MX2018011305A - Técnicas para corregir el desvío de entrenamiento lingüístico en los datos de entrenamiento. - Google Patents
Técnicas para corregir el desvío de entrenamiento lingüístico en los datos de entrenamiento.Info
- Publication number
- MX2018011305A MX2018011305A MX2018011305A MX2018011305A MX2018011305A MX 2018011305 A MX2018011305 A MX 2018011305A MX 2018011305 A MX2018011305 A MX 2018011305A MX 2018011305 A MX2018011305 A MX 2018011305A MX 2018011305 A MX2018011305 A MX 2018011305A
- Authority
- MX
- Mexico
- Prior art keywords
- model
- training
- training data
- sentences
- language
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/33—Querying
- G06F16/332—Query formulation
- G06F16/3329—Natural language query formulation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2455—Query execution
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
- G06N3/0442—Recurrent networks, e.g. Hopfield networks characterised by memory or gating, e.g. long short-term memory [LSTM] or gated recurrent units [GRU]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
- G06N3/0455—Auto-encoder networks; Encoder-decoder networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/047—Probabilistic or stochastic networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0475—Generative networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
- G06N5/046—Forward inferencing; Production systems
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Databases & Information Systems (AREA)
- Probability & Statistics with Applications (AREA)
- Human Computer Interaction (AREA)
- Machine Translation (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
En los sistemas de asistente automatizado, se utiliza un modelo de aprendizaje profundo en forma de un clasificador de memoria larga a corto plazo (LSTM) para asignar preguntas a clases, con cada clase teniendo una respuesta depurada manualmente. Un equipo de expertos crea manualmente los datos de entrenamiento utilizados para entrenar a este clasificador. Confiar en la depuración humana a menudo hace que dichos desvíos de entrenamiento lingüístico se arraiguen en los datos de entrenamiento, ya que cada individuo tiene un estilo específico de escribir el lenguaje natural y usa algunas palabras en un contexto específico solamente. Los modelos profundos terminan aprendiendo estos desvíos, en lugar de las palabras conceptuales centrales de las clases objetivo. Para corregir estos desvíos, las oraciones significativas se generan automáticamente usando un modelo generativo, y luego se usan para entrenar un modelo de clasificación. Por ejemplo, se utiliza un auto-codificador variacional (VAE) como modelo generativo para generar oraciones novedosas y se utiliza un modelo de lenguaje (LM) para seleccionar oraciones basadas en la probabilidad.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IN201721033035 | 2017-09-18 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| MX2018011305A true MX2018011305A (es) | 2019-07-04 |
Family
ID=65721524
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| MX2018011305A MX2018011305A (es) | 2017-09-18 | 2018-09-17 | Técnicas para corregir el desvío de entrenamiento lingüístico en los datos de entrenamiento. |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US11373090B2 (es) |
| JP (1) | JP6606243B2 (es) |
| AU (1) | AU2018232914B2 (es) |
| BR (1) | BR102018068925A2 (es) |
| CA (1) | CA3017655C (es) |
| MX (1) | MX2018011305A (es) |
Families Citing this family (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107832439B (zh) * | 2017-11-16 | 2019-03-08 | 百度在线网络技术(北京)有限公司 | 多轮状态追踪的方法、系统及终端设备 |
| US11270082B2 (en) | 2018-08-20 | 2022-03-08 | Verint Americas Inc. | Hybrid natural language understanding |
| US11087184B2 (en) * | 2018-09-25 | 2021-08-10 | Nec Corporation | Network reparameterization for new class categorization |
