.
5. The solar cell according to any of embodiments 1-4, comprising a support layer (40), such as a polymeric support layer, wherein the thermal circuit is at least partly provided between the sub- strate of the solar cell and the support layer.
6. The solar cell according to any of embodiments 1-5, wherein the solar cell has a width and a length, wherein the thermal circuit is at least partly provided at an edge of the solar cell, in par- ticular within 20% of the respective length or width of the solar cell, more in particular within 10% of the respective length or width of the solar cell, and/or wherein the thermal circuit comprises a section (26) provided substantially at a central part of the solar cell, wherein the central section is in thermal connection with a remainder of the thermal circuit, in particular a central section covering 5-25% of a surface area of the solar cell, such as a cross-shaped central section, a circular shaped section, a multigonal shaped section, and combi- nations thereof, and/or wherein the thermal circuit is in thermal contact with 5-60% of a surface area of the solar cell, in particular with 10-30% of the surface area, more in particular with 15-25% of the surface area. 7. The solar cell according to any of embodiments 1-6, wherein the thermal circuit comprises a thermal pad (21), in particular a non-metallic thermal pad, more in particular a polymeric ther- mal pad, and a thermal connector (22), wherein the thermal connector is adapted to transfer heat away from the solar cell, and/or wherein the thermal pad has a thickness of 10-500 um, in particular 50-200 um, and/or wherein each thermal pad individually has a width of 1-50 mm, in particular 5-10 mm, and/or wherein the thermal connector has a thickness of 10-500 um, in particular 50-200 um, and/or wherein each thermal connector individually covers the solar cell with a width of 1-50 mm, in particular 5-10 mm.
8. The solar cell according to any of embodiments 1-7, wherein the thermal circuit is internally integrated, and/or wherein the thermal circuit is configured to cool the solar cell passively, in particular wherein the solar cell is thermally connected to at least one passive cooling element (50), such as a fin.
9. The solar cell according to any of embodiments 1-8, wherein the thermal circuit has a thick-
ness of 10-300 pm, in particular 20-100 um, and/or wherein the material of the thermal circuit comprises a material selected from metals, in particu-
lar wherein metals are selected from copper, aluminium, gold, silver, silicon, and tungsten, from graphene, from silicon alloys, and combinations thereof, and/or wherein the thermal circuit comprises at least one area with a textured surface, wherein the tex-
tured surface is configured to increase the surface area thereof with 10-150% relatively, in partic-
ular 30-90% relatively, and/or wherein the thermal circuit comprises open areas, in particular 10-50% open areas.
10. A module comprising at least two solar cells according to any of embodiments 1-9, in partic- ular n*m solar cells, wherein ne[2-20] and me[2-10], wherein each solar cell individually comprises a separated thermal circuit, and/or wherein thermal circuits of more than two adjacent solar cells are thermally interconnected, in particular wherein 10-90% of thermal circuits of adjacent solar cell are thermally interconnected or wherein all adjacent solar cell are thermally interconnected.
11. The module according to embodiment 10, comprising a frame for supporting solar cells, wherein at least one thermal circuit is thermally connected to the frame.
12. The module according to embodiment 11, wherein the frame comprises receivers (60) for re- ceiving at least one thermal connector or a thermal connection of the thermal circuit, in particular a receiver with a surface area > 2 cm?, and/or a receiver with a slit.
13. A method of producing a solar cell according to any of embodiments 1-9, comprising providing a heterojunction solar cell, comprising a substrate (10), in particular wherein the substrate comprises silicon, more in particular crystalline Si, an electrical circuit comprising (1) at least one P-N junction, in particular a hetero junction, and (ii) at least one con-
tact (15) selected from a front contact and a back contact, the at least one contact configured for transporting holes or electrons respectively from the at least one P-N junction to a front side or back side of the solar cell,
depositing a thermal circuit on the solar cell, and providing a support layer.
14. Solar cell (100) according to any of embodiments 1-9 and/or obtained by the method accord- ing to embodiment 13, comprising at least two elements as mentioned in the embodiments, and/or comprising at least one further element as mentioned in the description.
