Leijenhorst et al., 2024 - Google Patents
Solving clustered low-rank semidefinite programs arising from polynomial optimizationLeijenhorst et al., 2024
View HTML- Document ID
- 3525316128241260998
- Author
- Leijenhorst N
- de Laat D
- Publication year
- Publication venue
- Mathematical Programming Computation
External Links
Snippet
We study a primal-dual interior point method specialized to clustered low-rank semidefinite programs requiring high precision numerics, which arise from certain multivariate polynomial (matrix) programs through sums-of-squares characterizations and sampling. We …
- 238000005457 optimization 0 title description 16
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
- G06F17/5036—Computer-aided design using simulation for analog modelling, e.g. for circuits, spice programme, direct methods, relaxation methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
- G06F17/5018—Computer-aided design using simulation using finite difference methods or finite element methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
- G06F17/504—Formal methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/14—Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
- G06F17/141—Discrete Fourier transforms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30587—Details of specialised database models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5045—Circuit design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/17—Function evaluation by approximation methods, e.g. inter- or extrapolation, smoothing, least mean square method
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30861—Retrieval from the Internet, e.g. browsers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5068—Physical circuit design, e.g. layout for integrated circuits or printed circuit boards
- G06F17/5081—Layout analysis, e.g. layout verification, design rule check
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/20—Handling natural language data
- G06F17/21—Text processing
- G06F17/22—Manipulating or registering by use of codes, e.g. in sequence of text characters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/18—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for functional genomics or proteomics, e.g. genotype-phenotype associations, linkage disequilibrium, population genetics, binding site identification, mutagenesis, genotyping or genome annotation, protein-protein interactions or protein-nucleic acid interactions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/08—Multi-objective optimization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/708—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for data visualisation, e.g. molecular structure representations, graphics generation, display of maps or networks or other visual representations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Kong et al. | Tensor Q-rank: New data dependent definition of tensor rank | |
| Leijenhorst et al. | Solving clustered low-rank semidefinite programs arising from polynomial optimization | |
| Wang et al. | Tensor neural network models for tensor singular value decompositions | |
| Ji et al. | A multigrid method for Helmholtz transmission eigenvalue problems | |
| Murray et al. | Newton polytopes and relative entropy optimization | |
| Fu et al. | A preconditioned fast finite difference method for space-time fractional partial differential equations | |
| Wycoff et al. | Sequential learning of active subspaces | |
| Ragonneau et al. | PDFO: a cross-platform package for Powell’s derivative-free optimization solvers | |
| af Klinteberg et al. | Accurate quadrature of nearly singular line integrals in two and three dimensions by singularity swapping | |
| Liu et al. | A parallel hierarchical blocked adaptive cross approximation algorithm | |
| Mahadevan et al. | Metrics for Intercomparison of Remapping Algorithms (MIRA) protocol applied to Earth system models | |
| Kaveh et al. | Topology optimization of repetitive near-regular shell structures using preconditioned conjugate gradients method | |
| Qiu et al. | Efficient preconditioners for PDE-constrained optimization problems with a multi-level sequentially semi-separable matrix structure | |
| Martínez-Villena et al. | Hardware implementation methods in random vector functional-link networks | |
| Bian et al. | A preconditioned Riemannian gradient descent algorithm for low-rank matrix recovery | |
| Adak et al. | Tensor network space-time spectral collocation method for solving the nonlinear convection diffusion equation | |
| Xie et al. | Least H 2 norm updating of quadratic interpolation models for derivative-free trust-region algorithms | |
| Farshadmoghadam et al. | An improved radial basis functions method for the high-order Volterra–Fredholm integro-differential equations | |
| Asgari et al. | LSMR iterative method for solving one-and two-dimensional linear Fredholm integral equations | |
| Sørensen et al. | Multilinear singular value decomposition–based completion with fibers observed in a single mode | |
| Zhu et al. | Convexity and solvability for compactly supported radial basis functions with different shapes | |
| Ilin | Multi-preconditioned domain decomposition methods in the Krylov subspaces | |
| Roman et al. | Fast eigenvalue calculations in a massively parallel plasma turbulence code | |
| Ballani et al. | A review on adaptive low-rank approximation techniques in the hierarchical tensor format | |
| Sleem et al. | Lp quasi-norm minimization: algorithm and applications |