[go: up one dir, main page]

Goddard et al., 2012 - Google Patents

Method for non-contact particle manipulation and control of particle spacing along an axis

Goddard et al., 2012

View PDF
Document ID
3179039126816036503
Author
Goddard G
Kaduchak G
Jett J
Graves S
Publication year

External Links

Snippet

Method and system for uniformly spacing particles in a flowing system comprising suspending particles in an elongated fluid filled cavity; exposing said cavity to an axial acoustic standing wave field, wherein said axial acoustic standing wave field drives said …
Continue reading at www.osti.gov (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1456Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1486Counting the particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1404Fluid conditioning in flow cytometers, e.g. flow cells; Supply; Control of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated micro-fluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated micro-fluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502776Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated micro-fluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for focusing or laminating flows

Similar Documents

Publication Publication Date Title
Li et al. Applications of acoustofluidics in bioanalytical chemistry
US8783109B2 (en) Ultrasonic analyte concentration and application in flow cytometry
US6833542B2 (en) Method for sorting particles
AU2002241760B2 (en) Methods and apparatus for use of optical forces for identification, characterization and/or sorting of particles
Wiklund et al. Ultrasonic enhancement of bead-based bioaffinity assays
US6784420B2 (en) Method of separating particles using an optical gradient
Grenvall et al. Concurrent isolation of lymphocytes and granulocytes using prefocused free flow acoustophoresis
US20020160470A1 (en) Methods and apparatus for generating and utilizing linear moving optical gradients
US20020108859A1 (en) Methods for modifying interaction between dielectric particles and surfaces
US20020132315A1 (en) Methods and apparatus for measurement of dielectric constants of particles
AU2002241760A1 (en) Methods and apparatus for use of optical forces for identification, characterization and/or sorting of particles
US20020115163A1 (en) Methods for sorting particles by size and elasticity
US20020123112A1 (en) Methods for increasing detection sensitivity in optical dielectric sorting systems
US20020121443A1 (en) Methods for the combined electrical and optical identification, characterization and/or sorting of particles
Qi et al. Surface acoustic wave manipulation of bioparticles
Wang et al. Sheathless microflow cytometer utilizing two bulk standing acoustic waves
Goddard et al. Method for non-contact particle manipulation and control of particle spacing along an axis
Kaduchak et al. Ultrasonic analyte concentration and application in flow cytometry
Ward et al. Acoustic concentration of particles in fluid flow
Kaduchak et al. Particle analysis in an acoustic cytometer
Graves et al. System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source
Suthanthiraraj et al. Essential Fluidics for a Flow Cytometer
Wiklund Ultrasonic enrichment of microparticles in bioaffinity assays
Malosse Toward a High-Throughput Device Able to Transport and Track Microscale Components Over Long Distances
Fencl Acoustofluidics and Soft Materials Interfaces for Biomedical Applications