| US10909671B2 (en) * | 2018-10-02 | 2021-02-02 | International Business Machines Corporation | Region of interest weighted anomaly detection |
| US11217226B2 (en) * | 2018-10-30 | 2022-01-04 | Verint Americas Inc. | System to detect and reduce understanding bias in intelligent virtual assistants |
| US10963645B2 (en) * | 2019-02-07 | 2021-03-30 | Sap Se | Bi-directional contextualized text description |
| US11003861B2 (en) | 2019-02-13 | 2021-05-11 | Sap Se | Contextualized text description |
| US11604927B2 (en) | 2019-03-07 | 2023-03-14 | Verint Americas Inc. | System and method for adapting sentiment analysis to user profiles to reduce bias |
| US11922301B2 (en) * | 2019-04-05 | 2024-03-05 | Samsung Display Co., Ltd. | System and method for data augmentation for trace dataset |
| CN110090016B (zh) * | 2019-04-28 | 2021-06-25 | 心医国际数字医疗系统(大连)有限公司 | 定位r波位置的方法及系统、使用lstm神经网络的r波自动检测方法 |
| US20200380309A1 (en) * | 2019-05-28 | 2020-12-03 | Microsoft Technology Licensing, Llc | Method and System of Correcting Data Imbalance in a Dataset Used in Machine-Learning |
| CN110297886A (zh) * | 2019-05-31 | 2019-10-01 | 广州大学 | 基于短文本的oj题目分类器构建方法及题目模拟方法 |
| WO2020247586A1 (en) | 2019-06-06 | 2020-12-10 | Verint Americas Inc. | Automated conversation review to surface virtual assistant misunderstandings |
| US10937213B2 (en) * | 2019-06-27 | 2021-03-02 | Fuji Xerox Co., Ltd. | Systems and methods for summarizing and steering multi-user collaborative data analyses |
| CN110647627B (zh) * | 2019-08-06 | 2022-05-27 | 北京百度网讯科技有限公司 | 答案生成方法及装置、计算机设备与可读介质 |
| CN110580289B (zh) * | 2019-08-28 | 2021-10-29 | 浙江工业大学 | 一种基于堆叠自动编码器和引文网络的科技论文分类方法 |
| CN110795913B (zh) * | 2019-09-30 | 2024-04-12 | 北京大米科技有限公司 | 一种文本编码方法、装置、存储介质及终端 |
| US11710045B2 (en) | 2019-10-01 | 2023-07-25 | Samsung Display Co., Ltd. | System and method for knowledge distillation |
| CN110941964B (zh) | 2019-12-11 | 2023-08-15 | 北京小米移动软件有限公司 | 双语语料筛选方法、装置及存储介质 |
| US11270080B2 (en) | 2020-01-15 | 2022-03-08 | International Business Machines Corporation | Unintended bias detection in conversational agent platforms with machine learning model |
| US11610079B2 (en) * | 2020-01-31 | 2023-03-21 | Salesforce.Com, Inc. | Test suite for different kinds of biases in data |
| US11631036B2 (en) | 2020-05-11 | 2023-04-18 | Fujitsu Limited | Bias mitigation in machine learning pipeline |
| CN111624606B (zh) * | 2020-05-27 | 2022-06-21 | 哈尔滨工程大学 | 一种雷达图像降雨识别方法 |
| CN111738364B (zh) * | 2020-08-05 | 2021-05-25 | 国网江西省电力有限公司供电服务管理中心 | 一种基于用户负荷与用电参量相结合的窃电检测方法 |
| KR20220118123A (ko) * | 2021-02-18 | 2022-08-25 | 현대자동차주식회사 | 질의응답 시스템 및 그 제어 방법 |
| US11947908B2 (en) * | 2021-04-07 | 2024-04-02 | Baidu Usa Llc | Word embedding with disentangling prior |
| CN113204641B (zh) * | 2021-04-12 | 2022-09-02 | 武汉大学 | 一种基于用户特征的退火注意力谣言鉴别方法及装置 |
| US12374321B2 (en) * | 2021-06-08 | 2025-07-29 | Microsoft Technology Licensing, Llc | Reducing biases of generative language models |
| CN113535549B (zh) * | 2021-06-22 | 2024-08-20 | 科大讯飞股份有限公司 | 测试数据的扩充方法、装置、设备及计算机可读存储介质 |
| KR102729294B1 (ko) * | 2021-11-01 | 2024-11-11 | 부산대학교 산학협력단 | 실시간 배치셋 기반으로 인공지능 학습 데이터셋의 공정성을 보정하는 장치 및 그 방법 |
| US12032564B1 (en) * | 2023-01-03 | 2024-07-09 | Sap Se | Transforming natural language request into enterprise analytics query using fine-tuned machine learning model |
| CN120077370A (zh) * | 2023-06-01 | 2025-05-30 | 谷歌有限责任公司 | 使用语言模型从查询中生成检索词元 |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7603330B2 (en) * | 2006-02-01 | 2009-10-13 | Honda Motor Co., Ltd. | Meta learning for question classification |
| US20140214401A1 (en) | 2013-01-29 | 2014-07-31 | Tencent Technology (Shenzhen) Company Limited | Method and device for error correction model training and text error correction |
| US10909329B2 (en) * | 2015-05-21 | 2021-02-02 | Baidu Usa Llc | Multilingual image question answering |
| JP6618735B2 (ja) * | 2015-08-31 | 2019-12-11 | 国立研究開発法人情報通信研究機構 | 質問応答システムの訓練装置及びそのためのコンピュータプログラム |
