Liu et al., 2020 - Google Patents
Effective AER object classification using segmented probability-maximization learning in spiking neural networksLiu et al., 2020
View PDF- Document ID
- 260473499016866403
- Author
- Liu Q
- Ruan H
- Xing D
- Tang H
- Pan G
- Publication year
- Publication venue
- Proceedings of the AAAI conference on artificial intelligence
External Links
Snippet
Address event representation (AER) cameras have recently attracted more attention due to the advantages of high temporal resolution and low power consumption, compared with traditional frame-based cameras. Since AER cameras record the visual input as …
- 230000001537 neural 0 title abstract description 11
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6256—Obtaining sets of training patterns; Bootstrap methods, e.g. bagging, boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4604—Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes, intersections
- G06K9/4609—Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes, intersections by matching or filtering
- G06K9/4619—Biologically-inspired filters, e.g. receptive fields
- G06K9/4623—Biologically-inspired filters, e.g. receptive fields with interaction between the responses of different filters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00268—Feature extraction; Face representation
- G06K9/00281—Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/04—Architectures, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding or deleting nodes or connections, pruning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
- G06K9/00771—Recognising scenes under surveillance, e.g. with Markovian modelling of scene activity
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00335—Recognising movements or behaviour, e.g. recognition of gestures, dynamic facial expressions; Lip-reading
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/40—Analysis of texture
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Liu et al. | Effective AER object classification using segmented probability-maximization learning in spiking neural networks | |
| Liu et al. | Unsupervised aer object recognition based on multiscale spatio-temporal features and spiking neurons | |
| Xiao et al. | An event-driven categorization model for AER image sensors using multispike encoding and learning | |
| Wang et al. | Trajectory predictor by using recurrent neural networks in visual tracking | |
| Zhao et al. | Feedforward categorization on AER motion events using cortex-like features in a spiking neural network | |
| Hasan et al. | Learning temporal regularity in video sequences | |
| US20170337469A1 (en) | Anomaly detection using spiking neural networks | |
| CN111401106A (en) | A method, device and equipment for behavior recognition | |
| Li et al. | Deep representation via convolutional neural network for classification of spatiotemporal event streams | |
| Zhou et al. | A bio-inspired hierarchical spiking neural network with reward-modulated STDP learning rule for AER object recognition | |
| Shen et al. | Recognizing scoring in basketball game from AER sequence by spiking neural networks | |
| Shu et al. | A bio-inspired approach modeling spiking neural networks of visual cortex for human action recognition | |
| Mogan et al. | Gait-DenseNet: A Hybrid Convolutional Neural Network for Gait Recognition. | |
| Lu et al. | An event-based categorization model using spatio-temporal features in a spiking neural network | |
| Berlin et al. | R-STDP based spiking neural network for human action recognition | |
| Sigala et al. | Learning features of intermediate complexity for the recognition of biological motion | |
| Yu | Deep learning methods for human action recognition | |
| Sravanthi et al. | An efficient classifier using machine learning technique for individual action identification | |
| CN117370858A (en) | Neuromorphic visual target recognition method and device | |
| Burt et al. | Unsupervised foveal vision neural networks with top-down attention | |
| Tang et al. | An event-driven object recognition model using activated connected domain detection | |
| Hossain et al. | Daily living human activity recognition using deep neural networks | |
| Modi et al. | Automated anomaly detection and multi-label anomaly classification in crowd scenes based on optimal thresholding and deep learning strategy | |
| Yang et al. | Multi-scale Harmonic Mean Time Surfaces for Event-based Object Classification | |
| Ding et al. | A time-surface enhancement model for event-based spatiotemporal feature extraction |