NL2008872C2 - Biodegradable composite paper materials. - Google Patents
Biodegradable composite paper materials. Download PDFInfo
- Publication number
- NL2008872C2 NL2008872C2 NL2008872A NL2008872A NL2008872C2 NL 2008872 C2 NL2008872 C2 NL 2008872C2 NL 2008872 A NL2008872 A NL 2008872A NL 2008872 A NL2008872 A NL 2008872A NL 2008872 C2 NL2008872 C2 NL 2008872C2
- Authority
- NL
- Netherlands
- Prior art keywords
- layer
- woven
- cardboard
- laminate
- sheet
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims description 54
- 239000002131 composite material Substances 0.000 title description 10
- 239000010410 layer Substances 0.000 claims description 57
- 239000011111 cardboard Substances 0.000 claims description 29
- 229910052751 metal Inorganic materials 0.000 claims description 27
- 239000002184 metal Substances 0.000 claims description 27
- 239000000758 substrate Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 19
- 238000004806 packaging method and process Methods 0.000 claims description 10
- 239000011087 paperboard Substances 0.000 claims description 8
- 239000011247 coating layer Substances 0.000 claims description 6
- 239000000853 adhesive Substances 0.000 claims description 5
- 230000001070 adhesive effect Effects 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 238000003475 lamination Methods 0.000 claims description 4
- 239000012790 adhesive layer Substances 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims description 3
- 239000001913 cellulose Substances 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 2
- 239000002657 fibrous material Substances 0.000 claims description 2
- 238000005240 physical vapour deposition Methods 0.000 claims description 2
- 239000004744 fabric Substances 0.000 claims 1
- 238000009459 flexible packaging Methods 0.000 claims 1
- 238000004080 punching Methods 0.000 claims 1
- 238000007740 vapor deposition Methods 0.000 claims 1
- 239000000123 paper Substances 0.000 description 26
- 239000011248 coating agent Substances 0.000 description 17
- 238000000576 coating method Methods 0.000 description 17
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 238000007639 printing Methods 0.000 description 5
- 239000011888 foil Substances 0.000 description 4
- 239000000976 ink Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 241000887125 Chaptalia nutans Species 0.000 description 3
- 239000004411 aluminium Substances 0.000 description 3
- 238000003490 calendering Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 3
- 229910052622 kaolinite Inorganic materials 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- -1 polyethylene terephthalate Polymers 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920001131 Pulp (paper) Polymers 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000003851 corona treatment Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000004049 embossing Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000002648 laminated material Substances 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 241000274582 Pycnanthus angolensis Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000005030 aluminium foil Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- UMUXBDSQTCDPJZ-UHFFFAOYSA-N chromium titanium Chemical compound [Ti].[Cr] UMUXBDSQTCDPJZ-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011140 metalized polyester Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000010023 transfer printing Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/10—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B29/00—Layered products comprising a layer of paper or cardboard
- B32B29/002—Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B29/00—Layered products comprising a layer of paper or cardboard
- B32B29/002—Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B29/005—Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material next to another layer of paper or cardboard layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B29/00—Layered products comprising a layer of paper or cardboard
- B32B29/06—Layered products comprising a layer of paper or cardboard specially treated, e.g. surfaced, parchmentised
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H1/00—Paper; Cardboard
- D21H1/02—Multi-ply material finished plies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/12—Coating on the layer surface on paper layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/20—Inorganic coating
- B32B2255/205—Metallic coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/716—Degradable
- B32B2307/7163—Biodegradable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/40—Closed containers
- B32B2439/62—Boxes, cartons, cases
Landscapes
- Laminated Bodies (AREA)
- Paper (AREA)
- Wrappers (AREA)
Description
BIODEGRADABLE COMPOSITE PAPER MATERIALS FIELD OF THE INVENTION
The present invention relates to a biodegradable multilayered paperboard 5 composite for folding cartons. The present invention further relates to a process for the manufacture of such composite materials, and to containers comprising the novel composite materials.
BACKGROUND OF THE INVENTION
Laminated paperboard materials are ubiquitously used. They are usually 10 multiply composites prepared by lamination of cartonboard with aluminium foil or optionally metallised polymeric materials, such as polyethylene terephthalate (PET) or similar polyesters, or polyolefins, which provide the composite material with a highly glossy surface, as for instance disclosed in US-A-3,972,467, GB-A-1218042 or US-A-3,416,411. Recent approaches to make such materials biodegradable 15 typically involve the use of biodegradable polymers instead of the PET, as for instance the laminate disclosed in US-A-6312823.
