[go: up one dir, main page]

MX2018000673A - Red neuronal profunda convolucional recurrente para deteccion de objetos. - Google Patents

Red neuronal profunda convolucional recurrente para deteccion de objetos.

Info

Publication number
MX2018000673A
MX2018000673A MX2018000673A MX2018000673A MX2018000673A MX 2018000673 A MX2018000673 A MX 2018000673A MX 2018000673 A MX2018000673 A MX 2018000673A MX 2018000673 A MX2018000673 A MX 2018000673A MX 2018000673 A MX2018000673 A MX 2018000673A
Authority
MX
Mexico
Prior art keywords
neural network
sensor
object detection
convolutional neural
deep convolutional
Prior art date
Application number
MX2018000673A
Other languages
English (en)
Inventor
Nariyambut Murali Vidya
Hotson Guy
Original Assignee
Ford Global Tech Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Tech Llc filed Critical Ford Global Tech Llc
Publication of MX2018000673A publication Critical patent/MX2018000673A/es

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • G05D1/0236Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons in combination with a laser
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30261Obstacle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Multimedia (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Optics & Photonics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Geometry (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Mathematical Physics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Image Analysis (AREA)
  • Traffic Control Systems (AREA)

Abstract

De acuerdo con una modalidad, un sistema incluye un componente de sensor y un componente de detección. El componente de sensor se configura para obtener múltiples cuadros del sensor, donde los múltiples cuadros del sensor comprenden una serie de cuadros del sensor capturados en el transcurso del tiempo. El componente de detección se configura para detectar objetos o características dentro de un cuadro de sensor con una red neuronal. La red neuronal comprende una conexión recurrente que suministra de manera anticipada una indicación de un objeto detectado en un primer cuadro de sensor en una o más capas de la red neuronal para un segundo cuadro de sensor posterior.
MX2018000673A 2017-01-20 2018-01-16 Red neuronal profunda convolucional recurrente para deteccion de objetos. MX2018000673A (es)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/411,656 US20180211403A1 (en) 2017-01-20 2017-01-20 Recurrent Deep Convolutional Neural Network For Object Detection

Publications (1)

Publication Number Publication Date
MX2018000673A true MX2018000673A (es) 2018-11-09

Family

ID=61283567

Family Applications (1)

Application Number Title Priority Date Filing Date
MX2018000673A MX2018000673A (es) 2017-01-20 2018-01-16 Red neuronal profunda convolucional recurrente para deteccion de objetos.

Country Status (6)

Country Link
US (1) US20180211403A1 (es)
CN (1) CN108334081A (es)
DE (1) DE102018101125A1 (es)
GB (1) GB2560620A (es)
MX (1) MX2018000673A (es)
RU (1) RU2018101859A (es)

