MX2018000673A - Red neuronal profunda convolucional recurrente para deteccion de objetos. - Google Patents
Red neuronal profunda convolucional recurrente para deteccion de objetos.Info
- Publication number
- MX2018000673A MX2018000673A MX2018000673A MX2018000673A MX2018000673A MX 2018000673 A MX2018000673 A MX 2018000673A MX 2018000673 A MX2018000673 A MX 2018000673A MX 2018000673 A MX2018000673 A MX 2018000673A MX 2018000673 A MX2018000673 A MX 2018000673A
- Authority
- MX
- Mexico
- Prior art keywords
- neural network
- sensor
- object detection
- convolutional neural
- deep convolutional
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0234—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
- G05D1/0236—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons in combination with a laser
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0238—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
- G05D1/024—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0242—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30248—Vehicle exterior or interior
- G06T2207/30252—Vehicle exterior; Vicinity of vehicle
- G06T2207/30261—Obstacle
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Multimedia (AREA)
- Computing Systems (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Electromagnetism (AREA)
- Automation & Control Theory (AREA)
- Life Sciences & Earth Sciences (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- General Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Optics & Photonics (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Geometry (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Mathematical Physics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Image Analysis (AREA)
- Traffic Control Systems (AREA)
Abstract
De acuerdo con una modalidad, un sistema incluye un componente de sensor y un componente de detección. El componente de sensor se configura para obtener múltiples cuadros del sensor, donde los múltiples cuadros del sensor comprenden una serie de cuadros del sensor capturados en el transcurso del tiempo. El componente de detección se configura para detectar objetos o características dentro de un cuadro de sensor con una red neuronal. La red neuronal comprende una conexión recurrente que suministra de manera anticipada una indicación de un objeto detectado en un primer cuadro de sensor en una o más capas de la red neuronal para un segundo cuadro de sensor posterior.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/411,656 US20180211403A1 (en) | 2017-01-20 | 2017-01-20 | Recurrent Deep Convolutional Neural Network For Object Detection |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| MX2018000673A true MX2018000673A (es) | 2018-11-09 |
Family
ID=61283567
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| MX2018000673A MX2018000673A (es) | 2017-01-20 | 2018-01-16 | Red neuronal profunda convolucional recurrente para deteccion de objetos. |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20180211403A1 (es) |
| CN (1) | CN108334081A (es) |
| DE (1) | DE102018101125A1 (es) |
| GB (1) | GB2560620A (es) |
| MX (1) | MX2018000673A (es) |
| RU (1) | RU2018101859A (es) |
Families Citing this family (65)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11102533B2 (en) * | 2017-02-13 | 2021-08-24 | Google Llc | Predicting break durations in content streams |
| US10678244B2 (en) | 2017-03-23 | 2020-06-09 | Tesla, Inc. | Data synthesis for autonomous control systems |
| US10460180B2 (en) * | 2017-04-20 | 2019-10-29 | GM Global Technology Operations LLC | Systems and methods for visual classification with region proposals |
| US10395144B2 (en) * | 2017-07-24 | 2019-08-27 | GM Global Technology Operations LLC | Deeply integrated fusion architecture for automated driving systems |
| US11893393B2 (en) | 2017-07-24 | 2024-02-06 | Tesla, Inc. | Computational array microprocessor system with hardware arbiter managing memory requests |
| US10671349B2 (en) | 2017-07-24 | 2020-06-02 | Tesla, Inc. | Accelerated mathematical engine |
| US11157441B2 (en) | 2017-07-24 | 2021-10-26 | Tesla, Inc. | Computational array microprocessor system using non-consecutive data formatting |
| US11409692B2 (en) | 2017-07-24 | 2022-08-09 | Tesla, Inc. | Vector computational unit |