| US20180357531A1 (en) | 2015-11-27 | 2018-12-13 | Devanathan GIRIDHARI | Method for Text Classification and Feature Selection Using Class Vectors and the System Thereof |
| CN109792402B (zh) * | 2016-07-08 | 2020-03-06 | 艾赛普公司 | 自动响应用户的请求 |
| WO2019000326A1 (en) * | 2017-06-29 | 2019-01-03 | Microsoft Technology Licensing, Llc | Generating responses in automated chatting |
-
2018
- 2018-09-17 MX MX2018011305A patent/MX2018011305A/es unknown
- 2018-09-18 US US16/134,360 patent/US11373090B2/en active Active
- 2018-09-18 CA CA3017655A patent/CA3017655C/en active Active
- 2018-09-18 JP JP2018173475A patent/JP6606243B2/ja active Active
- 2018-09-18 BR BR102018068925-8A patent/BR102018068925A2/pt unknown
- 2018-09-18 AU AU2018232914A patent/AU2018232914B2/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| BR102018068925A2 (pt) | 2019-05-28 |
| CA3017655C (en) | 2021-04-20 |
| CA3017655A1 (en) | 2019-03-18 |
| AU2018232914B2 (en) | 2020-07-02 |
| JP2019057280A (ja) | 2019-04-11 |
| JP6606243B2 (ja) | 2019-11-13 |
| US20190087728A1 (en) | 2019-03-21 |
| AU2018232914A1 (en) | 2019-04-04 |
| US11373090B2 (en) | 2022-06-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| MX2018011305A (es) | Técnicas para corregir el desvío de entrenamiento lingüístico en los datos de entrenamiento. | |
| CL2015002614A1 (es) | Predicción de texto basados en múltiples modelos de lenguaje. | |
| Chandiok et al. | CIT: Integrated cognitive computing and cognitive agent technologies based cognitive architecture for human-like functionality in artificial systems | |
| Batrova et al. | Bilingual teaching high school students of information communication technologies by means of the Russian and English languages at schools of Tatarstan | |
| Hapsari et al. | The Application of Riddle Game in Teaching Speaking for the Eighth Grade Students of MTsN Kedunggalar Ngawi in the Schooling Year 2014/2015 | |
| González-Flores et al. | Here to Stay After the Pandemic: Sentiment Analysis of Higher Education Teachers at UNAM | |
| Lozano et al. | Linking education for sustainable development and corporate sustainability: developing an organisational change management for corporate sustainability course | |
| Anna | Architecture of modern educational environment: a global evolutionary approach | |
| Andino Jaramillo | Teacher training: Pillar for the identification and bullying management | |
| Apte | Talent in Transition: The Dynamics and Constants of Transience | |
| Yuliansyah et al. | Teaching Vocabulary to Junior High School Students by Using Kick Me Technique | |
| Toala-Sanchez et al. | Cognitive Abilities and Performance in Database Design: An Observational Study | |
| Burton | Book Review: returns: becoming indigenous in the twenty-first century by James Clifford | |
| Rahmasari | Using Newspapers as Learning Media to Teach Reading Skills | |
| ANDEWI | THE STUDENTS’PERCEPTIONS OF RECIPROCAL TEACHING: STUDENTS’ANXIETY AND SELF-EFFICACY IN READING | |
| Sujatmoko et al. | The values of local wisdom in Dedeng: Avocal tradition of Malay Langkatcommunity | |
| Siliezar | RWU and Grupo Puntacana to Partner in Building Ornamental Fish Hatchery in Dominican Republic | |
| Woolson | Teaching Ecocriticism and the Global South | |
| SA119410256B1 (ar) | نظام للتعليم عن بعد قائم على التواصل غير المتزامن | |
| Melinescu | THE IMPROVEMENT OF EDUCATIONAL COMMUNICATION THROUGH ESPERE METHOD | |
| Knowles | Aubrey Blanche Atlassian global head of diversity | |
| Drljača Margić et al. | Language in EMI as a motivating factor, perceived barrier and essential prerequisite | |
| Biasin et al. | Adult Education Policies in Italy | |
| Delgado | WOMEN ENTREPRENEURSHIP USING THE “WORKING WITH PEOPLE” MODEL: THIS IS A STUDY CASE FROM THE “TEJEMUJERES” BUSINESS CENTER FOR WOMEN, IN THE GUALACEO TOWN, AZUAY PROVINCE OF ECUADOR. | |
| Maluleke | A study of the academic writing proficiency of level one students at the University of Venda |