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11102533B2 (en) * 2017-02-13 2021-08-24 Google Llc Predicting break durations in content streams
US10678244B2 (en) 2017-03-23 2020-06-09 Tesla, Inc. Data synthesis for autonomous control systems
US10460180B2 (en) * 2017-04-20 2019-10-29 GM Global Technology Operations LLC Systems and methods for visual classification with region proposals
US10395144B2 (en) * 2017-07-24 2019-08-27 GM Global Technology Operations LLC Deeply integrated fusion architecture for automated driving systems
US11893393B2 (en) 2017-07-24 2024-02-06 Tesla, Inc. Computational array microprocessor system with hardware arbiter managing memory requests
US10671349B2 (en) 2017-07-24 2020-06-02 Tesla, Inc. Accelerated mathematical engine
US11157441B2 (en) 2017-07-24 2021-10-26 Tesla, Inc. Computational array microprocessor system using non-consecutive data formatting
US11409692B2 (en) 2017-07-24 2022-08-09 Tesla, Inc. Vector computational unit
US10551838B2 (en) * 2017-08-08 2020-02-04 Nio Usa, Inc. Method and system for multiple sensor correlation diagnostic and sensor fusion/DNN monitor for autonomous driving application
DE102017120729A1 (de) * 2017-09-08 2019-03-14 Connaught Electronics Ltd. Freiraumdetektion in einem Fahrerassistenzsystem eines Kraftfahrzeugs mit einem neuralen Netzwerk
US10762396B2 (en) * 2017-12-05 2020-09-01 Utac, Llc Multiple stage image based object detection and recognition
US12326919B2 (en) * 2017-12-05 2025-06-10 Aurora Operations, Inc. Multiple stage image based object detection and recognition
EP3495988A1 (en) 2017-12-05 2019-06-12 Aptiv Technologies Limited Method of processing image data in a connectionist network
US12307350B2 (en) 2018-01-04 2025-05-20 Tesla, Inc. Systems and methods for hardware-based pooling
US10706505B2 (en) * 2018-01-24 2020-07-07 GM Global Technology Operations LLC Method and system for generating a range image using sparse depth data
US11561791B2 (en) 2018-02-01 2023-01-24 Tesla, Inc. Vector computational unit receiving data elements in parallel from a last row of a computational array
US11164003B2 (en) * 2018-02-06 2021-11-02 Mitsubishi Electric Research Laboratories, Inc. System and method for detecting objects in video sequences
US11282389B2 (en) 2018-02-20 2022-03-22 Nortek Security & Control Llc Pedestrian detection for vehicle driving assistance
EP3561726A1 (en) 2018-04-23 2019-10-30 Aptiv Technologies Limited A device and a method for processing data sequences using a convolutional neural network
EP3561727A1 (en) * 2018-04-23 2019-10-30 Aptiv Technologies Limited A device and a method for extracting dynamic information on a scene using a convolutional neural network
US11215999B2 (en) 2018-06-20 2022-01-04 Tesla, Inc. Data pipeline and deep learning system for autonomous driving
US11361457B2 (en) 2018-07-20 2022-06-14 Tesla, Inc. Annotation cross-labeling for autonomous control systems
US11636333B2 (en) 2018-07-26 2023-04-25 Tesla, Inc. Optimizing neural network structures for embedded systems
US20220114807A1 (en) * 2018-07-30 2022-04-14 Optimum Semiconductor Technologies Inc. Object detection using multiple neural networks trained for different image fields
US11562231B2 (en) 2018-09-03 2023-01-24 Tesla, Inc. Neural networks for embedded devices
CN109284699A (zh) * 2018-09-04 2019-01-29 广东翼卡车联网服务有限公司 一种适用车辆碰撞的深度学习方法
CN112970029B (zh) * 2018-09-13 2024-06-07 辉达公司 用于自主机器应用中传感器视盲检测的深度神经网络处理
US11195030B2 (en) * 2018-09-14 2021-12-07 Honda Motor Co., Ltd. Scene classification
US11105924B2 (en) * 2018-10-04 2021-08-31 Waymo Llc Object localization using machine learning
KR20250078625A (ko) 2018-10-11 2025-06-02 테슬라, 인크. 증강 데이터로 기계 모델을 훈련하기 위한 시스템 및 방법
US20200125093A1 (en) * 2018-10-17 2020-04-23 Wellen Sham Machine learning for driverless driving
US11196678B2 (en) 2018-10-25 2021-12-07 Tesla, Inc. QOS manager for system on a chip communications
US11816585B2 (en) 2018-12-03 2023-11-14 Tesla, Inc. Machine learning models operating at different frequencies for autonomous vehicles
US11537811B2 (en) 2018-12-04 2022-12-27 Tesla, Inc. Enhanced object detection for autonomous vehicles based on field view
US10963757B2 (en) * 2018-12-14 2021-03-30 Industrial Technology Research Institute Neural network model fusion method and electronic device using the same
US10977501B2 (en) 2018-12-21 2021-04-13 Waymo Llc Object classification using extra-regional context
US11610117B2 (en) 2018-12-27 2023-03-21 Tesla, Inc. System and method for adapting a neural network model on a hardware platform
US10402692B1 (en) * 2019-01-22 2019-09-03 StradVision, Inc. Learning method and learning device for fluctuation-robust object detector based on CNN using target object estimating network adaptable to customers' requirements such as key performance index, and testing device using the same