| US10551838B2 (en) * | 2017-08-08 | 2020-02-04 | Nio Usa, Inc. | Method and system for multiple sensor correlation diagnostic and sensor fusion/DNN monitor for autonomous driving application |
| DE102017120729A1 (de) * | 2017-09-08 | 2019-03-14 | Connaught Electronics Ltd. | Freiraumdetektion in einem Fahrerassistenzsystem eines Kraftfahrzeugs mit einem neuralen Netzwerk |
| US10762396B2 (en) * | 2017-12-05 | 2020-09-01 | Utac, Llc | Multiple stage image based object detection and recognition |
| US12326919B2 (en) * | 2017-12-05 | 2025-06-10 | Aurora Operations, Inc. | Multiple stage image based object detection and recognition |
| EP3495988A1 (en) | 2017-12-05 | 2019-06-12 | Aptiv Technologies Limited | Method of processing image data in a connectionist network |
| US12307350B2 (en) | 2018-01-04 | 2025-05-20 | Tesla, Inc. | Systems and methods for hardware-based pooling |
| US10706505B2 (en) * | 2018-01-24 | 2020-07-07 | GM Global Technology Operations LLC | Method and system for generating a range image using sparse depth data |
| US11561791B2 (en) | 2018-02-01 | 2023-01-24 | Tesla, Inc. | Vector computational unit receiving data elements in parallel from a last row of a computational array |
| US11164003B2 (en) * | 2018-02-06 | 2021-11-02 | Mitsubishi Electric Research Laboratories, Inc. | System and method for detecting objects in video sequences |
| US11282389B2 (en) | 2018-02-20 | 2022-03-22 | Nortek Security & Control Llc | Pedestrian detection for vehicle driving assistance |
| EP3561726A1 (en) | 2018-04-23 | 2019-10-30 | Aptiv Technologies Limited | A device and a method for processing data sequences using a convolutional neural network |
| EP3561727A1 (en) * | 2018-04-23 | 2019-10-30 | Aptiv Technologies Limited | A device and a method for extracting dynamic information on a scene using a convolutional neural network |
| US11215999B2 (en) | 2018-06-20 | 2022-01-04 | Tesla, Inc. | Data pipeline and deep learning system for autonomous driving |
| US11361457B2 (en) | 2018-07-20 | 2022-06-14 | Tesla, Inc. | Annotation cross-labeling for autonomous control systems |
| US11636333B2 (en) | 2018-07-26 | 2023-04-25 | Tesla, Inc. | Optimizing neural network structures for embedded systems |
| US20220114807A1 (en) * | 2018-07-30 | 2022-04-14 | Optimum Semiconductor Technologies Inc. | Object detection using multiple neural networks trained for different image fields |
| US11562231B2 (en) | 2018-09-03 | 2023-01-24 | Tesla, Inc. | Neural networks for embedded devices |
| CN109284699A (zh) * | 2018-09-04 | 2019-01-29 | 广东翼卡车联网服务有限公司 | 一种适用车辆碰撞的深度学习方法 |
| CN112970029B (zh) * | 2018-09-13 | 2024-06-07 | 辉达公司 | 用于自主机器应用中传感器视盲检测的深度神经网络处理 |
| US11195030B2 (en) * | 2018-09-14 | 2021-12-07 | Honda Motor Co., Ltd. | Scene classification |
| US11105924B2 (en) * | 2018-10-04 | 2021-08-31 | Waymo Llc | Object localization using machine learning |
| KR20250078625A (ko) | 2018-10-11 | 2025-06-02 | 테슬라, 인크. | 증강 데이터로 기계 모델을 훈련하기 위한 시스템 및 방법 |
| US20200125093A1 (en) * | 2018-10-17 | 2020-04-23 | Wellen Sham | Machine learning for driverless driving |
| US11196678B2 (en) | 2018-10-25 | 2021-12-07 | Tesla, Inc. | QOS manager for system on a chip communications |
| US11816585B2 (en) | 2018-12-03 | 2023-11-14 | Tesla, Inc. | Machine learning models operating at different frequencies for autonomous vehicles |
| US11537811B2 (en) | 2018-12-04 | 2022-12-27 | Tesla, Inc. | Enhanced object detection for autonomous vehicles based on field view |
| US10963757B2 (en) * | 2018-12-14 | 2021-03-30 | Industrial Technology Research Institute | Neural network model fusion method and electronic device using the same |
| US10977501B2 (en) | 2018-12-21 | 2021-04-13 | Waymo Llc | Object classification using extra-regional context |
| US11610117B2 (en) | 2018-12-27 | 2023-03-21 | Tesla, Inc. | System and method for adapting a neural network model on a hardware platform |
| US10402692B1 (en) * | 2019-01-22 | 2019-09-03 | StradVision, Inc. | Learning method and learning device for fluctuation-robust object detector based on CNN using target object estimating network adaptable to customers' requirements such as key performance index, and testing device using the same |
