[go: up one dir, main page]

Bodyanskiy et al., 1993 - Google Patents

The cascaded neo-fuzzy architecture using cubic-spline activation functions

Bodyanskiy et al., 1993

View PDF
Document ID
3080224536598445443
Author
Bodyanskiy Y
Viktorov Y
Publication year
Publication venue
INFORMATION THEORIES & APPLICATIONS

External Links

Snippet

in the paper new hybrid system of computational intelligence called the Cascade Neo-Fuzzy Neural Network (CNFNN) is introduced. This architecture has the similar structure with the Cascade-Correlation Learning Architecture proposed by SE Fahlman and C. Lebiere, but …
Continue reading at www.foibg.com (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • G06N3/0635Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means using analogue means
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/08Learning methods
    • G06N3/082Learning methods modifying the architecture, e.g. adding or deleting nodes or connections, pruning
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/04Architectures, e.g. interconnection topology
    • G06N3/0454Architectures, e.g. interconnection topology using a combination of multiple neural nets
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/10Simulation on general purpose computers
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • G06N7/02Computer systems based on specific mathematical models using fuzzy logic
    • G06N7/04Physical realisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • G06N7/02Computer systems based on specific mathematical models using fuzzy logic
    • G06N7/023Learning or tuning the parameters of a fuzzy system
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/12Computer systems based on biological models using genetic models
    • G06N3/126Genetic algorithms, i.e. information processing using digital simulations of the genetic system
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6247Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6251Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on a criterion of topology preservation, e.g. multidimensional scaling, self-organising maps
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • G06K9/6269Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches based on the distance between the decision surface and training patterns lying on the boundary of the class cluster, e.g. support vector machines

Similar Documents

Publication Publication Date Title
Denoeux et al. Initializing back propagation networks with prototypes
US5606646A (en) Recurrent neural network-based fuzzy logic system
Kim et al. Forecasting time series with genetic fuzzy predictor ensemble
Thawonmas et al. Function approximation based on fuzzy rules extracted from partitioned numerical data
US5469530A (en) Unsupervised training method for a neural net and a neural net classifier device
Bodyanskiy et al. An extended neo-fuzzy neuron and its adaptive learning algorithm
Bodyanskiy et al. Hybrid neuro-neo-fuzzy system and its adaptive learning algorithm
Zgurovsky et al. Classification and Analysis Topologies Known Artificial Neurons and Neural Networks
Ye et al. The neo-fuzzy neural network structure optimization using the GMDH for the solving forecasting and classification problems
Hu et al. A deep cascade neural network based on extended neo-fuzzy neurons and its adaptive learning algorithm
Bodyanskiy et al. The cascaded neo-fuzzy architecture using cubic-spline activation functions
Zaychenko et al. Hybrid GMDH-neuro-fuzzy system and its training scheme
Hung Competitive learning networks for unsupervised training
Bodyanskiy et al. Evolving hybrid GMDH-Neuro-Fuzzy network and its applications
Bodyanskiy et al. The cascade Neo-Fuzzy architecture and its online learning algorithm
Nowicki et al. A method for learning of hierarchical fuzzy systems
Bodyanskiy et al. Hybrid cascade neural network based on wavelet-neuron
Jankowski et al. Statistical control of growing and pruning in RBF-like neural networks
Kolodyazhniy et al. Cascaded multiresolution spline-based fuzzy neural network
Bodyanskiy et al. The cascade orthogonal neural network
Bodyanskiy et al. The autoencoder based on generalized neo-fuzzy neuron and its fast learning for deep neural networks
Yevick Nonlinearity Enhanced Adaptive Activation Functions
Kasabov Learning fuzzy rules through neural networks
Hu et al. A hybrid growing ENFN-based neuro-fuzzy system and its rapid deep learning
Bodyanskiy et al. The Cascade Neo-Fuzzy Neural Network and its Learning Algorithm