US10346693B1 (en) * 2019-01-22 2019-07-09 StradVision, Inc. Method and device for attention-based lane detection without post-processing by using lane mask and testing method and testing device using the same
US10325352B1 (en) * 2019-01-23 2019-06-18 StradVision, Inc. Method and device for transforming CNN layers to optimize CNN parameter quantization to be used for mobile devices or compact networks with high precision via hardware optimization
US10387753B1 (en) * 2019-01-23 2019-08-20 StradVision, Inc. Learning method and learning device for convolutional neural network using 1×1 convolution for image recognition to be used for hardware optimization, and testing method and testing device using the same
US10325185B1 (en) * 2019-01-23 2019-06-18 StradVision, Inc. Method and device for online batch normalization, on-device learning, and continual learning applicable to mobile devices or IOT devices additionally referring to one or more previous batches to be used for military purpose, drone or robot, and testing method and testing device using the same
US10395140B1 (en) * 2019-01-23 2019-08-27 StradVision, Inc. Learning method and learning device for object detector based on CNN using 1×1 convolution to be used for hardware optimization, and testing method and testing device using the same
US10496899B1 (en) * 2019-01-25 2019-12-03 StradVision, Inc. Learning method and learning device for adjusting parameters of CNN in which residual networks are provided for meta learning, and testing method and testing device using the same
US10373323B1 (en) * 2019-01-29 2019-08-06 StradVision, Inc. Method and device for merging object detection information detected by each of object detectors corresponding to each camera nearby for the purpose of collaborative driving by using V2X-enabled applications, sensor fusion via multiple vehicles
CN111771135B (zh) * 2019-01-30 2023-03-21 百度时代网络技术(北京)有限公司 自动驾驶车辆中使用rnn和lstm进行时间平滑的lidar定位
US10373027B1 (en) * 2019-01-30 2019-08-06 StradVision, Inc. Method for acquiring sample images for inspecting label among auto-labeled images to be used for learning of neural network and sample image acquiring device using the same
US10776647B2 (en) * 2019-01-31 2020-09-15 StradVision, Inc. Method and device for attention-driven resource allocation by using AVM to thereby achieve safety of autonomous driving
US10726279B1 (en) * 2019-01-31 2020-07-28 StradVision, Inc. Method and device for attention-driven resource allocation by using AVM and reinforcement learning to thereby achieve safety of autonomous driving
US10997461B2 (en) 2019-02-01 2021-05-04 Tesla, Inc. Generating ground truth for machine learning from time series elements
US11150664B2 (en) 2019-02-01 2021-10-19 Tesla, Inc. Predicting three-dimensional features for autonomous driving
US11567514B2 (en) 2019-02-11 2023-01-31 Tesla, Inc. Autonomous and user controlled vehicle summon to a target
US10956755B2 (en) 2019-02-19 2021-03-23 Tesla, Inc. Estimating object properties using visual image data
EP3928247A1 (en) 2019-02-22 2021-12-29 Google LLC Memory-guided video object detection
IL265818A (en) * 2019-04-02 2020-10-28 Ception Tech Ltd System and method for determining location and orientation of an object in a space
US11643115B2 (en) 2019-05-31 2023-05-09 Waymo Llc Tracking vanished objects for autonomous vehicles
US12051206B2 (en) 2019-07-25 2024-07-30 Nvidia Corporation Deep neural network for segmentation of road scenes and animate object instances for autonomous driving applications
US11885907B2 (en) 2019-11-21 2024-01-30 Nvidia Corporation Deep neural network for detecting obstacle instances using radar sensors in autonomous machine applications
US11532168B2 (en) 2019-11-15 2022-12-20 Nvidia Corporation Multi-view deep neural network for LiDAR perception
US12080078B2 (en) 2019-11-15 2024-09-03 Nvidia Corporation Multi-view deep neural network for LiDAR perception
US12050285B2 (en) 2019-11-21 2024-07-30 Nvidia Corporation Deep neural network for detecting obstacle instances using radar sensors in autonomous machine applications
US11254331B2 (en) * 2020-05-14 2022-02-22 StradVision, Inc. Learning method and learning device for updating object detector, based on deep learning, of autonomous vehicle to adapt the object detector to driving circumstance, and updating method and updating device using the same
EP4027112A1 (en) * 2021-01-11 2022-07-13 Aptiv Technologies Limited Methods and system for determining a location of an object
US12462575B2 (en) 2021-08-19 2025-11-04 Tesla, Inc. Vision-based machine learning model for autonomous driving with adjustable virtual camera
TWI847184B (zh) * 2022-07-08 2024-07-01 和碩聯合科技股份有限公司 物件偵測系統及物件偵測輔助系統