| US10346693B1 (en) * | 2019-01-22 | 2019-07-09 | StradVision, Inc. | Method and device for attention-based lane detection without post-processing by using lane mask and testing method and testing device using the same |
| US10325352B1 (en) * | 2019-01-23 | 2019-06-18 | StradVision, Inc. | Method and device for transforming CNN layers to optimize CNN parameter quantization to be used for mobile devices or compact networks with high precision via hardware optimization |
| US10387753B1 (en) * | 2019-01-23 | 2019-08-20 | StradVision, Inc. | Learning method and learning device for convolutional neural network using 1×1 convolution for image recognition to be used for hardware optimization, and testing method and testing device using the same |
| US10325185B1 (en) * | 2019-01-23 | 2019-06-18 | StradVision, Inc. | Method and device for online batch normalization, on-device learning, and continual learning applicable to mobile devices or IOT devices additionally referring to one or more previous batches to be used for military purpose, drone or robot, and testing method and testing device using the same |
| US10395140B1 (en) * | 2019-01-23 | 2019-08-27 | StradVision, Inc. | Learning method and learning device for object detector based on CNN using 1×1 convolution to be used for hardware optimization, and testing method and testing device using the same |
| US10496899B1 (en) * | 2019-01-25 | 2019-12-03 | StradVision, Inc. | Learning method and learning device for adjusting parameters of CNN in which residual networks are provided for meta learning, and testing method and testing device using the same |
| US10373323B1 (en) * | 2019-01-29 | 2019-08-06 | StradVision, Inc. | Method and device for merging object detection information detected by each of object detectors corresponding to each camera nearby for the purpose of collaborative driving by using V2X-enabled applications, sensor fusion via multiple vehicles |
| CN111771135B (zh) * | 2019-01-30 | 2023-03-21 | 百度时代网络技术(北京)有限公司 | 自动驾驶车辆中使用rnn和lstm进行时间平滑的lidar定位 |
| US10373027B1 (en) * | 2019-01-30 | 2019-08-06 | StradVision, Inc. | Method for acquiring sample images for inspecting label among auto-labeled images to be used for learning of neural network and sample image acquiring device using the same |
| US10776647B2 (en) * | 2019-01-31 | 2020-09-15 | StradVision, Inc. | Method and device for attention-driven resource allocation by using AVM to thereby achieve safety of autonomous driving |
| US10726279B1 (en) * | 2019-01-31 | 2020-07-28 | StradVision, Inc. | Method and device for attention-driven resource allocation by using AVM and reinforcement learning to thereby achieve safety of autonomous driving |
| US10997461B2 (en) | 2019-02-01 | 2021-05-04 | Tesla, Inc. | Generating ground truth for machine learning from time series elements |
| US11150664B2 (en) | 2019-02-01 | 2021-10-19 | Tesla, Inc. | Predicting three-dimensional features for autonomous driving |
| US11567514B2 (en) | 2019-02-11 | 2023-01-31 | Tesla, Inc. | Autonomous and user controlled vehicle summon to a target |
| US10956755B2 (en) | 2019-02-19 | 2021-03-23 | Tesla, Inc. | Estimating object properties using visual image data |
| EP3928247A1 (en) | 2019-02-22 | 2021-12-29 | Google LLC | Memory-guided video object detection |
| IL265818A (en) * | 2019-04-02 | 2020-10-28 | Ception Tech Ltd | System and method for determining location and orientation of an object in a space |
| US11643115B2 (en) | 2019-05-31 | 2023-05-09 | Waymo Llc | Tracking vanished objects for autonomous vehicles |
| US12051206B2 (en) | 2019-07-25 | 2024-07-30 | Nvidia Corporation | Deep neural network for segmentation of road scenes and animate object instances for autonomous driving applications |
| US11885907B2 (en) | 2019-11-21 | 2024-01-30 | Nvidia Corporation | Deep neural network for detecting obstacle instances using radar sensors in autonomous machine applications |
| US11532168B2 (en) | 2019-11-15 | 2022-12-20 | Nvidia Corporation | Multi-view deep neural network for LiDAR perception |
| US12080078B2 (en) | 2019-11-15 | 2024-09-03 | Nvidia Corporation | Multi-view deep neural network for LiDAR perception |
| US12050285B2 (en) | 2019-11-21 | 2024-07-30 | Nvidia Corporation | Deep neural network for detecting obstacle instances using radar sensors in autonomous machine applications |
