von Korff et al., 2009 - Google Patents
Comparison of ligand-and structure-based virtual screening on the DUD data setvon Korff et al., 2009
- Document ID
- 2604317146876404078
- Author
- von Korff M
- Freyss J
- Sander T
- Publication year
- Publication venue
- Journal of chemical information and modeling
External Links
Snippet
Several in-house developed descriptors and our in-house docking tool ActDock were compared with virtual screening on the data set of useful decoys (DUD). The results were compared with the chemical fingerprint descriptor from ChemAxon and with the docking …
- 238000003042 ligand based virtual screening 0 title abstract description 26
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/16—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for molecular structure, e.g. structure alignment, structural or functional relations, protein folding, domain topologies, drug targeting using structure data, involving two-dimensional or three-dimensional structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/706—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for drug design with the emphasis on a therapeutic agent, e.g. ligand-biological target interactions, pharmacophore generation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/18—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for functional genomics or proteomics, e.g. genotype-phenotype associations, linkage disequilibrium, population genetics, binding site identification, mutagenesis, genotyping or genome annotation, protein-protein interactions or protein-nucleic acid interactions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/22—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for sequence comparison involving nucleotides or amino acids, e.g. homology search, motif or SNP [Single-Nucleotide Polymorphism] discovery or sequence alignment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/28—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for programming tools or database systems, e.g. ontologies, heterogeneous data integration, data warehousing or computing architectures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/12—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for modelling or simulation in systems biology, e.g. probabilistic or dynamic models, gene-regulatory networks, protein interaction networks or metabolic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/24—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for machine learning, data mining or biostatistics, e.g. pattern finding, knowledge discovery, rule extraction, correlation, clustering or classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/20—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for hybridisation or gene expression, e.g. microarrays, sequencing by hybridisation, normalisation, profiling, noise correction models, expression ratio estimation, probe design or probe optimisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/705—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for database search of chemical structures, e.g. full structure search, substructure search, similarity search, pharmacophore search, 3D structure search
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/704—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for prediction of properties of compounds, e.g. calculating and selecting molecular descriptors, details related to the development of SAR/QSAR/QSPR models, ADME/Tox models or PK/PD models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| von Korff et al. | Comparison of ligand-and structure-based virtual screening on the DUD data set | |
| Zhang et al. | Computational multitarget drug design | |
| Desaphy et al. | Comparison and druggability prediction of protein–ligand binding sites from pharmacophore-annotated cavity shapes | |
| Korb et al. | Potential and limitations of ensemble docking | |
| Kelley et al. | POSIT: flexible shape-guided docking for pose prediction | |
| Meslamani et al. | Protein–ligand-based pharmacophores: generation and utility assessment in computational ligand profiling | |
| Singh et al. | AADS-An automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors | |
| Verdonk et al. | Protein− ligand docking against non-native protein conformers | |
| Li et al. | Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results | |
| Sheridan et al. | Drug-like density: a method of quantifying the “bindability” of a protein target based on a very large set of pockets and drug-like ligands from the Protein Data Bank | |
| De Graaf et al. | Crystal structure-based virtual screening for fragment-like ligands of the human histamine H1 receptor | |
| Liu et al. | SHAFTS: a hybrid approach for 3D molecular similarity calculation. 1. Method and assessment of virtual screening | |
| Bottegoni et al. | Four-dimensional docking: a fast and accurate account of discrete receptor flexibility in ligand docking | |
| Swann et al. | A unified, probabilistic framework for structure-and ligand-based virtual screening | |
| Heikamp et al. | Large-scale similarity search profiling of ChEMBL compound data sets | |
| Mpamhanga et al. | Knowledge-based interaction fingerprint scoring: a simple method for improving the effectiveness of fast scoring functions | |
| Choudhury et al. | Dynamics based pharmacophore models for screening potential inhibitors of mycobacterial cyclopropane synthase | |
| Huang et al. | HybridDock: a hybrid protein–ligand docking protocol integrating protein-and ligand-based approaches | |
| Liu et al. | Improving the scoring of protein–ligand binding affinity by including the effects of structural water and electronic polarization | |
| Hoffer et al. | S4mple–sampler for multiple protein–ligand entities: Simultaneous docking of several entities | |
| Huang et al. | Inexpensive method for selecting receptor structures for virtual screening | |
| Ebalunode et al. | Novel approach to structure-based pharmacophore search using computational geometry and shape matching techniques | |
| Li et al. | Prediction of the favorable hydration sites in a protein binding pocket and its application to scoring function formulation | |
| Chen et al. | Prediction of protein pairs sharing common active ligands using protein sequence, structure, and ligand similarity | |
| Arcon et al. | Cosolvent-based protein pharmacophore for ligand enrichment in virtual screening |