For metallised folding box applications, usually a cartonboard grade referred to as white back Folding Box Board, also referred herein as GD 1, GD 2, GC1 and GC2, in line with DIN 19303 is employed, which typically is a white back multiply 20 construction prepared from layers of mechanical pulp sandwiched between layers of bleached chemical pulp, which are kaolinite pigment coated on the outside layer. GC refers to virgin fibre board, while GD contains recycling fibres.
The white back cartonboard is usually an off-machine cast coated cartonboard, which has been calendered by highly polished chromium plated 25 cylinder to give a very high gloss and/or coloured finish. Typically, such cartonboards, which is at least single-sidedly coated with a kaolinite coating, and of a grammage of 160 to 350 grams per square meter (g/m2)are employed, onto which a vacuum metallised PET foil of typically 12 pm thickness is laminated with a suitable adhesive.
The role of the cartonboard in such composites is largely to provide 30 mechanical properties, such as stiffness at a given flexibility and printability, which requires the use single-sidedly coated cartonboard of a sufficiently high thickness.
While ubiquitously employed, the metallised polyester foil/cartonboard composites are however not easily, or not at all biodegradable, while also not recyclable due to the differing nature of its components. Yet further, as polyester 2 material is typically based on petrochemicals, the material is not sustainably long term available. Yet further, the cardboard is required to be a sufficiently high thickness, since the mechanical strength of the material is largely dictated by the stiffness of the cardboard component, while the polyester foil primarily increases 5 tensile strength. However, the PET surface, due to the inherent low surface tension, may cause issues during overprinting.
Accordingly, there remains the need for a composite material for flexible coating, which is overprintable, but also fully biologically degradable, as well as fully recyclable.
10 SUMMARY OF THE INVENTION
The present invention relates to a biodegradable multilayer laminate for flexible product packaging, comprising: a cardboard layer; and (b) a non-woven base material layer comprising cellulosic material, further comprising a metal layer having a thickness of in the range of from 10 to 250 nm deposited on a first surface, wherein 15 the non-woven base material layer is laminated to the cardboard layer on a second, non-metalized surface.
The present invention further pertains to a process for preparing a multilayered cardboard material for folding box packaging according to any one of claims 1 to 7, comprising the steps of: i) applying a metal layer by vacuum vapour 20 deposition on a non-woven substrate, and ii) laminating a cardboard substrate to the non-woven substrate on the non-metalized surface; and to the materials and boxes thus obtainable.
The cardboard layer according to the invention preferably has a gram mage in the range of from 200 to 500 g/m2 according to ISO EN536.
25 Short Description of the Figures
Figure 1 depicts the layer built-up of a preferred embodiment of the subject invention. Herein, a laminate (1) is composed of a cardboard layer 13, an intermediate bonding layer 14, a paper layer 12 and a metal layer 11.
Detailed Description of the Invention 30 The present invention provides for laminates that are not only biodegradable, but at the same time also permit to reduce the laminated weight due to the higher inherent stiffness at lower layer thickness; it allows easy embossing, provide for a high scratch resistance due to the higher surface hardness of the paper layer. It further also allows the use of easily obtainable grades of carton board and/or paper 3 that do not require extensive bleaching and can use more recycled fibres, thereby improving the environmental foot print of such materials, as exemplified by the use of thin GK carton board instead of thicker GD or GC1/S or GC2/S grade carton boards.
The non-woven sheetlike substrate (b) preferably is a single side coated sheet-5 like non-woven cellulosic material, or a double side coated sheet-like non-woven cellulosic material, more preferably C1/S and C2/S paper or cardboard. The non-woven material preferably comprises a cellulosic material, preferably paper of cardboard.
The non-woven sheetlike substrate preferably comprises a layer of paper or 10 other cellulose-based material. The layer preferably has a grammage of from 20 to 134 g/m2, preferably from 30 to 130 g/m2, more preferably from 40 to 70 g/m2, yet more preferably of from 45 to 65 g/m2, and most preferably of from 50 to 55 g/m2.
The paper or other cellulose-based material may be unbleached, or bleached, and preferably is coated. It may further carry one or more coating layers, but 15 preferably only has been coated with a kaolinite (clay) coating prior to the metalizing step.
Typical coated paper materials include so-called C/1S and C/2S papers, which is used to indicate on which side of a particular paper a coating is applied. C/1S indicates "coated on one side." C/2S indicates "coated on two sides”.
20 The paper material preferably is approved for use with the food materials to be packaged, such as by FDA approval. The front side, i.e. the side facing the outside of the container, may advantageously be printed in conventional offset, flexo or gravure print.