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017015947A1 (en) * 2015-07-30 2017-02-02 Xiaogang Wang A system and a method for object tracking
US20170262996A1 (en) * 2016-03-11 2017-09-14 Qualcomm Incorporated Action localization in sequential data with attention proposals from a recurrent network
CN105869630B (zh) * 2016-06-27 2019-08-02 上海交通大学 基于深度学习的说话人语音欺骗攻击检测方法及系统

Also Published As

Publication number Publication date
RU2018101859A (ru) 2019-07-19
US20180211403A1 (en) 2018-07-26
GB201800836D0 (en) 2018-03-07
CN108334081A (zh) 2018-07-27
GB2560620A (en) 2018-09-19
DE102018101125A1 (de) 2018-07-26

Similar Documents

Publication Publication Date Title
MX2018000673A (es) Red neuronal profunda convolucional recurrente para deteccion de objetos.
MX2018000851A (es) Deteccion de objetos mediante el uso de una red neuronal recurrente y un mapa de elementos concatenados.
WO2017176354A3 (en) Autonomous vehicle, system and method for structural object assessment and manufacture thereof
WO2015177643A3 (en) Systems and methods for braking a vehicle based on a detected object
WO2016073528A3 (en) Image sensor apparatus and method for simultaneously capturing multiple images
MX2016006158A (es) Software de soldadura para deteccion y control de dispositivos y para analisis de datos.
WO2017007775A3 (en) Systems, devices, and methods for episode detection and evaluation
EP3085937A3 (en) System and method for detecting vehicle system faults
WO2017062078A3 (en) Combined intensity and coherent change detection in images
EP2838050A3 (en) Image processing unit, object detection method, object detection program, and vehicle control system
EP4503052A3 (en) Systems and methods for detecting worsening heart failure
IN2014DN06211A (es)
MX2016013661A (es) Inferencia probabilistica mediante el uso de integrales y sumas ponderadas por medio de una funcion hash para el rastreo de objetos.
EP2937757A3 (en) Methods and systems for object detection using multiple sensors
MY176768A (en) Object monitoring system, object monitoring method, and monitoring target extraction program
MY190323A (en) System for inspecting rope of elevator
MX373806B (es) Método de control de un sistema de vigilancia de tránsito.
WO2016066419A3 (de) Verfahren und vorrichtung zur lokalisierung eines fahrzeugs in seinem umfeld
GB2539345A (en) Time lapse electromagnetic monitoring
WO2014144408A3 (en) Systems, methods, and software for detecting an object in an image
MY194370A (en) Sensor for capturing image and method for controlling the same
WO2014140906A3 (en) Systems and methods for providing feedback based on the state of an object
EP3163544A3 (en) Systems and methods for verified threat detection
MX2017015263A (es) Sistema y metodo de verificacion de seguridad.
EP2937255A3 (en) Roll angle estimation device and transport apparatus