[go: up one dir, main page]

Tanaka et al., 2003 - Google Patents

Performance of 320x240 uncooled bolometer-type infrared focal plane arrays

Tanaka et al., 2003

Document ID
3811295936644081824
Author
Tanaka Y
Tanaka A
Iida K
Sasaki T
Tohyama S
Ajisawa A
Kawahara A
Kurashina S
Endoh T
Kawano K
Okuyama K
Egashira K
Aoki H
Oda N
Publication year
Publication venue
Infrared Technology and Applications XXIX

External Links

Snippet

The performance of a 320 x 240 bolometer-type uncooled infrared (IR) Focal Plane Array (FPA) is described. Vanadium oxide thin film is adopted for the bolometer material, having a sheet resistance of approximately 10 kohms/square. It is patterned such that the bolometer …
Continue reading at www.spiedigitallibrary.org (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry
    • G01J5/10Radiation pyrometry using electric radiation detectors
    • G01J5/20Radiation pyrometry using electric radiation detectors using resistors, thermistors, or semi-conductors sensitive to radiation
    • G01J5/22Electrical features
    • G01J5/24Use of a specially-adapted circuit, e.g. bridge circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infra-red radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/335Transforming light or analogous information into electric information using solid-state image sensors [SSIS]
    • H04N5/357Noise processing, e.g. detecting, correcting, reducing or removing noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry
    • G01J5/02Details
    • G01J5/08Optical features
    • G01J5/0803Optical elements not provided otherwise, e.g. optical manifolds, gratings, holograms, cubic beamsplitters, prisms, particular coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry
    • G01J5/02Details
    • G01J5/04Casings Mountings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechnical part supplementary adjustable parts
    • G01J1/0488Optical or mechnical part supplementary adjustable parts with spectral filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/225Television cameras; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry
    • G01J5/50Radiation pyrometry using techniques specified in the subgroups below
    • G01J5/52Radiation pyrometry using techniques specified in the subgroups below using comparison with reference sources, e.g. disappearing-filament pyrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colour
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral line directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems
    • H04N3/10Scanning details of television systems by means not exclusively optical-mechanical
    • H04N3/14Scanning details of television systems by means not exclusively optical-mechanical by means of electrically scanned solid-state devices
    • H04N3/15Scanning details of television systems by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation

Similar Documents

Publication Publication Date Title
US7235785B2 (en) Imaging device with multiple fields of view incorporating memory-based temperature compensation of an uncooled focal plane array
US6515285B1 (en) Method and apparatus for compensating a radiation sensor for ambient temperature variations
US6476392B1 (en) Method and apparatus for temperature compensation of an uncooled focal plane array
US7495220B2 (en) Uncooled infrared sensor
US8290301B2 (en) Optimized imaging system for collection of high resolution imagery
EP0534769B1 (en) Readout system and process for IR detector arrays
US8080793B2 (en) Device for detecting infrared radiation comprising a resistive imaging bolometer, a system comprising an array of such bolometers and a method for reading an imaging bolometer integrated into such a system
Tempelhahn et al. Shutter-less calibration of uncooled infrared cameras
CA2451463C (en) Method and apparatus for readout of compound microbolometer arrays
Tanaka et al. Performance of 320x240 uncooled bolometer-type infrared focal plane arrays
US11125625B2 (en) Microbolometer readout circuit and calibration method using the same
Fieque et al. Uncooled amorphous silicon XGA IRFPA with 17μm pixel-pitch for High End applications
US20020125430A1 (en) Bolometer operation using fast scanning
Breiter et al. Recent developments for QWIP IR imaging modules at AIM
Fieque et al. 320x240 uncooled microbolometer 2D array for radiometric and process control applications
Tissot et al. First demonstration of 640 x 480 uncooled amorphous silicon IRFPA with 25 µm pixel pitch
Orżanowski et al. Test and evaluation of reference-based nonuniformity correction methods for microbolometer infrared detectors
Kruse et al. Infrared imager employing a 160x120 pixel uncooled bolometer array
Mizrahi et al. Uncooled detector development program at SCD
Beystrum et al. Low-cost PbSalt FPAs
Saint-Pé et al. Uncooled focal plane array for thermal observation of the Earth
Howard et al. Advances in microbolometer focal plane technology at Boeing
Marshall et al. Quantitative and imaging performance of uncooled microbolometer sensors
Egashira et al. Infrared sensor module using uncooled 320× 240/640× 480 detector
Durand et al. Uncooled amorphous silicon TEC-less 1/4 VGA IRFPA with 25um pixel-pitch for high volume applications