The metal layer preferably is deposited by a physical vapour deposition process 25 onto the non-woven base material prior to the lamination.
Paper or carton or card board bulk density can typically be calculated by dividing the grammage by the caliper (also known as base weight, and thickness respectively). The latter are term typically used in the pulp and paper industry to denote a measure of mass of the product per unit of area for a type of paper or 30 paperboard.
The term "bulk density" is not used in its traditional sense of mass per unit volume. "Paper density", rather, is a measure of the area density.
In the pulp and paper industry, it is common to set a commercial paper machine to produce paper to a target paper density. Paper density can also be used to 4 distinguish paper from paperboard as the latter usually has a grammage greater than 134 g/m2. whereas paper has a grammage of 134 g/m2 or below.
Typically, the cardboard according to the present invention has a grammage in 5 the range of from 200 to 500 g/m2, preferably in the range of from 250 to 400 g/m2, as determined according to ISO EN536, and expressed in grams per square metre.
The caliper or thickness of the card board is preferably in the range of from 200 to 600 pm, more preferably in the range of from 225 to 575 pm, as measured according to EN 20534, and expressed in micrometres. The cardboard layer is 10 preferably an unbleached, cost-efficient cardboard, such as GK (“Graukarton” = grey cartonboard) unbleached card board. Such materials are known as GK unlined grey board, or calendered GK unlined grey board. The overall bulk density of the cardboard material according to the invention is preferably in the range of from 1.0 to 4.0, as determined according to EN 20534.
15 The choice of layer combinations imparts flexibility in the manufacturing of a laminated material according to the invention. In some cases, it may be desired to have the more natural appearance of a more brownish coloured cardboard towards the inside, whereby an unbleached paper may be chosen also for the second, outer paper layer.
20 The vacuum deposited metal typically adheres to the surface of the non- woven material. The resulting metal coating thickness typically is in a range of from 40-3000 Angstrom, preferably at least 50, more preferably at least 100 Angstrom, but may generally be in the range of from 10 to 250 nm.
The metal layer preferably comprises aluminium. Other metals or alloys may 25 be employed where desired, with aluminium being the most preferred.
The non-woven material typically is coated prior to printing. Preferably the material is coated prior to the metallizing step, and the metal layer then coated with a topcoat prior to overprinting.
The application process of the coating to a substrate is preferably done by 30 means of one or more optionally engraved cylinders, ensuring the right amount of drying energy and humidification steps are applied to the substrate. The machine may use corona treatment to regulate the surface energy of the substrate prior to coating. The engraved cylinder(s) are preferably housed in a closed chamber, more preferably in overpressure, and advantageously use doctor blades for the application.
5
The application may be performed in a single, double, or multiple layers, preferably in a single or double layer.
The above described laminate structure may also comprise one or more additional layers wherein these layers may independently comprise a further barrier 5 coating, and an adhesive or tie material.
The non-woven sheetlike substrate preferably is laminated to the cardboard layer. This may advantageously be achieved by the use of an intermediate bonding layer.
The intermediate bonding layer may be an adhesive layer or coating, either 10 solvent borne, water borne, such as highly biodegradable adhesive materials, e.g. starch based adhesives, or neat. Preferably, according to a particularly cost-efficient and simple embodiment of the laminated material, the intermediate bonding layer is a layer of an extrusion laminated thermoplastic polymer, preferably a heat melt polyolefin copolymer, e.g. a coextrudable polyethylene copolymer that is also 15 biodegradable.
The present invention further relates to a process for preparing a multilayered cardboard material for folding box packaging, comprising the steps of: i) applying a metal layer by vacuum vapour deposition on a non-woven substrate, and ii) laminating a cardboard substrate to the non-woven substrate on the non-metalized 20 surface. Preferably, the non-woven base material is a single sidedly coated sheetlike non-woven cellulosic material, or a double side coated sheet-like non-woven cellulosic material. It may comprise fibrous material such as tissue, paper or cardboard.
The non-woven base layer is preferably subjected to a high vacuum 25 metallization process to coat the exposed coating layer surface with a thin metallic surface of a metal. In this high vacuum metalizing process, the metal is vaporized and deposited on the substrate. Aluminium is particularly well suited for this invention, but other metals such as silver, tin, zinc, gold, platinum, titanium, gold, lead, nickel and tantalum, as well as alloys thereof, such as chromium titanium may also 30 preferably be employed.