| US11254331B2 (en) * | 2020-05-14 | 2022-02-22 | StradVision, Inc. | Learning method and learning device for updating object detector, based on deep learning, of autonomous vehicle to adapt the object detector to driving circumstance, and updating method and updating device using the same |
| EP4027112A1 (en) * | 2021-01-11 | 2022-07-13 | Aptiv Technologies Limited | Methods and system for determining a location of an object |
| US12462575B2 (en) | 2021-08-19 | 2025-11-04 | Tesla, Inc. | Vision-based machine learning model for autonomous driving with adjustable virtual camera |
| TWI847184B (zh) * | 2022-07-08 | 2024-07-01 | 和碩聯合科技股份有限公司 | 物件偵測系統及物件偵測輔助系統 |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2017015947A1 (en) * | 2015-07-30 | 2017-02-02 | Xiaogang Wang | A system and a method for object tracking |
| US20170262996A1 (en) * | 2016-03-11 | 2017-09-14 | Qualcomm Incorporated | Action localization in sequential data with attention proposals from a recurrent network |
| CN105869630B (zh) * | 2016-06-27 | 2019-08-02 | 上海交通大学 | 基于深度学习的说话人语音欺骗攻击检测方法及系统 |
-
2017
- 2017-01-20 US US15/411,656 patent/US20180211403A1/en not_active Abandoned
-
2018
- 2018-01-16 MX MX2018000673A patent/MX2018000673A/es unknown
- 2018-01-18 RU RU2018101859A patent/RU2018101859A/ru not_active Application Discontinuation
- 2018-01-18 CN CN201810047570.4A patent/CN108334081A/zh active Pending
- 2018-01-18 GB GB1800836.7A patent/GB2560620A/en not_active Withdrawn
- 2018-01-18 DE DE102018101125.3A patent/DE102018101125A1/de not_active Withdrawn
Also Published As
| Publication number | Publication date |
|---|---|
| RU2018101859A (ru) | 2019-07-19 |
| US20180211403A1 (en) | 2018-07-26 |
| GB201800836D0 (en) | 2018-03-07 |
| CN108334081A (zh) | 2018-07-27 |
| GB2560620A (en) | 2018-09-19 |
| DE102018101125A1 (de) | 2018-07-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| MX2018000673A (es) | Red neuronal profunda convolucional recurrente para deteccion de objetos. | |
| MX2018000851A (es) | Deteccion de objetos mediante el uso de una red neuronal recurrente y un mapa de elementos concatenados. | |
| WO2017176354A3 (en) | Autonomous vehicle, system and method for structural object assessment and manufacture thereof | |
| WO2015177643A3 (en) | Systems and methods for braking a vehicle based on a detected object | |
| WO2016073528A3 (en) | Image sensor apparatus and method for simultaneously capturing multiple images | |
| MX2016006158A (es) | Software de soldadura para deteccion y control de dispositivos y para analisis de datos. | |
| WO2017007775A3 (en) | Systems, devices, and methods for episode detection and evaluation | |
| EP3085937A3 (en) | System and method for detecting vehicle system faults | |
| WO2017062078A3 (en) | Combined intensity and coherent change detection in images | |
| EP2838050A3 (en) | Image processing unit, object detection method, object detection program, and vehicle control system | |
| EP4503052A3 (en) | Systems and methods for detecting worsening heart failure | |
| IN2014DN06211A (es) | ||
| MX2016013661A (es) | Inferencia probabilistica mediante el uso de integrales y sumas ponderadas por medio de una funcion hash para el rastreo de objetos. | |
| EP2937757A3 (en) | Methods and systems for object detection using multiple sensors | |
| MY176768A (en) | Object monitoring system, object monitoring method, and monitoring target extraction program | |
| MY190323A (en) | System for inspecting rope of elevator | |
| MX373806B (es) | Método de control de un sistema de vigilancia de tránsito. | |
| WO2016066419A3 (de) | Verfahren und vorrichtung zur lokalisierung eines fahrzeugs in seinem umfeld | |
| GB2539345A (en) | Time lapse electromagnetic monitoring | |
| WO2014144408A3 (en) | Systems, methods, and software for detecting an object in an image | |
| MY194370A (en) | Sensor for capturing image and method for controlling the same | |
| WO2014140906A3 (en) | Systems and methods for providing feedback based on the state of an object | |
| EP3163544A3 (en) | Systems and methods for verified threat detection | |
| MX2017015263A (es) | Sistema y metodo de verificacion de seguridad. | |
| EP2937255A3 (en) | Roll angle estimation device and transport apparatus |