Claims (14)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| NL2033383A NL2033383B1 (en) | 2022-10-24 | 2022-10-24 | Integrated internal heat sink for passively cooling photovoltaic modules |
| PCT/NL2023/050514 WO2024091112A1 (en) | 2022-10-24 | 2023-10-03 | Integrated internal heat sink for passively cooling photovoltaic modules |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| NL2033383A NL2033383B1 (en) | 2022-10-24 | 2022-10-24 | Integrated internal heat sink for passively cooling photovoltaic modules |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| NL2033383B1 true NL2033383B1 (en) | 2024-05-14 |
Family
ID=84462726
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| NL2033383A NL2033383B1 (en) | 2022-10-24 | 2022-10-24 | Integrated internal heat sink for passively cooling photovoltaic modules |
Country Status (2)
| Country | Link |
|---|---|
| NL (1) | NL2033383B1 (en) |
| WO (1) | WO2024091112A1 (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008004889A1 (en) * | 2006-07-04 | 2008-01-10 | Norsk Solkraft As | Photovoltaic apparatus |
| US20110017265A1 (en) * | 2009-07-23 | 2011-01-27 | Farrell James F | Photovoltaic module with conductive cooling and enhanced reflection |
| US20120060921A1 (en) * | 2009-06-30 | 2012-03-15 | Lg Innotek Co., Ltd. | Solar Cell Apparatus |
| KR20130056115A (en) * | 2011-11-21 | 2013-05-29 | 엘지이노텍 주식회사 | Solar cell module |
| US20140332074A1 (en) * | 2013-05-13 | 2014-11-13 | Win Win Precision Technology Co., Ltd. | Solar cell module |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002289900A (en) * | 2001-03-23 | 2002-10-04 | Canon Inc | Concentrating solar cell module and concentrating solar power generation system |
-
2022
- 2022-10-24 NL NL2033383A patent/NL2033383B1/en active
-
2023
- 2023-10-03 WO PCT/NL2023/050514 patent/WO2024091112A1/en not_active Ceased
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008004889A1 (en) * | 2006-07-04 | 2008-01-10 | Norsk Solkraft As | Photovoltaic apparatus |
| US20120060921A1 (en) * | 2009-06-30 | 2012-03-15 | Lg Innotek Co., Ltd. | Solar Cell Apparatus |
| US20110017265A1 (en) * | 2009-07-23 | 2011-01-27 | Farrell James F | Photovoltaic module with conductive cooling and enhanced reflection |
| KR20130056115A (en) * | 2011-11-21 | 2013-05-29 | 엘지이노텍 주식회사 | Solar cell module |
| US20140332074A1 (en) * | 2013-05-13 | 2014-11-13 | Win Win Precision Technology Co., Ltd. | Solar cell module |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2024091112A1 (en) | 2024-05-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101627217B1 (en) | Sollar Cell And Fabrication Method Thereof | |
| KR101144810B1 (en) | Electrode paste for solar cell, solar cell using the paste, and manufacturing method of the solar cell | |
| CN203339177U (en) | Bypass diode for solar battery | |
| KR100850641B1 (en) | High efficiency crystalline silicon solar cell and its manufacturing method | |
| EP2136407A2 (en) | Solar cell, solar module andsystem and fabrication method thereof | |
| KR101895025B1 (en) | Solar cell module and manufacturing method thereof | |
| US20190088805A1 (en) | Solar cell | |
| CN102257636A (en) | Photovoltaic device with back side contacts | |
| EP2538447B1 (en) | Solar cell and method for manufacturing the same | |
| US11824130B2 (en) | Solar cell having a plurality of sub-cells coupled by cell level interconnection | |
| CN102576758A (en) | Solar power generation apparatus and manufacturing method thereof | |
| KR101664482B1 (en) | Apparatus for solar power generation and method of fabricating the same | |
| KR101114099B1 (en) | Solar cell apparatus and method of fabricating the same | |
| KR101114169B1 (en) | Solar cell apparatus | |
| CN104183656B (en) | Solar cell and method for manufacturing the same | |
| NL2033383B1 (en) | Integrated internal heat sink for passively cooling photovoltaic modules | |
| KR102033273B1 (en) | Photovoltaic devices comprising a light absorbing layer and a light absorbing layer | |
| KR102707789B1 (en) | Conductive contacts for polycrystalline silicon features of solar cells | |
| Ebong et al. | Rapid thermal processing of high efficiency n-type silicon solar cells with Al back junction | |
| KR101994692B1 (en) | Solar cell and manufacturing method thereof | |
| KR20170013160A (en) | Solar cell | |
| KR101223021B1 (en) | Method of preparing solar cell and solar cell | |
| EP4646061A2 (en) | Device and process for forming high durability multijunction solar cells | |
| CN103053030B (en) | Solar cell and solar cell module including the solar cell | |
| KR102053141B1 (en) | Solar cell and manufacturing method thereof |