The metallic layer may serve a number of functions besides its decorative purpose, since it creates a brilliant metallic surface. Applicants have found that the combination of a first coating layer according to the invention, followed by the metal 6 layer serves as a barrier coating which permits a simple paper MVTR and OTR values that are otherwise not achievable for coated paper materials.
The deposited metal adheres to the surface of the first coating. The resulting metal coating thickness typically is in a range of from 40-3000 Angstrom, preferably 5 at least 50, more preferably at least 100 Angstrom, but may generally be in the range of from 10 to 250 nm.
The resulting metal-coated substrates may be prone to oxidation, which may cause adherence problems in subsequent treatments and applications, for instance label printing. Furthermore, the surface is prone to scratching or damages.
10 Accordingly, in order to convert the metallised substrate obtained in step i) into an easily overprintable substrate, a topcoat, mostly a clear coat, may advantageously be applied to the metallised substrate in optional step iii). Suitable clear coats are for instance disclosed in US3,677,792 and WO00/77300. Preferably, the metallised substrate may be subjected to calendaring to increase smoothness 15 prior to, after the base coat application, or after the metallization step. The prefarbly highly overprintable top coat is applied to the surface of the metallic layer to enhance its printability and to reduce potential corrosion. The top coat may be a solvent based coating, a water based coating or otherwise based coating. The topcoat is chosen such that it preferably does not affect the metal layer, the base coat, or the substrate 20 in any significant way, thus avoiding for instance delamination or corrosion of the metal layer.
The application process of the coating to a substrate is preferably done by means of one or more optionally engraved cylinder(s), ensuring the right amount of drying energy and humidification steps are applied to the substrate. The machine 25 may use corona treatment to regulate the surface energy of the substrate prior to coating. The engraved cylinder(s) are preferably housed in a closed chamber, more preferably in overpressure, and advantageously use doctor blades for the application. The application may be performed in a single, double, or multiple layers, preferably in a single or double layer.
30 The topcoat preferably provides the sheet with physical characteristics that result in a final sheet having the desired characteristics of good appearance, high gloss, high metal adhesion, satisfactory printability, high wet rub, high dry and wet flexibility, and other factors such as low wet expansivity, curl stability, corrosion resistance, excellent ink retention, and/or short wash off/deglueing. Yet further, the 7 topcoat should be overprintable, i.e. allow application of printing inks in any suitable printing process, without causing compatibility issues or defaults, such as wetting problems. The overprintability of topcoats is an important issue in the area of packaging and labelling in applications such as ink printing, hot foil stamping and 5 thermal transfer printing.
Clear coats usually applied for metallized substrates are known to be difficult to overprint, due to the inherent low surface tension, and the potential presence of waxes and silicone additives as flowing aids and/or defoamers in the formulations. Accordingly, the top coat employed in the present process is overprintable, i.e. 10 providing good adhesion to inks when printed onto the topcoat and properly cured, and substantially without surface defects.
The top coat typically has a dry thickness of between 10 pm and 0.5 pm, preferably less than 5 pm, more preferably less than 4 pm, and most preferably less than 3 pm. The top coat preferably has a dry thickness of at least 0.5 pm, more 15 preferably at least 0.6 pm, and most preferably at least 0.7 pm. The top coat typically is applied at a solids content of between 6 and 0.5 g/m2, preferably between 3 and 0.6 g/m2, more preferably between 2 and 0.85 g/m2. The process further comprises overprinting the metal layer of top coat, either after lamination or, before; which is typically employed to print brand and product names, as well as techyncial 20 specifications onto the packaging.
The process further preferably comprising cutting, embossing and/or perforating the thus obtained sheetlike structure.
The thus obtainable cut-outs may be folded to obtain one or more folded packaging boxes. The present invention also relates to the use of a substrate or 25 packaging according to the invention for the preparation of folding boxes. The term folding boxes herein refers to any kind of packaging that involves folding up a sheetlike sturcure, e.g. rectangular boxes, such as for medication or personal hygiene products and/or banderols such as those for food and bottle packaging.
Those skilled in the art will appreciate that the invention described herein is 30 susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.
Claims (18)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| NL2008872A NL2008872C2 (en) | 2012-05-24 | 2012-05-24 | Biodegradable composite paper materials. |
| BE2013/0361A BE1021321B1 (en) | 2012-05-24 | 2013-05-23 | BIODEGRADABLE PAPER COMPOSITE MATERIALS |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| NL2008872 | 2012-05-24 | ||
| NL2008872A NL2008872C2 (en) | 2012-05-24 | 2012-05-24 | Biodegradable composite paper materials. |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| NL2008872C2 true NL2008872C2 (en) | 2013-11-26 |
Family
ID=49033745
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| NL2008872A NL2008872C2 (en) | 2012-05-24 | 2012-05-24 | Biodegradable composite paper materials. |
Country Status (2)
| Country | Link |
|---|---|
| BE (1) | BE1021321B1 (en) |
| NL (1) | NL2008872C2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20240217716A1 (en) * | 2022-12-30 | 2024-07-04 | Graficas Salaet, S.A. | Biodegradable, recyclable and heat-sealable material suitable for food use and recyclable food container made of said material |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA781436A (en) * | 1968-03-26 | S. Riedinger Walter | Production of paperboard laminates | |
| US3297515A (en) * | 1965-08-27 | 1967-01-10 | Velsicol Chemical Corp | Laminated products and a process for the production thereof |
| US3972467A (en) * | 1974-08-06 | 1976-08-03 | International Paper Company | Paper-board laminate |
| CA1160552A (en) * | 1980-04-25 | 1984-01-17 | Helmut Schmoock | Method for producing a laminate combination |
| US4473422A (en) * | 1981-03-11 | 1984-09-25 | Transfer Print Foils, Inc. | Metalized paper or board product and method of preparation |
| JPS59222873A (en) * | 1983-06-01 | 1984-12-14 | 本州製紙株式会社 | Metalized paper for label |
| US6780480B2 (en) * | 1995-12-28 | 2004-08-24 | Latentier | Laminated package having metalized paper |
| US20020164453A1 (en) * | 2000-10-23 | 2002-11-07 | Babcock Bruce W. | Printable composite paperboard for packaging |
-
2012
- 2012-05-24 NL NL2008872A patent/NL2008872C2/en not_active IP Right Cessation
-
2013
- 2013-05-23 BE BE2013/0361A patent/BE1021321B1/en not_active IP Right Cessation
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20240217716A1 (en) * | 2022-12-30 | 2024-07-04 | Graficas Salaet, S.A. | Biodegradable, recyclable and heat-sealable material suitable for food use and recyclable food container made of said material |
Also Published As
| Publication number | Publication date |
|---|---|
| BE1021321B1 (en) | 2015-10-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7772134B2 (en) | paper laminate | |
| EP4196636B1 (en) | Multi-layer metallized paper-based packaging material | |
| CN110678325B (en) | Laminated packaging material, packaging container made therefrom and method for making laminated material | |
| CN112368443B (en) | Repulpable Packaging Materials | |
| CN108290370B (en) | Laminated packaging material and packaging container produced therefrom | |
| CN108290405B (en) | Method for manufacturing laminated packaging material, laminated packaging material and packaging container manufactured thereby | |
| CN108290371B (en) | Method for producing laminated packaging material, packaging material obtained by this method and packaging container produced therefrom | |
| JP2018538170A5 (en) | ||
| CN110678324B (en) | Laminated packaging material, packaging container made therefrom and method of making a laminated material | |
| EP4168625B1 (en) | Barrier paper or board | |
| JP4724778B1 (en) | Polyvinyl alcohol laminated paper manufacturing method, polyvinyl alcohol laminated paper and decorative box | |
| NL2006977C2 (en) | Method for producing coated vacuum metallized substrates with high vapour and oxygen barrier properties. | |
| WO2023187630A1 (en) | A method for manufacturing a vacuum coated paper | |
| JP7495810B2 (en) | Metal-deposited cellophane laminate and its manufacturing method | |
| NL2008872C2 (en) | Biodegradable composite paper materials. | |
| SE545699C2 (en) | A method for manufacturing a paper or paperboard based packaging laminate | |
| JP7495811B2 (en) | Metal-deposited cellophane laminated paper and sheets and packages using the same | |
| JP7495809B2 (en) | Metal-deposited cellophane laminate and its manufacturing method | |
| JP7264544B1 (en) | paper with metallic luster | |
| JP5017741B2 (en) | Packaging material having hot water resistance, and composite container and bag-like container using the same | |
| SE546407C2 (en) | A method for manufacturing a coated paper or paperboard product | |
| JPS61215793A (en) | Metal vapor deposited paper | |
| JP2023084443A (en) | Decorative sheet, packaging box and package | |
| JP2024036462A (en) | An interleaving paper, a package comprising the interleaving paper, and a processed paper product obtained by processing the interleaving paper | |
| WO2025093519A1 (en) | Multilayer metallized paper-based packaging material |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MM | Lapsed because of non-payment of the annual fee |
Effective date: 20210601 |